
LECTURE 8


Last time:


Source coding • 

Huffman code, Elias Code. • 

Lecture outline


Discrete Memoryless Channels • 

Channel capacity • 

Binary symmetric channels and Erasure • 

channels


Joint AEP
• 

Reading: Reading: Scts. 8.18.6.




Discrete Memoryless Channel 

Definition: Discrete Channel 

We can assume a discrete input alphabet • 

X and a discrete output alphabet Y .


We can describ e a channel by a set of
•


transition probabilities 

PY n Xn(yn xn), for all n| |

Definition Discrete Memoryless Chan

nel(DMC) 

Let us restrict ourselves the channels with


PY n Xn(yn|xn) = 
�

i
n 
=1 PY |X (yi xi)| |

The distribution of Yi depends only on • 

the current input. 

•	 We assume the transition probability PY |X 
is timeinvariant. 



Channel Capacity


The capacity of a DMC channel is de• 

fined as 

C = max I(X;Y ) 
PX (x) 

The operational meaning of the capac• 

ity is the maximum rate of information 

that can be transferred over the channel 

reliably. 

•	 Our goal now is to find PX to maximize 

I(X;Y ), and later use this distribution 

to achieve the maximum communication 

rate. 

We can also consider the capacity for n • 

uses of the channel, 

C(n) 1 
= max I(Xn;Y n) 

n PXn(xn) 



Channel capacity


Use the memoryless assumption, • 

I(Xn;Y n) = H(Y n)− H(Y n 

n� 
Xn)
|

n�

H(Yi Y i−1)−| H(Yi Xi)
|
= 

i=1 i=1 
n�


i=1


n�


i=1

H(Yi)−
 H(Yi Xi)
|
≤


n�

I(Xi;Yi)
= 

i=1 

The inequality can be met with equality • 
if we take the Xis to be independent, be

cause the Yis then are also independent 

If I(X;Y ) is maximized by a distribu• 
tion PX (x), then the taking Xi’s to be 

i.i.d. with PX maximizes each term on 

the RHS. 

For a memoryless channel, we can focus • 
on maximizing the mutual information of 

one channel use. This does not mean we 

can communicate reliably with just one 

channel use. 



Binary Symmetric Channel (BSC)


I(X;Y ) = H(Y )− H(Y X) 

= H(Y )− 
� 

|
PX (x)H(Y |X = x) 

x=0,1 

= H(Y )− H(�) 

1 − H(�)≤ 

where H(�) = −(� log(�)+(1− �) log(1 − �))


•	 The optimal input distribution is PX be

ing equiprobable on 0 and 1. 

•	 The resulting channel capacity is 1−H(�).


Intuitively, we can think of a correction • 

data with entropy H(�). 



Binary Erasure Channel (BEC)


E indicator variable that is 1 if there is an 

error and is 0 otherwise 

C = max I(X;Y )

PX (x)


= max (H(Y )− H(Y X)) 
PX (x) 

|

= max (H(Y, E)− H(Y X))


PX (x) 
|


= max (H(E) + H(Y E)− H(Y X))

PX (x) 

| |


H(E) = H(�) 

H(Y E)|
= P (E = 0)H(Y E = 0) + P (E = 1)H(Y E = 1)
| |
= (1 − �)H(X) 

H(Y X) = H(�)|

Thus C = maxPX (x)
(H(Y E)) = 1 − �|



Symmetric channels


Let us consider the transition matrix T the


|X |×|Y| matrix whose elements are PY X(y x)| |

Definition A DMC is symmetric iff all the


rows are permutations of each other, and


the columns are permutations of each other.


Denote a row of T as r = [r1, . . . r|Y|], and 

the corresponding entropy H(r) = − 
�

i ri log ri. 



Optimal Input Distribution for


Symmetric Channels


I(X;Y ) = h(Y )− H(Y X)
| 
= H(Y )− EX [H(Y X = x)]| 
= H(Y )− H(r)


log |Y − H(r)≤ | 
The equality holds only if Y is uniformly 

distributed. 

Let X be uniformly distributed,
• 

PY (y) = 
� 

PX (x)PY X (y|x)|
x∈X
1 

= 
� 

PY X (y|x) |X | x 
|

c 
= |X | 

Therefore the uniform input distribution is 

optimal. 



�


�


An Alternative Approach


Consider an arbitrary input distribution • 

P (1) = [p1, p2, . . . , pn], where n = .|X |
Let the corresponding mutual informa

tion be I(1). 

Now since the channel is symmetric, any • 

permutation of P (1) gives the same mu

tual information. Denote all the permu

tations as P (2), . . . , P (n!). 

Define a new input distribution P ∗ = • 
1 �

i P (i). P ∗ is the uniform distribution. n!


By the concavity of I as a function of
• 

the input distribution: 

I(P ∗) = I


⎛
⎝
1


n! i 
P (i)


⎞
⎠


1 ≥ 
n!


I(P (i)) = I(P (1)) 
i 



Finding the Optimal Input for

Asymmetric Channel


Let the input distribution of X be [P, Q, Q],• 
easily check that the distribution of Y is

also [P, Q, Q]. Goal: find P and Q to

maximize the mutual information.


Compute
• 

H(X) = −P log P − 2Q log Q 

H(X Y ) = P (Y = 1) × 0
|

+2P (Y = 2)H(X Y = 2)|

= 2QH(�) 

•	 Maximize I(X;Y ) = H(X)−H(X Y ) sub|
ject to the constraint P +2Q = 1, define 

J = −P log P − 2Q log Q − 2QH(�) + λ(P + 2Q)


we have 

∂J 
= −1 − log P + λ = 0 

∂P

∂J


= −2 − 2 log Q − 2H(�) + 2λ = 0 
∂Q 



Solve for : log P = log Q + H(�).


Let α = eH(�), we have 

α	 1 
P	 = , Q = 

α + 2 α + 2 
α + 2 

C	 = log 
α 

Check: 

•	 If � = 0, α = 1, input is uniform on X , 

capacity is log 3. 

1 •	 If � = 2, H(�) = log 2(nats), and α = 2. 

Capacity log 2. 

The larger H(�) is, the higher P is. We • 

rely more on distinguishing the two groups 

to convey information. 



Why the Mutual Information is


Important


Reliable communication requires disjoint • 

partitioning in the received signal space, 

corresponding to the different possible 

transmitted signals. 

For each (typical) input sequence Xn ,• 

there are approximately 2nH(Y X) possi|
ble Y sequences. 

There are in total 2nH(Y ) (typical) Y se• 

quences. Divide this set into sets of size 

2nH(Y X), each corresponding to one in|
put X sequences. 

The number of disjoint sets is no more • 
X) = 2nI(X;Y ).than 2nH(Y )−nH(Y There|

fore we can send at most 2nI(X;Y ) differ

ent sequences that are distinguishable. 



���

� 

Joint AEP


Definition The set of the joint typical se

nquences {(x , yn)} is 

n n nA
(
�
n) = 

�
(x , yn) ∈ X × Y : 

����
����

1 
log PXn(xn)−H(X) < �−

n �
1 

log PY n(y
n)−H(Y )

���
�
< �−

n ��� 1 n 
���

�
log PXn,Y n(x , yn)−H(X, Y ) < ��−n � 

Theorem


Consider sequences (Xn, Y n) drawn i.i.d. 

from PX,Y , then 

P ((Xn, Y n) ∈ A
(
�
n)) → 1 as n →∞. • 

• |A(n) ≤ 2nH(X,Y )+�|

Simple extension of the AEP for single ran

dom variable. 



Joint AEP


Question: 
nIf I randomly pick a typical sequence ˜
X

n 
∈

YA
(
�
n)(X), and a ˜ ∈ A(

�
n)(Y ), are they joint 

typical? 

A
(n) 
� (X) ×A

(n) 
� (Y ) 

? 
= A

(n) 
� (X, Y ) 

2nH(X) ×2nH(Y ) ≥ 2nH(X,Y ) 

n ˜n
Theorem If (X̃ , Y ) are independent with 

n ˜nthe same marginal distributions, i.e., (X̃ , Y ) ∼
PXn(xn)PY n(y

n), 

n ˜n
P ((X̃ , Y ) ∈ A(

�
n)(X, Y )) ≤ 2−n(I(X;Y )−3�) 

and for n large enough, 

n ˜n
P ((X̃ , Y ) ∈ A(

�
n)(X, Y )) ≥ (1 − �)2−n(I(X;Y )+3�) 



Proof of the Theorem


n ˜n
P ((X̃ , Y ) ∈ A(

�
n)(X, Y )) 

= 
� 

PXn(xn)PY n(y
n)


A
(n)

� (X,Y ) 

≤ 2n(H(X,Y )+�)2−n(H(X)−�)2−n(H(Y )−�) 

= 2−n(I(X;Y )−3�) 

Fix a typical yn, out of the 2nH(X) typi• 

cal X sequences, there are approximately 

2nH(X Y ) sequences that are jointly typ|
nical with y . 

Pass xn through the channel to obtain a • 

joint typical pair (xn, yn). Assume now 

that only yn is observed. If we pick ran

domly another x̃n and ask if this is the 

originally transmitted sequence, check

ing joint typically gives a probability of 

2−nI(X;Y ).confusion 

Next time, decoding with joint AEP. • 


