
LECTURE 7


Last time: 

Kraft’s Inequality • 

Shannon Code • 

Lecture outline 

A little more about Shannon code. • 

Huffman code • 

Elias code • 

Reading: Scts. 5.65.11 



Quick Review


Kraft’s inequality, 
�

x∈X D
−l(x) ≤ 1. • 

Optimal code, 1E[l(X)] ≥ H(X). n•


•	 Shannon code l(x) = �− log PX (x)�. 
Achieve asymptotic optimality, as n • → 

∞. 

Questions 

Can we construct optimal code for finite • 

n.


How does information theory help us to
• 

construct code for finite n. 



�

� 

Competitive Optimality of Shannon

Code


Question What do we know about the code
word length for a particular outcome? 

Let l(x) = �− log PX (x)� be the codeword 
length assignment for Shannon code, and 
l (x) be the codeword length of any other 
uniquely decodable code, 

Claim 
1 

P (l(X) ≥ l�(X) + c) ≤ 
2c−1 

Proof 

P (l(X) ≥ l�(X) + c) 

= P 
�
l�(X) + c ≤ �− log PX (x)�

P (l�(X) + c − 1 ≤ − log PX (x))≤ 
= P (PX (x) ≤ 2−l�(x)−(c−1)) 

= 
� 

PX (x) 
(x)−(c−1)x:PX (x)≤2−l�

≤ 
� 

2−l�(x)−(c−1) 

(x)+c−1x:PX (x)≤2−l�
� 

2−l�(x)−(c−1) ≤ 2−(c−1)≤ 
x 



�

Theorem Idealize the Shannon code to have 

l(x) = − log PX (x), and let l�(x) be the 

codeword length of any other uniquely de

codable code. 

P (l(X) < l�(X)) ≥ P (l(X) > l�(X)) 

Why this is not trivial? 

Lemma sgn(t) ≤ 2t − 1 for any integer t. 

Proof 

= 

P (l(X) > l�(X)) − P (l(X) < l�(X)) � 

x 
PX (x)sgn(l(x)− l�(x)) 

≤ 
� 

x 
PX (x)(2

l(x)−l�(x) − 1) 

= 
� 

x 
2−l(x)(2l(x)−l�(x) − 1) 

= 
� 

x 
2−l�(x) − 

� 

x 
2−l(x) 

≤ = 01 − 1 

Equality holds only if l(x) = l (x) for all x. 



Constructing the Optimal Prefix Code


X has probability masses p1 ≥ p2 . . . ≥ pm, 

construct binary code to minimize 
�

i pili. 

What should the optimal code look like?


•	 If pi > pj , then li ≤ lj . 

The two longest codewords have the same •


length.


The two longest codewords differ only in
• 

the last bit. 

Construction:


Take the two least likely symbols, merge 

them to get a size m − 1 problem. 



Dary Huffman Code


Definition Complete tree: every leaf is as

signed to a codeword. Every intermediate 

node has D branches stemming from it. 

A complete tree means Kraft’s inequality • 

holds with equality. 

•	 Size of a Dary complete tree: 1+n(D −
1) for integer n. 

• For an arbitrary X , add 0 probability sym


bols to make it fit in a complete tree.




What can we say about Huffman Code


Optimal prefix code for any source. • 

Always equally good or better than Shan• 

non code.


1E[l(Xn • 1)] → H(X) as n →∞. n 



Binary Huffman Coding and ”Slice”


Questions


•	 The realization of a random variable X ∈ 

X can be determined by asking a se

quence of questions ” Is X in Ai ” for 

some subset . How to choose aA	 ∈ X


sequence of A’s to minimize the number 

of questions? 

”Slice” questions represent X by a se• 

quence of binary random variables. 

Notation 

For an internal node k on the coding • 

tree, reach probability pk is the sum of 

the probability of all the codewords de

scending from k. 

Let m, n	 be the two children of k, then • 
pnthe branching distribution is 

�
pm, 

�
. pk	 pk 

•	 The conditional entropy of node k is hk = 
pnH	

�
pm, 

�
. pk	 pk 



The redundancy of Huffman Code 

Claim 

H(X) = 
� 

pkhk 
k 

summing over all the internal nodes.


Proof by induction.


Reminder: This is how we define the en

tropy.


Claim


E[l(X)] = 
� 

pk 
k 

At each node k, no matter what pk is, we 

have to add 1 more bit to the codeword. 

Definition The Local Redundancy at node 

k is 

rk = pk(1 − hk) 



Redundancy of Huffman Code


Theorem


E[l(X)] − H(X) = 
� 

rk 
k 

The entropy bound E[l(X)] ≥ H(X) is achieved 

with equality iff for any node, the local re

dundancy is 0. 

Consider a codeword as revealing a random 

variable X one bit at a time. Achieving the 

entropy bound means each bit reveals pre

cisely 1 bit of information, or equivalently, 

hk = 1. 



Elias Code


Idea: use the value of the cdf. F (X) to 

indicate X. 

We can only use finite number of bits • 

l(x) to represent the real number F (x). 

F (x) = 
� 

PX (a)

a≤x


1 
F (X) = 

� 
PX (a) + PX (x)2a<x 

• Round off F (x) to l(x) bits to get �F (x)�l(x). 
• Want �F (x)�l(x) ∈ (F (x − 1), F (x)). 

•	 We need l(x) = �− log PX (x)� + 1: 

1 
F (x)− �F (x)�l(x) < 

2l(x) 

PX (x) ≤ 
2 

= F (x)− F (x − 1) 



Prefix free: the intervals
• 
�
�F (x)�l(x), �F (x)�l(x) + 2−l(x)

� 

do not overlap for different x. 

Sufficient to have • 

�F (x)�l(x) + 2−l(x) ≤ F (x) 

PX (x)which is true since 2−l(x) 
2 .≤ 

Average codeword length • 

E[l(X)] = 
� 

PX (x) (�− log PX (x)� + 1) 
x 

≤ H(X) + 2 

As coding over long sequence of source


symbols, the optimal performance achieved.


Advantage: can decode sequentially for • 

i.i.d. source. 


