LECTURE 9

Last time:

- Channel Capacity
- BSC and BEC

Lecture outline

- Continue on Joint AEP
- Coding Theorem

Reading: Reading: Scts. 8.4-8.7, 8.9

Definition The set of the joint typical sequences $\{(\underline{x}^n, \underline{y}^n)\}$ is

$$A_{\epsilon}^{(n)} = \left\{ (\underline{x}^{n}, \underline{y}^{n}) \in \mathcal{X}^{n} \times \mathcal{Y}^{n} : \\ \left| -\frac{1}{n} \log P_{\underline{X}^{n}}(\underline{x}^{n}) - H(X) \right| < \epsilon \\ \left| -\frac{1}{n} \log P_{\underline{Y}^{n}}(\underline{y}^{n}) - H(Y) \right| < \epsilon \\ \left| -\frac{1}{n} \log P_{\underline{X}^{n}, \underline{Y}^{n}}(\underline{x}^{n}, \underline{y}^{n}) - H(X, Y) \right| < \epsilon \right\}$$

Theorem

Consider sequences $(\underline{X}^n, \underline{Y}^n)$ drawn i.i.d. from $P_{X,Y}$, then

• $P((\underline{X}^n, \underline{Y}^n) \in A_{\epsilon}^{(n)}) \to 1 \text{ as } n \to \infty.$

•
$$|A_{\epsilon}^{(n)}| \leq 2^{nH(X,Y)+\epsilon}$$

Simple extension of the AEP for single random variable.

Joint AEP

- Pass \underline{x}^n through the channel, to obtain \underline{y}^n , with high probability $(\underline{x}^n, \underline{y}^n)$ are jointly typical.
- We only observe \underline{y}^n , try to find the \underline{x}^n that is jointly typical.

Question:

If I randomly pick a typical sequence $\underline{\tilde{X}}^n \in A_{\epsilon}^{(n)}(X)$, and a $\underline{\tilde{Y}}^n \in A_{\epsilon}^{(n)}(Y)$, are they joint typical?

$$A_{\epsilon}^{(n)}(X) \times A_{\epsilon}^{(n)}(Y) \stackrel{?}{=} A_{\epsilon}^{(n)}(X,Y)$$
$$2^{nH(X)} \times 2^{nH(Y)} \ge 2^{nH(X,Y)}$$

Joint AEP

Theorem If $(\underline{\tilde{X}}^n, \underline{\tilde{Y}}^n)$ are independent with the same marginal distributions, i.e., $(\underline{\tilde{X}}^n, \underline{\tilde{Y}}^n) \sim P_{\underline{X}^n}(\underline{x}^n)P_{\underline{Y}^n}(\underline{y}^n)$,

 $P((\underline{\tilde{X}}^n, \underline{\tilde{Y}}^n) \in A_{\epsilon}^{(n)}(X, Y)) \le 2^{-n(I(X;Y) - 3\epsilon)}$

and for n large enough,

 $P((\underline{\tilde{X}}^n, \underline{\tilde{Y}}^n) \in A_{\epsilon}^{(n)}(X, Y)) \ge (1 - \epsilon)2^{-n(I(X;Y) + 3\epsilon)}$

Proof

$$P((\underline{\tilde{X}}^{n}, \underline{\tilde{Y}}^{n}) \in A_{\epsilon}^{(n)}(X, Y))$$

$$= \sum_{\substack{A_{\epsilon}^{(n)}(X, Y) \\ \leq 2^{n(H(X,Y)+\epsilon)}2^{-n(H(X)-\epsilon)}2^{-n(H(Y)-\epsilon)}}$$

$$= 2^{-n(I(X;Y)-3\epsilon)}$$

Example: Binary Source and BSC

Consider a binary source \underline{X}^n passes through a binary symmetric channel with flipping probability p.

Fix an arbitrary input sequence \underline{y}^n , what \underline{x}^n 's are jointly typical?

Write $\underline{w}^n = \underline{y}^n - \underline{x}^n$, there should be approximately np 1's in \underline{w}^n .

How many of such \underline{x}^n are there? $\doteq 2^{nH(p)}$.

Check: This set is much smaller than $\mathcal{X}^n = 2^n$.

Discussions

- Fix a typical \underline{y}^n , out of the $2^{nH(X)}$ typical X sequences, there are approximately $2^{nH(X|Y)}$ sequences that are jointly typical with \underline{y}^n .
- Pass \underline{x}^n through the channel to obtain a joint typical pair $(\underline{x}^n, \underline{y}^n)$. Assume now that only \underline{y}^n is observed. If we pick randomly another $\underline{\tilde{x}}^n$ and ask if this is the originally transmitted sequence, checking joint typically gives a probability of confusion $2^{-nI(X;Y)}$.
- Checking the joint typicality is a good way of decoding.

Overview

- Consider a DMC with transition probabilities $P_{Y|X}(y|x)$
- We say a data rate R is achievable if there exists a sequence of code books, $C^{(n)}$, each has 2^{nR} codewords, for which the probability of error goes to 0 as $n \rightarrow \infty$.
- Notice whenever a code book is chosen, it is revealed to the receiver.
- The relation between the "probability of error" and the "capacity"

Construction

• Random code books: for each n, choose 2^{nR} codewords, each with length n, i.i.d. from an input distribution $P_X(x)$.

$$P(C) = \prod_{w=1}^{2^{nR}} \prod_{i=1}^{n} P_X(x_i(w))$$

• All messages are equiprobable. Define message W

$$P(W = w) = 2^{-nR}$$
, for $w = 1, ..., 2^{nR}$

Encoding and Decoding

Transmitter

Depend on the message W = w, transmit the codeword $\underline{x}^n(w)$ through n usages of the channel.

• Distinguish i.i.d. random code and transmitting independent symbols.

Receiver

Typical set decoding:

- For a given \underline{y}^n , if there exists unique $\underline{x}^n(w)$ in the code book that is jointly typical with y^n , decode $\widehat{W} = w$.
- otherwise, declare an error

Calculating the Probability of Error

$$P(\text{error}) = \sum_{\mathcal{C}} P(\mathcal{C}) P(\text{error}|\mathcal{C})$$

$$= \sum_{\mathcal{C}} P(\mathcal{C}) \frac{1}{2^{nR}} \sum_{w=1}^{2^{nR}} P(\text{error}|\mathcal{C}, W = w)$$

$$= \frac{1}{2^{nR}} \sum_{w=1}^{2^{nR}} \sum_{\mathcal{C}} P(\mathcal{C}) P(\text{error}|\mathcal{C}, W = w)$$

$$= \sum_{\mathcal{C}} P(\mathcal{C}) P(\text{error}|\mathcal{C}, W = 1)$$

$$= P(\text{error}|W = 1)$$

where the error probability is computed by averaging over the ensemble of the codes.

- Random coding creates symmetry.
- Instead of the error probability of one particular code, we compute the average error probability of the random codes.
- If the average probability of error is small, then there exists one code with small probability of error.

Using Joint AEP

Define

$$E_i = \{ (\underline{x}^n(i), \underline{y}^n) \in A_{\epsilon}^{(n)} \}$$

for $i = 1, \dots, 2^{nR}$.

$$P(\text{error}|W=1) = P(E_1^c \cup E_2 \cup \ldots \cup E_{2^{nR}})$$
$$\leq P(E_1^c) + \sum_{i=2}^{2^{nR}} P(E_i)$$

Event E_i is in the space $\mathcal{X}^n \times \mathcal{Y}^n$. In computing the probability of E_i , what the distribution of $\underline{X}^n, \underline{Y}^n$ we should use?

- For E_1 , $\underline{X}^n, \underline{Y}^n$ are drawn from the joint distribution P_{X^n, Y^n} .
- For E_i with $i \ge 2$, $\underline{X}^n, \underline{Y}^n$ are drawn from independent marginal distributions, i.e. $\underline{X}^n, \underline{Y}^n \sim P_{\underline{X}^n}(\underline{x}^n) P_{\underline{Y}^n}(\underline{y}^n)$.

Think about joint AEP

Using Joint AEP

Fixed $\epsilon > 0$, for large enough n, $P(E_1^c) \le \epsilon$ for $i \ge 2$, $P(E_i) \le 2^{-n(I(X;Y)-3\epsilon)}$

The probability of error

$$P(\text{error}) \leq P(E_1^c) + \sum_{i=2}^{2^{nR}} P(E_i)$$

$$\leq \epsilon + 2^{nR} 2^{-n(I(X;Y)-3\epsilon)}$$

$$= \epsilon + 2^{-n(I(X;Y)-R-3\epsilon)}$$

If $R < I(X;Y) - 3\epsilon$, we can choose *n* large enough such that the second term is arbitrarily small.

Summary

- The average performance of the random code is "good", so there exists a "good" code.
- The above can be derived for any input distribution, so pick P_X^* that maximizes the mutual information, as long as $R \leq C = \max_{P_X} I(X;Y)$, the rate is achievable.

Remaining Questions

- Can we reliably transmit any R > C?
- Long codewords are good, but how long.
 What is the performance for finite codeword length.
- Average error probability is small, but may have particularly bad codewords.
- Random codes seems good, but how do we decode? Is there any better structured code that can do as well? The randomness in coding is a computational trick or a fundamental requirement to achieve the capacity?

Converse of Coding Theorem

Recall Fano's inequality: For any r.v.'s X, Y, we try to guess X by $\hat{X} = g(Y)$. The error probability $P_e = P(X \neq \hat{X})$ satisfies

 $H(X|Y) \le H(E) + P_e \log(|\mathcal{X}| - 1)$

Proof by applying chain rule on H(X, E|Y).

$$H(E, X|Y) = H(E|X, Y) + H(X|Y) = H(X|Y)$$

$$H(E, X|Y) = H(X|E, Y) + H(E|Y)$$

$$\leq H(X|E, Y) + H(E)$$

$$\leq P_e H(X|Y, E = 1)$$

$$+(1 - P_e)H(X|Y, E = 0) + H(E)$$

$$= P_e H(X|Y, E = 1) + H(E)$$

$$\leq P_e \log(|\mathcal{X}| - 1)$$

Converse of Coding Theorem

Now consider trying to guess the message W based on the observation on \underline{Y}^n .

 $H(W|\underline{Y}^n) \le 1 + P_e^{(n)}nR$

$$nR = H(W) = H(W|\underline{Y}^{n}) + I(W; \underline{Y}^{n})$$

$$\leq H(W|\underline{Y}^{n}) + I(\underline{X}^{n}(W); \underline{Y}^{n})$$

$$\leq 1 + P_{e}^{n}nR + I(\underline{X}^{n}; \underline{Y}^{n})$$

$$\leq 1 + P_{e}^{n}nR + nC$$

Rearrange

$$P_e^n \ge \mathbf{1} - \frac{C}{R} - \frac{\mathbf{1}}{nR}$$

- For n large enough, P_e is bounded away from 0.
- Suppose we can achieve Pⁿ_e = 0 for some finite n, than we can concatenate such codes to have 0 error probability for large n, which gives contradiction.