
LECTURE 4


Convergence and Asymptotic


Equipartition Property


Last time: 

Fano’s Inequality • 

Stochastic Processes • 

Entropy Rate • 

Hiden Markov Process • 

Lecture outline 

Types of convergence • 

Weak Law of Large Numbers • 

Strong Law of Large Numbers
• 

Asymptotic Equipartition Property • 

Reading: Chapter 3. 



Convergence of Random Variables


A sequence of maps Ω → X converge, w.o.l.g., 

to 0. 

Pointwise convergence: for any ω ∈ Ω, Xn(ω) →
0. 

Goal The Law of Large Numbers: the av­

erage of a sequence of i.i.d. r.v.s converges 

to the mean. 

n1 
lim 

� 
Xn E[X] 

n 
→


n→∞ 
i=1 

Need weaker notions. 



Types of convergence


Almost sure convergence (also called con­• 

vergence with probability 1) 

P 
��

ω : lim Yn(ω) = Y (ω)
�� 

= 1 
n→∞ 

write Yn Y a.s.. → 

Mean­square convergence: • 

lim E[ Yn − Y 2] = 0 
n→∞ | | 

• Convergence in probability: ∀� > 0


lim P ({ω : Yn(ω)− Y (ω) > �}) = 0 
n→∞ | | 

Convergence in distribution: the cumula­• 

tive distribution function (CDF) Fn(y) = 

P r(Yn ≤ y) satisfy 

lim Fn(y) FY (y)→
n→∞ 

at all y for which F is continuous.




Relations among types of convergence


Venn diagram of relation:




Weak Law of Large Numbers


X1, X2, . . . i.i.d. 

finite mean µ and variance σ2 

X1 + + Xn
Sn = 

· · · 
n 

E[Sn] = • 

Var(Sn) = • 

As n increases, Sn is distributed around • 

µ with a smaller variance. 

Smaller variance means Sn cannot be too •


far away from its mean —– need to make 

rigorous. 



Chebyshev’s Inequality


Theorem Consider random variable Z tak­

ing on only nonnegative values, ∀δ > 0, 

1

P (Z ≥ δ) ≤ E[Z]

δ 

Proof 

E[Z] = P (Z ≥ δ)E[Z Z ≥ δ] + P (Z < δ)E[Z Z < δ]
| |
P (Z ≥ δ)E[Z Z ≥ δ]≥ |
P (Z ≥ δ)δ≥ 

Let S be a zero mean r.v. with variance 

σ2 
S, let Z = S2 ≥ 0. E[Z] = σ2.S

Apply Chebyshev’s inequality, 

P ( S ≥ kσS) = P (Z ≥ k2σ2 1 
S) ≤ 

k2
| | 
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Finishing the Proof of the Weak LLN


Recall Sn =
1(X1+ . . . +Xn), with E[Sn] = n

µ, and Var[Sn] = σn 
2
, we have 

P


⎡
⎣


⎤
⎦
≤


1


k2

1
 n�
 kσ 

Xn − µ ≥ √
nn i=1 

kσFor any �, take large n and k, let � = √
n 
. 



1 

AEP


If X1, . . . , Xn are IID with distribution PX , 

then 

log(PX1,...,Xn(x1, . . . , xn)) H(X) in prob­n →−
ability


Proof: create r.v. Y = log(PX (X)): i.e. 

Y takes the value yi = log(PX (xi)) with 

probability PX (xi) (note that the value of 

Y is related to its probability distribution) 

we now apply the WLLN to Y
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AEP


For any ω ∈ Ω, 

1 −
n 

log(P (X1(ω), X2(ω), . . . , Xn(ω))) 

1 n�

PX (Xi(ω))
= −

n
i=1 

1
 n�

Yi(ω)
= −

n
i=1 

using the WLLN on Y 

− 1 �
i
n 
=1 Yi → EY [Y ] in probability, i.e., ∀�,n 

lim

n→∞


P


⎡
⎣


⎤
⎦
=− 

1
 n�


n i=1 

log PX (Xi)− E[Y ] ≤ � 

E[Y ] = −E[log(PX (X))] = H(X) 

1 



Consequences of the AEP: the typical


set


Definition: A
(
�
n) is a typical set with re­

spect to PX(x) if it is the set of sequences 
n nin the set of all possible sequences x1 ∈ X

with probability: 

n2−n(H(X)+�) ≤ P (Xn = x1) ≤ 2−n(H(X)−�)
1 

equivalently 

1 nlog(P (Xn = x1)) ≤ H(X)−�1H(X)−� ≤ − 
n 

The bounds can be made arbitrarily tight 

as n increases. 



� 

� 

Consequences of the AEP: the typical


set


Typical: 

P (Xn 
1 ∈ A(n)) 1 → 

Notice: two different limits, ∀�, δ > 0, ∃N ,


s.t.	 n ≥ N implies 

P (A(n)) ≥ 1 − δ 

For simplicity, set δ = �. 

How big is the typical set?
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Size of the Typical Set


Claim: 

2n(H(X)+�)|A(n)| ≤ 

and for large enough n, 

|A(n) ≥ (1 − �)2n(H(X)−�)|

Proof: 

n1 = 
� 

P (x1) 
X n 

n ≥	
� 

P (x1) 

A
(n) 

≥ |A(n) 2−n(H(X)+�)|
For large enough n,


1 − � ≤ P (A(
�
n)) 

n=	
� 

P (x1) 

A
(n) 

≤	 |A(n)|2−n(H(X)−�) 

Compare to |X n = 2n log |X |.| 



Example


Consider binary r.v.s Xi, i.i.d. with P (X = 

0) = p, and P (X = 1) = 1 − p. 

A ”typical” sequence of length n has roughly 

np 0’s and n(1 − p) 1’s, the probability for 

that to happen is 

pnp(1 − p)n(1−p) = 2n(p log p+(1−p) log(1−p) 

= 2−nH(X) 

How many ”typical” sequences are there? 

Stirling Formula n! ≈ nne−n
√

2πn. 
� 

n 
� 

n! 
= 

np (np)!(n(1 − p))! 

≈ 
nne−n 

(np)npe−np(n(1 − p))n(1−p)e−n(1−p) 

1 
= 

= 

pnp(1 − p)n(1−p) 

2nH(X) 



� 

What about the �?


H is continuous in p.


Let p < 1/2, what about I take the set of 

the most likely sequences, i.e., those with 

less than np 0’s? 

Notation: H(p) = −p log p − (1 − p) log(1 − 

p). 

� � 
n 

� 

nt 
t:nt∈Z ,t≤p 

≈ 2nH(t) 

t:nt∈Z ,t≤p 

≈ 2nH(p) 

It doesn’t change the size too much.




Using the Typical Set for Data


Compression


Description in typical set requires no more 

than n(H(X) + �) + 1 bits (correction of 1 

bit because of integrality) 

Description in atypical set A
(
�
n)C 

requires 

no more than n log(X ) + 1 bits 

Add another bit to indicate whether in A(
�
n) 

or not to get whole description 



Consequences of the AEP: using the


typical set for compression


nLet l(x1) be the length of the binary de­
nscription of x1 

∀� > 0, ∃n0 s.t. ∀n > n0, 

EXn[l(Xn 
1)]

1
n n n n= 

� 
PXn (x1) l(x1) + 

� 
PXn (x1) l(x1)1 1 

nx1∈A
(n) nx1∈A

(n)C 
δ δ 

n ≤ 
� 

PXn (x1) (n(H(X) + δ) + 2) 
1 

nx1∈A
(n) 
δ


n
+ 
� 

PXn (x1) (n log(|X ) + 2) 
1 

|
nx1∈A

(n)C 

δ 

= nH(X) + n� 

for δ small enough with respect to � 

so EXn[1l(Xn 
1)] ≤ H(X)+� for n sufficientlyn1

large. 


