LECTURE 8

Last time:
e Source coding

e Huffman code, Elias Code.

Lecture outline
e Discrete Memoryless Channels
e Channel capacity

e Binary symmetric channels and Erasure
channels

e Joint AEP

Reading: Reading: Scts. 8.1-8.6.



Discrete Memoryless Channel

Definition: Discrete Channel

e \We can assume a discrete input alphabet
X and a discrete output alphabet V.

e \We can describe a channel by a set of
transition probabilities

Pyn|Xn(g”|g”), for all n

Definition Discrete Memoryless Chan-
nel(DMCQC)

Let us restrict ourselves the channels with

Pyn xn(y"|z") = Ili2q Py x (Wilz;)

e [ he distribution of Y, depends only on
the current input.

e We assume the transition probability Py x
IS time-invariant.



Channel Capacity

The capacity of a DMC channel is de-
fined as

C= max I(X;Y)
Px (x)
The operational meaning of the capac-
ity is the maximum rate of information
that can be transferred over the channel
reliably.

Our goal now is to find Py to maximize
I(X;Y), and later use this distribution
to achieve the maximum communication
rate.

We can also consider the capacity for n
uses of the channel,

c™ =1 max 1(x"y")



Channel capacity

e Use the memoryless assumption,
I(X"Y") = HY")-HX"X")

= Y HylY"™ Y - Y HY|X)
1=1 1=1

n n
< > H) - ) HYX)
i=1 i=1
n
= > I(X;Y;)
i=1
e [ he inequality can be met with equality
if we take the X;s to be independent, be-
cause the Y;s then are also independent

o If I(X;Y) is maximized by a distribu-
tion Px(xz), then the taking X;'s to be
I.i.d. with Px maximizes each term on
the RHS.

e For a memoryless channel, we can focus
on maximizing the mutual information of
one channel use. This does not mean we
can communicate reliably with just one
channel use.



Binary Symmetric Channel (BSC)

I(X:Y) = H(Y) - H(Y|X)
= H(Y)~ Y Px(@)H(Y|X =2)
x=0,1
= H(Y) — H(e)
< 1-—H(e)

where H(e) = —(elog(e) + (1 —¢)log(1l—¢))

e T he optimal input distribution is Py be-
ing equiprobable on 0 and 1.

e Theresulting channel capacity is 1—H (e¢).

e Intuitively, we can think of a correction
data with entropy H (e).



Binary Erasure Channel (BEC)

E indicator variable that is 1 if there is an
error and is 0 otherwise

C = g?g)I(X;Y)
— ]Q;?;()(H(Y)—H(WX))
— ZQ;.(%(H(Y,E)—H(YIX))
— ]g;??)(H(E) + H(Y|E) - H(Y|X))

H(E) = H(e)

H(Y|E)
P(E=0)H(Y|[E=0)+P(E=1)H(Y|E=1)
(1-e)H(X)

H(Y|X) = H(e)

Thus C = maxPX(x)(H(Y|E)) =1—c¢€



Symmetric channels

Let us consider the transition matrix 1" the
| X[x|Y| matrix whose elements are Py x (y|z)

Definition A DMC is symmetric iff all the
rows are permutations of each other, and
the columns are permutations of each other.

Denote a row of T as r = [rl,...r|y|], and
the corresponding entropy H(r) = — >, r;logr;.



Optimal Input Distribution for
Symmetric Channels

I(X;Y) = h(Y)—H(Y | X)
= H(Y) - Ex[H(Y | X = 2)]
= H(Y)—-H(r)
< log|Y| — H(r)

The equality holds only if Y is uniformly
distributed.

e Let X be uniformly distributed,

Py (y) > Px(z)Pyx(ylz)
rEX

= Prx o)

C

|

Therefore the uniform input distribution is
optimal.



An Alternative Approach

e Consider an arbitrary input distribution
p(l) = [p1,P2,...,pn]l, Where n = |X].
Let the corresponding mutual informa-
tion be (1),

e Now since the channel is symmetric, any
permutation of p) gives the same mu-
tual information. Denote all the permu-
tations as P(2)_ .. . pn!),

e Define a new input distribution P* =
L5 P4 P* is the uniform distribution.

e By the concavity of I as a function of
the input distribution:

1(P*) = I(;ZP@>

> > a(PW) = 1)



Finding the Optimal Input for
Asymmetric Channel

e Let theinput distribution of X be [P, Q, @],
easily check that the distribution of Y is
also [P,Q,Q]. Goal: find P and @Q to
maximize the mutual information.

e Compute

H(X) = —PlogP —-2QlogQ
H(X|Y) = P(Y=1)x0
+2P(Y =2)H(X|Y = 2)
= 2QH((e)

e Maximize I(X;Y) = H(X)—H(X|Y) sub-
ject to the constraint P+2Q = 1, define

J=—Plog P —2QlogQ — 2QH(¢) + M(P + 2Q)

we have
0J
oP
o0J
0Q

= —1—1logP+X=0

2 -210gQ —2H(e) +2X1 =0



Solve for : log P =109 Q@ + H(e).

Let a = () we have

o 1
P p— 7Q:
a—+ 2 o+ 2
2
C = Ioga_l_
Qo

Check:

o Ife=0, o= 1, input is uniform on X,
capacity is log 3.

o If e = %, H(e) = log2(nats), and a = 2.
Capacity log 2.

e The larger H(e) is, the higher P is. We
rely more on distinguishing the two groups
to convey information.



Why the Mutual Information is
Important

Reliable communication requires disjoint
partitioning in the received signal space,
corresponding to the different possible
transmitted signals.

For each (typical) input sequence X",
there are approximately 2" (Y[X) possi-
ble Y sequences.

There are in total 27 (Y) (typical) Y se-
quences. Divide this set into sets of size
onH(Y|X) each corresponding to one in-
put X sequences.

The number of disjoint sets is no more
than 2nH(Y)—nHY|X) — onl(X}Y)  There-

fore we can send at most 27 (X:Y) differ-
ent sequences that are distinguishable.



Joint AEP

Definition The set of the joint typical se-
quences {(z",y")} is
Agn) — {(gn,gn) c X x Y

1
——log Pxn(z™) — H(X)| < €
o X

1
——log Pyn(y") — H(Y)‘ <€
o yn Yy

1
'—— l0g Py yn(z", y™) — H(X, Y)\ < }
~log Py yn(z",y

T heorem

Consider sequences (X", Y"™) drawn i.i.d.
from Pxy, then

o P((X"Y") e A 1 asn— oo
° |A§n)| < onH(X,Y)+e

Simple extension of the AEP for single ran-
dom variable.



Joint AEP

Question:

If I randomly pick a typical sequence X" ¢
Ag”’)(X), anda Y" ¢ Agn)(Y), are they joint
typical?

AN (x) xAM ()< AN (x,Y)

2nH(X) s ONH(Y') > 2nH(X,Y)

Theorem If (X", Y") are independent with
the same marginal distributions, i.e., (X", Y") ~

Pxn(z") Pyn(y"),
PUX™, ™) e Al (X,Y)) < 2~ n(XiY)=3¢)
and for n large enough,

PUX™ 7™ € AP (X, 7)) > (1 — )2 U (XV)+36)



Proof of the Theorem

P((X™,¥™) € AM(X,Y))

= > Pxn(z™)Pyn(y™)

AN (xy)
<« o(HXY)+e)p—n(H(X)—e)5—n(H(Y)—e)
5>—n(I(X;Y)—3e)

Fix a typical y", out of the 2n(X) typi-
cal X sequences, there are approximately
onH(X]Y) sequences that are jointly typ-
ical with y™.

Pass ™ through the channel to obtain a
joint typical pair (z",y™). Assume now
that only y" is observed. If we pick ran-
domly another z"™ and ask if this is the
originally transmitted sequence, check-

ing joint typically gives a probability of
confusion 2— I (XiY),

Next time, decoding with joint AEP.



