
LECTURE 9


Last time: 

Channel Capacity • 

BSC and BEC • 

Lecture outline 

Continue on Joint AEP • 

Coding Theorem • 

Reading: Reading: Scts. 8.4 8.7, 8.9
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Theorem


Consider sequences (Xn, Y n) drawn i.i.d. 

from PX,Y , then 

P ((Xn, Y n) ∈ A
(
�
n)) → 1 as n →∞. • 

• |A(n) ≤ 2nH(X,Y )+�|

Simple extension of the AEP for single ran

dom variable. 



Joint AEP


Pass xn through the channel, to obtain • 

yn, with high probability (xn, yn) are jointly 

typical. 

n •	 We only observe yn, try to find the x

that is jointly typical. 

Question: 
nIf I randomly pick a typical sequence ˜
X

n 
∈

Y
A
(
�
n)(X), and a ˜ ∈ A(

�
n)(Y ), are they joint 

typical? 

? 
A

(
�
n)(X) ×A

(
�
n)(Y ) = A

(
�
n)(X, Y ) 

2nH(X) ×2nH(Y ) 2nH(X,Y )≥ 



Joint AEP


n ˜n
Theorem If (X̃ , Y ) are independent with 

n ˜nthe same marginal distributions, i.e., (X̃ , Y ) ∼
PXn(xn)PY n(y

n), 

n ˜n
P ((X̃ , Y ) ∈ A(

�
n)(X, Y )) ≤ 2−n(I(X;Y )−3�) 

and for n large enough, 

n ˜n
P ((X̃ , Y ) ∈ A(

�
n)(X, Y )) ≥ (1 − �)2−n(I(X;Y )+3�) 

Proof 

n ˜n
P ((X̃ , Y ) ∈ A(

�
n)(X, Y ))


= 
� 

PXn(xn)PY n(y
n)


A
(n)

� (X,Y )


≤ 2n(H(X,Y )+�)2−n(H(X)−�)2−n(H(Y )−�)


= 2−n(I(X;Y )−3�) 



Example:Binary Source and BSC


Consider a binary source Xn passes through 

a binary symmetric channel with flipping 

probability p. 

Fix an arbitrary input sequence yn, what 

xn’s are jointly typical? 

nWrite w = yn − xn, there should be ap
nproximately np 1’s in w . 

.
How many of such xn are there? = 2nH(p). 

n =Check: This set is much smaller than X
2n .




Discussions


Fix a typical yn, out of the 2nH(X) typi• 

cal X sequences, there are approximately 

2nH(X Y ) sequences that are jointly typ|
nical with y . 

Pass xn through the channel to obtain a • 

joint typical pair (xn, yn). Assume now 

that only yn is observed. If we pick ran

domly another x̃n and ask if this is the 

originally transmitted sequence, check

ing joint typically gives a probability of 

2−nI(X;Y ).confusion 

Checking the joint typicality is a good • 

way of decoding. 



Overview


Consider a DMC with transition proba• 
bilities PY X (y x)| |
We say a data rate R is achievable if • 
there exists a sequence of code books, 
C(n), each has 2nR codewords, for which 
the probability of error goes to 0 as n → 
∞. 

Notice whenever a code book is chosen, • 
it is revealed to the receiver. 

The relation between the ”probability of • 
error” and the ”capacity” 

Construction 

Random code books: for each n, choose • 
2nR codewords, each with length n, i.i.d. 
from an input distribution PX (x). 

n�

nR2�


P (C)
= PX (xi(w)) 
w=1 i=1 

All messages are equiprobable. Define • 
message W 

2−nRP (W = w) = , for w = 1, . . . , 2nR 



Encoding and Decoding 

Transmitter 

Depend on the message W = w, transmit 

the codeword xn(w) through n usages of 

the channel. 

Distinguish i.i.d. random code and trans• 

mitting independent symbols. 

Receiver 

Typical set decoding: 

n •	 For a given y , if there exists unique 

xn(w) in the code book that is jointly 

typical with yn, decode Ŵ = w.


otherwise, declare an error
•




Random coding


Calculating the Probability of Error


P (error) = 
� 

P (C)P (error|C) 
C 

2nR 
1 

= 
� 

P (C)
2nR 

� 
P (error|C, W = w) 

C 

2nR 
w=1 

1 
= 

� � 
P (C)P (error|C, W = w)

2nR 
w=1 C 

= 
� 

P (C)P (error|C, W = 1) 
C

= P (error W = 1)
|
where the error probability is computed by

averaging over the ensemble of the codes.


Random coding creates symmetry. • 

Instead of the error probability of one • 
particular code, we compute the average 

error probability of the random codes. 

If the average probability of error is small, • 
then there exists one code with small 

probability of error. 



Using Joint AEP


Define 

Ei = {(xn(i), yn) ∈ A
(
�
n)} 

for i = 1, . . . , 2nR . 

P (error W = 1) = P (Ec 
1 ∪ E2 ∪ . . . ∪ E2nR)|

2nR 

1) + 
� 

P (Ei)≤ P (Ec 

i=2 

nEvent Ei is in the space X × Yn . In com

puting the probability of Ei, what the dis

tribution of Xn, Y n we should use? 

For E1, X
n, Y n are drawn from the joint • 

distribution PXn,Y n. 

•	 For Ei with i ≥ 2, Xn, Y n are drawn from 

independent marginal distributions, i.e. 

Xn, Y n ∼ PXn(xn)PY n(y
n). 

Think about joint AEP




Using Joint AEP


Fixed � > 0, for large enough n,


P (Ec 
1) ≤ � 

for i ≥ 2, 

P (Ei) ≤ 2−n(I(X;Y )−3�) 

The probability of error 

2nR 

P (error) 1) + 
� 

P (Ei)≤ P (Ec 

i=2 

≤ � + 2nR2−n(I(X;Y )−3�) 

= � + 2−n(I(X;Y )−R−3�) 

If R < I(X;Y )− 3�, we can choose n large 

enough such that the second term is arbi

trarily small. 



Summary


The average performance of the random • 
code is ”good”, so there exists a ”good” 
code. 

The above can be derived for any in• 
put distribution, so pick P ∗ that maxX 
imizes the mutual information, as long 
as R ≤ C = maxP I(X;Y ), the rate is 

X 
achievable. 

Remaining Questions 

Can we reliably transmit any R > C?
• 

Long codewords are good, but how long. • 
What is the performance for finite code
word length. 

Average error probability is small, but • 
may have particularly bad codewords.


Random codes seems good, but how do • 
we decode? Is there any better struc
tured code that can do as well? The 
randomness in coding is a computational 
trick or a fundamental requirement to 
achieve the capacity? 



Converse of Coding Theorem


Recall Fano’s inequality: For any r.v.’s X, Y , 

we try to guess X by X̂ = g(Y ). The error


probability Pe = P (X = X) satisfies� ˆ

H(X Y ) ≤ H(E) + Pe log(|X − 1)| | 
Proof by applying chain rule on H(X, E Y ).|

H(E, X Y ) = H(E X, Y ) + H(X Y ) = H(X Y )
| | | |
H(E, X Y ) = H(X E, Y ) + H(E Y )| | |

≤ H(X E, Y ) + H(E)|
≤ PeH(X Y, E = 1)|

+(1 − Pe)H(X Y, E = 0) + H(E)|
= PeH(X Y, E = 1) + H(E)|

Pe log(|X − 1)≤ | 



Converse of Coding Theorem


Now consider trying to guess the message 

W based on the observation on Y n . 

H(W Y n) ≤ 1 + Pe 
(n)

nR|

nR = H(W ) = H(W Y n) + I(W ;Y n)|
≤ H(W Y n) + I(Xn(W ); Y n)|
≤ 1 + PnnR + I(Xn;Y n)e


≤ 1 + PnnR + nC
e 

Rearrange 

C 1 
Pn 

e ≥ 1 − 
R 
− 

nR


For n large enough, Pe is bounded away • 
from 0. 

Suppose we can achieve Pn = 0 for some e• 
finite n, than we can concatenate such 

codes to have 0 error probability for large 

n, which gives contradiction. 


