
LECTURE 8


Last time:


Source coding • 

Huffman code, Elias Code. • 

Lecture outline


Discrete Memoryless Channels • 

Channel capacity • 

Binary symmetric channels and Erasure • 

channels


Joint AEP
• 

Reading: Reading: Scts. 8.1­8.6.




Discrete Memoryless Channel 

Definition: Discrete Channel 

We can assume a discrete input alphabet • 

X and a discrete output alphabet Y .


We can describ e a channel by a set of
•


transition probabilities 

PY n Xn(yn xn), for all n| |

Definition Discrete Memoryless Chan­

nel(DMC) 

Let us restrict ourselves the channels with


PY n Xn(yn|xn) = 
�

i
n 
=1 PY |X (yi xi)| |

The distribution of Yi depends only on • 

the current input. 

•	 We assume the transition probability PY |X 
is time­invariant. 



Channel Capacity


The capacity of a DMC channel is de­• 

fined as 

C = max I(X;Y ) 
PX (x) 

The operational meaning of the capac­• 

ity is the maximum rate of information 

that can be transferred over the channel 

reliably. 

•	 Our goal now is to find PX to maximize 

I(X;Y ), and later use this distribution 

to achieve the maximum communication 

rate. 

We can also consider the capacity for n • 

uses of the channel, 

C(n) 1 
= max I(Xn;Y n) 

n PXn(xn) 



Channel capacity


Use the memoryless assumption, • 

I(Xn;Y n) = H(Y n)− H(Y n 

n� 
Xn)
|

n�

H(Yi Y i−1)−| H(Yi Xi)
|
= 

i=1 i=1 
n�


i=1


n�


i=1

H(Yi)−
 H(Yi Xi)
|
≤


n�

I(Xi;Yi)
= 

i=1 

The inequality can be met with equality • 
if we take the Xis to be independent, be­

cause the Yis then are also independent 

If I(X;Y ) is maximized by a distribu­• 
tion PX (x), then the taking Xi’s to be 

i.i.d. with PX maximizes each term on 

the RHS. 

For a memoryless channel, we can focus • 
on maximizing the mutual information of 

one channel use. This does not mean we 

can communicate reliably with just one 

channel use. 



Binary Symmetric Channel (BSC)


I(X;Y ) = H(Y )− H(Y X) 

= H(Y )− 
� 

|
PX (x)H(Y |X = x) 

x=0,1 

= H(Y )− H(�) 

1 − H(�)≤ 

where H(�) = −(� log(�)+(1− �) log(1 − �))


•	 The optimal input distribution is PX be­

ing equiprobable on 0 and 1. 

•	 The resulting channel capacity is 1−H(�).


Intuitively, we can think of a correction • 

data with entropy H(�). 



Binary Erasure Channel (BEC)


E indicator variable that is 1 if there is an 

error and is 0 otherwise 

C = max I(X;Y )

PX (x)


= max (H(Y )− H(Y X)) 
PX (x) 

|

= max (H(Y, E)− H(Y X))


PX (x) 
|


= max (H(E) + H(Y E)− H(Y X))

PX (x) 

| |


H(E) = H(�) 

H(Y E)|
= P (E = 0)H(Y E = 0) + P (E = 1)H(Y E = 1)
| |
= (1 − �)H(X) 

H(Y X) = H(�)|

Thus C = maxPX (x)
(H(Y E)) = 1 − �|



Symmetric channels


Let us consider the transition matrix T the


|X |×|Y| matrix whose elements are PY X(y x)| |

Definition A DMC is symmetric iff all the


rows are permutations of each other, and


the columns are permutations of each other.


Denote a row of T as r = [r1, . . . r|Y|], and 

the corresponding entropy H(r) = − 
�

i ri log ri. 



Optimal Input Distribution for


Symmetric Channels


I(X;Y ) = h(Y )− H(Y X)
| 
= H(Y )− EX [H(Y X = x)]| 
= H(Y )− H(r)


log |Y − H(r)≤ | 
The equality holds only if Y is uniformly 

distributed. 

Let X be uniformly distributed,
• 

PY (y) = 
� 

PX (x)PY X (y|x)|
x∈X
1 

= 
� 

PY X (y|x) |X | x 
|

c 
= |X | 

Therefore the uniform input distribution is 

optimal. 



�


�


An Alternative Approach


Consider an arbitrary input distribution • 

P (1) = [p1, p2, . . . , pn], where n = .|X |
Let the corresponding mutual informa­

tion be I(1). 

Now since the channel is symmetric, any • 

permutation of P (1) gives the same mu­

tual information. Denote all the permu­

tations as P (2), . . . , P (n!). 

Define a new input distribution P ∗ = • 
1 �

i P (i). P ∗ is the uniform distribution. n!


By the concavity of I as a function of
• 

the input distribution: 

I(P ∗) = I


⎛
⎝
1


n! i 
P (i)


⎞
⎠


1 ≥ 
n!


I(P (i)) = I(P (1)) 
i 



Finding the Optimal Input for

Asymmetric Channel


Let the input distribution of X be [P, Q, Q],• 
easily check that the distribution of Y is

also [P, Q, Q]. Goal: find P and Q to

maximize the mutual information.


Compute
• 

H(X) = −P log P − 2Q log Q 

H(X Y ) = P (Y = 1) × 0
|

+2P (Y = 2)H(X Y = 2)|

= 2QH(�) 

•	 Maximize I(X;Y ) = H(X)−H(X Y ) sub­|
ject to the constraint P +2Q = 1, define 

J = −P log P − 2Q log Q − 2QH(�) + λ(P + 2Q)


we have 

∂J 
= −1 − log P + λ = 0 

∂P

∂J


= −2 − 2 log Q − 2H(�) + 2λ = 0 
∂Q 



Solve for : log P = log Q + H(�).


Let α = eH(�), we have 

α	 1 
P	 = , Q = 

α + 2 α + 2 
α + 2 

C	 = log 
α 

Check: 

•	 If � = 0, α = 1, input is uniform on X , 

capacity is log 3. 

1 •	 If � = 2, H(�) = log 2(nats), and α = 2. 

Capacity log 2. 

The larger H(�) is, the higher P is. We • 

rely more on distinguishing the two groups 

to convey information. 



Why the Mutual Information is


Important


Reliable communication requires disjoint • 

partitioning in the received signal space, 

corresponding to the different possible 

transmitted signals. 

For each (typical) input sequence Xn ,• 

there are approximately 2nH(Y X) possi­|
ble Y sequences. 

There are in total 2nH(Y ) (typical) Y se­• 

quences. Divide this set into sets of size 

2nH(Y X), each corresponding to one in­|
put X sequences. 

The number of disjoint sets is no more • 
X) = 2nI(X;Y ).than 2nH(Y )−nH(Y There­|

fore we can send at most 2nI(X;Y ) differ­

ent sequences that are distinguishable. 



���

� 

Joint AEP


Definition The set of the joint typical se­

nquences {(x , yn)} is 

n n nA
(
�
n) = 

�
(x , yn) ∈ X × Y : 

����
����

1 
log PXn(xn)−H(X) < �−

n �
1 

log PY n(y
n)−H(Y )

���
�
< �−

n ��� 1 n 
���

�
log PXn,Y n(x , yn)−H(X, Y ) < ��−n � 

Theorem


Consider sequences (Xn, Y n) drawn i.i.d. 

from PX,Y , then 

P ((Xn, Y n) ∈ A
(
�
n)) → 1 as n →∞. • 

• |A(n) ≤ 2nH(X,Y )+�|

Simple extension of the AEP for single ran­

dom variable. 



Joint AEP


Question: 
nIf I randomly pick a typical sequence ˜
X

n 
∈

YA
(
�
n)(X), and a ˜ ∈ A(

�
n)(Y ), are they joint 

typical? 

A
(n) 
� (X) ×A

(n) 
� (Y ) 

? 
= A

(n) 
� (X, Y ) 

2nH(X) ×2nH(Y ) ≥ 2nH(X,Y ) 

n ˜n
Theorem If (X̃ , Y ) are independent with 

n ˜nthe same marginal distributions, i.e., (X̃ , Y ) ∼
PXn(xn)PY n(y

n), 

n ˜n
P ((X̃ , Y ) ∈ A(

�
n)(X, Y )) ≤ 2−n(I(X;Y )−3�) 

and for n large enough, 

n ˜n
P ((X̃ , Y ) ∈ A(

�
n)(X, Y )) ≥ (1 − �)2−n(I(X;Y )+3�) 



Proof of the Theorem


n ˜n
P ((X̃ , Y ) ∈ A(

�
n)(X, Y )) 

= 
� 

PXn(xn)PY n(y
n)


A
(n)

� (X,Y ) 

≤ 2n(H(X,Y )+�)2−n(H(X)−�)2−n(H(Y )−�) 

= 2−n(I(X;Y )−3�) 

Fix a typical yn, out of the 2nH(X) typi­• 

cal X sequences, there are approximately 

2nH(X Y ) sequences that are jointly typ­|
nical with y . 

Pass xn through the channel to obtain a • 

joint typical pair (xn, yn). Assume now 

that only yn is observed. If we pick ran­

domly another x̃n and ask if this is the 

originally transmitted sequence, check­

ing joint typically gives a probability of 

2−nI(X;Y ).confusion 

Next time, decoding with joint AEP. • 


