
LECTURE 9


Last time: 

Channel Capacity • 

BSC and BEC • 

Lecture outline 

Continue on Joint AEP • 

Coding Theorem • 

Reading: Reading: Scts. 8.4­ 8.7, 8.9
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Definition The set of the joint typical se­

nquences {(x , yn)} is 
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Theorem


Consider sequences (Xn, Y n) drawn i.i.d. 

from PX,Y , then 

P ((Xn, Y n) ∈ A
(
�
n)) → 1 as n →∞. • 

• |A(n) ≤ 2nH(X,Y )+�|

Simple extension of the AEP for single ran­

dom variable. 



Joint AEP


Pass xn through the channel, to obtain • 

yn, with high probability (xn, yn) are jointly 

typical. 

n •	 We only observe yn, try to find the x

that is jointly typical. 

Question: 
nIf I randomly pick a typical sequence ˜
X

n 
∈

Y
A
(
�
n)(X), and a ˜ ∈ A(

�
n)(Y ), are they joint 

typical? 

? 
A

(
�
n)(X) ×A

(
�
n)(Y ) = A

(
�
n)(X, Y ) 

2nH(X) ×2nH(Y ) 2nH(X,Y )≥ 



Joint AEP


n ˜n
Theorem If (X̃ , Y ) are independent with 

n ˜nthe same marginal distributions, i.e., (X̃ , Y ) ∼
PXn(xn)PY n(y

n), 

n ˜n
P ((X̃ , Y ) ∈ A(

�
n)(X, Y )) ≤ 2−n(I(X;Y )−3�) 

and for n large enough, 

n ˜n
P ((X̃ , Y ) ∈ A(

�
n)(X, Y )) ≥ (1 − �)2−n(I(X;Y )+3�) 

Proof 

n ˜n
P ((X̃ , Y ) ∈ A(

�
n)(X, Y ))


= 
� 

PXn(xn)PY n(y
n)


A
(n)

� (X,Y )


≤ 2n(H(X,Y )+�)2−n(H(X)−�)2−n(H(Y )−�)


= 2−n(I(X;Y )−3�) 



Example:Binary Source and BSC


Consider a binary source Xn passes through 

a binary symmetric channel with flipping 

probability p. 

Fix an arbitrary input sequence yn, what 

xn’s are jointly typical? 

nWrite w = yn − xn, there should be ap­
nproximately np 1’s in w . 

.
How many of such xn are there? = 2nH(p). 

n =Check: This set is much smaller than X
2n .




Discussions


Fix a typical yn, out of the 2nH(X) typi­• 

cal X sequences, there are approximately 

2nH(X Y ) sequences that are jointly typ­|
nical with y . 

Pass xn through the channel to obtain a • 

joint typical pair (xn, yn). Assume now 

that only yn is observed. If we pick ran­

domly another x̃n and ask if this is the 

originally transmitted sequence, check­

ing joint typically gives a probability of 

2−nI(X;Y ).confusion 

Checking the joint typicality is a good • 

way of decoding. 



Overview


Consider a DMC with transition proba­• 
bilities PY X (y x)| |
We say a data rate R is achievable if • 
there exists a sequence of code books, 
C(n), each has 2nR codewords, for which 
the probability of error goes to 0 as n → 
∞. 

Notice whenever a code book is chosen, • 
it is revealed to the receiver. 

The relation between the ”probability of • 
error” and the ”capacity” 

Construction 

Random code books: for each n, choose • 
2nR codewords, each with length n, i.i.d. 
from an input distribution PX (x). 

n�

nR2�


P (C)
= PX (xi(w)) 
w=1 i=1 

All messages are equiprobable. Define • 
message W 

2−nRP (W = w) = , for w = 1, . . . , 2nR 



Encoding and Decoding 

Transmitter 

Depend on the message W = w, transmit 

the codeword xn(w) through n usages of 

the channel. 

Distinguish i.i.d. random code and trans­• 

mitting independent symbols. 

Receiver 

Typical set decoding: 

n •	 For a given y , if there exists unique 

xn(w) in the code book that is jointly 

typical with yn, decode Ŵ = w.


otherwise, declare an error
•




Random coding


Calculating the Probability of Error


P (error) = 
� 

P (C)P (error|C) 
C 

2nR 
1 

= 
� 

P (C)
2nR 

� 
P (error|C, W = w) 

C 

2nR 
w=1 

1 
= 

� � 
P (C)P (error|C, W = w)

2nR 
w=1 C 

= 
� 

P (C)P (error|C, W = 1) 
C

= P (error W = 1)
|
where the error probability is computed by

averaging over the ensemble of the codes.


Random coding creates symmetry. • 

Instead of the error probability of one • 
particular code, we compute the average 

error probability of the random codes. 

If the average probability of error is small, • 
then there exists one code with small 

probability of error. 



Using Joint AEP


Define 

Ei = {(xn(i), yn) ∈ A
(
�
n)} 

for i = 1, . . . , 2nR . 

P (error W = 1) = P (Ec 
1 ∪ E2 ∪ . . . ∪ E2nR)|

2nR 

1) + 
� 

P (Ei)≤ P (Ec 

i=2 

nEvent Ei is in the space X × Yn . In com­

puting the probability of Ei, what the dis­

tribution of Xn, Y n we should use? 

For E1, X
n, Y n are drawn from the joint • 

distribution PXn,Y n. 

•	 For Ei with i ≥ 2, Xn, Y n are drawn from 

independent marginal distributions, i.e. 

Xn, Y n ∼ PXn(xn)PY n(y
n). 

Think about joint AEP




Using Joint AEP


Fixed � > 0, for large enough n,


P (Ec 
1) ≤ � 

for i ≥ 2, 

P (Ei) ≤ 2−n(I(X;Y )−3�) 

The probability of error 

2nR 

P (error) 1) + 
� 

P (Ei)≤ P (Ec 

i=2 

≤ � + 2nR2−n(I(X;Y )−3�) 

= � + 2−n(I(X;Y )−R−3�) 

If R < I(X;Y )− 3�, we can choose n large 

enough such that the second term is arbi­

trarily small. 



Summary


The average performance of the random • 
code is ”good”, so there exists a ”good” 
code. 

The above can be derived for any in­• 
put distribution, so pick P ∗ that max­X 
imizes the mutual information, as long 
as R ≤ C = maxP I(X;Y ), the rate is 

X 
achievable. 

Remaining Questions 

Can we reliably transmit any R > C?
• 

Long codewords are good, but how long. • 
What is the performance for finite code­
word length. 

Average error probability is small, but • 
may have particularly bad codewords.


Random codes seems good, but how do • 
we decode? Is there any better struc­
tured code that can do as well? The 
randomness in coding is a computational 
trick or a fundamental requirement to 
achieve the capacity? 



Converse of Coding Theorem


Recall Fano’s inequality: For any r.v.’s X, Y , 

we try to guess X by X̂ = g(Y ). The error


probability Pe = P (X = X) satisfies� ˆ

H(X Y ) ≤ H(E) + Pe log(|X − 1)| | 
Proof by applying chain rule on H(X, E Y ).|

H(E, X Y ) = H(E X, Y ) + H(X Y ) = H(X Y )
| | | |
H(E, X Y ) = H(X E, Y ) + H(E Y )| | |

≤ H(X E, Y ) + H(E)|
≤ PeH(X Y, E = 1)|

+(1 − Pe)H(X Y, E = 0) + H(E)|
= PeH(X Y, E = 1) + H(E)|

Pe log(|X − 1)≤ | 



Converse of Coding Theorem


Now consider trying to guess the message 

W based on the observation on Y n . 

H(W Y n) ≤ 1 + Pe 
(n)

nR|

nR = H(W ) = H(W Y n) + I(W ;Y n)|
≤ H(W Y n) + I(Xn(W ); Y n)|
≤ 1 + PnnR + I(Xn;Y n)e


≤ 1 + PnnR + nC
e 

Rearrange 

C 1 
Pn 

e ≥ 1 − 
R 
− 

nR


For n large enough, Pe is bounded away • 
from 0. 

Suppose we can achieve Pn = 0 for some e• 
finite n, than we can concatenate such 

codes to have 0 error probability for large 

n, which gives contradiction. 


