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Compact Modeling of Nonlinear Analog Circuits
Using System Identification Via Semidefinite

Programming and Incremental Stability Certification
Bradley N. Bond, Zohaib Mahmood, Yan Li, Ranko Sredojević, Alexandre Megretski,

Vladimir Stojanović, Yehuda Avniel, and Luca Daniel

Abstract—This paper presents a system identification tech-
nique for generating stable compact models of typical analog
circuit blocks in radio frequency systems. The identification
procedure is based on minimizing the model error over a given
training data set subject to an incremental stability constraint,
which is formulated as a semidefinite optimization problem.
Numerical results are presented for several analog circuits,
including a distributed power amplifier, as well as a MEM device.
It is also shown that our dynamical models can accurately predict
important circuit performance metrics, and may thus, be useful
for design optimization of analog systems.

Index Terms—Analog macromodeling, model reduction, non-
linear systems, semidefinite programming, system identification.

I. Introduction

AUTOMATIC generation of accurate compact models for
nonlinear circuits (e.g., power amplifiers, or low-noise

amplifiers) could enable very efficient simulation, design and
optimization of complex integrated circuit systems. However,
the only tool currently available to analog designers and
system architects, is to manually generate analytical or semi-
empirical behavioral models. Such a critical procedure mostly
relies on the designers’ experience and intuition, together
with time consuming simulations. Circuit simulators (such as
SPICE and SPECTRE) automatically construct large dynam-
ical system models from schematics by combining conserva-
tion laws (e.g., Kirchhoff’s current law) with the constitutive
relations for each device in the system

q̇(x) = f (x, u). (1)

Here u is the input, x is the possibly huge state vector
containing, for instance, all of the node voltages and inductor
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currents in the circuit, and q(x) and f (x, u) are the nonlinear
vector functions defined by the circuit schematic and device
models. Simulation of a complex analog system, such as a
radio frequency (RF) receiver chain, is therefore computation-
ally extremely expensive, as it may require solving thousands
of coupled nonlinear ordinary differential equations (ODEs).
Hence, during the recent years, a great effort has been dedi-
cated by researchers to develop techniques for generating auto-
matically accurate compact models of nonlinear system blocks.

The majority of existing compact modeling techniques in-
volve “reducing” the large nonlinear systems produced by cir-
cuit schematics, or parasitic extractors. Some techniques have
been proven on weakly nonlinear systems [1]–[5], while others
can handle strongly nonlinear systems [6]–[13]. All these
approaches typically employ a linear state-space projection,
x = V x̂ (where V is a “tall and skinny” change of basis matrix)
and introduce low-complexity approximations q̂(x̂) and f̂ (x̂, u)
in order to obtain a low-order system of nonlinear ODEs

˙̂q(x̂) = f̂ (x̂, u).

However, one shortcoming of such techniques is the
extreme difficulty in preserving stability in the reduced
model. Additionally, such model reduction approaches require
knowledge of the original model expressions q(x) and f (x, u)
from (1). This requires access to not only the schematic of
the circuit, which is typically readily available, but also the
exceedingly complicated transistor models, which are not
always easily accessible.

In this paper, we present an alternative approach to achieve
the same final goal, i.e., the automatic generation of accurate
compact models, without “reducing” a given large system,
but rather using a system identification approach to model
reduction. The term system identification (SYSID) refers to
the task of finding a stable dynamical model of low complexity
that delivers the best match for a collection of dynamical
input–output (or input-state-output) data. In classical control
applications, the data is usually available in the form of actual
physical measurements, and SYSID provides adequate models
for systems for which no reliable first principles equations
are available, either due to parameter uncertainty or system
complexity. In integrated circuit applications, SYSID is the
only viable option in generating compact models of circuits
blocks when only input–output physical measurements are
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available. In addition, although it is true that in many cases
circuit schematics of the original system are actually available,
SYSID often still remains the most practical solution to
compact modeling.

Within the control community, SYSID for linear-time-
invariant (LTI) system is well understood and mature [14]. One
can argue that also some of the approaches developed by the
Electronic Design Automation community for LTI model order
reduction could be interpreted as SYSID approaches, such as
those based on transfer function fitting via least squares or
optimization techniques [15]–[18].

Conversely, SYSID for nonlinear systems is still a problem
that needs to be addressed on a case by case basis [19], [20].
Among the most general and used approaches in behavioral
modeling one finds the Volterra series method [21]–[23]. In
some more specific approaches, one assumes an internal struc-
ture (e.g., a Wiener [24], [25], or Wiener–Hammerstein [14],
[19], [26], [27] or Wiener–Hammerstein with feedback struc-
ture [28]), and proceeds in identifying the coefficients for such
structures [29], [30]. As a general observation, a significant
difficulty in implementing any kind of SYSID based approach
is caused by lack of efficient SYSID tools for generic nonlinear
systems.

In this paper, we propose a new SYSID method for
compact modeling of nonlinear circuit blocks and micro-
electromechanical (MEM) components. Our approach is based
on optimizing system coefficients to match given data while
simultaneously enforcing stability. What distinguishes our
SYSID method from existing “reduction” approaches is the
ability to explicitly preserve the properties of nonlinear sys-
tems, such as stability, while controlling model accuracy. The
efficiency issues encountered by past SYSID techniques are
addressed in our approach by adopting recently developed
semidefinite programming techniques for nonlinear system
analysis [31]. Additionally, we have provided MATLAB code
implementing our approach [32] to aid the reader in imple-
menting our technique.

The remainder of the paper is organized as follows. In
Section II, we summarize related background. In Section III,
we develop the theoretical framework for our proposed SYSID
approach to compact modeling of nonlinear systems and
formulate the identification problem as a semidefinite program.
In Section IV, we present one approach to solve efficiently
the previously derived optimization problem by selecting a
polynomial basis and rational model formulation, resulting in
a sum of squares (SOS) problem. In Section V, we describe
in detail how to implement the proposed procedure using
freely available software. Finally, in Section VI we show the
effectiveness of the proposed approach in modeling practical
circuit blocks, such as low-noise amplifiers, power amplifiers,
and MEM devices. The proposed approach is also compared
to several existing SYSID techniques.

II. Background

A. Stability of Dynamical Systems

A difficult, yet crucial, aspect of model reduction is the
preservation of stability in the reduced model. Most real

physical systems behave in a stable manner, and it is therefore
extremely important to preserve such behavior in reduced
models. For example, stability might require that bounded
inputs produce bounded outputs, or that the system does not
generate energy.

One strong notion of stability is “incremental stability,”
which guarantees that perturbations to solutions decay to zero.
As a result, incremental stability is an extremely important
property for the purpose of simulation. Consider a nonlinear
discrete time system implicitly defined as follows:

F (v[t], v[t − 1], . . . , v[t − m], u[t], . . . , u[t − k]) = 0

G(y[t], v[t]) = 0 (2)

where v[t] ∈ RN is a vector of internal variables, y[t] ∈ RNy

is the output, u[t] ∈ RNu is the input, F ∈ RN is a dynamical
relation between the internal variables and the input, and G ∈
R

Ny is a static relationship between the internal variables and
the output.

Definition 1: System (2) is well-posed if given any ar-
bitrary variables v1, . . . , vm ∈ RN and u0, . . . , uk ∈ RNu ,
there exist unique solutions v0 ∈ R

N and y ∈ R
Ny to

F (v0, v1, . . . , vm, u0, . . . , uk) = 0 and G(y, v0) = 0.
Definition 2: System (2) is incrementally stable if it is well-

posed and, given any two sets of initial conditions v̄[t0 −
1], . . . , v̄[t0 − m] and v̂[t0 − 1], . . . , v̂[t0 − m], the resulting
two solutions to (2) in response to the same input u satisfy

∞∑
t=t0

‖ȳ[t] − ŷ[t]‖2 < ∞ (3)

for all initial conditions and inputs.
Note that incremental stability implies traditional weaker

notions of stability.
For the remainder of the paper, we shall use the following

compact notation:

V = [v0, . . . , vm], U = [u0, . . . , uk] (4)

where v0, . . . , vm and u0, . . . , uk are arbitrary variables, not
necessarily inputs and outputs satisfying (2)

V+ = [v0, . . . , vm−1], V− = [v1, . . . , vm] (5)

where V+ contains the first m components of V and V−
contains the last m components of V

V [t] = [v[t], . . . , v[t − m]], U[t] = [u[t], . . . , u[t − k]] (6)

where v[t] is the internal state of the identified model (2)
in response to past inputs U[t] and initial conditions v[t −
1], . . . , v[t − m], i.e., F (V [t], U[t]) = 0, and

Ṽ [t] = [ṽ[t], . . . , ṽ[t − m]], Ũ[t] = [ũ[t], . . . , ũ[t − k]] (7)

where ṽ[t] are training data state samples in response to
training inputs ũ[t]. Similarly, y shall represent an arbitrary
variable, y[t] is the solution to G(y[t], v[t]) = 0, and ỹ[t] is a
given training data output sample.

In general, stability (and more generally, dissipativity) can
be proven through the use of storage functions [33].
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Definition 3: System (2) is dissipative with respect to the
supply rate σ(u, v, y) if there exists a storage function h(v) ≥ 0
such that

h(V+) ≤ h(V−) + σ(U, V, y) (8)

for all V, U, y satisfying (2).
Constraint (8) is referred to as a dissipation constraint, and

different supply rates σ are used to prove different notions
of stability. It has been shown in [31] that (2) (assuming
G = y − v0, i.e., an input–output system) is incrementally
stable if the following dissipation constraint is satisfied:

(v0 − v̂0)T
(
F (V, U) − F (V̂ , U)

) − |v0 − v̂0|2
+h(V−, V̂−) − h(V+, V̂+) ≥ 0 (9)

for all V, U, and all V̂ = [v̂0, . . . , v̂m], where h is a nonnegative
storage function such that h(V+, V+) = 0. Note that when V, U

and V̂ , U satisfy (2), dissipation constraint (9) simplifies to
constraint (8) with σ = −|v0 − v̂0|, which in turn implies (3).

Incremental stability can also be interpreted as the result
of contraction behavior of the state-space [34]. Contraction
analysis examines the stability of the differential system

F (V, U) + Fv(V, U)� = 0

G(y, v0) + Gv(y, v0)δ0 + Gy(y, v0)ξ = 0 (10)

where

� =

⎡
⎢⎣

δ0
...

δm

⎤
⎥⎦ �[t] =

⎡
⎢⎣

δ[t]
...

δ[t − m]

⎤
⎥⎦

Fv =

[
∂F

∂v0
, . . . ,

∂F

∂vm

]
Gv =

∂G

∂v0
Gy =

∂G

∂y

with δ0 ∈ RN and ξ ∈ RNy . The system is said to be contract-
ing if the increments � and ξ converge to zero exponentially.
According to Theorem 3 in [34], if system (10) is well-posed
and stable in the differential variable �, i.e., � converges
exponentially to zero, for all y, v0, . . . , vm, and u0, . . . , uk

satisfying F (v0, . . . , vm, u0, . . . , uk) = 0 and G(y, v0) = 0,
then system (2) is incrementally stable. It is often easier
to prove stability by examining the differential system (10)
instead of the original system (2).

B. Robust Nonlinear Identification

In standard SYSID techniques for both discrete and contin-
uous time systems, data is exclusively available in the form of
a finite length vector of input-state-output (ũ[t], ṽ[t], ỹ[t]), or
just input–output, sampled pairs. Such data can be generated
either by physical measurements of a fabricated integrated
circuit, or by simulation of an available circuit schematic. The
objective of a SYSID algorithm is to generate automatically
from training data, a dynamical system description, such
as (2), such that the predicted output of the identified model
minimizes the “output error,” and it is “easy” to compute
each new output sample when given previously computed past
values of the input and output samples.

Definition 4: Given a sequence of inputs ũ[0], . . . , ũ[T ],
the corresponding states ṽ[0], . . . , ṽ[T ], and outputs

ỹ[0], . . . , ỹ[T ], the output error of an identified model
is defined as

E(F, G,X ) =
∑

t

|y[t] − ỹ[t]|2 (11)

where y[t] are solutions to the identified model in response to
training data inputs and initial conditions ṽ[t−1], . . . , ṽ[t−m],
and X represents the training data set containing all given
ũ[t], ṽ[t], ỹ[t] pairs.

In general, minimization of the true output error is com-
putationally extremely difficult as it is a highly nonconvex
problem. Most approaches suggested by the classical literature
in system identification [14] instead attempt to minimize the
overall “equation error.”

Definition 5: The equation error is defined as the sum of
squared mismatches obtained from evaluating the identified
model (2) over the training data samples (ũ[t], ṽ[t], ỹ[t]) ∈ X

Ẽ(F, G,X ) =
∑

t

|F (Ṽ [t], Ũ[t])|2 + |G(ỹ[t], ṽ[t])|2. (12)

It is, however, misleading to assume that a small equation
error implies a small output error. It is possible to identify
unstable models whose system equations are satisfied
accurately by the given data, resulting in small equation error,
but produce unstable outputs during simulation, resulting in
large output error. It has been shown in [31] that if system (2)
satisfies (9), then the equation error for the resulting system
provides an upper bound for the model output error over the
training data set. Minimization of this upper bound subject to
incremental stability constraint can be cast as a semidefinite
program, however, this approach typically produces overly
conservative upper bounds for the output error due to the
strong constraints imposed by (9).

III. SYSID Formulation

In this section, we present the theoretical development
for our modeling framework that identifies systems of the
form (2). In the event that state data v[t] is not available,
we may identify input–output models by selecting v[t] = y[t]
and defining G(y, v0) = y − v0.

A. Incremental Stability and Robustness

Minimization of the exact output error by enforcing dissipa-
tion constraint (9) is a computationally difficult problem and
typically yields overly conservative fits. This is because en-
forcing incremental stability via constraint (9) imposes strong
restrictions on the class of admissible models. Therefore we
consider instead a different method for imposing incremental
stability that leads to a bound on a reasonable alternative
measure of output error, referred to as the “linearized output
error.” First, we define linearizations of (2) around y, V, U as

F̄ (V, U, �) = F (V, U) + Fv(V, U)�

Ḡ(y, v0, δ0, ξ) = G(y, v0) + Gv(y, v0)δ0 + Gy(y, v0)ξ

for Fv, Gv, Gy, �, and ξ as defined in Section II-A.
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Definition 6: The linearized output error of identified
model (2) is defined as

S(F, G,X ) =
∑

t

|ξ[t]|2

where ξ[t] are solutions to

F̄ (Ṽ [t], Ũ[t], �[t]) = 0, Ḡ(ỹ[t], ṽ[t], δ[t], ξ[t]) = 0 (13)

in response to the zero initial condition δ[t−1], . . . , δ[t−m] =
0 when evaluated on the training data.

Intuitively, this quantity is the result of the following pro-
cedure: linearize the identified model around every point in
the training data set, compute the response of each linearized
model after one time step in response to the corresponding
training data input sample, and sum up the resulting output
quantities over all time. In the case of linear systems, the true
output error is exactly equal to the linearized output error.

In order to prove incremental stability of system (2), it is
sufficient to show that linearizations of (2), as defined in (10),
around all possible U, V, y satisfying (2) are stable, as was
proposed in [34]. This can be proven with the following
dissipation inequality:

h(V+, �+) ≤ h(V−, �−) − |ξ|2 − ε|�|2 + 2δT
0 Fv(V, U)�

+2ξT (Gv(y, v0)δ0 + Gy(y, v0)ξ) ∀ y, V, U, �, ξ (14)

where h is a storage function, defined as

h(V+, �+) = �T
+ H(V+)�+

h(V−, �−) = �T
−H(V−)�− (15)

and ε > 0. Since (10) is linear in �, it is sufficient to consider
storage functions that are quadratic in � [34]. Note that for
U, V, y, �, ξ satisfying (2) and (10), constraint (14) simplifies
to (8) with supply rate σ = −|ξ|2−ε|�|2. Inequality (14) can be
thought of as a linearized version of inequality (9), and is less
restrictive because although a stable system satisfying (9) also
satisfies (14), there are many stable systems satisfying (14)
that do not satisfy (9).

Definition 7: The robust equation error, r̂, of system (2)
over training data set X is defined as

r̂(F, G, H,X ) =
∑

t

r(ỹ[t], Ṽ [t], Ũ[t])

where

r(y, V, U) = max�,ξ{h(V+, �+) − h(V−, �−)

−2δT
0 F̄ (V, U, �) − 2ξT Ḡ(y, v0, δ0, ξ) + |ξ|2}. (16)

The robust equation error serves as an upper bound for the
linearized output error.

Theorem 1: If there exists a positive semidefinite function
H : Rm �→ Rm×m, positive scalars ε, ε1, ε2 > 0 such that
ε1I < H < ε2I and (14) is satisfied for all ỹ, Ṽ , Ũ ∈ X , and
for all possible �, ξ, then system (2) is locally incrementally
stable and the linearized output error on the training set is
bounded from above by the robust equation error

S(F, G,X ) ≤ r̂(F, G, H,X ).

If, in addition, H is continuously differentiable and (14)
is satisfied for all y, V, U, then system (2) is also globally
incrementally stable.

Proof: Incremental stability is implied by (14) using a
standard proof following the principles of [34]. It follows
from (16) that

|ξ|2 ≤ r(y, V, U) + 2δT
0 F̄ (V, U, �)

+2ξT Ḡ(y, v0, δ0, ξ) + h(V−, �−) − h(V+, �+) (17)

is satisfied for all y, V, U, �, ξ. To obtain the linearized
output error, we sum (17) over all training data samples
ỹ[t], Ṽ [t], Ũ[t] and incremental variables �[t], ξ[t] satisfy-
ing (13), resulting in

S(X, F, G) =
∑

t

|ξ[t]|2 (18)

≤ ∑
t[r(ỹ[t], Ṽ [t], Ũ[t]) + h(Ṽ−[t], �−[t]) − h(Ṽ+[t], �+[t])]

≤ ∑
t r(ỹ[t], Ṽ [t], Ũ[t]) = r̂(F, G, H,X ).

Here, we have also used the fact that
T∑

t=0

[
h(Ṽ−[t]) − h(Ṽ+[t])

]
= −h(Ṽ+[T ]) ≤ 0

by definition of h and by the zero initial condition of �. Note
that finiteness of r̂ is guaranteed by (14).

In summary, for a given model F, G, if there exists a
storage function h as defined in (15) that satisfies (14), then
system (2) is incrementally stable. Furthermore, for such
F, G, h, the robust equation error serves as an upper bound
for the linearized output error over the training data set, as
shown in (18).

B. Identification Procedure

The proposed system identification algorithm is based on
minimization (with respect to F , G, H , and r) of the linearized
output error upper bound, r, over the training data set X
subject to a dissipation constraint

minr,F,G,H

∑
t

rt subject to (19)

rt + 2δT
0 F̄t(�) + 2ξT Ḡt(δ0, ξ) − |ξ|2

+ht−1(�−) − ht(�+) ≥ 0 ∀ t, �, ξ

where rt = r(ỹ[t], Ṽ [t], Ũ[t]), F̄t(�) = F̄ (Ṽ [t], Ũ[t], �),
Ḡt = Ḡ(ỹ[t], ṽ[t], δ0, ξ), ht−1(�−) = h(Ṽ−, �−), and ht(�+) =
h(Ṽ−, �−). In this formulation, we simultaneously enforce ac-
curacy by minimizing the linearized output error upper bound
at the training data samples, and also enforce local incremental
stability at each training sample through the constraint.

By construction, the robustness constraint is jointly convex
with respect to the unknown functions F, G, H, r, and is
a quadratic form in the incremental variables �, ξ. If the
unknown functions are chosen among linear combinations of
a finite set of basis functions �

F =
∑
j∈Nf

αF
j φF

j (V, U), G =
∑
j∈Ng

αG
j φG

j (y, v0) (20)
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H =
∑
j∈Nh

αH
j φH

j (V ), r =
∑
j∈Nr

αr
jφ

r
j(y, V, U)

where φF , φG, φH, φr ∈ �, then αF , αG, αH, αr become
the free variables and the optimization problem becomes a
semidefinite program (SDP). Additional details on semidefinite
programming are given in Section V-A.

In order to obtain global incremental stability, it is necessary
to additionally enforce constraint (14) globally for all y, V, U

and to ensure that the storage function H is smooth with
respect to all arguments. In this case, the complexity of the
optimization problem depends heavily on the choice of basis
functions φ for the unknown functions F, G, H, r. The basis
must be chosen carefully to ensure that the inequalities in
problem (19) can be easily verified numerically, and that fea-
sible solutions exist. In Section IV, we describe one possible
choice for the basis functions � that results in an optimization
problem that can be efficiently solved.

C. Extension to Continuous Time Models

In this paper, we focus mainly on generating discrete time
(DT) models for many typical circuit blocks in the signaling
path that are also usable in high-level system simulation and
design, using for instance Cadence analog mixed signal or
Verilog A. In addition, it is possible to extend the previously
developed dissipation-based identification approach to gener-
ate continuous time (CT) systems for greater compatibility
with lower level circuit simulators. In this case, there are
however, additional constraints on the choice of F to ensure
that the system is uniquely solvable. For instance, F should
not possess nonlinear dependence on derivatives of the input,
otherwise the system may not be well-posed. Additionally,
there are strong constraints on the relationship between the
function F and the storage function H in order to guarantee
existence of solutions to the optimization problem. To avoid
excessive technicalities, we consider here only CT systems
described in state-space form

F (v̇(t), v(t), u(t)) = 0, G (y(t), v(t)) = 0 (21)

along with constant positive semi-definite (PSD) storage func-
tion matrices H(v) = H . As in the DT case, we define a robust
dissipation inequality

∂h(�)

∂t
≤ 2δT Fv(v, u)� + 2ξT Gy(y, v)ξ

+2ξT Gv(y, v)δ − |ξ|2 − |δ|2 (22)

where h(�) = �T H�, such that system (21) is incremen-
tally stable and the linearized output error is bounded from
above by the robust equation error if there exists a storage
function matrix H such that (22) holds for all y, v, u, �, ξ.
Constraint (22) can then be used to formulate an optimization
problem similar to (19). Results for CT modeling using this
approach are presented in Section VI-B.

D. Identification of MIMO Models

The previously derived identification procedure is capable
of identifying models with multiple inputs, multiple states,

and multiple outputs. Multiport models can also be used to
capture loading effects. If one of the ports is connected to
a load, then varying the load will produce different input–
output data for that port, which can then be used for training
the model in order to capture loading effects. Our resulting
multiport model can then be described for instance in Verilog-
A and connected with other circuit blocks inside a commercial
simulator. In Section VI, we present results for systems with
multiple inputs (Section VI-E), multiple states (Section VI-B),
and multiple outputs (Section VI-D).

E. Extension to Parameterized Models

Our approach can easily be extended to identify models pa-
rameterized by, for instance, device parameters or geometrical
parameters. This is achieved by selecting the basis functions
for F, G, H, r to possess dependence on design parameters Z,
e.g., φF = φF (V, U, Z), where Z = [z1, . . . , zp] is a vector
of parameters. Conceptually this is equivalent to treating the
parameters as constant inputs with no memory. Results using
this parametrization approach are presented in Section VI-C.

IV. Identification of Rational Models in a

Polynomial Basis

In this section, we present one possible choice of basis func-
tions for representing the nonlinear functions in optimization
problem (19).

A. Polynomial Basis

The complexity of optimization problem (19) with global
stability constraint (14) depends on the choice of basis func-
tions for the nonlinear function, robustness measure, and
storage function. One possible choice resulting in a convenient
formulation is a polynomial basis.

If we constrain F, G, H, r to be polynomial functions of the
internal variables and inputs, i.e., define φ from Section III-B
as

φ(y[t], V [t], U[t]) =
∏
i,j,k

v[t − τi]
piu[t − τj]pjy[t]pk (23)

then we can formulate optimization problem (19) as a SOS
problem. Proving global positivity of a multivariate poly-
nomial is in general a hard problem (i.e., computationally
challenging), however, SOS provides an efficient convex re-
laxation for such problem. Guaranteeing global positivity in
the stability constraints is transformed to the task of solving
for a PSD symmetric matrix S = ST 	 0 such that global
stability constraint (14) is expressed as

h(V−, �−) − h(V+, �+) + 2δT
0 Fv(V, U)� + 2ξT Gv(y, v0)δ0

+ 2ξT Gy(y, v0)ξ − |ξ|2 = �T S� ∀ y, V, U, �, ξ.

Here, � is a vector of basis functions ψ such that all basis
functions φ can be represented by the product �T S�. That
is, for every φi there exist ψj and ψk such that φi ∝ ψjψk.
Conceptually, the vector � must contain the monomial terms
present in the ‘square root’ of the dissipation constraint,
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and for nonlinear systems these entries can be automatically
selected from the Newton Polytope of the robustness con-
straint. See [35]–[37] for details on SOS programming and
the Newton Polytope, and see [38] or [32] for our software
implementation.

It is important to note that although we are using a
polynomial basis, we are not identifying polynomial models.
Specifically, the implicit representation of the nonlinear sys-
tem (2) allows us to identify, for instance, rational models
as described in the following section. In this way, we can
represent highly nonlinear models in a much more compact
form than is possible using traditional polynomial models such
as Volterra expansions.

B. Rational Model Description

In general, the identified implicit nonlinear model (2) can be
extremely expensive to simulate. To ensure that the resulting
DT model can be simulated in an efficient manner, we consider
only models that are linear in the unknowns v[t]. For example,
consider the model

F (V [t], U[t]) = Q(V−[t], U[t])v[t] − p(V−[t], U[t]) = 0

G(y[t], v[t]) = gq(v[t])y[t] − gp(v[t]) = 0 (24)

where Q ∈ RN×N is a matrix of nonlinear functions, p ∈ RN is
a vector of nonlinear functions, and V−[t] = [v[t−1], . . . , v[t−
m]]. Although F is defined implicitly, the system is linear in
the unknowns, making the simulation of this discrete time sys-
tem equivalent to linear system solves when all previous values
of the state, v[t−1], . . . , v[t−m], and input, u[t], . . . , u[t−k],
are known

v[t] = Q(V−[t], U[t])−1p(V−[t], U[t]).

The presence of the nonlinear matrix function Q(V−, U) is ex-
tremely important, as it allows the model to capture nonlinear
effects that are significantly stronger than those that would
be captured by considering the case where Q = I, without
significantly increasing the complexity of the optimization
problem and of simulation.

C. Existence of Solutions

Given a nonlinear function F , the existence of solutions
to (27) depends on the ability of the storage function h

to certify stability for that particular nonlinear function. For
models without feedback, such as the Volterra model

yt = p(ut, ut−1, . . . , ut−k) (25)

a storage function is not required to prove stability, and
solutions always exist. One implication of this is that Volterra
models are a strict subset of the stable models identifiable
by our approach. When feedback is present in the model,
for certain functions F , storage functions are available to
prove stability. For example, for a linear system, it is always
possible to certify stability with a constant matrix H . As a
result, if the polynomial basis contains linear terms, then there
always exists a globally stable solution described by a linear
function F and constant matrix H . Additionally, since the
storage function and stability of the resulting model do not

depend strictly on the inputs u to the system, a constant matrix
H can certify stability for a system that is linear in v and
highly nonlinear in u. Thus, it is always possible to identify
models highly nonlinear in the input even if high degrees of
nonlinearity in the state cannot be achieved due to stability
constraints.

D. Reduction of States Through Projection

In the event where data is available for a large number of
internal states (i.e., N is large), it is not practical to fit a model
with N states because it is both computationally expensive to
identify the model, and simulation of the large model may
be slow. However, it is possible to identify a low-order space
in which the system states are well-approximated, and fit by
projection to a set of reduced vectors, v̂[t] ∈ RN̂ , where
N̂ < N.

For example, given a collection of training samples, X =
[ṽ[t1], ṽ[t2], . . . , ṽ[tT ]] ∈ RN×T , it is possible to identify a low-
order basis  ∈ RN×N̂ such that X ≈ X̂, where X̂ = T X

is a projection of the training data onto the reduced space.
The projection matrix  can be computed using any standard
projection technique, such as POD [39], [40] using training
data X. The system identification is then performed using the
reduced-order training data set X̂, resulting in a model with
N̂ states.

This approach is similar to traditional model reduction
techniques utilizing projection in the sense that we approx-
imate the solution in a low-dimensional space spanned by .
However, the key difference of our approach is that instead
of constructing the reduced model by projecting the system
equations explicitly, we instead identify the reduced equations
through an optimization procedure to optimally fit the given
training data. Numerical results obtained from this projection
approach are presented in Section VI-B.

E. Reduction of Polynomial Basis Through Fitting

In addition to the number of state variables, the cost
of identifying and simulating the models also depends on
the number of delays (memory) of the system. To decrease
this cost without reducing the polynomial order of the de-
sired function, it is useful to consider only important poly-
nomial basis terms for identification. Let �̃[0,n] denote a
nominal set of basis functions comprised of variables u, v

with up to n delays. Important basis terms φ̂ may be se-
lected as linear combinations of the nominal basis compo-
nents

φ̂i =
∑

j

βj,iφ̃j, φ̃j ∈ �̃[0,n]. (26)

The coefficients βj,i can be identified by fitting a lin-
ear model with memory n to the training data with basis
�̃.

For example, suppose the nominal basis functions are se-
lected to be input samples, i.e., �̃[0,k] = [u[t], . . . , u[t − k]].
The training data (ỹ[t], ũ[t]) can be used to identify a linear
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Fig. 1. Block diagram illustrating one approach to implementing the reduced
basis selection technique.

model with memory k̂ and output w[t] ≈ y[t]

w[t] =
k̂∑

j=0

bju[t − j].

This identified linear model now defines a linear transfor-
mation of the nominal basis vectors to the reduced basis
vector if we define βj,1 = bj for the new basis vector set
�̂[0,k̂] = [w[t], . . . , w[t − k̂]] for some k̂ < k. This new basis
vector can then be used for identification of a nonlinear model
with low memory. Conceptually, this is equivalent to treating
w[t] as an additional input to a new nonlinear model

Q(V−[t], W[t], U[t])v[t] = p(V−[t], W[t], U[t])

as depicted in Fig. 1.
Since the identification of linear systems is cheap, even

when m and k are large, this approach can be very useful for
reducing the complexity of the final nonlinear model by auto-
matically selecting important combinations of basis vectors.
Numerical examples using this reduced basis identification
approach are presented in Section VI-E.

V. Implementation

The optimization problem (19) derived in Section III, along
with global stability constraint (14), can be expressed generi-
cally as the following

min
r,F,G,H

∑
t

rt subject to (27)

rt + 2δT
0 F̄t(�) + 2ξT Ḡt(δ0, ξ) − |ξ|2

+ht−1(�−) − ht(�+) ≥ 0 ∀ t, �, ξ (27a)

h(V−, �−) − h(V+, �+) + 2δT
0 Fv(V, U)� − |ξ|2

+2ξT Gv(y, v0)δ0 + 2ξT Gy(y, v0)ξ ≥ 0 ∀ y, V, U, �, ξ. (27b)

In this section, we describe how to formulate (27) as a SDP
when using a polynomial basis and how to solve the resulting
SDP.

A. Implementation as a Semidefinite Program

The benefit of formulating (27) as an SDP is that it can
be solved efficiently using readily available software routines.
Roughly speaking, a semidefinite program is one whose objec-
tive function is linear, and whose constraints can be expressed
as requiring matrices to be PSD.

Algorithm 1 Implementation as SDP using SPOT

1: Given symbolic functions F, G, H, r defined as in (20) and
training data set χ

2: Initialize optimization problem pr
pr=mssprog

3: Assign free variables
pr.free={αF , αG, αH, αR}

4: for t=1:T do
5: Compute Mt = M(Ũ[t], Ṽ [t], ỹ[t]) as defined in (28)
6: Assign local robustness constraint (27a)

pr.PSD=Mt

7: end for
8: Assign global stability constraint (27b)
pr.SOS= (27b)

9: Call solver to minimize
∑

t rt subject to given constraints
pr.min=

∑
t rt

10: Output is coefficients {αF , αG, αH, αR}

By construction, constraint (27a) is a quadratic form in the
variable ζ = [1, �T , ξT ]T , and can therefore be expressed as

r(y, V, U) + 2δT
0 F̄ (V, U, �) + 2ξT Ḡ(y, v0, δ0, ξ)

−|ξ|2 + h(V−, �−) − h(V+, �+) = ζT M(U, V, y)ζ (28)

for some symmetric matrix M. Thus, global positivity of (28)
is satisfied if the matrix M is PSD. In (27), we are not requiring
M(U, V, y) to be PSD for all U, V, y, but rather only when
evaluated at the given training data samples. That is, Mt =
M(Ũ[t], Ṽ [t], ỹ[t]) is PSD for all t.

On the other hand, the global stability constraint (27b) must
be satisfied for all possible U, V, y. This can be achieved
using the SOS relaxation described in Section IV-A, which
transforms constraint (27b) into a single semidefinite matrix
constraint. While it is easy to construct the M(U, V, y) matrix
explicitly, and possible to construct S from Section IV-A by
hand, these tasks can be performed automatically by the freely
available software systems polynomial optimization toolbox
(SPOT) [38], when given symbolic constraints in the form
of (27a) and (27b).

In Algorithm 1, we outline how optimization problem (27)
can be defined and solved in MATLAB using the freely
available software SPOT [38] and SeDuMi [41]. SPOT is a
‘parser’, which takes as input a high-level symbolic description
of the optimization problem and reformulates it in such a
manner that it can be solved by an optimization ‘solver’
(in this case, SeDuMi). For additional details and a sample
implementation of this approach, see [32] and [38].

B. Complete Algorithm

Our entire identification process is summarized in Algo-
rithm 2. The first step in identifying a model in the form
of (24) is to select the number of states (N), the number of
state delays (m), the number of input delays (k), the maximum
polynomial degree for Q (ρQ), the maximum polynomial
degree for p (ρp), and the maximum polynomial degree for
storage function matrix H (ρH ). These parameters generally
depend on the behavior of the system being modeled, and can
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Algorithm 2 SOS Identification of Robust Compact Models

1: Generate training data sample set X = {Ũ[t], Ṽ [t], ỹ[t]}
from simulation or measurement of the original system

2: Select the model parameters m, k, N, ρQ, ρp, ρH as de-
fined in Section V-B

3: if State data is available and N is large then
4: Use SVD to identify low-order basis for states,

 ∈ RN×N̂ , N̂ < N, as described in Section IV-D
5: Project data samples: ṽ[t] ← T ṽ[t]
6: end if
7: Select nominal set of basis functions �̃[0,k]

8: if Large delay between input and output then
9: Identify linear model defining coefficients βj,i of new

basis functions φ̂ defined in (26)
10: � ← [�̃[0,k̂], �̂[0,k̂]] for k̂ < k.
11: else
12: � ← �̃[0,k]

13: end if
14: Use Algorithm 1 to solve (27) for coefficients αi

15: Define F, G, H, r, as in (20), resulting in the model

Q(V−[t], U[t])v[t] = p(V−[t], U[t])

gq(v[t])y[t] = gp(v[t])

certified stable by Theorem 1 for matrix function H , and
with

∑
t rt serving as a measure of the model’s accuracy

on the training data.

be selected either by intuition (based on the system’s expected
behavior) or through experiment. One approach that we have
found to be effective is described below in Section V-C.
For CT models, it is often possible to obtain derivatives of
states and outputs directly from the simulator, as they are
typically required internally for simulation. For systems with a
large delay between input and output, the reduced basis
technique described in Section IV-E should be used at step 2
to reduce the required number of basis functions. Typically
we have found that selecting �̃ as containing the past 15−20
input samples can produce good results for such systems. The
basis set � for the final model can then be selected at step 2
as a small number of delayed samples of the true input u and
the delayed input w, as well as delays of the state and output.
Finally, when considering only local stability for the identified
model, it is only necessary to enforce the first constraint (27a)
in optimization problem (27).

C. Selecting the Model Parameters

For a given set of parameters N, m, k, ρQ, ρp, ρH , as defined
in Section V-B, let ϒ = {N, m, k, ρQ, ρp} denote the set of all
possible models with these parameters, and let H denote the
set of all storage functions of maximum polynomial degree
ρH . The goal of the identification procedure is to find a stable
model in ϒ that accurately fits the training data χ and is
certified stable by a storage function in H.

It is difficult to accurately determine ϒ and H a priori, but
we have found the following procedure to be quite effective.
First, we select a set ϒ and attempt to fit a model with no

stability constraints. This can be achieved, for instance, by
using a least-squares solve to minimize equation error (which
is computationally cheap). Varying ϒ through experiment, it
is possible to identify a model that accurately fits χ.

Next, it is necessary to determine whether there exists a
stable model in ϒ that is certifiable by H. To determine this,
we select ρH and solve (27) using Algorithm 2 while first
enforcing only local stability constraint (27a) in Algorithm 1.
If no accurate locally stable model is found, then ρH should be
increased. If, for large ρH , no accurate stable model is found,
then ϒ should be increased (i.e., increase any of N, m, k, ρ).

Once an accurate locally stable model is found, then (27)
should be solved using Algorithm 2, this time also enforcing
global stability constraint (27b). If no accurate globally stable
model is found, then ρH and ϒ should be increased, as
described above. If stability constraint (27b) is not enforced,
then the robust equation error is not guaranteed to be an upper
bound for the linearized output error, meaning that simulation
of the resulting model, even over the training data set, could
lead to inaccurate results.

D. Constructing Basis Functions

For a given set of parameters N, m, k, ρQ, ρp, ρH , the basis
functions for F, G and H can be constructed as defined in (23),
where pi + pj + pk ≤ ρ, τi < m, and τj < k. In general, ρQ

should be an even integer to ensure that matrix function Q is
always invertible. For the robustness measure r, we typically
use a piecewise-constant function, resulting in one unknown
parameter for each training data point.

VI. Examples

A. Testing Procedure

Our approach was tested on several nonlinear systems,
including a CT model, a DT parameterized model, and a DT
single-input multiple-output (SIMO) model. For each example,
training data was generated from simulations of the full system
in response to a series of periodic inputs, using SPECTRE
circuit simulator for the circuit examples and a MATLAB
simulator for the MEM system (MEMS) example. The training
inputs must be carefully chosen in order to excite all possible
behavior of interest in the system, while avoiding driving
the system to regions of the space that will not be excited
by typical inputs of interest. Attempting to model dynamics
not encountered by testing inputs could greatly increase the
complexity of the identified model. In order to maximize
robustness while minimizing complexity, in our experience,
the best approach is to train with inputs having the same form
(e.g., sum of sinusoids) as the inputs to be used for testing.
In this case, the amplitudes, frequencies, and phases of the
training inputs may be varied over a wide range containing
all possible values to be used for testing. For all examples,
the models are identified in a polynomial basis with a rational
description as described in Section IV.

All of the model generation and simulation times reported
were obtained using a desktop PC with a dual core 3.33 GHz
processor and 4 GB of RAM. The SOS problem (27) was
solved using the SPOT [38], which uses SeDuMi [41].
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Fig. 2. Micromachined switch MEM device [7].

Fig. 3. Output of order 400 original system (solid line) and our order 4
model (stars) tested on a periodic input of amplitude and frequency different
from the training inputs.

B. MEM Device

In our first example, we identify a CT model of a MEMS
device to show that our preliminary CT approach from Sec-
tion III-C and projection approach from Section IV-D are
feasible. The MEMS device [7], shown in Fig. 2, is described
by a pair of nonlinear PDEs that can be discretized along the
surface of the device to obtain a system of nonlinear ODEs.
A detailed analysis of the example can be found in [42].

For this example, the training data was generated from
inputs of the form

u(t) = [A1 sin(ω1t) + A2 sin(ω2t) + A3 sin(ω3t)]
2 (29)

where Ai vary between 4 Volts and 7 Volts, and fi = 2π
ωi

vary
between 1.5 kHz and 240 kHz. From this data, we identified a
4th order nonlinear CT model suitable for usage in any ODE
integrator and in particular a low-level circuit simulator

Q2(v, u)v̇ = p7(v, u), y = CT v

where v ∈ R4, Q2 ∈ R4×4 is a matrix of second order
polynomials, p7 ∈ R4 is a vector of seventh order polyno-
mials, and C ∈ R4 is a constant vector, all identified using
the projection technique described in Section IV-D and the
reduced basis technique from Section IV-E, resulting in only
52 parameters in the reduced model. For this model, the
identification procedure took less than two minutes.

The identified model was tested on an input of the form (29)
with Ai and fi different from the training set, and the resulting
output is compared to the output of the full nonlinear system
in Fig. 3. To make the comparison fair, both full and reduced
models were simulated using the same MATLAB built in ODE
solver. Simulation of the full 400th order nonlinear system for
this example required approximately 400 s to integrate for
5000 time points, while the reduced model was simulated in

Fig. 4. Schematic of operational amplifier.

response to the same input for the same number of time steps
in just 10 s, resulting in a speedup of about 40 times.

C. Operational Amplifier

In our second example, we identify a parameterized model,
using the approach described in Section III-E, for a two-
stage operational amplifier. The opamp, shown in Fig. 4, is
designed with a 90 nm predictive model and nominal reference
current as 10µ, has an open-loop DC gain of 260, and unity-
gain bandwidth 125 MHz. For the parameterized model, the
reference current is considered as a circuit parameter and
varies from 7µA to 19µA.

Training data was generated using inputs of the form

u(t) = inp-inn =
5∑

i=1

Ai sin(2πfit + φi) (30)

where Ai are chosen randomly, but large enough to saturate
the opamp, fi are randomly sampled between DC to unity-
gain frequency, and φi are randomly sampled in [0o, 360o].
The resulting model was a parameterized input–output model
of the form

y[t] =
p(y[t − 1], u[t], u[t − 1], z)

q(y[t − 1], u[t], u[t − 1])
(31)

where p is cubic in u, y and quadratic in z, q is a fourth order
polynomial of u, y, and the model contains 97 terms.

The identified model was tested on 140 randomly generated
inputs of the form (30) with parameter values randomly
selected between 7µA and 19µA. Fig. 5 plots the model output
and output error, defined as

e[t] =
|y[t] − ỹ[t]|

maxt |Ỹ | × 100 (32)

for one of these testing signals, while Fig. 6 plots the maxi-
mum error over the entire signal for each testing set, defined
as

em = max
t

e[t] (33)

where y[t] is the output of our model at time t, ỹ[t] is the
output of SPECTRE at time t, and Ỹ is the full waveform of
SPECTRE outputs over one period.
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Fig. 5. Time-domain output and error, as defined in (32), for our identified
model in response to a random input of the form (30) and random parameter
value between 7µA and 19µA.

Fig. 6. Maximum output error, as defined in (33), of our model tested on
140 random input signals (30) and parameter values ranging from 7µA to
19µA.

Fig. 7. Schematic of LNA [44].

D. Low-Noise Amplifier

In our third example, we identify a SIMO model of a
single ended low-noise amplifier (LNA) designed in 0.5µm
complementary metal-oxide semiconductor (CMOS) technol-
ogy [44], shown in Fig. 7. The designed LNA has a gain of
approximately 13 dB centered around 1.5 GHz.

For this example, we wish to capture the nonlinear behavior
of both the amplifier output Vout and the supply current in
response to a modulated input signal with an added jamming

Fig. 8. Time domain outputs, over a small portion of the period, of the
original LNA circuit (solid line) and the compact model identified by our
procedure (dots) in response to an input signal different from the training
signals.

signal. The overall input to the system is

VIN = Aj cos(2πfjt) +
∑

n=0,1,3,5

A cos(2πnf0t) cos(2πfct) (34)

with carrier frequency fc = 1.5 GHz, sideband frequency f0 =
5 MHz, and jamming frequency fj = 1 GHz. The system was
trained by varying the amplitude A between 15 mV and 85 mV,
and the jamming amplitude between 0 mV and 250 mV.

The identified model in this example is a DT multiple-input
multiple-output model, usable for instance by a Verilog-A or
higher level simulator, described by the rational model

Q2(y[t − 1], U[t])y[t] = p3(y[t − 1], U[t]) (35)

where U[t] = [u[t], u[t − 1], u[t − 2]], Q2 ∈ R2×2 is a
matrix of second order polynomials, p3 ∈ R2×1 is a vector
of third order polynomials, y ∈ R

2×1, and u ∈ R
2×1.

The rational nonlinearity is sufficient to capture the highly
nonlinear behavior resulting from the large jamming signal,
and the total number of parameters describing the identified
model is 102. The entire identification procedure took less
than two minutes, and the resulting model can be simulated
in MATLAB for 15 000 time steps in under 3 s.

To test the model, it was simulated over a full period with
six pairs of amplitudes, A and Aj , differing from the training
data amplitudes, producing outputs with approximately 4%
maximum error from the outputs of the original circuit. Fig. 8
compares the two time domain outputs, over a small portion
of the period, of the model identified by our procedure (dots)
with the outputs of the full original circuit (solid lines) in
response to an input with A = 50 mV and Aj = 150 mV.

E. Distributed Power Amplifier

The final example considered is a distributed power ampli-
fier designed in 90 nm CMOS technology, with a distributed
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Fig. 9. Transformer-based power amplifier with distributed architecture [43].

architecture and transformer-based power combiner as pro-
posed in [43]. The amplifier delivers 24 dBm power with a gain
of 6 dB at 5.8 GHz. A simplified schematic of the amplifier is
shown in Fig. 9. Transistors are biased to operate in differential
Class-B configuration to improve efficiency, however, at the
cost of linearity. Nonlinearities also arise because of parasitic
inductance introduced by supply and ground bond wires.

Power combining is achieved by using 1 : 1 transformers,
as shown in Fig. 9. Losses in primary and secondary inductors
are modeled by using quality factor of 12.5 and coupling coef-
ficient of 0.7, based on which optimum values of inductances
were selected as Lp= Ls= 157 nH [43]. Similarly, the following
parameters were selected based on optimized performance of
the amplifier at 5.8 GHz [43]: Vdd= 1.0V, W/L of transistors
= 1.2 mm/90 nm, CIN = 2.6 pF, COUT = 610 fF, RL = 50�,
LVdd = LGND = 1 nH, CB = 20 pF, Rg = 18�.

For this example, training data samples were generated in
response to periodic inputs of the form

VIN = VDC +
∑

n=0,1,3,5

A cos(2πnf0t) cos(2πfct) (36)

with carrier frequency fc = 5.8 GHz, f0 ∈ {25, 50} MHz, and
amplitude A ∈ {30, 90} mV. The simulation was performed
with SPECTRE, whose model for the power amplifier con-
tained 284 equations, 95 internal variables, and 8 transistors
modeled with 90 nm predictive technology models.

The identification procedure, using the reduced basis tech-
nique from Section IV-E, identified a DT input–output model

y[t] =
p3 (y[t − 1], u[t], u[t − 1], w[t], w[t − 1])

q4 (u[t], u[t − 1], w[t], w[t − 1])
(37)

where

w[t] =
19∑
j=0

bju[t − j]

is a linear transformation of the input u[t] with coefficients
bj determined by first fitting a linear system as described in
Section IV-E. Here p3 indicates a third order polynomial, q4

represents a fourth order polynomial, and the total number
of parameters in the model is 106. The entire identification
procedure took approximately 12 minutes.

The identified model was able to reproduce the training data
with less than 4% maximum error in the time-domain, and was
able to be simulated for 10, 000 time steps in under 2 s. When
tested with nontraining inputs of the form (36) with parameters

Fig. 10. (a) Time domain output of the original circuit (solid line) and
the compact model identified by our procedure (dots) in response to a
testing input with amplitude and frequency different from the training inputs.
(b) Output error et , as defined in (32), of our model over the full signal from
(a).

A ∈ {10, 30, 60, 90} mV and f0 ∈ {10, 25, 40, 50} MHz, our
model reproduces the outputs of the original circuit with an
average error of less than 1% for each testing input. Fig. 10
compares the output of the identified model with the output
of the original power amplifier circuit in response to a testing
input with A = 60 mV and f0 = 10 MHz, both differing from
the training data set. For clarity, the top plot in Fig. 10 shows
a small portion of the output signals, while the bottom plot
shows the model output error, as defined in (32), over a full
period of the signal. To show that our model, trained only with
with sinusoids of fixed amplitude, is capable of capturing the
circuit behavior in response to also different classes of inputs,
Fig. 11 plots the constellation diagram for the output from our
model in response to a 16-quadrature amplitude modulation
(QAM) input signal, which is a nonsmooth input.

A Volterra model with approximately the same number
of parameters identified with our procedure for this example
produced over three times the average error on the training
data set compared to model (37). With our current testing
setup, it was not possible to obtain a pure Volterra model that
is as accurate as model (35) due to memory constraints in
our computer (4 GB). This is a result of the large number of
parameters that would be required in the Volterra model of
high order and with many delays.

In addition to matching input–output behavior, it is impor-
tant that our identified models can also accurately predict the
performance curves of the circuits being modeled. The top plot
in Fig. 12 plots output power versus input power (compression
curve) at 5.8 GHz for the original circuit (solid line) and our
identified model (circles), while the bottom plot show the drain
efficiency (defined as the ratio of output RF power to input
DC power) versus output power for the original circuit (solid
line) and our identified model (circles), also at 5.8 GHz. This
model was identified by training with sinusoids at 5.8 GHz
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Fig. 11. Constellation diagram for output of the power amplifier model
(trained using only amplitude-modulated sinusoids) in response to a 16-QAM
input signal.

Fig. 12. (a) Compression curve, plotting input power versus output power, at
5.8 GHz for the original circuit (solid line) and our compact model (circles).
(b) Drain efficiency versus output power at 5.8 GHz for the original circuit
(solid line) and our compact model (circles).

with amplitudes A ∈ [100, 400, 800, 1200] mV, and was tested
at 12 amplitudes evenly spaced between 100 mV and 1200 mV.
We want to emphasize that these performance curves were
obtained from simulation of our identified dynamical models,
and not by simply fitting performance curves.

F. Comparison to Existing SYSID Techniques

Finally, we compare our proposed approach to several exist-
ing SYSID techniques from literature. Traditional identifica-
tion techniques suffer from several shortcomings. Some tech-
niques, such as the Hammerstein–Wiener (H–W) model [14] (a
cascade connection of an LTI system between two memoryless
nonlinearities), forces a specific block-structure on the model
which restricts the types of systems that can be accurately
modeled. Volterra models, as defined in (25), do not force
a specific block structure, but require many parameters to
represent complex systems due to a lack of feedback and
polynomial nonlinearities. More general nonlinear models,

Fig. 13. Outputs of our compact model (circles), a Hammerstein–Wiener
(H–W) model (pluses), and a NLARX model (stars) all generated from the
four training inputs used in Section VI-E, compared to the output of the
original circuit (solid line) in response to a training input with f0 = 10 MHz
and A = 60 mV.

such as nonlinear autoregressive model with exogenous inputs
(NLARX) [14], have the more general structure

y[t] = f (y[t − 1], . . . , y[t − m], u[t], . . . , u[t − k])

which is similar to the DT models identified by our proposed
procedure, and do incorporate feedback, but they typically do
not explicitly enforce stability during identification. For both
the H–W and NLARX models, the nonlinearities are typically
identified as a linear combination of nonlinear basis functions.

The same training data sets from Section VI-E were used to
identify models of the distributed power amplifier in the form
of a H–W model and a NLARX model. These models were
generated using the MATLAB system identification toolbox,
which uses techniques described in [14]. In general, both types
of models were found to be less accurate than our proposed
approach, with the H–W models producing average errors
between 5% and 10%, and the NLARX models producing
average errors between 3% and 5%, compared to average
errors of 1% from model (37) identified by our technique.
Additionally, the NLARX models were often unstable, and as
a result, the testing inputs often produced unbounded outputs.
Fig. 13 plots the output response of our compact model
(circles), a H–W model (pluses), and a NLARX model (stars),
all generated from the four training inputs from Section VI-E,
compared to the output of the original circuit (solid line) in
response to one testing input with frequency and amplitude
different from the training data. For this example, all three
identified models contain approximately the same number of
parameters, and the nonlinearities in both the HW and NLARX
models were described by sigmoidnet functions.

VII. Conclusion

In this paper, a specialized system identification technique
has been developed and has been shown to be an effective
alternative technique to model reduction of typical nonlinear
analog circuit blocks, such as low-noise amplifiers and power
amplifiers. The proposed identification technique requires only
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input–output data, eliminating the need for extensive knowl-
edge of the internal system description required by existing
nonlinear model reduction techniques, but is also capable of
utilizing internal state data when it is available. Furthermore,
it has been shown that the identification of stable nonlinear
models described by rational functions can be cast as a sum-
of-squares program, which is a specific case of semidefinite
programming. By enforcing incremental stability as a con-
straint of the identification procedure, we are able to obtain
a certificate of robustness for the model, which quantifies the
model accuracy on a given set of training data. Our approach
has been shown to compare favorably to existing identification
techniques that either impose restrictive structure on the model
description, or are incapable of guaranteeing stability when
feedback is present.
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