LECTURE 7

Last time:

- Kraft's Inequality
- Shannon Code

Lecture outline

- A little more about Shannon code.
- Huffman code
- Elias code

Reading: Scts. 5.6-5.11

Quick Review

- Kraft's inequality, $\sum_{x \in \mathcal{X}} D^{-l(x)} \leq 1$.
- Optimal code, $\frac{1}{n}E[l(X)] \ge H(X)$.
- Shannon code $l(x) = \lceil -\log P_X(x) \rceil$.
- Achieve asymptotic optimality, as $n \rightarrow \infty$.

Questions

- Can we construct optimal code for finite *n*.
- How does information theory help us to construct code for finite *n*.

Competitive Optimality of Shannon Code

Question What do we know about the codeword length for a particular outcome?

Let $l(x) = \lceil -\log P_X(x) \rceil$ be the codeword length assignment for Shannon code, and l'(x) be the codeword length of any other uniquely decodable code,

Claim

$$P(l(X) \ge l'(X) + c) \le \frac{1}{2^{c-1}}$$

Proof

$$P(l(X) \ge l'(X) + c)$$

$$= P(l'(X) + c \le \lceil -\log P_X(x) \rceil)$$

$$\le P(l'(X) + c - 1 \le -\log P_X(x))$$

$$= P(P_X(x) \le 2^{-l'(x) - (c-1)})$$

$$= \sum_{X: P_X(x) \le 2^{-l'(x) - (c-1)}} P_X(x)$$

$$x: P_X(x) \le 2^{-l'(x) - (c-1)}$$

$$\le \sum_{X: P_X(x) \le 2^{-l'(x) + c - 1}} 2^{-l'(x) - (c-1)}$$

$$\le \sum_{X: P_X(x) \le 2^{-l'(x) - (c-1)} \le 2^{-(c-1)}$$

Theorem Idealize the Shannon code to have $l(x) = -\log P_X(x)$, and let l'(x) be the codeword length of any other uniquely decodable code.

$$P(l(X) < l'(X)) \ge P(l(X) > l'(X))$$

Why this is not trivial?

Lemma sgn $(t) \leq 2^t - 1$ for any integer t.

Proof

$$P(l(X) > l'(X)) - P(l(X) < l'(X))$$

$$= \sum_{x} P_{X}(x) \operatorname{sgn}(l(x) - l'(x))$$

$$\leq \sum_{x} P_{X}(x)(2^{l(x)-l'(x)} - 1)$$

$$= \sum_{x} 2^{-l(x)}(2^{l(x)-l'(x)} - 1)$$

$$= \sum_{x} 2^{-l'(x)} - \sum_{x} 2^{-l(x)}$$

$$\leq 1 - 1 = 0$$

Equality holds only if l(x) = l'(x) for all x.

Constructing the Optimal Prefix Code

X has probability masses $p_1 \ge p_2 \ldots \ge p_m$, construct binary code to minimize $\sum_i p_i l_i$.

What should the optimal code look like?

- If $p_i > p_j$, then $l_i \leq l_j$.
- The two longest codewords have the same length.
- The two longest codewords differ only in the last bit.

Construction:

Take the two least likely symbols, merge them to get a size m - 1 problem.

D-ary Huffman Code

Definition Complete tree: every leaf is assigned to a codeword. Every intermediate node has *D* branches stemming from it.

- A complete tree means Kraft's inequality holds with equality.
- Size of a *D*-ary complete tree: 1+n(*D*-1) for integer *n*.
- For an arbitrary \mathcal{X} , add 0 probability symbols to make it fit in a complete tree.

What can we say about Huffman Code

- Optimal prefix code for any source.
- Always equally good or better than Shannon code.
- $\frac{1}{n}E[l(X_1^n)] \to H(X) \text{ as } n \to \infty.$

Binary Huffman Coding and "Slice" Questions

- The realization of a random variable $X \in \mathcal{X}$ can be determined by asking a sequence of questions " Is X in A_i " for some subset $A \in \mathcal{X}$. How to choose a sequence of A's to minimize the number of questions?
- "Slice" questions represent X by a sequence of binary random variables.

Notation

- For an internal node k on the coding tree, reach probability p_k is the sum of the probability of all the codewords descending from k.
- Let m, n be the two children of k, then the branching distribution is $\left\{\frac{p_m}{p_k}, \frac{p_n}{p_k}\right\}$.
- The conditional entropy of node k is $h_k = H\left(\frac{p_m}{p_k}, \frac{p_n}{p_k}\right)$.

The redundancy of Huffman Code

Claim

$$H(X) = \sum_{k} p_k h_k$$

summing over all the internal nodes.

Proof by induction.

Reminder: This is how we define the entropy.

Claim

$$E[l(X)] = \sum_{k} p_k$$

At each node k, no matter what p_k is, we have to add 1 more bit to the codeword.

Definition The *Local Redundancy* at node k is

$$r_k = p_k(1 - h_k)$$

Redundancy of Huffman Code

Theorem

$$E[l(X)] - H(X) = \sum_{k} r_{k}$$

The entropy bound $E[l(X)] \ge H(X)$ is achieved with equality iff for any node, the local redundancy is 0.

Consider a codeword as revealing a random variable X one bit at a time. Achieving the entropy bound means each bit reveals precisely 1 bit of information, or equivalently, $h_k = 1$.

Elias Code

Idea: use the value of the cdf. F(X) to indicate X.

• We can only use finite number of bits l(x) to represent the real number F(x).

$$F(x) = \sum_{a \le x} P_X(a)$$
$$\overline{F}(X) = \sum_{a < x} P_X(a) + \frac{1}{2} P_X(x)$$

- Round off $\overline{F}(x)$ to l(x) bits to get $\lfloor \overline{F}(x) \rfloor_{l(x)}$.
- Want $\lfloor \overline{F}(x) \rfloor_{l(x)} \in (F(x-1), \overline{F}(x)).$
- We need $l(x) = \left\lceil -\log P_X(x) \right\rceil + 1$:

$$\overline{F}(x) - \lfloor \overline{F}(x) \rfloor_{l(x)} < \frac{1}{2^{l(x)}} \\ \leq \frac{P_X(x)}{2} \\ = \overline{F}(x) - F(x-1)$$

• Prefix free: the intervals

$$\left(\lfloor \overline{F}(x) \rfloor_{l(x)}, \lfloor \overline{F}(x) \rfloor_{l(x)} + 2^{-l(x)}\right)$$

do not overlap for different x.

• Sufficient to have

$$\left\lfloor \overline{F}(x) \right\rfloor_{l(x)} + 2^{-l(x)} \le F(x)$$

which is true since $2^{-l(x)} \leq \frac{P_X(x)}{2}$.

• Average codeword length

$$E[l(X)] = \sum_{x} P_X(x) \left(\left\lceil -\log P_X(x) \right\rceil + 1 \right)$$

$$\leq H(X) + 2$$

As coding over long sequence of source symbols, the optimal performance achieved.

 Advantage: can decode sequentially for i.i.d. source.