
LECTURE 5


Last time: 

Types of convergence • 

Weak Law of Large Numbers • 

Strong Law of Large Numbers
• 

Asymptotic Equipartition Property • 

Lecture outline 

Continue on AEP • 

Codes • 

Kraft inequality • 

optimal codes. • 

Reading: Scts. 5.1­5.4. 



Continue the Coin Toss Example


Stirling’s Formula:
• 

n! ≈ nne−n
√

2πn 

Count the number of possible sequences • 

of length n: 
�	

n 
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= 2nH(t)Key approximation:	
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To be precise • 
�	

n 
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= 2nH(t)+O(log(n)) 
nt 



�

Number of Possible Sequences


n •	 Let the number of 0’s in a sequence x1 
nbe m, define function T (x1)	= m as the n 

fraction of 0’s. 

•	 For a subset S ⊂ [0, 1], define 

n nA(S) = {x1 : T (x1) ∈ S}. 

|A(S) = 
� � 

n 
� 

nt
| 

t∈S,nt∈Z 

Claim For any fixed	 �, let 

A� = A(1/2 − �, 1/2 + �), 

A� contains nearly all the sequences: 

A�|
2n

| 
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Proof: 

|Ac |	
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nt 

t−1/2 >�,nt∈Z| |

≤ n2nH(t)+O(log n) 
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where H(t) = max t−1/2 >� H(t) ≤ H(1/2 −| |

For n large enough, 2n >> A�
c|.|

True or False? 

For large enough n,
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Fair Coin Toss


Let P (Xi = 0) = p = 1/2, 

All the sequences have the same proba­• 

bility.


A�Since |2n
| 1,• → 

P (Xn 11 ∈ A�) → 

Two different ways to define the typical • 

set. 



Coin Toss with Probability p


n	 n •	 For a sequence x1, let T (x1) be the frac­

tion of 0’s. T (Xn 
1) is a r.v. 

For any t s.t. •	 nt ∈ Z, 
� 

n 
� 

nt(1 − p)n(1−t)P (T = t) =	 p

nt 

= 2n(−t log t−(1−t) log(1−t))+O(log n) 

2n(t log p+(1−t) log(1−p)) 

= 2−nD(t||p)+O(log n) 

. 
= 2−nD(t||p) 

•	 P ( T − p ≤ �) 1. Proof by summing | | → 

over	 the probability P (T = t) for all t


with t − p > �, and show
| |


P ( T − p > �) << 1| | 
for large enough n. 

Typical set for a distribution {p, 1− p} is •	

A
(n) = A(p − �, p + �)e 



Corollary


•	 For any distribution q, the typical set is 

defined as A(q − �, q + �). 

Consider an i.i.d. sequence generalized ac­


cording to a distribution p. It is typical 

w.r.t. a second distribution q with prob­

ability 2−nD(q||p). 

High probability sets and the typical set: • 
1	 n nconsider p < 2, a sequence x1 with T (x1) < 

p has higher probability than any individ­

ual sequence in the typical set. 

Define 

n n 
1 : T (x1) < p + �} = A(0, p + �){x 

as the ”high probability set”. 

. |A(0, p + �) = A(p− �, p + �)| 

. 
| | 

P (A(0, p + �)) = P (A(p− �, p + �))




Source Coding and AEP


Definition 
A source code C of a random variable X 
is a mapping from X to D∗, the set of fi­
nite length strings of symbols from a D­ary 
alphabet. 

The same definition applies for sequence • 
of r.v.s, Xn 

1. 
n •	 x or x1 are called source symbol (string), 

D is the set of coded symbols. C(x) is 
called the codeword corresponding to x. 

We allow different codewords to have • 
different length, denote l(x) as the length 
of C(x). 

Definition

The expected length of a code L(C) is given 
by 

L(C) = 
� 

PX (x)l(x) 
x∈X 

Goal For a given source, find a code to 
minimize the expected length (per source 
symbol). 



�

� 

Data Compression by AEP


•	 Use n log |X + 1 bits to describe (index) | 
nany sequence	 in X .


•	 Since |A(
�
n)| ≤ 2n(H+�), use n(H + �) + 1 

bits to index all sequences in A(
�
n). 

Use an extra bit to indicate A(
�
n). • 

n nE(l(Xn 
1)) = 

� 
P (x1)l(x1) 

nx1 

= P (A(
�
n))[n(H + �) + 2] 

+P (A(
�
n)c)[n log |X + 2] | 

n(H + �) + n� log |X + 2 ≤ | 
= n(H + � ) 

can be made arbitrarily small. As	n → ∞, �

Theorem 

1 
E [l(Xn 

1)] ≤ H(X) +	� 
n 



� �

Concatenation


Definition The extension of a code C is the


a code for finite strings of X given by the


concatenation of the individual codewords


C(x1, x2, . . . , xn) = C(x1)C(x2) . . . C(xn) 

A code is called non­singular if • 

xi = xj ⇒ C(xi) = C(xj) 

A code is called uniquely decodable if • 

its extension is non­singular 

Example: 

x a b c d 

C(x) 1 11 10 101




Prefix code


Example The following code is uniquely 

decodable, 

x
 a b c d 

C(x) 10 00 11 110 

consider a coded string 11000000000000010.


Definition A code is called a prefix code 

or instantaneous code is no codeword is a 

prefix of any other codeword. 

Self­punctuating.• 

Can decode without reference of the fu­• 

ture. 



Kraft’s Inequality


Theorem For any prefix code over an al­

phabet of size D, let the codeword length 

be l1, l2, . . . ,, we have 

∞� 
D−li ≤ 1 

i=1 

Conversely, for any given set of codeword 

lengths that satisfy the inequality, we can 

construct a prefix code with these code­

word lengths. 

Proof 

Construct a D­ary tree. • 

Prefix code means each codeword is a • 

leaf, no codeword can be the descendent 

of any other codeword. 

Assign weight D−li to each codeword. • 



Consider a codeword y1y2 . . . yli, where yj ∈ 

{0, . . . , D − 1}. Let 

li

0.y1y2 . . . yli = 

� 
yjD

−j ∈ [0, 1]

j=1


. 

This codeword corresponds to an interval

�

1 
�

0.y1y2 . . . yli, 0.y1y2 . . . yli + 
Dli 

Prefix code implies the intervals are dis­

joint. 



Optimal codes


Optimal code is defined as code with small­


est possible L(C) with respect to PX


Optimization:


minimize 
�

x∈X PX (x)l(x)


subject to 
�

x∈X D
−l(x) ≤ 1


and l(x)s are integers




Optimal codes


Let us relax the integer constraint and re­

place the first constraint by equality to ob­

tain a lower bound. Use Lagrange multipli­

ers, define 

J = 
�

x∈X PX (x)l(x) + λ 
�

x∈X D
−l(x) 

and set ∂J = 0
∂l(i) 

PX (i)− λ log(D)D−l(i) = 0 

PX (i)equivalently D−l(i) = 
λ log(D) 

1solve for λ = log(D), yielding l(i) = − logD(PX (i)) 

The expected codeword length 

L(C) = E[l(X)] = E[− logD PX (X)]


= HD(X)

H(X)


= 
log2 D 


