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The goal of much research in relativity is to understand gravitational waves generated by a strong-field

dynamical spacetime. Quantities of particular interest for many calculations are the Weyl scalar c 4, which

is simply related to the flux of gravitational waves far from the source, and the flux of energy carried to

distant observers, _E. Conservation laws guarantee that, in asympotically flat spacetimes, c 4 / 1=r and
_E / 1=r2 as r ! 1. Most calculations extract these quantities at some finite extraction radius. An

understanding of finite radius corrections to c 4 and _E allows us to more accurately infer their asymptotic

values from a computation. In this paper, we show that, if the final state of the system is a black hole, then

the leading correction to c 4 isOð1=r3Þ, and that to the energy flux isOð1=r4Þ—notOð1=r2Þ andOð1=r3Þ,
as one might naively guess. Our argument only relies on the behavior of the curvature scalars for black

hole spacetimes. Using black hole perturbation theory, we calculate the corrections to the leading falloff,

showing that it is quite easy to correct for finite extraction radius effects.

DOI: 10.1103/PhysRevD.82.104029 PACS numbers: 04.25.Nx, 04.30.Nk

I. INTRODUCTION

Extracting radiation from the output of numerical cal-
culations, as well as fluxes of quantities such as energy
carried by radiation, is important for many problems in
general relativity. Newman and Unti [1] provide an out-
standing foundation for understanding analytically the
asymptotic behavior of curvature tensors, which determine
how gravitational radiation behaves as it propagates far
from a radiating source. Perturbation theory also provides
an excellent set of tools to help us understand the asymp-
totic behavior of radiation and fluxes.

Many results on the distant behavior of radiation fields
describe how quantities behave in the limit r ! 1. With
the exception of characteristic methods (see, for example,
Ref. [2]), most numerical calculations extract radiation at
some large but finite radius r. Understanding the sublead-
ing corrections to the asymptotic behavior of radiative
quantities could greatly improve our ability to extract
asymptotic fluxes and fields from numerical codes.

Previous work [3] found empirically that the form

_EðrÞ ¼ _E1
�
1þ e2

r2

�
(1)

does an outstanding job describing subleading corrections
to the gravitational–wave energy flux. In this paper, we
examine this behavior more carefully. In Sec. II, following
the formalism developed in Ref. [1], we prove that this
form is to be generically expected, and follows from the
fact that at finite large radius r, the Weyl curvature scalar
describing distant radiation takes the form c 4ðrÞ ¼
c1

4 ð1þ b2=r
2Þ. In Sec. III, we use black hole perturbation

theory to calculate the coefficients b2 and e2. We conclude
Sec. IV by discussing possible applications of this result.

II. TOOLS AND FORMALISM FOR
UNDERSTANDING RADIATION FALLOFF

A. Definitions

We begin by defining the quantities which we will
need for our analysis. Much of this discussion is adapted
from Ref. [1]. We present these general definitions in
some detail before specializing to the much simpler black
hole case.
Consider a vacuum, asymptotically flat spacetime.

Introduce a family of null hypersurfaces, each character-
ized by a constant parameter u. We take u ¼ x0 as one
of the coordinates we will use to describe our geometry.
Define

l� ¼ @�u: (2)

Since these surfaces are null, the vector l� is tangent to null
geodesics. This vector will be the first leg of a tetrad which
we will use to characterize our geometry. Define r as the
affine parameter along these geodesics; this will denote
another of our coordinates. The remaining coordinates xk

(k 2 3, 4) then label the different null geodesics in each
constant u hypersurface; they can be taken to be angles.
We define a second null vector n� by requiring

n�l� ¼ 1: (3)

To complete our tetrad, we next define a pair of
unit spacelike vectors �� and �� that are orthogonal to
l�, n�, and to each other. We then put

m� ¼ ð�� � i��Þ= ffiffiffi
2

p
; (4)

�m� ¼ ð�� þ i��Þ= ffiffiffi
2

p
: (5)
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We now use this tetrad to characterize the curvature of
our spacetime. Let C���� be the Weyl (vacuum) curvature

tensor of the spacetime. Define the following 5 complex
Weyl projections:

c 0 ¼ �C����l
�m�l�m�; (6)

c 1 ¼ �C����l
�n�l�m�; (7)

c 2 ¼ �C����l
�m� �m�n�; (8)

c 3 ¼ �C����l
�n� �m�n�; (9)

c 4 ¼ �C����n
� �m�n� �m�: (10)

Reference [1] shows that as we approach the asymptoti-
cally flat (r ! 1) regime, these curvature components
vary as follows:

c 0 ¼ A0

r5
þOð1=r6Þ; (11)

c 1 ¼ A1

r4
þ ð4�RSCA0 � ��k@kA0Þ

r5
þOð1=r6Þ; (12)

c 2 ¼ A2

r3
þ ð2�RSCA1 � ��k@kA1Þ

r4
þOð1=r5Þ; (13)

c 3 ¼ A3

r2
�

��k@kA2

r3
þOð1=r4Þ; (14)

c 4 ¼ A4

r
� ð2�RSCA3 þ ��k@kA3Þ

r2
þOð1=r3Þ: (15)

In Eqs. (12)–(15), specifically the index k 2 ½3; 4�, the
complex function �k describes the angular components of
the tetrad elementm�, and the functions�RSC and �RSC are
‘‘Ricci spin coefficients,’’ constructed by certain combina-
tions and projections of the tetrad’s covariant derivatives.
For more details and discussion of these functions, see
Refs. [1,4]. For our purposes, the most important fact to
take from Eqs. (11)–(15) is that the leading falloff of c 4 is
atOð1=rÞ. The subleading correction atOð1=r2Þ is set by a
coefficient that scales with A3, which controls the behavior
of the curvature scalar c 3.

B. Perturbed black holes

We now specialize to black holes. We use the Kinnersley
tetrad [5], which in Boyer-Lindquist coordinates is
given by

l� ¼: 1

�
ðr2 þ a2; 1; 0; aÞ; (16)

n� ¼: 1

2�
ðr2 þ a2;��; 0; aÞ; (17)

m� ¼: 1ffiffiffi
2

p ðrþ ia cos	Þ ðia sin	; 0; 1; i csc	Þ: (18)

For an unperturbed black hole spacetime, c 2 ¼ �M=ðr�
ia cos	Þ3, and c n ¼ 0 for n � 2. Far from a perturbed

black hole, c 4 is also nonzero, describing the spacetime’s
outgoing gravitational waves:

c 4ðr ! 1Þ ¼ 1

2
ð €hþ � i €h�Þ ¼ 1

2r
ð €Hþ � i €H�Þ: (19)

The Weyl scalar c 0 is also generically nonzero for a
perturbed black hole, but we will not need its value in
our analysis. Crucially for our argument, we can always
put �3 ¼ 0 for our perturbed black hole [6].
Comparing with Eqs. (12)–(15), we read off

A3 ¼ 0; (20)

A2 ¼ �M; (21)

A4 ¼ 1

2
ð €Hþ � i €H�Þ: (22)

Combining these results with Eq. (15), we see that correc-
tions to c 4 come in at Oð1=r3Þ, so that

c 4 ¼ A4

r

�
1þ b2

r2

�
; (23)

where b2 is a complex constant related to the (currently
unknown) coefficient of this subleading falloff.

C. Energy flux

We now relate the curvature scalar c 4 to the asymptotic
flux of radiation from the source. The energy flux in
gravitational waves is given by

_E ¼ 1

16


Z
r2d�½ð _hþÞ2 þ ð _h�Þ2�: (24)

Using Eq. (19), we can relate this to c 4 in the limit r ! 1:

_E1 ¼ 1

4

lim
r!1

Z
r2d�j

Z
dtc 4j2: (25)

Using Eq. (23), let us now see what this implies about the
behavior of _E when radiation is extracted at some finite
radius R. Let us first introduce a modal expansion, writing

c 4 ¼
X
!

c !
4 e

�i!t ¼ X
!

A!
4

r

�
1þ b!2

r2

�
e�i!t: (26)

For simplicity, we have taken the radiation to have a
discrete frequency spectrum. The calculation can easily
be extended to encompass a continuous spectrum.
Combining Eqs. (25) and (26), we find

_EðrÞ ¼ 1

4


X
!

!�2
Z

r2d�jc !
4 j2 (27)

¼ X
!

_E!1
�
1þ e!2

r2

�
; (28)

where

_E!1 ¼ 1

4
!2

Z
d�jA!

4 j2; (29)

e!2 ¼ ð _E!1Þ�1 � 1

2
!2

Z
d�jA!

4 j2ðReb!2 Þ: (30)
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In other words, an Oð1=r3Þ correction to c 4 produces an
Oð1=r4Þ correction to _E. We next must understand how to
compute the coefficient of this correction. We do so using
black hole perturbation theory.

III. SUBLEADING BEHAVIOR
VIA PERTURBATION THEORY

Perturbation theory is a powerful tool for calculating c 4

and then determining fluxes such as _E. In this section, we
use black hole perturbation theory to confirm the general
results of Sec. II, and to explicitly compute the magnitude
of the subleading contributions to c 4 and _E.

Throughout this section, we will assume a frequency-
domain decomposition for c 4. This assumption means that
solutions for c 4 separate [7]:

c 4 ¼ 1

ðr� ia cos	Þ4
X
!

Rlm!ðrÞSlmð	;a!Þeim�e�i!t:

(31)

The function Slmð	; a!Þ � Sð	Þ is a spin-weighted sphe-
roidal harmonic, and is discussed extensively in
Appendix A of Ref. [8]. It satisfies the eigenvalue relation

1

sin	

d

d	

�
sin	

dS

d	

�
þ

�
ða!Þ2cos2	þ 4a! cos	

�
�
m2 � 4m cos	þ 4

sin2	

�
þ E

�
S ¼ 0: (32)

In the a ¼ 0 limit, E ! lðlþ 1Þ, where l is the usual
spherical harmonic index.

The function Rlm!ðrÞ � RðrÞ is governed by [7]

�2 d

dr

�
1

�

dR

dr

�
� VðrÞRðrÞ ¼ �T ðrÞ; (33)

often called the Teukolsky equation. Here and in what
follows, � ¼ r2 � 2Mrþ a2. Detailed discussion of the
source T ðrÞ is given in Refs. [7,8]. For our purpose, it
suffices to note that an effective way to solve Eq. (33) is to
first find a homogeneous solution, setting the source
T ðrÞ ¼ 0. From these solutions, it is fairly simple to build
a Green’s function, which we integrate over the source to
find the particular solution for our problem.

We show the potential VðrÞ in the appendix. It depends
on the eigenvalue E via the parameter � ¼ E � 2am!þ
a2!2 � 2. An important property of VðrÞ is that it is long-
ranged: as r ! 1, VðrÞ ! r2. This makes computing RðrÞ
for large r difficult. An excellent way to circumvent this
difficulty is to first solve the Sasaki-Nakamura equation [9],

d2X

dr2�
� FðrÞ dX

dr�
�UðrÞX ¼ 0; (34)

where r�ðrÞ is the ‘‘tortoise coordinate,’’
r� ¼ rþ 2Mrþ

rþ � r�
ln

�
r� rþ
2M

�
� 2Mr�

rþ � r�
ln

�
r� r�
2M

�
:

(35)

The potentials FðrÞ and UðrÞ are also shown in the appen-
dix. Their key property is that, unlike the Teukolsky equa-
tion’s VðrÞ, they are short ranged: As r ! 1,
F ! ðconstantÞ=r2 and U ! �!2 þ ðconstantÞ=r2. The
solutions XðrÞ thus approach plane waves in the asympoti-
cally flat region, Xðr ! 1Þ ! e�i!r� . Teukolsky equation
solutions can be then be built from Sasaki-Nakamura
equation solutions by the transformation

R ¼ 1



��
�þ @r�

�

�
�� �

�

d�

dr

�
; (36)

where � ¼ X�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ a2

p
. The functions �ðrÞ, �ðrÞ, and

ðrÞ are listed in the appendix.
A more accurate asymptotic form of XðrÞ is

XðrÞ ¼ AoutPoutðrÞei!r� þ AinPinðrÞe�i!r� ; (37)

where

Pin=outðrÞ ¼ 1þ pin=out
1

!r
þ pin=out

2

ð!rÞ2 þ pin=out
3

ð!rÞ3 : (38)

The coefficients appearing in this expansion are given by

pin
1 ¼ � i

2
ð�þ 2þ 2am!Þ; (39)

pin
2 ¼ � 1

8
½ð�þ 2Þ2 � ð�þ 2Þð2� 4am!Þ

� 4½am!þ 3iM!� am!ðam!þ 2iM!Þ��; (40)

pin
3 ¼ � i

6
½4am!þ pin

2 ð�� 4þ 2am!þ 8iM!Þ
þ 12ðM!Þ2 � 2pin

1 �M!

� ða!Þ2ð�� 3þm2 þ 2am!Þ�; (41)

and

pout
1 ¼ �pin

1 þ!c1
c0

; (42)

pout
2 ¼ �pin

2 þ 1

c0

�
!2c2 �!c1

�
pin
1 þ i

2

��
; (43)

pout
3 ¼ �pin

3 þ 1

c0

�
!3c3 �!2c2ðpin

1 þ iÞ

þ!c1

�
�pin
2 þ ipin

1

2
� 1

2
þ 2iM!ða!m� 1Þ

��
: (44)

The coefficients c0, c1, c2, and c3 appear in the definition of
the function ðrÞ, and are given in the appendix; overbar
denotes complex conjugate.
The condition that radiation be purely outgoing far from

the black hole picks out a solution of the form

X ¼ X1PoutðrÞei!r� (45)

as r ! 1. Performing the transformation (36), we find that
the Teukolsky solution RðrÞ can be written

RðrÞ ¼ r3Z1QoutðrÞei!r� (46)

for r ! 1, where Z1 ¼ �4X1!2=c0, and where
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QoutðrÞ ¼ 1þ q1
!r

þ q2
ð!rÞ2 þ

q3
ð!rÞ3 þ . . . : (47)

The coefficients q1;2;3 are given in the appendix.

Now, we use this solution to examine the flux of energy
a finite distance from the black hole. Using Eq. (27), we
find that

_EðrÞ ¼ X
!

_E1
! jQout

! j2; (48)

where

_E1
! ¼ jZ1j2

4
!2
; (49)

jQout
! j2 ¼ 1þ 6a!ða!�mÞ � �

2!2r2
þMð�� 1Þ

!2r3
: (50)

Notice that the leading correction to the energy flux ap-
pears at Oð1=r2Þ, in agreement with Eq. (28). Comparing
with Eq. (1), we find that the coefficient e2, which labels
the 1=r2 falloff, is

e2 ¼ 6a!ða!�mÞ � �

2!2
: (51)

Recall that � is related to the spheroidal harmonic eigen-
value E; cf. Eq. (32) and following discussion. For
Schwarzschild, this correction is particularly simple:

e2ða ¼ 0Þ ¼ � lðlþ 1Þ � 2

2!2
; (52)

where l is the spherical harmonic index associated with the
mode under consideration.

IV. DISCUSSION

In this analysis, we have demonstrated that whenever
one extracts radiation and radiative fluxes at a finite large
radius, the subleading correction to these quantities is at an
order Oð1=r2Þ beyond the leading asymptotic behavior.
Hence, the correction to the curvature scalar c 4 is at
Oð1=r3Þ, and to the energy flux is at Oð1=r4Þ.

Using black hole perturbation theory, we have shown it
is not difficult to calculate the coefficient of the subleading
falloff, at least for a plane wave. The results we have found
are consistent with the results shown in Table VI of
Ref. [3]. In that paper, a time-domain code was used to
examine radiation from circular orbits. The time-domain
code does not separate the angular behavior, and so many
values of l are included in the analysis simultaneously. The
radiation tends to be dominated by l ¼ m, with important
but decreasing contributions from l ¼ mþ 1, l ¼ mþ 2,
etc. Our expectation for the Schwarzschild radiation is thus
likely to be close to the prediction from Eq. (52) for l ¼ m,
skewed somewhat by contributions from l ¼ mþ 1.

Let us test that prediction. Consider first the results for
m ¼ 2. If we assume that the waves presented in Ref. [3]
for this case are dominated by radiation in the l ¼ 2 and
l ¼ 3 modes, then we expect e2 to be between

e2ða ¼ 0; l ¼ m ¼ 2Þ ¼ �2!�2 (53)

and

e2ða ¼ 0; l ¼ mþ 1 ¼ 3Þ ¼ �5!�2: (54)

Table VI of Ref. [3] shows

e2ða ¼ 0; m ¼ 2Þ ¼ �2:59!�2; (55)

in reasonably good agreement with the intuition provided
by our plane-wave expansion. Table VI also provides
Schwarzschild data for m ¼ 3; if those data are dominated
by l ¼ 3 and l ¼ 4, we expect e2 to be between

e2ða ¼ 0; l ¼ m ¼ 3Þ ¼ �5!�2 (56)

and

e2ða ¼ 0; l ¼ mþ 1 ¼ 4Þ ¼ �9!�2: (57)

Table VI of Ref. [3] shows

e2ða ¼ 0; m ¼ 2Þ ¼ �6:20!�2; (58)

again agreeing reasonably well with the plane-wave ex-
pansion. By computing the eigenvalues of the spheroidal
harmonics for nonzero spin, one can likewise show that the
Kerr values in Table VI agree reasonably well with the
expectation of our plane-wave expansion.
Bear in mind that the numerical magnitude of the cor-

rection we derived strictly applies only for plane-wave
expansions. As such, although we can provide good post
facto justification of the coefficients of the subleading
falloff, it would be difficult to predict those coefficients
in advance. To do so, we would need to know the weighting
of the different l modes which contribute to the radiation.
Our only purpose in analyzing the coefficients shown in
Ref. [3] is to show that the results presented there are
consistent with our results here.
For many calculations, it will not be worthwhile to

decompose the angular distribution of the waves, and
thus to compute the subleading falloff in the manner shown
here. It should be emphasized that the radial behavior of
the falloff is independent of the l modes which contribute
to the waves. As such, it would not be difficult to extract
the radiation at several radii and simply fit the coefficient.
That is what was done in Refs. [3,10]. Implementing such a
multiradius fit should make it possible to more accurately
extract the asymptotic radiation computed by numerical
analysis, potentially reducing errors in such calculations by
several percent.
In general numerical spacetimes, it may be more com-

plicated to take advantage of this result. The key ingredient
to making the falloff work as we have discussed is to
choose a tetrad such that the Weyl scalar �3 ¼ 0. As
long as one can perform a null rotation to put the spacetime
into such a ‘‘transverse’’ tetrad [6,11], one should find that
subleading corrections to the flux of radiation fall off as
1=r3. It may be challenging to implement this rotation for
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the general case, but the improvement in accuracy could
make it worthwhile.
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APPENDIX: FUNCTIONS FROM BLACK HOLE
PERTURBATION THEORY

In this appendix, we present various functions which
arise in black hole perturbation theory that we need for our
analysis. The functions ðrÞ, �ðrÞ, and �ðrÞ which appear
in the transformation law (36) are given by

ðrÞ ¼ c0 þ c1=rþ c2=r
2 þ c3=r

3 þ c4=r
4; (A1)

�ðrÞ ¼ � iKðrÞ�ðrÞ
�2

þ 3i
dK

dr
þ 6

�

r2
þ �: (A2)

�ðrÞ ¼ 2�½r�M� 2�=r� iKðrÞ�: (A3)

These functions in turn depend on the coefficients

c0 ¼ �12i!Mþ �ð�þ 2Þ � 12a!ða!�mÞ; (A4)

c1 ¼ 8ia½3a!� �ða!�mÞ�; (A5)

c2 ¼ �24iaMða!�mÞ þ 12a2½1� 2ða!�mÞ2�;
(A6)

c3 ¼ 24ia3ða!�mÞ � 24Ma2; (A7)

c4 ¼ 12a4; (A8)

and the function

KðrÞ ¼ ðr2 þ a2Þ!�ma: (A9)

Recall that � ¼ E � 2am!þ a2!2 � 2, where E is the
eigenvalue of the spheroidal harmonic.
The potential VðrÞ appearing in the Teukolsky Eq. (33)

is given by

VðrÞ ¼ �K2 þ 4iðr�MÞK
�

þ 8i!rþ �: (A10)

The potentials FðrÞ and UðrÞ appearing in the Sasaki-
Nakamura Eq. (34) are

FðrÞ ¼ d=dr



�

r2 þ a2
; (A11)

UðrÞ ¼ �U1ðrÞ
ðr2 þ a2Þ2 þ

�dG=dr

r2 þ a2
� FðrÞGðrÞ þGðrÞ2;

(A12)

where

U1ðrÞ ¼ VðrÞ þ�2

�

�
d

dr

�
2�þ d�=dr

�

�

� d=dr



�
�þ d�=dr

�

��
: (A13)

The coefficients pin=out
1;2;3 defined in Eqs. (39)–(44) are

found by requiring that the solution (37) satisfy the
Sasaki-Nakamura equation in each order in 1=r. After
transforming to the Teukolsky equation solution RðrÞ, the
different orders in 1=r are labeled by the coefficients q1;2;3
defined in Eq. (47):

q1 ¼ pout
1 � i� c1!=c0; (A14)

q2 ¼ � 1

4c20
½�4c21!

2 þ 4c0!½ðpout
1 � iÞc1 þ c2!�

þ c20½2þ 2ipout
1 � 4pout

2 þ �þ 6am!

� 12iM!� 6a2!2��; (A15)

q3 ¼ 1

4c30
½4c0c1!2½ðpout

1 � iÞc1 þ 2c2!� 4c31!
3�

þ c20!½�4!½ðpout
1 � iÞc2 þ c3!�

þ c1½2þ 2ipout
1 � 4pout

2 þ �þ 6am!� 12iM!

� 6a2!2�� þ c30½4pout
3 þ 2!½Mð5þ �Þ � 5ia2!�

� pout
1 ½�� 2!ð3a2!� 3amþ 4iMÞ���: (A16)
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