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Quick Review


AEP: Typical set P (A(
�
n)) 1. • → 

All typical sequences are approximately
• 

equally likely. 

. 
= 2nH . • |A(n)| 

Coding, performance metric: average code­• 

word length per source symbol.


Coding with AEP
• 

1 
E[l(Xn 

1)] H(X) 
n 

→ 

Questions 

Can we do better? • 

Can we have a symbol­by­symbol code • 

that is equally good? 
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Concatenation


Definition The extension of a code C is the


a code for finite strings of X given by the


concatenation of the individual codewords


C(x1, x2, . . . , xn) = C(x1)C(x2) . . . C(xn) 

A code is called non­singular if • 

xi = xj ⇒ C(xi) = C(xj) 

A code is called uniquely decodable if • 

its extension is non­singular 

Example: 

x a b c d 

C(x) 1 11 10 101




Prefix code


Example The following code is uniquely 

decodable, 

x
 a b c d 

C(x) 10 00 11 110 

consider a coded string 11000000000000010.


Definition A code is called a prefix code 

or instantaneous code if no codeword is a 

prefix of any other codeword. 

Self­punctuating.• 

Can decode without reference of the fu­• 

ture. 

Relations between different types of • 

codes 



Kraft’s Inequality


Theorem For any prefix code over an al­

phabet of size D, let the codeword length 

be l1, l2, . . . ,, we have 

∞� 
D−li ≤ 1 

i=1 

Conversely, for any given set of codeword 

lengths that satisfy the inequality, we can 

construct a prefix code with these code­

word lengths. 

Proof 

Construct a D­ary tree. • 

Prefix code means each codeword is a • 

leaf, no codeword can be the descendent 

of any other codeword. 

Assign weight D−li to each codeword. • 



Consider a codeword y1y2 . . . yli, where yj ∈ 

{0, . . . , D − 1}. Let 

li

0.y1y2 . . . yli = 

� 
yjD

−j ∈ [0,1]

j=1


. 

This codeword corresponds to an interval

�

1 
�

0.y1y2 . . . yli,0.y1y2 . . . yli + 
Dli 

Prefix code implies the intervals are dis­

joint. 

Converse: For a given set of lengths • 

l1, . . . , lm, construct a D­ary tree, label 

the first available node of length l1 for 

codeword 1, . . . 



�
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x1 

Kraft’s Inequality for Uniquely


Decodable Codes


Assume a uniquely decodable code on |X =| 
m has the largest codeword length lmax, 

consider the concatenated code for a se­

quence of k symbols: 

k 
D−l(x1) 

⎞
⎠ 

⎛
⎝

x1,x2,...,xk∈X k 

D−l(x1) . . . D−l(xk)
= 
k 

k � 
D−l(x)= 

x∈X 

This says as k increases, the sum weight 

increases exponentially. 

On the other hand, the sum of D−l over 

all the nodes with the same depth l is 1 for 

any l. This means as k increases, the sum 

weight at most increase linearly. 



Let N (m) be the number of nodes at depth 

m, we have N (m) ≤ Dm . 

klmaxk� 
D−l(x1) 

� 
N (m)D−m 

k 

≤ 
i=1x1 

= klmax 

Now for any k, 
� 

D−l(x) ≤ (klmax)
1/k 

x∈X 

therefore 
� 

D−l(x) ≤ 1. 
x∈X 

Conclusion: Uniquely decodable codes does 

not offer any more choice for the codeword 

length than prefix codes. 



Optimal codes


Optimal code is defined as code with small­


est possible L(C) with respect to PX


Optimization:


minimize 
�

x∈X PX (x)l(x)


subject to 
�

x∈X D
−l(x) ≤ 1


and l(x)s are integers




Optimal codes


Let us relax the integer constraint and re­

place the first constraint by equality to ob­

tain a lower bound. Use Lagrange multipli­

ers, define 

J = 
�

x∈X PX (x)l(x) + λ 
�

x∈X D
−l(x) 

and set ∂J = 0
∂l(i) 

PX (i)− λ log(D)D−l(i) = 0 

PX (i)equivalently D−l(i) = 
λ log(D) 

1solve for λ = log(D), yielding l(i) = − logD(PX (i)) 

The expected codeword length 

L(C) = E[l(X)] = E[− logD PX (X)]


= HD(X)

H(X)


= 
log2 D 



Shannon Code


•	 Ideal codeword length li = − logD PX (i), 

this is optimal when − logD PX (i) is an 

integer for any i. 

For general distribution, set
• 

li = �− logD PX (i)� 
. 

Bounds for the codeword length. • 

− log PX (i) ≤ li ≤ − log PX (i) + 1, ∀i 

–	 {li} satisfy Kraft’s inequality, correspond­

ing prefix code exists. 

–	 Average codeword length


H(X) ≤ E[l(X)] ≤ H(X) + 1




Shannon Code


Example X takes four possible values with 
1 1 1probabilities (1 

3, 3, 4, 12). 

H(X) = 1.8554 

li = �− log PX(i)� = (2,2,2,4) 

E[l(X)] = 13/6 = 2.1667 

Comparing to the obvious codeword length 

assignment (2,2,2,2), lose 1 
6 bit per source 

symbol. 

Improvement: code over multiple i.i.d. source 

symbols: look at (X1, X2, . . . , Xn) as one 

super­symbol, apply Shannon code, 

H(X1, . . . , Xn) ≤ E(l(Xn 
1)) ≤ H(X1, . . . , Xn) + 1 

implies 

1 1

1)] ≤ H(X) + H(X) ≤ E[l(Xn 

n n 



Unknown Distribution


If assign the codeword length as 

li = �− log q(i)�, 
and the real distribution of X is


PX (i) = pi,


H(p) + D(p||q) ≤ Ep[l(X)] ≤ H(p) + D(p||q) + 1


Proof 

Ep[l(X)] = 

≤ 

� 

x 
p(x)�log 

1 

q(x)
� 

� 

x 
p(x) 

� 

log 
1 

q(x) 
+ 1 

� 

= 
� 

x 
p(x) log 

p(x) 

q(x) 

1 

p(x) 
+ 1 

= D(p||q) + H(p) + 1 

Penalty of D(p||q) bits per source symbol 

due to the wrong distribution. 



Discussion


Kraft’s inequality gives a lower bound of • 
the average codeword length. For any

n, any code over i.i.d. sequence Xn


1,

1E[l(Xn


1)] cannot be smaller than H(X).n 

•	 We can achieve this when n → ∞, AEP 

code, Shannon code. 

1 
lim E[l(Xn 

1)] = H(X) 
nn→∞ 

True or False: for finite n: 

Shannon code is ”optimal”?
• 

•	 A code with codeword length li = − log PX (i), ∀i 
is optimal. 

Any prefix code must satisfy
• 

li ≥ − log PX (i), ∀i 

The optimal code must satisfy • 

ili ≤ �− log PX (i)�, ∀



Constructing the Optimal Prefix Code


X has probability masses p1 ≥ p2 . . . ≥ pm, 

construct binary code to minimize 
�

i pili. 

What should the optimal code look like?


•	 If pi > pj , then li ≤ lj . 

The two longest codewords have the same •


length.


The two longest codewords differ only in
• 

the last bit. 

Construction:


Take the two least likely symbols, merge 

them to get a size m − 1 problem. 



D­ary Huffman Code


Definition Complete tree: every leaf is as­

signed to a codeword. Every intermediate 

node has D branches stemming from it. 

A complete tree means Kraft’s inequality • 

holds with equality. 

•	 Size of a D­ary complete tree: 1+n(D −
1) for integer n. 

• For an arbitrary X , add 0 probability sym­


bols to make it fit in a complete tree.




What can we say about Huffman Code


Optimal prefix code for any source. • 

Always equally good or better than Shan­• 

non code.


1E[l(Xn • 1)] → H(X) as n →∞. n 


