LECTURE 7

Last time:
e Kraft's Inequality

e Shannon Code

Lecture outline
e A little more about Shannon code.
e¢ Huffman code

e Elias code

Reading: Scts. 5.6-5.11

Quick Review

e Kraft's inequality, > ,cx D—l(x) <1.
e Optimal code, +E[I(X)] > H(X).
e Shannon code I(z) = [—log Px(x)].

e Achieve asymptotic optimality, as n —

0.

Questions

e Can we construct optimal code for finite

n.

e How does information theory help us to
construct code for finite n.

Competitive Optimality of Shannon
Code

Question What do we know about the code-
word length for a particular outcome?

Let I(x) = [—log Px(xz)] be the codeword
length assignment for Shannon code, and
!(x) be the codeword length of any other
uniquely decodable code,

Claim
PAC) > 10 +0) <
Proof
PU(X) > I'(X) +¢)
= P(I'(X)+c< [-log Px(x)])
< P('(X)+c—1< —log Px(z))
= P(Px(z) < 27"@)=(em1))
= > Px(z)
z: Py (z)<2-V(2)—(c-1)
< 3 >—U'(z)—(c~1)
a::PX(:C)SQ_l/(fU)+C_1
<

Z 2—l/(:13)—(c—1) S 2—(6—1)

T heorem Idealize the Shannon code to have
() = —logPx(x), and let I'/(z) be the
codeword length of any other uniquely de-
codable code.

P((X) <I'(X)) > P(I(X) > 1'(X))
Why this is not trivial?
Lemma sgn(t) < 2t — 1 for any integer t.

Proof

PU(X) > 1'(X)) — PU(X) <I'(X))
= Y Px(z)sgn(i(z) —'(z))

< 3 Py(x)(@@-1@) 1)
_ iz—ux)(zz(x)—z'(x) ~1)
_ f:z—z'(a:)_zg—z(a:)

< 1-1=0

Equality holds only if {(z) = U/(z) for all .

Constructing the Optimal Prefix Code

X has probability masses p1 > po... > pm,
construct binary code to minimize) ; p;l;.

What should the optimal code look like?
o If p; >p;, then [; < ;.

e [hetwo longest codewords have the same
length.

e [he two longest codewords differ only in
the last bit.

Construction:
Take the two least likely symbols, merge
them to get a size m — 1 problem.

D-ary Huffman Code

Definition Complete tree: every leaf is as-
signed to a codeword. Every intermediate
node has D branches stemming from it.

e A complete tree means Kraft's inequality
holds with equality.

e Size of a D-ary complete tree: 14+n(D —
1) for integer n.

e Foran arbitrary X, add O probability sym-
bols to make it fit in a complete tree.

What can we say about Huffman Code
e Optimal prefix code for any source.

e Always equally good or better than Shan-
non code.

o LE[(X])] — H(X) as n — co.

Binary Huffman Coding and " Slice”
Questions

e T he realization of a random variable X €
X can be determined by asking a se-
quence of questions " Is X in A; " for
some subset A € X. How to choose a
sequence of A's to minimize the number
of questions?

e "'Slice” questions represent X by a se-
quence of binary random variables.

Notation

e For an internal node k£ on the coding
tree, reach probability p;. is the sum of
the probability of all the codewords de-
scending from k.

e Let m,n be the two children of k, then

the branching distribution is {1;—7:,3;—:}.

e T he conditional entropy of node kis hy =

H(p_m m)_
Pk’ Pk

The redundancy of Huffman Code

Claim
H(X) =) prhy
k

summing over all the internal nodes.
Proof by induction.

Reminder: This is how we define the en-
tropy.

Claim

E[(X)] =) _px
k

At each node k, no matter what pg is, we
have to add 1 more bit to the codeword.

Definition The Local Redundancy at node
k is

rr = pr(1 — hg)

Redundancy of Huffman Code

T heorem

E[I(X)] - H(X) =)
k

The entropy bound E[I(X)] > H(X) is achieved
with equality iff for any node, the local re-
dundancy is O.

Consider a codeword as revealing a random
variable X one bit at a time. Achieving the
entropy bound means each bit reveals pre-
cisely 1 bit of information, or equivalently,

Elias Code

Idea: use the value of the cdf. F(X) to
indicate X.

e \We can only use finite number of bits
[(x) to represent the real number F(x).

Fi) = Y Px(@)
a<zx

F(X) = Y Py(a) + 5Py (@)
a<x

e Round off F(z) to I(z) bits to get | F(x)];(,)-
e Want |F(z)],) € (F(z—1),F(z)).

e We need I(z) = [—log Px(z)] + 1:

_ — 1

F@) = F@h@ < S

Px(z)

2

= F(x)—F(x—1)

e Prefix free: the intervals

(Lf(a:)ll(g;), LF(w)Jl(w) + Q—Z(:c))

do not overlap for different x.

e Sufficient to have
F(2) 0y + 271 < F(a)

which is true since 2—1#) < PXT(:”).

e Average codeword length

E[(X)] =) Px(z)([-logPx(z)]+ 1)
< H(X)+2

As coding over long sequence of source

symbols, the optimal performance achieved.

e Advantage: can decode sequentially for
i.i.d. source.

