
Parallel Processing Interfaces

to Television

by

Frank Kao

M.S. Systems Engineering
Boston University, Boston, MA

December 1991

B.S. Computer Science
Michigan Technological University, Houghton, MI

June 1984

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1995
© Massachusetts Institute of Technology, 1995.

All Rights Reserved

Author.........
Program in Media Arts and Sciences

May 12, 1995

C ertified by ... /
Associate Director, MIT Media Laboratory

Andrew B. Lippman

A ccepted by ,.....
Stephen A. Benton

Chairperson
Departmental Committee on Graduate Students

Program in Media Arts and Sciences
MASSACHUSETTS INSTITUTE

JUL 06 1995
LIBRARIES e

Parallel Processing Interfaces

to Television
by

Frank Kao

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning,

on May 12, 1995 in partial fulfillment of the
requirements for the degree of

Master of Science

Abstract

This thesis deals with the problem of presenting and managing multiple live audiovisual data
streams for television viewing. Prior work has dealt with content presentation and navigation in a
large information space and typically has not concerned itself with the time critical aspect of the
data. This thesis extends and modifies these concepts and applies them to entertainment.

A general purpose super computer is programmed to be the digital television prototype. The
massive computing capability and the connectivity of the prototype provides the backbone for
testing new user interface designs. We took advantage of the computer's internal connectivity to
provide multiple perspectives for the most complete and up to date pictorial presentation.

User interface experiments are conducted to explore screen layouts for television viewing.
We eliminated image motion and used peripheral vision to watch multiple television channels.
An array of one full motion main and three relatively static side channels is a reasonable configu-
ration for watching television. Command input using an externally attached proximity sensor
has shown promise as means of controlling the television.

Thesis Supervisor: Andrew B. Lippman
Associate Director, MIT Media Laboratory

The work reported herein is supported by the Television of Tomorrow consortium

Parallel Processing Interfaces

to Television

by

Frank Kao

Reader:
Edward H. Adelson

Professor of Vision Science
MIT Media Laboratory

Reader:
David Epstein

Manager of Entertainment Applications
T. J. Watson Research Center

International Business Machines Corporation

Associate

Table of Contents

Chapter 1
Introduction

1.1 M otivation ..-. -- 9
1.1.1 Problem ..-...- 11
1.1.2 Approach .. . -......... 12

Chapter 2
Presentation Techniques

2.1 Translucency ... 15
2.2 Fish-eye Views ... 16
2.3 Video Streaming ... 18
2.4 Radar-Sweeping ..--20

Chapter 3
User Interface Experiments

3.1 Display Spaces .. 22
3.2 Experiments-.---- - 24

3.2.1 Motion Elimination 24
3.2.1.1 Cross Fade 25
3.2.1.2 Image Line Scanning ... 27
3.2.1.3 Video Streaming ... 28

3.2.2 Content grouping 29
3.2.3 Inputs .. .- - - - - -......... 30

Chapter 4
Prototype Design

4.1 System Design Issues .. 33
4.1.1 Multi-Processor Software Design ... 33
4.1.2 Interface Control Device ... 34
4.1.3 Multimedia data types synchronization ... 34

4.2 System Architecture .. .---- -......... 35
4.2.1 Schematic ----- 35

4.3 Data Paths & Types ...---...... 37
4.3.1 Live Television ..-..- -...... 37
4.3.2 Movie Channel .. 37
4.3.3 Network .. 38

4.4 User Interface Input - FISH 38
4.5 Software Architecture ... 40

4.5.1 Distributed Processing 42
4.5.2 Process Shared Memory43

4.5.3 Process Comm unications ... 44
4.6 User Com m ands ... 45
4.7 System Data Structures .. 45

4.7.1 M ailboxes .. 45
4.7.2 Real-tim e Queues .. 46

4.8 Software Processes ... 48
4.8.1 PV S ... 49
4.8.2 RS6000 ... 49
4.8.3 Remote UNIX processes .. 49

Chapter 5
Results

5.1 User Interface ... 51
5.1.1 M otion Elimination ... 52

5.1.1.1 Cross Fade .. 52
5.1.1.2 Line Scans ... 52

5.1.2 Screen Organization ... 60
5.1.3 Proxim ity Sensor .. 60

5.2 Prototype Design .. 62

Chapter 6
Conclusions

6.1 User Interface ... 65
6.2 Parallel Com puting ... 65

Appendix A User Comm ands ... 66
Appendix B Inter-Process M ail M essages ... 67
Appendix C System Batch Run ... 69

Glossary .. 75

References ... 76

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:

Computerized Television Interface ... 10
Thesis Problem Context .. 12
Translucency Example ... 15
Fish-eye Example .. 16

Video Streamer Example ... 19
Radar Sweeping Example ... 20
User Interface Space sample setup ... 22
Cross Fade W eighting Factor Calculation 25
Cross Fade Example .. 26
Video Streaming Algorithms .. 28
Content Grouping Example ... 29
Keyboard M enu ... 30
FISH sensor organization .. 31
Context schematic diagram ... 35
NTSC signal path .. 36
Fish Communication Setup ... 38
System Software Architecture .. 40
PVS Process Example .. 42
PVS Process Execution Sequence .. 43
M ailboxes for process communication 44
M ailbox Data Structure .. 45
Real time queue access strategy .. 46
Image Line Scanning ... 54
16:9 Screen Setup .. 56
Pyramid Setup ... 57
Video Streamer ... 58
Content Grouping .. 59

List of Tables

Table 1: System Display Space Summary ... 23
Table 2: Image Scanning Algorithm ... 27
Table 3: Real Time Queues summary .. 47
Table 4: Summary of software processes ... 48
Table 5: Motion Elimination Results Summary 55

Acknowledgments

I would like to thank all the people for whom without them this work would

not be possible.

First, thanks to Andy Lippman, my advisor, for the good ideas and direction,

and an unique perspective in research and life; to the thesis readers, Ted Adelson,

and Dave Epstein, for the patience to read it and the comments they provided. To

the garden crew, Klee, Wad, and Henry for their advise and technical support for

setting up the system and troubleshooting problems with the PVS and RS6000s.

Special thanks to the engineers of the Power Visualization System. Dave

Epstein, the fearless leader for making the system and technical support avail-

able. Curt McDowell, from whom I learned so much about color conversion and

parallel programming. Jeff Hamilton, and Nick Dono for their patience and

many long hours of phone consultations.

Special thanks to my fiancee Grace Hu, for her support over this last 2 years.

Your support and patience have made the transitions to student life much more

bearable and is the main reason that have made this work possible. Grace, I love

you.

Chapter 1

Introduction

1.1 Motivation

The inevitable replacement of televisions with powerful computers con-

nected to high speed networks has made watching television more interesting

and a lot more confusing. (see Figure 1) The viewer is suddenly faced with an

unlimited choice of contents available from all over the network. The simple

one-way television to viewer interface is replaced by the highly interactive and

sometimes tedious Q&A session of a computer interface. Channel surfing over

hundreds of channels is simply too confusing and time consuming. The goal is to

use the computer to assist in searching the contents of all the channels and

present the results in a simple and pleasing manner suitable for television view-

ing.

Netwadt Chnnel

Televk$on or Tomrow

gA-.2

Ka owl cld ar news-aamdhace "I ts the

Mi Media Latoratory

ig T s e

Figure I- Conqip W Telvso Interr. -

Traditional user interface research has experimented with many strategies

[Ref 1,2,3,4,5,6,7,8,9,10] for navigating and searching in a large information

space. These strategies are usually performed on one large still image, however

they can be converted for television viewing applications which have many

smaller and fast moving images.

This thesis extends and modifies these strategies in adapting them for the dig-

ital television interface. The objective is to find the best television interface that

provides the latest and most complete story with minimum effort and viewing

distraction.

1.1.1 Problem

There are two challenges: a) to design a digital television prototype to be

used as a test bed, and b) to build the best content browser for watching televi-

sion.

Existing systems and networks have barely sufficient bandwidth to handle

live video. The engineering challenge is to build the digital television from exist-

ing equipment to process multiple live audiovisual data streams. The prototype

must have sufficient bandwidth left over from image processing so that different

interface designs can be experimented with.

Some prior works on content navigation and browsing tools have relied

heavily on using exotic 3-D computer graphics. In contrast to television, these

applications are typically not concerned with processing live audiovisual data.

The computing cost of using these techniques for just watching television are

enormous and simply cannot be justified. The discontinuity of contents between

channels and the availability of hundreds of channels further complicates the

problem. The traditional "window" computer interface is too complicated,

requires too much interaction and does not work across the room for television

applications. The challenge is to find an intuitive interface that is easy to use, and

to provide a concise and complete description of its contents on the screen.

1.1.2 Approach

Storage

Monitor

Mini Super
Computer broadcast

keyboard

Control nternet

Pointing FS
CoxmandgF

Television Interface Prototype Engine

Figure 2: Thesis Problem Context

The digital television prototype is realized by programming a general pur-

pose super computer (See Figure 2). The tremendous processing capabilities of

the computer are harnessed to process the live audiovisual data streams. The pro-

totype design strategy uses distributed processing with shared memory tech-

niques within the system, and message passing techniques across different

system platforms. The design decision balances acceptable viewing resolution

and the technique's computing requirements.

The goals of the user interface are: 1) to allow viewer to watch as many chan-

nels as possible without stress and distraction, 2) simple, and "non-window" type

interface, 3) easy channel switching and navigating, 4) preservation of content

time line, and smooth transition between frames, 5) to provide multiple story

perspectives to enhance content understanding and 6) a simple television control.

Peripheral vision is used to increase the number of channels watched simul-

taneously. Peripheral vision is attracted to motion, and many moving images

prove to be very distracting. Slow image line scanning technique analogous to

the "radar-sweeping metaphor" [Ref 5] is developed and used to reduce the

motion of the images between frame updates. Intermediate image frames are

discarded to preserve the content's time line. Screen experiments include varying

channel sizes, border coloring, and spatial and content organization to explore

viewer criteria for watching television.

The results of this thesis present: 1) a simple and usable digital television

interface and 2) an experimental prototype design.

The rest of the thesis is organized as follows:

Chapter 2 - survey of research done on multimedia user interface designs.

Chapter 3 - experiments conducted for the television interface.

Chapter 4 - digital television prototype design.

Chapter 5 - experiments conducted.and prototype design.

Chapter 6 - conclusions and future works.

A glossary of the technical terms used is appended at the end of this thesis.

Chapter 2

Presentation Techniques

This chapter contains a survey of the major trends and techniques used in

current user interface research. The main objective of these techniques is to

search for an effective presentation style to aid content understanding and to nav-

igate in the vast information landscape. A brief description and overview of

each technique is included. Interested readers are encouraged to go to the refer-

ences for details on each technique. Familiar and well known techniques such as

zooming, and tree structure knowledge presentation are readily available [ref 10]

and are not discussed.

2.1 Translucency

Translucent techniques and see-through tools preserve the overall context of

the image space while providing a more detailed sub-space for viewing. [ref 1,2,

3,4,6] Translucency is achieved by applying varying weights to selected areas

of the display. The shape, structure, color and the weight of the translucent

patches can be used to represent additional information.

Analogous to the white boards, translucent techniques allow multiple bodies

of information to be displayed without interference. The preservation of the

overall image space makes these techniques favorable for landscape navigation.

Translucent techniques also provide smooth transitions from zooming in and out

of selected areas. Figure 3 presents an example of translucency.

Figure 3: Translucency Example

2.2 Fish-eye Views

area of focus A ± h As

(a) Normal View
(b) Fisheye View - Cartesian Coordine

G(x)

Each grid is magnified or
demagified based on its
relative distance to the
view point.

0 x 1

(c) Magnification Factor
calculation

[Sarkar, Brown]

Figure 4: Fish-eye Example

The fish-eye lens is a very wide angle lens that shows objects nearby in detail

while showing remote regions in successively less detail (see Figure 4) [Ref 8]

0
1wr -W'WAL*+++qw+++

4
AL AL4*++"W"*W +

4+-++++ +
4+++44 +
4+++++t

+4++++++t &

The fish-eye approach to content browsing has the advantage of preserving the

context while showing large details for areas of interest.

A 2-step process is used to generate the fish-eye views. First, a geometric

transformation to the normal view is applied to reposition vertices and magnify

and de-magnify areas close to and far away from the focus, respectively. Each

vertex has a position specified by its normal coordinates, and a size which is the

length of a side of the bounding box of the vertex. Each vertex is assigned a

number to represent its relative importance in the global structure. This number

is the a prior importance or the API of the index.

A position of a vertex depends on its position in the normal view and its dis-

tance from the focus. The size of the vertex depends on its distance from the

focus, its size in the normal view and its APU. The amount of detail displayed in

the vertex depends on its size in the fish-eye view.

Pfeye(v,f) =Ft(Pnorm(v),Pnorm(f))

The position vertex v is a function of its position in the normal coordinates

and the position of the focus. F1 is the geometric transformation function.

Secondly, the API of the vertices is used to obtain their final size detail and

visual work.

Sfeye(v,f) = F2(Snorma(v), Pnorma(v), Pnormal(f), API(v))

The size of vertex v is a function of its size and position in the normal coordi-

nates, the position of the focus and its API.

DTLfeye(v,f) -F3(Sfeye(v),,DTLmax(v))

The amount of detail depends on the size of v and the maximum detail that

can be displayed.

VW(v,f) = F4(Dnormal(vf), API(v))

The visual worth of vertex v, depends on the distance between v and the

focus in the normal coordinates and the vertex v's API.

The geometric transformation functions F1, F2, F3 and F4 are application

dependent and are not fixed. A sample set of formulas is shown in Reference 8.

2.3 Video Streaming

In a "video streamer", each new video frame is displayed slightly offset from

the previous frame creating the visual effect of a three dimensional video cube.

The top and left edges of each frame are preserved as the subsequent frame is

displayed. (see Figure 5) The edges show events that have occurred in each

frame and serve as a time marker.

In addition to being a timer marker, the video streamer also provides an over-

view of all the events that have occurred during the last several seconds. [Ref 7,

9]

Figure 5: Video Streamer Example

2.4 Radar-Sweeping

This technique has been used for visualizing the dynamics of the program

behavior such as memory allocation. [Ref 5] A series of rays emanates from the

center at successive intervals. Each ray contains the state of the system behavior

at that time interval. Each successive ray is plotted at an angular increment (con-

stant) from the previous one. Additional system information can be incorporated

by applying different color, line width, and ray types.

This technique does not require massive computing bandwidth, and is rela-

tively simple to implement.

Figure 6: Radar Sweeping Example

Figure 6 presents an example of this technique. Each radar sweep reveals the

state of the system at that time interval. A complete sweep reveals the different

states of the system at each time interval.

Chapter 3

User Interface Experiments

This chapter presents the user interface experiments conducted. The goal is

to create a "video cocktail party" so that a viewer can direct his/hers focus of

attention to one of the many choices. Multiple perspectives are provided to

enhance content understanding.

The user interfaces are concerned with three issues: 1) eliminate motion and

content distraction, 2) avoid information overload, and 3) reduce computing

requirements.

This chapter is organized as follows:

Section 3.1 discusses the display spaces for the user interface.

Section 3.2.1 talks about the motion elimination experiments conducted

Section 3.2.2 discusses the screen content grouping experiment

Section 3.2.3 discusses system input experiments.

3.1 Display Spaces

Figure 7: User Interface Space sample setup

The entire television screen is divided into several different and distinct dis-

play spaces. (see Figure 7) Each data stream is allocated a distinct display space

in the system. These spaces can be overlapped, subsampled, or mathematically

transformed. The organization and placement of these spaces depends entirely on

the user selection. A brief description of each of the display spaces is summa-

rized in Table 1.

Table 1: System Display Space Summary

Na Output Input Descriptioname Type Type

TV Space video Live D1 Live television broadcast

Movie Space video D1 Display movie selections

News Space text Test file News brief captured from live wires

Image still pbm raw Still images, and can be displayed at any
Space image image part of the display screen

files

MJPEG comp-
Network video ressed image Channel reserved for display network video
Space file

Text user keyboard User messages, can be displayed anywhere on
Space text entry text the screen

3.2 Experiments
3.2.1 Motion Elimination

The objective of these experiments is to watch multiple television channels

without being distracted by the activities within each channel. The motion of the

side channels are reduced so that the side images are up to date but don't distract

by their motion. In addition, the time line of the channel's content are preserved

for an accurate and up to date story reporting.

This section discusses the motion eliminating algorithms developed for the

system. These algorithms are then compared for their ability to:

1) eliminate motion,

2) provide smooth frame transition, and

3) have low computing requirements.

3.2.1.1 Cross Fade

The two end frames slowly "dissolves" from one into the other. A smooth

transition is done by applying a weighting factor for displaying each frame. This

weighting factor is based on the position on the time line for the displayed frame.

The weighting factor calculation is shown in Figure 8.

frame N frame N+1
1.0 Xe

1.0 2.0 3.0

time

Figure 8: Cross Fade Weighting Factor Calculation

Figure 9 is an example of how the weighting factor is applied to achieve the

cross fade. The display of each image frame can be divided into 3 segments.

During the first and the last third time segment, the previous and the current

frame are dissolved together. The weighting factor for each frame is chosen

based on the cross slope. The image frame is displayed weighted at its entirety

during the second third of the segment.

Image 1' 100%
Image 2* 0%

Image 1' 70%
Image 2 30%

Image 1* 30%
Image 2' 70%

Image 1' 0%
Image 2' 100%

Figure 9: Cross Fade Example

3.2.1.2 Image Line Scanning

Table 2: Image Scanning Algorithm

These techniques are similar to the "radar-sweeping metaphor" [Ref 5] in

that they display only 1 or 2 scan lines of the next image during each display

pass. The next image is "swept" onto the old image. Table 2 presents a sum-

mary of the description for each of the algorithm developed.

Left Scan
Vertical image line is

displayed during each scan
Right Scan .y pass. Each vertical scan

line have width of 1 pixel

Left-Right Scan

Up Scan
An entire image line is

displayed for each pass.
Down Scan

The image line have height

of 1 pixel.

Up - Down Scan

Window Open 2 vertical scan lines

are displayed. The scan

lines are 1 pixel in width

Window
Open & Close

3.2.1.3 Video Streaming

This technique is used to preserve the temporal contents of the displayed

frames. A historic record of the images displayed is kept by saving the edges of

each frame.[Ref 7,9] Figure 10 presents an example of the video streaming

technique.

Two experiments are conducted 1) preserve only the left most and the top-

most pixel for each image frame, and 2) preserve the position of the pixel speci-

fied, and eliminate all other pixels. The objective of these experiments is to find

the areas of each frame that contains the most relevant content information.

frame
N-1 fframe N-1

N+1 N+1

(a) edge streaming (b) position streaming

Figure 10: Video Streaming Algorithms

3.2.2 Content grouping

Similar contents are grouped together for easy search and identification. Fig-

ure 11 presents an example of content grouping. Multiple perspectives of the

same content are provided for additional information support.

Figure 11: Content Grouping Example

Main Television

3.2.3 Inputs

Two style of system inputs are implemented. One is the traditional menu key-

board input, and the second using a proximity sensor.

The traditional keyboard menu interface is shown in Figure 12. User enters

the precise commands by selecting the desired menu choices.

Figure 12: Keyboard Menu

The second interface uses the FISH [Ref 12], a proximity sensor as the tele-

vision controller. The FISH is attached to the RS232 port of the user workstation.

The FISH is a proximity sensor that consists of three transmitters and one

receiver and it is spatially configured as shown in Figure 13 (a). Proximity read-

ings consists of four bytes(Figure 13 b) representing the proximity of the view-

er's finger with respect to each of the transmitters. The system then uses these

readings to determine the exact position of the viewer's finger in order to inter-

pret the viewer's command. Details of the FISH setup is discussed in section 4.4.

The television screen is divided into three different electric field zones.(see

Figure 13(a)) The viewer points to the monitor to control the television. The

current state of the system determines the commands for each of the proximity

zones. For example, when the user points at the slowed version of a movie

channel performing fading between images, the movie then speeds up to its full

rate. Further pointing at the channel switches that channel to become the new

main display channel.

Electric X - transmitter
Field R - receiver

(a) FISH Setup & Proximity Zones

Xmiter 1 xMiter 2 Xmiter 3 1matter 4

(b) FISH Sensor Data

Figure 13: FISH sensor organization

Chapter 4

Prototype Design

This chapter presents the digital television prototype design. The prototype

processes multiple audiovisual data streams and is the test bed for experimenting

with new user interface designs. The digital television prototype is constructed

from IBM's Power Visualization System (PVS). The details of the system archi-

tectures, programming and system internal are discussed in reference 11.

Section 4.1 discusses parallel process designs.

Section 4.2 contains the system's hardware connection setup.

Section 4.3 discusses the system's data paths.

Section 4.4 contains the hardware setup connecting the FISH. [Ref 12]

Section 4.5 is the software architecture of the system.

The rest of the chapter then discusses the software data structures and pro-

cesses designed to build the prototype.

4.1 System Design Issues
4.1.1 Multi-Processor Software Design

The parallel system architecture (PVS) allowed two approaches for software

design: a) fine-grained, where each processor executes an independent compo-

nent from a large single program, and b) coarse-grained, where each processor

executes independent programs and shares the results with the other processors.

In the fine-grained computing scenario, the individual processing elements

are easier to control because they are all executing the same program on different

independent data elements. [Ref 15] The individual outputs are then combined

for the final result. The problem with this scenario is that the entire system

resource is dedicated to a single program task. The system is committed to using

all the system resources assigned to it, even though the extra resources only mar-

ginally improves the system performance. Tailoring of system resources using a

single program is too complex and cannot scale easily. [Ref 11, 15]

The coarse-grained scenario tailors the system resources by assigning "pro-

cess groups" for each program. [Ref 11] Each group is assigned a fixed amount

of system resources for the entire duration of program execution. Fine-grained

program execution then takes place within each of the process groups. The prob-

lems are that the software designed is not robust and scalable, and process syn-

chronization between different programs is hard to achieve. [Ref 15]

The goal is to find the optimum system design by combining the two

approaches in order to satisfy the system performance requirements and to come

up with a software design that is both robust and scalable.

4.1.2 Interface Control Device

FISH [Ref 12], the proximity sensor is explored as an alternative television

control device. The technical problem is how to integrate this device into the sys-

tem so that the exact position of the viewer's hand can be located. The sensor

reading needs to be relayed back into the system for proper command interpreta-

tion. Section 4.4 contains the detail discussion of setting up this device.

The second problem deals with the interpretation of the viewer's intentions.

Currently the proximity sensor acts only as an I/O device relaying the position of

the viewer's finger or pointing direction and does not attempt to interpret the

command. The viewer command depends entirely on the current state of the sys-

tem. The issue is how to setup the television display such that the viewer can

control the television by simply pointing at the screen without being limited by

the interface. The television screen needs to be setup such that most desired con-

trol commands can be done via a simple pointing gesture.

4.1.3 Multimedia data types synchronization

Different data types have different display constraints. For example, live

video needs to be displayed at 30 frames per second, while text needs to be dis-

play for at least several seconds in order to read. Audio plays back at 44.1 KHz,

when the video frames needs to be display at 13.5 MBytes/sec. [Ref 16] The sys-

tem needs to be able to handle data types from many different sources and syn-

chronize and display them on a common screen. The data types also includes the

MJPEG objects from the Media Bank. [Ref 13, 14]

4.2 System Architecture
4.2.1 Schematic

PVB-7245

TVOT Engine

DAB

Movie Storage

speakers

Internet

Media Bank Objects

MJPEG

Alpha Workstation

Live NTSC

Figure 14:Context schematic diagram

Figure 14 presents the hardware schematic of the digital television prototype.

The core system included two RISC workstations, the video controller and the

PVS. The two RISC workstations are named MILES and MONK (see Figure

14). MONK is the front end for the PVS, and MILES controls the Video Control-

ler. MILES also serves as the user workstation. [Ref 11] The Video Controller

controls the monitor display of the frame buffer. Programs are developed on

MILES, and then loaded onto MONK which setups the PVS. Video is processed

by the PVS and send to the Video Controller for display to the monitor. Audio

data is parsed from the ancillary portion of the D1 [Ref 16] stream and then send

to MONK for playback.

NTSC

4I

TV Monitor

Figure 15:NTSC signal path

4.3 Data Paths & Types
4.3.1 Live Television

Live NTSC signal is transformed into its D1 (digitized and serial data

stream) [Ref 16] equivalent in the system setup. (See Figure 15) The live Dl

then enters the system via the serial input port of the video controller and

traverse the 100 MBytes/sec HiPPI link into the PVS.

Dl video is then color space converted to ARGB format,, subsampled and

cropped. The resulting image is then sent to the video controller for display at the

television monitor.

Live audio is parsed from the D1 stream's ancillary data [Ref 16] at 48 kHz

and placed in the shared memory with MONK. A software process executing on

MONK then retrieves the audio data and play it back at the workstation's audio

device (ACPA). [Ref 11, 17]

4.3.2 Movie Channel

Movie files are stored on the PVS's high speed disk array (DASD) in D1 for-

mat, and are streamed into the system via the 50 MBytes/sec SCSI link. The

same process of transforming the audio and video then takes place as in the case

for the live D1 signal.

Movie frames can be streamed into the system via 2 modes: 1) consecutive

frames, and 2) skipped frame, only every other X movie frame is read and dis-

played. The skip frame count is setup the user.

4.3.3 Network

Network data bit-stream enters the system via the internet connections to

MONK or MILES. Network data can be text, mjpeg and raw (rgb) video or com-

bination of these formats.

4.4 User Interface Input - FISH

FISH[
[cmds

RS232

Video
Controller
Processor
(MILES)

PVS

cmds sharedmemnory

Support
Processor
(MONK)

[cmds]

Network Sockets

Figure 16:Fish Communication Setup

The FISH is connected to the RS232 port of the user workstation (see Figure

16). The FISH sensor readings consists of a four-byte packet. Each byte value

represents the electric field reading between its transmitter and the receiver. The

electric field readings are altered as the user's hand interrupts the field. These

field values are then used to determine the viewer's hand position. The readings

are then sent across the internet using network socket commands to MONK. A

software processing running on MILES is responsible for reading the sensor val-

ues and then sending them to MONK.

The FISH is tweaked for maximum sensitivity to sense the direction of the

user's pointing direction. [Ref 12]

4.5 Software Architecture

TV.. e

Remote Process PVS Process

Figure 17:System Software Architecture

The software architecture of the digital television prototype is presented in

Figure 17. The processes are divided into two categories: 1) PVS processes and

2) Remote processes. The remote processes execute on the workstations con-

Movie Queue

ram:Nbuffer

D I
Data Queue

nected via the internet. The functional description of each of processes are dis-

cussed in the section "Software Processes", and the data queues in "Data

Structures".

The PVS software processes are:

UIMgr: sets up user interface to process user commands

TVMGR: sets up and process live television

MovChan: sets up and process the movie channels

DisMgr: synchronize and display all data streams

NetMgr: sets and process network data streams

The remote processes are:

FISH: reads the FISH and sends the sensor values to UIMgr

AudMgr: playback the audio at the workstation's audio device

MJPEG_Video: send the compress video stream across network into system

The following sections discusses the design and the technical details of set-

ting up the overall architecture, software processes and asynchronous data

queues.

4.5.1 Distributed Processing

Figure 18: PVS Process Example

The Master Process, CPU #0 is defined at the OS level, sets up the
data structures for the rest of the processors for fine grain execution

PVS processes are coarsely defined at the OS level, each with a group of pro-

cessors allocated to it. The functionality of these processes are mutually exclu-

sive. One processor in each process group is designated as the master and the

rest slave processors. (See Figure 18) The master processor is responsible for

performing communications and the initialization of each task prior to execution.

Fine grained parallel execution of the task then takes place by all the processors

in the group to achieve maximum throughput.

Figure 19 shows an example of how a PVS task is executed. Remote pro-

cesses executes on their host workstations, and communicates with the PVS pro-

cesses either through

1) network sockets,

2) network files, or

3) the 0.5 MBytes of direct access RAM on MONK.

Figure 19: PVS Process Execution Sequence

4.5.2 Process Shared Memory

These memory segments are setup by the DispMgr, and all the other pro-

cesses attaches to it during their initialization sequence. Process shared memory

is the method used for communicating between all the PVS processes.

4.5.3 Process Communications

Process communications are categorized into 2 groups: 1) PVS - PVS pro-

cesses, 2) PVS - network processes.

The PVS processors communicates using mailboxes. The mailboxes are

setup in process shared memory. The post office containing all the of the mail-

boxes is in Figure 20.

/ task cmd

par 1

par N

Post Office

Figure 20:Mailboxes for process communication

Each process checks its own mailbox, and places the contents on its process

task queue for execution. Sending mail consists of setting up the destination

address and the task command for the destination process to execute.

4.6 User Commands

User commands enters the system in 2 ways: 1) keyboard input or 2) FISH

sensing. The process UIMgr retrieves the keyboard inputs from the user and

sends the task commands to the appropriate process for execution. FISH thresh-

old values are read by the Video Support Controller Processor, and sent over to

the UIMgr via network sockets. The UIMgr then sends the task commands to the

appropriate process for execution. Appendix A contains the list of user com-

mands implemented.

4.7 System Data Structures
4.7.1 Mailboxes

All the mailboxes are grouped together in the shared memory attached during

initialization of each process (see Figure 20). Process can request another pro-

cess to perform specified tasks by sending mail to the destination processes.

Each process check its own mailbox once for each complete background pass.

The format of the mail messages is shown in Figure 21.

Figure 21:Mailbox Data Structure

4.7.2 Real-time Queues

not locked not locked

Producer tying trying Consumer
o lock l to

lock

locklock,lock, modify,
modify, unlock
unlock data

Figure 22:Real time queue access strategy

The real-time queues contains time critical data elements. The size of the

data queues are kept small (four) for a) rapid system crash recovery due to over-

flow or underflow and b) memory conservation. These queues are accessed in a

"producer and consumer" manner shown in Figure 22.

Each queue contains: 1) Number of elements currently in the queue, 2) lock

structure, locking out concurrent processes 3) the get and put pointers which are

used to insert or remove elements from the queue.

The process first tries to "lock" the queue to prevent other process from mod-

ifying queue contents. After the lockup, the process modifies the Number of Ele-

ments in the queue to reflect the status of the queue. The process then unlocks the

queue releasing queue for other processes to access. If the process failed to lock

onto the queue, the process waits until it can lock the queue before proceeding.

The system's real-time queues are summarized in Table 3.

Table 3: Real Tune Queues summary

Name Memory Process Data Description
Type Type

Video Queue PVS Shared DispMgr video Screen display memory
PIVS) ARGB

TVMgr video Live NTSC, color space converted to D1
TV Queue PVS Shared (PVS) ARGB then to ARGB for display

.4ovie Queue MovChan video Movies stored in Dl format, converted to
PVS Shared (p) ARGB ARGB for display

NetMgr M MJPEG movie file converted to ARGB
etwork Queue PVS Shared for display

Text Space UIMgr text are rendered then displayed anywhere
Queue PVS Shared (PVS) text on the display screen

:mage Space UIMgr image file are converted to pbm format,
Queue PVS Shared (PVS) raw RGB and then displayed

News Space UIMgr News text are rendered, and then displayed
Queue PVS Shared (pyS) text inside the news space box

S6000 Audio RS6000 Audtgr audio RS6000 process feteches the audio data

Queue Shared (RS6000) PCM and sends it to ACPA card for audio playback

4.8 Software Processes

There are 3 types of software processes: 1) PVS, 2) RS6000 and 3) remote

UNIX process. Table 4 contains a summary of all the software processes for the

prototype.

Table 4: Summary of software processes

System Description
Name P* Resources

shared memory: Read video and audio data from all the realtime
DispMgr PVS 64M (32-bit) queues, and update the monitor display

12 processors

shared memory Take the live D1, perfrom color space conversion
TVMgr pVS 64M (32-bit) image subsampling if required and write the vudeo

12 processors and audio outputs to perspective data queues

Stream in the D1 streams from each movie,

shared memory color space convert it to ARGB format,
MovChan PVS 64M- (32-bit) subsample image, perform desired fading

5 processors alg and write to the video and audio data
queues

PVS Direct Takes the audio PCM data from the PVS's Direct

AudMgr RS6000 Access Mem: Access Memory, and playback the data at the
0.5M (32-bit) workstation's ACPA audio device

Setup user memu for selection, take user

shared memory commands from the keyboard, and sends cmds
UIMgr PVS 64M (32-bit) to all the other processes to adjust system

1 processor behavior, communicate with FISH processor for
adjusting system behavior

Take a MJPEG compressed file on the network,

NetMgr PV shared memory performs MHPEG decompression, image subsampling
64M (32-bit) if required and write the video out to the video
1 processor queue for display

RS6000 Reads the FISH sensor value from its RS232

FISH or any UNIX port, and then use network socket and transmit

UNIX process the value to UIMgr for appropirate action

4.8.1 PVS

The number of processors, and global memory is allocated before each pro-

cess is executed. CPU #0 is designated the Master processor. The Master proces-

sor handles the inter-process communications, perform semaphore updates, and

initialize global data for the slave processors to execute. Each process is coarsely

defined at the OS level. Fine-grained parallel execution then takes place after the

Master processor have completed the global memory updates. All slave process-

ing are terminated and program control returned to the Master after the fine-

grained processing task is completed.

4.8.2 RS6000

This process (AudMgr) executes on MONK. This process currently only pro-

cess the audio data for playback at the workstation's ACPA audio device.

4.8.3 Remote UNIX processes

This process (FISH) currently executes on the PVS's Video Controller Pro-

cessor, (MILES) however this can be an UNIX process executing on any work-

station connected to the internet. This process reads the threshold reading from

the FISH sensor and sends it across the network using socket commands. The

PVS process (UIMgr) on the other end of the network retrieves the threshold

readings and adjusts the behavior of the system.

Chapter 5

Results

This chapter presents the completed prototype and television interface exper-

iment results. Three types of data sources are used: 1) live television, 2) stored

movies, and 3) network data.

The prototype provided the massive computing resources needed for the user

interface to manage these data streams in real time. The prototype can handle a

maximum of 12 movie streams, one live television channel, one mjpeg formatted

movie file, and one text file. The individual data streams are in their native for-

mats, and are manipulated as they enter the system. All the user interface exper-

iments are conducted with live data streams. The movie files are currently stored

on the high speed disk array connected to the system. Network mjpeg com-

pressed movie files are used as the alternative movie source for the system. The

text files are read and their corresponding fonts are rendered for the television

screen to display.

User interface results are captured via screen dumps. The results are then

compared for user acceptance, motion elimination and computing requirements.

Section 5.1 presents the experimental results.

Section 5.2 discusses parallel process designs.

5.1 User Interface

The following sections present the experimental results.

The different motion elimination techniques, screen layout, and television

control device are evaluated for the television application. The evaluation crite-

ria are:

1) the technique's ability to reduce or eliminate motion.

2) computing requirement.

3) content grasp and navigability of the screen

4) user acceptance to use the interface for watching television.

Appendix A lists the system commands implemented.

Appendix B lists the mail message commands implemented.

Appendix C contains the screen captured during a system batch run.

5.1.1 Motion Elimination

The objective of these experiments is to reduce the motion of the channel

contents in order to minimize distraction it causes. Three types of algorithms are

evaluated: 1) cross fade, 2) line scans, 3) and video streaming.

These techniques are compared against one another for their ability to elimi-

nate motion and the results are summarized in Table 5.

5.1.1.1 Cross Fade

An example of the channel cross fade sequence is shown in Figure 9. The

cross fade technique provides a smooth transition between the frames, and has

proved to be successful in reducing the motion between updates. The main prob-

lem is that this technique is computing intensive. Every single frame display

time needs to have an image to display in order to provide a smooth transition.

Each of these images must be computed by using the weight factor based on the

time position between the two end frames. This technique is an excellent selec-

tion for future systems with a greater and cheaper computing bandwidth.

5.1.1.2 Line Scans

Figure 23 presents the line scanning algorithms evaluated. The surprising

results suggest the area on an image where motion is most likely to occur.

Figure 23 (a) is the sequence captured for the "up-down" scan. This tech-

nique is the most efficient of the three under consideration. This is due to the way

the computer addresses adjacent connected memory locations in an image. The

images are updated so fast that motion between frames causes an abrupt jump.

Although simple and efficient, this technique fails to reduce the motion of the

side channels.

Figure 23 (b) is the sequence captured for the "window open-close" scan.

The results reveal that image motion is usually at the center of the image. This is

supported by the fact that when we take pictures, the center of the image is typi-

cally focused on the object of interest. The double scan is not as efficient as the

"up down scan", however it is efficient enough so that jumps can be detected

between frame updates.

Figure 23 (c) is the sequence captured for the "left-right" scan. This tech-

nique is not as efficient as are the previous two because individual pixels in a

vertical line must be addressed for each update. The inefficiencies cause the rou-

tine to be executed slowly giving the effect of a slow radar sweep between frame

updates. This update is smooth and hides the motions well. The computing

requirement is not unreasonable and is the recommended technique for the tele-

vision application.

(a Up -Dowim HozizAl LnaScan

ab , -n. ---- .-.. sa.

(b) Viindow Open-Cose %ertical Line Scan

(c) Left-RightL rtical Line Scm

Figure 23: Image Line Scan Algorithms

Table 5: Motion Elimination Results Summary

Rating
Alg Name Rating Comments

Left Scan
For currently available system

Right Scan G E E this algorithm is the best

Left-Right Scan compromise

Up Scan Need to be significantly
Down Scan F E F slow down for this to be

effective, too much addtional
Up - Down Scan work needs to be done

Window Open Window Closing hides motion
Window Close G G G better then widow open. Not
Window as smooth as left-right scan.

Open & Close

Recommended for future more
Cross Fade E P E powerful systems.

Steaming F F F Not recommended

Rating: (P)oor, (F)air, (G)ood, (E)xcellent

uoqlzu.rj mnS sM: :Y4 amnsi

JQJ usc a mun eje 1"44a(JNP

fln ng e

uNJa en

AIOOQ jO UOWfAflPX

Television of Tomorrow

Xswere Tvcaannd

A%w W-4 ee

(199'-199 sucwid have desare up this tNfir

MiT Madia Lborattory

Figure 2S: Pyramid Setup

MA&IOUMMU

rekAvm VWd Swtamnr

f -rr aa -eatory

Figure 26: Video Streamer

Televta Of Tomorrow

Live News

Current Shawa
Favorata Showa

Figure 27: Content Grouping

5.1.2 Screen Organization

The screen organization experiments are presented in Figures 24 - 27. Four

experiments have been conducted:

1) one with an almost 16:9 ratio similar to that of HDTV format.

2) array setup with one main channel and 3 smaller side channels.

3) video streamer

4) channel content grouping

The channel size is used to visually separate the main channel from the side

channels. The side channels can display a different story perspective to support

the main story or an entirely different story.

The experiments show that one main channel coupled with 3 smaller side

channel to be an acceptable number of the channels for viewing. With this screen

organization and number of channels, and with proper motion reduction tech-

niques on the side channels, the viewer can watch all the channels simulta-

neously without distraction and confusion.

5.1.3 Proximity Sensor

The FISH sensor has been integrated into the system and explored as an

alternative television control interface. The goal is to allow the user to issue con-

trol commands by simply pointing to the area of interest on the television moni-

tor. The FISH is attached to MILES, the user workstation which accepts the user

pointing commands. The sensor have three transmitter and one receiver. The rel-

ative positioning of the user's hand is measured by the strength of the transmitter

signal to the receiver. Three distinct areas on the television monitor are drawn for

the sphere of influence for each transmitter. The user points to an area on the

monitor, the transmitter threshold readings are read and sent over to the FISH

process executing on the user workstations. The process determines the position

of the finger pointing area from the threshold readings and sends the result over

to UIMgr via network socket commands. UIMgr then determines the appropriate

menu action based on the current state of the system. The actions are typically

either to speedup or slow down one of the side channels, or switch the side chan-

nel to become the main channel.

Experiments with the FISH sensor have failed due to its inconsistencies and

lack of gesture understanding capabilities. The inconsistencies are due to the

lack of additional flow control hardware to ensure proper serial communication

with the user workstation.

The lack of gesture understanding capability proves to be the main issue.

More intelligence must be incorporated into the device in order to decipher the

complex meaning behind a simple user pointing gesture.

5.2 Prototype Design

The key to parallel programming is the task division at the operating system

level. Real time task queues in process shared memory have successfully

relayed the results of one process to another to achieve the overall system objec-

tive. Duplicating each field and each pixel during color space conversion has

greatly improved system performance. The following lists the design decisions

made to achieve desired system performance:

1. Color space conversion. The i860 chip local RAM lookup table,
8-bit Y, 7-bit Cr, 6-bit Cb, sacrificed image resolution and internal
RAM to accomplish fast table lookup. Image resolution is
acceptable due to the already low resolution of NTSC video signal.

2, Image processing. Using only field 1, duplicating field 1 for every
other scan line. Each adjacent pixel is duplicate to reduce number
of table lookup. This created a 2x2 blocking effect of the image,
however to the low resolution of the NTSC signal, and image motion,
the side effect does not create significant problems for application.

3. Image processing. Vertical and horizontal subsampling of the image is
integrated into color space conversion. This saves the unnecessary
processing required of the large original image, and reduces the size of
data at the earliest possible time.

4. Parallel Computing. Distributed processing using process attached
shared memory. The processes use an internal shared memory
mailbox system to communicate and synchronize.

5. Distributed processing. Real time data queues are used to synchronize
and relay data from process to process to achieve system objectives.

6. Distributed processing. Applications are farmed out to the surrounding
workstations for processing, and the results are sent back and applied into
main application.

Audio video synchronization is achieved by keeping the two data streams

together in D1 format and keeping the two playback queues as small as possible.

The small queue sizes prevent the two data streams from getting too far off sync

from each other. Throwing away audio data instead of video data to synchronize

the 2 data streams has proved to be more tolerable.

Chapter 6

Conclusions

The work here has shown that a digital television is realized by harnessing

the massive computing power of a parallel super computer. This work have also

shown that the success of digital television depends heavily on the user accep-

tance of its interface. Future research should proceed in the direction of using the

power of the computer to make the television interface as simple and easy to use

as possible. This can be done by merging the user interface and parallel comput-

ing technologies.

6.1 User Interface

This area should concentrate on using the computer to assist in television

viewing instead of using it as a simple display controller. This can be done by

using intelligent agent software. These agents tracks the viewing habits and

tries to anticipate user behavior. Different story perspectives are automatically

gathered and displayed without user intervention. This avoids the tedious and

time consuming setup procedures making the system simple and easy to use.

6.2 Parallel Computing

This area should focus on making the parallel software more robust so that

modification and maintenance can be done easily. Message passing between pro-

cesses have shown great promise for achieving this goal.

Appendix A User Commands

This section presents the user commands implemented for the system.

%% [string]
AskDrawBox [ltx, lty, rbx, rby, backgrd]
AudOff
AudOn
ChnReset [channel #]
CropTV
DecAud
FishDemo
HighLight [channel #, backgrd]
ImgSpace [file, x size, y size, xloc, yl
IncAud
IntNewsDisplay
Modsize [channel #, x size, y size]
ModCoord [channel #, x, y]
ModBgrd [channel #, backgrd color]
ModFade [channel #, alg]
ModScr [channel #, screen #]
NewsDisplay
PrAddr
PrDbg
PrMovChn [channel #]
PrTVChn [channel #]
PrQStat
PrSize [channel #]
pr-tvsetup
prjade-struct
ShotDown
SnapShot
StartTV
SwtchChn [channel #]
SysIl
TextspaceEX
TVReset
Wait [seconds]

oc]

;comment statement, no action
;draw box with backgrd color

;turn off system audio
;tum on system audio

;reset movie channel
;crop channel image area
;decrement system audio volume
;FISH demos

;highlight backgrd of channel
;plot file to image space

;increment system audio volume
;interactive text write to news area

;modify size of channel
;modify channel coordinates

;modify channel
;modify channel fade alg

;modify system display screen
;write text to news display area

;display address of the real time queues
;print system debug information

;print content of movie channels
;print info on TV channel

;display real time queue info
;print the size of the audio queue

;;print the tv setup
;display fade struct for all channels
;system shutdown

;screen dump and store to file
;start the TV

;switch main channel
;system illustration mode

;write to text space
;TV system reset

;pause program from # seconds

Appendix B Inter-Process Mail Messages

This appendix contains the inter-process communication messages imple-

meted for the system.

Module Name Descrimtion

C_MOV_MEM_INIT movie-memoryinitO
C_STMEM_INIT stream..memory-initO
C_MOV_ST_INiT initmoviestreamsO
C_INIT_MOV_BUFF iit_moviebuffO
C_OPENMOVIES openmovieso
C_FILL_MOVST fill_moviestreamsO
C_ATACH_SHM attach-process-shmo
C_INIT_AVFIRSSHM init_shm-av-ptrsO
C_INIT_PROC_MBOX nit_seg-mailboxO
C_PROC_MOVIE process-moviesO
C_SWITCH_MAIN switch_mainchannelO
C_CHN_DISP_NORMAL semdisp-normalO
C_CHNDISP_YADE1 scrn_dispjadelO
C_CHN_DISP_FADE2 scrn_dispjade2O
C_CN_DISPFADE3 scrn_disp-fade30

C_MOD_CHNPARM modifyshn paramO
C_MOD_CHNBACKGRD modifyschnbackgrdO
C_PR_CNN_STAT prmovchn-stato
C_PRTVSTAT prjtv-statO
C_CROP_CNN_DISP crop-tvchnjdispO
C_MOD_CNN_COORD mod_chncoordO

CTVSCRN_RESET reset-tv-scrno
CTVSCRNSET set_tvscrnO
C_CNN_SCRN_RESET reset_chnuscmo
C_PRDEBUG prdebug-infoO
C_ADD_LIVE_CHN add_live_chnO
C_DEL_LIVE_CHN del_live-chnO
C_ADD_MOVIE_CHN add-movchnO
C_DEL_MOVIE_CHN del_movchnO
C_SYSSHUTDOWN sys..shutdowno
C_SYSRESET sys-resetO
C_INC_VOL inc_volO
C_DEC_VOL dec_volO
C_CNN_AUDIOON trnaudio-onO

C_CHN_AUDIOOFF turnaudio-offO
C_PR_AUDIOSTAT pr-audio-stato

;movie memory init
;stream memory init
;initialize movie streams
;initialize movie buffers
;open the movie streams

;fill the movie streams
;attach process shared mem
;init av ptrs in shared mem
;initialize process mailbox
;process movies
;switch main channel
;normal display
;fade 1 display
;fade 2 display
;fade 3 dislay
;change channel parameters

;change channel backgrd color
;print channel status

;print tv status
;crop channel display
;modify channel coordinates

;tv screen reset
;set the TV background scm

;channel display reset
;print debug info
;add live tv channel
;delete live tv channel
;add movie channel
;delete movie channel
;system shutdown

;system reset
;increase audio volume
;decrease audio volume
;turn channel audio on
;turn channel audio off
;print audio device status

Module~ Name Dleseripti on

C_EST_PROCCOMM
C-PRPROCSTAT
C_SAVE_SYSSTATUS
C_CHECKMAIL
C_SEND_MAIL
CREADMAIL
CETASK
CMESSANGER
C_MODFADE_ALG
C_STARTTV
CFLUSHVQUE
C_.FLUSHAQUE
C_DRAWBOXNP
C_DRAWBOX
C_ROVINGMODE

establishproc_commo
prjproc-statO
saysys-statO

checkinailo
send_mailO
readmail0
etaskO

modchnjfadeO
startupjtvO
flush-VQueO
flushAQueO
drawboxnpO
drawboxO
roving-modeO

;establish comm with process
;print process status

;save system status
;check incoming mail

;send mai
;read mail

;execute task

;modify current fade alg

;flush video queue

Mod"If- Name De-wrintin

Appendix C System Batch Run

This appendix contains the screen dumped captured during a system batch

run. The batch commands are shown in appendix A.

I=)Jlvb.0hu ",am04i~gy 8

LuIT

ek.00"uen

4h)9mula hkn to rIMat

ONNOW.-

rclOwal qr7wnp7w

IF
-

IiIIIa

IjII

II

IU
i

.
.
.

.
.

.
.

M066MWAW

jbwflv4i-

(g)sutteb to sm D"Puy A

Ireamwm d(TA"M"W

(b)svdtek

lwcbwm #(Tatwwgw

low4

TOAMOf Thwoeroi

awn Ssin tam era TgAy

.
.

Q)Hute b to G~ae A2

AMMA29AWAP

ITI

References

[1] Kramer, "Translucent Patches - Dissolving Windows", UIST '94,
pp.121-130

[2] Bier, Stone, Fishkin, Buxton, Baudel, "A Taxonomy of See-Through Tools",

CHI '94, pp.358-364
[3] Elrod, Bruce, Gold, Goldberg, Halasz, Janssen, Lee, McCall, Pedersen, Pier,

Tang, Welch, "LiveBoard: A large interactive display supportiing group
meeting, presentations, and remote collaboration", CHI '92, pp.5 9 9 -6 0 7

[4] Lieberman, "Powers of Ten Thousand: Navigating in Large Information
Spaces", UIST '94, pp. 15-16

[5] Griswold, Jeffery, "Nova: Low-Cost Data Animation Using a Radar-Sweep
Metaphor", UIST '94 pp. 131-132

[6] Stone, Fishkin, Bier, "The Movable Filter as a User Interface Tool",
CHI '94, pp.306-3 12

[7] Davis, Marc; Media Streams: An Iconic Visual Language for Video
Annotation, Proceedings of 1993 IEEE Symposium on Visual Languages in
Bergen, Norway, IEEE Computer Society Press, 196-202, 1993

[8] Sarkar, Brown, "Graphical Fisheye Views of Graphs", CHI '92, pp. 83-91
[9] Davis, Andrew W, Motion Image Processing: Striking Possibilities,

Advanced Imaging, August 1992, pp. 22-25
[10] Furnas, Zacks, "Multitrees: Enriching and Resuing Hierarchical

Structure ", pp. 330-336, CHI '94
[11] IBM Power Visualization System: Programmer's Technical Reference,

First Edition, Doc #: SC38-0487-00, IBM Corporation, Thomas J. Watson
Research Center/Hawthorne, PO Box 704, Yorktown Heights, NY 10598

[12] Physics and Media Group; The "FISH" Quad Hand Sensor: Users Guide,
MIT Media Laboratory, 20 Ames St, E15-022, Cambridge, MA 02139-4307

[13] Lippman, A.B: The Distributed ATM Media Bank, MIT Media Laboratory,

July 1994
[14] Lippman, A.B; Holtzman: The Distributed Media Bank Specification, MIT

Media Laboratory, May 19, 1994
[15] Hwang, Kai, "Advanced Computer Architecture: Parallelism, Scalability,

Programmibility", McGraw-Hill Inc, 1993
[16] D1 spec - CCIR-601 standard
[17] M-ACPA Programmer's Guide and Reference, AIX Version 3.2,

International Business Machines Corporation, 1993. Doc #: SC23-2584-00

