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Abstract

We study (constrained) Pareto e¢ cient allocations in a dynamic production economy where
the group that holds political power decides the allocation of resources. For high discount
factors, the economy converges to a �rst-best allocation where labor supply decisions are not
distorted. For low discount factors, distortions do not disappear and �uctuate over time. Most
importantly, the set of sustainable �rst-best allocations is larger when there is less persistence
in the identity of the party in power (because this encourages political compromise). This
result contradicts the common presumption that there will be fewer distortions when there is
a �stable ruling group�.
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1 Introduction

In this paper, we investigate (constrained) Pareto e¢ cient equilibria in an in�nite-horizon pro-

duction economy in which political power �uctuates between di¤erent social groups (�parties�).

These groups may correspond to social classes with di¤erent incomes or to citizens living in

di¤erent regions. The process for power �uctuation is taken as given. Our objective is to under-

stand the implications of political economy frictions/constraints on the allocation of resources.

The key to political economy friction in our model is lack of commitment : the group currently

in power determines the allocation of resources (the allocation of total production across di¤er-

ent groups in the society), and there are no means of making binding commitments to future

allocations. This political economy friction leads to an additional sustainability constraint for

the group in power, to ensure that it does not expropriate the available resources.

We characterize the (constrained) Pareto e¢ cient allocations in this economy.1 This focus

enables us to understand the implications of political economy frictions on �the best possible�

allocations, as clearly identifying the role of political economy in production and consumption

distortions.2 These allocations can be identi�ed as the solution to an optimization prob-

lem subject to the participation and sustainability constraints, with di¤erent Pareto weights

given to the utilities of di¤erent groups. We refer to allocations that involve full consumption

smoothing and no distortions as ��rst best�(or as �sustainable �rst best�to emphasize that

these are achieved despite the sustainability constraints). In these allocations, each individual

supplies the same amount of labor and receives the same level of consumption at every date,

irrespective of which group is in power. The sustainability constraints resulting from political

economy imply that �rst-best allocations may not be supported because the group in power

could prefer to deviate from a �rst-best allocation. In this case, Pareto e¢ cient allocations will

involve distortions (in the sense that marginal utility of consumption and disutility of labor

are not equalized) and consumption and labor will �uctuate over time.3

1�Constrained�here means that all of these allocations are subject to the sustainability constraints resulting
from the lack of commitment. To simplify the terminology, we simply refer to the �constrained Pareto e¢ cient
allocations�as �Pareto e¢ cient allocations�unless additional emphasis is needed.

2An alternative, complementary strategy is to focus on Pareto dominated equilibria that may emerge either
in our game or in some related institutional setting. Much of the political economy literature investigates the
role of speci�c institutions and thus implicitly focuses on such allocations. Such Pareto dominated allocations
will naturally induce further distortions relative to the allocations we characterize.

3Constrained Pareto e¢ cient allocations have a quasi-Markovian structure and can be characterized recurs-
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We present three sets of theoretical results. First, we characterize the structure of political

economy frictions as a function of the preference and production structure, the identity of the

group in power and the stochastic process regulating power switches. We show that as long as

a �rst-best allocation is not sustainable at the current date, the labor supply (and production)

of individuals who belong to groups that are not in power will be distorted downwards� i.e.,

�taxed�. This downward distortion results from the sustainability constraints re�ecting the

political economy considerations. Intuitively, an increase in production raises the amount that

the group in power can allocate to itself for consumption rather than allocating it among the

entire population. Reducing aggregate production relaxes the political economy constraints

and reduces the rents captured by the group in power. Since starting from an undistorted

allocation, the gain to society from rents to the ruling group is �rst order, while the loss is

second order, (non-�rst-best) constrained Pareto e¢ ciency allocations involve distortions and

underproduction (relative to the �rst best).

Second, we characterize the dynamics of the distortions caused by the political economy

factors. When discount factors are low, no �rst-best allocation is sustainable. Consequently,

distortions always remain, even asymptotically. In particular, we show that in this case all

Pareto e¢ cient allocations converge to an invariant non-degenerate distribution of consumption

and labor supply across groups, whereby distortions as well as the levels of consumption and

labor supply for each group �uctuate according to an invariant distribution. We then focus

on the special case with two social groups (two parties) and quasi-linear preferences. In this

environment we show that if there is any sustainable �rst-best allocations, then any Pareto

e¢ cient allocation path (meaning an e¢ cient allocation starting with any Pareto weights)

eventually reaches a �rst-best allocation, and both distortions and �uctuations in consumption

and labor supply disappear.

Third and most importantly, we use our framework to discuss a central question in political

economy� whether a more stable distribution of political power (as opposed to frequent power

switches between groups) leads to �better public policies.�That is, whether it leads to policies

involving lower distortions and generating greater total output. A natural conjecture is that

a stable distribution of political power should be preferable because it serves to increase the

ively conditional on the identity of the group that is in power and Pareto weights. Dynamics are determined by
updating the Pareto weights recursively.
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�e¤ective discount factor� of the group in power, thus making �cooperation� easier. This

conjecture receives support from a number of previous political economy analyses. For example,

Olson [?] and McGuire and Olson [31] contrast an all-encompassing long-lived dictator to a

�roving bandit�and conclude that the former will lead to better public policies than the latter.

The standard principal-agent models of political economy, such as Barro [15], Ferejohn [21],

Persson, Roland and Tabellini [34], [35], also reach the same conclusion, because it is easier to

provide incentives to a politician who is more likely to remain in o¢ ce.

Our analysis shows that this conjecture is generally not correct (in fact, its opposite is

true). The conjecture is based on the presumption that incentives can be given to agents only

when they remain in power. Once a politician or a social group leaves power, they can no

longer be punished or rewarded for past actions. This naturally leads to the result that there

is a direct link between the e¤ective discount factor of a political agent and its likelihood of

staying in power. This presumption is not necessarily warranted, however. Members of a social

group or an individual can be rewarded not only when they are in power, but also after they

have left power. Consequently, the main role of whether power persists or not is not to a¤ect

the e¤ective discount factor of di¤erent parties in power, but to determine their deviation

payo¤. Greater persistence implies better deviation payo¤s; in contrast, in the �rst best, there

are no �uctuations in consumption and labor supply, thus along-the-equilibrium-path payo¤s

are independent of persistence. This reasoning leads to the opposite of the McGuire-Olson

conjecture: more frequent power switches tend to reduce political economy distortions and

expand the set of sustainable �rst-best allocations. Although our results stand in contrast to the

McGuire-Olson conjecture, they are consistent with the line of argument going back to Aristotle

that emphasizes the importance of power turnover in supporting democratic institutions (see,

e.g., Przeworski [38]).4

Finally, we also illustrate the relationship between persistence of power and the structure of

Pareto e¢ cient allocations numerically. We verify the result that greater persistence reduces

the set of sustainable �rst-best allocations. However, we also show that an increase in the

frequency of power switches does not necessarily bene�t all parties. Interestingly, greater

persistence might harm� rather than bene�t� the party in power. This is because with greater

4For example, in a famous passage, Aristotle, emphasizes: �A basic principle of the democratic constitution
is liberty.... and one aspect of liberty is being ruled and ruling in turn.�(quoted in Hansen [24], p. 74).

3



persistence, when power �nally switches away from the current incumbent, the sustainability

constraint of the new government will be more binding, and this will necessitate a bigger

transfer away from the current incumbent in the future.

Our paper is related to the large and growing political economy literature.5 Several recent

papers also study dynamic political economy issues which is the focus of our paper. These

include, among others, Acemoglu and Robinson [7], [8], Acemoglu, Egorov and Sonin [2],

Battaglini and Coate [13], Hassler et al. [25], Krusell and Rios-Rull [27], Laguno¤ [28], [29],

Roberts [39] and Sonin [41]. The major di¤erence of our paper from this literature is our focus

on Pareto e¢ cient allocations rather than Markov perfect equilibria. Almost all of the results

in the paper are the result of this focus.

In this respect, our work is closely related to and builds on previous analyses of constrained

e¢ cient allocations in political economy models or in models with limited commitment. These

include, among others, the limited-commitment risk sharing models of Thomas and Worrall

[43] and Kocherlakota [26] and the political economy models of Dixit, Grossman and Gul [19]

and Amador [11], [12]. The main di¤erence between our paper and these previous studies is

our focus on the production economy. Several of our key results are derived from the explicit

presence of production (labor supply) decisions.6 In addition, to the best of our knowledge, no

existing work has systematically analyzed the impact of the Markov process for power switches

on the set of Pareto e¢ cient allocations.7

The paper most closely related to our work is a recent and independent contribution by

Aguiar and Amador [10], who consider an international political economy model in which a

party that comes to power derives greater utility from current consumption then groups not in

power. Similar to our environment, there is also no commitment and the identity of the power

�uctuates over time. Aguiar and Amador characterize a class of tractable equilibria, which

lead to �uctuations in taxes on investment (expropriation), slow convergence to steady state

5See, among others, Persson and Tabellini [33], Persson, Roland and Tabellini [34], [35], Besley and Coate
[16], [17], Baron [14], Grossman and Helpman [22], [23], Dixit and Londergan [20] and Bueno de Mesquita et al.
[18].

6Acemoglu, Golosov and Tsyvinski [4], [5], [6] and Yared [44] also consider dynamic political economy models
with production, but their models do not feature power switches between di¤erent social groups. Battaglini and
Coate [13] study the Markov perfect equilibria of the model of debt policy with power switches.

7Acemoglu and Robinson [9] and Robinson [40] also question the insight that long-lived all-encompassing
regimes are growth-promoting. They emphasize the possibility that such regimes may block bene�cial techno-
logical or institutional changes in order to maintain their political power.
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due to commitment problems, and potential di¤erential responses to opennness depending on

the degree of �political economy frictions�parameterized by the di¤erence in the di¤erential

utility from consumption for the group in power. In contrast to our model political economy

distortions disappear in the long run. In their model the backloading argument similar to

Acemoglu, Golosov and Tsyvinski [4], [6] applies as despite the current impatience the parties

agree on the long term allocations. Battaglini and Coate [13] is also closely related, since they

investigate the implications of dynamic political economy frictions in a model with changes in

the identity of the group in power, though focusing on Markovian equilibria and implications

for debt and government expenditure.

The rest of the paper is organized as follows. Section 2 introduces the basic environment

and characterizes the �rst-best allocations. Section 3 describes the political economy game.

Section 4 analyzes the structure of (constrained) Pareto e¢ cient allocations, characterizes the

level and dynamics of distortions, and also provides a complete characterization of the dynamics

of distortions in the case with two parties. Section 5 studies the e¤ect of frequency (persistence)

of power switches on political economy distortions. Section 6 provides a numerical illustration.

Section 7 concludes, while the Appendix contains a number of technical details and the proofs

omitted from the text.

2 Environment and Benchmark

In this section, we introduce the model and describe e¢ cient allocations without political

economy constraints.

2.1 Demographics, Preferences and Technology

We consider an in�nite horizon economy in discrete time with a unique �nal good. The economy

consists of N parties (groups). Each party j has utility at time t = 0 given by

E0
1X
t=0

�tuj(cj;t; lj;t); (1)

where cj;t is consumption, lj;t is labor supply (or other types of productive e¤ort), and E0

denotes the expectations operator at time t = 0. To simplify the analysis, we assume, without

loss of any economic insights, labor supply belongs to the closed interval
�
0; �l
�
for each party.

We also impose the following assumption on utility functions.
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Assumption 1 (Preferences) The instantaneous utility function

uj : R+ �
�
0; �l
�
! R;

for j = 1; :::; N is uniformly continuous, twice continuously di¤erentiable in the interior of its

domain, strictly increasing in c, strictly decreasing in l and jointly strictly concave in c and l,

with uj (0; 0) = 0 and satis�es the following Inada conditions:

lim
c!0

@uj(c; l)

@c
=1 and lim

c!1
@uj(c; l)

@c
= 0 for all l 2

�
0; �l
�
;

@uj(c; 0)

@l
= 0 and lim

l!�l

@uj(c; l)

@l
= �1 for all c 2 R+:

The di¤erentiability assumptions enable us to work with �rst-order conditions. The Inada

conditions ensure that consumption and labor supply levels are not at corners. The concavity

assumptions are also standard. Nevertheless, these will play an important role in our analysis,

since they create a desire for consumption and labor supply smoothing over time.

The economy also has access to a linear aggregate production function given by

Yt =

NX
j=1

lj;t: (2)

2.2 E¢ cient Allocation without Political Economy

As a benchmark, we start with the e¢ cient allocation without political economy constraints.

This is an allocation that maximizes a weighted average of di¤erent groups� utilities, with

Pareto weights vector denoted by � = (�1; :::; �N ), where �j � 0 for j = 1; :::; N denotes

the weight given to party j. We adopt the normalization
PN
j=1 �j = 1. The program for the

(unconstrained) e¢ cient allocation can be written as:

max
f[cj;t;lj;t]Nj=1g

1
t=0

E0
1X
t=0

�t

24 NX
j=1

�juj(cj;t; lj;t)

35 (3)

subject to the resource constraint

NX
j=1

cj;t �
NX
j=1

lj;t for all t. (4)
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Standard arguments imply that the �rst-best allocation,
�h
cfbj;t; l

fb
j;t

iN
j=1

�1
t=0

, which is a

solution to the program (3), satis�es the following conditions:

no distortions:
@uj(c

fb
j;t; l

fb
j;t)

@c
= �

@uj(c
fb
j;t; l

fb
j;t)

@l
for j = 1; :::; N and all t; (5)

perfect smoothing: cfbj;t = c
fb
j and lfbj;t = l

fb
j for j = 1; :::; N and all t: (6)

The structure of the �rst-best allocations is standard. E¢ ciency requires the marginal

bene�t from additional consumption to be equal to the marginal cost of labor supply for each

individual, and also requires perfect consumption and labor supply smoothing. Note that

di¤erent parties can be treated di¤erently in the �rst-best allocation depending on the Pareto

weight vector �, i.e., receive di¤erent consumption and labor allocations.

3 Political Economy

We now consider a political environment in which political power �uctuates between the N

parties j 2 N � f1; :::; Ng. The game form in this political environment is as follows.

1. In each period t, we start with one party, j0, in power.

2. All parties simultaneously make their labor supply decisions lj;t. Output Yt =
PN
j=1 lj;t

is produced.

3. Party j0 chooses consumption allocations cj;t for each party subject to the feasibility

constraint
NX
j=1

cj;t �
NX
j=1

lj;t: (7)

4. A �rst-order Markov process m determines who will be in power in the next period. The

probability of party j being in power following party j0 ism (j j j0), with
PN
j=1m (j j j0) =

1 for all j0 2 N .

A number of features is worth noting about this setup. First, this game form captures the

notion that political power �uctuates between groups. Second, it builds in the assumption that
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the allocation of resources is decided by the group in power (without any prior commitment

to what the allocation will be). The assumption of no commitment is standard in political

economy models (e.g., Persson and Tabellini [33], Acemoglu and Robinson [8]), while the

presence of power switches is crucial for our focus (see also Dixit, Grossman and Gul [19], and

Amador, [11], [12]). We have simpli�ed the analysis by assuming that there are no constraints

on the allocation decisions of the group in power and by assuming no capital.

In addition, we impose the following assumption on the Markov process for power switches.

Assumption 2 (Power Switches) The �rst-order Markov chain m (j j j0) is irreducible,

aperiodic and ergodic.

We are interested in subgame perfect equilibria of this in�nitely-repeated game. More

speci�cally, as discussed in the Introduction, we will look at subgame perfect equilibria that

correspond to constrained Pareto e¢ cient allocations, which we refer to as Pareto e¢ cient

perfect equilibria.

To de�ne these equilibria, we now introduce additional notation. Let ht = (h0; :::; ht), with

hs 2 N be the history of power holdings. Let H1 denote the set of all such possible histories of

power holding. Let Lt =
�
flj;0gNj=1 ; :::; flj;tg

N
j=1

�
be the history of labor supplies, and let Ct =�

fcj;0gNj=1 ; :::; fcj;tg
N
j=1

�
be the history of allocation rules. A (complete) history of this game

(�history� for short) at time t is !t =
�
ht;Ct�1;Lt�1

�
, which describes the history of power

holdings, all labor supply decisions, and all allocation rules chosen by groups in power. Let

the set of all potential date t histories be denoted by 
t. In addition, denote an intermediate-

stage (complete) history by !̂t =
�
ht;Ct�1;Lt

�
, and denote the set of intermediate-stage full

histories by 
̂t. The di¤erence between ! and !̂ lies in the fact that the former does not

contain information on labor supplies at time t, while the latter does. The latter history will

be relevant at the intermediate stage where the individual in power chooses the allocation rule.

We can now de�ne strategies as follows. First de�ne the following sequence of mappings

l̂ =
�
l̂0; l̂1; :::; l̂t; :::

�
and Ĉ =

�
Ĉ0; Ĉ1; :::; Ĉt; :::

�
, where l̂t : 
t !

�
0; �l
�
determines the level

of labor a party will supply for every given history !t 2 
t, and Ĉt : 
̂t ! RN+ determines a

sequence of allocation rules, which a party would choose, if it were in power, for every given

intermediate-stage history !̂t 2 
̂t, such that Ĉ satis�es the feasibility constraint (7). A date

t strategy for party j is �tj =
�
l̂t; Ĉt

�
: Denote the set of date t strategies by �t. A strategy
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for party j is �j =
�n
�tj

o
: t = 0; 1; :::

�
and the set of strategies is denoted by �. Denote

the expected utility of party j at time t as a function of its own and others�strategies given

intermediate-stage history !̂t (which subsumes history !t) by Uj
�
�j ; ��j j !̂t

�
:

We next de�ne various concepts of equilibria which we use throughout the paper.

De�nition 1 A subgame perfect equilibrium (SPE) is a collection of strategies

�� =
�n
�tj

o
: j = 1; :::; N; t = 0; 1; :::

�
such that ��j is best response to �

�
�j for all !̂

t 2 
̂t

(and !t 2 
t) and for all j, i.e., Uj
�
��j ; �

�
�j j !̂t

�
� Uj

�
�j ; �

�
�j j !̂t

�
for all �j 2 �, for all

!̂t 2 
̂t (and !t 2 
t), for all t = 0; 1; ::: and for all j 2 N .

De�nition 2 A (constrained) Pareto e¢ cient perfect equilibrium, ���, is a collection of strategies

that form an SPE such that there does not exist another SPE �, whereby Uj
�
�j ; ��j j !̂0

�
�

Uj

�
���j ; �

��
�j j !̂0

�
for all j 2 N , with at least one strict inequality.

In light of this de�nition, by Pareto e¢ cient allocations we refer to the equilibrium-path

allocations that result from a Pareto e¢ cient perfect equilibrium. To characterize Pareto

e¢ cient allocations, we will �rst determine the worst subgame perfect equilibrium, which will

be used as a threat against deviations from equilibrium strategies. These are de�ned next.

We write j = j
�
ht
�
if party j is in power at time t according to history (of power holdings)

ht. We also use the notation ht 2 Ht
j whenever j = j

�
ht
�
. A worst SPE for party j at time t

following history !t is a collection of strategies �W that form a SPE such that there does not

exist another SPE ���� such that Uj
�
����j ; �����j j !̂t

�
< Uj

�
�Wj ; �

W
�j j !̂t

�
for all !̂t 2 
̂t;8t.

4 Characterization of (Constrained) Pareto E¢ cient Alloca-
tions

4.1 Preliminary Results

Let V Wj (j0) denote the expected payo¤ of party j in the worst subgame perfect equilibrium

for party j from period t + 1 on, conditional on party j0 being in power at time t, i.e. j0 =

j(ht). Lemma 1 in the Appendix clari�es why, given Assumption 2, V Wj (j0) only depends

only on the identify of party in power at time t. The next proposition provides a constraint

maximization problem characterizing the Pareto e¢ cient allocations subject to the political

economy constraints (represented here by the sustainability constraints).
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Proposition 1 Suppose Assumptions 1 and 2 hold. Then, an outcome of any Pareto e¢ cient

subgame perfect equilibrium is a solution to the following maximization problem for all ht:

max
fcj(ht);lj(ht)gj=1;::;N ; ht

E0
1X
t=0

�t

24 NX
j=1

�juj(cj
�
ht
�
; lj
�
ht
�
)

35 (8)

subject to, for all ht,
NX
j=1

cj
�
ht
�
�

NX
j=1

lj
�
ht
�
; (9)

Et
1X
s=0

�suj
�
cj
�
ht+s

�
; lj
�
ht+s

��
� �V Wj (j(ht)) for all j 6= j(ht); (10)

and

Et
1X
s=0

�suj(ht)
�
cj(ht)

�
ht+s

�
; lj(ht)

�
ht+s

��
� vj(ht)

0@ X
j 6=j(ht)

lj
�
ht
�1A+ �V Wj(ht)(j(ht)); (11)

for some Pareto weights vector � = (�1; :::; �N ), where

vj(Y ) � max
~l2[0;�l]

uj

�
Y + ~l ; ~l

�
: (12)

Proof. See the Appendix.

In this constrained maximization problem, (10) represents the participation constraint for

each group that is not in power.8 Group j can never receive less than �V Wj (j(ht)), which

it can guarantee by supplying and consuming zero today and then receiving its payo¤ in the

worst subgame perfect equilibrium from tomorrow on starting with group j(ht) in power today.

In addition, (11) is the participation or the sustainability constraint of group j(ht) that is in

power. This group can always deviate today and consume all output, giving itself current

utility vj(ht)
�P

j 6=j(ht) lj
�
ht
��
, and from tomorrow on receive its payo¤ in the worst subgame

perfect equilibrium, �V Wj(ht)(j(h
t)) starting with itself in power today. To simplify the notation,

we de�ne

Vj(h
t�1) � E

( 1X
s=0

�suj
�
cj
�
ht+s

�
; lj
�
ht+s

��
jht�1

)
8The maximization (8) subject to (9), (10), and (11) is a potentially non-convex optimization problem,

because (11) de�nes a non-convex constraint set. This implies that randomizations may improve the value of
the program (see, for example, Prescott and Townsend [36], [37]). The working paper version of our paper
establishes the analogs of our results in the presence of explicit randomization on public signals. We omit these
details here to economize on space and notation.
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Vj [h
t�1; i] � E

( 1X
s=0

�suj
�
cj
�
ht+s

�
; lj
�
ht+s

��
jht�1; j(ht) = i

)
The di¤erence between Vj(ht�1) and Vj [ht�1; i] is that the former denotes expected lifetime

utility of party j in period t before the uncertainty which party is in power in that period is real-

ized, while the latter denotes the expected lifetime utility after realization of this uncertainty.

From the above de�nition and Assumption 2,

Vj(h
t�1) =

NX
j0=1

m(j0jht�1)Vj [ht�1; j0]:

Proposition 1 implies that in order to characterize the entire set of Pareto e¢ cient perfect

equilibria, we can restrict attention to strategies that follow a particular prescribed equilibrium

play, with the punishment phase given by �W .9

4.2 Political Economy Distortions

We next characterize the structure of distortions arising from political economy. Our �rst result

shows that as long as sustainability/political economy constraints are binding, the labor supply

of parties that are not in power is distorted downwards. There is a positive wedge between

their marginal utility of consumption and marginal disutility of labor. In contrast, there is no

wedge for the party in power. Recall also that without political economy constraints, in the

�rst-best allocations, the distortions are equal to zero.

Proposition 2 Suppose that Assumptions 1 and 2 hold. Let the (normalized) Lagrange mul-

tiplier on the sustainability constraint (11) given history ht, be denoted by �j(ht)
�
ht
�
. Then as

long as �j(ht)
�
ht
�
> 0, the labor supply of all groups that are not in power, i.e., j 6= j

�
ht
�
, is

distorted downwards, in the sense that

@uj
�
cj
�
ht
�
; lj
�
ht
��

@c
> �

@uj
�
cj
�
ht
�
; lj
�
ht
��

@l
:

The labor supply of a party in power, j0 = j
�
ht
�
, is undistorted, i.e.,

@uj0
�
cj0
�
ht
�
; lj0

�
ht
��

@c
= �

@uj0
�
cj0
�
ht
�
; lj0

�
ht
��

@l
:

9Notice, however, that this proposition applies to Pareto e¢ cient outcomes, not to the strategies that indi-
viduals use in order to support these outcomes. These strategies must be conditioned on information that is not
contained in the history of power holdings, ht, since individuals need to switch to the worst subgame perfect
equilibrium in case there is any deviation from the implicitly-agreed action pro�le. This information is naturally
contained in !t. Therefore, to describe the subgame perfect equilibrium strategies we need to condition on the
full histories !t.
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Proof. See the Appendix

The intuition for why there will be downward distortions in the labor supply of groups

that are not in power is similar to that in Acemoglu, Golosov and Tsyvinski [4], [6]. Positive

distortions, which are the equivalent of �taxes,�discourage labor supply, reducing the amount

of output that the group in power can �expropriate� (i.e., allocate to itself as consumption

following a deviation). This relaxes the sustainability constraint (11). In fact, starting from an

allocation with no distortions, a small distortion in labor supply creates a second-order loss.

In contrast, as long as the multiplier on the sustainability constraint is positive, this small

distortion creates a �rst-order gain in the objective function, because it enables a reduction

in the rents captured by the group in power. We show in the appendix that the problem can

be re-written recursively using the updated Pareto weights �j following Marcet and Marimon

[30]. This intuition also highlights that the extent of distortions will be closely linked to the

Pareto weights given to the group in power. In particular, when �j is close to 1 and group j

is in power, there will be little gain in relaxing the sustainability constraint (11). In contrast,

the Pareto e¢ cient allocation will attempt to provide fewer rents to group j when �j is low,

and this is only possible by reducing the labor supply of all other groups, thus distorting their

labor supplies. Note that the Lagrange multiplier �j(ht)
�
ht
�
is a measure of distortions. This

follows immediately from Proposition 2, and more explicitly its proof in the Appendix, which

shows that the wedges between the marginal utility of consumption and the marginal disutility

of labor are directly related to �j(ht)
�
ht
�
. This is useful as it will enable us to link the level

and behavior of distortions to the behavior of the Lagrange multiplier �j(ht)
�
ht
�
.

The (constrained) e¢ cient allocations will be ��rst-best�if and only if the Lagrange mul-

tipliers associated with all constraints (10) and (11) are equal to zero (so that there are no

distortions in a �rst-best allocation). That is, a �rst-best allocation starting at history ht

involves �j
�
ht+s

�
= 0 for all j and all subsequent ht+s.

We also call any allocation fc�j ; l�jgj=1;:::;N a sustainable �rst-best allocation if fc�j ; l�jg is a

�rst-best allocation that satis�es for each j = 1; :::; N

1

1� �uj
�
c�j ; l

�
j

�
� vj

0@X
i6=j

l�i

1A+ �V Wj (j) , (13)
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where recall that vj is de�ned in (12), and

1

1� �uj
�
c�j ; l

�
j

�
� �V Wj

�
j0
�
for each j0 6= j: (14)

The next theorem studies the dynamics of the distortions.

Theorem 1 Suppose that Assumptions 1 and 2 hold. Then there exists ��; with 0 < �� < 1

such that

1. For all � � ��, there is some �rst-best allocation that is sustainable;

2. If no �rst-best allocation is sustainable then fcj(ht); lj(ht)gj=1;:::;N converges to an in-

variant non-degenerate distribution F .

Proof. See the Appendix.

This theorem shows that for high discount factors, i.e., � � ��, there are �rst-best allocations

that are sustainable. In contrast, when � is low, then there are no sustainable �rst best

allocations and consumption and labor supply levels will �uctuate permanently as political

power changes hands between di¤erent parties. The invariant distribution can be quite complex

in general, and involve the consumption and labor supply levels of each group depending on

the entire history of power holdings.

This theorem does not answer the question of whether �rst-best allocations, when they are

sustainable, will be ultimately reached. We address this question for the case of two parties in

the next section.

4.3 The Case of Two Parties

In this subsection, we focus on an economy with two parties (rather than N parties as we have

done so far). We also specialize utility function to be quasi-linear. Under these conditions, we

show that when there exists a sustainable �rst-best allocation (i.e., an undistorted allocations

for some Pareto weights), the equilibrium will necessarily converge to a point in the set of �rst-

best allocations. More speci�cally, starting with any Pareto weights, the allocations ultimately

converge to undistorted allocations.

For the rest of this section, we impose the following assumption on the preferences.

13



Assumption 3 (Quasi-Linear Preferences) The instantaneous utility of each party j sat-

is�es uj
�
cj � �j (lj)

�
with the normalization

�0j (1) = 1: (15)

Assumption 3 implies that there are no income e¤ects in labor supply. Consequently, when

there are no distortions, the level of labor supply by each group will be constant, and given the

normalization in (15), this labor supply level will be equal to 1 (which is without loss of any

generality). The absence of income e¤ects also simpli�es the analysis and dynamics, which is

our main focus in this section.

Now we are ready to prove the result on the convergence to the �rst-best allocations.

Theorem 2 Suppose that Assumptions 1 and 3 hold. If there exists a sustainable �rst-best,

then ��
cj
�
ht
�
; lj
�
ht
��	2

j=1
!
��
c�j ; l

�
j

�	2
j=1

where
n�
c�j ; l

�
j

�o2
j=1

is some �rst-best sustainable allocation.

Proof. See the Appendix.

This theorem establishes that if there exist �rst-best allocations that are sustainable they

will be ultimately reached. This implies that the political economy frictions in this situation

will disappear in the long run. The resulting long-run allocations will not feature distortions

and �uctuations in consumption and labor supply. Note, however, that the theorem does not

imply that such �rst-best allocations will be reached immediately. Sustainability constraints

may bind for a while, because the sustainable �rst-best allocations may involve too high a level

of utility for one of the groups. In this case, a �rst-best allocation will be reached only after a

speci�c path of power switches increases the Pareto weight of this group to a level consistent

with a �rst-best allocation. After this point, sustainability constraints do not bind for either

party, and thus Pareto weights are no longer updated and the same allocation is repeated

in every period thereafter. Interestingly, however, this �rst-best allocation may still involve

transfer from one group to another.

The analysis in this subsection relies on two assumptions: (a) preferences are quasi-linear

and (b) there are only two parties. Relaxing any of this assumptions signi�cantly complicates
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the analysis, and we conjecture one can construct counterexamples to Theorem 2 when they

are violated. The assumption of quasi-linearity is crucial to establish a key lemma in the

Appendix. It ensures that an updated Pareto weight �j
�
ht
�
when party j is in power does

not �jump�from below the �rst-best Pareto weight ��j to above it. The higher updated Pareto

weight �j(ht) ensures higher expected utility from period t+1 for party j; but also introduces

additional distortions in period t: With quasi-linearity, it is possible to show that the �rst

e¤ect dominates for all �j(ht) as long as �j(ht) � ��j , but it does not have to be true more

generally.10

5 Political Stability and E¢ ciency

Our framework enables an investigation of the implications of persistence of power on the

sustainability of �rst-best applications. In particular, the �stability�or persistence of power is

captured by the underlying Markov process for power switches. If the Markov processm (j j j0)

makes it very likely that one of the groups, say group 1, will be in power all the time, we can

think of this as a very �stable distribution of political power�.

Such an investigation is important partly because a common conjecture in the political

economy literature is that such stable distributions of political power are conducive to better

policies. For example Olson [?] and McGuire and Olson [31] reach this conclusion by contrasting

an all-encompassing long-lived dictator to a �roving bandit�. They argue that a dictator with

stable political power is superior to a roving bandit and will generate better public policies.

This conjecture at �rst appears plausible, even compelling: what matters for better policies

are high �e¤ective discount factors,� and frequent switches in the identity of powerholders

would reduce these e¤ective discount factors. Hence, stability (persistence) of power should

be conducive to better policies and allocations. Similar insights emerge from the standard

principal-agent models of political economy, such as Barro [15], Ferejohn [21], Persson, Roland

and Tabellini [34], [35], because, in these models, it is easier to provide incentives to a politician

who is more likely to remain in power. We next investigate whether a similar result applies in

10The assumption that N = 2 can be relaxed for the case where all N parties have the same preferences and
the Markov process for power switches m is symmetric. In that case we conjecture that it can be shown that
the party that starts with a highest initial Pareto weight has a sequence of updated Pareto weights which is
monotonically decreasing and is bounded from below by 1=N . In that case, the proof of Theorem 2 goes without
changes. With asymmetric parties this condition is di¢ cult to ensure.
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our context. In particular, we ask which types of Markov processes make it more likely that a

large set of �rst-best allocations are sustainable.

Our main result in this section is that this common conjecture is not generally correct. In

fact, perhaps at �rst surprisingly, in our framework, essentially the opposite of this conjecture

holds. In particular, we show that the opposite of this conjectures is true for the set of

sustainable �rst-best allocations; greater persistence of power encourages deviations and leads

to a smaller set of sustainable �rst-best allocations. In the next section, we complement this

result by showing, numerically, how changes in persistence of power in�uences the utility of

di¤erent players.

The next theorem shows our main result that higher persistence of power makes distortions

more likely, in the sense that it leads to a smaller set of sustainable �rst-best allocations. This

result is stated in the next theorem for the general case in which there are N parties and general

rather than quasi-linear preferences (whereas, recall that, Theorem 2 was for two parties with

quasi-linear preferences).

Theorem 3 Consider an economy consisting of N groups, with group j having utility functions

uj (cj ; lj) satisfying Assumption 1. Suppose that m (j j j) = � and m (j0 j j) = (1� �)=(N � 1)

for any j0 6= j. Then the set of sustainable �rst-best allocations is decreasing in � (i.e., ��

de�ned in Theorem 1 is increasing in �).

Proof. Recall that a �rst-best allocation satis�es (13) and (14). First, we show that under

the conditions of the theorem, (13) implies (14). From the speci�cation of the power switching

process, we have that group j will remain in power next period with probability �, and hence

V Wj (j) satis�es

V Wj (j) = �V Pj + (1� �)V NPj ; (16)

where V Pj and V NPj are respectively the utility of being in power and not in power after a

deviation. These are given by

V Pj = uj

�
~lj ; ~lj

�
+ ��V Pj + � (1� �)V NPj ; (17)

and

V NPj = �

�
1� 1� �

N � 1

�
V NPj + �

�
1� �
N � 1

�
V Pj ; (18)
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where ~lj is a solution to @uj
�
~lj ; ~lj

�
=@c = �@uj

�
~lj ; ~lj

�
=@l and the symmetry of m implies

that V NPj is independent of which group j0 succeeds j in power. Subtracting (17) from (18),

we obtain

V Pj � V NPj =
uj

�
~lj ; ~lj

�
1� ��+ �

�
1��
N�1

� : (19)

Similarly for any j0 6= j;

V Wj
�
j0
�
=

�
1� 1� �

N � 1

�
V NPj +

�
1� �
N � 1

�
V Pj ;

which implies that

V Wj (j)� V Wj
�
j0
�
=

�
�� 1� �

N � 1

��
V Pj � V NPj

�
=

�
�� 1� �

N � 1

� uj

�
~lj ; ~lj

�
1� ��+ �

�
1��
N�1

� :
Now compare the right hand sides of (13) and (14)

vj

0@X
i6=j

l�i

1A+ �V Wj (j)� �V Wj (j0) = vj

0@X
i6=j

l�i

1A+ ���� 1� �
N � 1

� uj

�
~lj ; ~lj

�
1� ��+ �

�
1��
N�1

�
� uj

�
~lj ; ~lj

�0@1 + �
�
�� 1��

N�1

�
1� ��+ �

�
1��
N�1

�
1A

=
uj

�
~lj ; ~lj

�
1� ��+ �

�
1��
N�1

�
> 0:

The second line of this equation follows from the fact that vj
�P

i6=j l
�
i

�
� uj

�
~lj ; ~lj

�
and

the last line follows because 1� ��+ �
�
1��
N�1

�
is bounded from below by 1� � > 0: Therefore

if any
�
c�j ; l

�
j

�
satis�es (13), it also satis�es (14).

To prove the theorem it is su¢ cient to show that if any
n
c�j ; l

�
j

o
j
satis�es (13) for some

� and all j; it also satis�es it for any other �0 � �: The left-hand side of this expression is

independent of �, so is the �rst term on the right-hand side. Therefore, the desired result

follows if the second term on the right-hand side, V Wj (j), is increasing in �. Substitute (19)
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into (17) to obtain

V Pj =
1� � + �

�
1��
N�1

�
(1� �)

�
1� ��+ �

�
1��
N�1

��uj �~lj ; ~lj� ;
and substituting this into (16), we obtain

V Wj (j) =
�
�
1��
N�1

�
+ (1� �) �

(1� �)
�
1� ��+ �

�
1��
N�1

��uj �~lj ; ~lj� ;
which is increasing in �, establishing the desired result.

This theorem implies the converse of the Olson conjecture discussed above: the set of

sustainable �rst-best allocations is maximized when there are frequent power switches between

di¤erent groups. The Olson conjecture is based on the idea that �e¤ective discount factors�are

lower with frequent power switches, and this should make �cooperation�more di¢ cult. Yet,

�e¤ective discount factors�would be the key factor in shaping cooperation (the willingness of

the party in power to refrain from deviating) only if those in power can only be rewarded when

in power. This is not necessarily the case, however, in reality or in our model. In particular,

in our model deviation incentives are countered by increasing current utility and the Pareto

weight of the party in power, and, all else equal, groups with higher Pareto weights will receive

greater utility in all future dates. This reasoning demonstrates why �e¤ective discount factor�

is not necessarily the appropriate notion in this context. Instead, Theorem 3 has a simple

intuition: the value of deviation for a group in power is determined by the persistence of

power; when power is highly persistent, deviation becomes more attractive, since the group in

power can still obtain relatively high returns following a deviation as it is likely to remain in

power. In contrast, with more frequent power switches, the group in power is likely to be out of

power tomorrow, e¤ectively reducing the value of a deviation. Since �rst-best allocations, and

thus �rst-best utilities, are independent of the persistence of power, this implies that greater

persistence makes deviation more attractive relative to candidate �rst-best allocations, and

thus �rst-best allocations become less likely to be sustainable.

6 The Form of the Pareto Frontier: Numerical Results

In this section, we numerically investigate the e¤ect of persistence and frequency of power

switches on the structure of Pareto e¢ cient allocations. In particular, we study how both the
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ex-ante Pareto frontier, which applies before the identity of the party in power is revealed, and

the ex-post Pareto frontier, conditional on the identity of the party in power, vary with the

degree of persistence. Our purpose is not to undertake a detailed calibration, but to provide

illustrative numerical computations. We focus on an economy with two groups, j = 1; 2, and

further simplify the discussion by assuming quasi-linear and identical utilities, given by

uj (c� h (l)) =
1

1� �

�
c� 1

1 + 

l1+


�1��
:

We set 
 = 1, � = 0:6 and choose a symmetric Markov process for power switches with

m(1j1) = m(2j2) = �, so that � is the persistence parameter (higher � corresponds to greater

persistence). In Figure 1, we focus on the ex-ante Pareto frontier. For any given Pareto weight

� we de�ne ex-ante utility of party i by

V eai [�] =
1

2
Vi [�; 1] +

1

2
Vi [�; 2] :

The �gure plots V ea2 [�] and V ea1 [�] for di¤erent values of � and for two di¤erent values of

levels of the persistence, �, � = 0:9 represented by the inner solid line, and � = 0:6 shown as

the dashed line. We also show the �rst-best Pareto frontier for comparison (the outer solid

line). We chose a discount factor � so that only one �rst-best allocation (that corresponding

to the Pareto weights �1 = �2 = 0:5 is sustainable) when � = 0:9.
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Consistent with Theorem 3, a larger set of �rst-best allocations is sustainable when per-

sistence is lower. This can be seen by observing the common part of the �rst-best frontier

and two other frontiers. For � = 0:6 this common part is larger than for � = 0:9 (which is

just one point corresponding to �1 = �2 = 0:5). Also, the whole ex-ante Pareto frontier for

low persistence lies above the Pareto frontier for high persistence, which implies that, before

uncertainty about the identity of the party in power is realized, both parties are better o¤,

and would prefer to be, in a regime with frequent power switches.

If the institutional characteristics of the society determining the frequency of power switches

were chosen �behind the veil of ignorance,� then this result would imply that both parties

would prefer lower persistence. However, most institutional characteristics in practice are not

determined behind a veil of ignorance. Di¤erent groups would typically have di¤erent amounts

of political power, and in the context of our model, one would be �in power�. In this case, what

would be relevant is the ex-post, not the ex-ante, Pareto frontier. We next turn to the ex-post

Pareto frontier. This is shown in Figure 2, assuming that party 1 is currently in power. As with
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Figure 1, this �gure also plots V2 [�; 1] against V 1 [�; 1] for di¤erent values of �, and for high

and low levels of persistence (� = 0:9 and � = 0:6). Figure 2 �rst shows that higher persistence

imposes a greater �lower bound�on the possible payo¤ of party 1, which is in power. This can

be seen from the fact that the beginning of the right solid line (� = 0:6) starts lower than the

beginning of the left line (� = 0:9). This implies that greater persistence decreases the highest

payo¤ that party 2 can get. The more surprising pattern in Figure 2 is that for high values

of �, the value of party 1 is lower with higher persistence. This appears paradoxical at �rst,

since higher persistence improves the deviation value of party 1. We investigate the reason for

this pattern in greater detail in Figure 3.
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Figure 3 plots the payo¤ of party 1, V 1 [�; 1], for di¤erent values values of �1. The line

representing the �rst-best allocation is monotonically increasing with the Pareto weight as-

signed to party 1. Figure 3 also shows that for �1 su¢ ciently high, party 1 obtains higher

value with lower persistence (for �1 > 1=2, the line representing � = 0:9 is below the dashed

line representing � = 0:6). The reason for this is as follows. When �1 is su¢ ciently high, the

sustainability constraint of party 1 is slack. Thus greater persistence does not necessitate an
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increase in current consumption or Pareto weight to satisfy its sustainability constraint. But it

implies that the deviation value of party 2 will also be higher when it comes to power. When

party 2 comes to power, its Pareto weight will be low and thus its sustainability constraint will

be binding. A greater deviation value for party 2 at this point therefore translates into higher

utility for it and lower utility for party 1. The anticipation of this lower utility in the future is

the reason why the value of party 1 is decreasing in the degree of persistence in power switches

for �1 su¢ ciently high (greater than 1/2 in the �gure). The analogue of this argument holds

for weights below 1/2. Consistent with Figure 2, for low initial Pareto weights the utility of

party 1 is increasing in the degree of persistence � (for �1 < 1=2, the line representing � = 0:9

is above the dashed line representing � = 0:6). Here, higher persistence of power increases

the value of deviation and requires the planner to allocate more utility for this party with a

low initial Pareto weight. This reasoning explains why the �lower bound�on the equilibrium

payo¤s for party 1 is higher with high persistence.

Another important implication of Figure 3 (already visible from Figure 2) is that changes

in persistence do not necessarily correspond to Pareto improvements once the identity of the

party in power is known. This highlights that even though the set of sustainable �rst-best

allocations expands when the degree of persistence declines, along-the-equilibrium-path utility

of both parties (conditional on the identity of the party in power) need not increase. This

suggests that we should not necessarily expect a strong tendency for societies to gravitate

towards institutional settings that increase the frequency of power switches.
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7 Concluding Remarks

In this paper, we studied the (constrained) Pareto e¢ cient allocations in a dynamic production

economy in which the group in power decides the allocation of resources. The environment is a

simple model of political economy. In our model, di¤erent groups have con�icting preferences

and, at any given point in time, one of the groups has the political power to decide (or to

in�uence) the allocation of resources. We made relatively few assumptions on the interactions

between the groups; the process of power switches between groups is modeled in a reduced-

form way with an exogenous Markov process. Our focus has been on the allocations that

can be achieved given the distribution and �uctuations of political power in this society�

rather than potential institutional failures leading to Pareto dominated equilibria given the

underlying process of power switches. This focus motivated our characterization of Pareto

e¢ cient equilibria. In the constrained Pareto e¢ cient equilibria, there are well-de�ned political

economy distortions that change over time.
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The distortions in Pareto e¢ cient equilibria are a direct consequence of the sustainability

constraints, which re�ect the political economy interactions in this economy. If these sustain-

ability constraints are not satis�ed, the group in power would allocate all production to itself.

The results here are driven by the location and shape of the Pareto frontier and by the �power�

of di¤erent groups, which corresponds to what point the society is located along the Pareto

frontier.

We showed how the analysis in the paper is simpli�ed by the fact that these Pareto e¢ cient

allocations take a quasi-Markovian structure and can be represented recursively as a function

of the identity of the group in power and updated Pareto weights. This recursive formulation

allows us to provide a characterization of the level and dynamics of taxes and transfers in the

economy.

In the two party case with quasilinear preferences we demonstrated that for high discount

factors the economy converges to a �rst-best allocation in which there may be transfers between

groups, but labor supply decisions are not distorted and the levels of labor supply and con-

sumption do not �uctuate over time. When discount factors are low, the economy converges

to an invariant stochastic distribution in which distortions do not disappear and labor supply

and consumption levels �uctuate over time, even asymptotically.

Most importantly, we showed that the set of sustainable �rst-best allocations is �decreasing�

in the degree of persistence of the Markov process for power change. This result directly

contradicts a common conjecture that there will be fewer distortions when the political system

creates a stable ruling group (see, e.g., Olson [32], or McGuire and Olson [31], as well as

the standard principle-agent models of political economy such as Barro [15], Ferejohn [21],

Persson, Roland and Tabellini [34], [35]). The reason why this conjecture is incorrect illustrates

an important insight of our approach. In an economy where the key distributional con�ict

is between di¤erent social groups, these groups can be rewarded not only when they hold

power, but also when they are out of power (and they engage in consumption and production).

Consequently, the probability of power switches does not directly a¤ect �e¤ective discount

factors,� potentially invalidating the insight on which this conjecture is based. Because the

persistence of the Markov process for power switches reduces deviation payo¤s (while �rst-

best payo¤s are independent of persistence), greater persistence makes �rst-best allocations

less likely to be sustainable.
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While our analysis focused on the distortions introduced by the political economy friction,

it is straightforward to derive implications of these results for tax policy. If the group in power

sets taxes and transfers rather than directly deciding allocations, then the Pareto e¢ cient

allocation can be decentralized as a competitive equilibrium, but this would necessarily involve

the use of distortionary taxes. This observation implies that the �uctuations of distortions,

consumption and labor supply levels derived as part of the Pareto e¢ cient allocations in this

paper also correspond to �uctuations in taxes� not simply to the presence of and �uctuations in

�wedges�between the marginal utility of consumption and the marginal disutility of labor. The

result that distortionary taxes must be used to decentralize the Pareto e¢ cient allocation has a

simple intuition, further clarifying the source of distortions in our economy: distortionary taxes

must be used in order to discourage labor supply, because greater labor supply would increase

the amount of output at the group in power can expropriate, tightening its sustainability

constraint. Starting from an undistorted allocation, a small increase in taxes (distortions)

would have a second-order cost in terms of lost net output, while having a �rst-order bene�t in

terms of relaxing the sustainability constraint when the latter is binding (see also Acemoglu,

Golosov and Tsyvinski [4]).

We believe that the framework studied here is attractive both because we can analyze

the e¤ect of political economy distortions without specifying all of the details of interactions

between groups and the process of decision-making. Undoubtedly, these institutional details

are important in practice, and may lead to the emergence of outcomes inside the constrained

e¢ cient Pareto frontier. A natural next step is then to investigate what types of institutional

structures can support (�implement�) the constrained Pareto e¢ cient allocations. This would

give a di¤erent perspective on the role of speci�c institutions, as potential tools regulating the

allocation of political power in society and placing constraints on the exercise of such power so

as to achieve constrained Pareto e¢ cient allocations. Nevertheless, our results indicating that

changes in the frequency of power switches that improve ex-ante welfare do not necessarily

improve ex-post welfare for all groups suggest that even when such speci�c institutions imple-

menting constrained Pareto e¢ cient allocations exist, whether they will emerge in equilibrium

needs to be studied in the context of well-speci�ed models. We leave an investigation of these

issues to future work.

Another important area for future research is to endogenize the Markov process for power
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switches. In modern societies, �uctuations of political power between di¤erent groups arise

because of electoral competition, possible political coalitions between di¤erent groups lending

their support to a speci�c party or group, or in extreme circumstances, because di¤erent groups

can use their de facto power, such as in revolutions or in civil wars, to gain de jure power (see,

e.g., Acemoglu and Robinson, [8]).
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8 Appendix

In this Appendix, we provide some of the technical details, results, and proofs omitted from

the text.

8.1 Proof of Proposition 1

The next lemma describes the worst subgame perfect equilibrium. In that equilibrium, all

parties that are not in power in any given period supply zero labor and receive zero consump-

tion, while the party in power supplies labor and consumes all output to maximize its per

period utility in such a way that marginal utility from consumption is equated with marginal

disutility of labor.

Lemma 1 Suppose Assumption 1 holds. The worst SPE is given by the collection of strategies

�W such that for all j 6= j
�
ht
�
: lj

�
!t
�
= 0 for all !t 2 
t, and for j0 = j

�
!t
�
: lj0

�
ht
�
= ~lj0

for all !t 2 
t where ~lj0 is a solution to

@uj0(~lj0 ; ~lj0)

@c
= �@uj

0(~lj0 ; ~lj0)

@l
(20)

and ctj
�
!̂t
�
= 0 for j 6= j0; ctj0

�
!̂t
�
=
PN
i=1 l

t
i

�
!̂t
�
for all !̂t 2 
̂t.

Proof. We �rst show that �W is a best response for each party in all subgames when other

parties are playing �W . Consider �rst party j that is not in power (i.e., suppose that party

j0 6= j is in power) at history !t. Consider strategy �j for party j that deviates from �Wj at

time t, and then coincides with �Wj at all subsequent dates (following all histories). By the

one step ahead deviation principle, if �Wj is not a best response for party j, then there exists

such a strategy �j that will give higher utility to this party. Note, �rst that given �W�j , for any

�j , party j will always receive zero consumption, and moreover under �W , this has no e¤ect

on the continuation value of party j. Therefore, at such a history, we have

Uj
�
�j ; �

W
�j j !t

�
= uj(0; lj;t) + �E

�
Uj
�
�j ; �

W
�j j !t+1

�
j !t

�
� �E

�
Uj
�
�Wj ; �

W
�j j !t+1

�
j !t

�
;

for any such �j , where lj;t is the labor supply of party j at time t implied by the alternative

strategy �j , and E
h
Uj

�
�j ; �

W
�j j !t+1

�
j !t

i
is the continuation value of this party from date t+
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1 onwards, with the expectation taken over histories determining power switches given current

history !t (where conditioning is on history !t which is available to party j when making

decisions as this party is not in power). The second line follows in view of the fact that since

uj(0; 0) = 0, we have uj(0; lj;t) � 0, and since under �W any change in behavior at t has no e¤ect

on future play and �j coincides with �Wj from time t+1 onwards, E
h
Uj

�
�j ; �

W
�j j !t+1

�
j !t

i
=

E
h
Uj

�
�Wj ; �

W
�j j !̂t+1

�
j !t

i
. This establishes that there is no pro�table deviations from �Wj

for any j not in power.

Next consider party j in power at history !̂t (where we condition on intermediate-state

history !̂t as the party in power makes decisions after observing his history). Under �W ,

lj0;t = cj0;t = 0 for all j0 6= j, and thus lj;t = cj;t. Consider again strategy �j for party j that

deviates from �Wj at time t, and then coincides with �Wj at all subsequent dates. Then, using

similar notation, we have

Uj
�
�j ; �

W
�j j !̂t

�
= uj(cj;t; lj;t) + �E

�
Uj
�
�j ; �

W
�j j !̂t+1

�
j !̂t

�
� uj(c

W
j;t; l

W
j;t) + �E

�
Uj
�
�Wj ; �

W
�j j !̂t+1

�
j !̂t

�
;

for any such �j , where lj;t and cj;t are the labor supply and consumption of party j at this

history under strategy �j , and lWj;t and c
W
j;t or the labor supply and consumption implied by �

W
j .

The second line follows since �Wj satis�es (20), and thus uj(cWj;t; l
W
j;t) = uj(

~l; ~l) � uj(cj;t; lj;t) for

any �j , and again because E
h
Uj

�
�j ; �

W
�j j !̂t+1

�
j !̂t

i
= E

h
Uj

�
�Wj ; �

W
�j j !̂t+1

�
j !̂t

i
(from

the fact that under �W the current deviation by party j has no e¤ect on future play and

�j coincides with �Wj from time t + 1 onwards). This establishes that there is no pro�table

deviations from �Wj for the party in power. Therefore, �W is a SPE. The proof is completed

by showing that �W is also the worst SPE for any party j. To see this, suppose that all j0 6= j

choose strategy �M�j to minimize the payo¤ of j. Since power switches are exogenous, party j

can guarantee itself uj(~l; ~l) whenever it is in power and uj(cMj;t; l
M
j;t) = 0 whenever it is not in

power. Therefore,

Uj
�
�Wj ; �

M
�j j !̂t

�
� Uj

�
�Wj ; �

W
�j j !̂t

�
for any �M�j , and thus �

W is the worst SPE (i.e., it involves all groups other than the one in

power supplying zero labor and thus minimizing the utility of the group in power). Moreover,

by the same argument �W is also the worst equilibrium for all parties, completing the proof.
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To prove the proposition, we next show that (9)-(11) are necessary and su¢ cient conditions

for any allocation fcj (h) ; lj (h)gNj=1 that is an outcome of some SPE. First, we show that any

allocation fcj (h) ; lj (h)gNj=1 that satis�es (9)-(11) is an outcome of some SPE. For any history

!t with ht 2 !t let ��(!t) =
�
lj
�
ht
�	N
j=1

if !t =
�
ht;
��
cj
�
ht�s

�
; lj
�
ht�s

�	N
j=1

�t
s=1

�
; and

��
�
!t
�
= �W otherwise, and, analogously, ��(!̂t) =

�
cj
�
ht
�	N
j=1

if

!̂t =

�
ht;
��
cj
�
ht�s

�
; lj
�
ht�s

�
; lj
�
ht
�	N
j=1

�t
s=1

�
; and ��

�
!̂t
�
= �W otherwise. For any

j 6= j(ht) if �j(!t) 6= ��j (!t);

Uj(�j ; �
�
�j j!̂t) � uj(0; 0) + �V

W
j (j(ht))

� Uj(�
�
j ; �

�
�j j!̂t);

where the last inequality follows from (10) and from the fact that uj(0; 0) = 0. Moreover, for

j0 = j(ht); any �j0 6= ��j0 implies

U 0j0(�j0 ; �
�
�j0 j!̂t) � max

~l�0
uj0

0@X
j 6=j0

lj
�
ht
�
+ ~l ; ~l

1A+ �V Wj0 (j0)
� Uj0(�

�
j0 ; �

�
�j0 j!̂t):

Therefore, �� is an equilibrium.

The necessity of (9)-(11) is straightforward. Condition (9) is feasibility constraint. In any

equilibrium ��, we have, for j 6= j(ht), that

Uj(�
�
j ; �

�
�j j!t) � Uj(�j ; ���j j!t)

for all �j 6= ��j (where conditioning is on history !t which is available to j 6= j(ht) when making

decisions). This implies:

Uj(�
�
j ; �

�
�j j!t) � uj (cj ; lj) + �EtUj(�j ; ���j j!t+1)

� uj (0; lj) + �V Wj (j(ht))

= uj (0; 0) + �V
W
j (j(ht)):
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Since uj (0; 0) = 0, this string of inequalities yields (10). Similarly, for j0 = j(ht), we have that

Uj0(�
�
j0 ; �

�
�j0 j!̂t) � max

~l2[0;�l]
uj0

0@X
j 6=j0

lj
�
ht
�
+ ~l ; ~l

1A+ �EtUj(�j0 ; ���j0 j!̂t+1)
� max
~l2[0;�l]

uj0

0@X
j 6=j0

lj
�
ht
�
+ ~l ; ~l

1A+ �V Wj0 (j0)
for all �j 6= ��j , which gives condition (11). (Here conditioning is on !̂t which is the intermediate-

state history available when j0 = j(ht) makes decisions; in what follows we condition on !̂t

since it subsumes !t).

To see that �� is a (constrained) Pareto e¢ cient equilibrium, suppose there is any other

equilibrium ��� that Pareto dominates ��: Since ��� is a SPE, the outcome of ��� must satisfy

(9)-(11). But then the value of (8) would be higher under the outcome of ��� than under ��,

yielding a contradiction and completing the proof. �

Recursive Characterization

Here we present a characterization result, which shows that the solution to (8)-(11), the max-

imization problem in Proposition 1, can be represented recursively. This characterization is

used in the rest of the Appendix.

Let us �rst de�ne M
�
ht+s j ht

�
to be the (conditional) probability of history ht+s at time

t+ s given history ht at time t according to the Markov process m (j j j0). We will show that

after history ht�1, (8)-(11) can be represented by the following Lagrangian:

max
fcj(hs);lj(hs)g

j=1;::;N ; hs;s�t

L =
1X
s=t

X
hs

�sM
�
hs j ht

�24 NX
j=1

�
�j + �j

�
ht�1

��
uj (cj (h

s) ; lj (h
s))

35 (21)

+
1X
s=t

X
hs

�sM
�
hs j ht

� NX
j=1

�j (h
s)�0@ 1X

s0=s

X
hs0

�s
0�sM

�
hs

0 j hs
�
uj

�
cj

�
hs

0
�
; lj

�
hs

0
��
� Ij=j(hs)vj(hs)

0@ X
j0 6=j(hs)

lj0 (h
s)

1A� �V Wj (j (hs))

1A ;
subject to (9), with �j�s de�ned recursively as:

�j
�
ht
�
= �j

�
ht�1

�
+ �j

�
ht
�
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with the normalization �j
�
h?
�
= 0 for j = 1; :::; N . The most important implication of the

formulation in (21) is that for any ht following ht�1, the numbers

�j
�
ht�1

�
�

�j + �j
�
ht�1

�PN
j0=1

�
�j0 + �j0 (h

t�1)
� (for each j = 1; :::; N) (22)

can be interpreted as updated Pareto weights. Therefore, after history ht�1, the problem

is equivalent to maximizing the sum of utilities with these weights (subject to the relevant

constraints). The problem of maximizing (21) is equivalent to choosing current consumption

and labor supply levels for each group and also updated Pareto weights f�jgNj=1. This analysis

establishes the following characterization result:

Lemma 2 Suppose Assumptions 1 and 2 hold. Then the e¢ cient allocation has a quasi-

Markovian structure whereby consumption and labor allocations
�
cj
�
ht
�
; lj
�
ht
�	
j=1;::;N ; ht

de-

pend only on s �
��
�j
�
ht�1

�	N
j=1

; j
�
ht
��
, i.e., only on updated weights and the identity of

the group in power.

This recursive characterization implies that we can express Vj(ht�1) and Vj [ht�1; i] as Vj(�)

and Vj [�; i].

Proof. The proof of this proposition builds on the representation suggested by Marcet

and Marimon [30]. First note that the maximization problem (8)-(11), given in Proposition 1,

can be written in Lagrangian form as follows (recalling that j
�
ht
�
denotes the party in power

at time t according to history ht):

max
fcj(ht);lj(ht)g

j=1;::;N ; ht

L =
1X
t=0

X
ht

�tM
�
ht j h?

�24 NX
j=1

�juj
�
cj
�
ht
�
; lj
�
ht
��35 (23)

+
1X
t=0

X
ht

�tM
�
ht j h?

� NX
j=1

�j
�
ht
�

�

24 1X
s=t

�s�t
X
hs

M
�
hs j ht

�
uj (cj (h

s) ; lj (h
s))� Ij=j(ht)vj(ht)

0@ X
j0 6=j(ht)

lj0
�
ht
�1A� �V Wj (j

�
ht
�
)

35
subject to (9). Here for j = j

�
ht
�
; �tM

�
ht j h?

�
�j
�
ht
�
is the Lagrange multiplier on the

sustainability constraint, (11) (party j
�
ht
�
is the one in power at time t following history

ht) and for j0 6= j
�
ht
�
; �tM

�
ht j h?

�
�j0
�
ht
�
is the Lagrange multiplier on the participation

constraints of the parties that are not in power in history ht; (10). Ij=j(ht) is an indicator
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variable that takes the value 1 if j = j
�
ht
�
and 0 otherwise, thus ensuring that the term

vj(ht)

�P
j 6=j(ht) lj

�
ht
��
is only present when we consider group j

�
ht
�
. For any T � 0, we have

TX
s=0

X
hs

�sM
�
hs j h?

�
�j (h

s)
TX
s0=s

X
hs0

�s
0�sM

�
hs

0 j hs
�
uj

�
cj

�
hs

0
�
; lj

�
hs

0
��

(24)

=
TX
s=0

X
hs

�sM
�
hs j h?

�
�j (h

s)uj (cj (h
s) ; lj (h

s)) ;

where �j (h
s) = �j

�
hs�1

�
+ �j (h

s) for hs 2 P
�
hs�1

�
with the initial �j

�
h?
�
= 0 for all

j. Substituting (24) in L in (23) and noting that after history ht�1 has elapsed, all terms

preceding this history are given, we obtain (21). The result that optimal allocations only

depend on
�
�j
�
ht�1

�	N
j=1

and j
�
ht
�
then follows immediately.

8.2 Proof of Proposition 2

Let �
�
ht
�
be the Lagrange multiplier on (9), let Ihs2ht be the indicator variable that take the

value 1 if ht 2 P (hs) and 0 otherwise, and recall that the multiplier on (11) following history

ht with party j
�
ht
�
in power is �tM

�
ht j h?

�
�j(ht)

�
ht
�
. Then under Assumptions 1 and 2,

the (constrained) Pareto e¢ cient allocation satis�es the following �rst-order conditions for any

ht:

�tM
�
ht j h?

� "
�j +

tX
s=0

X
hs

Ihs2ht�j (h
s)

#
@uj

�
cj
�
ht
�
; lj
�
ht
��

@c
= �

�
ht
�
for all j;

�tM
�
ht j h?

� "
�j +

tX
s=0

X
hs

Ihs2ht�j (h
s)

#
@uj

�
cj
�
ht
�
; lj
�
ht
��

@l

= ��
�
ht
�
+ �tM

�
ht j h?

�
�j(ht)

�
ht
�
v0j(ht)

0@ NX
j0 6=j(ht)

lj0
�
ht
�1A for j 6= j

�
ht
�
;

and

�tM
�
ht j h?

� "
�j +

tX
s=0

X
hs

Ihs2ht�j (h
s)

#
@uj

�
cj
�
ht
�
; lj
�
ht
��

@l
= ��

�
ht
�
for j = j

�
ht
�
:

Combining these conditions establishes the proposition.�
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8.3 Proof of Theorem 1

Part (a): A sustainable �rst-best allocation exists if there exists a feasible vector of consump-

tion and labor supply levels,
n
c�j ; l

�
j

o
j
, that satis�es (13) and (14) for each j = 1; :::; N . Clearly,

as � ! 0, such sustainable �rst-best allocations exist. Conversely, as � ! 0, they do not, as

the group in power will necessarily bene�t by deviating. Since (13) and (14) de�ne a closed

set, this implies that there exists �� 2 (0; 1) such that for � � ��, some �rst-best allocations are

sustainable and for � < ��, there are no sustainable �rst-best allocations.

Part (b): Recall that s � (�; j), where � 2 �N�1 are ex ante weights and j 2 N �

f1; :::; Ng. Let S = �N�1 �N and S be the Borel �-algebra over S.

Our model implies that each s is deterministically mapped into �0 = h (s). Thus the

stochastic process for s0 is determined uniquely by the Markov process m (j0 j j). Therefore we

can de�ne

p
�
(�; j) ;

�
�0; j0

��
=

�
0 if �0 6= h (�; j)

m (j0 j j) if �0 = h (�; j)

Note that p ((�; j) ; (�0; j0)) is uniformly bounded above by maxj;j02N m (j0 j j) < 1 (the latter

inequality by Assumption 2). Therefore, for all s 2 S and A 2 S, we have

P ((�; j) ; A) =

Z
A
p
�
(�; j) ;

�
�0; j0

��
�
�
d
�
�0; j0

��
:

Stokey, Lucas and Prescott [42], Exercise 11.4f (which is straightforward to see) shows that if

there exists a bounded above function p and and a �nite measure � such that

P (s;A) =

Z
A
p
�
s; s0

�
�
�
ds0
�

for all s 2 S and A 2 S, then Doeblin�s condition is satis�ed. Almost sure convergence to an

invariant limiting distribution then follows.

Since s
�
ht
�
converges to an invariant distribution, so do

�
cj
�
ht
�
; lj
�
ht
�	N
j=1
. It remains

to show that invariant distribution over
�
cj
�
ht
�
; lj
�
ht
�	N
j=1

is non-degenerate. Suppose, to

obtain a contradiction, that it is degenerate, say given by
n
c�j ; l

�
j

oN
j=1
. First, suppose that (13)

does not bind in the invariant distribution. From Proposition 2,
n
c�j ; l

�
j

oN
j=1

must satisfy

@uj

�
c�j ; l

�
j

�
@c

= �
@uj

�
c�j ; l

�
j

�
@l

for all j:
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Since in any Pareto e¢ cient perfect equibrium feasibility constraint (9) must hold with equality

and
n
c�j ; l

�
j

oN
j=1

are time invariant, the allocation
n
c�j ; l

�
j

oN
j=1

must be a �rst-best allocation,

which is a contradiction. Therefore (13) must bind for some j, and thus from Proposition 2

@uj

�
c�j ; l

�
j

�
@c

> �
@uj

�
c�j ; l

�
j

�
@l

when j is in not power. However when j is in power, Proposition 2 implies

@uj

�
c�j ; l

�
j

�
@c

= �
@uj

�
c�j ; l

�
j

�
@l

which is impossibility. Therefore,
�
cj
�
ht
�
; lj
�
ht
�	N
j=1

converges to nondegenerate distribution.

�

Proof of Theorem 2

We now state and prove three lemmas, which together will enable us to establish our main

result in this section Theorem 2.

We �rst show that the party with a higher Pareto weight will receive higher value.

Lemma 3 For any two vectors of Pareto weights �;�0, if �i > �0i, then Vi [�; j] � Vi [�0; j]

for j 2 f1; 2g.

Proof. Without loss of generality, let i = 1. Then constrained Pareto e¢ ciency implies

�1V1 [�; j] + �2V2 [�; j] � �1V1
�
�0; j

�
+ �2V2

�
�0; j

�
and

�01V1
�
�0; j

�
+ �02V2

�
�0; j

�
� �01V1 [�; j] + �02V2 [�; j] :

These conditions then imply�
�1 � �01

�
(V1 [�; j]� V2 [�; j]) �

�
�1 � �01

� �
V1
�
�0; j

�
� V2

�
�0; j

��
or

V1 [�; j]� V1
�
�0; j

�
� V2 [�; j]� V2

�
�0; j

�
: (25)

Suppose that V1 [�; j] < V1 [�
0; j] : Then from (25), V2 [�; j] < V2 [�

0; j], which is im-

possible since otherwise (V1 [�0; j] ; V2 [�0; j]) would Pareto dominate (V1 [�; j] ; V2 [�; j]), thus

establishing the lemma.
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Let �� = (��1; �
�
2) be a vector of the Pareto weights for which �rst-best allocation is

sustainable. Consider any other initial vector �0 6= ��and suppose that the �rst-best allocation

that corresponds to that vector is not sustainable. This implies that at least for one party the

participation constraint (10) or the sustainability constraint (11) binds. The next lemma shows

that sustainability constraint (11) does not bind if any party has a Pareto weight higher than

��j and that there exists ��j 2 (��j ; 1] such that if �j � ��j , then the participation constraint,

(10), of the other party also does not bind, so when �j 2 [��j ; ��j ], Pareto weights to not change.

Lemma 4 Suppose Assumptions 1 and 3 hold. If �j
�
ht�1

�
� ��j for some j, h

t�1 and j =

j
�
ht
�
, then �j

�
ht
�
= 0: Moreover, under these hypotheses there exists ��j 2 (��j ; 1] such that if

�j
�
ht�1

�
> ��j, then �j

�
ht
�
= ��j and if �j

�
ht�1

�
2
h
��j ; ��j

i
, then �j

�
ht
�
= �j

�
ht�1

�
.

Proof. Without loss of generality assume that j = 1. By Lemma 3, V2 [(�1; 1� �1); 1]

is decreasing in �1: If V2 [(1; 0); 1] � �V W2 (1); set ��1 = 1; otherwise let ��1 be de�ned by

V2 [(��1; 1� ��1); 1] = �V W2 (1): Since V2 [(�1; 1� �1) ; 1] is continuous and monotone in �1 and

V2 [(�
�
1; 1� ��1) ; 1] > �V W2 (1); such ��1 exists and ��1 2 (��1; 1]: Since for any �1; (10) implies

that V2 [(�1; 1� �1) ; 1] � �V W2 (1) and V2 [(�1; 1� �1) ; 1] is decreasing in �1; this construction

implies that

V2 [(�1; 1� �1) ; 1] = V2 [(��1; 1� ��1) ; 1] for all �1 � ��1: (26)

Since the equilibrium is (constrained) Pareto e¢ cient, (26) implies that if �1(ht�1) � ��1,

then

V1
��
�1(h

t�1); 1� �1(ht�1)
�
; 1
�
= V1 [(��1; 1� ��1) ; 1]

and therefore the equilibrium for state s =
��
�1(h

t�1); 1� �1(ht�1)
�
; 1
�
coincides with the

equilibrium for state �s1 = ((��1; 1� ��1) ; 1) :

Suppose �1
�
ht�1

�
2 [��1; ��1] : Let us consider the relaxed problem of maximizing (8)

without the constraints (10) and (11) following history ht. We will characterize the solu-

tion to this relaxed problem and then show that the solution in fact satis�es (10) and (11)

establishing that �i
�
ht
�
= 0 for i 2 f1; 2g and �j

�
ht
�
= �j

�
ht�1

�
:

The expected utility of party 1 in history ht in the relaxed problem is

u1
�
c1
�
�
�
ht�1

��
; l1
�
�
�
ht�1

���
+ �

�
m(1j1)V1

�
�
�
ht�1

�
; 1
�
+m(2j1)V1

�
�
�
ht�1

�
; 2
��
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where
�
ci
�
�
�
ht�1

��
; li
�
�
�
ht�1

���
is a solution to the maximization problem

max
fci;ligi=1;2

�1
�
ht�1

�
u1 (c1; l1) + �2

�
ht�1

�
u2 (c2; l2)

subject to

c1 + c2 � l1 + l2:

Since there is no sustainability constraint, Assumption 3 immediately implies that lj
�
�
�
ht�1

��
=

1 for all j, and moreover, u1
�
c1
�
�
�
ht�1

��
; l1
�
�
�
ht�1

���
is increasing in �1

�
ht�1

�
.

Since Pareto weights �� correspond to the sustainable allocation,

u1 (c1 (�
�) ; l1 (�

�)) + � (m(1j1)V1 [��; 1] +m(2j1)V1 [��; 2])

�v1 (l2 (��)) + �V W1 (1) (27)

Once again, Assumption 3 implies that lj (��) = 1 for all j: From Lemma 3, V1
�
�
�
ht�1

�
; j
�
�

V1 [�
�; j] for all j. Therefore the solution to the relaxed problem satis�es (11) if

u1
�
c1
�
�
�
ht�1

��
; 1
�
� v1 (1) � u1 (c1 (��) ; 1)� v1 (1)

Since u1
�
c1
�
�
�
ht�1

��
; 1
�
is increasing in �1

�
ht�1

�
and �1

�
ht�1

�
� ��1; this inequality is

satis�ed. The solution to the relaxed problem also satis�es (10) because �1
�
ht�1

�
� ��1:

The previous lemma established that if party j is in power and has an updated Pareto

weight above ��j , its next period updated Pareto weight remains above �
�
j . The next key

step in our argument is to show that if a party has Pareto weight is below ��j , its next period

updated Pareto weight is also below ��j (even if its current sustainability constraint is binding).

The next lemma is the key to the main result in this section. It shows that if the sustainab-

ility constraint does not hold for group j that is in power even though its Pareto weight is below

��j , then for all subsequent histories its Pareto weight will not exceed �
�
j . The proof utilizes

quasi-linearity of preferences to put structure on the behavior of updated Pareto weights and

the corresponding allocations.

Lemma 5 Suppose Assumptions 1 and 3 hold. Suppose that �j
�
ht�1

�
< ��j for some j; h

t�1

and j = j
�
ht
�
. Then �j

�
ht
�
� ��j for all subsequent ht.
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Proof: Without loss of generality assume that j = 1. First note that if �1(ht�1) � ��1;

then constraint (10) cannot bind for party 2. This is true because from Lemma 3 and the

sustainability of (c�2; l
�
2), we have

V2
�
�
�
ht�1

�
; 1
�
� V2 [��; 1] � �V W2 (1):

If constraint (11) also does not bind, the result follows immediately. Suppose there-

fore that (11) binds. Then the Lagrange multiplier �1
�
ht
�
> 0 and from (22), �1

�
ht
�
=�

�1
�
ht�1

�
+ �1

�
ht
��
=
�
1 + �1

�
ht
��
: Suppose, to obtain a contradiction, that �1

�
ht
�
> ��1.

This implies:

u1
�
c1
�
�
�
ht�1

�
; �1

�
ht
��
; l1
�
�
�
ht�1

�
; �1

�
ht
���

� v1
�
l2
�
�
�
ht�1

�
; �1

�
ht
���

+ �
�
m(1j1)V1

�
�
�
ht
�
; 1
�
+m(2j1)V1

�
�
�
ht
�
; 2
��
= �V W1 (1) ; (28)

where fci (�; �) ; li (�; �)g2i=1 is a solution to the maximization problem

max
fci;ligi=1;2

(�1 + �)u1 (c1; l1) + �2u2 (c2; l2)� �v1 (l2)

subject to

c1 + c2 � l1 + l2:

Lemma 3 establishes that V1
�
�
�
ht
�
; j
�
� V1 [�

�; j] for all j. If for any � such that

(�1 + �) = (1 + �) > �
�
1, we have

u1(c1 (�; �) ; l1 (�; �))� v1(l2 (�; �)) > u1 (c�1; l�1)� v1 (l�2) , (29)

then (27) would immediately imply that (28) cannot hold with equality, thus leading to a

contradiction and establishing the desired result. Thus to complete the proof of lemma, we

will establish that for any � such that (�1 +�) = (1 + �) > ��1, (29) holds, which will thus

complete the proof.

We will �rst prove some intermediate results. Let us adopt the following simpler notation

for the rest of the proof:

uiC (ci; li) =
@ui(ci; li)

@ci
and uiL (ci; li) =

@ui(ci; li)

@li
;

and similarly denote second order derivatives. Sometimes we will also drop (ci; li) and use

notation uiC ; uiL, etc., whenever there is no confusion.
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Claim 1 Let c (�;�) and l (�;�) be the solution to the problem

W (�;�) = max
c�0;l2[0;1]

(�1 +�)u1(c1; l1) + �2u2(c2; l2)��v1(l2)

subject to

c1 + c2 � l1 + l2:

Then

u1(c1 (�;�) ; l1 (�;�))� v1(l2 (�;�)) (30)

is increasing in �.

Proof. Consider �0 and �00 6= �0 ; and denote the corresponding solutions to the above

problem by fc0i; l0igi=1;2 and fc00i ; l00i gi=1;2 : By de�nition, this implies�
�1 +�

0�u1(c01; l01) + �2u2(c02; l02)��0v1(l02) �
�
�1 +�

0�u1(c001; l001) + �2u2(c002; l002)��0v1(l002)�
�1 +�

00�u1(c001; l001) + �2u2(c002; l002)��00v1(l002) �
�
�1 +�

00�u1(c01; l01) + �2u2(c02; l02)��00v1(l02)
Summing these two inequalities in rearranging, we obtain�

�0 ��00
� �
u1(c

0
1; l

0
1)� v1(l02)

�
�

�
�0 ��00

� �
u1(c

00
1; l

00
1)� v1(l002)

�
�
�0 ��00

� ��
u1(c

0
1; l

0
1)� v(l02)

�
�
�
u1(c

00
1; l

00
1)� v1(l002)

��
� 0

Therefore, if �0 > �00, then (u1(c01; l
0
1)� v1(l02)) � (u1(c

00
1; l

00
1)� v1(l002)), which establishes

(30).

Claim 2 Suppose Assumptions 1 and 3 hold. Then for any Pareto weight �� and for any

� 2 [0; ��1=��2], de�ne �1� by
�1� +�

1 +�
= ��1

and �2� = 1� �1�. Consider the maximization problem


 (�) = max
c�0;l2[0;1]

(�1� +�)u1(c1; l1) + �2�u2(c2; l2)��v1(l2) (31)

subject to

c1 + c2 � l1 + l2:

Denote the solution to this problem by fci (�) ; li (�)gi=1;2. Then

F (�) � u1 (c1 (�) ; l1 (�))� v1 (l2 (�)) (32)

is increasing in �: Moreover, for any � > 0 F (�) > F (0).
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Proof. Consider the �rst-order conditions to the maximization problem in (31). Assump-

tion 3 implies that l1 (�) = 1: The other �rst-order conditions are

(�1� +�)u1C (c1 (�)� �1(1)) = �2�u2C (c2 (�)� �2 (l2 (�))) (33)

�

�2�

v01 (l2 (�))

u2C (c2 (�)� �2 (l2 (�)))
= 1� �02 (l2 (�)) (34)

and

c1 (�) + c2 (�) = 1 + l2 (�) : (35)

First, note that
�1� +�

�2�
=
��1
��2

(36)

Combining (33) and (36), we obtain

��1u1C (c1 (�)� �1(1)) = ��2u2C (c2 (�)� �2 (l2 (�))) (37)

Now di¤erentiate F (as de�ned in (32)), which yields

F 0 (�) = u1C
@c1
@�

� v01
@l2
@�

=
@l2
@�

�
u1C

@c1
@l2

� v01
�

(38)

Substituting (35) into (37) and di¤erentiating, we obtain

��1u1CC
@c1 (�)

@�
= ��2u2CC

��
1� �02

� @l2
@�

� @c1 (�)
@�

�
;

which implies

@c1
@l2

=
��2u2CC (1� �02)
��1u1CC + �

�
2u2CC

=
��2u2CC

��1u1CC + �
�
2u2CC

� �

�2�

v01
u2C

=
��2u2CC

��1u1CC + �
�
2u2CC

� �

�1� +�

v01
u1C

where we used (34) in the second line and (33) in the third. Substituting this into (38), we

obtain

F 0 (�) = v01
@l2
@�

�
��2u2CC

��1u1CC + �
�
2u2CC

� �

�1� +�
� 1

�

= v01
@l2
@�

0@ 1
��1u1CC
��2u2CC

+ 1
� 1

1 + �1�
�

� 1

1A
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The expression in the brackets is negative, therefore F 0 (�) has the opposite sign of @l2@� .

The desired result follows from the fact that @l2@� � 0, which we establish next.

Consider two di¤erent �0;�00 and denote the corresponding solutions to (31) by fc0i; l0igi=1;2
and fc00i ; l00i gi=1;2. By de�nition, we have�

�1�0 +�
0�u1(c01; l01) + �2�0u2(c02; l02)��0v1(l02) �

�
�1�0 +�

0�u1(c001; l001) + �2�0u2(c002; l002)��0v1(l002)�
�1�00 +�

00�u1(c001; l001) + �2�00u2(c002; l002)��00v1(l002) �
�
�1�00 +�

00�u1(c01; l01) + �2�00u2(c02; l02)��00v1(l02):
Now dividing these two inequalities by �2�0 and �2�00 respectively, we obtain

�1�0 +�
0

�2�0
u1(c

0
1; l

0
1) + u2(c

0
2; l

0
2)�

�0

�2�0
v1(l

0
2) � �1�0 +�

0

�2�0
u1(c

00
1; l

00
1) + u2(c

00
2; l

00
2)�

�0

�2�0
v1(l

00
2)

�1�00 +�
00

�2�00
u1(c

00
1; l

00
1) + u2(c

00
2; l

00
2)�

�00

�2�00
v1(l

00
2) � �1�00 +�

00

�2�00
u1(c

0
1; l

0
1) + u2(c

0
2; l

0
2)�

�00

�2�00
v1(l

0
2)

De�nition of �� implies that for all �

�1� +�

�2�
=
��1
��2
;

and therefore,

��1
��2
u1(c

0
1; l

0
1) + u2(c

0
2; l

0
2)�

�0

�2�0
v1(l

0
2) � ��1

��2
u1(c

00
1; l

00
1) + u2(c

00
2; l

00
2)�

�0

�2�0
v1(l

00
2) (39)

��1
��2
u1(c

00
1; l

00
1) + u2(c

00
2; l

00
2)�

�00

�2�00
v1(l

00
2) � ��1

��2
u1(c

0
1; l

0
1) + u2(c

0
2; l

0
2)�

�00

�2�00
v1(l

0
2) (40)

These equations imply �
�00

�2�00
� �0

�2�0

��
v1(l

0
2)� v1(l002)

�
� 0 (41)

Finally, from the de�nition of ��, we have

1� �2� +�
�2�

=
��1
��2

1 + �

�2�
= 1 +

��1
��2

which implies that �2� is increasing in �: Since 1=�2� is decreasing in � and

1

�2�
+

�

�2�
= 1 +

��1
��2
;
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�
�2�

is increasing in �: Therefore from (41) �00 > �0 implies l002 � l02, completing the proof of

the claim.

It remains to show that if �0 = 0, then for any �00 > 0, we have F (�00) > F (�0) : Suppose

to obtain a contradiction that F (�00) = F (0) : Previous analysis indicated that this is possible

only if l002 = l
0
2: But then (39) and (40) imply that

��1u1(c
0
1; l

0
1) + �

�
2u2(c

0
2; l

0
2) = �

�
1u1(c

00
1; l

00
1) + �

�
2u2(c

00
2; l

00
2):

We know that fc0i; l0igi=1;2 is a solution to maximizing ��1u1 (c1; l1) + ��2u (c2; l2) subject to

c1 + c2 � l1 + l2: (42)

Since the ui�s are strictly concave, this solution is unique. Therefore, any fc00i ; l00i gi=1;2 that

satis�es (42) must have

��1u1(c
0
1; l

0
1) + �

�
2u2(c

0
2; l

0
2) > �

�
1u1(c

00
1; l

00
1) + �

�
2u2(c

00
2; l

00
2)

leading to a contradiction.

The next claim completes the proof of lemma. We state this claim for party 1; the result

is identical for party 2.

Claim 3 Suppose Assumptions 1 and 3 hold. Let fci (�;�) ; li (�;�)gi=1;2 be a solution to

the problem

max
fci;lig

(�1 +�)u1 (c1; l1) + �2u2 (c2; l2)��v1 (l2)

subject to

c1 + c2 � l1 + l2

for some � � 0: For any Pareto weight �� 6= �; if � and � are such that

�1 +�

1 +�
> ��1

then

u1(c1 (�;�) ; l1 (�;�))� v1(l2 (�;�)) > u1 (c1 (��; 0) ; l1 (��; 0))� v1 (l2 (��; 0)) (43)
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Proof. Suppose �1 < ��1. Let ~� be such that

�1 + ~�

1 + ~�
= ��1:

Since �1+�
1+� is increasing in �, we have 0 < ~� < �. From Claim 2,

u1(c1

�
�; ~�

�
; l1

�
�; ~�

�
)� v1(l2

�
�; ~�

�
) > u1 (c1 (�

�; 0) ; l1 (�
�; 0))� v1 (l2 (��; 0)) (44)

and from Claim 1,

u1(c1 (�;�) ; l1 (�;�))� v1(l2 (�;�)) � u1(c1
�
�; ~�

�
; l1

�
�; ~�

�
)� v1(l2

�
�; ~�

�
)

establishing (43).

If �1 > ��1, set ~� = 0 and (44) follows from proof of Lemma 4.

This result implies that (29) holds and thus establishes the desired contradiction and com-

pletes the proof of Theorem 2. �

Proof of Theorem 2

Suppose the �rst-best allocation with Pareto weight �� is sustainable. Without loss of gener-

ality, suppose �1
�
h0
�
� ��1. Lemmas 4 and 5 imply that �1

�
ht
�
is a monotonically decreasing

sequence bounded below by ��1: Therefore �1
�
ht
�
must converge. From the de�nition of the

Pareto weights this implies that �i(h
t) ! 0 for i = f1; 2g: This implies that

�
cj
�
ht
�
; lj
�
ht
�	

must converge to some allocation
n
c�j ; l

�
j

o
that solves a relaxed problem for which the con-

straints (10) and (11) are removed. But such
n
c�j ; l

�
j

o
must be a �rst-best sustainable allocation,

which proves the theorem. �
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