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Quick Review


AEP: Typical set P (A(
�
n)) 1. • → 

All typical sequences are approximately
• 

equally likely. 

. 
= 2nH . • |A(n)| 

Coding, performance metric: average code• 

word length per source symbol.


Coding with AEP
• 

1 
E[l(Xn 

1)] H(X) 
n 

→ 

Questions 

Can we do better? • 

Can we have a symbolbysymbol code • 

that is equally good? 
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Concatenation


Definition The extension of a code C is the


a code for finite strings of X given by the


concatenation of the individual codewords


C(x1, x2, . . . , xn) = C(x1)C(x2) . . . C(xn) 

A code is called nonsingular if • 

xi = xj ⇒ C(xi) = C(xj) 

A code is called uniquely decodable if • 

its extension is nonsingular 

Example: 

x a b c d 

C(x) 1 11 10 101




Prefix code


Example The following code is uniquely 

decodable, 

x
 a b c d 

C(x) 10 00 11 110 

consider a coded string 11000000000000010.


Definition A code is called a prefix code 

or instantaneous code if no codeword is a 

prefix of any other codeword. 

Selfpunctuating.• 

Can decode without reference of the fu• 

ture. 

Relations between different types of • 

codes 



Kraft’s Inequality


Theorem For any prefix code over an al

phabet of size D, let the codeword length 

be l1, l2, . . . ,, we have 

∞� 
D−li ≤ 1 

i=1 

Conversely, for any given set of codeword 

lengths that satisfy the inequality, we can 

construct a prefix code with these code

word lengths. 

Proof 

Construct a Dary tree. • 

Prefix code means each codeword is a • 

leaf, no codeword can be the descendent 

of any other codeword. 

Assign weight D−li to each codeword. • 



Consider a codeword y1y2 . . . yli, where yj ∈ 

{0, . . . , D − 1}. Let 

li

0.y1y2 . . . yli = 

� 
yjD

−j ∈ [0,1]

j=1


. 

This codeword corresponds to an interval

�

1 
�

0.y1y2 . . . yli,0.y1y2 . . . yli + 
Dli 

Prefix code implies the intervals are dis

joint. 

Converse: For a given set of lengths • 

l1, . . . , lm, construct a Dary tree, label 

the first available node of length l1 for 

codeword 1, . . . 



�
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x1 

Kraft’s Inequality for Uniquely


Decodable Codes


Assume a uniquely decodable code on |X =| 
m has the largest codeword length lmax, 

consider the concatenated code for a se

quence of k symbols: 

k 
D−l(x1) 

⎞
⎠ 

⎛
⎝

x1,x2,...,xk∈X k 

D−l(x1) . . . D−l(xk)
= 
k 

k � 
D−l(x)= 

x∈X 

This says as k increases, the sum weight 

increases exponentially. 

On the other hand, the sum of D−l over 

all the nodes with the same depth l is 1 for 

any l. This means as k increases, the sum 

weight at most increase linearly. 



Let N (m) be the number of nodes at depth 

m, we have N (m) ≤ Dm . 

klmaxk� 
D−l(x1) 

� 
N (m)D−m 

k 

≤ 
i=1x1 

= klmax 

Now for any k, 
� 

D−l(x) ≤ (klmax)
1/k 

x∈X 

therefore 
� 

D−l(x) ≤ 1. 
x∈X 

Conclusion: Uniquely decodable codes does 

not offer any more choice for the codeword 

length than prefix codes. 



Optimal codes


Optimal code is defined as code with small


est possible L(C) with respect to PX


Optimization:


minimize 
�

x∈X PX (x)l(x)


subject to 
�

x∈X D
−l(x) ≤ 1


and l(x)s are integers




Optimal codes


Let us relax the integer constraint and re

place the first constraint by equality to ob

tain a lower bound. Use Lagrange multipli

ers, define 

J = 
�

x∈X PX (x)l(x) + λ 
�

x∈X D
−l(x) 

and set ∂J = 0
∂l(i) 

PX (i)− λ log(D)D−l(i) = 0 

PX (i)equivalently D−l(i) = 
λ log(D) 

1solve for λ = log(D), yielding l(i) = − logD(PX (i)) 

The expected codeword length 

L(C) = E[l(X)] = E[− logD PX (X)]


= HD(X)

H(X)


= 
log2 D 



Shannon Code


•	 Ideal codeword length li = − logD PX (i), 

this is optimal when − logD PX (i) is an 

integer for any i. 

For general distribution, set
• 

li = �− logD PX (i)� 
. 

Bounds for the codeword length. • 

− log PX (i) ≤ li ≤ − log PX (i) + 1, ∀i 

–	 {li} satisfy Kraft’s inequality, correspond

ing prefix code exists. 

–	 Average codeword length


H(X) ≤ E[l(X)] ≤ H(X) + 1




Shannon Code


Example X takes four possible values with 
1 1 1probabilities (1 

3, 3, 4, 12). 

H(X) = 1.8554 

li = �− log PX(i)� = (2,2,2,4) 

E[l(X)] = 13/6 = 2.1667 

Comparing to the obvious codeword length 

assignment (2,2,2,2), lose 1 
6 bit per source 

symbol. 

Improvement: code over multiple i.i.d. source 

symbols: look at (X1, X2, . . . , Xn) as one 

supersymbol, apply Shannon code, 

H(X1, . . . , Xn) ≤ E(l(Xn 
1)) ≤ H(X1, . . . , Xn) + 1 

implies 

1 1

1)] ≤ H(X) + H(X) ≤ E[l(Xn 

n n 



Unknown Distribution


If assign the codeword length as 

li = �− log q(i)�, 
and the real distribution of X is


PX (i) = pi,


H(p) + D(p||q) ≤ Ep[l(X)] ≤ H(p) + D(p||q) + 1


Proof 

Ep[l(X)] = 

≤ 

� 

x 
p(x)�log 

1 

q(x)
� 

� 

x 
p(x) 

� 

log 
1 

q(x) 
+ 1 

� 

= 
� 

x 
p(x) log 

p(x) 

q(x) 

1 

p(x) 
+ 1 

= D(p||q) + H(p) + 1 

Penalty of D(p||q) bits per source symbol 

due to the wrong distribution. 



Discussion


Kraft’s inequality gives a lower bound of • 
the average codeword length. For any

n, any code over i.i.d. sequence Xn


1,

1E[l(Xn


1)] cannot be smaller than H(X).n 

•	 We can achieve this when n → ∞, AEP 

code, Shannon code. 

1 
lim E[l(Xn 

1)] = H(X) 
nn→∞ 

True or False: for finite n: 

Shannon code is ”optimal”?
• 

•	 A code with codeword length li = − log PX (i), ∀i 
is optimal. 

Any prefix code must satisfy
• 

li ≥ − log PX (i), ∀i 

The optimal code must satisfy • 

ili ≤ �− log PX (i)�, ∀



Constructing the Optimal Prefix Code


X has probability masses p1 ≥ p2 . . . ≥ pm, 

construct binary code to minimize 
�

i pili. 

What should the optimal code look like?


•	 If pi > pj , then li ≤ lj . 

The two longest codewords have the same •


length.


The two longest codewords differ only in
• 

the last bit. 

Construction:


Take the two least likely symbols, merge 

them to get a size m − 1 problem. 



Dary Huffman Code


Definition Complete tree: every leaf is as

signed to a codeword. Every intermediate 

node has D branches stemming from it. 

A complete tree means Kraft’s inequality • 

holds with equality. 

•	 Size of a Dary complete tree: 1+n(D −
1) for integer n. 

• For an arbitrary X , add 0 probability sym


bols to make it fit in a complete tree.




What can we say about Huffman Code


Optimal prefix code for any source. • 

Always equally good or better than Shan• 

non code.


1E[l(Xn • 1)] → H(X) as n →∞. n 


