
Stabilizing a Vehicle near Rollover: An Analogy to Cart-Pole

The MIT Faculty has made this article openly available. Please share 
how this access benefits you. Your story matters.

Citation Peters, S.C., J.E. Bobrow, and K. Iagnemma. “Stabilizing a vehicle
near rollover: An analogy to cart-pole stabilization.” Robotics and
Automation (ICRA), 2010 IEEE International Conference on. 2010.
5194-5200. © Copyright 2010 IEEE

As Published http://dx.doi.org/10.1109/ROBOT.2010.5509367

Publisher Institute of Electrical and Electronics Engineers

Version Final published version

Citable link http://hdl.handle.net/1721.1/61757

Terms of Use Article is made available in accordance with the publisher's
policy and may be subject to US copyright law. Please refer to the
publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/61757


  

  

Abstract—An analogy between the dynamics of a cart-pole 
system and vehicle rollover dynamics is used to derive a 
controller for tipping up and stabilizing a planar model of a 
passenger vehicle near rollover by controlling lateral tire 
friction forces.  The controller is based on a previously 
published controller for stabilizing a cart-pole using partial 
feedback linearization and energy shaping.  A necessary 
condition for tip-up is given based on the surface friction 
coefficient and the location of the vehicle center of gravity 
(c.g.).  A multi-body vehicle model with suspension is presented 
in the form of the robotic manipulator equations.  Simulation 
results are presented demonstrating the effect of friction and 
suspension properties on the tip-up problem. 

I. INTRODUCTION 
 significant amount of research and development effort 
over the past 40 years has been devoted to improving 

the safety of passenger vehicles. Despite these efforts, in the 
United States in 2004 more than 40,000 people were killed 
and 2.5 million injured in motor vehicle accidents, at an 
estimated economic cost of $200 billion. Of these accidents, 
rollover is particularly fatal, accounting for more than 9000 
deaths and 200,000 injuries. Rollovers constituted just 2.3% 
of total accidents but over 10% of fatal accidents, and trailed 
only head-on collisions and collisions with pedestrians in 
this unfortunate ratio [1]. 

Significant research effort has been devoted to detecting 
and preventing rollover through active control.  Numerous 
approaches attempt to detect or predict wheel lift-off using 
on board sensing and use a combination of automatic 
steering and braking to keep the wheels on the ground [2, 3, 
4].  Several methods use a concept of "roll energy" to predict 
if wheel lift-off will occur or if the vehicle will tip over [5, 
6].  One method has been developed into a commercially 
available rollover stability control system [7]. 

One challenging aspect of the control of vehicle rollover 
dynamics is the presence of more degrees of freedom than 
control inputs.  Note that this is the definition of an 
underactuated system.  Numerous approaches exist for the 
control of underactuated systems, which are often 
demonstrated on canonical problems, such as swing-up or 
stabilization of an Acrobot or cart-pole in the inverted 
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position [8, 9, 10]. 
An analogy can be made between the cart-pole and a 

vehicle during rollover since the dynamics of each system 
are similar.  The control problem of swinging up and 
stabilizing the cart-pole is similar to tipping up a vehicle 
onto two wheels and stabilizing it with its c.g. balanced 
directly above the wheels.  A controller that solves the 
vehicle tip-up stabilization problem would provide a 
powerful demonstration of controllability during tip-up.  
This level of controllability could be applied to other control 
problems, such as safely returning a vehicle to the ground 
after inadvertent tip-up or navigating robots for which 
driving on two wheels is an additional mobility mode.  

This paper presents a controller for tipping up a vehicle 
based on a controller for swing-up of the cart-pole utilizing 
partial feedback linearization and energy shaping [8].  In 
Section II, a brief review of cart-pole dynamics and an 
intuitive swing-up controller are presented.  In Section III, a 
model of vehicle rollover dynamics is presented and 
compared to the cart-pole dynamics.  A controller for 
vehicle tip-up is derived based on the cart-pole swing-up 
controller.  In Section IV, simulation results demonstrating 
tip-up of the controller are shown, followed by a discussion 
of the results. 

II. DYNAMICS AND SWING-UP CONTROL OF THE CART-POLE 

A. Cart-pole dynamics 
The cart-pole is a mechanical system consisting of a 

pendulum attached to a cart that rolls freely on a flat surface, 
as shown in Fig. 1.  The cart-pole has two degrees of 
freedom, the cart position x and the pendulum angle θ, and 
one input, the force u acting on the cart.  The dynamics of 
the cart pole are given below, where the cart has mass M and 
the pendulum has mass m, moment of inertia I, and c.g. 
displacement l. 
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These system dynamics fit the general form of the robotic 
manipulator equations;  

( ) ( ) ( ) BuqqφqqqCqqH =++ ,,  (2) 
Here, q=[x θ]T is a configuration vector, H is a symmetric 

positive-definite mass matrix, C is a matrix of centripetal 
and Coriolis terms, φ is a vector of potential forces and other 
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generalized forces, B is a matrix of ones and zeros of 
appropriate size, and u is a vector of inputs to the system. 
 

 
B. Swing-up controller for cart-pole 
Swing-up of the cart-pole is a canonical control problem 

that is used to demonstrate many underactuated control 
algorithms.  The problem is defined as applying an input 
force u to the cart that drives the pendulum to a 
neighborhood of the inverted position ( 0== θθ ).  A 
variant of the control problem additionally requires 
stabilization of the pendulum about the inverted position.  
This can be achieved by using a swing-up controller to drive 
the system into the basin of attraction of a locally stabilizing 
controller [9].  Another variant of the control problem 
involves driving the cart to the origin ( 0== xx ).  This 
paper considers only the problem of swing-up. 

An intuitive approach to swing-up control is based on 
collocated partial feedback linearization (PFL) with energy 
shaping [8] and is described in the following two sections. 

C. Collocated Partial Feedback Linearization (PFL) 
The configuration vector q is partitioned into collocated 

states 1q  and non-collocated states 2q , as [ ]TTT
21 qqq =  

depending on the actuator configuration of the system.  For 
example, the cart-pole has an input force u acting on the cart 
but no input torques acting on the pendulum.  As such, the 
cart position x is a collocated state 1q  = [x] and the 
pendulum angle θ is a non-collocated state 2q  = [θ]. 

The manipulator equations are rewritten as follows: 
uφqCqCqHqH =++++ 1212111212111  (3) 
02222121222121 =++++ φqCqCqHqH  (4) 

The non-collocated accelerations 2q  are eliminated from 
(3), resulting in the following: 

uφqCqCqH =+++ *
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*
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*
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*
11  (5) 
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A reference trajectory for the collocated states )(1 tdq  is 

defined, as well as a control input u to drive )(11 tdqq → . 
*
12

*
121

*
111

*
11 φqCqCqHu +++= d  (10) 

This yields a hierarchical system, in which the desired 
accelerations of the collocated states serve as inputs to the 
non-collocated states, provided that there is sufficient 
“inertial coupling” in the 21H matrix: 

)(11 tdqq =  (11) 
)(1212222121222 tdqHφqCqCqH −=+++  (12) 

For the cart-pole, the collocated PFL yields the following: 
)(txx d=  (13) 

( ) )( cossin2 txmlmglmlI dθθθ =−+  (14) 
While an input to the pendulum is not directly available, 

the cart can be forced to track an arbitrary reference 
trajectory )(txd , which serves as an input to the pendulum 
dynamics. 

D. Energy shaping 
Energy shaping is an intuitive technique that can be used 

to drive a certain class of systems toward an unstable fixed 
point.  For some systems, the homoclinic orbit leading to an 
unstable fixed point is a constant energy curve.  By 
regulating the energy of the system to the energy of the 
system at the unstable fixed point, it will be driven to the 
homoclinic orbit and thus to the unstable fixed point. 

The energy shaping controller for a class of systems given 
by (11-12) is derived below.  The requirements are that 21C  
has no nonzero elements, 2φ  is not a function of 1q  or 1q , 
and 2φ  consists only of passive generalized forces and 
conservative forces.  Under these conditions, the non-
collocated dynamics given in (12) can be interpreted as a 
virtual subsystem with energy given as: 

)(
2
1

22222 qqHq VE T +=  (15) 

The desired energy level corresponding to the system 
energy at the unstable fixed point and its homoclinic orbit is 
defined as dE .  The error between current energy and 
desired energy is defined as: 

dEEE −=~  (16) 
The energy-shaping controller is then defined by finding a 

control law for )(1 tdq  that drives the energy error E~  to 0.  
Such a controller for the cart-pole is presented below. 

For the cart-pole, the system energy, desired energy at tip-
up, and time derivative of energy are given as: 

( ) θθ cos
2
1 22 mglmlIE ++=  (17) 

mglEd =  (18) 

dxmlE  cos θθ=  (19) 

A state vector [ ]TTT
22 qqx =  is defined along with an 

autonomous Lyapunov-like function V(x) for the energy 
shaping controller. 
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Fig. 1.  Cart-pole system.  The cart has mass M, and the pendulum has 
mass m and moment of inertia I about the c.g. 
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( ) 2~
2
1 EV =x  (20) 

A control law is proposed below, where K1 > 0, along 
with a corresponding value for V . 

θθ cos~
1 EKxd −=  (21) 

0cos~ 222
1 ≤−= θθEmlKV  (22) 

Barbalat’s lemma can show that this controller will drive 
the system to the largest invariant set for which V = 0.  This 
invariant set includes the homoclinic orbit ( E~  = 0 ) and the 
equilibrium points of the  pendulum (sin θ  = 0, θ  = 0).  The 
controller can be modified to drive the pendulum away from 
its downward equilibrium point with the switching controller 
given below, using a sgn function that returns only nonzero 
values (ie. sgn(0) = 1): 

0coscos 000 <= θθmglE  (23) 

02

01

sgn
cos~

EEK
EEEKxd ≤−

>−=
θ

θθ  (24) 

Results and further discussion of this type of controller for 
the cart-pole can be found in [8, 9]. 

III. VEHICLE ROLLOVER DYNAMICS 

A. Comparison to cart-pole dynamics 
Vehicle rollover can occur when lateral forces acting at 

the tires cause the wheels on one side of the vehicle to lift 
off the ground and the c.g. to rotate up to an unstable 
equilibrium point directly above the other set of wheels.  If 
the vehicle is modeled as a single rigid body, the angle θ is 
defined as the angle between the c.g. and the vertical as 
shown in Fig. 2, and the unstable equilibrium point 
corresponds to θ = 0.  In this case, the vehicle is equivalent 
to a cart-pole system with a massless cart, as illustrated in 
the right subfigure of Fig. 2. 

 
It is important to mention several distinct differences 

between the cart-pole and rigid body vehicle.  The first is 
that the cart and pole are connected by a pin joint, while the 
vehicle is held against the ground by a non-negative contact 
force N, given below: 

( )θθθθ cossin 2+−= mlmgN  (25) 
If the contact force N goes to zero, the vehicle dynamics 

will differ from the cart-pole and become ballistic. 

The second difference is an intuitive physical limit on the 
input force acting at the tires.  Since the tire input force is 
generated by friction, it is assumed that the magnitude of the 
tire frictional forces is limited by the following equation, 
where μ is the friction coefficient and N is given above: 

NuN μμ ≤≤−  (26) 
The force vector consisting of both the frictional input 

force u and the normal force N makes an angle α with the 
vertical, as shown in Fig. 3.  The constraint in (26) can be 
interpreted as a limit of the magnitude of α to be less than 

μ1tan−  and thus to point between the dashed lines in Fig. 3.  
This limitation is often referred to as the friction cone [11]. 

It can be shown that if the vehicle c.g. lies outside the 
friction cone ( μθ 1tan −> ), as in the left subfigure of Fig. 3, 
all physically attainable forces will accelerate the vehicle 
away from tip-up towards the ground.  In this case, there is 
insufficient friction to achieve tip-up.  If the c.g. lies within 
the friction cone ( μθ 1tan −≤ ), however, then contact forces 
can be applied to accelerate the vehicle towards tip-up.  This 
relation between the surface friction and c.g. position 
constitutes a necessary condition for tip-up [12].  A crucial 
parameter to note is the height of the vehicle c.g.  Increasing 
this value reduces the friction coefficient needed for tip-up, 
making tip-up easier. 

 
It should also be mentioned that there are no practical 

actuators for directly generating lateral tire forces.  Lateral 
tire forces are typically modeled as functions of lateral slip, 
which may be controlled by steering, and longitudinal slip, 
which may be controlled by tractive or braking force [4, 5].  
In this paper, the lateral tire friction force is treated as an 
input, which assumes the existence of a separate force 
controller based on steering and tractive or braking force.  In 
practice, such controllers would have limited bandwidth and 
possibly other trajectory-dependent limitations.  These 
effects are not considered in this paper but are a topic of 
future work. 

The similarity between vehicle rollover dynamics and 
cart-pole dynamics suggests that control algorithms used to 
swing up and stabilize the cart-pole may be applicable for 
tip-up and stabilization of a vehicle near rollover. 

B. Vehicle model with suspension dynamics 
The analogy between the cart-pole and a rigid body 

α 

μ1tan−

α 

μ1tan−

 
Fig. 3.  Friction cone and vehicle c.g. position.  Left: Case where tip-
up is impossible.  Right: Case where tip-up is possible.

 

θ 

 
Fig. 2.  Analogy between vehicle rollover and cart-pole. 
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vehicle near rollover made in the previous section neglects 
the effect of the vehicle's suspension dynamics, which have 
a significant impact on vehicle rollover [13].  Here a multi-
body vehicle model with suspension effects is proposed with 
a corresponding energy-based controller.  Note that energy 
shaping methods have been successfully applied to systems 
such as a double inverted pendulum on a cart [14], which 
have similarity to the multi-body system presented here.  

The model consists of the vehicle body connected to a 
solid axle with a revolute joint at point b.  The body c.g. and 
axle c.g. are located at point c and point b respectively.  The 
equations of motion for the model depend on the wheel 
contact conditions, denoted LR when both left and right 
wheels are on the ground, L when only left wheels are on the 
ground, R when only right wheels are on the ground, and N 
when no wheels are on the ground.  Conditions LR and L are 
illustrated in Fig. 4 below. 

 
The vehicle model can be formulated as a multi-link 

manipulator as illustrated in Fig. 5 with angles qa and qb.  
The axle is modeled as a link with a constant offset angle 

0q , link length la, mass ma, and moment of inertia Ia.  The 
vehicle body is modeled as a link with length lb, mass mb, 
and moment of inertia Ib.  The total mass of the system is 

ba mmM += .  The effect of springs, hardstops, and dampers 
in the suspension is modeled as a torque τ acting between the 
axle and vehicle body.  The torque has a stiffness 
coefficients k1, k3, and k5, and damping b1 and is given as: 

bbbb qbqkqkqk 1
5

5
3

31 −−−−=τ  (27) 

 
The states and kinematics for each contact condition are 

given in Table I and (28) below using the following 
notation: 

ii qs sin≡ , )sin( jiji qqs +≡+ , )sin( jiji qqs −≡− , 

ii qc cos≡ , )cos( jiji qqc +≡+ , and )cos( jiji qqc −≡− . 
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The equations of motion for each contact mode fit the 
form of the manipulator equations in (2).  The matrices for 
contact mode L are provided below. 

babbaaL clmsMlH ++ −−= 012  (29) 

bbabbbbaaL sllmlmIMlIH −++++= 0
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[ ]T
L 001=B  (36) 
As a system with multiple dynamic modes, there must be 

logic for switching between the modes, which is given in 
Table II.  Any collisions that occur during mode transitions 
are assumed to be inelastic collisions.  Note that NL and NR 
represent the sum of normal forces acting on the left and 
right sides of the vehicle.  The equations used to compute NL 
and NR during mode L are given below. 
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TABLE I 
STATES AND KINEMATICS OF EACH CONTACT MODE 

Mode  States Position of Point b 
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TABLE II 
CONDITIONS FOR TRANSITIONING BETWEEN CONTACT MODES 
 to LR to L to R to N 

from LR — NR = 0 NL = 0 NL = NR = 0 
from L qa = 0 — qa = NL = 0 NL = 0 
from R qa = 0 qa = NR= 0 — NR = 0 
from N yL = yR= 0 yL = 0 yR= 0 — 

 

b 

c 

L R 

qb 

lb 

la la 
q0 q0 

b 

c 

L 

qb 

lb 

la q0 
qa 

 
Fig. 5. Vehicle model as multi-link manipulator.  Left: Contact mode 
LR.  Right: Contact mode L. 

 

b 

c 

L R 

b 

c 

L  
Fig. 4.  Vehicle model with pin joint suspension and solid axle.  Left: 
Contact mode LR.  Right: Contact mode L. 
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C. Tip-up controller for vehicle rollover model 
A tip-up controller for the vehicle rollover model is 

designed using partial feedback linearization and energy 
shaping in a similar manner to the swing up controller 
designed for the cart-pole in Sections II. B. and C.  The 
partial feedback linearization is computed directly using (5)-
(12) and the manipulator matrices for contact modes LR, L, 
and R.  No controller is derived for mode N since there is no 
input in this mode. 

An energy shaping control law similar to (21)-(22) is 
presented here.  Recalling that q2 is the vector of non-
collocated states for each contact mode, the potential energy 
and total energy of the non-collocated subsystem for the 
vehicle model are: 

6
5

4
3

2
12 6

1
4
1

2
1)( bbbcaba qkqkqkgymgymV ++++=q  (39) 

)(
2
1

222 qqHq VE T +=  (40) 

The configuration angles 2q̂  of the vehicle at tip-up 
equilibrium are computed numerically from the following: 

( ) 00qφ =,ˆ
2L  (41) 

The desired energy at tip-up Ed is computed from this 
equilibrium state as follows: 

)ˆ( 2qVEd =  (42) 

Recalling the state vector definition [ ]TTT
22 qqx =  and 

the Lyapunov-like function in (20), a control law and 
associated V is presented, where K > 0: 

2211

~ qHq T
d EK=  (43) 

221212
22

1

~~ qHHq TT
b EKEqbV −−=  (44) 

It is seen in (44) that for large values of E~ , the right-hand 
quadratic term will dominate the expression and V  will be 
negative.  This means that E~  is being driven to zero as 
desired.  However, the energy dissipation term Eqb b

~2
1−  

could be positive for E~ >0, and thus V  could be positive for 
small values of E~ . Thus there is a small region of error near 
the desired energy state where V is indefinite. This region is 
easily adjusted by modifying the positive gain K. 

There are several other issues with this control design that 
must be noted.  The first is the limitations on the input force 
by the available friction, which will prevent convergence of 
the energy to the desired value when insufficient friction is 
available. A second issue is an energy dissipation 
mechanism that is not considered in the Lyapunov analysis, 
which is the energy lost from inelastic collisions with the 
ground.  Given sufficient friction to overcome the energy 
dissipation mechanisms, the controller will drive the vehicle 
to a tip-up condition. 

IV. SIMULATION RESULTS 

A. Setup 
The controller derived in III. C. was simulated with the 

vehicle model from III. B. and the model parameters given 
in Table III. 

  
B. Results: high friction (μ=1.50) 
The first set of simulation results demonstrate the 

successful tip-up of a vehicle on a surface with a friction 
coefficient μ = 1.50.  The vehicle state is illustrated at 
several instants in Fig 6.  The friction cone is plotted for 
each wheel contact point, and the lumped c.g. of the system 
is represented by a dark circle.  It can be seen that the 
lumped c.g. lies within the friction cones from time t=0, 
which enables tip-up.  

The phase plane trajectories of the lumped c.g. inclination 
angle θ for both the left and right contact points are shown in 
Fig. 7.  The friction cone angle is represented with a solid 
line.  It can be seen that the system approaches the unstable 
equilibrium point at (0,0). 

 
Plots of the system energy and the input force u are given 

in Figs. 8 and 9.  It can be seen that the system energy 
converges to the desired energy level in less than 0.5 s.  Note 
that the maximum allowable input force depends on the 
normal forces, which can vary dynamically. 

TABLE III 
VEHICLE MODEL PARAMETERS 

Description Symbol Value 
Axle mass m1 160 kg 
Body mass m2 1870 kg 
Total mass M 2030 kg 
Axle inertia I1 102 kg m2 
Body inertia I2 1240 kg m2 

Axle angle offset q0 0.124 rad 
Link 1 length l1 0.806 m 
Link 2 length l2 0.500 m 

Linear stiffness k1 7.49 x 104 Nm / rad 
3rd order stiffness k3 0 Nm / rad3 
5th order stiffness k5 2.7 x 107 Nm / rad5 
Linear damping b1 3200 Nm / (rad/s) 

 

 
Fig. 6. Snapshots of vehicle orientation during tip-up simulation with 
friction coefficient of μ = 1.50. 
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C. Results: lower friction (μ=1.00) 
The second set of simulation results demonstrates a 

successful tip-up on a surface with friction coefficient of 
1.00, illustrated with snapshots in Fig. 10 and phase plane 
trajectories in Fig. 11. 

The vehicle c.g. initially lies outside the friction cones and 
does not reach tip-up on the first force input.  Some 
momentum is subsequently transferred, and during the 
second push (in the opposite direction from the first) the c.g. 
is driven into the friction cone and proceeds to tip-up. 

 

 

 
Plots of the system energy and input force u are given in 

Figs. 12 and 13.  Note that a change of contact state (from L 
to LR) occurs at t=0.78, which results in an inelastic 
collision.  This causes discontinuities in the θ  terms in Fig. 
11, the system energy in Fig. 12 and the available input force 
in Fig. 13. 

 

 

 
Fig. 10. Snapshots of vehicle orientation during tip-up simulation with 
friction coefficient of μ =1.00. 

 
Fig. 12. Energy of non-collocated states during tip-up simulation with 
friction coefficient of μ = 1.00. 

 
Fig. 11. Phase plane trajectory of θ vs. θ  for left and right wheels for 
tip-up simulation with friction coefficient of μ = 1.00.  The friction 
cone angle tan-1μ is shown with a solid line. 

 
Fig. 8. Energy of non-collocated states during tip-up simulation with 
friction coefficient of μ = 1.50. 

 
Fig. 7. Phase plane trajectory of θ vs. θ  for c.g. position relative to 
left and right wheels for tip-up simulation with friction coefficient of 
μ = 1.50.  The friction cone angle tan-1μ is shown with a solid line. 

 
Fig. 9. Input force during tip-up simulation with friction coefficient of 
μ = 1.50. 
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D. Discussion 
In these results, the controller successfully drives the 

vehicle to tip-up with markedly different trajectories.  In 
each case, the controller attempts to drive the system energy 
to the desired value by pushing in a direction defined by the 
term 221 ~ qH TE  from (42).  In the first case, the vehicle c.g. 
was initially within the friction cone, so that the vehicle was 
able to reach tip-up without the term 221 ~ qH TE  changing 

sign.  In the second case, however, the term 221 ~ qH TE  
changed signs prior to reaching the desired energy level.  
This caused the controller to pump energy into the system by 
pushing in the opposite direction and eventually reach the 
desired value.  Although energy was lost during the impact 
at the contact mode transitions, it did not prevent the build 
up of energy over two “pumps.”  Given appropriate system 
parameters and initial conditions, it is likely possible to 
generate tip-up trajectories with this controller using any 
number of “pumps.” 

The potential of this controller to drive the vehicle to tip-
up is highly dependent on the system parameters, especially 
the relationship between friction coefficient and c.g. 
position.  When the c.g. is initially outside the friction cone, 
the parameters affecting energy dissipation become 
important. 

V. CONCLUSION 
An analogy between the dynamics of the cart-pole and a 

vehicle near rollover has been drawn, and it has been shown 
that a controller for swinging up the cart-pole to an inverted 
position can be employed to tip up a vehicle near rollover.  
The model considers suspension effects and surface friction, 
which limits the magnitude of the input force, but does not 
consider the vehicle steering or yaw dynamics, which in 
practice would limit the input bandwidth.  Future work will 
consider a 3D vehicle model with yaw and steering 
dynamics and possibly use open-loop trajectory optimization 
to determine the range of suspension parameters and friction 
values that permit tip-up stabilization.  
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Fig. 13. Input force with friction coefficient of μ = 1.00. 
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