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Abstract—We studied neuromorphic models of binocular dis-
parity processing and mapped them onto a vision chip containing
a massively parallel analog processor array. Our goal was to
make efficient use of the available hardware while preserving
the fundamental computations performed by the models. We also
developed an optical fixture that used mirrors to simultaneously
focus two images onto the vision chip. This fixture simulates two
horizontally-separated virtual cameras, thereby allowing us to
run our binocular disparity estimation algorithms using a single
image sensor in real time.

I. INTRODUCTION

One of the challenges in neuromorphic engineering is to
take often elaborate neural computation models and imple-
ment them in silicon, within tight constraints of size and
power. Similarly, a skillful “interpretation” of a model is often
necessary in order to implement it in real-time on various
embedded processors or low-power devices. In this paper
we investigate the problem of stereopsis, or depth perception
based on binocular cues, using a massively-parallel analog
vision processor chip.

II. THEORY

Binocular disparity is defined as the distance, in image
coordinates, between the locations of a given object as seen
by the two eyes. It is an important cue for depth perception.
Some cells in the primary visual cortex (V1) of various
mammals have receptive fields that are sensitive to binocular
disparity. A biologically-plausible model of the response of
such disparity-selective cells is the binocular energy model
[1]. The model, which spatially filters images obtained from
the left and right eyes, generates approximations of such
complex receptive fields and can be used in binocular disparity
estimation algorithms. Combinations of Gabor functions are
often used for spatial filtering, because receptive fields tuned
to various disparities can be easily generated by varying
the relative spatial position and/or phase of the functions.
These strategies are known as the position-shift and phase-shift
models, respectively [2]. Binocular disparity maps of images
can be produced by using a heterogeneous population of such
receptive fields and selecting the best-fitting receptive field at
every point.

The spatial impulse response of a Gabor filter consists of
a complex sinusoidal carrier that is modulated by a Gaussian
kernel. Gabor filters are bandpass in nature and select a range

of spatial frequencies. The center frequency is equal to ω,
the frequency of the carrier, while the bandwidth is inversely
proportional to σ, the width of the Gaussian kernel. A generic
one-dimensional Gabor filter may be written as

g(x, σ, ω, φ) = e−x
2/2σ2

ej(ωx+φ) (1)

where φ denotes the phase of the filter. The basic phase-
shift model for generating disparity-selective receptive fields
is shown in Figure 1. Images from the left and right eyes,
denoted by Il and Ir, respectively, are filtered by the complex
Gabor filters g (x, σ, ω, φr) and g (x, σ, ω, φl). The figure
shows one-dimensional filters for simplicity, but in general
two-dimensional filters may be used. The outputs of the filters
are denoted by Yl(d, σ, ω) exp (jφl) and Yr(d, σ, ω) exp (jφr),
where Yl and Yr are independent of φl and φr, respectively,
and the stereo disparity is denoted by d. These signals corre-
spond to responses of pairs of binocular simple cells in the
visual cortex.

g(x,σ,ω,φl)

g(x,σ,ω,φr)

Yl(d,σ,ω)ejφl

Yr(d,σ,ω)ejφr

2 Ed(d,σ,ω,∆φ)

Il(x,y)

Ir(x,y)

Fig. 1. The phase-shift model for generating disparity-selective receptive
fields that is described in this paper.

The disparity energy Ed is found by summing the two
simple cell outputs and calculating the magnitude of this
complex variable, as shown in Figure 1 and explicitly defined
below:

Ed(d, σ, ω,∆φ) =
∣∣Yl(d, σ, ω)ejφl + Yr(d, σ, ω)ejφr

∣∣2 (2)

where the relative phase shift between the filters applied to
the two images is ∆φ = φl − φr. The output of the model is
the disparity energy Ed at each pixel, as shown in Figure 1.
It corresponds to the output of a particular binocular complex
cell in the primary visual cortex for a particular stereogram,
i.e., set of left and right images Il and Ir. The dependence
of Ed on stereo disparity d is known as the neural tuning
curve and can be estimated by presenting stereograms with
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different disparities to the neuron. If d� σ, it can be shown
that Ed ∝ cos2 ((ωd+ ∆φ) /2) [3]. Thus the peak value of
Ed occurs for a disparity of dpref ≈ −∆φ/ω pixels. In other
words, the neuron is ‘tuned’ to be maximally responsive to a
preferred disparity of dpref . It can be shown that position-shift
models give rise to tuning curves with similar shapes.

The disparity map of a given stereogram can be estimated by
using a population of neurons with different values of preferred
disparity dpref . The neurons can be sensitive to disparity
either via phase-shift mechanisms, position-shift mechanisms,
or a combination of both. The dependence of Ed on dpref ,
or equivalently ∆φ for phase-shift neurons, is known as the
population response curve. The simplest way to estimate the
disparity map is to pick, at each pixel, the neuron that has the
largest response within the population. The preferred disparity
of this neuron is equal to the estimated disparity, which we
denote as dest. The population of cells should contain enough
distinct values of dpref to allow dest to be estimated to the
desired accuracy.

We shall concentrate on phase-shift models in this paper
because they are particularly suitable for efficient hardware
implementations. It has also been shown that the values of
dest obtained from phase-shift models are more accurate than
from position-shift models when disparities are small relative
to σ, the spatial scale of the Gabor filter kernels [3]. However,
phase-shift models underestimate disparities when they be-
come comparable to σ. In addition, they cover a more limited
range of preferred disparities than position-shift models for
given values of σ and ω: The phase-shift population tuning
curve only has a unique maximum for −π < ∆φ < π, limiting
the range of disparities that can be unambiguously estimated
to −π/ω < d < π/ω. Fortunately, several algorithms have
been proposed to alleviate this problem [3], [4].

III. HARDWARE

We implemented the disparity model shown in Figure 1 on
a SCAMP (SIMD Current-Mode Analog Matrix Processor)
imaging system. The system consists of a SCAMP-3 vision
chip, an FPGA-based microcontroller, optics, and user inter-
face software. The SCAMP-3 chip, which is a programmable
128×128 image sensor, was fabricated in a 0.35µm CMOS
technology and has been described elsewhere [5], [6]. Each
pixel is 50µm×50µm in size, has a fill factor of 6% and
contains a simple analog switched-current processor that is
connected to neighboring pixels. This locally-connected ar-
chitecture was inspired by the biological retina, and makes
SCAMP well suited for massively-parallel execution of low-
level image processing algorithms, particularly those that rely
heavily on local operations such as spatial filtering. Other
advantages of the SCAMP architecture include the absence
of any data transfer bottlenecks between the sensors and the
processors, thus allowing high frame rates. In addition, the
analog architecture results in low power consumption, and
high dynamic range can be obtained by locally adaptive sens-
ing. The chip can execute approximately 20× 109 operations
per second (i.e., 20GOPS) while consuming 250mW of power.

The resultant power efficiency of 80GOPS/W is much higher
than both general purpose processors (∼ 0.1GOPS/W), and
digital signal processors (∼ 5GOPS/W) [6].

The entire SCAMP processor array operates using a SIMD
(Single Instruction Multiple Data) paradigm. The processors
operate on continuous analog values but run in discrete time at
a typical clock frequency of 1MHz. Each processor contains
eight general-purpose analog storage registers and can execute
a limited set of instructions, including inversion, addition,
division by two and three, comparison, and loading external
data. A specialized register allow each pixel to access values
stored within pixels in its local von Neumann neighborhood.
These are useful for operations that require pixels to share
information, such as spatial filtering. A multiplier is not avail-
able, and multiplication must be carried out using repeated
additions. Each processor receives the same set of instructions
because of the SIMD architecture. However, branches in the
control flow are possible because conditional statements are
supported via a blanking mechanism. In this mechanism a
given set of instructions is executed only by the pixels where
the result of a comparison operation evaluates as true.

The limited nature of the SCAMP instruction set and the
small amount of local storage available within each processor
impose constraints on the algorithms that can be implemented
on it. In addition, programs must be written in assembly
language, since no compilers for high-level languages are
currently available. Finally, the analog nature of SCAMP
computations requires special strategies, such as correlated
double sampling and dynamic range scaling, to be used in
order to maintain acceptable accuracy during the computation
[7]. Division is a particularly error-prone operation, with a
typical rms error of ε = 5%. However, an error-compensated
division subroutine, which reduces the error to approximately
ε2 = 0.25%, has been developed for the special case of
division by two. We restricted divisions in our algorithms to
factors of two in order to take advantage of this fact.

IV. IMPLEMENTATION

We implemented the disparity algorithm for filters tuned
to three different preferred disparities: negative, zero and
positive. The outputs of these filters, while insufficient for
generating a complete disparity map of the image, are able
to provide a feedback or error signal of the right sign for
tracking algorithms that try to keep an object at a fixed distance
from the image sensor. Such auto-focusing mechanisms may
be useful for a wide range of applications, such as image
stabilization and object tracking in mobile robots.

We shall assume that our imaging system generates two
virtual cameras that are separated along the horizontal, or x
axis. As a result, most disparity information will lie along this
axis. For simplicity we shall therefore only use horizontally-
oriented disparity detectors that use Gabor filters. However,
the algorithm can be easily extended to detectors with other
orientations if necessary [3].

In order to estimate the disparity energy we begin by
filtering the images from the left and right eyes using Gabor



filters with phase shifts φl and φr, respectively, as shown
in Figure 1. Phase-shifted Gabor filters can be written in a
particularly simple form in the case when we restrict phase
shifts to the set φ ∈ {0,±π/2}. In fact, we can use the facts
that sin(x) = cos(x − π/2) and cos(x − π) = − cos(x) to
show that

g(x, σ, ω, 0) =e−x
2/2σ2

[cos(ωx) + j sin(ωx)] (3)

g

(
x, σ, ω,

±π
2

)
=± e−x

2/2σ2

[sin(ωx)− j cos(ωx)]

Equation 3 can be rewritten as

g(x, σ, ω, 0) =g1 + jg2 (4)

g

(
x, σ, ω,

±π
2

)
=± (g2 − jg1)

where g1 = exp
(
−x2/2σ2

)
cos(ωx) and g2 =

exp
(
−x2/2σ2

)
sin(ωx). Thus all three complex Gabor

filters can be formed by combining the outputs of only two
real quadrature filters, i.e., g1 and g2. This result allows
us to use SCAMP to estimate Ed(d, σ, ω,∆φ) for three
values of ∆φ in real time. We used a spatial frequency
of ω = 0.8 ≈ 2π/8 radians/pixel in our filters, while the
standard deviation was σ = 2.6 pixels, corresponding to
a spatial bandwidth of 1.9 octaves [8]. As a result, the
three preferred phase shifts, i.e., ∆φ ∈ {0,±π/2} within
our neural population correspond to preferred disparities of
dpref ∈ {0,±2} pixels, respectively.

We had to approximate the shapes of the spatial filters
g1(x) and g2(x) in order to implement them in a com-
putationally efficient way on SCAMP. We denote the ap-
proximate filter shapes by g̃1(x) and g̃2(x), respectively.
Firstly, in order to keep the processing relatively local we
set g̃(x) = 0 for |x| > 4 pixels, i.e., |x| > 1.5σ. In
addition, we assumed that g̃(x) ∈ {0, 1,±1/2} for inte-
ger values of x, i.e., at each pixel. This approximation al-
lows us to apply both filters by using only the two accu-
rate operations of shifting and dividing by two. The best-
fitting values of g̃1(x) and g̃2(x) subject to these constraints
for |x| ≤ 4 are given by [0,−0.5, 0, 0.5, 1, 0.5, 0,−0.5, 0]
and [0,−0.5,−1,−0.5, 0, 0.5, 1, 0.5, 0], respectively. Figure 2
compares the exact and approximate filter shapes. We see that
they match fairly well. The rms difference between the exact
and approximate shapes is 0.129 for g1 and 0.127 for g2.

The final steps in finding the disparity energy are to sum
the outputs of the Gabor filters and then calculate the squared
magnitude of this complex quantity, as shown in Figure 1.
However, the squaring operation is difficult to implement
directly on SCAMP since the processors don’t contain mul-
tipliers. We therefore used a two-segment piecewise linear
approximation to the required square law. Let us assume that
the SCAMP registers can accurately store (as currents) real
numbers between ±100. Numbers should remain within this
range after squaring in order to prevent saturation. In our
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Fig. 2. The one-dimensional real filters used to generate disparity-sensitive
responses. Ideal functions g1(x) and g2(x) and their approximate versions
g̃1(x) and g̃2(x) are drawn with dashed and solid lines, respectively.

scheme the value x to be squared is first rectified and then
passed through the following function:

y =

{
x/2 if x ≤ 50

3x/2− 50 if x > 50
(5)

Equation 5 was chosen to approximate the ideal function,
i.e., y = x2/100, by dividing the range of |x| (0 to 100) into
two regions and assigning linear functions with different slopes
to each region. The straight lines were designed to intersect on
the y = x2/100 curve at the boundary between the regions,
thus ensuring that the overall function remains continuous.
We decided to use x = 50 as the boundary, as shown in
(5), because this choice results in regions of equal size and
also leads to particularly convenient linear functions: the only
operations required to compute x/2 and 3x/2 = x+ x/2 are
division by two and/or addition. Figure 3 compares (5) with
y = x2/100. The two functions are reasonably close to each
other, with an rms separation of 4.54.

A test image containing a range of horizontal disparities
is shown in Figure 4. The left half of the image corresponds
to one virtual camera, while the right half corresponds to the
other. The two halves of the image are shifted using the nearest
neighbor connections of the SCAMP processors so that they
overlap in the center of the array. Disparity calculations can
now be performed using only local operations. As an example,
Figure 4 also shows the simulated output of the filter tuned
to ∆φ = 0, i.e., zero disparity, when run on the test image.
The simulations were run on a SCAMP-specific hardware
simulator that includes the effects of noise and mismatch
between the pixels. As expected, the output of the filter is
large only within the small region in the center of the test
image where the disparity between the left and right halves is
close to zero.
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Fig. 3. An ideal square law and the two-segment approximation implemented
on-chip.

Fig. 4. The output of the filter tuned to zero horizontal disparity (right) when
run on a test image (left).

V. RESULTS

The experimental setup is shown in Figure 5. We used
a combination of four planar mirrors (M1 – M4) to si-
multaneously focus two different views of the scene onto a
single SCAMP camera, thus simulating the presence of two
horizontally separated virtual cameras, or ‘eyes’. The inner
mirrors (M2 and M3) are always at right angles to each other.
The angle between the inner and outer mirrors can be varied
to select the vergence angle θ, i.e,, the range of distances over
which stereo vision is obtained [9]. For example, in Figure 5
objects present at the planes labeled A, B and C will produce
positive, zero and negative disparity, respectively. In addition,
the camera contains an adjustable-focus lens. Thus our optical
system is catadioptric, i.e., contains both mirrors (reflecting
elements) and lenses (refracting elements) [10].

Captured images were prefiltered with a simple first-
order high-pass filter, which has an impulse response of
[−0.5, 1,−0.5]. The high-pass filter whitens the spatial fre-
quency content of the images Il and Ir in Figure 1. Without
prefiltering, the disparity energy calculated by the algorithm
would depend strongly on background illumination level,
which is undesirable. In addition, we low-pass filtered the
image in the vertical direction before applying the disparity-

SCAMP

A

B

C

θ

M1

M2 M3

M4

Fig. 5. Experimental setup, (top) schematic and (bottom) photograph.

selection algorithm.
A typical scene captured by our optical setup at a frame

rate of 10Hz is shown in Figure 6. The frame rate was limited
by exposure time, not the SCAMP processor. The dark region
at the center of the image was due to the non-reflecting hinge
between the inner mirrors, which was unavoidable with the
current setup. We usually tested our algorithm by moving
the bright object (a white Styrofoam cup) towards and away
from the sensor. As a result the object should excite the three
disparity filters at three specific distances from the sensor. In
other words, the filter outputs should become bright (‘high’)
for brief periods of time, and remain relatively dark (‘low’)
otherwise.

Experimental disparity-detection results are shown in Fig-
ure 7. The figure shows the output of the filter tuned to a
disparity of ∆φ = −π/2 as the cup shown in Figure 6 was
moved towards the camera, with the rest of the image kept
approximately constant. The cup is furthest in the leftmost
frame, and closest in the frame on the right. We denote
this distance by d. The center of the frame in the middle
contains two bright spots because at this intermediate value
of d the images of the cup and its reflection (see Figure 6)
have the right amount of binocular disparity to excite the filter.
We verified that the three filters display maximal responses
at different values of d, as predicted theoretically. These
responses should have unique maxima in order to provide



Fig. 6. Typical stereogram obtained from our imaging setup. Each virtual
camera occupies approximately half the pixels. The bright object at the center
of each half-image is a Styrofoam cup that was moved to test the disparity
algorithm.

meaningful feedback on the location of objects. We found
that this condition was satisfied over a range of at least 60cm,
which is sufficient for many applications.

Fig. 7. Experimentally measured outputs of the disparity-sensitive filter tuned
to ∆φ = −π/2.

VI. CONCLUSION

In the current implementation we used disparity filters that
operated on a single spatial scale, because the spatial frequency
ω was fixed. In addition, all the filters were oriented along the
x-axis. We would like to extend our work to include spatial
filters at several scales and orientations. However, the amount
of local storage available in cellular processor array systems
such as SCAMP is typically quite limited. Therefore an
interesting direction for future research would be to adaptively
determine the required range of scales and orientations based
on the characteristics of the current scene.
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