LECTURE 9

Last time:
e Channel Capacity
e BSC and BEC

Lecture outline
e Continue on Joint AEP

e Coding Theorem

Reading: Reading: Scts. 8.4- 8.7, 8.9



Definition The set of the joint typical se-
quences {(z",y")} is

Agn) — {(zn’gn) e X" x Y
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T heorem

Consider sequences (X" Y"™) drawn i.i.d.
from Pxy, then

o P((x"y")eAl) ~1asn— .
o |A§’”’)| < nH(X,Y)+e

Simple extension of the AEP for single ran-
dom variable.



Joint AEP

e Pass z™ through the channel, to obtain
y", with high probability (z™,y™) are jointly
typical.

e We only observe y", try to find the z"
that is jointly typical.

Question:
If I randomly pick a typical sequence X" ¢

Agn)(X), and a YY" € Agn)(Y), are they joint
typical?

AN (x) xAM ()< A (x,Y)

onH(X)  yonH(Y) > onH(X)Y)



Joint AEP

Theorem If (X", Y") are independent with
the same marginal distributions, i.e., (X", Y") ~

Pxn(z")Pyn(y"),
PX™, ™) e Al (X,Y)) < 2~ nI(XiY)=3¢)
and for n large enough,

PUXE™ 7™ e Al (X, Y)) > (1 — )2 I (XiY)+36)

Proof

P((X", Y™ e A (X,Y))

= Y. Pxn(z™)Pyn(y")

A (x,Y)
>n(H(X,Y)+e)p—n(H(X)—e)r—n(H(Y)—e)
_ 5 n(I(X;Y)-30)
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Example:Binary Source and BSC

Consider a binary source X" passes through
a binary symmetric channel with flipping
probability p.

Fix an arbitrary input sequence y", what
x™'s are jointly typical?

Write w" = y™ — z", there should be ap-
proximately np 1's in w™.

How many of such z” are there? = 2nH (),

Check: This set is much smaller than X™ =
21,



Discussions

e Fix a typical y", out of the 2n7(X) typi-
cal X sequences, there are approximately
onH(X[Y) sequences that are jointly typ-
ical with y™.

e Pass z£™ through the channel to obtain a
joint typical pair (z",y™). Assume now
that only y" is observed. If we pick ran-
domly another z™ and ask if this is the
originally transmitted sequence, check-
ing joint typically gives a probability of
confusion 2 (X;Y)

e Checking the joint typicality is a good
way of decoding.



Overview

e Consider a DMC with transition proba-
bilities PY‘X(y|x)

e \We say a data rate R is achievable if
there exists a sequence of code books,
c(n) each has 2"F codewords, for which
the probability of error goes to O as n —
0.

e Notice whenever a code book is chosen,
it is revealed to the receiver.

e [ he relation between the " probability of
error’” and the " capacity”

Construction

e Random code books: for each n, choose
2l codewords, each with length n, i.i.d.
from an input distribution Px(x).

onit

pc) = ][I II Px(zi(w))

w=11=1
e All messages are equiprobable. Define
message W

PW=w)=2""F forw=1,... 2"k



Encoding and Decoding

Transmitter

Depend on the message W = w, transmit
the codeword z"(w) through n usages of
the channel.

e Distinguishi.i.d. random code and trans-
mitting independent symbols.

Receiver

Typical set decoding:

e For a given y", if there exists unique
z"(w) in the code book that is jointly
typical with y™, decode W = w.

e Otherwise, declare an error



Random coding

Calculating the Probability of Error

P(error) = > P(C)P(error|C)
C

2nR
= ZP(C)QniR > P(error|C,W = w)
C w=1
1 2nR
= onR > Y P(C)P(error|C,W = w)
w=1 C

= > P(C)P(error|C,W = 1)
C

= P(error|W = 1)
where the error probability is computed by
averaging over the ensemble of the codes.

e Random coding creates symmetry.

e Instead of the error probability of one
particular code, we compute the average
error probability of the random codes.

e If the average probability of error is small,
then there exists one code with small
probability of error.



Using Joint AEP

Define
B = {(z"(i),y") € AT}

fori=1,..., 28,

P(error|W =1) = P(E{UE>U...UE,;R)
nR

< P(E9)+ ) P(E)
=2

Event FE; is in the space X™ x Y™. In com-

puting the probability of E;, what the dis-

tribution of X™ Y™ we should use?

e For Fq, X™ Y™ are drawn from the joint
distribution Pin,xn

e For E;, with:>2, X™ Y™ are drawn from
independent marginal distributions, i.e.
XY™~ Pxn(z™)Pyn(y").

Think about joint AEP



Using Joint AEP

Fixed ¢ > 0O, for large enough n,
P(E7) <e
for ¢ > 2,

The probability of error

2nR
P(error) < P(E{)+ ) P(E;)
i=2

— 4 o~ (X;Y)=R=30)

IA

If R<I(X;Y)— 3¢, we can choose n large
enough such that the second term is arbi-
trarily small.



Summary

e [ he average performance of the random
code is"good", so there exists a " good”
code.

e [he above can be derived for any in-
put distribution, so pick P5 that max-
imizes the mutual information, as long
as R < C = maxp, I(X;Y), the rate is
achievable.

Remaining Questions
e Can we reliably transmit any R > C7

e | ong codewords are good, but how long.
What is the performance for finite code-
word length.

e Average error probability is small, but
may have particularly bad codewords.

e Random codes seems good, but how do
we decode? Is there any better struc-
tured code that can do as well? The
randomness in coding is a computational
trick or a fundamental requirement to
achieve the capacity?



Converse of Coding Theorem

Recall Fano's inequality: Foranyr.v.'s XY,
we try to guess X by X = g(Y). The error
probability P. = P(X # X) satisfies

H(X|Y) < H(E) + P.log(|X| — 1)
Proof by applying chain rule on H(X, E|Y).

H(E,X|Y)
H(E,X|Y)

H(E|X,Y)+ H(X|Y) = H(X|Y)
H(X|E,Y) + H(E|Y)

H(X|E,Y) 4+ H(E)

P.H(X|Y,E = 1)

+(1 - P)H(X|Y,E =0) + H(E)
P.H(X|Y,E =1) 4+ H(E)
Pelog(]X|—1)

IA A
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Converse of Coding Theorem

Now consider trying to guess the message
W based on the observation on Y.

HWI[Y™) <1+ P{nR

nRi HW)=HW[Y")4+1(W;Y")
HWY™) 4+ 1(X"(W);Y")
14+ PR+ I(X™Y")

1+ PI'nR+nC

IAIA A

Rearrange

C 1
PI>1-———
R nR
e For n large enough, P. is bounded away

from O.

e Suppose we can achieve P! = 0 for some
finite n, than we can concatenate such
codes to have O error probability for large
n, which gives contradiction.



