LECTURE 6

Last time:
e AEP
e Coding with AEP

Lecture outline
e Kraft inequality
e Optimal codes

e¢ Huffman codes

Reading: Scts. 5.2-5.8



Quick Review

e AEP: Typical set P(AE”)) — 1.

e All typical sequences are approximately
equally likely.

o |A(M| = onH

e Coding, performance metric: average code-
word length per source symbol.

e Coding with AEP

B — HOX)

Questions
e Can we do better?

e Can we have a symbol-by-symbol code
that is equally good?



Concatenation

Definition The extension of a code C'is the
a code for finite strings of X given by the
concatenation of the individual codewords

C(x1,22,...,2n) = C(x1)C(x2)...C(xpn)
e A code is called non-singular if
r; 7 xj = C(z;) # C(z;)

e A code is called uniquely decodable if
its extension is non-singular

Example:

xr |a b ¢ d

C(z) |1 11 10 101



Prefix code

Example The following code is uniquely
decodable,

r | a b ¢ d

C(z) |10 00 11 110

consider a coded string 11000000000000010.

Definition A code is called a prefix code
or instantaneous code if no codeword is a
prefix of any other codeword.

e Self-punctuating.

e Can decode without reference of the fu-
ture.

e Relations between different types of
codes



Kraft’'s Inequality

Theorem For any prefix code over an al-
phabet of size D, let the codeword length
be l1,lo,...,, we have

©.@)
Y Dli<1
=1

Conversely, for any given set of codeword
lengths that satisfy the inequality, we can
construct a prefix code with these code-
word lengths.

Proof
e Construct a D-ary tree.

e Prefix code means each codeword is a
leaf, no codeword can be the descendent
of any other codeword.

e Assign weight D% to each codeword.



Consider a codeword y1y2 ...y, where y; €
{0,...,D —1}. Let

l;

O.y192...91, = Y y;D77 € [0,1]
j=1

T his codeword corresponds to an interval
1
)

D
Prefix code implies the intervals are dis-
joint.

(0-y1y2 Y1, 0.y1y2 -y

e Converse: For a given set of lengths
l1,...,lm, construct a D-ary tree, label
the first available node of length [ for
codeword 1, ...



Kraft’'s Inequality for Uniquely
Decodable Codes

Assume a uniquely decodable code on |X| =
m has the largest codeword length gz,
consider the concatenated code for a se-
quence of k£ symbols:

3 p—l=h) 3 p—Uz1)  p—lzg)
k

Ty xl,azg,...,xkEXk

k
reX

This says as k increases, the sum weight
increases exponentially.

On the other hand, the sum of D! over
all the nodes with the same depth [ is 1 for
any [. This means as k increases, the sum
weight at most increase linearly.



Let N(m) be the number of nodes at depth
m, we have N(m) < D™,

klma,x

S DD < S N(m)D™
ok i=1
= klmaz

Now for any k,

S D7) < (klymaz)t*
TEX

therefore

S D@ <1
reX

Conclusion: Uniquely decodable codes does
not offer any more choice for the codeword
length than prefix codes.



Optimal codes

Optimal code is defined as code with small-
est possible L(C) with respect to Py

Optimization:
minimize > ,.cy Px(z)l(z)
subject to Y,y D7) <1

and [(x)s are integers



Optimal codes

Let us relax the integer constraint and re-
place the first constraint by equality to ob-
tain a lower bound. Use Lagrange multipli-
ers, define

J =Y pex Px(@)l(z) + A X er D7)

oJ __
and set m—(i)_o

Px (i) — Mog(D)D~ ) =0

- —1(:) — Px(4)
equivalently D=1 = N0

solve for A = W’ yielding I(i) = — logp(Px (7))

The expected codeword length

L(C) E[l(X)] = E[-logp Px(X)]
Hp(X)
H(X)

log> D




Shannon Code

e Ideal codeword length [; = —logp Px (i),
this is optimal when —logp Px (i) is an
integer for any s.

e For general distribution, set

li = [—logp Px(3)]

e Bounds for the codeword length.
—log Px (i) <1; < —log Px(i) + 1,Vi

— {l;} satisfy Kraft's inequality, correspond-
ing prefix code exists.

— Average codeword length

H(X) < EI(X)] <H(X)+1



Shannon Code

Example X takes four possible values with

probabilities (3, 3,7, 15)-

H(X) = 1.8554

E[l(X)] = 13/6 = 2.1667

Comparing to the obvious codeword length
assignment (2,2,2,2), lose £ bit per source
symbol.

Improvement: code over multiplei.i.d. source
symbols: look at (X1,Xo,...,Xn) as one
super-symbol, apply Shannon code,

H(X1,...,Xn) < EQ(X})) < H(X1,...,Xn) + 1

implies

HOX) < BU(XP] < H(X) + -



Unknown Distribution

If assign the codeword length as

li = [—1ogq(i)],
and the real distribution of X is
Px (i) = p;,

H(p) + D(pllq) < Ep[l(X)] < H(p) + D(pllg) + 1

Proof
BlCO] = Yp(@)flog < ()
< Zp(a:) (Iog@H)
. N p(z) 1
= 2p(@log pa iy

= D(pl|lg) + H(p) + 1

Penalty of D(pl||q) bits per source symbol
due to the wrong distribution.



Discussion

e Kraft's inequality gives a lower bound of
the average codeword length. For any
n, any code over i.i.d. sequence X7,
%E[Z(X"l”")] cannot be smaller than H(X).

e \We can achieve this when n — oo, AEP
code, Shannon code.

n—aoeo

lim %E[Z(X?)] = H(X)

True or False: for finite n:
e Shannon code is "optimal’?

e A code with codeword length I, = —log Px (1), Vi
is optimal.

e Any prefix code must satisfy

li > —log Px(i), Vi

e [ he optimal code must satisfy

li < [—log Px(i)],Vi



Constructing the Optimal Prefix Code

X has probability masses p1 > po... > pm,
construct binary code to minimize ) ; p;l;.

What should the optimal code look like?
o If p; >p;, then [; < ;.

e [ hetwo longest codewords have the same
length.

e [ he two longest codewords differ only in
the last bit.

Construction:
Take the two least likely symbols, merge
them to get a size m — 1 problem.



D-ary Huffman Code

Definition Complete tree: every leaf is as-
signed to a codeword. Every intermediate
node has D branches stemming from it.

e A complete tree means Kraft's inequality
holds with equality.

e Size of a D-ary complete tree: 14+n(D —
1) for integer n.

e Foran arbitrary X, add O probability sym-
bols to make it fit in a complete tree.



What can we say about Huffman Code
e Optimal prefix code for any source.

e Always equally good or better than Shan-
non code.

o 1EI(X])] — H(X) as n — co.



