
MIT Open Access Articles

Surrogate Modeling for Uncertainty Assessment with 
Application to Aviation Environmental System Models

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Allaire, D. and K. Willcox. "Surrogate Modeling for Uncertainty Assessment with 
Application to Aviation Environmental System Models." AIAA Journal 48.8 (2010): 1791-1803.

As Published: http://dx.doi.org/10.2514/1.J050247

Publisher: American Institute of Aeronautics and Astronautics

Persistent URL: http://hdl.handle.net/1721.1/61706

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/61706
http://creativecommons.org/licenses/by-nc-sa/3.0/


Surrogate Modeling for Uncertainty Assessment with

Application to Aviation Environmental System Models

D. Allaire∗, K. Willcox†

Department of Aeronautics and Astronautics

Massachusetts Institute of Technology, Cambridge, MA, 02139

Numerical simulation models to support decision-making and policy-making processes

are often complex, involving many disciplines, many inputs, and long computation times.

Inputs to such models are inherently uncertain, leading to uncertainty in model outputs.

Characterizing, propagating, and analyzing this uncertainty is critical both to model de-

velopment and to the effective application of model results in a decision-making setting;

however, the many thousands of model evaluations required to sample the uncertainty

space (e.g. via Monte Carlo sampling) present an intractable computational burden. In

this paper we present a novel surrogate modeling methodology designed specifically for

propagating uncertainty from model inputs to model outputs and for performing a global

sensitivity analysis—which characterizes the contributions of uncertainties in model inputs

to output variance—while maintaining the quantitative rigor of the analysis by providing

confidence intervals on surrogate predictions. The approach is developed for a general

class of models and is demonstrated on an aircraft emissions prediction model that is be-

ing developed and applied to support aviation environmental policy-making. The results

demonstrate how the confidence intervals on surrogate predictions can be used to balance

the tradeoff between computation time and uncertainty in the estimation of the statistical

outputs of interest.

Nomenclature

AEDT Aviation Environmental Design Tool

AEM Aircraft Emissions Module

B Borel σ-field

CO Carbon Monoxide

CO2 Carbon Dioxide
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D Output variance

Di Single factor partial variance for factor i

E[yk] Expected value of NOx emissions from operation k, gm

f Any Borel-measurable function

G Group of inputs of interest

g Emissions index of NOx, gm NOx/kg fuel

N (α, β) Normal distribution with mean, α, and variance β

n Dimension of the input space

N Number of model evaluations in a Monte Carlo simulation

no Number of operations in the AEM surrogate model

No Total number of AEM operations

NOx Oxides of Nitrogen

Ns Number of flight segments in an operation

O Subset of no operations in surrogate model

P Probability measure

Q Subset of Nq random variables in generic surrogate model

q Fuel burn input, kg

r Temperature input, K

REINOx Reference Emissions Index of Oxides of Nitrogen, gm NOx/kg fuel

s Pressure input, N/m2

Si Main effect sensitivity index for factor i

SOx Oxides of Sulfur

t Relative humidity input

u Fuel flow input, kg/s

v REINOx input, gm NOx/kg fuel

x Generic vector of random variables

xi Random variable that defines input factor i

xm
i mth sample from the random variable xi

ykl NOx emissions produced by flight segment l of operation k, gm

Y Generic output of interest

yk NOx emissions produced by operation k, gm

ytot Total NOx emissions, gm

zk Generic kth constituent part of a model
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µE Expected value of the distribution of operation-level NOx emissions expected values, gm

µE[zk] Expected value of the distribution of expected values of the zk

µσ2 Expected value of the distribution of operation-level NOx emissions variances, gm2

µvar(zk) Expected value of the distribution of variances of the zk

σ2
E Variance of the distribution of operation-level NOx emissions expected values, gm2

σ2
E[zk] Variance of the distribution of expected values of zk

σ2
σ2 Variance of the distribution of operation-level NOx emissions variances, gm4

σ2
var(zk) Variance of the distribution of variances of the zk

σ2
yk

Variance of NOx emissions from operation k, gm2

τi Total effect sensitivity index for factor i

I. Introduction

Numerical simulation models to support decision-making and policy-making processes, while becom-

ing increasingly widespread, typically have uncertainty associated with their inputs, leading to uncertainty

in model outputs. Effective application of model results to decision-making and in support of model de-

velopment require proper characterization, propagation, and analysis of that uncertainty. The process of

propagating the uncertainty from inputs to outputs, for example via Monte Carlo simulation, could re-

quire many thousands of model evaluations, thus presenting an intractable computational burden. Here we

present a novel surrogate modeling methodology based on invoking the Central Limit Theorem, which is

designed specifically for propagating uncertainty from model inputs to model outputs and for performing

a global sensitivity analysis—which characterizes the contributions of uncertainties in model inputs to out-

put variance—while maintaining the quantitative rigor of the analysis by providing confidence intervals on

surrogate predictions.

Our approach is developed for a general class of models where the application of uncertainty propagation

and global sensitivity analysis on a full model is computationally impractical, and demonstrated on the

specific case of the Aircraft Emissions Model (AEM) of the Aviation Environmental Design Tool (AEDT).

The computational models of AEDT are being developed and applied to support aviation environmental

policy-making by providing the capability to characterize and quantify interdependencies among aviation-

related noise and emissions, impacts on health and welfare, and industry and consumer costs, under different

policy, technology, operational, and market scenarios. A key priority is to inform the analyses conducted by

these tools with associated uncertainty from the inputs and assumptions used in the analysis process. The

scale and complexity of these analyses are immense; for example, a single simulation of a one-year analysis
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involves over thirty million flight operations with 350 aircraft types and thousands of inputs, analyzed with

computationally intensive models spanning airline economics, environmental economics, aircraft operations,

aircraft performance and emissions, noise, local air quality, and global climate. Thus, the propagation and

analysis of uncertainty in such models with a method such as Monte Carlo simulation, which in some cases

can take several thousand model evaluations, is computationally impractical.

Surrogate models that provide substantial computational speedups are therefore crucial to the process

of uncertainty analysis in tools such as AEDT. However, quantifying the impacts on the analyses due to

exercising a surrogate in place of the full model is essential to producing defensible claims in the context of

decision-making. While surrogate modeling methodologies have been successfully applied in many settings,

a key challenge here is the derivation of surrogate models—and the associated confidence in uncertainty

and sensitivity analyses conducted with the surrogate models—for large-scale complex system models with

high-dimensional input spaces.

This paper proposes a systematic method to reduce the complexity and computational cost of a general

class of large-scale models in such a way that input uncertainty may still be quantified and analyzed. The

method is applied to the AEM, which is designed to estimate global emissions from aviation. Section II

presents background on the uncertainty analysis methods employed, and describes the structure of the

general class of problems considered. The methodology, described in Section III, focuses on the creation of a

hierarchical surrogate model for the general model class, by selecting a small subset of inputs to represent the

large-scale complex system. These representative inputs form a surrogate model with which an inexpensive

computation can be performed in place of the originally expensive computation. In Section IV the method

is applied to create surrogates for the AEM. We demonstrate how these surrogates can be used for both

uncertainty and sensitivity analysis with rigorous confidence intervals on surrogate predictions. Limitations

and additional sources of error are discussed in Section V, and conclusions are drawn in Section VI.

II. Background

In the context of numerical simulation tools, uncertainty analysis encompasses the process of charac-

terizing and analyzing the effects of uncertainty in model inputs, with a focus on quantitative assessment

of the effects on model outputs and thus, on the conclusions drawn from simulation results. Sensitivity

analysis studies how variability in model outputs can be apportioned to sources of uncertainty in model

factors.1 To carry out uncertainty and sensitivity analyses for large-scale numerical models requires first an

understanding of the purpose of the analyses and the way in which quantitative results will be employed

for decision-making. Second, knowledge of the character/structure of the underlying model is important to

determine appropriate analysis methods and for an appreciation of the associated computational complexity,
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which may mandate the use of surrogate models. Background on each of these areas is given in the following

subsections.

II.A. Uncertainty Analysis and Sensitivity Analysis

A detailed overview of both deterministic and statistical methods for uncertainty and sensitivity analysis

of large-scale systems is presented in Ref. 1. Here, we consider two general applications of uncertainty and

sensitivity analysis. The first is to support decision-making, for which uncertainty analysis should provide

the ability to compare various scenarios (e.g. different policies, different input assumptions, etc.) in terms

of output means, output variances and other distributional information that may be used to help make a

decision. The second application is to help further model development. In this second case, the primary

goal is a sensitivity analysis that apportions model output variability to model factors2–4 to help determine

where future research and development efforts should focus.

The computation of model output means, output variances and other distributional information in sup-

port of uncertainty analysis for decision-making can be carried out with Monte Carlo simulation. We consider

a general model f(x), where x = [x1, x2, . . . , xn]T is the vector of n inputs to the model. If the model inputs

are viewed as random variables with some associated probability distribution, then the mean value of the

model output can be computed from a Monte Carlo simulation as

1
N

N∑
m=1

f(xm) → E[f(x)] as N →∞ , (1)

where N is the number of model evaluations in the Monte Carlo simulation and xm = [xm
1 , xm

2 , . . . , xm
n ]T

denotes the mth sample realization of the random vector x. Convergence of the sample mean in (1) to the

expected value of f(x) is guaranteed by the law of large numbers and the convergence rate is 1/
√

N , as

given by the Central Limit Theorem.5 Output variances and other distributional quantities can similarly

be computed using Monte Carlo simulation results. The process of computing such quantities requires a

large number of model evaluations, which for computationally intensive models is in many cases impractical;

hence the need for developing surrogate models for this type of uncertainty analysis.

For model development purposes, global sensitivity analysis is a rigorous method for quantitatively ap-

portioning output variance.2 The goal of a global sensitivity analysis is shown notionally in Figure 1, where

the pie represents the variance in a model output, which is then broken out according to factor contributions.

The results of a global sensitivity analysis permit a ranking of model factors that can be used in different

development settings such as factor prioritization for future research, where the goal is to determine which

factors, once fixed will cause the largest reduction in variance, and factor fixing, for which the goal is to

identify noninfluential factors that may be fixed without substantially affecting model outputs.6
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Figure 1. Apportioning Output Variance

The process of apportioning output variance across model factors in a global sensitivity analysis can

be carried out rigorously by both a Fourier Amplitude Sensitivity Test (FAST) method, and the Sobol’

method.2,3, 7, 8 The FAST method is based on Fourier transforms, while the Sobol’ method utilizes Monte

Carlo simulation. Owing to its ease of implementation, the Sobol’ method is employed in this work. It

should be noted here that other techniques, such as the method of elementary effects due to Morris,9 can

approximate the results of the FAST and Sobol’ methods, and in the case of the Morris method, provide a

good proxy to the total sensitivity index discussed below.6 However, in this work we have focused on using

rigorous statistical methods on surrogate models rather than on using approximate statistical methods on

surrogate models or full models.

The Sobol’ method for computing global sensitivity indices was proposed by Russian mathematician I.M.

Sobol’. The method is well-developed and in wide use in the sensitivity analysis field, particularly by the

Joint Research Centre of the European Commission.2,6, 10 The method is discussed here in detail because

the surrogate modeling methods developed in Section III will make use of the formulation. The derivation

follows the work of Homma and Saltelli.3

The Sobol’ method is based on the ANOVA High-Dimensional Model Representation (ANOVA-HDMR).

A high-dimensional model representation of a function, f(x), can be written as

f(x) = f0 +
∑

i

fi(xi) +
∑
i<j

fij(xi, xj) + . . . + f12...n(x1, x2, . . . , xn), (2)

where f0 is a constant, fi(xi) is a function of only xi, fij(xi, xj) is a function of only xi and xj , etc. Without

any constraints, the representation of f(x) given by (2) is not unique, however, it can be made unique by

enforcing the constraints

∫ 1

0

fi1,...,is
(xi1 , . . . , xis

) dxω = 0, for ω = i1, . . . , is, s = 1, . . . , n, (3)

where the function f(x), and hence all its components, has been assumed to be integrable. For simplicity of

presentation, the inputs to the function in (3) have been defined on the interval [0,1], but this assumption

is not essential to the method. For each s, the indices i1, . . . , is in (3) are all sets of s integers such that
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1 ≤ i1 < . . . < is ≤ n. Thus, for s = 1, the constraint (3) applies to all terms fi in (2), while for s = 2, the

constraint (3) applies to all terms fij with i < j as in (2), etc. The application of the constraint (3) makes

the HDMR a unique representation of the function f(x), referred to as an ANOVA-HDMR. Integration of

f(x) over all inputs results in
∫

f(x)dx = f0, which assuming each input xi is a uniform random variable on

[0,1], is the mean value of the function f(x).

The constraint given by (3) also forces the different components of f(x) within the ANOVA-HDMR to

be orthogonal. That is, if (i1, . . . , is) 6= (j1, . . . , jl), then

∫
fi1,...,is

(xi1 , . . . , xis
)× fj1,...,jl

(xj1 , . . . , xjl
) dx = 0, (4)

since at least one index is not repeated.

Assuming now that f(x) is square integrable, and therefore all components within the ANOVA-HDMR

are as well, the variance of f(x) is written as

D =
∫

f(x)2 dx− f2
0 , (5)

and partial variances are defined as

Di1...is
=
∫

fi1,...,is
(xi1 , . . . , xis

)2 dxi1 . . . dxis
. (6)

Given the ANOVA-HDMR for some f(x), we square and then integrate both sides of (2), and employ the

orthogonality constraint to arrive at

∫
f(x)2 dx = f2

0 +
∑

i

Di +
∑
i<j

Dij + . . . + D12...n, (7)

which implies

D =
∑

i

Di +
∑
i<j

Dij + . . . + D12...n. (8)

This is precisely the notion shown in Figure 1.

Global sensitivity indices are defined as

Si1,...,is
=

Di1...is

D
, s = 1, . . . , n. (9)

The sum of all global sensitivities of this form for a given function is unity. Global sensitivity indices with

only one subscript, (e.g. Si), are called main effect sensitivities, and those with multiple subscripts, (e.g. Si,j ,
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Si,j,k, etc.), are called interaction effect sensitivities. The sum of a factor’s main effect global sensitivity and

all interaction effect sensitivities that involve that factor gives the total effect sensitivity index, τ , which is

defined for input factor i as

τi = Si + Si,ic , (10)

where Si is the main effect sensitivity to factor i, and Si,ic is the sum of the sensitivity indices of all interaction

effects that include factor i. Since the sum of all unique sensitivity indices is unity, we have that

τi = Si + Si,ic = 1− Sic , (11)

where Sic is the sum of the sensitivity indices for all main effects and interactions effects that do not involve

factor i. Since interaction effects will be counted for each factor involved in them,
∑

i τi ≥ 1.

The total effect sensitivity indices in (11) can be computed via Monte Carlo simulation as follows,3

where hat quantities denote estimates of the corresponding true quantities. Here it should be noted that the

computation of the partial variances with Monte Carlo simulation proceeds directly with the function f(x)

and does not require explicit knowledge of the functions on the right-hand side of (2). The estimate of the

mean f0 is computed as

f̂0 =
1
N

N∑
m=1

f(xm), (12)

while the estimate of the variance D is

D̂ =
1
N

N∑
m=1

f(xm)2 − f̂2
0 . (13)

The single-factor partial variance is then computed for factor i by resampling all factors except factor i:

D̂i =
1
N

N∑
m=1

f([xm
1 , . . . , xm

i , . . . , xm
n ]T )f([x̃m

1 , . . . , xm
i , . . . , x̃m

n ]T )− f̂2
0 , i = 1, . . . , n, (14)

where x̃m
j denotes a different sample of factor xj . The estimate of the variance due to all factors except

factor i (which includes the sum of all single-factor and interaction effect partial variances that do not include

factor i) is denoted as D̂ic , and is computed by

D̂ic =
1
N

N∑
m=1

f([xm
1 , . . . , xm

i , . . . , xm
n ]T )f([xm

1 , . . . , x̃m
i , . . . , xm

n ]T )− f̂2
0 , (15)

where now just factor i is resampled. Finally, computing Ŝic = D̂ic/D̂ and applying (11), we obtain the

desired total effect sensitivity index.
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The main effect sensitivity indices, Si, may be used for factor prioritization by ranking inputs according

to their main effect indices, which give the percentage of how much output variability can be expected to be

eliminated by fixing a particular input somewhere on its domain. The total effect sensitivity indices, τi, may

be used for factor fixing, since a low total effect index reveals a given input has a small main effect and also

does not take part in substantial interactions among other inputs. For n inputs, the calculation of sensitivity

indices requires (2n + 1) Monte Carlo simulations (each with N model evaluations) if both the main effect

and total effect indices are desired. Thus, like uncertainty analysis for decision-making, sensitivity analysis

of large-scale models for development purposes will in most situations require surrogate models.

II.B. Surrogate Modeling

Surrogate models can be categorized into three different classes: data-fit models, reduced-order models, and

hierarchical models.11 Data-fit models are generated using interpolation or regression of simulation data

from the input/output relationships in the high-fidelity model.11,12 The primary challenge in adopting this

surrogate modeling strategy for large-scale complex system models is the “curse of dimensionality” when

the number of inputs to a model is large and design of experiment techniques must be applied with care

in order to balance the computational cost of the required simulations with coverage of the input space.

Reduced-order models are typically constructed for systems described by partial differential equations or

large sets of ordinary differential equations.13 Derivation of reduced-order models relies on the knowledge of

the governing equations and are thus not suitable to systems for which the governing equations are unknown

or empirically based. Hierarchical surrogate models, also known as variable fidelity models, employ simplified

mathematical models such as coarser grids in finite element models14 and models with simplified physics.15–17

The application of a particular surrogate modeling strategy depends both on what computational tasks

are to be performed, and on the underlying structure of the model. In some cases, nothing will be known

about a given model, and strategies that perform better in black-box situations, such as data-fit methods

should be used. In other cases, everything will be known about the governing equations of a given model,

and reduced-order models can be derived using projection-based approaches. In this paper, we consider

models of a general form where the outputs of interest are computed as a sum of many constituent parts. As

described in the next subsection, this class of models has applications in engineering and logistics systems.

For such models, existing surrogate modeling methods cannot be applied. While the structure of the model

is known, the input space is too large to use a projection-based model reduction approach or a data-fit

method.
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II.C. Generalized Model Form

Consider a probability triple (R, B, P), where R is the sample space, here the set of real numbers, B is the σ-

field, here the Borel σ-field, and P is a probability measure. Also, consider a class of B-measurable functions,

f . The class of models we consider in this work are of the form

Y =
N∑

k=1

zk =
N∑

k=1

fk(x), (16)

where Y is an output of interest computed via a sum over N constituent parts, which are represented by the

zk that may themselves be functions of random inputs, zk = fk(x), where x = [x1, x2, ..., xn]T is a vector of

n independent random inputs, and fk ∈ f . Because the fk are all B-measurable, the zk and Y are random

variables.

Though the form of (16) is simple, it is relevant to a broad range of applications. For example, outputs

of the form (16) are common in systems whose performance is computed over many parts—e.g., emissions or

fuel burn summed over mission segments for a transportation system, system failure time estimated as a sum

of individual component lifetimes, many aspects of wireless communication, including current fluctuations

in tunnel junctions, diversity schemes, and cochannel interference, profit summed over products or store

locations, or votes summed over polling locations. In these examples, and in general, it is important to note

that the assumption of independence is an aspect of the modeling. Our purpose here is to create surrogates

for models of the form given by (16) so that we may carry out both uncertainty and sensitivity analyses in

a reasonable amount of time while maintaining quantitative rigor. If independence is assumed when the full

model is exercised, it should be assumed when the surrogate model is used in place of the full model, since

the surrogate is attempting to produce estimates of results that would be obtained with the full model. The

same sentiment holds when considering the assumption of randomness.

Simpson et al. present a survey of surrogate modeling techniques, along with recommendations for select-

ing a modeling approach.18 They find that response surface modeling is appropriate for applications with less

than ten input factors, while interpolation-based methods such as Kriging may be suitable for up to 50 input

factors. For our problems of interest, the number of inputs is typically in the thousands or even millions.

Of existing surrogate modeling methods, only neural networks are even remotely possible for such a large

number of inputs. However, as discussed in Ref. 18, neural networks are computationally expensive to create

and are best suited for deterministic problems. More recent advances in surrogate modeling methods, such

as the pseudo response surface methodology,19 address some of the computational challenges associated with

high-dimensional input spaces by requiring the surrogate to be accurate only in some regions of the design

space (e.g., near the Pareto front). However, even with these advances, surrogate modeling for systems with
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thousands or millions of inputs remains out of reach. In the next section we present a hierarchical surrogate

modeling approach that addresses this challenge for models of the form given by (16).

III. Surrogate Modeling Methodology with Quantified Confidence Intervals

Here we propose a hierarchical surrogate modeling approach targeted at uncertainty analysis and sensitiv-

ity analysis applications for the class of models described in the previous section. However, if the uncertainty

associated with the use of a surrogate model in place of a full model is not properly quantified, the usefulness

of the various uncertainty analyses will be limited. Thus, one of the key objectives of this work is to quantify

the effects of using a surrogate model to perform uncertainty and sensitivity analyses. The methods used to

achieve this goal for the general class of models given by (16) are discussed in the following subsections.

III.A. Hierarchical Surrogate Modeling Approach

For the class of models given by (16), a natural representative for building a hierarchical surrogate is a single

random variable, zk. Our surrogate modeling approach is thus to approximate the output of interest, Y ,

using a subset of the zk. For the case of a general model of the form of (16), if the zk are such that

maxc≤N
var(zc)

ΣN
k=1var(zk)

→ 0 as N →∞, (17)

where c ∈ {1, 2, . . . , N}, and N is the number of constituent parts used in the summation given in (16), then

according to the Central Limit theorem,

Y →d N

(
N∑

k=1

E[zk],
N∑

k=1

var(zk)

)
as N →∞, (18)

where the convergence is in distribution, N (α, β) is a normal distribution with mean α and variance β,

and the constraint given by (17) is referred to as the Lyapunov condition.20 Though (18) states that the

convergence to a normal distribution occurs as N → ∞, it is common in statistical practice to assume Y

may be appropriately modeled with a normal distribution when N ≥ 30.21 The constraint given by (17)

can be met for example, by any set of zk such that var(zk) < ∞ for k = 1, 2, . . . , N and
∑N

k=1 var(zk) is

unbounded as N → ∞. Although here independence was used to invoke the Central Limit theorem, there

are other methods for invoking the Central Limit theorem, such as m-dependence,22 for situations where

the independence condition is not met. The application of the Central Limit theorem to the general model

given in (16) for both uncertainty and sensitivity analyses is discussed in the following section.
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III.B. Surrogate Modeling for Decision-Making Uncertainty Analysis

As given by (18), the output of interest, Y , is normally distributed. To estimate the distribution of Y with

a surrogate model, only estimates of
∑N

k=1 E[zk] and
∑N

k=1 var(zk) are required. We may estimate these

quantities by noting that if we were to compute E[zk] for every constituent part zk, we could view the

resulting set of expected values as representing a set of N samples drawn from some distribution. Thus, the

expected value of some zk can be considered as a sample from a random variable, and can be estimated using

a subset of random variables chosen from the full set. We denote by Q the subset of Nq random variables

chosen randomly from the full set of N random variables. Then using the law of large numbers,
∑N

k=1 E[zk]

is estimated as N 1
Nq

∑
k∈Q E[zk], since

N
1

Nq

∑
k∈Q

E[zk] → NE[E[zk]] = N
1
N

N∑
k=1

E[zk] =
N∑

k=1

E[zk] as Nq → N. (19)

For the sum of the variances of the zk in (18), a similar method is followed to derive an analogous

expression for the variance estimate of Y . Thus, the surrogate model estimate of the output distribution

using the subset Q of Nq random variables to represent the full N random variables is given by

Ŷ ∼ N

(
N

Nq

∑
k∈Q

E[zk],
N

Nq

∑
k∈Q

var(zk)

)
, (20)

where Ŷ is a random variable that is an estimate of the random variable Y .

In (20), the terms 1
Nq

∑
k∈Q E[zk] and 1

Nq

∑
k∈Q var(zk), are sample means of the distributions of expected

values of the zk and of the variances of the zk, respectively. According to the Central Limit theorem, these

sample means have the following normal distributions:

1
Nq

∑
k∈Q

E[zk] ∼ N (µE[zk],
N −Nq

N − 1
σ2

E[zk]/Nq),

1
Nq

∑
k∈Q

var(zk) ∼ N (µvar(zk),
N −Nq

N − 1
σ2

var(zk)/Nq), (21)

where µE[zk] is the expected value of the distribution of expected values of the zk, σ2
E[zk] is the variance of the

distribution of expected values of zk, µvar(zk) is the expected value of the distribution of variances of the zk,

and σ2
var(zk) is the variance of the distribution of variances of the zk. The N−Nq

N−1 terms are finite population

correction factors that must be applied since N is finite and the sampling of Nq random variables from N

total random variables is done without replacement.23

As noted in Section II, a key outcome of an uncertainty analysis intended to support decision-making is

the ability to compare such quantities as output means and variances. These quantities cannot be computed
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exactly using a surrogate model; however, confidence intervals for these quantities can be rigorously computed

since, as shown in the analysis above, the parameters are normally distributed. The confidence intervals for

the mean and variance of the output Y can be constructed from

N

Nq

∑
k∈Q

E[zk]− Zα/2

√
N −Nq

N − 1
N2

Nq
σ2

E[zk] < E[Y ] <
N

Nq

∑
k∈Q

E[zk] + Zα/2

√
N −Nq

N − 1
N2

Nq
σ2

E[zk] (22)

and

N

Nq

∑
k∈Q

var(zk)− Zα/2

√
N −Nq

N − 1
N2

Nq
σ2

var(zk) < var(Y ) <
N

Nq

∑
k∈Q

var(zk) + Zα/2

√
N −Nq

N − 1
N2

Nq
σ2

var(zk), (23)

where Zα/2 is the value of the inverse cumulative distribution function of a standard normal random variable

evaluated at (1− α/2), where α sets the level of confidence.24 A typical value of Zα/2 is 1.96, which corre-

sponds to a 95% confidence interval. In practice, constructing these confidence intervals requires estimating

the variance of the distribution of the expected values of the zk, σ2
E[zk], and the variance of the distribution

of the variances of the zk, σ2
var(zk). We estimate these parameters using the sample variance for each, which

are calculated from

σ̂2
E[zk] =

1
Nq − 1

Nq∑
k=1

(E[zk]− E[zk])2 (24)

σ̂2
var(zk) =

1
Nq − 1

Nq∑
k=1

(var(zk)− var(zk))2, (25)

where σ̂2
E[zk] and σ̂2

var(zk) are the sample variances of σ2
E[zk] and σ2

var(zk) respectively, and E[zk] and var(zk)2

are the sample means of the distributions of the expected values and the variances of the zk respectively.

The estimates, σ̂2
E[zk] and σ̂2

var(zk), are then used in (22) and (23). These intervals also require the estimation

of expected values of the random variables zk, E[zk], and variances, var(zk). These parameters, as will

be discussed in Section IV, are estimated from a Monte Carlo simulation with a large number of model

evaluations and thus, uncertainty associated with these estimates is neglected.

As can be seen from (22), as Nq approaches N , the confidence interval around E[Y ] narrows, eventually

becoming a single point when Nq = N . Thus, there is a tradeoff between how many random variables are

considered in the surrogate model and the tightness of the confidence intervals for the mean and variance of

the output Y .
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III.C. Surrogate Modeling for Model Development Sensitivity Analysis

The ANOVA-HDMR for a random variable zk given by fk(x) may be written as

zk = fk
0 +

∑
i

fk
i (xi) +

∑
i<j

fk
ij(xi, xj) + . . . + fk

12...n(x1, x2, . . . , xn), (26)

which can be squared and integrated, as was done to arrive at (7), giving

var(zk) :=
∑

i

Dk
i +

∑
i<j

Dk
ij + . . . + Dk

12...n, (27)

where Dk
i is the partial variance of zk due to input xi and the rest of the terms represent partial variances

of zk due to various levels of interactions between the components of x. Summing over all the zk gives

Y =
N∑

k=1

fk
0 +

N∑
k=1

∑
i

fk
i (xi) +

N∑
k=1

∑
i<j

fk
ij(xi, xj) + . . . +

N∑
k=1

fk
12...n(x1, x2, . . . , xn). (28)

At this point we may proceed as we did in Section II.A and estimate total and main effect sensitivity

indices for each xi. However, the models of the form given by (16) may contain millions of inputs, rendering

computation of sensitivity indices for each input impractical and of limited use. For such models, it is

typical that these inputs comprise just a few distinct physical quantities. For example, for the emissions

model analyzed in the next section, the inputs consist of six physical quantities (fuel burn, temperature,

pressure, relative humidity, fuel flow, and reference emission index) which are defined for each flight segment

of each operation in a set of aircraft flights. A sensitivity analysis could consider the sensitivities of each of

these independently sampled inputs individually, resulting in millions of sensitivity indices. From a practical

standpoint, we are more interested in determining the sensitivity of model outputs to groups of inputs. For

example, for the nitrous oxide (NOx) emissions for an aircraft operation, we might wish to compute the

contribution to variance of all fuelburn inputs for that operation, where each input is sampled independently

across flight segments in the operation. Alternatively, for the total NOx emissions summed over a set of

operations, we might wish to compute the contribution to variance of all fuelburn inputs for those operations,

where again each input is sampled independently across all flight segments. In this section, we present the

extension of the global sensitivity analysis methodology to handle such cases for the class of general models

given by (16). Further, application of the Central Limit Theorem, which is permissible given the additive

nature of the models and ANOVA-HDMR, enables the calculation of confidence intervals around sensitivity

indices computed using the surrogate models in place of the full models.

Consider a case where we have two physical quantities (type 1 and type 2, e.g. pressure and temperature)

within x that we wish to group. We define the set of physical quantities of type 1 as G1 = {xi|xi are of type 1}
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and the set of physical quantities of type 2 as G2 = {xi|xi are of type 2}. An ANOVA-HDMR can then be

written for Y in terms of the groups G1 and G2 and their interaction rather than the individual components

of x. The variance of Y can then be written as

var(Y ) := D = DG1 + DG2 + DG1G2 , (29)

where DG1 is the variance of Y due to the elements of G1 and their interactions, DG2 is the variance of Y due

to the elements of G2 and their interactions, and DG1G2 is the variance of Y due to the interactions involving

elements from both G1 and G2. A global sensitivity analysis may then be carried out to compute total effect

and main effect sensitivity indices for the groups. For G1, the total effect sensitivity index can be computed

as

τG1 = 1−
DGc

1

D
, (30)

where DGc
1

is the sum of the variances due to all main effect terms that do not involve elements of G1, which

here is just DG2 . The main effect sensitivity index can be computed as

SG1 =
DG1

D
. (31)

Similar expressions may be written for G2.

For the class of models with which we are concerned, which consist of a summation of N constituent

parts as in (16), it is typical that particular physical inputs be defined on each part. Thus, the groups in

this case will each have N elements. As will be shown in Section IV, computation of the sensitivity indices

given by (30) and (31) can proceed by performing global sensitivity analyses on the constituent parts of

the model. This enables the creation of hierarchical surrogate models for global sensitivity analysis in the

form of subsets of constituent parts much like the surrogate models constructed in Section III.B. Confidence

intervals may be derived for the sensitivity indices computed using these surrogates, the formulation of which

is given in the following section.

IV. AEM Application and Results

In this section, our approach is applied to the example of estimating emissions of aircraft flights. We first

describe the model and then present surrogate models for decision-making uncertainty analysis and model

development sensitivity analysis. This is followed by results from using the surrogate models in place of the

full model for a typical emissions analysis.
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IV.A. Aircraft Emissions Model

The AEM is used to calculate emissions inventories of such pollutants as CO2, CO, NOx, SOx, and many

others. The calculation is done on an operation-by-operation basis, and the emissions computed for each

operation in a given scenario are then aggregated to produce an emissions inventory. An operation is in turn

simulated on a flight segment-by-segment basis as shown in Figure 2, where emissions are calculated for each

segment of the operation and then aggregated to produce the total emissions of the operation.

Figure 2. AEM segmentation of an aircraft operation. Adapted from Ref. 25.

The AEM inputs considered in our analyses are shown in Table 1, where each input is defined for

each segment of each operation. We consider the emissions resulting from a total of No operations, each

consisting of Ns flight segments. Thus, the total number of inputs is given by n = 6NoNs. Table 1 also

shows the probability density functions that are defined for each input on a segment-by-segment basis. These

density functions were arrived at through previous studies and expert opinions of the Partnership for AiR

Transportation Noise and Emissions Reduction (PARTNER).26 The samples from the density functions are

applied as multipliers to default values of the various inputs that are specific to aircraft type, engine type,

and geographic location. For triangular distributions, the defining values are the minimum, mode, and

maximum values. For uniform distributions, the defining values are the minimum and the maximum.

Table 1. AEM inputs and their probability density functions. All inputs are applied as multipliers to nominal input
values.

Input Variable Input Quantity Distribution Type Defining Values
x1 := q Fuel Burn Uniform [0.95, 1.05]
x2 := r Temperature Triangular [0.89, 1.00, 1.11]
x3 := s Pressure Triangular [0.97, 1.00, 1.03]
x4 := t Relative Humidity Triangular [0.82, 1.00, 1.17]
x5 := u Fuel Flow Uniform [0.95, 1.05]
x6 := v REINOx Triangular [0.76, 1.00, 1.24]

The outputs of the AEM (global emissions of NOx, CO, CO2, etc.) are all computed in a similar manner,
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thus the modeling methodology is developed here only for the NOx output. Other outputs are treated in an

analogous way. The NOx produced for operation k, yk, is calculated as

yk =
Ns∑
l=1

qklgkl(rkl, skl, tkl, ukl, vkl), (32)

where qkl is the fuelburn on segment l of operation k, and gkl(rkl, skl, tkl, ukl, vkl) is the emissions index of

NOx (EINOx) on segment l of operation k, which is calculated using Boeing Method 2 (Ref. 27), with the

inputs defined in Table 1, specifically the temperature, pressure, relative humidity, fuel flow, and reference

emissions index of NOx (REINOx) for the given segment. The Boeing Method 2 is an empirical method for

correcting reference emission indices for flight conditions using fuel flow and atmospheric conditions. The

total NOx output for a set of No operations is then calculated as

ytot =
No∑
k=1

yk =
No∑
k=1

Ns∑
l=1

qklgkl(rkl, skl, tkl, ukl, vkl). (33)

Since the functions within the AEM are all continuous, and each input of the AEM is a random variable,

each output of the AEM is also a random variable. Thus, the total NOx output, ytot, can be thought of as

a random sample from the random variable Ytot, for which confidence intervals and sensitivity indices are

desired.

Equation (33) reveals the structure of the AEM once it has been decomposed by operations. Given

that computations are performed separately on each operation within the AEM, it has the general form

of (16), where the zk ≡ yk, fk ≡
∑Ns

l=1 qklgkl(rkl, skl, tkl, ukl, vkl), and x ≡ (qkl, rkl, skl, tkl, ukl, vkl). Our

surrogate modeling approach thus amounts to approximating the output of interest, total NOx emissions,

using a subset of flight operations. This is illustrated in Figure 3, where it can been seen that the surrogate

modeling approach is based on reducing the dimension of the input space.

Since the functions within the AEM are all continuous, and each input of the AEM is a random variable,

each single operation output of the AEM is also a random variable. These random variables are independent

and satisfy the Lyapunov condition;20 therefore, the AEM is a member of the general class of models described

in Section II.C and the results presented in Section III are applicable. Here, it is noted that, owing to such

circumstances as aircraft operating on similar routes, certain operations in the real-world would encounter

similar environmental factors, such as temperature, pressure, and humidity, thus causing some dependence

in how those factors enter into emissions estimates, which would lead to some dependence in the outputs

of these operations. However, the AEM does not currently include these factor dependencies, which implies

that the operation-level outputs of the AEM are completely independent of each other. Thus, the Central

Limit theorem may be invoked.
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Figure 3. The hierarchical surrogate modeling approach achieves a reduction in computational complexity through
a reduction of the input space. For the AEM, this amounts to selecting a subset of r operations, denoted by the
subscripts, i1, ..., ir, over which to estimate the total emissions.

IV.B. AEM Surrogate for Decision-Making Uncertainty Analysis

According to the Central Limit theorem, the output distribution of total NOx emissions, ytot, is normally

distributed since

ytot =
No∑
k=1

yk →d N (
No∑
k=1

E[yk],
No∑
k=1

σ2
yk

) as No →∞, (34)

where the convergence is in distribution, and N (α, β) is a normal distribution with mean α and variance

β. Typical analyses involving the AEM calculate emissions inventories for representative days of operations,

for which No ≈ 70,000, and one year of operations, for which No ≈ 30,000,000. As noted in Section II.C,

to assume normality No should be greater than about 30, thus the number of samples is much greater than

required.

To estimate the distribution of ytot with a surrogate model, only estimates of
∑No

k=1 E[yk] and
∑No

k=1 σ2
yk

are required. As shown in Section III, we may generate a surrogate model estimate of the the total NOx

output distribution using a subset O of no operations to represent the full No operations as

ŷtot ∼ N

(
No

no

∑
k∈O

E[yk],
No

no

∑
k∈O

σ2
yk

)
, (35)

In (35), the terms 1
no

∑
k∈O E[yk] and 1

no

∑
k∈O σ2

yk
, are sample means of the distributions of expected

values of yk and of the variances of the yk, respectively. These sample means then have the following normal
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distributions:

1
no

∑
k∈O

E[yk] ∼ N (µE,
No − no

No − 1
σ2

E/no),

1
no

∑
k∈O

σ2
yk
∼ N (µσ2 ,

No − no

No − 1
σ2

σ2/no), (36)

where µE is the expected value of the distribution of expected values of the yk, σ2
E is the variance of the

distribution of expected values of yk, µσ2 is the expected value of the distribution of variances of the yk, and

σ2
σ2 is the variance of the distribution of variances of the yk.

As given in Section III, confidence intervals for the mean and variance of total NOx emissions can be

constructed from

No

no

∑
k∈O

E[yk]− Zα/2

√
No − no

No − 1
N2

o

no
σ2

E < E[ytot] <
No

no

∑
k∈O

E[yk] + Zα/2

√
No − no

No − 1
N2

o

no
σ2

E (37)

and

No

no

∑
k∈O

σ2
yk
− Zα/2

√
No − no

No − 1
N2

o

no
σ2

σ2 < var(ytot) <
No

no

∑
k∈O

σ2
yk

+ Zα/2

√
No − no

No − 1
N2

o

no
σ2

σ2 . (38)

As noted in Section III, construction of these confidence intervals requires estimating the variance of the

distribution of the expected values of the yk, σ2
E, and the variance of the distribution of the variances of the

yk, σ2
σ2 . We estimate these parameters using the sample variance for each, which are calculated from

σ̂2
E =

1
no − 1

no∑
k=1

(E[yk]− E[yk])2 (39)

σ̂2
σ2 =

1
no − 1

no∑
k=1

(σ2
yk
− σ2

yk
)2, (40)

where σ̂2
E and σ̂2

σ2 are the sample variances of σ2
E and σ2

σ2 respectively, and E[yk] and σ2
yk

are the sample

means of the distributions of the expected values and the variances of the yk respectively. The estimates, σ̂2
E

and σ̂2
σ2 , are then used in (37) and (38). As will be shown in Section IV.D, no is sufficiently large to neglect

the uncertainty associated with these estimates. These intervals also require the estimation of operation-

level expected values, E[yk], and variances, σ2
yk

, of NOx emissions. These parameters, as will be discussed in

Section IV.D, are estimated from a Monte Carlo simulation with a large number of model evaluations and

thus, uncertainty associated with these estimates is also neglected.

As can be seen from (37), as no approaches No, the confidence interval around E[ytot] narrows, eventually

becoming a single point when no = No. Thus, as mentioned in Section III, there is a tradeoff between how

19 of 30

American Institute of Aeronautics and Astronautics



many operations are analyzed in the surrogate model, and the tightness of the confidence intervals for the

mean and variance of the total NOx. This tradeoff is discussed further in Sections IV.D and VI. Results

from applying this method to construct confidence intervals for the mean and variance of the AEM NOx

output are presented in Section IV.D.

IV.C. AEM Surrogate for Model Development Sensitivity Analysis

Consider the ANOVA-HDMR for the calculation of the NOx emissions from a single operation, l:

yk = f0,k +
Ns∑
l=1

fqkl
(qkl) +

Ns∑
l=1

frkl
(rkl) +

Ns∑
l=1

fskl
(skl) +

Ns∑
l=1

ftkl
(tkl)

+
Ns∑
l=1

fukl
(ukl) +

Ns∑
l=1

fvkl
(vkl) + interaction terms, (41)

where we use the input variable notation defined in Table 1. The term
∑Ns

l=1 fqkl
(qkl) is the sum of all the

single-factor functions of factor qkl; that is, the functions that depend only on the segment fuelburn inputs.

The second summation is over those functions that depend only on the segment temperatures, rkl, and so

on for the other summations. Here, as in (32), Ns segments have been assumed for operation k.

Since the goal is to compute sensitivities for inputs grouped across flight segments, we define qk = {qkl}Ns

l=1

to be the set of fuelburn segment inputs for operation k. Define rk, sk, tk, uk, and vk similarly for the other

input quantities. Each summation in (41) can then be written as

fqk
=

Ns∑
l=1

fqkl
(qkl), (42)

with analogous expressions defining frk
, etc. Then (41) is written as

yk = f0,k + fqk
+ frk

+ fsk
+ ftk

+ fuk
+ fvk

+ interaction terms. (43)

Squaring and integrating (43), as was done to arrive at (7), gives

var(yk) := Dyk
= Dqk

+ Drk
+ Dsk

+ Dtk
+ Duk

+ Dvk
+ interaction partial variances, (44)

where Dqk
is the partial variance due to all fuelburn inputs, and so on for the other inputs.

Similarly, the AEM output ytot, which, as noted in Section II, is computed by aggregating the operational
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level outputs, is written in ANOVA-HDMR form by summing over the operations in (41), which yields

ytot =
No∑
k=1

f0,k +
No∑
k=1

Ns∑
l=1

fqkl
(qkl) +

No∑
k=1

Ns∑
l=1

frkl
(rkl) +

No∑
k=1

Ns∑
l=1

fskl
(skl) +

No∑
k=1

Ns∑
l=1

ftkl
(tkl)

+
No∑
k=1

Ns∑
l=1

fukl
(ukl) +

No∑
k=1

Ns∑
l=1

fvkl
(vkl) + interaction terms. (45)

Now let q = {qk}No

k=1 denote the set of fuelburn inputs across all operations, and fq =
∑No

k=1

∑Ns

l=1 fqkl
(qkl)

be the sum of all the single-factor functions of all segment fuelburn inputs, then (45) is written as

ytot = f0 + fq + fr + fs + ft + fu + fv + interaction terms, (46)

where f0 =
∑No

k=1 f0,k is the expected value of ytot and the functions fr, fs, ft, fu, and fv are defined

analogously to fq. Squaring and integrating (46) gives

var(ytot) := D = Dq + Dr + Ds + Dt + Du + Dv + interaction partial variances, (47)

which may also be written as

D =
No∑
k=1

Dqk
+

No∑
k=1

Drk
+

No∑
k=1

Dsk
+

No∑
k=1

Dtk
+

No∑
k=1

Duk
+

No∑
k=1

Dvk
+ interaction partial variances. (48)

The total effect sensitivity index for q, denoted τq, represents the relative contribution to the variance D

of all fuelburn inputs over all operations and segments. As in (30), we write

τq = 1− Dqc

D
, (49)

where Dqc is the sum of the variances due to all main effect terms and interaction effect terms that do

not involve fuelburn. By breaking this expression into a sum over operations and using the fact that

D =
∑No

k=1 Dyk
, the expression (49) can be written as

τq = 1−
∑No

k=1(1− τqk
)Dyk∑No

k=1 Dyk

, (50)

where τqk
is the total effect sensitivity index for qk, the fuelburn inputs over operation k. A similar derivation

for main effect sensitivity indices leads to

Sq =
∑No

k=1 Sqk
Dyk∑No

k=1 Dyk

. (51)
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As was the case for the expected values of NOx emissions on the operational level in Section III.A,

the terms in (50) and (51) can be considered as samples from distributions. Therefore, to estimate the

sensitivity indices given by (50) and (51), we apply the same process used to arrive at (20) from (18). In

(51) for example, the distribution of the numerator,
∑No

l=1 Sql
Dyl

, is equal to NoE[SqlDyl], which may be

estimated from No

no

∑
l∈O[SqlDyl]. Just as in (36), this estimate is normally distributed and converges to a

single value when no = No. To estimate confidence intervals for τq and Sq, we sample from distributions

of the numerators and denominators to estimate the intervals empirically. It should be noted here that the

confidence intervals computed for τq and Sq will be conservative due to the fact that the numerator and

denominator terms in both (50) and (51) are positively correlated. By not including the correlation in the

estimation of the confidence intervals, the estimate of the lower endpoint will be less than the true lower

endpoint and the estimate of the upper endpoint will be greater than the true upper endpoint. This is

due to the fact that the numerator in each equation must be less than or equal to the denominator in each

equation, which leads to conservative intervals when the positive correlation term is not included. Results

from applying this method to the AEM sensitivity indices for the total emissions of NOx are presented in

the following subsection.

IV.D. Results

A typical analysis run of the AEM consists of all operations conducted on a particular day that is considered

a reasonable representative of all operations from a particular year. These days are referred to as repre-

sentative days. The full AEM run for the representative day for the year 2005, which is the AEM model

we consider here, has No = 68,343 operations. Each of these operations requires a Monte Carlo simulation

to calculate operation-level emissions outputs that are then aggregated, as shown in (33) to produce the

overall AEM output, ytot. For the computational resources available for this study, a single model evaluation

for one operation takes approximately 2.31 × 10−4 seconds. To perform both uncertainty and sensitivity

analysis for a single operation requires 13 separate Monte Carlo simulations (2n + 1 simulations, where n,

which is the dimension of the input space, is 6 for the AEM), each of which consisted of 10,000 model

evaluations in this study. Thus, running each operation of the AEM representative day for 2005 to perform

uncertainty and sensitivity analysis on ytot, would take approximately 570 hours, which is computationally

expensive, especially if many different policy scenarios are to be considered. As will be shown in the following

subsections, the methods presented in Section III can be used to perform both uncertainty and sensitivity

analyses on the AEM representative day with a surrogate model consisting of a randomly chosen subset of

operations, while maintaining quantitative rigor in the analyses in a manner that is computationally efficient.
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AEM Surrogate Results for Decision-making Uncertainty Analysis

To estimate the confidence intervals for the mean and variance of the total NOx emissions from the rep-

resentative day, 9,914 operations were chosen randomly, without replacement, from the full set of operations.

As noted previously, a 10,000-iteration Monte Carlo simulation was run for each of the sampled operations,

the results of which were used to compute operation-level NOx means and sample variances. These values

were then used to estimate the expected value of the distribution of operation-level expected values of NOx

emissions, µE; the variance of the expected value of the distribution of operation-level expected values of

NOx emissions, σ2
E; the expected value of the distribution of operation-level variances of NOx emissions, µσ2 ;

and the variance of the distribution of operation-level variances of NOx emissions, σ2
σ2 . As was noted in

Section III, these estimates are necessary for constructing the confidence intervals for the expected value and

variance of the total NOx emissions of the full AEM and uncertainty in these estimates has been neglected.

Figure 4 shows the behavior of these estimates as the number of operations in the subset, no, is increased

from 2,500 to 9,914 operations.
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Figure 4. Estimates of µE, σ2
E , µσ2 , and σ2

σ2 as the number of operations in the surrogate model, no, increases from 2,500
to 9,914.

The confidence intervals (95%) for the mean and variance of the total NOx emissions computed at values

of no of 2,500, 5,000, 7,500, and 9,914, are presented in Figure 5. Figure 6 presents the dependence of the

confidence interval widths, in terms of percentage ± of the surrogate model estimated values, for the mean

and variance of total NOx emissions for a full run of the representative day as no increases from 2,500 to

9,914. These results show that by applying the surrogate modeling methodology described in Section III for
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Figure 5. 95% confidence intervals of the mean and variance of total NOx emissions computed with surrogate models
of 2,500, 5,000, 7,500, and 9,914 operations.
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Figure 6. 95 percent confidence interval widths, in terms of percentage ± of the estimated value, for the mean and
variance of total NOx emissions for a full run of the representative day as no increases from 2,500 to 9,914.

uncertainty analysis in support of decision-making, confidence intervals for the mean and variance of total

NOx emissions for the representative day can be constructed. These confidence intervals are quantitatively

rigorous and display predictable convergence behavior that can be used to determine optimum tradeoffs
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between tighter intervals and longer run times.

AEM Surrogate Results for Model Development Sensitivity Analysis

The total and main effect sensitivity indices were computed using the Sobol’ method described in Sec-

tion II, applied to a surrogate model of no = 5,000 operations sampled from the representative day. The

resulting total and main effect sensitivity indices are shown in Figure 7. These results reveal that factors
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Figure 7. Total and main effect sensitivity indices for the AEM NOx output as evaluated using a surrogate model
consisting of 5,000 operations. The error bars show the 95% confidence intervals for each index.

such as pressure and relative humidity can potentially be fixed for certain analyses since their total effect

sensitivity indices are low, and that factors such as the reference emissions index of NOx and temperature

should be the focus of any future research aimed at trimming the variability in total NOx emissions estimates

from the AEM, since their main effect sensitivity indices are highest.

These sensitivity results give valuable insight to guide model development; however, the question arises

whether different conclusions might be drawn if the full model were used in place of the surrogate. In this

situation, it is computationally impractical to use the full No = 68,343 operations; however, the sensitivity

results computed with the surrogate of no = 5,000 operations can be rigorously bounded with confidence

intervals using the methodology of Section III.B. These confidence intervals were constructed by using a

10,000-iteration Monte Carlo simulation to compute each operation-level global sensitivity index required in

(50) and (51). The intervals are shown for each sensitivity index in Figure 7.

Figure 8 shows the convergence behavior of the total effect sensitivity index of the temperature input.

The convergence behavior of the other sensitivity indices is similar. Table 2 gives confidence intervals (95%)

for the total and main effect sensitivity indices for each input of the AEM for a full run of the representative

day computed with a surrogate model of 9,914 operations.

These results show that by applying the surrogate modeling methodology described in Section III for

model development sensitivity analysis, confidence intervals for the global sensitivity indices of total NOx

emissions for the full representative day can be constructed from a subset of operations. Just as for the
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Figure 8. 95 percent confidence interval width, in terms of percentage ± of the surrogate model sensitivity index
estimate, for the total effect sensitivity index of the temperature input as no increases from 2500 to 9914.

Table 2. 95 percent confidence intervals of the total and main effect sensitivity indices for each input of the AEM for
a full run of the representative day computed with a surrogate model of 9914 operations.

Input Total effect sensitivity index Main effect sensitivity index
Lower Upper Lower Upper

REINOx 0.935 0.950 0.935 0.940
Temperature 0.050 0.053 0.008 0.060

Fuel burn 0.006 0.007 0.003 0.010
Fuel flow 0.005 0.006 0.001 0.010
Pressure 0.000 0.001 0.000 0.005

Relative Humidity 0.000 0.000 0.000 0.000

confidence intervals constructed to support decision-making uncertainty analysis, these confidence intervals

are quantitatively rigorous and display convergence behavior that can be used to determine optimum tradeoffs

between tighter intervals and longer run times.

V. Limitations and Additional Sources of Error

The surrogate modeling methodology developed here for the general class of models given by (16) and

demonstrated on the AEM is applicable only if several aforementioned assumptions are met. Those assump-

tions were independence of model inputs, randomness of model inputs, a large number of random quantities

being summed, and satisfaction of the Lyapunov condition by those random quantities. As mentioned in

Section II.C, the assumptions of independence and randomness in the methods developed here are assumed

to be features of the full model, and thus are not restrictions imposed by the surrogate model formulation.

If they are not features of the full model, the approach taken here may not be applicable, and analysts may
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wish to consider the m-dependent Central Limit Theorem,22 which for certain situations permits relaxing

the independence assumption. For models that fit the form given by (16) but do not involve summing more

than about 30 independent random quantities, we must recognize that the assumption of normality in the

resulting sum may not be a good one, and confidence intervals should be estimated with recourse to the

Student’s t-distribution or bootstrapping techniques. The constraint imposed by the Lyapunov condition is

easily met in most situations since many examples governed by the model class given by (16), such as those

given in Section II.C, consist of random quantities with finite variances whose sum grows without bound as

more quantities are added.

Though the surrogate model estimates and their associated confidence intervals presented in Section IV.D

are considered rigorous, they are only rigorous in the sense of how they approximate the results that would be

obtained using the full model. Additional sources of error that exist and would be quantifiable if comparison

to reality were possible, include the error associated with number of Monte Carlo model evaluations used

to compute quantities such as the expected value of operation level NOx emissions, and the fact that the

number of random quantities being summed, though large, is not infinite, and thus there is an approximation

associated with assuming normality. Since these errors occur for both the surrogate and full models, the

errors are not quantified in the surrogate estimates, since the goal of the surrogate modeling methodology

was to estimate the outputs of the full model.

VI. Conclusions

We have presented a novel surrogate modeling methodology designed specifically for supporting decision-

making uncertainty analysis and sensitivity analysis for model development for a large-scale aviation envi-

ronmental policy making model. The surrogate modeling methods developed here allowed for construction

of rigorous confidence intervals for metrics that are useful for supporting decision-making (e.g. output means

and variances), and for global sensitivity indices, which are useful for informing future research efforts aimed

at furthering the development of a model, for a situation where running the analyses on a full model was

impractical. Furthermore, the methodology provides predictable convergence behavior of confidence interval

widths from the surrogate model estimates, which allows for informed tradeoffs between computation time

and uncertainty in the estimation of the various metrics. Here, model structure was exploited to invoke the

Central Limit theorem to derive the confidence intervals; however, the method is more generally applicable

using bootstrapping techniques.
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