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Abstract

Video Coding Algorithms based on Hybrid Transform techniques are rapidly reaching a
limit in compression efficiency. A significant improvement requires some sort of new rep-
resentation -- a better model of the image based more closely on how we perceive it. This
thesis proposes a coder that merges psycho-visual phenomena such as occlusion and long-
term memory with the architecture and arithmetic processing used in a high quality hybrid
coder (MPEG). The syntactic and processing overhead at the decoder is small when com-
pared to a standard MPEG decoder.

The final encoded representation consists of a small number of regions, their motion, and
an error signal that corrects errors introduced when these regions are composited together.
These regions can be further processed in the receiver to construct a synthetic background
image that has the foreground regions removed and replaced, where possible, with
revealed information from other frames. Finally, the receiver can also enhance the appar-
ent resolution of the background via resolution out of time techniques. It is anticipated that
this shift of intelligence from the encoder to the receiver will provide a means to browse,
filter, and view footage in a much more efficient and intuitive manner than possible with
current technology.
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Chapter 1

Introduction

1.1 Motivation

Hybrid transform video compression coders have been the subject of a great deal of

research in the past ten years, and within the last three, they have become practical and

cost effective for applications ranging from videotelephony to entertainment television.

They are the object of optimization rather than basic research. In fact, the sheer size of

their expected deployment will effectively freeze their design until general purpose pro-

cessors can perform fully programmable decoding. The current state of the art provides

compression ratios on the order of 50 to 100:1 with acceptable loss of picture quality for

home entertainment.

Drawing a parallel with word processing, one could say that the level of sophistication

of these coders is currently on a par with word processors of 15 years ago. These early

word processors stored text very efficiently using codes of 7 to 8 bits per character, but

unfortunately the final representations included little information about the text itself. No

information concerning typefaces, page layout, or other higher levels of abstraction was

included in the representation. Today the majority of word processors allow one to format

text with a veritable plethora of options ranging from the size and style of font to auto-

matic cross referencing between text in different documents. It is easy to see that embel-

lishing the presentation with information about the text has made today's word processors

infinitely richer and more useful than those that use words alone.



When one examines encoded video representations today one finds that they are at the

'text only' stage. Current algorithms do a very good job at reducing the size of representa-

tion, but in doing so lose almost all ability to manipulate the content in a meaningful fash-

ion. The much heralded information super highway with multi-gigabit data paths is

expected to become a reality soon. When it does, it will be crucial that new representations

be found for video that enable one to make quick decisions about what to watch without

having to search through every single bit.

These representations should contain information about the content that enable

machine and viewer alike to make quick decisions without having to examine every sec-

ond of video. Without these representations the benefits of having access to an information

super highway, as opposed to access to traditional media sources will be minimal for all

but the expert user. This being the case, it will be difficult to attract people to use the high-

ways and it may become difficult to justify their cost.

Admittedly these are very lofty goals, the amount of effort required to achieve them is

enormous. Given the amount of effort required, and the newness of the super highway as a

medium, it is likely that the realization of these goals will take quite some time. Conse-

quently, if for no other reason than cost, it is also likely that the initial steps towards mak-

ing these representations a reality will be derivatives of current representations.



1.2 The problem

Before a new representation can be derived it is useful to examine current state of the art

video coding algorithms in order to determine what their good and bad points are. The

salient features of current hybrid transform algorithms can be summarized as follows;

. Heavy reliance on statistical models of pictures, in particular spatiotem-

poral proximity between frames.

. The model used for predicting subsequent frames consists of only one or

two single frames that have previously been encoded.

. Frames are subdivided into blocks which are then sequentially encoded

using a single motion vector for each block and an error residual.

. Image formation by 3D to 2D projection is ignored; little consideration

is given to phenomena such as occlusion, reflection, or perspective.

. There is no easy means for determining the contents of a frame without

decoding it in its entirety.

Current research into new approaches to coding generally attempt to address different

sets of applications, or use radically different image models. For example, the MPEG'

group, which has issued one standard for multimedia and broadcast television (MPEG-1)

and is putting the final touches on another (MPEG-2 [3]), is beginning a three-year effort

deliberately designed to speed the evolution of radically different coders that break the

hybrid/DCT mold. These are expected to be used primarily in extremely low-bandwidth

applications, but the development spurred by the MPEG effort may extend itself past that.

1. Moving Picture Experts Group, ISO/IEC JTCl SC29/WGII



As may be surmised from the list of hybrid transform coder features on the previous

page, these new modelling techniques derive from either new work on understanding

human vision (and mapping that into a compression system), or work on new computa-

tional efficiencies that permit complex models to be exploited that previously had been

academic tours de force.

1.3 Approach

This thesis proposes an object-oriented coding model that is an architectural extension to

existing MPEG-style coders. The objective model assumes no knowledge other than data

contained in the frames themselves (no hand-seeded model of the scene is used), and is

basically two or two-and-a-half dimensional (two dimensional plus depth of each two

dimensional layer). The model classifies objects within the frame on the basis of their

appearance, connectivity, and motion relative to their surrounds. While the raster-oriented

decomposition of the frame (as used in MPEG) remains in this coder, the image is no

longer coded as blocks classified on an individual basis. Instead, the image is coded as a

montage of semi-homogenous regions in conjunction with an error signal for where the

model fails.

The structure of the coder borrows many elements from previous coders and image

processing techniques in particular MPEG 2 [3], Teodosio's Salient Still [28] and the work

by Wang, Adelson and Desai [4], [30]. The resulting coding model incorporates the effi-

ciencies of motion compensation using 6 parameter affine models as well as the increased

accuracy of standard block based motion compensation for foreground regions that do not

match the affine model. It is hoped that the coding scheme developed here may eventually

be extended into the framework of a fully three dimensional representation as developed



by Holtzman [13] which promises extremely high compression ratios. The genealogy of

the Enhanced Resolution Coder is shown in Figure 1.1.

H.261, MPEG1, H.262 (MPEG2)

Salient Still (Teodosio) 'nhancpd Rp.vnlutinn Cnrlpr

Image Encoding &
Representation
Schemes

Layered Coder, (Adelson & Wang)

Full 3D Coder (Holtzman)

>Full 3D Coder (automatic)

Genus of the Enhanced Resolution Codec

Another way to classify the algorithm is to consider its position in the table below,

Encoder Type Information Units Example

Waveform Color D1

Transform Blocks JPEG [1]

Hybrid Transform Motion+ Blocks MPEG [3], [12]

2D Region Based Regions + Motion + Blocks Mussman's Work [21]

Layered Coder [4], [30]

Enhanced Resolution Coder

Scenic 3D Objects "Holtzman Encoder" [13]

Semantic Dialogue, Expressions Screenplay

Encoder Classes (after Mussman)

Another motivating advantage of such a structural analysis of the image is that the

structure can be exploited at the receiver, without any additional recognition, to facilitate

browsing, sorting sequences, and selecting items of interest to the viewer. In essence, the

pictures are transmitted as objects that are composited to form a frame on decoding, and

Figure 1.1.

TABLE 1.1.



each picture carries information about the scene background, the remaining foreground

objects, and the relation between them. As compressed video becomes pervasive for enter-

tainment, it is anticipated that "browsability" of the sequence will become at least as

important as the compression efficiency to the viewer, for there is little value in having

huge libraries of content without a means to quickly search through them to find entries of

interest.

With these ideas in mind, the target application of the televised lecture was chosen to

demonstrate the enhanced resolution codec. The reasons behind this decision are three-

fold. First, the scene is best photographed with a long lens that minimizes camera distor-

tion (this is a requirement for optimal performance). Secondly, enhancing the resolution of

written or projected materials in the image will allow the viewer to see the material at a

finer resolution, while still seeing a broader view of the lecture theatre. In fact the algo-

rithm will allow the viewer to determine whether the entire scene or just the written/pro-

jected material is displayed. This feature is particularly useful as it allows the user to

choose the picture content according to interest and decoder ability (small vs large screen).

Finally, apart from technical considerations the aforementioned application has the poten-

tial to provide a useful service to students who, for whatever reason, have insufficient

teaching facilities available, thus allowing them to participate in lectures from other

schools and institutions

The remainder of this thesis is organized as follows. Chapter Two briefly reviews the

fundamentals of encoding still and moving images. Chapter Three examines three recent

advances in image representation. An analysis of the theory behind resolution enhance-

1. One such program of televised lectures is already been undertaken by Stanford University which regularly broadcasts
lectures via cable to surrounding institutions and companies who have employees enrolled in Stanford' classes. Livenet
in London, England and Uninet in Sydney, Australia are also other examples of this type of program.



ment is presented in Chapter Four. Chapters Five and Six map the results of the previous

chapters into a frame work that defines the new encoder. Simulation results of the new

algorithm, including a comparison with the MPEG1 algorithm, are presented in Chapter

Seven. Finally, Chapter Eight presents an analysis on the performance of the new algo-

rithm and makes suggestions for future work.

Necessary and self contained technical derivations of various mathematical formulae

and modifications to existing algorithms have been moved to the Appendices.



Chapter 2

Image Coding Fundamentals

Currently all displayed pictures, whether static or moving, are comprised of still (station-

ary) images. For example, photographs, television images and movies are sequences of

one or more still images. This representation has not come about by accident but instead

by design. As one Media Lab professor is fond of saying "God did not invent scanlines

and pixels... .people did". Therefore, it is not surprising that the current image coding tech-

niques for moving tend to be based on philosophies very similar to those used for encod-

ing still images, mainly that of spatio temporal redundancy and probabilistic statistical

modeling. This chapter examines these philosophies as they have been applied in develop-

ment of the JPEG' and MPEG standards for still and moving image coding respectively.

2.1 Representation

The choice of representation affects two fundamental characteristics of the coded image;

. Picture Quality

. Redundancy present in the representation

These two characteristics are independent up to a point, generally one can remove

redundant information from a representation and not suffer any loss in picture quality, this

is lossless compression. However, once one starts to remove information beyond that

which is redundant the picture quality degrades. This type of compression, where non

redundant information is deliberately removed from the representation, is known as lossy

1. Joint Photographic Experts Group (JPEG), of ISO/IEC JTC1/SC18/WG8



compression. The amount and nature of the degradation caused by the use of lossy com-

pression techniques is highly dependent on the representation chosen. Hence, it makes

sense that great care should be exercised in choosing an appropriate representation when

using lossy compression techniques.

2.2 JPEG Standard [1]

The Joint Photographic Experts Group (JPEG) standard for still image compression is

fairly simple in its design. It is comprised of three main functional units; a transformer, a

quantizer, and an entropy coder. The first and last of these functional units represent loss-

less processes1 with the second block, quantization, being responsible for removing per-

ceptually irrelevant information from the final representation. Obviously, if one desires

high compression ratios then more information has to be discarded and the final represen-

tation becomes noticeably degraded when compared with the original.

2.2.1 Transform Coding

A salient feature of most images is that they exhibit a high spatial correlation between the

pixel values. This means that representations in the spatial domain are usually highly

redundant and, therefore, require more bits than necessary when encoded. One method

which attempts to decorrelate the data to facilitate better compression during quantization

is Transform Coding. Transform Coding works by transforming the image from the spatial

domain into an equivalent representation in another domain (e.g. the frequency domain).

The transform used must provide a unique and equivalent representation from which one

can reconstruct all possible original images. Consider the general case where a single one

dimensional vector x = [x ,..., xk] is mapped to another u = [u ,..., Uk] by the trans-

form T,

1. With the exception of errors due to finite arithmetic precision



u = Tx (1.1)

The rows of the transform T, ti are orthonormal, that is they satisfy the constraint

7 0, ifi#j
tit. ={I j I1, ifi =j

or TT = I
i.e. 7 1 = (1.2)

The vectors t1 , ..., t, are commonly called the basis functions of the transform T. The fact

that they form an orthonormal set is important as it ensures that;

. they span the vector space of x in a unique manner, and

- the total energy in the transform u is equal to that of the original data x.

In other words, this property ensures that there is a unique mapping between a given trans-

form u and the original data x'.

Transforming from the spatial domain into another domain gains nothing in terms of

the number of bits required to represent the information. In fact, the number of bits

required to represent the transformed information can increase. The gain comes in that the

transformed representation can be quantized more efficiently. This is due to the fact that

the transform coefficients have been decorrelated and have also undergone energy com-

paction, thus many of them can be quantized very coarsely to zero.

1. The mathematics above deal with data that is represented by one dimensional vectors, however pictures are two
dimensional entities. This is not a problem as one can simply extend the concept of transformation into two dimensions
by applying a pair of one dimensional transforms performed horizontally and vertically (or vice versa).



JPEG uses the Discrete Cosine Transform (DCT) to reduce the amount of redundancy

present in the spatial domain. The image to be coded is subdivided into small blocks(8 by

8 pixel) which are then individually transformed into the frequency domain. Unlike the

Discrete Fourier Transform (DFT) which generates both real and imaginary terms for each

transformed coefficient, the DCT generates real terms when supplied with real terms only.

Thus, the transform of an 8 by 8 pel block yields an 8 by 8 coefficient block, there is no

expansion in the number of terms. However, these terms require more bits, typically 12

bits to prevent round off error as opposed to 8 in the spatial domain, so the representation

is in fact slightly larger.

The formulae for the N by N two dimensional DCT and Inverse DCT (IDCT) are

DCT 2 N-IN-I (2x + 1) ui (2y + 1) vn
F(u,v) =N C (u) C (v) 1 f(x,y)cos ( N ) cos ( N

IDCT 2 N- 1N-I (2x+1)tnC (2y+1)vn
f(x,y) = N 1 , C (u) C (v) F(u,v)cos N ) cos ( N

u=Ov=0

with u,v,x,y = 0, 1,2, ... N-1
where x, y are coordinates in the pixel domain

u, v are coordinates in the transform domain

1

C(u), C(v) = {F for u, v =0

1 otherwise (1.3)

The means by which a gain in compression efficiency can be achieved (by subsequent

quantization) lies in the distribution of the transformed coefficients. A corollary of the fact

that real world images exhibit high spatial correlation, is that the spectral content of real

world images is skewed such that most of the energy is contained in the lower frequencies.

Thus, the DCT representation will tend to be sparsely populated and have most of the

energy in the coefficients corresponding to lower frequencies. This observation becomes



intuitively obvious when one examines the basis functions for the DCT as shown in Figure

2.1.
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Figure 2.1 Basis Functions for an 8 by 8 Two Dimensional DCT
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of the transform coefficient corresponding to each of the basis functions describes the
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2.2.2 Quantization of Transform Coefficients

Having transformed the image into the frequency domain JPEG next performs quantiza-

tion on the coefficients of each transformed block.

The coefficients corresponding to the lower frequency samples play a larger role in

reconstructing the image than the coefficients corresponding to higher frequencies. This is

true not only by virtue of the fact that they are much more likely to be present as stated in

Eq. 2.2.1, but also because perceptually the human visual system is much more attuned to

noticing the average overall change in image intensity between blocks as opposed to the

localized high frequency content contained in the higher frequency coefficients1 . Thus, a

given distortion introduced into a component that represents low frequencies will be much

more noticeable than if the same distortion was introduced into a component that repre-

sents high spatial frequencies.

The DC (zero frequency) coefficient is particularly susceptible to distortion errors, as

an error in this coefficient affects the overall brightness of the block. For this reason the

DC coefficient is quantized with a much finer quantizer than that used for the remaining

AC (non zero frequency) coefficients. Likewise, lower frequency AC components are

quantized less aggressively than higher frequency ones.

2.2.3 Entropy Coding

The final stage of the JPEG compression algorithm consists of an entropy coder. Entropy

is generally defined to be a measure of (dis)order or the amount of redundancy present in a

collection of data. A set of data is said to have high entropy if its members are independent

1. (Having said this it must be noted that if an image composed of inverse transformed blocks is displayed where the

high frequency coefficients have been removed from all but a few of these blocks then those few blocks will be highly
noticeable. For this reason it is desirable to attempt to discard the same number of higher coefficients in each block.)



or uncorrelated. Conversely, a set that displays high dependency or correlation between its

members is said to have low entropy. Given a set of symbols and their relative probabili-

ties of occurrence within a message, one can make use of this concept in order to remove

redundancy in their encoded representation.

First, consider a set of data which is completely random, in other words one where

every symbol is as likely as another to be present in a coded bitstream. Suppose that a

restriction is imposed which states that each symbols' encoded representation is the same

length. As each symbol is the same length in bits and just as likely to occur as another they

all cost the same to transmit, the representation is efficient. Now consider the case where

the symbol probabilities are not equal. It is easy to see that even though certain symbols

hardly ever occur they will still require just as many bits as the more frequent ones, there-

fore, the representation is said to be inefficient.

Now suppose that the restriction that all symbols be represented by codes of the same

length is relaxed, thereby allowing codes of different lengths to be assigned to different

symbols. If the shorter codes are assigned to more frequently used symbols and the longer

codes to the less frequent, then it should be possible to reduce the number of bits required

to encode a message consisting of these symbols. However several problems arise out of

the fact that the codes are of variable length;

. the position of a code in the encoded bit stream may no longer be known

in advance,

. a long code may by missed if it is mistaken for a short code.

As a result, great care must be taken to ensure that no ambiguities arise when assigning the

codes. If this requirement is met then the parsing of the bitstream becomes as simple as



knowing where the previous code finished as this automatically provides the starting posi-

tion for its successor.

JPEG uses the results from a Huffman coding scheme based on this concept. It is use-

ful to introduce two equations ([15],[19]23]); first the average code word length L for

the discrete random variable x describing a finite set of symbols is defined as

L = XL (x) p, (x) bits/symbol (1.4)
x

and secondly, the entropy of x, H (x) , defined by Eq. (1.5), is the lower bound on L

H (x) = -jpx (x) log 2 (x) bits/symbol (1.5)
x

In short, the aim of entropy coding is try to make L as close as possible to H (x) . If

L = H (x) then all the redundancy present in x will have been removed and hence any

attempt to achieve even greater compression will result in loss of information. This is a

theoretical limit and is seldom reached in practice. However it should be noted that higher

compression ratios may be achieved without loss by choosing a different representation

for the same information. The theoretical limit has not been violated in these cases. What

happens is that the pdf of x changes, resulting in a change of H (x) which falls below

H (x) of the original representation. Thus it makes sense to choose the most efficient rep-

resentation before quantizing and subsequent entropy coding.

Huffman coding makes several big assumptions; first, that the probability distribution of

the set of symbols to be encoded is known and secondly that the probabilities do not

change. Given that these assumptions hold, the codebook containing the code for each

symbol can be precomputed and can either be stored permanently in both the encoder and



decoder or transmitted once by the encoder to the decoder at the beginning of a transmis-

sion.

The algorithm used to design these codebooks is very simple and constructs a binary

tree that has the symbols for leaves and whose forks describe the code. The probability of

each symbol is generated by performing preliminary encoding runs and recording the fre-

quency of each symbol in the final representation. Provided sufficiently representative

data is used to generate these symbols, the actual probability of occurrence of each symbol

may be approximated by its relative probability in the preliminary representation.

For a set of n symbols the algorithm constructs the tree in n - 1 steps where each step

involves creating a new fork that combines the two nodes of highest probability. The new

parent node created by the fork is then assigned a probability equal to the sum of the prob-

ability of its two children. A simple example is shown below in Figure 2.2

Pr(Symbol) Symbol Code

0.40 a 0

60 0.25 b 10

1 0.60 0.20 c 110

1 0.35 1 0.15 d 111

L = 1x.40+2x0.25+3x0.20+3x0.15
= 1.95 bits/symbol

H = - (0.4010g2 (0.40) + 0.2510g2 (0.25) + 0.2010g2 (0.20) + 0.151og 2 (0.15))
= 1.904 bits/symbol

Figure 2.2 Huffman Coding Example

Several codebooks generated by a method similar to that described above are used

within JPEG for various types of data in a variety of different situations.



2.3 Frame Rate

When one moves from still images to moving images comprised of a series of still images,

one of the main things that must be taken into account is the rate at which pictures are pre-

sented to the viewer. If too few pictures are presented to the viewer then any motion within

the picture will appear jerky, the viewer will notice that the moving image is not continu-

ous but in fact comprised of many separate still images. However, if the frame rate is

increased to a sufficiently high rate then the still images will "fuse" causing motion within

the picture to appear smooth and continuous.

The frame rate at which fusion occurs is known as the critical flicker frequency (cff)

and is dependent upon the picture size, ambient lighting conditions, and the amount of

motion within the frame [17] & [23]. For example when a T.V. screen is viewed in a

poorly lit room the cfff decreases, conversely the cfff increases when the same T.V. screen

is viewed in well lit conditions. The cfff also increases with picture size, which explains

why motion pictures are shot at 24 frames per second and then projected at 72 frames per

second with each frame being shown three times.

Standard television uses a special method to increase the temporal resolution without

increasing the bandwidth of the transmitted signal or decreasing the spatial resolution by

an inordinate amount. This trick is known as interlace and involves transmitting the pic-

ture as two separate fields; the even lines of the picture are sent in the first field, followed

by the odd lines in the second field. Transmitting a picture in this manner means that the

perceivable spatial resolution of the displayed image is larger than one field alone but

smaller than if both fields had been transmitted simultaneously (progressive scanning).

The gain comes in that the temporal resolution is increased beyond that of a system where

the fields are combined into a single picture. Thus a small sacrifice in spatial resolution is



made to allow for better temporal resolution without increasing the number of scanlines

per unit time.

Progressive Scanning Interlaced Scanning

frame n - 2 frame n - 1 frame n fO fl fO fl fO fi
frame n - 2 frame n - 1 frame n

fO = field 0, even scan lines
fI = field 1, odd scan lines

Figure 2.3 Progressive and Interlace Scanning

While interlace is appropriate and useful for analog televisions that only display picto-

rial information, it is particularly bad for computer generated text or graphics. When a

normal television displays these sorts of artificial images the human eye fails to merge the

spatial information in successive fields smoothly, and the 30 (NTSC)/ 25(PAL) Hz flicker

becomes painfully obvious. For this reason, there has been a concerted push towards

higher frame rates both for large screen computer monitors and emerging HDTV system

proposals. These HDTV systems will need these higher frame rates to support a larger pic-

tures. In addition, higher frame rate will also be needed to support the anticipated com-

puter driven applications made possible by the digital technology used to deliver and

decompress the images they will display. Some common frame rates used within the

movie, television and computer industries are 24, 25, 29.97, 30, 59.94, 60 and 72 frames

per second.



2.4 MPEG Standards [2], [3]

The Moving Picture Experts Group (MPEG) standard MPEG 1 [2] and draft standard

MPEG2 [3] are based on the same ideas that were used in the creation of the JPEG algo-

rithm for still images. In fact, MPEG coders contain the same transform, quantization and

entropy coding functional blocks as the JPEG coder. The difference between the MPEG

and JPEG coders lies in the fact that the MPEG coders exploit interframe redundancy in

addition to spatial redundancy, through the use of motion compensation. The three stan-

dards can be differentiated as follows;

. JPEG compresses single images independently of one another.

. MPEG 1 is optimized to encode picture at CD-ROM rates of around 1.1

Mbit/s at resolution roughly a quarter of that for broadcast TV by predicting

the current picture from previously received ones.

. MPEG2 inherits the features present in MPEG 1 but also includes addi-

tional features to support interlace and was optimized for bit rates of 4

and 9 Mbit/s

2.4.1 Motion Estimation and Compensation

Many methods for estimating the motion between the contents of two pictures have been

developed over the years. As motion estimation is only performed in the encoder and

hence the method chosen does not impact on interoperability, MPEG does not specify any

particular algorithm for generating the motion estimates. However, in an effort to limit

decoder complexity and increase representation efficiency, the decision was made that

motion vectors should be taken to represent constant (i.e. purely translational) motion for

small tiled regions of the screen. The boundaries of these tiles coincided with those for a



grouping of a small number of blocks used by the DCT stage, thus allowing the decoder to

decode each tile in turn with a minimal amount of memory. Consequently, the most com-

mon method used to generate motion information for MPEG implementations is the block

based motion estimator.

Block based motion estimators are characterized by the fact that they generate a single

motion vector to represent the motion of small (usually square) group of pels. The motion

vector for each block is calculated by minimizing a simple error term describing the good-

ness of fit of the prediction by varying the translation between the block's position in the

current frame and its position in a predictor. The translation corresponding to the mini-

mum error is chosen as the representative motion vector for the block. An example of a

prediction made by a typical block based motion estimator is shown in Figure 2.4 below.

1 2 3 4567
9 10 11 12 13 14 1516

17 18 19 20 ..21.22.23.24

25 2612718293313
33 34 35 36 37 3. 39'.4

41 42 143 4451-46 47 48
Predictor Current Frame

Figure 2.4 Block Based Motion Compensation Example

A common example of an error term used by block based motion estimators is the

Sum of Absolute Differences (SAD) between the estimate and the block being encoded.

Generally, only the luminance component is used, as it contains higher spatial frequencies

than the chrominance components and can, therefore, provide a more accurate prediction

of the motion. The SAD minimization formula for a square block of side length

blocksize is given by

xx.:

17 8:X 14'P 115
X. 2. 4

........... I 31132r
.. .......... .X

145 P48



blocksize - 1 blocksize - 1

SAD (8,,6,) = X I abs (lumeny) - lumpred + 8 ,y + 8 ) (2.1)

y =0 x= 0

Where (85 ,S,) is the motion vector which minimizes the Sum of Absolute Differences;

SAD (8GA,)

Several advantages and disadvantages result from using the SAD error measure for

motion estimation. The main advantage is that the resulting vectors do in fact minimize

the entropy of the transform encoded error signal given the constraint that the motion must

be constant within each block. However, the hill climbing algorithm implicit with the min-

imization process means that the motion vectors generated will not necessarily represent

the true translational motion for the block, despite the fact that the entropy of the error sig-

nal is minimized. This is particularly true for blocks that contain a flat luminance surface

or more than one moving object. Given that one is attempting to find true motion, the fol-

lowing list summarizes the main failings of block based motion estimation;

. The motion estimate will most likely be quite different from the true

motion where the block's contents are fairly constant and undergo slight

variations in illumination from frame to frame. The cause of these errors

lies in the fact that small amounts of noise will predominate in the SAD

equation causing it to correlate on the noise instead of the actual data.

. Blockwise motion estimation assumes purely translational motion in the

plane of the image. It does not model zooms or rotations accurately as

these involve a gradually changing motion field with differing motion

for each pel within a block



. The motion estimate is deemed constant for the entire macroblock,

causing an inaccurate representation when there is more than one

motion present in the block or complex illumination changes occur.

Therefore block based motion estimation, while easy to implement, does not necessar-

ily result in either a particularly accurate representation of the true motion, nor a low MSE

where non translational motion is present.



2.4.2 Residual Error Signal

Generally, there is some error associated with the prediction resulting from motion estima-

tion and compensation techniques. Therefore, there must be a way to transmit additional

information to correct the predicted picture to the original. This error can be coded using

the same transform and entropy encoding methods described previously in 2.2.1 to 2.2.3.

It should also be noted that there will be places in the picture for which the prediction will

be particularly bad, in which case it may be less expensive to transmit that portion without

making the prediction, i.e. intra coding.

Figure 2.5 below, shows the main functional blocks within an standard MPEG2

encoder; motion estimator, several frame-stores, 8x8 DCT, quantizer (Q), entropy or VLC

encoder, inverse-quantizer (Q~), 8x8 IDCT, rate-control, and output-buffer.

*quantizer step size Rate Control

Framne Motion + DCT Q VLC Buffer

-0'Re-Order Estimator MUX

Source Input
S1 MPEG2 stream out

DCT

Framestores

DCT - 8x8 Discrete Cosine Transform Q - Quantization

DCT- - 8x8 Inverse Discrete Cosine Transform Q-1 - Inverse Quantization
VLC - Variable Length Coding

Figure 2.5 MPEG2 Encoder Block Diagram



The corresponding MPEG2 decoder is quite similar. It consists of a subset of the

encoder, with the addition of a VLC decoder. It should be noted that the motion estimator,

one of the most expensive functional blocks in the encoder, is not required by the decoder.

Therefore, the computational power required to implement an MPEG decoder is substan-

tially less than that required for an MPEG encoder. For this reason MPEG is characterized

as being an asymmetric algorithm where the requirements of the encoder are substantially

different from the decoder. A block diagram of an MPEG decoder is shown in Figure 2.6.

Quantizer step size

2MPEG2 Decoder Block DiagramFigure 2.6



Chapter 3

Recent Advances in Image Representation

As computing power has increased, the notion of what a digital image representation

should encompass has grown to be something more than just a compressed version of the

original. This chapter describes three recent approaches to image representation under-

taken at the Media Laboratory that have helped to inspire the work in this thesis.

3.1 Salient Stills

The Salient Still developed by Teodosio [28] is a good example of what can be done given

sufficient memory and processing time. The basic premise behind the Salient Still is that

one can construct a single image comprised of information from a sequence of images,

and that this single image contains the salient features of the entire sequence. The Salient

Still then has the ability to present not only contextual information in a broad sense (e.g.

the audience at a concert) but also the ability to provide extra resolution at specific regions

of interest or salient features (e.g. close up information of the performer at the concert). A

block diagram showing how a Salient Still is created is shown below.

Figure 3.1. Salient Still Block Diagram [28]



The main algorithmic ideas to be gleaned from the Salient Still algorithm are;

. A single image is created by warping many frames into a common

space.

. The value of a pel at a particular point is the result of a temporally

weighted median of all the pels warped to that position.

- The motion model used to generate the warp is a 6 parameter affine

model derived by a Least Squares fit to the optical flow [6].

dx = ax+ b~x + cXy
(3.1)

d, = a,+ b x + cy

Some of the problems associated with salient generation are;

. Optical flow is particularly noisy near motion boundaries.

. Inaccurate optical flow fields result in an inaccurate affine model.

. The affine model is incapable of accurately representing motion other

than that which is parallel to the image plane.

3.2 Structured Video Coding

The "Lucy Encoder" described in Patrick McLean's Master's thesis "Structured Video

Coding" [18] explores what is possible if one already has an accurate representation of the

background. Footage from the 1950's sitcom "I Love Lucy" provided an easy means to

explore this idea for two reasons; first, the sets remained the same from episode to episode

and secondly, the camera motions used at the time were limited for the most part to pans.

Thus, construction of the background was a fairly easy process. All one had to do was

composite several frames together using pieces from each frame where the actors were not



present. In addition to removing the actors, it was also possible to generate backgrounds

that were wider than the transmitted image, thus enabling the viewer to see the entire set as

opposed to the portion currently within the camera's field of view.

Having obtained an accurate background representation the next step was to extract

the actors. This proved to be no easy task. However, with some careful pruning and region

growing the actors were successfully extracted (along with a small amount of background

that surrounded them). Replaying the encoded footage then became a simple matter of

transmitting an offset into the background predictor and pasting the actors into the window

defined by this offset. McLean showed that if one transmitted the backgrounds prior to the

remaining foreground then it was possible to encode "I Love Lucy" with reasonable qual-

ity at rates as low as 64kbits/sec using Motion JPEG (M-JPEG1 ).

Several problems existed in the representation. Zooms could not be modeled as only

the motion due to panning was estimated. In addition, the segmentation sometimes did not

work as well as it should have, as either not all of an actor was extracted, or it was possible

to see where the actors were pasted back in by virtue of mismatch in the background.

However, these shortcoming are somewhat irrelevant as McLean demonstrated the more

important idea that the algorithm should generate a representation that was not based

solely on statistical models but one based on content. The representation now contained

identifiable regions that could be attributed to a distinct physical meaning such as a

"Lucy" region or a "Ricki" region.

1. Motion JPEG is a simple extension of JPEG for motion video in which each frame consists of a single JPEG com-

pressed image



3.3 Layered Coder

More recently, work in the area of layered coding has been done by Wang, Adelson

and Desai [4], [30]. Along the same lines as the Salient Still and the Structured Video

Coder, the Layered Coder addresses the idea of modeling not just the background by creat-

ing a small number of regions whose motion is defined by a 6 parameter affine model.

These regions are transmitted once at the beginning of the sequence with subsequent

frames generated by compositing the regions together after they have been warped using

the 6 parameter models.

The regions are constructed over the entire sequence by fitting planes to the optical

flow field calculated between successive pairs of frames. Similar regions from each seg-

mentation are then merged to form a single region which is representative of its content for

the entire sequence.

As might be surmised this technique works best for scenes where rigid body non 3D

motion takes place. Another problem lies in the fact that the final regions have an error

associated with their boundaries due to the inaccuracies of the segmentation. Thus, when

the sequence is composited back together there tends to be an inaccurate reconstruction

near the boundaries. Finally, as only a single image is transmitted to represent each region

it turns out that closure (i.e. a value for every pel) cannot be guaranteed during the com-

positing stage after each region has been warped.

For all these reasons the layered coder does not generate pixel accurate replicas of the

frames in the original sequence for all but the simplest of scenes. However more impor-

tantly, even though a high Mean Square Error (MSE) may exist, the reconstructed images

look similar to the original. The error is now, not so much an error due to noise or quanti-

zation but, a geometric error associated with an inaccurate motion model.



3.4 General Observations

The three representations described in this chapter share several things in common;

- Many frames are used to construct a single image representative of a

region in the scene.

. They construct this image using optical flow [6] to estimate interframe

motion.

- One or more 6 parameter affine models are used to represent the inter-

frame motion.

The techniques described above work well if one is attempting to model a simple

scene and can generate reasonable approximations to actual regions in a frame. However

if pixel accurate replication is required then, in general, the resulting images will not be

accurate due to geometric distortions introduced by the affine model's inability to repre-

sent 3D motion. Therefore given that an efficient representation is paramount, if one

requires a geometrically accurate reconstruction or is modelling a sequence containing

significant amounts of 3D motion, then one should use a more accurate motion model in

addition to also including an error signal with the affine model to correct these distortions.

One final problem these methods face is that they rely on the accuracy of the motion

estimates generated by the optical flow algorithm. Optical flow attempts to determine the

velocity of individual pels in the image based on the assumption that the brightness con-

straint equation below holds.

d lum(x,y) = 0 (3.2)
dt



This equation can be solved using a number of methods, the two most popular are cor-

respondence methods (which are essentially the same as block matching) and gradient

methods which attempt to solve the first order Taylor Series expansion of (3.2),

v X lum (x, y) + v 9alum (x, y) + a-lum (x, y) = 0 (3.3)
xax a~y a

over a localized region R [6]. In order for gradient based optical flow to work the follow-

ing assumptions are made;

. The overall illumination of a scene is constant,

. The luminance surface is smooth,

. The amount of motion present is small.

When these assumptions are invalid optical flow fails to give the correct velocity esti-

mates. This is particularly true for;

. Large motions,

. Areas near motion boundaries,

. Changes in lighting conditions.

Thus for particularly complicated scenes involving lots of motion or lighting changes

the output from the optical flow algorithm will be inaccurate. Hence any segmentation

based upon the output from optical flow under these circumstances will be inaccurate.



Chapter 4

Enhancing the Background Resolution

A theme common to the three representations described in the previous chapter was that

they all used more than one frame to construct a single representative image. The ability to

combine frames of video in this way can result in two benefits. First one can remove fore-

ground objects from the final image. Secondly, under certain conditions it may be possible

that the apparent resolution of the final image can be enhanced beyond that of the original

images.

This chapter concentrates on the second benefit, specifically, methods that increase the

sample density and resolution above that of the transmitted picture through the combina-

tion of several pictures sampled at different resolutions and times. The first benefit, that of

removing foreground objects from the final image, is the subject of the next chapter.

4.1 One Dimensional Sub Nyquist Sampling

Before examining resolution for images, it useful to examine a simpler one dimensional

problem that can later be extended into two dimensions for images. Consider the one

dimensional sequence x [n] shown below,

x [nJ

n

Figure 4.1 An arbitrary one dimensional sequence, x [n]



This sequence x [n] can be broken up into two sub nyquist sampled sequences; the

first consisting of even samples x, [n] and the second x, [n] of the remaining odd sam-

ples.

Figure 4.2

X,[n]

Sub nyquist sampled sequences, from odd and even Samples of Figure 4.1

The operations required to remove the even and odd samples from x [n] to generate

these sequences are described by the following formulae

X, [n] = (x [n] + (-1)x [n])

1

x, [n] = 1(x [n] - (-1)"x [n])

(4.1)

In the frequency domain these formulae correspond to the introduction of aliased versions

of the original sequence's spectrum,

Xe (o)) = I (x (o)) +X (-)

(4.2)

X0 (o) = (X X

Furthermore, it easy to see that when these two sequences are added together the

aliased components cancel each other and the original sequence is obtained.
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Figure 4.3 Spectral Analysis of Down Sampling

4.2 Enhancing Resolution Using Many Cameras

So far it has been shown that one can decompose a one dimensional sequence into two

sequences consisting of odd and even samples respectively. In addition, it was also shown

that the aliasing introduced during the creation of these two sequences is eliminated when

the two are recombined. Therefore, if one starts with two sequences, with the second off-

set half a sample period after the first, then it should be obvious to see how one could cre-

ate a sequence of twice the sampling density by zero padding and then addition.

If this concept is extended into two dimensions then it follows that four aliased input

sequences are required; odd rows/odd columns, odd rows/even columns, even rows/odd

columns, and even rows/even columns. Thus one could construct a four camera rig with

each camera offset by half a pel from its neighbors as shown in Figure 4.4.
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Four Camera Rig for Doubling Spatial Resolution

Generally, such a system will not result in an exact doubling of the spatial bandwidth

as it relies on the assumption that frequency response of the camera is flat and contains

aliasing of only the first harmonic as shown below,
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21 - IV I

Figure 4.5



Real cameras are incapable of generating signals with the response shown in Figure

4.5 for three reasons;

. First, camera optics are not perfect and therefore they introduce a cer-

tain amount of distortion into the image.

. Secondly, the sensors that form the camera chip are not infinitely small,

they must have a significant finite area in order to reduce noise and also

to minimize the magnitude of higher order aliased sidelobes.

. Third and finally, a real sensor is incapable of generating a negative

response. Therefore it is impossible to implement f(x, y) as the

response must be that of an all-positive filter.

Having deduced that it is impossible to obtain the desired response from practical sen-

sors, one should determine how close the response of a practical sensor is to this ideal.

Consider the 9 element ccd array shown in Figure 4.6,

b
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b

A
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Camera CCD Array (modified from Fig 2.22 in [5])Figure 4.6



The sensors in this array have dimension a by b and are distributed on a rectangular

grid with cells of size A by B. A common measure used to describe the geometry of the

sensor array is the fill factor:

ab
AB (4.3)

If the effect of the lenselets and other camera optical elements is temporarily ignored,

the frequency response due to the finite sensor area can be defined in terms of a separable

function consisting of two sinc functions with nodal frequencies as shown in Figure 4.7.

Notice that the response is low pass and that its width is dependent on the sensor size.

Smaller sensors result in wider response than larger ones that filter out more of the higher

frequencies.

LPF (wo,) LPF(o)

a a b b

LP F (wx, (o,)|

Nx
Figure 4.7 Low pass frequency response due to finite sensor element size

Reading the data from the ccd has the effect of multiplying the double-sinc frequency

response shown in Figure 4.7 with the two dimensional pulse train shown in Figure 4.8,
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When one combines the effects of all these operations on the projected image one

obtains the Modulation Transfer Function (MTF) which describes the behavior of the

recording system. Following on from the previous examples the MTF for the ccd array in

Figure 4.6 is shown below (NB only the x axis projection is shown for clarity).
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Modulation Transfer Function for a typical ccd array
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At this stage one should note that there is significant aliasing in the sensor array's

MTF. In fact, one wonders if it would be possible to obtain a recognizable image from the

camera. However, one should remember that the MTF shown in Figure 4.9 was derived

for the camera sensor array only. No consideration was given to the lenselets and camera

lenses in its derivation. When one includes these optical elements into the system descrip-

tion, the end result is that the image projected onto the ccd array is filtered by a much nar-

rower filter than that implied by the ccd array's geometry. Generally, most cameras are

deliberately designed to be slightly unfocused in order to perform this type of pre-filtering.

For more details on the effect of focus on MTF responses see [7].

Combining the optics, sensor array and sampling into a single entity results in the sys-

tem shown in Figure 4.10. (N.B. only the x axis projection is shown in the interests of clar-

ity)
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Figure 4.10 Modulation Transfer Function for a typical camera

When one compares the desired camera response shown in Figure 4.5 with that of the

actual response shown in Figure 4.10 it becomes apparent that the degree to which the res-

olution can be enhanced through the use of this technique is somewhat limited. The criti-

cal part of the system is the optics. If the camera is perfectly focused then the optical

response is flat and the resulting image will be too highly aliased in order to extract the

lower harmonic spatial frequencies. Conversely, an out of focus camera will effectively

low pass filter the image so that the higher spatial frequencies are virtually eliminated.



4.3 Enhancing Resolution Using One Camera

Good quality cameras are expensive, so it makes sense to find a way to achieve the same

results using only a single camera. Two methods that only use one camera for resolution

enhancement are described in this section.

4.3.1 Stepped Sensor Mount

The simplest method which is capable of achieving the same results as the four camera

rig involves a movable camera sensor that steps to another camera position after capturing

each frame. This process is repeated so that a frame is captured at each of the four posi-

tions in turn, thus generating a cyclic sequence with a periodicity of four frames. This

method sacrifices temporal resolution for spatial resolution, which is not unreasonable

considering the aim is to increase the resolution of the background; a near stationary

region for which temporal resolution is not critical. However it is not perfect as it still suf-

fers from two major flaws.

First, the input signal is assumed to be aliased as per the description in the previous

section. If this condition is not met then no resolution enhancement will be possible as the

spectra of the four images will be identical apart from the phase shifts caused by the differ-

ent sample positions. The only gain possible will be in the form noise reduction from the

multiple samples present.

Secondly, the mechanics or electronics involved in moving the camera sensor in the

precise manner required would increase the cost significantly to the point where it may be

cheaper just to use a camera already capable of the desired resolution. In fact it is highly

likely that it would be impossible to achieve the exact repetitive motion desired. Thus, the



only way to ensure the half pel offsets is to use the higher resolution camera to begin with

which once again defeats the purpose of this thesis.

4.3.2 Generalized Camera Motion

The obvious solution to this problem is to allow the camera to pan and zoom freely and

then to motion compensate successive frames to fit one of the four camera positions. Apart

from realizing the one camera goal, this method also affords another benefit in that the res-

olution can be increased in a somewhat less subtle but more robust method through the use

of additional memory.

Consider that case in which the camera motion is purely translational and parallel to

the background plane. In this case each image only requires a translation in order to align

it with the appropriate sampling points and hence one has to rely on the odd/even sub

nyquist sampling method described in the previous section in order to increase resolution.

However, if zooms are allowed then the frequency response of the camera will be scaled

during the motion compensation process. Perhaps, this can be best explained if one con-

siders the scene below.

Figure 4.11 Two Shots of the Same Scene a) Wide angle, b) Close up (2 X)



For a given region there are four times as many pels (and hence twice the spectral res-

olution both horizontally and vertically) in the close up shot when compared to the wide

angle shot. Therefore when one warps the wide angle image into the same scale as the

close up and then examines their relative spectral content one finds that it is possible to

reconstruct the portion of the image captured in the close up with a higher resolution than

the wide angle image which is used to reconstruct the remainder of the image.

Wide Angle
Close Up 2x

LPF()

........------. W ide Angle
-27 -- c 7c 21c Close Up
A A A A

Figure 4.12 Spectral Content of two pictures when combined

The process of warping one image into the same scale as another, and thereby shrink-

ing or expanding the range of its spectrum, forms the basis for the background resolution

enhancement portion of the coder. Of course the degree by which the resolution is

enhanced is highly dependent on the accuracy of the warp, and the means used to incorpo-

rate the information provided by each new frame into the representation. If the warp is not

particularly accurate then the resolution may actually be decreased below that of one of



the original frames! Therefore some consideration should be given as to how to generate

the most accurate warp possible and also how to update the prediction buffer to allow for

the fact that warp will not necessarily be entirely accurate.

4.4 Enhanced Resolution Image Construction

The enhanced resolution coder constructs enhanced resolution images of the background

from several previously transmitted images. Each of these images has a single six parame-

ter affine warp model associated with it which describes the interframe motion between

the model image and the current one. The affine model,

d, = ax+ b~x + cXy

d, = a,+ b x + c~y (4.4)

has six parameters and accordingly the types of motion it can represent accurately is lim-

ited. In general the affine model will be accurate in situations where there is little 3D

motion present. Rotations not about the optical axis or scenes containing significant per-

spective or depth in the image will not be modelled accurately. However, if one constrains

the scene so that the background is roughly planar and perpendicular to the optical axis of

the camera then the six parameter affine model is usually accurate enough to model the

interframe motion.

In addition to the affine model, a coarse segmentation mask is also stored with each

model to indicate which parts of the model are accurately described by the warp. Without

this mask foreground objects may be incorrectly rendered into the background. Details of

how the segmentation mask is derived are described in the next chapter.



Having determined the warp model, consideration must be given as to how to generate

values that don't fall on original sample points. It is a well known fact that the best inter-

polation function for a band limited signal is one based on sinc functions. However, as the

sinc function requires infinite support and hence infinite computation it is rarely used.

Instead the computationally less expensive bicubic warp below is used,

xfrac = x - xint

yfrac = y - yint

xint =

yint =

int (x)

int (y)

x1= xfrac 2/2 - xfrac/3 - xfrac 3/6

X2= 1 -xfrac/2+xfrac3/2

x= xfrac +xfrac - xfrac 3/6

x4= xfrac3/6 -xfrac/6

(x1pred (xint - 1, yint - 1) +

x2pred (xint, yint - 1) +
ti = Y1 xspred(xint+ lyint- 1) +

x4pred (xint + 2, yint - 1)

(x 1pred (xint - 1, yint + 1) +

x2pred (xint, yint + 1) +
t3 = y3 x 3pred(xint+ 1,yint+ 1) +

x4pred (xint +2, yint + 1)

2 3
y1 = yfrac2/2 - yfrac/3 - yfrac /6

Y2 = 1 -yfrac/2+yfrac3/2
2 3

y3 = yfrac +xfrac -yfrac /6

Y4 = yfrac3/6 -yfrac/6

(xlpred (xint - 1, yint) +

x2pred (xint, yint) +
t2 = y2 xpred (xint + 1, yint) +

,x4pred (xint +2, yint)

(xpred (xint - 1, yint + 2) +

x2pred (xint, yint + 2) +
tZ = Y4 xspred(xint+ 1,yint+2) +

x 4pred (xint +2, yint +2)

newval = t1+t2+t3+t4 (4.5)

The support area of the bicubic warp above is the 4 by 4 region of pels centered on the

position of the predicted pel (x, y) .



The basic mechanism for constructing an image is very similar to that used by Irani

and Peleg in their work on multiple motion analysis [16] and also that of Teodosio in her

work on Salient Stills [28]. Each pel to be displayed is reconstructed from a number of

previous frames, by collecting a candidate value from each model frame via a bicubic

warp Eqn (4.5) and then evaluating a cost function to determine the best value. Unlike the

Salient Still however, the models within the enhanced resolution coder also contain mask-

ing information which increases the accuracy of the reconstruction considerably as pels

corresponding to foreground objects are no longer considered.

The Salient Still algorithm generally gives the best results when the pel's color is

determined by evaluating a weighted median function, where the weight associated with

each candidate value is dependent on the relative scale of the model that it comes from. In

other words, models with small bX and c, values corresponding to close up images are

favored over those which had large bX and c, values and hence correspond to wide angle

images.

weight oc 2 (4.6)
(2+b +c,)

The enhanced resolution codec extends this concept one step further by including a

measure of best fit to the sampling grid, the rationale being that the model providing the

closest fit gives the most accurate prediction. The addition of this term generally only

effects the outcome when images are of relatively similar scale, which makes sense as at

other times a model of considerably smaller scale should have a considerably higher

weight value than that for an image of large scale.



1weight oc
(b + c,) (1 +d)

d = distance squared to nearest pel in model
in terms of model scale, i.e by definition

2
(4.7)

This is most easily shown in the diagram below,

0 0 0 0

0 00 0 0

Reconstructed Pel

0Na

0 0 0 0
Figure 4.13 Nearest Model Pel Determination

Here, three models contribute candidate values to the median table. The scales of the

models corresponding to the clear sample and cross hatched samples are the same. How-

ever, the shaded sample not only from a model of smaller scale but is closer to the recon-

structed pels position. Therefore the candidate value corresponding to the shaded model

will have the largest weighting.



Chapter 5

Foreground Extraction

The techniques of 6 parameter affine interframe motion representation and background

resolution enhancement suffer from the assumption that no foreground objects are present

in the input frames. Therefore, as any real or interesting footage will most likely contain

foreground objects, a method must be found that either removes or nearly removes any

foreground objects from the input. Once this is achieved the modified input can be used to

generate a more accurate background motion model and hence a more accurate enhanced

resolution background.

This chapter describes the development of an algorithm that extracts foreground

regions from a frame. It should be noted that the method described herewith is not

designed to perform perfect segmentation, as section 5.1 will show this is a near impossi-

ble task. The design criteria for the extraction algorithm is somewhat more relaxed. So

long as the modified input contains no foreground information that will corrupt the back-

ground image under construction then the algorithm is deemed successful.

5.1 Choosing a Basis for Segmentation

The human visual system is extraordinarily good at performing the task of segmentation.

Through the use of brightness, color, texture, lighting, motion, relative proximity, and ste-

reo it can segment even the most complex scenes into a collection of related meaningful

parts.



For example upon examination of Figure 5.1. below, one might segment the scene into

the following list of objects; a flower bed, trees, sky, houses and lamp posts.

Figure 5.1. Flower Garden Scene (from an MPEG test sequence)

Even though this image is flat and presented in black and white, the segmentation

described above still used four of the aforementioned methods for segmentation; bright-

ness, texture, relative proximity, and shape. However, one other method not previously

mentioned was also probably used -- a priori knowledge. This is extremely important as it

means that people will have a bias or pre-conceived notion of how the segmentation

should occur. In the context of the example above, most people will make use of prior

experiences of what flowers, trees, houses and lamp posts look like, and therefore be pre-

disposed to arriving at the conclusion that the tree is a foreground object.

Another valid solution to the segmentation of Figure 5.1. would be to say that every-

thing but the tree is painted on a card and that the tree is actually a hole in the card though

which one can see a wooden pattern. Although this second solution is somewhat con-

trived, it shows that apriori knowledge plays a significant role in the way that humans

attempt to understand images.

Unfortunately, we have yet to learn how to program computers to make use of this sort

of knowledge. The concept of 'tree-ness' or 'flower-ness', while extremely easy for us to

comprehend, is something that is extremely difficult to describe to a computer. For this



reason, the majority of current segmentation techniques rely heavily on artificially con-

trived situations such as blue screens and already known or uncluttered backgrounds.

Those that don't may work well some of the time but invariably fail under certain condi-

tions that all too often appear in real footage.

Therefore, any algorithm that relies solely on an accurate segmentation in order to

work is doomed to failure. Consequently, the algorithm described in the remainder of this

chapter is designed to fail. Yes fail, so long as it doesn't allow foreground objects to cor-

rupt the background it doesn't matter how much background is leaked into the foreground.

Conversely, foreground objects that happen to be identical to the background can be

leaked into the background as the end result will be the same. Of course this is rather glib

but the reasoning is sound; an important goal of this research is to construct an enhanced

resolution representation of the background of a scene. If perfect segmentation is not a

prerequisite for this to be achievable then one should not aim for perfect segmentation!

One of the simplest methods for performing segmentation between a foreground

object and a background is to use the interframe motion to segment on the basis of relative

velocities between regions in the image. Although somewhat hidden, the majority of

motion estimators rely heavily on the brightness, texture, and shape of the objects present

in the image. Consequently making segmentation on the basis of interframe motion is not

an unreasonable proposition as all these characteristics are automatically incorporated into

the decision process. The following sections describe the fault tolerant motion based seg-

mentation algorithm used to extract the foreground from the input images before they are

used to update the background.



5.2 Motion Estimation

Current motion estimation methods all give false motion estimates under certain condi-

tions; block matching fails where more than one motion is present in a block or where the

luminance surface is smooth and optical flow fails badly at motion boundaries. However,

with this understanding it is possible to take one of these algorithms and modify its opera-

tion to note which regions are likely to generate false motion estimates and to subse-

quently minimize the presence of false motion estimates in these areas. This section will

briefly describe several modifications made to a standard block matching algorithm in

order to improve its performance in two areas.

First, the amount of computational complexity is reduced through the use of coarse to

fine hierarchical pyramid techniques that generate an initial coarse estimate of the motion

using low resolution images and then subsequently refine the motion estimates using

images of successively higher resolution.

Secondly, the presence of false motion estimates resulting from blocks containing

more than one motion or comprised of flat luminance data is minimized by;

- Making the block size a maximum of 8 by 8 pixels in areas of non uni-

form motion.

- Using a spiral search originating at the vector corresponding to zero

motion

. Weighting the error criterion so that vectors closer to the zero motion

vector are preferred over those at the extremes of the search range. The

degree to which low magnitude motion vectors are preferred over high

magnitude vectors is dependent on how flat the block being examined.



. After each stage of refinement in the hierarchy the motion estimates out-

liers resulting from noise on flat blocks were filtered using a median fil-

ter.

More explicit details of the motion estimation algorithm are given in Appendix A.

5.3 Background Model Construction

As was shown in Chapter 4, finding an appropriate model for the background of an image

scene is not an easy task. However, if one is willing to make a few, admittedly non-trivial,

assumptions then it is possible to simplify this task considerably. The assumptions made in

order for the enhanced resolution coder to work are;

. The projected area of the background on the images presented to the

encoder is large relative to that taken up by foreground objects.

. The distortion introduced by the camera optics is minimized through the

use of long lenses and a restricted field of view.

Having made these assumptions, in particular the second, then one can represent inter-

frame background motion using the 6 parameter model,

dx = a + b~x + cXy
d~ =a + b~~c~y(5.1)

d, = a, + b YX + c~y

Using the sparse set of motion estimates generated by the motion estimator in Appen-

dix A this model is derived using the least squares algorithm in Appendix B.



5.4 Foreground Model Construction

Having obtained a reasonably accurate model for the background motion it becomes nec-

essary to determine where it fails and hence which regions of the image should be trans-

mitted as foreground information.

5.4.1 Initial Segmentation

Using the least squares plane fitting algorithm described in Appendix B does more than

just generate the 6 parameter affine model for the background motion. It also generates an

initial segmentation based on the magnitude and direction of the motion vectors. This

occurs as the outliers must be removed from the input data in order to generate an accurate

model by the least squares method. The set of blocks corresponding to outlier motion vec-

tors generated by the plane fitting algorithm forms the initial segmentation.

5.4.2 Variance Based Segmentation Adjustment

As mentioned earlier in this chapter the output from the motion estimator cannot be relied

upon for accuracy, even when the modifications described in section 5.2 are incorporated

into its operation. Therefore, it is highly likely that some blocks will be tagged as fore-

ground regions even though they are clearly part of the background. The segmentation

adjustment procedure described in the following paragraphs attempts to identify these

blocks and reassign them to the background. However, the procedure does more than that

as it also allows currently tagged foreground blocks to become background if the resulting

error from using the background motion is no worse than if the foreground motion was

used.

As might be expected the rationale for making the adjustment lies in the knowledge

that the motion estimator is likely to fail for blocks that are flat. Such blocks are character-



ized quantitatively by having low variance. These are the only blocks which are candi-

dates for adjustment, which is performed in two phases; reassignment and filtering.

The reassignment phase is rather simple. The variance of each block (having already

been calculated during motion estimation) is compared to a threshold value dependent

upon the blocks size. If a block's variance falls below the threshold then the block is a can-

didate for readjustment. Residuals from using the modelled background motion and also

the foreground motion are then computed for candidate blocks. If the background residual

is smaller or only slightly larger than that for the case when the foreground motion is used

then the block is reassigned to background.

The second filtering phase attempts to remove salt and pepper noise from the segmen-

tation by filtering with a 3 by 3 median filter.

Bus Frame I Bus Frame 2

Initial Segmentation After Variance Filtering After Median Filtering
(phase 1) (phase 2)

Figure 5.2 Variance Based Adjustment



5.4.3 Region Allocation

Having appropriately filtered the segmentation on a blockwise basis, a more sophisticated

filtering is performed which takes the blocks' connectivity into account. The first part of

process consists of a scan line conversion algorithm which scans the segmentation mask in

a raster like fashion and tags each block as either background or as part of a foreground

object. After the scanline conversion process notes but does not merge new objects with

previous ones to which they are connected, a second pass is performed after scanline con-

version which merges equivalent regions.

The output from this process is a segmentation map with each block tagged as back-

ground model compliant or as one of a small number of regions.

1 2

4

5w 7

Figure 5.3 Example of region allocation by scan line conversion and merge

5.4.4 Region Pruning

The final stage of the segmentation process prunes regions from the segmentation accord-

ing to their size and the total error resulting from using the coarse block based foreground

prediction over the warped affine background model. Extremely small regions are

assumed to be the result of noise, either in the motion estimator output or the input image.

In these cases the added expense of transmitting small regions over the larger error signal



resulting from background model prediction is deemed unjustifiable and they are automat-

ically reassigned to being part of the background.

1 2

4 Regions 2, 5 and 7 pruned

Figure 5.4 Example Region pruning

Thus after segmentation the following information exists about the current frame;

- a 6 parameter affine model which describes the background motion rela-

tive to the previous frame.

. a segmentation mask which indicates whether a block belongs to the

background or to a numbered region. If the block does belong to a

region then the number of that region is stored in the segmentation

mask.

. a motion vector field which is used to describe the motion of each region

on a block by block basis.

This information is necessary and sufficient to describe the foreground object, details

of how it is encoded into the bitstream may be found in Appendix B.



5.5 Temporarily Stationary Objects

One of the major downfalls of the foreground model construction technique just described

is that it depends on interframe motion being present between every frame pair presented

to the encoder. Thus, any moving object that becomes stationary for one or more frames is

then immediately and erroneously merged into the background. While this has little effect

on the reconstruction of the current frame, it does significantly compromise the segmenta-

tion mask for that frame which may result in an inaccurate background construction for

later frames.

A partial solution to this problem which makes use of first order proximity was imple-

mented. The basis of the solution was to attempt to predict the position of foreground

regions in the next frame from the position and motion data generated for the current

frame. A "holding delay" was then introduced for the regions that were predicted to con-

tain foreground information. Foreground regions whose motion matched that of the back-

ground for the duration of this delay were then reassigned to the background. If a region's

motion did not match that of the background then its holding delay was reset.

As was stated, this solution was only partially successful. Details of how and why it

failed for particular situations are presented in Chapter 7, Simulation Results.



Chapter 6

Updating the Models

The decision of how to update the various models within the coder/decoder is an impor-

tant one. If the models associated with each frame are always dependent on those of previ-

ously received frames then several problems arise. First, it is impossible to "tune in" to the

encoded stream at any other point but the beginning. Second, if an error occurs in the bit-

stream then recovery is impossible. The other extreme is to re-transmit each model in its

entirety with every frame, which of course requires a higher bit rate than necessary.

Clearly the best solution lies somewhere in between these two extremes.

Single frames of video form the models used within MPEG [3] which solves the prob-

lem of updating them through the use of three frame types; Intra (I), Predicted (P) and

Bidirectionally predicted (B). Intra frames are independent of any other, while Predicted

frames are predicted from the previously transmitted I or P frame and Bipredicitive frames

are predicted from the two most previously transmitted I or P frames. As I frames can be

decoded without prediction from any other frame, they are transmitted on a regular basis

to allow for random access and also to ensure any transmission errors are flushed from the

decoder buffers. Figure 6.1. below shows a typical MPEG frame allocation, the arrows

indicate predictive coding.

BiurB B B B B B B

Figure 6.1. Example of MPEG frame ordering



6.1 Frame Types and Ordering

Like H.261 and MPEG, the Enhanced Resolution Coder encodes frames of video in sev-

eral different ways in order to allow for random access and error recovery. Two distinct

frame types are used;

.Model (M) frame

.Model Delta (D) frame

6.1.1 Model (M) Frames

The first frame to be sent is always a model or M frame. The M frame is essentially the

same as an MPEG I frame in both nature and implementation, that is, it contains Huffman

encoded quantized DCT coefficients but no motion information. It can, however, contain

segmentation information if it is available. As this information is not available for the first

frame of a sequence; the first frame never contains segmentation information.

M frames transmitted with segmentation information can be used to predict occluded

information in subsequent frames; however if an M frame contains no segmentation infor-

mation then it is only used to predict the following frame before it is discarded.

This feature is particularly useful for "pre loading" the background in video confer-

encing situations. The M frame also provides an avenue for the encoder to take advantage

of other more computationally expensive algorithms such as Salient Still [28] or Layered

Coder [4]. As these algorithms work on significantly more frames than can be stored in the

enhanced resolution encoder, they may be able to generate a more accurate background

representation. The ability to make use of the output from these algorithms may afford

improved performance by circumventing the memory and computation bounds present in

the standard enhanced resolution encoder.



6.1.2 Model Delta (D) Frame

The second frame type is the D frame. D frames are not unlike the MPEG B frames, in that

they contain interframe motion information from one or more predictors, and an error sig-

nal consisting of Huffman encoded quantized DCT coefficients. However, unlike the

MPEG B frame they also contain segmentation information about the position of a finite

number of foreground regions. The background and foreground motion models transmit-

ted within a D frame are complete and fully describe the motion and shape information for

the frame, relative to the previous frame.

However the error residual is based on the composition process which uses many

frames to construct the background prediction. Consequently, some discrepancies will

arise if a decoder "tunes" in halfway through without having the previous background

models to aid in the prediction. Therefore the decoder should not attempt to decode

images until it detects an M frame in the bitstream.

In short the information contained in each frame can be summarized as follows

Background Foreground Foreground Error
Frame Type Motion Motion Shape Residual

M yor n n y or n y
D y y y y

and their information contentFrame TypesTABLE 6.1



6.1.3 Frame Ordering Example

An example of frame ordering in a typical sequence is shown below in Figure 6.2. Several

things should be learned from this example. First, D frames always construct predictions

using the previous frame for foreground objects and the previous frame plus any valid

models for the remaining background. Secondly, frame 9, an M frame, contains a segmen-

tation mask and can, therefore, be used as a model whereas the first M frame (frame 0) did

not and had to be discarded after being used to predict frame 1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13

DD D D D D

M1 M E

M2 M2

NB each model consists of M3 M1 - model 1
- a previously transmitted frame M2 - model 2
- a 6 parameter affine model M3 - model 3
- a segmentation mask

Figure 6.2 Enhanced Resolution Codec Frame Ordering Example



6.2 Updating the Affine Model

Adjusting the affine parameters of existing models to reflect motion between the previous

frame and the frame just being encoded is crucial to the operation of the algorithm. Fortu-

nately, affine models can be added according to the equations below [28] to give a single

affine model that combines the effects of warping using model 1 followed by second warp

using model 2

axnew = ax1 + ax2 + cx x ay2 +bxl x ax2

aynew = ay1 + ay 2 + cy1 x ay 2 + by1 x ax2

bxnw = bx1 +bx 2 + cx 1 x by2 +bxl x bx 2

bynew = by, + by 2 + cx 1 x by 2 + by, x bx 2  (6.1)

cxnew = cx 1 + cx2 + cx 1 x cy2 + bx X cx 2

CYnew = cy 1 + cy 2 + CX1 X cy 2 + by 1 x cx 2

This property of the affine model means that each affine model needs only to be trans-

mitted once. This negates the need to perform motion estimation on frames other than the

previous one. Subsequent warps are then taken into account by adding the current affine

model to those associated with previous models.

Transmission of the affine model implies that some quantization of its parameters must

take place. If too few bits are assigned to the parameters then the effects of quantization

noise will quickly accumulate making the results of the summation progressively more

inaccurate. Therefore, care must be taken to ensure that a sufficient number of bits are

assigned to each of the parameters. For details on how the parameters are encoded see

Appendix C.



6.3 Model Update Decision

Deciding which frames should be used as models for prediction of subsequent frames is

critical to the performance of the encoder.

The simplest strategy is to cycle through the buffers throwing out the oldest model and

replacing it with the current one. Unfortunately the amount of memory and computation

required to implement a reasonable cycle length would make both the encoder and

decoder prohibitively expensive. A more realistic approach would be to limit the number

of models to perhaps somewhere between 4 and 8. Given a limited number of models two

update strategies come to mind.

Consider the situation where instead of using every frame as a model, only every m'

frame is used where m is a small number, between say 2 and 5. This modification extends

the temporal span (in terms of the time between the various frames used to construct the

background) of the encoder by a factor of m. However, it still does not guarantee optimal

model assignment in terms of maximal revealed background area. Another problem with

this method is that it does not automatically take the scale of the frames into account, close

ups are just as likely to be discarded as wide angle frames.

The second strategy addresses the shortcomings of the first. By performing a weighted

correlation of the coverage provided by all but one of the currently valid models, including

the current frame, it is possible to determine which model should be discarded so that

maximal coverage was achieved for the given number of models allowed. The correlation

process is done in two phases. First, the bounds of the area that could be covered by the set

of models being evaluated is calculated. Next, a correlation is performed by summing the

weight corresponding to the "best" model for each pel within the bounds of the recon-

struction space. The weight factor shown in (6.2) attempts to find the most accurate recon-



struction for a given pel. In addition, it takes scale into account so that the final correlation

value corresponds to the total number of valid samples that can be used to reconstruct the

background.

(6.2)

1 (bx +CY)) 2

2

This correlation is performed for each model in turn by omitting it from the set of can-

didate models, this subset is then used to generate the correlation value. The model whose

omittance results in the highest correlation is replaced by the current frame. Note that this

can result in the current frame being replaced by itself which corresponds to the case

where the current models already provide the best coverage.



6.4 Encoder Block Diagram

Below is the encoder block diagram. Notice that a significant portion of the encoder, the

transform coder core, is borrowed from the MPEG coder. Thus, the enhanced resolution

coder does not require a complete redesign of an existing encoder, only modifications to

support the new motion analysis and compositing sections.

MPEG Transform Coder Core

Rate Control

+ DCr Q VLC Buffer

DCT - 8x8 Discrete Cosine Transform Q1 - Quantization

DCT-1 - 8x8 Inverse Discrete Cosine Transform Q - Inverse Quantization
* quantizer step size VLC - Variable Length Coding

Enhanced Resolution Encoder Block DiagramFigure 6.3



6.5 Decoder Block Diagram

The corresponding enhanced resolution decoder can be somewhat more complicated than

its MPEG counterpart. The viewer is given a choice between viewing the standard

decoded display or an enhanced display that takes advantage of the extra models stored in

the decoder to construct a super resolution, screen widened version of the same image. If

the super resolution image is not required then that part of the decoder can be disabled,

thus reducing the computational complexity, and hence the cost of the decoder.

MPEG Transform Decoder Core
-------------------------. ----------------- -------------

BfUfXr -1 VLC Q DCI) + Display

B e - -- -------------- --- -

------- ma-k

Bitstreamn in afn oe

Enhanced Resolution Decoder Block DiagramFigure 6.4



Chapter 7

Simulation Results

Two sequences were used to test the enhanced resolution codec.

The first sequence consisted of a short lecture presentation in front of a white board.

Specifically designed to match the background model assumed by the enhanced resolution

coder, it was hoped that the encoder would achieve a high performance for encoding this

scene. This sequence consisted of 300 frames at a resolution of 352 pixels wide by 240

pixels high, 4:2:0 chrominance format (chrominance components sub-sampled by a factor

of 2 horizontally and vertically relative to luminance component) and was coded at a tar-

get rate of 600kbit/s in order to achieve an average SNR between 30 and 35 dB.

As the first sequence was a "best case", the second sequence was chosen to represent

the "worst case", a sequence containing significant three dimensional rotational motion in

which the foreground dominates the viewed area. To that end, a sequence containing a

close up of a revolving carousel was chosen. This sequence consisted of 150 frames at a

resolution of 352 pixels wide by 240 pixels high, 4:2:0 chrominance format and was coded

at a target rate of 1.2Mbit/s in order to achieve an average SNR between 30 and 35 dB.

The number of model frames in the enhanced resolution encoder was limited to eight.

Also, motion estimation was performed as described in Appendix A to half pel accuracy

and the segmentation was performed using a block size of 8 by 8 pels.



The MPEG encoder used for comparison in section 7.2 was developed in the Media

Laboratory's Information & Entertainment Systems group. The MPEG encoder uses

MPEG2 Test Model 5 rate control and an exhaustive search followed by a half pel refine-

ment for motion estimation.

7.1 Motion/Shape Estimation Algorithm Performance

7.1.1 Foreground Object Extraction

Even though the motion disparity between the background and the "guest lecturer" was

small, the encoder managed to segment the majority of the lecturer from the background.

As was expected the segmentation was not perfect. In particular, regions with insufficient

texture, e.g. the lecturers hair and arm, were initially incorrectly attributed to the back-

ground as a result of the motion estimator failing to detect the true motion for these

regions.

Figure 7.1 Original image and Segmented Lecturer with hole in head (and also in arm)

Another problem arose during pans when new parts of the background were revealed.

Initially, these new parts were correctly tagged as a foreground but incorrect motion esti-

mates due to lack of texture caused them to remain as foreground instead of becoming

background. While this was not a problem for situations when the camera was only per-

forming pans, problems did arise when zooms were included.



As closure is only guaranteed for the transmitted picture area, holes sometimes

appeared in the supersized picture outside the transmitted picture area due to the fact that

previous segmentation errors resulted in holes in the background. This situation was exac-

erbated by the fact that the foreground data was then subject to the "holding delay" put in

place to prevent temporarily stationary foreground objects (see section 5.5) from being

sent to the background.

Figure 7.2 Poor segmentation due to flat regions causing inaccurate motion estimation

Apart from these two flaws, for which solutions will be suggested in the next chapter,

the segmentation algorithm worked reasonably well for the "lecturer" sequence. However

the same cannot be said for the carousel sequence. Due to the large amount of 3D motion

in this sequence practically the entire frame was tagged as foreground.

Figure 7.3 Carousel Foreground Segmentation



7.1.2 Background Construction Accuracy

As might be expected, the enhanced resolution encoder was unable to construct a back-

ground of any worth for the carousel sequence due to the excessive 3D motion present.

The lecturer sequence was another story, however. Despite the coarse sampling of the

motion vector field, the algorithm was usually able to generate reasonably accurate affine

models for the sequence. In fact, when compared to the background at the original resolu-

tion, the background reconstruction was generally better due to the affine warp's capabil-

ity to represent zooms. Of course the lecturer sequence was chosen with these ideas in

mind, so it is hardly surprising that the algorithm should generate accurate models for its

representation.

Figure 7.4 on the following page shows the super resolution background constructed

by the decoder at the beginning, middle and end of a 90 frame Group of Pictures (frames

1, 51, and 89).

Initially the best estimate for the background left significant holes in the representation

as shown by the black areas. By frame 51 the lecturer's arm had been removed from the

representation along with most of his head. However, by frame 89 the lecturer's head and

torso had reappeared in the background. The reason for this is that the encoder was set to

only assume a maximum of eight model stores in the decoder. Therefore, only the "best"

eight frames were kept. These eight frames provided sufficient information to reveal the

white board panned off to the right and the region under the lecturer's arm, but in doing so

was unable to reveal the regions behind the lecturers head and torso.



Super Resolution Backgrounds for frames 1, 51, and 89Figure 7.4



7.1.3 Super Resolution Composited Image

In addition to generating a super resolution background, the decoder also has the capabil-

ity to generate a second super resolution image that also includes the transient foreground

information from the current frame. Below is an example of frame 89 with the foreground

composited over the super resolution background buffer.

Figure 7.5 Super Resolution Frame with foreground composited on top

Notice that holes in the background caused by segmentation errors are concealed by

the foreground for the region covered by the transmitted frame.

I



7.2 Efficiency of Representation compared to MPEG2

In order to make the comparison as fair as possible, both the MPEG and enhanced resolu-

tion algorithm parameters were matched. To that end the bit rates were set equal and the I

frame Rate of MPEG was set to be the same rate as that for M frames in the enhanced res-

olution coder. The lecturer sequence was coded at 600kbit/s while the carousel sequence

was coded at 1.2Mbit/s.

7.2.1 Motion/Shape Information

As can be seen from the plot below for the lecturer sequence, the number of bits spent

by the enhanced resolution coder on motion and shape information was significantly less

than that spent by the MPEG1 algorithm for motion alone. MPEG spent an average of

3614 bits/frame on motion while the enhanced resolution coder spent an average of 2256

bits/frame, a savings of 1358 bits /frame or 38%.
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The tables were turned, however for the carousel sequence. Due to the overwhelming

amount of foreground information, the enhanced resolution encoder used nearly twice as

many bits as the MPEG encoder to encode the motion. However, when one considers the

fact that the enhanced resolution coder used blocks of size 8 by 8 pixels instead of 16 by

16 pixels, and hence had four times as many motion vectors to send, the factor of two

increase in bits used does not look so bad after all.

If one ignores the differing block sizes, one could say that the enhanced resolution

coder had fallen back into an MPEG like block based coder and as such should have per-

form liked one.
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7.2.2 Error Signal

As can be seen from the plot below, the enhanced resolution algorithm performed consid-

erably better in terms of SNR than MPEG for the lecturer sequence. This can be attributed

to two main things. First, the motion representation was not only more accurate but also

more compact than that for MPEG. This resulted in more accurate predictions but also

allowed more bits to be used for the error signal. Second, the presence of multiple refer-

ence stores reduced the amount of information that had to be retransmitted due to cyclic

occlusion.

Over the three hundred frame sequence the average SNR for the MPEG 1 coder was

33.15 dB while the enhanced resolution encoder achieved an SNR of 34.38 dB, an

improvement of 1.23 dB over MPEG 1.
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As might have been expected the enhanced resolution algorithm did not perform as

well for the carousel sequence. However, it still performed better than MPEG, primarily

due to the more accurate motion representation.

Over the three hundred frame sequence the average SNR for the MPEG 1 coder was

29.37 dB while the enhanced resolution encoder achieved an SNR of 30.15 dB, an

improvement of 0.78 dB over MPEG 1.
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Chapter 8

Conclusions

8.1 Performance of Enhanced Resolution Codec

The primary aim of developing a new coding algorithm capable of including some notion

of content into the encoded representation of video was achieved. Furthermore, this aim

was achieved with little or no loss in picture quality when compared to MPEG.

The new representation arose from splitting the image data into background and fore-

ground data, which were then transmitted independently from one another. This made sev-

eral things possible;

. a synthetic super resolution image of the background in the scene could

now be constructed, thus enabling the viewer to concentrate on items of

interest in the background, e.g. writing on a whiteboard during a lecture.

. foreground elements could be removed from this background image,

thus enabling the viewer to see background areas of interest that became

temporarily occluded by foreground objects, e.g. writing on a white-

board temporarily obscured by the lecturers arm.

. the resolution of the decoded image could now be determined by the

decoder to some extent independently from the encoder without the

need for enhancement layers transmitted in parallel to the primary bit-

stream.



Interestingly all of these benefits were achieved at little or no expense in terms of com-

pression efficiency for the test sequences (lecture and carousel) when compared with the

more traditional MPEG1 hybrid transform coder. In fact, even when the input to the

enhanced resolution algorithm was chosen to break the assumed background model, the

enhanced resolution algorithm still out performed MPEG by achieving a higher average

SNR for the carousel sequence encoded at 1.2Mbit/s. This feature is quite important as it

means that the enhanced resolution algorithm degrades gracefully back to a more tradi-

tional hybrid transform coder when the assumptions made during its design are broken.

Thus, the enhanced resolution encoder can be used for any sequence without the risk of

excessively high bit rates when compared to the MPEG algorithm.

8.2 Possible Extensions for Further Study

Although the enhanced resolution algorithm represents a significant improvement over

MPEG a lot of work still remains to be done in order for it to achieve the more ambitious

goals that motivated its inception. The primary aim of the thesis was to develop a new and

more useful representation for encoded moving images: a representation that included

content, one that allowed the viewer to manipulate images with greater freedom and

understanding. Currently video is still very much a linear medium; searching for specific

items of interest requires the use of wasteful techniques which result in at least one person

investing a significant amount of time viewing an entire sequence. This should not be

required.



Some areas for improvement in the enhanced resolution algorithm that come to mind

are;

. Exploring better segmentation techniques that segment more cleanly

than the motion based technique used. Perhaps the explicit inclusion of

color and texture will allow more accurate segmentation to be achieved.

- More efficient and meaningful representations for foreground objects. In

terms of efficiency, triangular patches appear to be the obvious choice.

They may even lead to methods that will enable 3D models to be con-

structed for the foreground object based on the relative motion of their

vertices.

- Random access and model update techniques. Currently the encoder

makes an assumption about how many models should be used in the

construction of the background. At the decoder the models from the pre-

vious Group of Pictures (GOP) are discarded when a new one starts,

thus forfeiting the gains made by their presence. A smarter decoder with

more memory than that assumed by the encoder would keep the best

models from previous GOP's for inclusion with the current models.



Appendix A: Spatially Adaptive Hierar-
chial Block Matching

Motion estimation is somewhat of a black art, no motion estimation technique today gen-

erates a perfect output that represents the true motion of the image for all possible cases.

The algorithm described here represents one attempt to improve a standard block match-

ing motion estimator and to improve its performance both in terms of increased speed and

increased accuracy. The modifications made to increase accuracy have been kept simple in

keeping with the idea that the motion estimator should be as efficient as possible.

A.1 Decreasing Computational Complexity

The first and most straightforward modification made to the motion estimator was to make

it hierarchical. This modification decreases the computational complexity of motion esti-

mation considerably. A pyramid decomposition was performed on both the current image

and the predictor where each level was scaled by a factor of two, both horizontally and

vertically, from those above and below it. Motion estimation was then performed in a top

down fashion with successive refinements being made to the motion estimates at each

level until the bottoms of both pyramids were reached.

Level Scale
2 1/16
1 1/4

0 1

-1 4

Figure A.1. Pyramid Decomposition



The refinement process between two levels consisted of two steps;

. The motion vectors from the level above were doubled to reflect the

change in scale.

. Next a localized search was performed centered on the doubled motion

vectors from step 1.

The computational savings over a standard non-hierarchical algorithm arise out of the fact

that large motions in lower levels become much smaller in higher levels. Having com-

puted an estimate at a highest level negates the need to perform anything but a +/- 1 pel

search at lower levels as the small motion estimates computed at the highest level will

eventually be scaled to their true value. The search has basically become a two dimen-

sional bilinear one.

Having reduced the computational complexity considerably, it became necessary to exam-

ine methods to improve the motion estimator's accuracy.

A.2 Increasing Accuracy

Block matching algorithms based upon the SAD criterion are known to give unreliable

estimates when the block being predicted consists of highly uniform samples. In these

cases a small perturbation makes little difference to the error, so any vector is just as good

as any other. Therefore, the SAD criterion will attempt to correlate, not the block data but

the small amounts of noise present in both the block and the predictor, thereby generating

an inaccurate prediction of the true motion.

One solution to this problem is to use the normalized correlation coefficient [5] as the error

measure shown in Eqn (A. 1) instead of the SAD criterion.



E (qlq ) + E (qj) E (q2 )
N(8x, ) = c (q 1) Y (q )

q1 = orignal block

q2 = predictor block offset by (Ox, 8) (A.1)

However, the Normalized Correlation requires the computation of the variance of each

possible matching block q2 for each original block q,, a requirement that increases the

amount of computation required considerably. Consequently, the normalized correlation

coefficient was not used.

Three methods were chosen to improve the accuracy of the motion estimates:

First, motion estimation was performed between original to original images not original to

reconstructed as is common with MPEG coders. Using the reconstructed image instead of

the original image makes sense for MPEG coders as accumulated errors in the recon-

structed image may result in the true motion giving a larger residual than that for the true

motion vector. However, as the aim of the motion estimator in the enhanced resolution

codec is to find the true motion for the block, and not to minimize the error residual, origi-

nal to original motion estimation was used.

Secondly, instead of searching the candidate vector space using the usual raster scan

method, a spiral search method was used which tended to favor smaller motion vectors

rather than those oriented to the top left as with the raster search. In an effort to reduce the

number of outliers in the motion field, this bias towards smaller motion vectors is further

increased for highly uniform blocks by multiplying the final SAD coefficient by a factor

dependent on the blocks variance. The spiral search order is shown in Figure A.2,



2 1 -- 14--4-2
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Figure A.2 Spiral Search Method

The third and final method employed to increase the accuracy of the motion estimates was

to perform median filtering of the individual components of each vector using a 3 by 3

separable median filter after each refinement stage in the hierarchy. This had the effect of

eliminating outliers that were missed by the spiral search modifications. Unfortunately,

median filtering also removed the smallest valid regions. However, as the overhead associ-

ated with transmitting the regions could be quite expensive this was deemed to be only a

minor flaw.
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Appendix B: Affine Model Estimation

The process of affine model estimation consists of fitting a model to a set of data points.

Not all data points will fit the model therefore, the process of estimating the model

involves several iterations of model estimation and subsequent pruning of the data points

that do not fit the model. The model being used here is the standard 6 parameter model

below

v, = ax+ bx + c~y
(B.1)

v, = a + b x + c~y

The parameters ax, bx, cx, ay, by and c, are computed from the set of motion vector esti-

mates (vXvy) generated by the motion estimator. As the motion vectors consist of two

components this process actually becomes one of fitting two models to two sets of data

points with the only dependency between the two being that the data points used to con-

struct each model be the same. The least squares method for fitting a single plane to either

vX or v, is given below

v = a+bx+cy

LSE = X(v - (a+bx+cy) )2
R

= v2 -2v(a+bx+cy)+ (a+bx+cy)2
R (B.2)

Differentiating the error term by a, b & c and then setting them to zero yields three linear

equations in terms of the three unknown parameters,

d LSE *al1I+bjx+cyy - v(x,y) = 0
da R R R R

d LSE - aix + b x 2 + cIxy - xv(x'y) = 0
db R R R R

-dLSE ay +cy2 - yV(xy) = 0
dC R R R R (B.3)



These Equations can be written in matrix form,

11 Yx ly __ Yv(x,y)
R R R a R

I X x2 Jxy b = Xxv(x,y) (B.4)
R R R R

Xy jxy Xy 2 -- Iyv(x,y)
R R R - _R

Solving for a, b & c is then simply achieved via diagonalization and back substitution.

It should be noted that the choice of which data points to include in the region R is critical

in the determination of the affine parameters. If outliers are included in the solution then

they will tend to skew the parameters away from their correct values. In order to prevent

this happening, the region R is recursively computed by estimating the parameters for the

current set of data points and then redefining the region R to include only those points

which are "close" to the model. The amount of deviation allowed is reduced with each

step until the affine model closely reflects the data points in the region R which contains

few, if any, outliers. The block diagram for the algorithm used in this thesis is presented

below in Figure B.1.
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Finish

Block Diagram of 6 Parameter Affine Estimation AlgorithmFigure B.1.



Appendix C: Enhanced Resolution Codec

Bit Stream Definition

The presentation style of the enhanced resolution codec bit stream syntax has been delib-

erately modeled on the style used by the MPEG2 Committee Draft. The reason for this lies

in the fact that the MPEG2 syntax was used as a starting point for the Enhanced Resolu-

tion syntax. As many syntactical elements are identical between the two encoders those

elements which are unique to the Enhanced Resolution Encoder are printed in italics, all

syntactical elements printed in normal script should be considered to have identical mean-

ing to their equivalents in the MPEG2 standard.

C.1 Video Bitstream Syntax

C.1.1 Video Sequence

videosequence() { No. of bits Mnemonic
nextstart_code()
sequence-header()
do {

do
if (nextbitsO == groupstart code) {

group-ofpictures-header()
}
picture headerO
picture dataO

} while ((next-bits() == picture_startcode) 11
(next-bits() == group-start code))

if (nex-tbits() != sequence end code) {
sequence.header()

}
I while (nextbits() != sequenceendcode)

sequence end code 32



C.1.2 Sequence Header

sequence_headerO { No of bits Mnemonic
sequenceheadercode 32 bslbf
horizontalsizevalue 12 uimsbf
verticalsizevalue 12 uimsbf
aspect-ratio information 4 uimsbf
frameratecode 4 uimsbf
bitratevalue 18 uimsbf
marker-bit 1 bslbf
vbv_buffer_size 10 uimsbf
load intra-quantizer matrix 1
if (load-intra-quantizer matrix)

intra-quantizer-matrix[64] 64*8 uimsbf
loadnonintra-quantizermatrix 1
if (load non intra-quantizer-matrix)

non-intra-quantizer matrix[64] 64*8 uimsbf

C.1.3 Group of Pictures Header

group-oLpictures headerO { No of bits Mnemonic
group-startcode 32 bslbf
time-code 25

}

C.1.4 Picture Header

picture headerO { No of bits Mnemonic
picture-start-code 32 bslbf
temporal-reference 10 uimsbf
picturecoding-type 3 uimsbf
vbv delay 16 uimsbf
if ((picture coding-type == BGMODEL)II

(picture codingjtype == MODELDELTA)) {
bg-jock 1
if (bg_lock)

bg lock model num 4 uimsbf

}_____________ _____________



C.1.5 Picture Data

picture data() { No of bits Mnemonic
if (picture-coding-jype == MODELDELTA) {

background motion()
numJoreground-objectsA 7 uimsbf

fgseg block size 5
while (fg object tobe-transmitted) [

foregroundobject()
}

errorresidual-data()

}TF

C.1.6 Background Affine Model

background-motion() { No of bits Mnemonic

bg-motionstartcode 32 bslbf

a-scale 4 uimsbf
a-size 4 uimsbf
if (a-size != 0) {

ax-sign
ax 1-16 vlclbf

aysign 1

ay 1 - 16 vlclbf

bcscale 5 uimsbf
bx_cy_size 5 uimsbf
if (b-size != 0) {

bx-sign 1

bx 1 - 32 vlclbf

cy-sign 1

cy 1 - 32 vlclbf

by-cx-size 5 uimsbf
if (by-cx-size != 0 {

bySign 1

by 1 - 32 vlclbf

cx-sign
cx 1 - 32 vlclbf

}T



The 6 parameters; ax, bx, cx, ay, by, and cy, represent real numbers that have been

encoded as integers. To reconstruct the true floating point value of a parameter the follow-

ing scaling must be performed.

truevalue = sign (signbit)
value& ( (1 << size) - 1)

1 << scale

where value is the decoded integer of length size in bits.

. The scales for the a, and b & c parameters are encoded separately.

- If size is 0 then the parameters to which the size value refers shall be set

to 0.

. The signbit for each parameter is set to "1" to indicate a negative param-

eter, conversely "0" indicates that the parameter is positive.

C.1.7 Foreground Object

foreground-object [ No of bits Mnemonic
foreground-objectstartcode 32 bslbf
object-num 7 uimsbf
horizontal_ f code 4 uimsbf
vertical f code 4 uimsbf
first blockpx 7 uimsbf
first block-py 7 uimsbf
do {

if (not_first block)

relative block-position()

if (picture coding-type == MODELDELTA) {

mv-ref 1
motionvector()

I while (next_bits != startcode)

(B.5)



The mvref parameter indicates the reference for the following motion vector as follows;

. "1" means that the motion vector is referenced to the previous valid

motion vector EXCEPT in the case where pos-deltatype == OxO1 in

which case the motion vector corresponding to the 1st block transmitted

in the previous row shall be used as the reference vector.

. "0" means that the motion vector is referenced to the motion vector of

the block immediately above in the previous row.

C.1.8 Relative Block Position

relativeblock-position() I No of bits Mnemonic
posdeltatype 1 - 3 vlclbf
if ((pos-deltatype = fg-delta) 1|

(posdelta == bg-delta)) {
while (nextbitsO == macroblockescape)

macroblock-escape 11 vlclbf
macroblock addres increment 1 - 11 vlclbf

} else {
while (nextbitsO == negativedelta escape)

negativedelta-escape 9 vlclbf
while (nextbitsO == positive-deltaescape)

positive delta-escape 9 vlclbf
pos.deltacode 1-11 vlclbf

}____________



C.1.9 Motion Vector

motion vectorO { No of bits Mnemonic

motion horizontal code 1 - 11 vlcbf

if ((horizontal f != 1) &&

(motionhorizontalcode != 0))

motion horizontal r 1 - 8 uimsbf

motion vertical code 1 - 11 vlclbf

if ((vertical-f != 1) &&

motionvertical code != 0))

motion vertical r 1 - 8 uimsbf

} __

C.1.10 Error Residual Data

errorresidual data() [ No of bits Mnemonic

errorresidual start code 32 bslbf

do {
errorslice()

} while (nextbits() == error-slice start code)

C.1.11 Error Slice

error slice() [ No of bits Mnemonic

error slice start code 32 bslbf

quantizer-sclae code 5 uimsbf

do {
residualmacroblock()

} while (nextbits != startcode)

nextstart_code()

IT I

100



C.1.12 Residual Macroblock

residual macroblockO { No of bits Mnemonic

while (next bits() == macroblock_escape)

macroblock escape 11 vlclbf

macroblockaddress increment 1 - 11 vlclbf

residual macroblocktype 1 -3 vlclbf

if (macroblock-quant)

quantizer scale code 5 uimsbf
if (macroblock-pattern)

coded-block.pattern_420 3-9 vlclbf

for (i=0; i<blockcount; i++) {
block(i)

}

C.1.13 Block

block(i) { No of bits Mnemonic

if (pattern-code[i]) {
if (macroblock intra) {

if (i<4) {
dct dc size luminance 2 -9 vlclbf

if (dct-dcsizeluminance != 0)

dct dcdifferential 1 - 11 uimsbf

} else {
dct dc size chrominance 2 - 10 vlclbf

if (dct-dcsize chrominance != 0)

dct dc size differential 1 - 11 uimsbf

}
} else {

first dct coefficient -..

while (nextbitsO != End of block)
Subsequent DCT coefficients -..

End of block -..

}_____________ _____________
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C.2 Variable Length Code Tables

The variable length codes described here have been derived by either reducing or making

additions to similar tables present in the MPEG standard.

. Table 1, posjdeltajtype, is the exception to this rule and was derived by

inspection.

. Table 2, residualmacroblocktype for MODEL frames was derived

from macroblock-type table for I frames by extracting the applicable

modes and truncating unnecessarily long VLC codes through the

removal of leading zeros.

. Table 3, residualmacroblockjtype for MODELDELTA frames was

derived from the macroblockjtype table for P frames by extracting the

applicable modes and truncating unnecessarily long VLC codes through

the removal of leading zeroes.

- Table 4, posdelta code, was derived from the motioncode vlc table by

adding two escape codes to allow deltas in excess of +/- 16. The use of

the escape codes is identical to that used in MPEG2 for case where the

macroblockincrement is greater than 33.
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TABLE C.1. Variable length codes for pos-deltajtype

pos-delta type VLC code Description
1 fgblock skip
01 bgblock-skip, relative to start of previous row

001 bgjlock-skip

TABLE C.2. Variable length codes for residualmacroblocktype in model frames

residualmacroblocktype
VLC Code Description
1 Intra
01 Intra, Quant

TABLE C.3. Variable length codes for residualmacroblocktype in model delta frames

residualmacroblockjtype
VLC Code Description
1 Inter
011 Intra
001 Inter, Quant
0001 Intra, Quant
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TABLE C.4. Variable length codes for posdeltacode

VLC Code posdeltacode

0000 0001 1 negativejdelta-escape

0000 0011001 -16

0000 0011 011 -15

0000 0011 101 -14

0000 0011 111 -13

00000100001 -12

0000 0100 011 -11
0000010011 -10

0000010101 -9
0000010111 -8
00000111 -7

0000 1001 -6

00001011 -5

0000111 -4

0001 1 -3

0011 -2

011 -1

1 0
010 1

0010 2

00010 3

0000110 4

00001010 5

0000 1000 6

00000110 7
0000 0101 10 8

0000010100 9
0000010010 10

00000100010 11
0000 0100 000 12

0000 0011 110 13

0000 0011 100 14

0000 0011 010 15

0000 0011000 16

0000 0001 0 positive delta escape
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