LECTURE 5

Last time:

- Types of convergence
- Weak Law of Large Numbers
- Strong Law of Large Numbers
- Asymptotic Equipartition Property

Lecture outline

- Continue on AEP
- Codes
- Kraft inequality
- optimal codes.

Reading: Scts. 5.1-5.4.

Continue the Coin Toss Example

• Stirling's Formula:

$$n! \approx n^n e^{-n} \sqrt{2\pi n}$$

• Count the number of possible sequences of length *n*:

$$\binom{n}{nt} = \frac{n!}{(nt)!(n(1-t))!}$$
$$\approx \frac{n^n e^{-n}}{(nt)^{nt} e^{-nt} (n(1-t))^{n(1-t)} e^{-n(1-t)}}$$
$$\doteq 2^{nH(t)}$$

• Key approximation: $\begin{pmatrix} n \\ nt \end{pmatrix} \doteq 2^{nH(t)}$

$$\lim_{n \to \infty} \frac{\log_2 \left(\begin{array}{c} n \\ nt \end{array}\right)}{n} = H(t)$$

• To be precise

$$\left(\begin{array}{c}n\\nt\end{array}\right) = 2^{nH(t) + O(\log(n))}$$

Number of Possible Sequences

- Let the number of 0's in a sequence x_1^n be m, define function $T(x_1^n) = \frac{m}{n}$ as the fraction of 0's.
- For a subset $S \subset [0, 1]$, define

$$A(S) = \{x_1^n : T(x_1^n) \in S\}.$$

$$|A(S)| = \sum_{t \in S, nt \in \mathcal{Z}} \begin{pmatrix} n \\ nt \end{pmatrix}$$

Claim For any fixed ϵ , let

$$A_{\epsilon} = A(1/2 - \epsilon, 1/2 + \epsilon),$$

 A_{ϵ} contains nearly all the sequences:

$$rac{|A_\epsilon|}{2^n}
ightarrow 1$$

Proof:

$$|A_{\epsilon}^{c}| = \sum_{\substack{|t-1/2| > \epsilon, nt \in \mathcal{Z} \\ \leq n2^{n\overline{H(t)}} + O(\log n)}} {n \choose nt}$$

where $\overline{H(t)} = \max_{|t-1/2| > \epsilon} H(t) \le H(1/2 - \epsilon)$.

For *n* large enough, $2^n >> |A_{\epsilon}^c|$.

True or False?

For large enough n,

•
$$\binom{n}{n/2} \doteq 2^n$$

•
$$\binom{n}{n/2} >> |A_{\epsilon}^{c}|$$

•
$$\frac{\binom{n}{n/2}}{2^n} \to 1$$

Fair Coin Toss

Let $P(X_i = 0) = p = 1/2$,

• All the sequences have the same probability.

• Since
$$\frac{|A_{\epsilon}|}{2^n} \rightarrow 1$$
,

$$P(X_1^n \in A_{\epsilon}) \to \mathbf{1}$$

• Two different ways to define the typical set.

Coin Toss with Probability p

• For a sequence x_1^n , let $T(x_1^n)$ be the fraction of 0's. $T(X_1^n)$ is a r.v.

• For any
$$t$$
 s.t. $nt \in \mathcal{Z}$,

$$P(T = t) = {\binom{n}{nt}} p^{nt} (1-p)^{n(1-t)}$$

= $2^{n(-t\log t - (1-t)\log(1-t)) + O(\log n)}$
 $2^{n(t\log p + (1-t)\log(1-p))}$
= $2^{-nD(t||p) + O(\log n)}$
 $\doteq 2^{-nD(t||p)}$

• $P(|T - p| \le \epsilon) \rightarrow 1$. Proof by summing over the probability P(T = t) for all twith $|t - p| > \epsilon$, and show

$$P(|T-p| > \epsilon) << 1$$

for large enough n.

• Typical set for a distribution $\{p, 1-p\}$ is $A_e^{(n)} = A(p-\epsilon, p+\epsilon)$

Corollary

• For any distribution q, the typical set is defined as $A(q - \epsilon, q + \epsilon)$.

Consider an i.i.d. sequence generalized according to a distribution p. It is typical w.r.t. a second distribution q with probability $2^{-nD(q||p)}$.

• High probability sets and the typical set: consider $p < \frac{1}{2}$, a sequence x_1^n with $T(x_1^n) < p$ has higher probability than any individual sequence in the typical set.

Define

$$\{x_1^n : T(x_1^n)$$

as the "high probability set".

$$|A(0, p + \epsilon)| \doteq |A(p - \epsilon, p + \epsilon)|$$
$$P(A(0, p + \epsilon)) \doteq P(A(p - \epsilon, p + \epsilon))$$

Source Coding and AEP

Definition

A source code C of a random variable X is a mapping from \mathcal{X} to \mathcal{D}^* , the set of finite length strings of symbols from a D-ary alphabet.

- The same definition applies for sequence of r.v.s, X_1^n .
- x or x_1^n are called *source symbol (string)*, D is the set of *coded symbols*. C(x) is called the *codeword* corresponding to x.
- We allow different codewords to have different length, denote l(x) as the length of C(x).

Definition

The expected length of a code L(C) is given by

$$L(C) = \sum_{x \in \mathcal{X}} P_X(x) l(x)$$

Goal For a given source, find a code to minimize the expected length (per source symbol).

Data Compression by AEP

- Use $n \log |\mathcal{X}| + 1$ bits to describe (index) any sequence in \mathcal{X}^n .
- Since $|A_{\epsilon}^{(n)}| \leq 2^{n(H+\epsilon)}$, use $n(H+\epsilon) + 1$ bits to index all sequences in $A_{\epsilon}^{(n)}$.
- Use an extra bit to indicate $A_{\epsilon}^{(n)}$.

$$E(l(X_1^n)) = \sum_{x_1^n} P(x_1^n) l(x_1^n)$$

=
$$P(A_{\epsilon}^{(n)})[n(H+\epsilon)+2]$$

+
$$P(A_{\epsilon}^{(n)c})[n\log |\mathcal{X}|+2]$$

$$\leq n(H+\epsilon) + n\epsilon \log |\mathcal{X}|+2$$

=
$$n(H+\epsilon')$$

As $n \to \infty$, ϵ' can be made arbitrarily small.

Theorem

$$\frac{1}{n}E\left[l(X_1^n)\right] \le H(X) + \epsilon$$

Concatenation

Definition The *extension* of a code C is the a code for finite strings of \mathcal{X} given by the concatenation of the individual codewords

 $C(x_1, x_2, \ldots, x_n) = C(x_1)C(x_2)\ldots C(x_n)$

• A code is called **non-singular** if

 $x_i \neq x_j \Rightarrow C(x_i) \neq C(x_j)$

 A code is called uniquely decodable if its extension is non-singular

Example:

Example The following code is uniquely decodable,

x	а	b	С	d
C(x)	10	00	11	110

consider a coded string 1100000000000010.

Definition A code is called a *prefix code* or *instantaneous code* is no codeword is a prefix of any other codeword.

- Self-punctuating.
- Can decode without reference of the future.

Kraft's Inequality

Theorem For any prefix code over an alphabet of size D, let the codeword length be l_1, l_2, \ldots , we have

$$\sum_{i=1}^{\infty} D^{-l_i} \le 1$$

Conversely, for any given set of codeword lengths that satisfy the inequality, we can construct a prefix code with these codeword lengths.

Proof

- Construct a D-ary tree.
- Prefix code means each codeword is a leaf, no codeword can be the descendent of any other codeword.
- Assign weight D^{-l_i} to each codeword.

Consider a codeword $y_1y_2 \dots y_{l_i}$, where $y_j \in \{0, \dots, D-1\}$. Let

$$0.y_1y_2...y_{l_i} = \sum_{j=1}^{l_i} y_j D^{-j} \in [0, 1]$$

This codeword corresponds to an interval

•

$$\left(0.y_1y_2...y_{l_i}, 0.y_1y_2...y_{l_i} + \frac{1}{D^{l_i}}\right)$$

Prefix code implies the intervals are disjoint.

Optimal codes

Optimal code is defined as code with smallest possible L(C) with respect to P_X

Optimization:

minimize $\sum_{x \in \mathcal{X}} P_X(x) l(x)$

subject to $\sum_{x \in \mathcal{X}} D^{-l(x)} \leq 1$

and l(x)s are integers

Optimal codes

Let us relax the integer constraint and replace the first constraint by equality to obtain a lower bound. Use Lagrange multipliers, define

$$J = \sum_{x \in \mathcal{X}} P_X(x) l(x) + \lambda \sum_{x \in \mathcal{X}} D^{-l(x)}$$

and set $\frac{\partial J}{\partial l(i)} = 0$
$$P_X(i) - \lambda \log(D) D^{-l(i)} = 0$$

equivalently $D^{-l(i)} = \frac{P_X(i)}{\lambda \log(D)}$
solve for $\lambda = \frac{1}{\log(D)}$, yielding $l(i) = -\log_D(P_X(i))$

The expected codeword length

$$L(C) = E[l(X)] = E[-\log_D P_X(X)]$$

= $H_D(X)$
= $\frac{H(X)}{\log_2 D}$