LECTURE 6

Last time:

- AEP
- Coding with AEP

Lecture outline

- Kraft inequality
- optimal codes
- Huffman codes

Reading: Scts. 5.2-5.8

Quick Review

- AEP: Typical set $P(A_{\epsilon}^{(n)}) \to 1$.
- All typical sequences are *approximately* equally likely.
- $|A_{\epsilon}^{(n)}| \doteq 2^{nH}$.
- Coding, performance metric: average codeword length per source symbol.
- Coding with AEP

$$\frac{1}{n}E[l(X_1^n)] \to H(X)$$

Questions

- Can we do better?
- Can we have a symbol-by-symbol code that is equally good?

Concatenation

Definition The *extension* of a code C is the a code for finite strings of \mathcal{X} given by the concatenation of the individual codewords

 $C(x_1, x_2, \ldots, x_n) = C(x_1)C(x_2)\ldots C(x_n)$

• A code is called **non-singular** if

 $x_i \neq x_j \Rightarrow C(x_i) \neq C(x_j)$

 A code is called uniquely decodable if its extension is non-singular

Example:

Example The following code is uniquely decodable,

x	а	b	С	d
C(x)	10	00	11	110

consider a coded string 1100000000000010.

Definition A code is called a *prefix code* or *instantaneous code* if no codeword is a prefix of any other codeword.

- Self-punctuating.
- Can decode without reference of the future.
- Relations between different types of codes

Kraft's Inequality

Theorem For any prefix code over an alphabet of size D, let the codeword length be l_1, l_2, \ldots , we have

$$\sum_{i=1}^{\infty} D^{-l_i} \le 1$$

Conversely, for any given set of codeword lengths that satisfy the inequality, we can construct a prefix code with these codeword lengths.

Proof

- Construct a D-ary tree.
- Prefix code means each codeword is a leaf, no codeword can be the descendent of any other codeword.
- Assign weight D^{-l_i} to each codeword.

Consider a codeword $y_1y_2 \dots y_{l_i}$, where $y_j \in \{0, \dots, D-1\}$. Let

$$0.y_1y_2...y_{l_i} = \sum_{j=1}^{l_i} y_j D^{-j} \in [0, 1]$$

This codeword corresponds to an interval

$$\left(0.y_1y_2...y_{l_i}, 0.y_1y_2...y_{l_i} + \frac{1}{D^{l_i}}\right)$$

Prefix code implies the intervals are disjoint.

 Converse: For a given set of lengths l₁,..., l_m, construct a D-ary tree, label the first available node of length l₁ for codeword 1, ...

Kraft's Inequality for Uniquely Decodable Codes

Assume a uniquely decodable code on $|\mathcal{X}| = m$ has the largest codeword length l_{max} , consider the concatenated code for a sequence of k symbols:

$$\sum_{x_1^k} D^{-l(x_1^k)} = \sum_{x_1, x_2, \dots, x_k \in \mathcal{X}^k} D^{-l(x_1)} \dots D^{-l(x_k)}$$
$$= \left(\sum_{x \in \mathcal{X}} D^{-l(x)}\right)^k$$

This says as k increases, the sum weight increases exponentially.

On the other hand, the sum of D^{-l} over all the nodes with the same depth l is 1 for any l. This means as k increases, the sum weight at most increase linearly. Let N(m) be the number of nodes at depth m, we have $N(m) \leq D^m$.

$$\sum_{x_1^k} D^{-l(x_1^k)} \leq \sum_{i=1}^{kl_{max}} N(m) D^{-m}$$
$$= kl_{max}$$

Now for any k,

$$\sum_{x \in \mathcal{X}} D^{-l(x)} \leq (k l_{max})^{1/k}$$

therefore

$$\sum_{x\in\mathcal{X}} D^{-l(x)} \le 1.$$

Conclusion: Uniquely decodable codes does not offer any more choice for the codeword length than prefix codes.

Optimal codes

Optimal code is defined as code with smallest possible L(C) with respect to P_X

Optimization:

minimize $\sum_{x \in \mathcal{X}} P_X(x) l(x)$

subject to $\sum_{x \in \mathcal{X}} D^{-l(x)} \leq 1$

and l(x)s are integers

Optimal codes

Let us relax the integer constraint and replace the first constraint by equality to obtain a lower bound. Use Lagrange multipliers, define

$$J = \sum_{x \in \mathcal{X}} P_X(x) l(x) + \lambda \sum_{x \in \mathcal{X}} D^{-l(x)}$$

and set $\frac{\partial J}{\partial l(i)} = 0$
$$P_X(i) - \lambda \log(D) D^{-l(i)} = 0$$

equivalently $D^{-l(i)} = \frac{P_X(i)}{\lambda \log(D)}$
solve for $\lambda = \frac{1}{\log(D)}$, yielding $l(i) = -\log_D(P_X(i))$

The expected codeword length

$$L(C) = E[l(X)] = E[-\log_D P_X(X)]$$

= $H_D(X)$
= $\frac{H(X)}{\log_2 D}$

Shannon Code

- Ideal codeword length $l_i = -\log_D P_X(i)$, this is optimal when $-\log_D P_X(i)$ is an integer for any *i*.
- For general distribution, set

$$l_i = \left\lceil -\log_D P_X(i) \right\rceil$$

• Bounds for the codeword length.

 $-\log P_X(i) \leq l_i \leq -\log P_X(i) + 1, \forall i$

- $\{l_i\}$ satisfy Kraft's inequality, corresponding prefix code exists.
- Average codeword length

 $H(X) \le E[l(X)] \le H(X) + 1$

Example X takes four possible values with probabilities $(\frac{1}{3}, \frac{1}{3}, \frac{1}{4}, \frac{1}{12})$.

$$H(X) = 1.8554$$

 $l_i = \lceil -\log P_X(i) \rceil = (2, 2, 2, 4)$
 $E[l(X)] = 13/6 = 2.1667$

Comparing to the obvious codeword length assignment (2, 2, 2, 2), lose $\frac{1}{6}$ bit per source symbol.

Improvement: code over multiple i.i.d. source symbols: look at $(X_1, X_2, ..., X_n)$ as one super-symbol, apply Shannon code,

 $H(X_1, ..., X_n) \le E(l(X_1^n)) \le H(X_1, ..., X_n) + 1$ implies

$$H(X) \le \frac{1}{n} E[l(X_1^n)] \le H(X) + \frac{1}{n}$$

Unknown Distribution

If assign the codeword length as

 $l_i = \lceil -\log q(i) \rceil,$

and the real distribution of X is $P_X(i) = p_i$,

 $H(p) + D(p||q) \le E_p[l(X)] \le H(p) + D(p||q) + 1$

Proof

$$E_p[l(X)] = \sum_x p(x) \lceil \log \frac{1}{q(x)} \rceil$$

$$\leq \sum_x p(x) \left(\log \frac{1}{q(x)} + 1 \right)$$

$$= \sum_x p(x) \log \frac{p(x)}{q(x)} \frac{1}{p(x)} + 1$$

$$= D(p||q) + H(p) + 1$$

Penalty of D(p||q) bits per source symbol due to the wrong distribution.

Discussion

- Kraft's inequality gives a lower bound of the average codeword length. For any n, any code over i.i.d. sequence Xⁿ₁, 1 *n E*[*l*(Xⁿ₁)] cannot be smaller than *H*(X).
- We can achieve this when $n \to \infty$, AEP code, Shannon code.

$$\lim_{n \to \infty} \frac{1}{n} E[l(X_1^n)] = H(X)$$

True or False: for finite *n*:

- Shannon code is "optimal"?
- A code with codeword length $l_i = -\log P_X(i), \forall i$ is optimal.
- Any prefix code must satisfy

$$l_i \geq -\log P_X(i), \forall i$$

• The optimal code must satisfy

$$l_i \leq \lceil -\log P_X(i) \rceil, \forall i$$

Constructing the Optimal Prefix Code

X has probability masses $p_1 \ge p_2 \ldots \ge p_m$, construct binary code to minimize $\sum_i p_i l_i$.

What should the optimal code look like?

- If $p_i > p_j$, then $l_i \leq l_j$.
- The two longest codewords have the same length.
- The two longest codewords differ only in the last bit.

Construction:

Take the two least likely symbols, merge them to get a size m - 1 problem.

D-ary Huffman Code

Definition Complete tree: every leaf is assigned to a codeword. Every intermediate node has *D* branches stemming from it.

- A complete tree means Kraft's inequality holds with equality.
- Size of a *D*-ary complete tree: 1+n(*D*-1) for integer *n*.
- For an arbitrary \mathcal{X} , add 0 probability symbols to make it fit in a complete tree.

What can we say about Huffman Code

- Optimal prefix code for any source.
- Always equally good or better than Shannon code.
- $\frac{1}{n}E[l(X_1^n)] \to H(X) \text{ as } n \to \infty.$