
Description and Analysis of Central Registry, a

Pattern for Modular Implicit Invocation

by

Jonathan Newcomb Swirsky Whitney

Submitted to the Department of Electrical Engineering
and Computer Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2002
1Sxu 20D3

© Jonathan Newcomb Swirsky Whitney, MMII. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis document

Author .............

in whole or in part. MASSACHUSESmSIT E
OFTECHN01.0Y

JUL 3 E12002

LIBRARIES

Department of Electrical Engineering
and Computer Science

May 24, 2002

Certified by........................ . ..................
Daniel Jackson

~Th

Accepted by ....

Associate Professor

beTcsis Supervisor

Artur C. Smith

Chairman, Departmental Committee on Graduate Students



2



Description and Analysis of Central Registry, a Pattern for

Modular Implicit Invocation

by

Jonathan Newcomb Swirsky Whitney

Submitted to the Department of Electrical Engineering
and Computer Science

on May 24, 2002, in partial fulfillment of the
requirements for the degree of

Master of Engineering in Computer Science and Engineering

Abstract

Central Registry is a generalization of several implicit-invocation design patterns. Its

goal is to provide the kind of decoupling that implicit invocation provides in a more
modular and flexible way than current patterns. We describe the pattern in detail
and present a formal model of its key features. Using the formal model, we are able
to establish, by automatic analysis, properties of any system that uses the pattern.
We also describe an implementation framework for the pattern and evaluate its use

in five substantial programs.
Keywords: Design Patterns, Implicit Invocation, Formal Models, Component Ar-
chitectures.

Thesis Supervisor: Daniel Jackson
Title: Associate Professor



Acknowledgments

I would like to thank Daniel Jackson for his advice and guidance. I would like to

give special thanks to Robert Lee and Allison Waingold for helping with all aspects

of this work. Ilya Shlyakhter and Manu Sridharan gave me a lot of assistance with

Alloy and the Alloy Analyzer. All the members of the Software Design Group at LCS

were extremely supportive and friendly for many years, and I am indebted to them

for countless hours of discussion. I would finally like to thank my parents, friends

and roommates for listening to me talk about this thesis for hours on end.

LI



Contents

1 Introduction 11

2 Pattern Description 15

2.1 Intent ...... ... ................................... 15

2.2 M otivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Overview of Central Registry Design . . . . . . . . . . . . . . 16

2.2.2 Exam ple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 A pplicability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Structure and Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.2 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.3 Collaborations . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.4 Features and Variants . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Properties and Analysis 27

3.1 A Formal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Properties of Central Registry . . . . . . . . . . . . . . . . . . . . . . 29

3.2.1 Fundamental Properties. . . . . . . . . . . . . . . . . . .. 29

3.2.2 Analysis and Requirements . . . . . . . . . . . . . . . . . . . . 30

4 Implementation Framework 37

4.1 V ariants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37



4.2 Global State Reasoning in Asynchronous Central Registry . . . . . . 38

4.3 Benefits of the Framework . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Known Uses 41

5.1 The CTAS Communications Manager . . . . . . . . . . . . . . . . . . 41

5.2 Tagger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 G izm oball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.4 JarSheet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5 The Visualization Tool for the Alloy Analyzer . . . . . . . . . . . . . 51

6 Comparisons 53

6.1 Implicit Invocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 O bserver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3 EventPorts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.4 M ulticast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.5 M ediator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

7 Discussion and Conclusions 57

7.1 Formal Models of Patterns . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2 Frameworks for Design Patterns . . . . . . . . . . . . . . . . . . . . . 58

A Framework Specifications 61

B Complete Alloy Model 67

Er



List of Figures

Object model for CR pattern. . . . . . . . . . . . . . . . . . . .

Module dependence diagram for typical CR system. . . . . . . .

An interaction diagram of the CR processing an Event . . . . .

Core Alloy model . . . . . . . . . . . . . . . . . . . . . . . . . .

Pseudo-code for an air-traffic-control example . . . . . . . . . .

Formal description of a CR system that has a transaction model

Condition for Commuting Operations . . . . . . . . . . . . . . .

Extension to CR model where Events specify legal transitions .

3-6 Pseudo-code for an Event which specifies legal post-states .

Pseudo-code for a global invariant . . . .

Extension to CR model with Invariants .

CR system with event handlers that obey

Pseudo-code for modified event handlers

CR system with strong invariants . . . .

invariants . . .

Module dependence diagram of a non-CR CTAS design. . . .

Module dependence diagram of a CR CTAS design. . . . . .

Module dependence diagram of a non-CR Gizmoball design.

Module dependence diagram of a CR Gizmoball design. . . .

. . . . 34

. . . . 34

. . . . 35

. . . . 35

. . . . 35

. . . . 36

. . . . 43

. . . . 44

. . . . 48

. . . . 49

2-1

2-2

2-3

3-1

3-2

3-3

3-4

3-5

3-7

3-8

3-9

3-10

3-11

5-1

5-2

5-3

5-4



I m



List of Tables

6.1 Features of related patterns . . . . . . . . . . . . . . . . . . . . . . . 53





Chapter 1

Introduction

Implicit Invocation

Implicit invocation systems are systems in which procedure calls are made implicitly

by the system. In all such systems, the major design goal is to allow for flexible assem-

bly of components. Requests for procedure calls are made by announcing events, and

procedures register interest with the system for particular events. The primary bene-

fit of implicit invocation systems is that the components have no dependence on each

other. Instead, they all rely on the underlying system to perform the communication

between them. This form of system architecture allows for incremental extension and

contraction of system functionality by simply adding and removing procedures for

events or by adding and removing events. In [11], Garlan et al. note that this form of

architecture is complementary, and not contradictory, to data abstraction techniques,

one of the most popular forms of modularization [12, 11].

Design Patterns

Design patterns have become quite popular in the software engineering field since

the publication in 1995 of the "Gang of Four" book [1]. The authors describe design

patterns as generic solutions to problems that arise often. Design patterns have

significantly contributed to software development in many ways. Primarily, they



capture years of design experience, which enables designers to avoid thinking about

problems that already have good solutions. Secondly, they provide designers with a

high-level vocabulary with which to communicate.

The primary goal of design patterns is to describe designs that are flexible and

reusable [1]. Each pattern description is accompanied by an informal description

of how the pattern achieves more flexible designs. The structure of each pattern

is described somewhat formally in UML, but the behavior descriptions are quite

informal. This can cause potential problems with a system designer who desires to

know if a usage of a pattern is correct. It is fairly easy to convince oneself that

the structure of a design matches a pattern, but as the patterns provide no formal

description of behavior, it can be difficult to decide if a design behaves as the pattern

prescribes. For most patterns, the behavior is extremely simple, and thus informal

descriptions often suffice.

Central Registry

Central Registry is a design pattern for implicit invocation systems. It captures

the structure and behavior of the underlying communication machinery of implicit

invocation systems, and provides a disctinct way in which to describe these systems.

Central Registry adds some novelties of its own in the form of event filtering and

global state, which allows the pattern to apply in different forms to a wide range of

systems.

This thesis presents a pattern that is more complex in behavior and structure than

most "Gang of Four" design patterns. One of the main contributions of this thesis is

a formal model of the pattern, which gives precise definitions of both the structure

and behavior of the entities involved. This approach has two benefits. Primarily, it

provides system designers with a better way to check if they are using the pattern

correctly. Secondly, it allows for a more precise description of how the pattern achieves

a reuseable and flexible design.

In summary, this thesis contributes



" A generalized pattern for implicit invocation systems, which condenses the de-

signs of many such systems.

* A formal model that gives precise definitions of both the structure and behavior

of implicit invocation systems.

" A machine-checked argument that specific properties related to modularity hold

for specific variants of the pattern.

" Some practical insights gleaned from experience using Central Reigstry, and

examples of how other related patterns are inadequate.

This thesis presents Central Registry in the style of a "Gang of Four" pattern.

The layout of the typical pattern description is extended to include the formal model

and machine checked argument, as well as descriptions of the tradeoffs involved in

using different variants of the pattern.



14



Chapter 2

Pattern Description

2.1 Intent

Avoid bidirectional coupling of the sender of a request and its receiver by passing all

requests through a single object. Provide mechanisms to allow for dynamic behavior

in response to a request.

2.2 Motivation

Consider a door locking system in a prison. Guards have access cards, which they

swipe through card readers to open doors and pass from one section to another. The

system determines whether or not to unlock a door and for how long. Its goal is to

mediate access between compartments of a prison in a disciplined way to minimize

the risk of undesirable prisoner movements.

It is natural to structure such a system based on the physical layout of the prison.

The prison may be divided into sections, with different kinds of policies for the dif-

ferent sections. For example, high-security sections will have different rules for which

doors can be open simultaneously than low-security sections. Furthermore, prison-

wide rules relating to opening doors may be desirable. Lastly, requests to open a door

may be generated by a warden not physically present at the door itself.

One problem is to structure the software to allow a variety of responses to door



unlocking requests, to allow these responses to change according to different states

of the prison, different credentials of a guard, new administrative policies. It should

be easy to change policies and to fine-tune the response of the system in different

scenarios. This must be accomplished without excessive modification to existing

software, such as the prisoner or guard databases.

Another problem is that requests can be generated by independent entities. It is

therefore desirable that the part of the system that processes requests be independent

of the parts of the system that can generate requests. Conversely, the senders of

requests should remain independent of the receivers because the receivers are not

always the same in different scenarios.

2.2.1 Overview of Central Registry Design

The idea of this pattern is to allow for this type of dynamic and flexible behavior while

disallowing dependence between senders and receivers of the request. This is achieved

by interposing a centralized event dispatching mechanism between the senders and

receivers.

The various requirements of the prison system highlight the interesting features

of the Central Registry pattern. Event handlers, which are wrapped around existing

software, are registered to receive events in a single centralized table, which we call

the central registry. The event handlers are registered against event filters, which

accept or reject events based on their content, type and the state of the system.

Events are posted to a central queue. The event handlers that are registered

against accepting filters will handle an event. There can be numerous event handlers

registered to receive an event. The event handlers, in addition to carrying out local

action, can change global state values and post new events to the queue. The central

registry can maintain configurable policies for posting and queuing events and can

also dynamically register and deregister handlers.



2.2.2 Example

This section describes parts of this system to highlight elements of the Central Reg-

istry design more concretely. This section will describe the behavior of event handlers

that perform access-control, event handlers that unlock specific doors, and event han-

dlers that control guard GUI consoles. These event handlers will communicate via

CardSwipedEvents and DoorUnlockEvents. They will be registered with the central

registry against filters that match the type of event as well as specific information

contained within each individual event.

In this system, an embedded card reader is placed at every door. When a guard's

card is swiped, this reader generates a CardSwipedEvent, containing the relevant data

from the card and the door in question. The reader posts this event to the central

registry. Each section of the prison is equipped with an access-control computer,

which is an event handler. This handler is registered against an event filter that only

matches CardSwipedEvents generating from doors within that section. The access-

control handler then verifies the identity of the guard and grants access by generating

and posting a DoorUnlockEvent. The role of the filter is to ensure that the access-

controller for this section of the prison will not bother to verify requests to open doors

in other sections.

This system may make use of event-based queuing priorities. A DoorLockEvent,

for example, might be given a higher priority than a DoorUnlockEvent. Under this

policy, all DoorLockEvents that are pending will be dispatched before any pending

DoorUnlockEvents. In this system, an asynchronous post policy is appropriate, be-

cause card swipes happen across the prison asynchronously and should be handled as

such.

Suppose the prison has a "lock-down" status for emergencies in which certain doors

should not open. This can be implemented by setting a global state variable, which

event filters access when determining whether a given handler should be activated for

a given event. In this state, the filters for the door-unlocking handlers will not match

any CardSwipedEvents.



Another requirement may be a GUI display of a map of the prison in which

doors light up when they are unlocked. Each console running this GUI display may

be a separate event handler that is dynamically registered when somebody logs into

the console. This handler is passive. It merely listens to DoorUnlockEvents and

DoorLockEvents, and updates the display.

This design achieves fairly good decoupling between the various subsystems de-

scribed as event handlers. The GUI console, for example, need not depend on any of

the software running at the access-control handlers or in the card-readers. Similarly,

the access-control handlers and card-readers are independent of each other. All three

subsystems are dependent on the specification of the events and global state variables

instead.

2.3 Applicability

The Central Registry pattern is applicable to systems that are comprised of well-

encapsulated subsystems whose communication can be represented as a small set of

messages, and where it is desirable for the senders and receivers of requests not to

have explicit knowledge of each other.

In such systems, the Central Registry pattern improves modularity - only the

global state elements and the events are shared across subsystems. If the subsystem's

interfaces cannot be represented by a small set of events, using Central Registry is

likely to complicate rather than simplify a system. Because handlers can be dy-

namically registered and deregistered, Central Registry is particularly well-suited to

systems whose communication targets change at run-time. Inter-module communica-

tion concerns are moved into the Central Registry, so that communication machinery

need not be implemented in each module. Additionally, the pattern allows systems

to achieve looser coupling and reuse of event, event filtering and event handling code.



2.4 Structure and Behavior

2.4.1 Structure

The object model in Figure 2-1 summarizes the structure of this pattern, viewed

semantically. The boxes in the model represent semantic domains relevant to the

pattern and the arrows connecting them represent relations between these domains.

The notation on the arrowheads indicate the multiplicity of that relation where ?

means "zero or one", ! means "exactly one", and * means "zero or more". While these

semantic domains may be represented as classes, they do not necessarily map directly

to the class structure [8]. For example, the Pairs of EventFilters and EventHandlers

may be implemented as a hashtable. It is interesting to note that in Figure 2-1 the

EventHandlers do not have a relation to Events. This is due to the fact that this

type of diagram only captures structural properties of a design, and not behavioral

properties.

The module dependence diagram shown in Figure 2-2 represents the syntactic

dependences of Central Registry components on one another [8]. Edges with open

arrows denote subtypes; solid edges with line heads denote dependences, and dashed

edges denote weak dependences. Weak dependence results from modules depending

on the existence, but not the behavior, of other modules.

As with all design patterns, there is a key dependence missing from Figure 2-2,

which is the dependence between event handlers and event producers and vice-versa.

This is the main achievement of the pattern.

2.4.2 Participants

Events. Events are the core of the Central Registry pattern. They encapsulate

messages sent between subsystems.

EventHandlers. EventHandlers encapsulate interfaces to subsystems. They can

handle certain Events in certain States. They are registered with the CentralRegistry

against some set of EventFilters. EventHandlers can make changes to the State, and



Figure 2-1: Object model for CR pattern.

Figure 2-2: Module dependence diagram for typical CR system.



can be EventProducers.

EventFilters. EventFilters implement predicates on pairs of Events and States.

They are registered with EventHandlers in the CentralRegistry.

EventProducers. EventProducers are components of the system that can post

Events to the CentralRegistry. Often the EventProducers are also EventHandlers.

CentralRegistry. The CentralRegistry is a Singleton [1]. It maintains a registry

of (EventFilter, EventHandler) pairs. It also maintains an Event queue, and a global

State, which maps variable names to values. The CentralRegistry is in charge of

dispatching Events to all interested Event-Handlers.

State. State is a mapping from state elements to values. It represents the shared

global state of the system.

2.4.3 Collaborations

" EventProducers post Events to the CentralRegistry.

" The CentralRegistry retrieves an Event from the front of the queue. It matches

the Event, along with the current State, against the registered EventFilters.

For each matching EventFilter, the Event is dispatched to the corresponding

EventHandler.

* The EventHandlers that are activated can post new Events to the CentralReg-

istry and can update the global State.

The interaction diagram in Figure 2-3 illustrates how the different entities collab-

orate with each other.

2.4.4 Features and Variants

Post Policy

Events can be posted synchronously or asynchronously to the CentralRegistry. In

the synchronous case, there is no queue in the CentralRegistry. All posted events are



Event Central EvtFiltero/ EvtFilterl/
Producer Registry EvtHandlero EvtHandleri

post(eventa)

pr cessEvent()

match(. 0 , x)

dispatch(e0 . a)

etValues(seo , svo

postEvents(em )

match( o. s)

dispatcl (eO a).

setValuestse1 , Sei)

Figure 2-3: An interaction diagram of the CR processing an Event

dispatched immediately. This behavior essentially implements implicit method calls

in Implicit Invocation systems [11]. This policy has a serious drawback: if an event

handler responding to event e produces new events, then these events are handled

before other handlers have responded to event e, meaning that e is not handled

atomically.

The asynchronous policy is a more natural message-passing model. In systems

using this policy, events are placed on the end of the CentralRegistry's queue and are

processed some time later. Control is returned to the event producer immediately

after the event is posted.

Queue Policy

When the asynchronous post policy is in use, the CentralRegistry's queue can define

a queue policy that defines how events on the queue are processed. Queue policy

could range from defining event priorities, to EventProducer-based fair-queueing, to

dropping events as the result of congestion.

Global State

Some systems are designed with global state that is accessable to all subsystems.



Shared global state acts as a means of data communication between subsystems.

Examples of global state variables range from status flags for the system to shared

ADT's.

Often, global status flags can be replaced by dynamically registering and dereg-

istering handlers. For example, two handlers which perform different actions may

be swapped with one another in the registry instead of having one handler which

performs both actions based on a boolean state value.

The deregistration approach might have the consequence of exposing subsystems

to each other, since a handler must know about any other handlers that should be

deregistered instead of just knowing about the state variable to be changed. In cases

like these, the use of state is beneficial to further decoupling the system. Both event

handlers depend on the global status flag, but do not refer to each other. Another

benefit of this kind of design is to make the status explicit. It is often the case

that much behavior must change in response to a status change. In such situations,

performing dynamic registration and deregistration can get quite complicated. This

can be remedied by increasing the complexity of the filtering and adding a global

status flag.

Dynamic registration/deregistration

As illustrated in section 2.2, it is important to be able to modify the set of registration

pairs (EventFilter, EventHandler) dynamically. We model this behavior with two

special kinds of events (DeregistrationEvent and RegistrationEvent), which are

handled by the CentralRegistry itself, and which contain a set of (EventHandler,

EventFilter) pairs to be added or eliminated from the registry.

2.5 Consequences

This section briefly lists some of the benefits and liabilities of Central Registry. Some

of these consequences will be discussed in further depth in Chapter 3.

1. Modularity.

II



Figure 2-2 shows a module dependence diagram for a typical Central Registry

system. EventProducers do not depend on EventHandlers or vice versa. In-

stead, the EventProducers depend on the CentralRegistry (because they post

events to it). The EventFilters, EventHandlers, and EventProducers all depend

on the Events; the Events serve as the interface amongst them. The CentralReg-

istry depends on the EventFilter and EventHandler interfaces, since it makes

calls to EventFilters to check if Events match and to EventHandlers to handle

Events. Since the CentralRegistry just stores Events to the queue and then

passes them along to EventFilters and EventHandlers, it only weakly depends

on the Event interface; that is, it refers to the name of the interface without

using any of its behavior.

2. Added flexibility.

Central Registry provides much flexibility in modifying system behavior both

statically and dynamically. New EventHandlers can be added at runtime, or

the set of EventFilters associated with an EventHandler can change at runtime.

Furthermore, new EventHandlers can be implemented independently of code

already written. Lastly, modifications to existing EventHandlers should have

little effect on other EventHandlers.

3. Receipt is not guaranteed.

Systems designed using Central Registry cannot guarentee that two components

that wish to communicate will always succeed. In many designs, a sender will

have an explicit handle on its receiver, and is thus guaranteed that the receiver

is present. However, EventHandlers can silently disapear from the CentralReg-

istry, which can mean that some Events will no longer have EventHandlers to

handle them. Furthermore, priority-based queue policies may starve Events of

low priority.

4. Performance.

In Central Registry systems that make use of the asynchronous post policy,



there is a potential for long delay between the generation and handling of an

Event. Even in systems that make use of the synchronous post policy, there is

an extra level of method invocation that decreases performance. In most cases,

the gain in flexibility and modularity will outweigh this.



II



Chapter 3

Properties and Analysis

3.1 A Formal Model

This section describes a formal model of the Central Registry pattern written in the

Alloy [3] modeling language. The core structure of the model and some parts of the

behavior are presented in Figure 3-1. The complete model is included in Appendix

B; it fully captures the structure described in Figure 2-1, the behavior described in

Figure 2-3, as well as some of the properties discussed in Section 3.2 of this chapter.

The signatures in the model roughly correspond to the domains in the object

model in Figure 2-1. Some of the domains in Figure 2-1 are represented as rela-

tions inside other signatures. For example, the Pair domain is represented as the

registeredPairs relation in the CentralRegistryState signature. The structural

model shown here contains :

* CentralRegistry, which contains a set of bindings between event filters and

event handlers, a queue of events, and the global state.

" Global State which is modeled as a mapping from StateElements to StateValues.

* A set of EventFilters, which match certain event types in certain system states.

" A set of EventHandlers, which for an (event, state) pairing, produce a new set

of bindings that update the system state, and a new sequence of events which



/*This model is based on a FSM idiom. Each CentralRegistryState atom
represents a point in time of the Central Registry*/

sig CentralRegistryState {
//ef->eh is in registeredPairs if eh is registered
//against ef in this state of the FSM.
registeredPairs : EventFilter -> EventHandler,
//this field represents the current global state
globalState : State,
//this field represents the current queue of Events
queue : Seq[Event]

sig Event {}
/*if e.regChange contains ef->eh, then ef->eh

will be added to the central registry*/
disj sig RegisterEvent extends Event {

regChange : EventFilter -> EventHandler

}
/*if e.deregChange contains ef->eh, then ef->eh

will be removed from the central registry*/
disi sig DeregisterEvent extends Event {

deregChange EventFilter -> EventHandler

}
sig Bindings

stateMapping StateElement -> ? StateValue

}
/**Global state assigns a value to every variable*/
sig State extends Bindings

{
//this is the constraint about "completeness"
stateMapping.StateValue = StateElement

}
/**The trans relation describes the state changes and new events

that result from handling an event in a given global state.*/
sig EventHandler {

trans : Event -> State -> Bindings->Seq[Event]

}
/*If e->s is in match, then the filter accepts e in state s*/
sig EventFilter {

match : Event -> State

}
sig StateElement {
sig StateValue {}

/**The types of several helper functions are given here.
The bodies of these functions can be found in Appendix B.*/

/*Returns the set of event handlers that are registered aginst
matching event filters*/

det fun acceptingHandlers(e:Event, s:CentralRegistryState):
set EventHandler {...}

/*returns a relation mapping eh->b->seq if ae->s->b->seq is in eh.trans*/
det fun collectChanges(ae: set EventHandler, ae:Event,

s:State):EventHandler-> Bindings->Seq[Event] { ... }

/*describes how a set of Bindings is written to the global state s'*/
fun writeChanges(s, s':CentralRegistryState, sc: set Bindings) {...}

/*appends every seq in ne to the back of s.queue while removing the first event
result placed in s' queue*/
det fun appendToQueueBackRemove(s, s': Central RegistryState,

ne: set Seq[Event]) { ... }

/*appends every seq in ne to the back of s.queue. result placed in s'.queue*/
det fun appendToQeueuBack(s, s':CentralRegistryState, ne:

set Seq[Event]) { ... }

/*true if el was generated before e2*/
fun genBefore(el, e2:Event) {...}

/*true if el was dispatched before e2*/
fun dispBefore(el, e2:Event) { ... }

/**This fun describes how Events are processed from the head of the
queue in the asynchronous policy. With this policy, new Events are
enqueued at the end of the queue. */

fun asynchronousProcess(s, s': Central RegistryState)
some s.queue..SeqFirst()
let activeEvent = s.queue..SeqFirst() {

s' eventJustProcessed = activeEvent
let activeHandlers = acceptingHandlers(activeEvent, s) {

handleSpecialEvent(activeEvent, s.registeredPairs,
s'.registeredPairs)

let allPossibleChanges = collectChanges(activeHandlers,
activeEvent, s.globalState) {
some chosenChanges:EventHandler- > Bindings->Seq[Event]{

all eh:activeHandlers {
sole change:eh->Bindings->Seq[Event] I

change in allPossibleChanges and
change in chosenChanges

all eh:chosenChanges.Seq[Event].Bindings I
eh in activeHandlers

writeChanges(s, s',
EventHandler.chosenChanges.Seq[Event])

appendToQueueBackRemove(s, s',
Bindings.(EventHander.chosenChanges))

Bindings.(Event Handler.chosenChanges) =
s'.eventsJustGenerated

}

/**This fun describes the state transition of an event being
asynchronously enqueued outside of event handling.*/

fun asynchronousEnqueue(s, s':CentralRegistryState, e:Event)
some seq:Seq[Event] {

seq.seqElems = Ord[Seqldx].first->e
s'.eventsJustGenerated = seq
appendToQueueBack(s, s', seq)

}
s'.registered Pairs = s. registeredPairs
s'.globalState = s.globalState
no s'.eventJustProcessed

/**This policy states that all event posts are asynchronous**/
fun asynchronousPolicy() {

setup()
limitTrans()
all s:CentralRegistryState - Ord[CentralRegistryState]. last {

let s' = OrdNext(s) {
((asynchronousProcess(s, s')) ||

(some e:Event I asynchronousEnqueue(s, s', e)))

}

/**This describes the property that if an event el is generated
before e2, then it will be dispatched before e2.**/

fun orderedDispatch() {
all disj el, e2:Event {

genBefore(el, e2) => dispBefore(el, e2)
}

/**This states that in the asynchronous policy, with no event
duplicates, ordering of dispatch is guarenteed**/

assert OrderOfDispatchAsync {
asynchronousPolicy() && noDuplicateEvents() => {

orderedDispatch()

check OrderOfDispatchAsync for 3 but
4 CentralRegistryState, 4 Seq[Event] //no solutions : expected

Figure 3-1: Core Alloy model



are added to the central registry's queue.

* Special events for registration and deregistration, which contain bindings be-

tween event filters and event handlers that are to be added to or removed from

the central registry's binding, respectively.

Figure 3-1 includes the model for the behavior of the asynchronous post policy,

as well as assertions to check that this policy guarantees ordered dispatch of events.

We also modeled the synchronous post policy and a two-priority queue policy, which

are included in Appendix B.

3.2 Properties of Central Registry

In this section, we discuss various properties of the pattern and their consequences.

First, we introduce some required properties that go along with the programming

model that Central Registry is describing. We then discuss the effects of these prop-

erties. All of these properties relate solely to the asynchronous post policy version of

the pattern, with a simple FIFO queue.

3.2.1 Fundamental Properties

Three fundamental properties of the Central Registry pattern can be described as

follows :

" Required execution.

If the binding of (event filter f, event handler h) is registered, then any event

posted to the central registry that f matches must result in the execution of h.

" Atomicity accross events.

All handlers that are registered against filters matching an event will execute

before any new events are processed.



* Ordering of events per event producer.

If an event producer posts event e1 and e2 to the central registry in that order,

then the handlers for e1 will execute before the handlers for e2 -

These properties together form a model of concurrent computation that is natural

to associate with asynchronous message passing systems. An event specifies a request

for service. The results of an entitity performing this service can potentially influence

later requests. Arbitrary interleavings of these requests would prevent reasoning

about the global state after the request has been processed.

The motivating example described in Section 2.2 assumes that not all the event

handlers will be on the same machine. Thus, it is natural to think of the set of event

handlers that will respond to an event as executing concurrently. The next section

will discuss problems that result from this model.

3.2.2 Analysis and Requirements

This section discusses the programming discipline that is necessary to achieve imple-

mentations of Central Registry systems with the properties defined in Section 3.2.1.

A fundamental problem arises out of the confluence of three factors : the existence of

global state, the requirement that all triggered event handlers execute, and the con-

current execution of event handlers in response to an event. Without careful thought,

it may be impossible to reason about the global state after an event is processed.

In the remainder of this section, we will refer to a simple example. Pseudo-code

for this example is included in Figure 3-2. This example describes an air-traffic-

control system, in which there are three global boolean variables, two event handlers,

and one event filter. Both event handlers in this example are registered against the

same filter Filter in the central registry. This example describes an airport that has

two power generators. One of the power generators is equiped with extra features

that are used only in cases of emergency (the SecureGenerator). The main power

generator cannot be on during an emergency. It is undesirable for both generators to

be on at the same time, although the system will not crash in this state. But it is



Figure 3-2: Pseudo-code for an air-traffic-control example

vital that at least one of the generators be on at all points in time. This means that

(MainGeneratorOn || SecureGenerator0n) must always be true.

The two event handlers will execute in response to the same event, because they are

both registered against the same filter. The value of StateOfEmergency depends on

the particular interleavings of assignments as the two handlers execute concurrently.

This means that it is impossible to reason about the value of StateOfEmergency after

the event is dispatched.

Rejected Solutions

This section gives a series of solutions that are natural for this sort of problem, but

fail to allow local reasoning about the behavior of event handlers.

* Change the model of event handling

A common solution to handling concurrency problems is to implement transac-

tions to allow sequential execution in the abstract. In the example of Figure 3-2,

if MainGenEH executes before SecureGenEH, then MainGeneratorOn will become

false. Now, the filter Filter will no longer accept the event, and SecureGenEH

global boolean StateOfEmergency;
global boolean MainGenerator0n;
global boolean SecureGeneratorOn;

MainGenEH extends EventHandler {
void handleEvent(Event e) {

MainGeneratorOn false;
StateOfEmergency true;

}
}
SecureGenEH extends EventHandler {

void handleEvent(Event e) {
SecureGeneratorOn false;
StateOfEmergency false

}
}
Filter extends EventFilter {

boolean acceptEvent(Event e) {
return (MainGeneratorOn kk SecureGenerator0n);

}
}



Figure 3-3: Formal description of a CR system that has a transaction model

should no longer execute. The Required Execution property requires that all

handlers whose filters will accept the event when it is dequeued must execute.

A solution to this problem is to provide each event handler with a read-only

copy of the dispatch-time global state. Another way around this problem is to

ensure that each event handler does not affect the state in such a way that any

event filters will return a different result. This requires global reasoning about

all event filters and is thus undesirable. A thrid potential solution is to compute

all executing filters first, and execute the handlers in a second step. This does

not work because the handlers themselves can read from the state.

* Require commuting operations

Central Registry requires that all event handlers execute when invoked. Arib-

trary interleavings of assignments to global variables are acceptable if every

interleaving produces the same acceptable result. One way to achieve this is

to require that no more than one event handler modify a state variable in re-

sponse to an event. The Gizmoball system described in Section 5.3 has this

requirement, which is defined in Alloy in Figure 3-4. However, this solution is

undesirable because it requires global reasoning across all the event handlers,

and thus eliminates decoupling between the event handlers. In the example

given above, the two event handlers do not commute because they assign con-

fun TransactionSystem() {
all s:CentralRegistryState - Ord[Central RegistryState]. first

let s' = OrdNext(s) {
TransactionTransition(s, s')

}
}

fun TransactionTransition(s, s': CentralRegistryState) {
let activeEvent = s.queue..SeqFirst() {

let activeHandlers = acceptingHandlers(activeEvent, s) {
some transactionOrder: Seq[EventHandler] {

all eh:activeHandlers I one transactionOrder.seqElems.eh
transactionOrder..SeqElems() in activeHandlers
ChangeReflectsOrder(s, s', transactionOrder)

}
}

}

/*True if in the transition between s and s', the event handlers in
iorder executed in that order.*/
fun ChangeReflectsOrder(s, s':CentralRegistryState, order: Seq[EventHandler]) {...}



fun CommutingCondition() {
all cr:CentralRegistryState {

//no conflicting state writings.
!StateConflicts(cr)

}
}
/*true of two event handlers can assign conflicting values to the

global state*/ fun StateConflicts(cr:CentralRegistryState) {...}

Figure 3-4: Condition for Commuting Operations

/**Abstract Events define legal States before and after they are executed*/
sig Event {

legalStateTrans : State -> State

}
/**This describes a CR system in which every handler obeys the legalStateTrans relation of Event.*/
fun LegalBindingsSystem() {

all s:CentralRegistryState - Ord [CentralRegistryState].last {
let s' = OrdNext(s) {

ObeyLegalBindingsTrans(s, s')

}
}

/*Every event handler that is active in this transition must obey the
legalStateTrans relation of the active event*/
fun ObeyLegalBindingsTrans(s, s': CentralRegistryState) { ... }

Figure 3-5: Extension to CR model where Events specify legal transitions

flicting values to State~fEmergency.

Specify legal global states

The above solutions describe ways to allow for concurrent operation while guarantee-

ing a deterministic behavior of the global state. Event producers do not know which

handlers will handle their posted events. This suggests that requiring a determin-

istic result is unnecessary. One way to benefit from non-deterministic results while

allowing local reasoning is to specify legal values of the global state.

This solution has two variants. In both variants, event handlers will execute in

some arbitrary order, and will see a read-only copy of the dispatch-time global state.

e Specify legal states in events

In this variant, each event specifies what the global state should be after the



SavePowerEvent extends Event {
boolean legalStateTrans(oldState, newState) {
if (oldState.MainGeneratorOn && oldState.SecureGeneratorOn){

return !(newState.MainGeneratorOn && newState.SecureGeneratorOn);

}
else return true;

}
}

Figure 3-6: Pseudo-code for an Event which specifies legal post-states

SomePowerInvariant{
boolean invariantHoldso) {

return (MainGeneratorOn SecureGeneratorOn);

}

Figure 3-7: Pseudo-code for a global invariant

event is dispatched, as a function of what the global state was before the event

was dispatched. Figure 3-5 shows an extension to the core model of Figure 3-1

in which the Event signature now contains a relation legalStateTrans from

State to State. Figure 3-5 also describes the requirement that every event

handler must assert a legal state.

Figure 3-6 shows an example of such an event. This Figure refers to global

variables defined in Figure 3-2

9 Specify global invariants

In the other variant, there are global invariants for the state variables which

must hold at all times. This variant is described in Figures 3-8, 3-9 and 3-

11. Figure 3-7 gives pseudo-code for such an invariant on the air-traffic-control

system.

The invariant of Figure 3-7 will not hold if both event handlers from Figure 3-2

execute. However, both handlers preserve the invariant, as they are reading a

copy of the dispatch-time global state, and they assume that the filter predicate

is true. In the code for MainGenEH, for example, it is assumed that the value of



sig Invariant {
allows : set Bindings

I
/** This describes a Central Registry system that has global invariants*/
sig CentralRegistryState {

registeredPairs : EventFilter -> EventHandler,
globalState : State,
queue : Seq[Event],
registeredInvariants : set Invariant

}

Figure 3-8: Extension to CR model with Invariants

/**This describes a CR system in which every handler obeys the registered invariants*/
fun InvariantSystemo {

all s:CentralRegistryState-Ord [CentralRegistryState].last {
let activeEvent = s.queue..SeqFirst() {

let activeHandlers = acceptingHandlers(activeEvent, s) {
all b:activeHandlers.trans[activeEvent] [s.globalState].Seq[Event] {

MatchInvariants(s, b)
}

}
}

}
}
/*rue if b is acceptable by all invariants of s*/
fun MatchInvariants(s: CentralRegistryState, b:Bindings) {...}

Figure 3-9: CR system with event handlers that obey invariants

MainGenEH extends EventHandler {
void handleEvent(Event e) {
MainGeneratorOn := false;
SecureGeneratorOn : true
StateOfEmergency : true;

}
}
SecureGenEH extends EventHandler {

void handleEvent(Event e) {
SecureGeneratorOn := false;
MainGeneratorOn : true;
StateOfEmergency : false

}
}

Figure 3-10: Pseudo-code for modified event handlers

II



/**This describes a CR system in which every handler obeys the registered invariants

and also asserts a value for every se in an invariant it potentially modifies*/
fun StronglnvariantSystemo {

all s:CentralRegistryState-Ord[CentralRegistryState] .last {
let activeEvent = s.queue..SeqFirst() {

let activeHandlers = acceptingHandlers(activeEvent, s) {
all b:activeHandlers.trans[activeEvent] [s.globalState].Seq[Event] {

MatchInvariants(s, b)
StronglnvariantAssertion(s, b)

}
}

}
}

}
//this fun states that if a bindings intersects with an invariant's state elements,
//then it must assert a value for each element
fun StronglnvariantAssertion (s:CentralRegistryState, b:Bindings) {

all inv:s.registeredlnvariants {
(some b':inv.allows I some b'.stateMapping.StateValue & b.stateMapping.StateValue) =>{

all b':inv.allows {
b'.stateMapping.StateValue in b.stateMapping.StateValue

}
}

}

Figure 3-11: CR system with strong invariants

SecureGeneratorOn will not change. This assumption is wrong.

One way around this problem is to require that every event handler assign values

to the global state without assuming anything about the filter predicate. The

event handlers can assign each variable that they did not modify the old value

from the dispatch-time copy, and the invariant will hold. Figure 3-10 shows

modified pseudo-code for the event handlers from Figure 3-2. Any ordering of

the two event handlers will result in a global state that satisfies the invariant.

In both versions of this solution, the ordering chosen for the event handlers does

not matter, and local reasoning about the global property is possible using inductive

techniques described in [8].

The constraints imposed by these solutions are burdensome, and can severely limit

the behavior of event handlers. Furthermore, the global state must be copied for each

event that is dispatched. This can be a severe performance hit if there are many

global variables. This suggests that Central Registry is not applicable to systems

that require a lot of global state.



Chapter 4

Implementation Framework

This chapter presents a framework implementation of the core Central Registry com-

ponents in Java. This framework defines a generic CentralRegistry component, and

interfaces for Events, EventHandlers, and EventFilters. The framework also de-

fines generic interfaces for the global state to which the above modules and interfaces

refer.

Systems are developed with this framework by defining concrete events, global

state variables and invariants over them, and event handlers and filters. Becaues the

framework provides many of the interfaces, as well as all the code for the CentralRegistry

component, little thought or work need go into specifying these interfaces. This makes

it quite simple for a system designer to make use of the pattern, as there is little extra

development work involved.

4.1 Variants

The framework provides support for all the variants of the pattern discussed in

Section 2.4.4. Support for queueing policies is achieved through the definition of

PolicyFilters and QueuePolicy objects. PolicyFilters are similar to to event

filters, in that they represent predicates on events and global states. These filters

can also be configured based on the current state of the registry and of the queue.

Filtering based on the state of the queue is beneficial in situations where a Central

II



Registry system needs to respond to congestion of the queue. QueuePolicy objects

take as input an Event, the current state of the registry, the current queue, and the

global state. The behavior they define is a reordering of the events on the queue. The

framework provides support for dynamic loading of various policy filters and queue

policies. This makes it easy for system developers to account for variations in the

behavior of their system which results in more adaptable systems in general.

The two post policies defined in section 2.4.4 are also implemented. A Central

Registry system can be configured to use either of these policies at startup, and they

can be switched dynamically. The framework does not allow the two to be present at

the same time.

Specifications for the framework can be found in Appendix A.

4.2 Global State Reasoning in Asynchronous Cen-

tral Registry

As discussed in Section 3.2.2, reasoning about the correctness of a Central Registry

system requires careful thought and discipline. The framework seeks to assuage this

problem by providin behavior and structure to allow for use of the reasoning tech-

niques described in Section 3.2.2. To this end, invariants are implemented as closures

which are registered with the CentralRegistry and checked at runtime. Further-

more, the global state that the event filters and handlers read is an unmodifiable view.

This allows event handlers to reason about the state at the time of event dispatch,

and not concern themselves with the actions of other handlers.

One requirement for modular reasoning discussed in Section 3.2.2 is that Event

subtypes be immutable. This is specified in the Event interface, but is not checked at

runtime. Another requirement is that the event handlers be executed in some order,

without overlaps in state modification. The current framework solves this problem

by executing in a single thread. However, this is not necessarily the solution with the

best performance, and does not apply to systems where the event handlers are simply



stubs for remote machines.

4.3 Benefits of the Framework

System designers can use this framework quite easily. Initial design work must provide

specifications for events, global state, and invariants on the state. This type of up-

front design is quite conducive to discovering early design flaws. Furthermore, it is

quite simple to make use of the framework to implement stub systems, and perform

integration testing before subsystems are actually written. To achieve this, one has

only to write stub event handlers that have no local effects on the subsystems they are

encapsulating. This type of prototyping can also lead to earlier discovery of design

problems.

Another benefit of using the framework is ease of implementation. Because much

of the behavior of the CentralRegistry component is already implemented, and the

rest of the behavior is encapsulated with generic interfaces, implementation using this

pattern does not require as much overhead as the size and complexity of the pattern

might suggest.



40



Chapter 5

Known Uses

We have implemented a number of systems using the Central Registry pattern. We

have also used the pattern to redesign some existing systems.

5.1 The CTAS Communications Manager

CTAS is a suite of tools developed by NASA designed to aid management of air traffic

flow at large airports. The primary goal of CTAS is to increase the landing rate of

aircraft through automated planning [4].

A component of this system was redesigned by a seminar of MIT graduate students

and faculty [4]. This variant of the CTAS Communications Manager component is

the one that we redesigned using the Central Registry pattern. In fact, the impetus

behind the Central Registry pattern originated from limitations of this variant of the

CM component.

Design Overview

The CTAS Communications Manager (CM) is essentially a message switching and

database server. The CM is in charge of maintaining and controlling the client pro-

cesses, and interfacing the client processes with the aircraft database. All client-to-

client interactions are filtered through the CM. The CM must be able to handle the

departure and arrival of new client processes.



The redesign of the CM is event-based. There are three types of events: messages

from clients, administrative events generated by the server, and the actual addition

and deletion of clients. However, the CM does not provide a common interface for

these events and does not explicitly recognize messages and client arrival/departure

as events. This severely limits the flexibility of the CTAS system, as the event noti-

fication paths connect the producers and consumers of the events directly.

The Central Registry Solution

We redesigned the CTAS CM using the Central Registry pattern. The subsystems

for message-handling, clients, schedulers, and management of flight analyzers are

each modeled as event handlers. The result is a much more flexible and decoupled

system. New behavior can be added dynamically, and different implementations of

components can be easily swapped. Figures 5-1 and 5-2 show module dependence

diagrams of the CTAS CM not using and using Central Registry respectively. Note

that for clarity, the Central Registry components have been left out in Figure 5-2.

Many modules depend on the central registry module, as well as on events. However,

these Figures are highlighting the missing dependences between various pre-existing

modules.

This solution makes use of the asynchronous post policy described in Section 2.4.4,

and does not use any special queue policy. This system does not require any global

state, although some might be introduced to handle emergency cases.

Benefits:

" Achieved further decoupling between the different subsystems.

" Allowed for unification of events under a single hierarchy, which permits easier

extensions to system behavior.

Liabilities:

* Delayed message passing (higher latency).

* One extra level of method invocation per event (lower throughput).



Figure 5-1: Module dependence diagram of a non-CR CTAS design.

43



a I -Message Handlingdeianifer -- -
jP ocesoHsnssr

S MessageProcesso Mngr a Handler

- Schehiabl

Message Filte

'Message

-S---ed

Manager --

1'iiidAdm Iniutration
Evnt

Scheduling

Figure 5-2: Module dependence diagram of a CR CTAS design.

44



5.2 Tagger

Tagger is a text-processing system written by Daniel Jackson [9]. It takes marked up

text as input, and generates output for a layout program (like QuarkXpress). The

design of the Tagger system largely resembles the Central Registry pattern, but differs

in some key aspects. We redesigned this system to comply with Central Registry

pattern, which resulted in a more flexible system.

Design Overview

Tagger uses a token registry, which accepts one event for each token generated by

the input parser, and dispatches them to handlers, which are registered on the token

types. Two particular problems in the design complicated the code:

The registry is not a singleton. The design is complicated by the fact that

events that correspond to the numbering of sections, figures, etc. are handled by

different handlers than events for normal text. The registry consists of two instances

that are active at different times. The two registries maintain different sets of handlers

that embody the behaviors that result from the different contexts of whether the event

is for a numbering string or normal text. This interferes with decoupling: the input

subsystem must decide which registry to send tokens to and the event handlers must

know which registry to register with. This inflexibility highlights the resemblance of

the Tagger design to the Multicast pattern described in [10].

Handlers are implicitly context-dependent. There is one specific case in

the Tagger system when a handler is registered with the standard registry, and im-

mediately removes itself after it is activated. This is to handle the start of a new

paragraph: if no paragraph style token appears after a paragraph break, then a de-

fault style tag must be inserted; if a paragraph style token does appear, then it is

processed as usual. Thus, a new handler must be registered when a paragraph break

is reached, and then deregistered after the next token has been handled. But there is

nothing in the structure of the system that makes this context change explicit, which

makes it difficult to judge how modifications to the system will effect the behavior.



The Central Registry Solution

We added two state variables, TEXT-MODE and PARASTART, to address the anoma-

lies in the original design. TEXTMODE describes whether the system is in normal text

mode or numbering text mode, which correspond to the behaviors of the two dif-

ferent registries in the original design. Event filters check the value of this variable

and dispatch to the correct handler. This solution lacks the elegance of two separate

registries that the original design held.

PARASTART keeps track of whether a paragraph break just occurred, in which case

the event handler for text tokens looks up the default paragraph style and outputs

that token before the text token. The state of the system is now explicit, and no

longer needs to be inferred from the registered handlers.

Our implementation of Tagger uses the synchronous event posting policy, in order

to process every event generated by an incoming token before processing the next

token. We also implemented a variant of Tagger that did not make use of global

state, but instead made use of Registration and Deregistration events. While this

scheme worked, it was rather unwieldy. This system is an example where global state

is not necessary, but significantly improves the ease of implementation.

Benefits:

" Centralized token dispatching, which permits greater behavioral flexibility.

" Allowed for explicit definition of shared context.

Liabilities:

* Shared data can limit modular reasoning.

" Complex filtering as a result of merging registries into a singleton.

5.3 Gizmoball

Gizmoball is a configurable pinball game, used as a final project in an introductory

software engineering class at MIT [7]. The user controls a set of flippers, and must

M



attempt to keep balls from falling off the bottom of the playing area. Users can halt

play, reconfigure the layout of the playing area, and load saved configurations from

disk. The objects on the board are called gizmos. Gizmos may also be connected, so

that if a ball hits some bumper, that collision can cause a flipper on the other side of

the board to flip.

Design Overview

Some of the interesting issues in the design of this system are

The design of the Gizmo ADT and the triggering system. A common

solution presented by many students is what we call an "action-based" design. In this

design, gizmos maintain a set of gizmos that they are connected to. The connections

are maintained in the form of actions, which can be performed on the target gizmos.

Essentially, this design is a variant of the Multicast pattern described in Section

6.4. This design hinders the ability to add new collision behavior. For instance, to

increment a point counter each time that the ball collides with a bumper, a new point

increment action must explicitly be registered with each bumper.

The interface between the GUI and the backend. A common solution is

the use of the Observer pattern [1]. As we discuss in Section 6.2, while the Observer

pattern does allow the backend to be independent of the GUI, the GUI is still depen-

dent on the backend, since it must query the backend for update information. Thus,

modifications to the backend can potentially result in modifications in the GUI.

Dealing with multi-threaded animation. One common solution is to have an

animation thread that calls some method on a board ADT which causes an update to

the GUI through the observer interface. However, implementors have to pay careful

attention to which threads are performing which tasks and must worry about data

races. Some designs simply have the animation thread take care of everything, in

which case performance becomes an issue. Good Gizmoball designs usually provide

some variant of the Command [1] pattern between the animation thread, and the

main program thread.



Figure 5-3: Module dependence diagram of a non-CR Gizmoball design.

The Central Registry Solution

The Central Registry version of Gizmoball was implemented with Robert Lee

and Allison Waingold. Figures 5-3 and 5-4 show module dependence diagrams of

Gizmoball designs not using and using Central Registry respectively. These diagrams

highlight the improved decoupling and modularity in the Central Registry design.

While implementing Gizmoball, we perceived several benefits. Our design of the

gizmo ADT models connections as event handlers, and triggering of connections and

collisions as events. Switching 'between modes (editing, animating, not-animating)

is modeled with global state. Communication between the backend and the GUI is

event-based, severing any dependences between the two subsystems. The animation

thread communicates with the rest of the system by posting events to the central

registry. Our implementation uses a simple queueing policy which drops extra repaint-

request events in the presence of performance slowdown.

This system exposed one potential problem with the Central Registry pattern.

In Central Registry systems, much of the system state is recorded in the queue and



Figure 5-4: Module dependence diagram of a CR Gizmoball design.

the registry. It is therefore quite complicated to store and load this information from

disk. However, this can be remedied by adding an extra event handler that logs every

event and can produce a file from an event trace.

Benefits:

* Easy extension of triggering system to incorporate new actions.

" Completely decoupled the GUI and the backend.

Liabilities:

* Difficulty of saving system state to a file.

* Performance overhead, important in real-time system.

5.4 JarSheet

JarSheet is a configurable spreadsheet application developed by this author accom-

panied by Robert Lee and Allison Waingold.

Central Physics
File I/O RegistryPhsc

Event



Design Overview

Some of the interesting issues in the design of this system are

The design of the cell grid ADT. One fundamental behavior that all spread-

sheets must contain is that of permeating a new value of a cell to all cells that refer

to it. A common design for this problem is to have each cell keep a list of cells that

refer to it, and notify those cells when their values change. Once again, this design

is a variant of the Multicast [10] pattern. Separate mechanisms must be in place to

notify the GUI of a change of value, as it is unlikely that the GUI and the Cell ADT

share a common behavioral interface at the code level.

Allowing for User-Defined Functions. One requirement on the JarSheet ap-

plication was the ability to allow users to define their own mathematical functions

based on a set of existing functions. Many designs will simply create an object that

will take some generic parameter list and return a result. These objects will be stored

in some global lookup table. One interesting design issue is how this table is stored,

and who has access to it. The part of the system that is responsible for creating the

new function objects will have to store them in the table, and the formula evaluation

subsystem will have to access the same table to lookup functions.

The Central Registry Solution

The JarSheet application was designed using the Central Registry pattern. Each

cell was linked to an event handler that would listen for new values in cells it was

interested in. Function closures were implemented as event handlers as well. Adding

a user defined function simply requires registering a new function closure handler in

the central registry.

This design presents several benefits over a more common design. There is no table

lookup by any code to discover which function closure to invoke. This is accomplished

through writing event filters that filter on the type of operation. This means that

when a cell requires a recomputation of it's value, it has merely to throw an event and

wait for an update, which decouples the cell ADT from the computation algorithms.

Furthermore, adding new functions is extremely simple.

M



JarSheet makes use of the synchronous post policy. This makes sense in the

context of cell value computation. It does not seem correct to state that the compu-

tation of a new cell value is over until all sub-formula computations are complete and

a new value is ready. This would not be possible using the asynchronous post policy.

JarSheet does not make use of any global state.

One problem encountered while developing JarSheet came because of the use of

the synchronous post policy. It is unclear what should happen if more than one

event handler will respond to an event. The properties of a synchronous Central

Registry system are currently ambiguous, and some of the properties that hold for

asynchronous systems cannot hold in the synchronous case. One such property is

the notion that all the handlers for an event will execute before the next event is

processed.

Benefits:

" Decoupled the cell ADT from any computation algorithms

" Simple addition of user defined functions

Liabilities:

* Semantics of synchronous post policy are ill defined

5.5 The Visualization Tool for the Alloy Analyzer

The Alloy Analyzer [3] is accompanied by a visualization tool that allows users to

inspect solutions to models or counter-examples to assertions. It is the subject of a

thesis by Brian Lin [15], and was designed using the Central Registry pattern.

The pattern came in useful in decoupling customization entities from generic al-

gorithms that respond to certain customizations. For example, one generic algorithm

for a customization is the ability to project the visualization onto a certain type.

Many of the data elements in the tool must respond to this change in how things are

visualized. An original design used a Multicast/Observer design by having generic



interfaces for the different algorithms which would then register with customizations

that could trigger these algorithms.

The Central Registry design captures the algorithm interface as an event handler

interface, and makes the invocation of an algorithm into an event. Through filtering,

this allows a cleaner separation between the pieces of the algorithm and the sources

of the events.



Chapter 6

Comparisons

There are several patterns that can be classified as specializations of the Central

Registry pattern. Of these patterns, only one has benefitted from formal modeling

and analysis. Here we describe these patterns and where they fall in the feature space.

Table 6.1 summarizes where these patterns fall in terms of the features of Central

Registry.

Pattern central filtering I state I dyn. reg I policies
Observer No Maybe No Yes NA
EventPorts No Yes No Yes NA
II Yes No Yes No Yes
Multicast No No No Yes NA
Mediator Yes No No No NA

Table 6.1: Features of related patterns

6.1 Implicit Invocation

Implicit invocation systems defer method calls to the underlying system. A call to a

procedure is made by generating a request to the system, which then determines a

matching procedure and invokes it. This form of modularization is similar to Central

Registry. Implicit invocation systems decouple the caller from the callee, in the same

way that Central Registry decouples the event producer from the event handler.

Garlan and Khersonsky developed an infrastructure for modeling implicit invoca-



tion systems [6]. The model is similar to ours in that the internal machinery of event

delivery is factored out so that a new system can be modeled by adding specifications

for the event and event handling components in the system. Their modeling infras-

tructure handles shared variables and pluggable post and dispatch policies. However,

they do not model event filtering as we do. While event filtering can be mimicked with

state variables, we believe that the increased modularity of encapsulated event filters

is a significant improvement. Our modeling infrastructure can accommodate systems

that do not include event filters, whereas modeling event filters by introducing state

variables in their system would not be as straightforward.

Garlan's model also assumes that the event bindings are fixed at startup. Again,

we could use state variables to model changing event bindings, but this complicates

the model and in our experience, the behavior that results from changing bindings is

particularly error-prone.

6.2 Observer

In instances of the Observer pattern [1], an observer registers its interest in a subject

with the subject itself. The subject keeps track of its observers, and notifies each of

its observers whenever its state changes [1]. The observer then queries the subject to

ascertain the nature of the state-change.

Observer is used extensively in Java's windowing toolkit (AWT). Classes can im-

plement listener interfaces for each type of event (e.g. a mouse event, or a button

pressed event), and register themselves to listen to events occurring in a particular

window (or other GUI widget). In this case, the subject keeps track of listeners for

each type of event, providing type-based filtering.

Observer differs from Central Registry in two ways: its distributed nature and

the dependence of the observers on the subjects. Each subject keeps track of its own

observers. Filtering can be implemented (as in the AWT example), but is not part

of the core pattern.



6.3 EventPorts

EventPorts is an implicit invocation pattern similar to Central Registry 15]. In the

EventPorts approach, the event handling components each export two interfaces in

order to interact with other components: the InPorts and OutPorts. The InPorts in

this model are very similar in function to the EventFilters presented in the Central-

Registry model. They contain the logic to match an event. The OutPort interface is

meant to decouple the event handling logic from the logic that dispatches outgoing

messages. Both interfaces can be dynamically bound and unbound.

While the EventPorts approach is similar to Central Registry, there are several

key differences. Without a central point of registration, it is difficult to provide the

framework to reason about several key system attributes. The lack of a centralized

model of global state makes it difficult to provide the groundwork for sound reasoning

about state changes across event handlers. Furthermore, there are no guarantees of

ordering and atomicity. Lastly, the EventPorts approach does not achieve the same

re-usability of event handler/event filter pairings.

6.4 Multicast

Multicast [10] attempts to decouple event producers from the objects that handle

events. Each event producer keeps a registry of event handler objects to which it

passes events and dispatches the events to all registered handlers. In this sense, the

pattern resembles Central Registry. However, Multicast has an explicit dependence

of the event handler on the event producer. This dependence is not present in Central

Registry.

Vlissides argues in [10] that the primary reason for not using a Central Registry-

type approach is the lack of type-safety. In our framework, we achieve some measure of

runtime type using the Visitor pattern [1] on events, event filters, and event handlers.

M



6.5 Mediator

Mediator [1] employs a mediator object to keep objects from referring explicitly to each

other. The mediator defines an interface that colleagues use to communicate with each

other. Any behavior that one colleague uses which is provided by another colleague

must be included in the mediator interface. Mediator achieves some of the same goals

as Central Registry - a colleague can be swapped with another that implements the

same behavior, without changing other colleagues that use the behavior. However,

this can only be done statically; there is no way to dynamically reconfigure the system.

Furthermore, adding new behavior in the module requires expanding the mediator

interface. While superficially similar to Central Registry, the mediator pattern uses

encapsulation, not implicit invocation.



Chapter 7

Discussion and Conclusions

7.1 Formal Models of Patterns

The model is implemented in a framework mind-set. This means that we set up the

model so that it should be simple to extend for a particular system. We believe this

to be desirable to users of the pattern. Users of any design pattern would like to

know if they are using it correctly. They can do this by writing assertions that would

check if properties of their system are guaranteed by the generic pattern. We have

not done this type of analysis for any of the systems we described in Section 5.

Our experience building a formal model of the Central Registry pattern provided

us with the following benefits :

e Clarity in understanding the pattern. Writing precise specifications of the

structure and behavior led us to understand many of the consequences of the

design that we might have overlooked otherwise.

" Encouraged discovery of properties. Alloy is accompanied by an automatic

analyzer. The availability of a tool that can check properties encouraged us to

precisely define some of the properties that we might not have defined at all.

* Usage of the pattern. By playing with formal specifications of the pattern,

we discovered interesting aspects about the various features that are not quite



properties. For example, we realized that the notion of atomicity did not really

accompany the synchronous post policy in the way we had originally thought.

This led to a better understanding of how the synchronous policy should be

used by implementors.

* Checking generic properties. The Alloy Analyzer allowed us to check var-

ious properties of the pattern that are common to every Central Registry im-

plementation.

We believe that the benefits gained from this experience could be applied to other

design patterns, in particular those that exhibit complex structure and/or behavior.

All current design pattern descriptions in [1] lack a precise definition of behavior, and

concentrate instead on informal arguments for increased decoupling. In this thesis,

a formal description of behavior, structure and properties accompanied the informal

argument for increased coupling. The desired effect of this is a higher confidence

in the claims made by the informal arguments. It seems that, while perhaps the

patterns in [1] are perhaps so widely used and understood that they will not benefit

from this, new patterns can gain credibility from this type of approach. In addition,

even patterns described in [1] could benefit in precision by being described formally.

7.2 Frameworks for Design Patterns

Several languages have incorporated design patterns as language features or library

elements, and have made the use of these patterns commonplace. The Iterator [1]

pattern has become commonplace in the java. util package. The java. awt . event

package represents a medly of several design patterns. Similarly, the Observer [1] pat-

tern is integrated into Smalltalk-80 [1], and Java (java.util.Observer). Languages

where procedures are first-order elements incorporate the Strategy [1] pattern as an

integral part of the language. Some work has been done that investigates language

extensions to incorporate design patterns [14].

The desired goal of providing a language feature or a library framework for a



design pattern is to make it more simple and natural to use the design pattern. This

should improve the quality of code produced in that language as the structure and

pattern-related behavior of the pattern elements is pre-defined.

For many patterns, the benefits of having library frameworks is negligeable. It is

trivial, for example, to rewrite the Observer interfaces in a language such as Java.

Central Registry is a somewhat more complex pattern both in structure and behavior.

In addition, there is an element in the pattern, the CentralRegistry that is common

to all instances of the pattern with few extensions. Furthermore, the extensions to

this element are provided for in a modular way by the framework. This has significant

benefits for designers that wish to use Central Registry.

The model of Central Registry in the Alloy language is also a framework. Alloy

is not accompanied by any design pattern libraries. A benefit of having a pattern

library is that it can be accompanied by a set of properties that are desirable for all

instances of the pattern. Extending the framework will allow a system designer to

easily profit from the power of the Alloy Analyzer to check properties of a system,

which is extremely beneficial to the early detection of design flaws.



60



Appendix A

Framework Specifications

package centralreg.event;

* This class is the CentralRegistry component of Central Registry pattern frameworK

* @specfield registeredPairs \\ EventFilter -> EventHandler

* @specfield globalState \\ StateElement -> ? StateValue
* @specfield queue \\Seq[Event]

* @specfield registeredInvariants \\ set Invariant

* Invariants are invariants on this.state, and are checked before and

* after the execution of each event handler.

public class CentralRegistry extends EventHandler {

* This method initializes the CentralRegistry from a properties file.
* This file specifies the post policy, queue policy, and the global state setup.
*

* @param the name of the properties file

public static void init(String filename);

* @requires: nothing

* @returns: the singleton instance of CentralRegistry

public static CentralRegistry getInstanceo;

* @requires args != null
* @modifies this.registeredInvariants

* @effects attempts to register inv as an invariant of the system.

* If owner does not own all the StateElements involved in the



* invariant, StateElementOwnershipException, no modification to this.

public void registerInvariant(EventHandler owner, StateInvariant inv)
throws StateElementOwnershipException;

* Orequires this.registeredPairs not be modified while Iterator is in use

* freturns a generator for the set of all EventHandlers eh s.t.
* this.registeredPairs[eh] is non-null

public Iterator handlersO;

* Crequires this.registeredPairs not be modified while Iterator is in use
* freturns a generator for the set of all EventFilters ef s.t.
* this.registeredPairs[eh] = ef

public Iterator filters(EventHandler eh);

* The CentralRegistry is an EventHandler that can handle RegisterEvents.
*

* @requires : args != null
* @modifies : this.registeredPairs
* @effects : this'.registeredPairs = this.registeredPairs + e.regChange
*/

public void handleEvent(RegisterEvent e, Context currentState);

* The CentralRegistry is an EventHandler that can handle DeregisterEvents.
*

* @requires : args != null
* @modifies : this.registeredPairs
* Oeffects : this'.registeredPairs = this.registeredPairs - e.deregChange

public void handleEvent(DeregisterEvent e, Context currentState);

* @requires : e!= null
* @modifies : this.queue
* @effects : e will be placed on the queue. It's location on the queue
* will depend on the current post and queue policies.
*/

public void processEvent(Event e);

* @requires: nothing
* fmodifies: nothing
* freturns: copy of this.globalState

public Context getCurrentStateo;



El

package centralreg.event;

* Context defines a mutable mapping from state elements to state values.
* @specfield state \\ StateElement -> StateValue
* Each Context should be initialized correctly (i.e. each state element
* should be set to some default value, and the names of the state should be
* set correctly.
*/

public interface Context {

* @requires : this.state not be modified while iterator is in use
* @modifies : nothing
* @effects : returns an iterator over the global state elements
*/

public Iterator stateElementsO;

* @requires : nothing
* @modifies : nothing
* @effects : returns a new Context object that is .equalso to this

public Context copyO;

* @requires : arg != null
* @modifies : nothing
* @effects : if stateElement is a valid StateElement
* returns this.state[stateElement]

* otherwise, NoSuchElementException
*/

public Object pollElement(String stateElement)
throws NoSuchElementException;

* @requires : arg != null
* @modifies : this.state
* @effects : if stateElement is a valid StateElement,
* and if value is a legal value,
* this'.state[stateElement] = value
* if stateElement is not valid : NoSuchElementException
* if value is not valid : InvalidValueForElementException

public void assertElement(String stateElement, Object value)
throws NoSuchElementException, InvalidValueForElementException;

}

package centralreg. event;



* An Event is a polymorphic data type used to encapsulate an event in the system.
* An Event is a triple : (source, body, state), where source is the EventProducer

* that generated this event, body is a generic object, and state is a virtual
* context which represents the status of the Context at the time of
* creation of the Event.
* Qspecfield body \\ generic Object
* @specfield source \\ EventProducer that generated this.
* The relationship between Event and EventHandler is an instance of the Visitor
* pattern. EventHandlers are Visitors, and Event's can be visited.
* They accept EventHandlers, and call eh.handleEvent(this, c) inside
* the accept(EventHandler eh, Context c) method.
* The same relationship exists between Event and EventFilter objects.

public interface Event {

* @requires nothing

* @returns this.body

public Object getBodyO;

* @requires nothing

* Qreturns this.source

public EventProducer getSourceO;

* @requires nothing

* @effects implements the abstract accept operation as an element

* that can be visited by a Visitor. Calls the abstract

* handleEvent(this, c) method on EventHandler.
*/

public void accept(EventHandler eh, Context c);

* @requires nothing

* @effects implements the abstract accept operation as an element

* that can be visited by a Visitor. Calls the abstract

* acceptsEvent(this, c) method on EventFilter.

public boolean accept(EventFilter ef, Context c);

}

package centralreg.event;

* This class defines a generic EventFilter. It has an acceptsEvent
* method which returns true if this filter matches the event in the
* given state.



* This class is a Visitor in the Visitor pattern. The visit method is
* the acceptsEvent method

public abstract class EventFilter {

* @requires all args != null
* @returns true if the EventHandler that this is registered for in
* the CentralRegistry can handle <e> in the currentState
* note : the default behavior is to return false.

public boolean acceptsEvent(Event e, Context currentState);

* Most EventHandlers will not want to accept RegisterEvents.
* This defaults to false;

public boolean acceptsEvent(RegisterEvent e, Context currentState);

* Most EventHandlers will not want to accept DeregisterEvents.
* This defaults to false;

public boolean acceptsEvent(DeregisterEvent e, Context currentState);

}

package centralreg.event;

* An EventHandler defines the behavior for handling an Event.
* This class is a Visitor in the Visitor pattern. The visit method
* from the Visitor pattern is the handleEvent method in this class.
*/

public abstract class EventHandler
{

* The top level handleEvent method. This defaults
* by throwing a runtime exception.

public void handleEvent(Event e, Context currentState);

* Most EventHandlers will not respond to RegisterEvents.
* Therefore, this defaults by throwing a runtime exception.

public void handleEvent(RegisterEvent e, Context currentState);

* Most EventHandlers will not respond to DeregisterEvents.
* Therefore, this defaults by throwing a runtime exception.



public void handleEvent(DeregisterEvent e, Context currentState);
}

package centralreg.event;

* This class represents an abstract invariant on global state.
* The check method performs the verification of the invariant
* and throws a runtime exception if the invariant does not hold

public interface StateInvariant {
public boolean check(Context state);

}



Appendix B

Complete Alloy Model

Alloy Model of the Central Registry design pattern.

Rob Lee, Allison Waingold, Jonathan Whitney. 3-15-02.

This model describes the core features of the Central Registry design pattern.

Central Registry is a generalization of various implicit invocation patterns.

This model describes the basic structure of a system using Central Registry,

as well as the various behaviors these systems can have.

Central Registry is a pattern for component-based message passing systems.

The core elements are

Events.

Events encapsulte a message passed between subsystems

EventHandlers.

EventHandlers encapsulte interfaces to subsystems. They can handle certain Events in certain States.

They are registered with the CentralRegistry against some set of EventFilters. EventHandlers

can make changes to the STate, and can be EventProducers

EventFilters.

EventFilters are predicates on Events and States. They are registered with EventHandlers

in the CentralRegistry.

EventProducers.

EventProducers are parts of the system that can post Events to the CentralRegistry.

CentralRegistry.

The CentralRegistry maintains a registry of EventHandlers paired with EventFilters. It also

maintains a queue of Events, as well as a global State, which maps variable names to values.

The CentralRegistry is in charge of dispatching Events to all interested EventHandlers.

In the formal model presented below, Events, EventHandlers and EventFitlers are modeled with signatures.

The CentralRegistry is modeled by a finite state machine, called CentralRegistryState. One atom of this signature describl

the state of the CentralRegistry at one point in time. The model describes the behavior of the pattern by defining

the legal transitions of this finite state machine. We have modeled special events for registration and deregistration.

Properties of the structure are represented as invariant constraints. Some of the generic behavior is also described

as invariant constraints on the state transitions of the finite state machine. Behavior that belogs to various different

policies is modeled in functions, which are constraints that can be applied at will.

We have also described some of the properties that we would like to investigate. For the most part, we

investigate the results of applying some policy to the finite state machine. These properties are described

in assertions. The Alloy Analyzer will attempt to find counter-examples to these assertions in some scope.



/**We called our model helen after our inspiration**/

module prophelen

STRUCTURE AND CONSTRAINTS

This part of the model describes the basic structure of the pattern. Sigs represent types, and relations are

declared inside them. Sigs can be appended with constraints that are applied to every atom of the sig.

/**These are some standard libraries of Alloy constraints and signatures. Seq describes polymorphic sequences. Ord

describes polymorphic total orderings. SeqUtil describes some utilities for sequences, such as constraints for

subsequence.*/

open std/seq

open std/ord

open SeqUtil

/*This model is based on a FSM idiom. Each CentralRegistryState

represents a point in time of the Central Registry*/

sig CentralRegistryState {

//this field is non null if this state was reached by an event being processed.

//in which case it is the event that was just processed

eventJustProcessed: option Event,

//if in the state transition that resulted in this state included a

//these events are in some sequences in this set.

eventsJustGenerated : set Seq[Event],

//eh->ef is in registeredPairs if eh is registered against ef in th

registeredPairs : EventFilter -> EventHandler,
//this field represents the current global state

globalState : State,
//this field represents the current queue of Events

queue : Seq[Event],
//this field represents the set of Invariants that will be checked.

registeredInvariants : set Invariant

}

/**Abstract events specify legal global states.*/

sig Event {
legalStateTrans : State -> State

}

/*regChange and deregChange are the ef->eh pairs that will be

added or removed from the central registry*/

disj sig RegisterEvent extends Event {
regChange : EventFilter -> EventHandler

}
disj sig DeregisterEvent extends Event {

deregChange EventFilter -> EventHandler

}

sig Bindings {
stateMapping StateElement -> ? StateValue

}

/*Global state assigns a value to every variable*/

Lny new events

is state



sig State extends Bindings {
}

//this is the constraint about "completeness"
stateMapping.StateValue = StateElement

}

/*The trans relation describes the state changes and new events
that result from handling an event in a given global state.*/

sig EventHandler {
trans : Event -> State -> Bindings->Seq[Event]

}

/*If e->s is in match, then the filter accepts e in state s*/
sig EventFilter {

match : Event -> State

}

sig StateElement {}
sig StateValue {}

/**This sig describes an invariant set on the global State. All global states must match the invariant*/
sig Invariant {

allows : set Bindings
}

Enqueue, Process and Reorder are sigs that are simply used to get a better visualization of the behavior in
the Analyzer. They are not part of the core model*/
sig Enqueue {}
sig Process {}
sig Reorder {}

STATE TRANSITIONS

these functions describe various legal state transitions that CentralRegistryStates can take.

/**This fun describes how Events are processed from the head of the queue in the synchronous policy.
In the synchronous policy, there is no queue in the CentralRegistry. However, we have to model the recursive nature
of the synchronous policy with a queue, as Alloy doesn't support recursion. Therefore, we model the synchronous policy
by enqueuing new events at the head of the queue.*/
fun synchronousProcess(s, s':CentralRegistryState) {

some s.queue..SeqFirst()
preconditiono)
let activeEvent = s.queue..SeqFirst() {

s'.eventJustProcessed = activeEvent
let activeHandlers = acceptingHandlers(activeEvent, s) {

handleSpecialEvent(activeEvent, s.registeredPairs, s'.registeredPairs)

let allPossibleChanges = collectChanges(activeHandlers, activeEvent, s.globalState) {
//OR MAYBE THIS COULD READ : some chosenChanges: allPossibleChanges

some chosenChanges:EventHandler->Bindings->Seq[Event] {
all eh:activeHandlers {

sole change:eh->Bindings->Seq[Event] I
change in allPossibleChanges and change in chosenChanges
}
all eh:chosenChanges.Seq[Event].Bindings I eh in activeHandlers
//this causes the chosen state changes to be written in arbitrary order.
writeChanges(s, s', EventHandler.chosenChanges.Seq[Event])
appendToQueueFrontRemove(s, s', Bindings.(EventHandler.chosenChanges))
Bindings.(EventHandler.chosenChanges) = s'.eventsJustGenerated

}

}



}
/**This fun describes the state transition of an event being synchronously enqueued outside of event handling.*/

fun synchronousEnqueue(s, s':CentralRegistryState, e:Event) {
some seq:Seq[Event] {

s'.eventsJustGenerated = seq
seq.seqElems = Ord[SeqIdx].first->e
appendToQueueFront(s, s', seq)

}
s'.registeredPairs = s.registeredPairs
s'.globalState = s.globalState
no s'.eventJustProcessed

}

/**This fun describes how Events are processed from the head of the queue in the asynchronous policy.

The this policy, new Events are enqueued at the end of the queue. */
fun asynchronousProcess(s, s':CentralRegistryState) {

some s.queue..SeqFirsto)
let activeEvent = s.queue..SeqFirsto) {

s'.eventJustProcessed = activeEvent
let activeHandlers = acceptingHandlers(activeEvent, s) {

handleSpecialEvent(activeEvent, s.registeredPairs, s'.registeredPairs)
let allPossibleChanges = collectChanges(activeHandlers, activeEvent, s.globalState) {

some chosenChanges:EventHandler->Bindings->Seq[Event] {
all eh:activeHandlers {

sole change:eh->Bindings->Seq[Event] I
change in allPossibleChanges and change in chosenChanges

}
all eh:chosenChanges.Seq[Event].Bindings I eh in activeHandlers
writeChanges(s, s', EventHandler.chosenChanges.Seq[Event])
appendToQueueBackRemove(s, s', Bindings.(EventHandler.chosenChanges))
Bindings.(EventHandler.chosenChanges) = s'.eventsJustGenerated

}
}
}

}

/**This fun describes the state transition of an event being asynchronously enqueued outside of event handling.*/

fun asynchronousEnqueue(s, s':CentralRegistryState, e:Event) {
some seq:Seq[Event] {

seq.seqElems = Ord[SeqIdx].first->e
s'.eventsJustGenerated = seq
appendToQueueBack(s, s', seq)

}
s'.registeredPairs = s.registeredPairs
s'.globalState = s.globalState
no s'.eventJustProcessed

}

/**This describes the state transition of reordering the queue with two priorities. Deregister and Register events
have higher priority than any other event.*/
fun twoPriorityQueueReordering(s, s':CentralRegistryState) {

// some s.queue.seqElems
reorderedQueues(s, s')

no e:Event - (RegisterEvent+DeregisterEvent) {
some e':RegisterEvent+DeregisterEvent I e' in s'.queue..SeqNexts(e)

}
no s'.eventJustProcessed
no s'.eventsJustGenerated

}



POLICIES

Policies are constraints on which state transitions are legal.

/**This policy states that all state transitions must be synchronous**/
fun synchronousPolicy() {

setupo)
all s:CentralRegistryState - Ord[CentralRegistryState].last {

let s' = OrdNext(s) {
((synchronousProcess(s, s')) || (some e:Event I synchronousEnqueue(s, s', e)))

}
}

}

/**This policy states that all state transitions must be asynchronous**/
fun asynchronousPolicyo) {

setup()
limitTrans()
all s:CentralRegistryState - Ord[CentralRegistryState].last {

let s' = OrdNext(s) {
((asynchronousProcess(s, s')) || (some e:Event I asynchronousEnqueue(s, s', e)))

}
}

}

/**This policy states that enqueue and process state transitions are asynchronous, and interleaved
with state transitions that reorder the queue.**/
fun twoPriorityQueuePolicyo) {

setup()
limitTrans()
forceInterestingBehavior()

some s:CentralRegistryState-Ord[CentralRegistryState].last I twoPriorityQueueReordering(s, OrdNext(s))

all s:CentralRegistryState - Ord[CentralRegistryState].last {
let s' = OrdNext(s) {

((asynchronousProcess(s, s')) || (some e:Event I asynchronousEnqueue(s, s', e)) I twoPriorityQueueReordering(s, s'))

(((asynchronousProcess(s, s')) || (some e:Event I asynchronousEnqueue(s, s', e)))&& some OrdNext(s')) =>
twoPriorityQueueReordering(s', OrdNext(s'))

(twoPriorityQueueReordering(s, s') && some OrdNext(s')) =>
((asynchronousProcess(s', OrdNext(s'))) |1 (some e:Event I asynchronousEnqueue(s', OrdNext(s'), e)))

}
}

}

HELPER FUNCTIONS

//utility function to limit the size of the trans relation, so we can actually see things
det fun limitTrans() {

all eh:EventHandler {
#eh.trans < 3
some eh.trans

}
}

71



//utility function that forces some Reordering based on priorities in the two priority scheme
fun forceInterestingBehavior() {

some e:Event - (DeregisterEvent + RegisterEvent) {
Ord[CentralRegistryState].first.queue..SeqFirst() = e
#Ord[CentralRegistryState].first.queue..SeqElems() >1
some e:(DeregisterEvent+RegisterEvent) {

e in Ord[CentralRegistryState].first.queue..SeqElems()

}
I
noDuplicateEvents(C)

}

//utility function that gives the set of EventFilters that can
//accept a specific Event
det fun acceptingFilters(e:Event, dispatchState:State):set EventFilter
{

result = {ef:EventFilterl (dispatchState in e.(ef.match)) }
I
//utility function that gives the set of EventHandlers that
//are registered against filters that accept the parameter event
det fun acceptingHandlers(e:Event, dispatch:CentralRegistryState): set EventHandler {

result = {eh:EventHandler I some ef:EventFilter { ef in acceptingFilters(e, dispatch.globalState)
and eh in ef.(dispatch.registeredPairs) } }
I

//this collects the changes resulting from dispatching the active event to all
//the event handlers. It makes an non-deterministic choice if there are many possibilities in the trans relation
det fun collectChanges(activeHandlers:set EventHandler, activeEvent:Event, dispatchState:State):
EventHandler->Bindings->Seq[Event] {

result = {eh:activeHandlers, b:Bindings, seq:Seq[Event] I
eh->activeEvent->dispatchState->b->seq in EventHandler$trans

}
}

/** this updates the registeredPairs for Register and Deregister events*/
det fun handleSpecialEvent(activeEvent:scalar Event, registeredPairs: EventFilter -> EventHandler,
outputRegisteredPairs : EventFilter -> EventHandler){

outputRegisteredPairs = registeredPairs + activeEvent.regChange - activeEvent.deregChange
I

/**This fun describes the precondition for the synchronous post policy. In otherwords, it is a constraint that
requires that there be never be more than one EventHandler that handles an Event.*/
fun preconditiono) {

//this says that there is at most one EventHandler that can ever handle an event

all crs:CentralRegistryState {
let e = crs.queue..SeqFirst() {

sole eh:crs.registeredPairs[EventFilter] I eh->e->crs. globalState->Bindings->Seq [Event] in EventHandler$trans
}

}

}

/**This fun describes how the set of Bindings <stateChanges> is written to the global state of s'.*/
fun writeChanges(s, s': CentralRegistryState, stateChanges:set Bindings) {
/*

let modifiedElements = stateChanges.stateMapping.StateValue {
all se:modifiedElements {

one b:stateChanges {
se->b.stateMapping[se] in s'.globalState.stateMapping

}

all se:StateElement-modifiedElements {



s'.globalState.stateMapping[se] = s.globalState.stateMapping[se]
}

}

(s'.globalState).stateMapping = (s.globalState).stateMapping -
(((stateChanges.stateMapping).StateValue)->(StateValue - (StateElement.(stateChanges.stateMapping)))) +
stateChanges.stateMapping

}

/**This is a helper fun to describe appending a set of sequences to the back of a queue while removing the front element*
det fun appendToQueueBackRemove(s, s':CentralRegistryState, newEvents:set Seq[Event]) {

s'.queue..SeqStartsWith(SeqRest(s.queue))
all seqEvents: newEvents {

SeqUtilities[Event]..subSequence(seqEvents, s'.queue)
}
#s'.queue.seqElems+1 = (sum seq:newEvents+s.queuel #seq.seqElems)

}

/**This is a helper fun to describe appending a set of sequences to the back of a queue*/
det fun appendToQueueBack(s, s':CentralRegistryState, newEvents:set Seq[Event]) {

s'.queue..SeqStartsWith(s.queue)
all seqEvents:newEvents {

SeqUtilities[Event]..subSequence(seqEvents, s'.queue)

}
#s'.queue.seqElems = (sum seq:newEvents+s.queue I #seq.seqElems)

}

/**this is a helper fun to descript appending a set of sequences to the head of a queue while removing what was the head*
det fun appendToQueueFrontRemove(s, s':CentralRegistryState, newEvents: set Seq[Event]) {

SeqUtilities[Event]..SeqEndsWith(s'.queue, SeqRest(s.queue))
all seqEvents:newEvents {

SeqUtilities[Event]..subSequence(seqEvents, s'.queue)

}
#s'.queue.seqElems+1 = (sum seq:newEvents+s.queue I #seq.seqElems)

}

/**This is a helper fun to describe appending a set of sequences to the head of a queue*/
det fun appendToQueueFront(s, s':CentralRegistryState, newEvents: set Seq[Event]) {

SeqUtilities[Event]..SeqEndsWith(s'.queue, s.queue)
all seqEvents:newEvents {

SeqUtilities[Event]..subSequence(seqEvents, s'.queue)

}
#s'.queue.seqElems = (sum seq:newEvents+s.queue I #seq.seqElems)

}

/**This is a helper fun to describe the condition that the queues are in some different order*/
fun reorderedQueues(s, s':CentralRegistryState) {

//the queue's don't change size
#s'.queue.seqElems = #s.queue.seqElems

all ind:((s.queue).seqElems).Event {
let e = (s.queue).seqElems[ind] {

#((s'.queue).seqElems).e = #((s.queue).seqElems).e
}

}
}

fun setup() {
no Ord[CentralRegistryState].first.eventJustProcessed
no Ord[CentralRegistryState].first.eventsJustGenerated

}



/**This encapsulates the condition that el is generated before e2 in the presence of asynchronous state transitions**/

fun genBefore(el, e2:Event) {

let crgenl = {cr:CentralRegistryState I el in cr.eventsJustGenerated..SeqElemso} {
let crgen2 = {cr:CentralRegistryState I e2 in cr.eventsJustGenerated..SeqElemso} {

((some crgeni) and (some crgen2) and ((OrdLT(crgen1, crgen2)) or ((crgenl = crgen2) and
(some seq:crgen1.eventsJustGenerated I (el+e2 in seq..SeqElemso) and seq..SeqPrev(ei, e2)))))

/**This encapsulates the condition that el is dispatched before e2

fun dispBefore(ei, e2:Event) {
let crdisp1 = CentralRegistryState$eventJustProcessed.e1 {

let crdisp2 = CentralRegistryState$eventJustProcessed.e2 {
((some crdisp1) and (some crdisp2)) => OrdLT(crdispl, crdisp2)

}
}

}

/**This describes the condition that Events are never reused**/
fun noDuplicateEvents() {

all crs:CentralRegistryState {
not crs.queue..SeqHasDups()

}
all ev:Event {

sole crs:CentralRegistryState {
ev in crs.eventsJustGenerated..SeqElems()

}

in the presence of asynchronous state transitions**/

all crs:CentralRegistryState-Ord(CentralRegistryState].first {
no (Ord[CentralRegistryState].first.queue..SeqElems() &

crs.eventsJustGenerated..SeqElemso)

}
}

}

/**This fun describes the condition that a sequence of events is unsorted**/

fun Unsorted(seq:Seq[Event]) {

some e:Event - (RegisterEvent+DeregisterEvent), e':(RegisterEvent+DeregisterEvent) I

e in seq..SeqPrevs(e')

}

/**This describes the condition that two events have the same priority**/

fun samePriority(e1, e2:Event) {
(el+e2 in RegisterEvent+DeregisterEvent) || (e1+e2 in Event - (RegisterEvent + DeregisterEvent))

}

fun TransactionTransition(s, s':CentralRegistryState) {
let activeEvent = s.queue..SeqFirst() {

let activeHandlers = acceptingHandlers(activeEvent, s) {
some transactionOrder: Seq[EventHandler] {

all eh:activeHandlers I one transactionOrder.seqElems.eh

// all eh:activeHandlers I one ind:SeqIdx I transactionOrder[ind] = eh
transactionOrder..SeqElems() in activeHandlers

ChangeReflectsOrder(s, s', transactionOrder)

fun ChangeReflectsOrder(s, s':CentralRegistryState,

let activeEvent = s.queue..SeqFirst() {
let activeHandlers = order..SeqElems() {

order: Seq[EventHandler]) {



some emptyBinding: Bindings {
no emptyBinding.stateMapping
some bindings0rder: Seq[Bindings], evOrder:Seq[Seq[Event]] {

#bindingsOrder.seqElems = #order.seqElems
#evOrder.seqElems = #order.seqElems
//this universal quantifier states that the two sequences represent the chosen transitions per event handler
//and that the indeces match up
all ind: order.seqElems.EventHandler {

let b = bindings0rder.seqElems[ind] {
let evseq = evarder.seqElems[ind] {
let eh = order.seqElems[ind] {

activeEvent->s.globalState->b->evseq in eh.trans

}
}

}
}

//have to say now that
//. The bindings changes were applied in order.
//2. The seqs were appended in order.

//.
//changedPair is the set of se->sv pairs that are in s' but not s.
all changedPair:s'.globalState.stateMapping-s.globalState.stateMapping {

let se = changedPair.StateValue {
let sv = changedPair[se] {

//there must be some bindings that established

some b:bindings0rder..SeqElemso) {
se->sv in b.stateMapping
all b':bindingsOrder..SeqNexts(b) {

no sv':StateValue I se->sv' in b.stateMapping
}

}
}

}
}
//2.
//we will use a flatten function on seqs, and state that this flattened seq is
//what is appended to the queue...
let flattened = FlattenSeqs(evOrder) {

appendToQueueBackRemove(s, s', flattened)
}

}
}

}
}

}

det fun FlattenSeqs(s:Seq[Seq[Event]]):Seq[Event] {

//these conditions help a lot :)
!s..SeqHasDups()
all seq:s.seqElems[SeqIdx] {

!seq..SeqHasDupso)
}

//special case for the beginning
let iO = Ord[SeqIdx].first {

result.seqElems[iO] = (s.seqElems[iO]).seqElems[iO]
}
//this says that every sequence in the sequence is a subsequence in the result

all i:s.seqElems.Seq[Event] {
SeqUtilities[Event]..subSequence(s.seqElems[i], result)

}
//as subsequence preserves ordering, all we need to say now is



//each adjacent sequence connect by first and last elements
all i':s.seqElems.Seq[Event]-Ord[SeqIdx].first {

let i = OrdPrev(i') {
let lasti = s.seqElems[i]..SeqLasto) {

let firsti' = s.seqElems[i'l..SeqFirst() {
let resultindiceslast = result.seqElems.lasti {

let resultindicesfirst = result.seqElems.firsti' {
some resi:resultindiceslast, resi':resultindicesfirst I resi = OrdPrev(resi')

}
}

}
}

}
}

}

fun OverlappingStateValues(s: CentralRegistryState) {
let activeEvent = s.queue..SeqFirsto) {

let activeHandlers = acceptingHandlers(activeEvent, s) {
let potentialBindings = activeHandlers.trans[activeEvent][s.globalState].Seq[Event] {

no se:potentialBindings.stateMapping.StateValue {
some disj ehl, eh2:activeHandlers {

(eh1.trans[activeEvent][s.globalState].Seq[Event]).stateMapping[se] !
(eh2.trans[activeEvent][s.globalState].Seq[Event]).stateMapping[se]

}
}

}
}

}
}

fun ObeyLegalBindingsTrans(s, s': CentralRegistryState) {
let activeEvent = s.queue..SeqFirst() {

let activeHandlers = acceptingHandlers(activeEvent, s) {
let potentialBindings = activeHandlers.trans[activeEvent][s.globalState].Seq[Event] {

all b:potentialBindings {
//exState will be the extension to a State of b
some exState:State {

//ex state has all the se's of b
all se:b.stateMapping.StateValue {

se->b.stateMapping[se] in exState.stateMapping
}
//and it is extended to match the rest of what the global state was.
all se:StateElement-b.stateMapping.StateValue {

se->s.globalState.stateMapping[se] in exState.stateMapping
}

//now all we have to say is that s.globalState->exState is a legal trans
s.globalState->exState in activeEvent.legalStateTrans

}
}

}
}

}
}

fun AllowState(s:CentralRegistryState, exState:State) {
all inv:s.registeredInvariants {

some b':inv.allows {
b'.stateMapping in exState.stateMapping

}
}

}

//utility fun that constrains a Bindings to match all Invariant from a given CRState
fun MatchInvariants(s: CentralRegistryState, b:Bindings) {



some exState:State {
//ex state has all the se's of b

all se:b.stateMapping.StateValue {
se->b.stateMapping[se] in exState.stateMapping

}
//and it is extended to match the rest of what the global state was.

all se:StateElement-b.stateMapping.StateValue {
se->s.globalState.stateMapping[se] in exState.stateMapping

}
//now exState is what will be the result of only asserting b.

//we have to check that exState matches the invariants that are registered.

AllowState(s, exState)

}
}

//this fun states that if a bindings intersects with an invariant's state elements,

//then it must assert a value for each element

fun StrongInvariantAssertion(s:CentralRegistryState, b:Bindings) {

all inv:s.registeredInvariants {
(some b':inv.allows I some b'.stateMapping.StateValue & b.stateMapping.StateValue) =>

{
all b':inv.allows {

b'.stateMapping.StateValue in b.stateMapping.StateValue

}

}
}

}

/**This describes a CR system which has the property of allowing conflicting registrations for State*/

fun StateConflicts(cr:CentralRegistryState) {
//there is a state conflict if there exists some event and some state for which there are two bindings produced that

//agree on a se, but not an sv

some disj eh1, eh2:EventHandler, disj ef1, ef2:EventFilter {
ef1->ehl in cr.registeredPairs

ef2->eh2 in cr.registeredPairs

some e:Event, s:State {
e->s in efl.match

e->s in ef2.match

let b1 = ehl.trans[e][s].Seq[Event] {
let b2 = eh2.trans[e][s].Seq[Event] {

some se:StateElement {
some bl.stateMapping[se]

some b2.stateMapping[se]

b1.stateMapping[se] != b2.stateMapping[se]

}
}

}
}

}
}

PROPERTIES

Properties are things about the pattern that we would like to check

/**This describes a CR system in which there is no global state*/

fun NoGlobalStateo) {
no StateElement

no StateValue

}

fun AsyncNoGlobalState() {
asynchronousPolicy()



NoGlobalState()
TransactionSystem()

}

run AsyncNoGlobalState for 2 but 1 CentralRegistryState

fun NoConflictsSystemo) {
all s:CentralRegistryState {

!StateConflicts(s)
}

}

fun AsyncNoConflictsSystem() {
NoConflictsSystemo)
TransactionSystem()
asynchronousPolicy()

}
run AsyncNoConflictsSystem for 2 but 2 CentralRegistryState, 3 Seq[Event], 2 Seq[Seq[Event]]

/**This describes a CR system that has the property of guarenteeing a transaction behavior of event handlers*/
fun TransactionSystemo) {

all s:CentralRegistryState - Ord[CentralRegistryState].first {
let s' = OrdNext(s) {

TransactionTransition(s, s')
}

}
}

fun AsyncTransactionSystemo) {
TransactionSystem()
asynchronousPolicy()

}

run AsyncTransactionSystem for 2 but 2 CentralRegistryState, 3 Seq[Event], 2 Seq[Seq[Event]]

/**This describes a CR system that has only commuting operations*/
fun CommutingaperationsSystemo) {

all s:CentralRegistryState {
let s' = OrdNext(s) {
OverlappingStateValues(s)

}
}

}

fun AsyncComnutingOperationsSystem() {
CommutingoperationsSystem()
TransactionSystem()
asynchronousPolicy()

}

run AsyncCommutingOperationsSystem for 3 but 2 CentralRegistryState, 3 Seq[Event], 2 Seq[Seq[Event]]

/**This describes a CR system in which every handler obeys the legalStateTrans relation of Event.*/

fun LegalBindingsSystemo) {
all s:CentralRegistryState - Ord[CentralRegistryState].last {

let s' = OrdNext(s) {
ObeyLegalBindingsTrans(s, s')

}
}

}

fun AsyncLegalBindingsSystem() {
LegalBindingsSystem()
TransactionSystem()
asynchronousPolicy()

}



run AsyncLegalBindingsSystem for 3 but 2 CentralRegistryState, 3 Seq[Event], 2 Seq[Seq[Event]]

/**This describes a CR system in which every handler obeys the legalStateTrans relation but asserts an entire State*/

fun LegalStatesSystemo) {
LegalBindingsSystem()
all eh:EventHandler {

eh.trans[Event][State].Seq[Event] in State

fun AsyncLegalStatesSystemo) {
LegalStatesSystem()
TransactionSystemo)
asynchronousPolicy()

run AsyncLegalStatesSystem for 3 but 2 CentralRegistryState, 3 Seq[Event], 2 Seq[Seq[Event]]

/**This describes a CR system in which every handler obeys the registered invariants*/
fun InvariantSystemo) {

all s:CentralRegistryState-Ord[CentralRegistryState].last {
let activeEvent = s.queue..SeqFirsto) {

let activeHandlers = acceptingHandlers(activeEvent, s) {
all b:activeHandlers.trans[activeEvent][s.globalState].Seq[Event] {

MatchInvariants(s, b)

fun AsyncInvariantSystem() {
InvariantSystemo)
TransactionSystemo)
asynchronousPolicy()

}

//this claims that if all the invariants hold in the pre-state, t hey will hold in the post state.
fun InvariantsHold() {

all s:CentralRegistryState-Ord[CentralRegistryState].last {
let s' = OrdNext(s) {

AllowState(s, s.globalState) => AllowState(s', s'.globalState)

assert InvariantsFollow {
InvariantSystemo) => InvariantsHoldo)

}

assert StrongInvariantsFollow {
AsyncStrongInvariantSystemo) => InvariantsHold()

}

check InvariantsFollow for 2 but 2 CentralRegistryState, 3 Seq[Event], 2 Seq[Seq[Event]]

check StrongInvariantsFollow for 2 but 2 CentralRegistryState, 3 Seq[Event], 2 Seq[Seq[Event]]

run AsyncInvariantSystem for 3 but 2 CentralRegistryState, 3 Seq[Event], 2 Seq[Seq[Event]]

/**This describes a CR system in which every handler obeys the registered invariants

and also asserts a value for every se in an invariant it potentially modifies*/

fun StrongInvariantSystemo) {
all s:CentralRegistryState-Ord[CentralRegistryState].last {



let activeEvent = s.queue..SeqFirsto) {
let activeHandlers = acceptingHandlers(activeEvent, s) {

all b:activeHandlers.trans[activeEvent][s.globalState].Seq[Event] {
MatchInvariants(s, b)

StrongInvariantAssertion(s, b)

}
}

}
}

}

fun AsyncStrongInvariantSystem() {
StrongInvariantSystem()

TransactionSystem()

asynchronousPolicy()

}

run AsyncStrongInvariantSystem for 3 but 2 CentralRegistryState, 3 Seq[Event], 3 Seq[Seq[Event]]

/**This describes the property that if an event ei is generated before e2, then it will be dispatched before e2.**/

fun orderedDispatch() {
all disj el, e2:Event {

genBefore(el, e2) => dispBefore(el, e2)

}
}

/**This describes the property that if two events have the same priority, and if one is generated before the other,

the the order of generation will be the order of dispatch**/

fun orderedWithinTwoPriorityo) {
all disj el, e2:Event {

samePriority(ei, e2) && genBefore(el, e2) =>
dispBefore(el, e2)

}
}

/**This describes the property that after sorting, the queue always has the higher priority events before the lower

priority events**/

fun HighPriorityBeforeLowo) {
no crs:CentralRegistryState {

some crs.eventJustProcessed

crs.eventJustProcessed in (Event - (RegisterEvent+DeregisterEvent))

Unsorted(OrdPrev(crs).queue)

}
}

ASSERTIONS

In each assertion, we check to see if a certain policy implies a certain property.

The Alloy Analyzer will search for counter examples to these assertions

/**This states that in the asynchronous policy, with no event duplicates, ordering of dispatch is guarenteed**/

assert OrderffDispatchAsync {
asynchronousPolicy() && noDuplicateEventso) => {

orderedDispatcho)

}
}

/**This asserts that in the synchronous policy, with no event duplicates, ordering of dispatch is guarenteed**/

assert OrderOfDispatchSync {
synchronousPolicyo) && noDuplicateEventso) => {

orderedDispatcho)

}
}



/**this asserts that in the presence of the reordering queue policy, order of dispatch is guarenteed.

We expect this to be false**/

assert OrderOfDispatchWithReordering {

twoPriorityQueuePolicyo) => {
orderedDispatch()

}
}

/**This asserts that, within a priority, order of dispatch is guarenteed**/

assert OrderafDispatchWithinPriority {
twoPriorityQueuePolicyo) => {

orderedWithinTwoPriority()

}
}

/**This asserts that the queue policy maintains queues that are correctly sorted.**/

assert PrioritiesHold {
twoPriorityQueuePolicyo) => {

HighPriorityBeforeLowC)

}
}

EXECUTING ALLOY

We have written several commands that the Alloy Analyzer can execute.

check PrioritiesHold for 3 but 4 CentralRegistryState, 4 SeqEvent]

check OrderOfDispatchWithinPriority for 3 but 4 CentralRegistryState, 4 SeqEvent]

check OrderOfDispatchWithReordering for 3 but 5 CentralRegistryState, 5 Seq[Event]

check OrderOfDispatchAsync for 3 but 4 CentralRegistryState, 4 SeqSEvent]

check OrderOfDispatchSync for 3 but 4 CentralRegistryState, 4 SeqEvent]

run synchroousPolicy for 3 but 4 CentralRegistryState, 4 Seq[Event]

run asynchronousPolicy for 3 but 4 CentralRegistryState, 4 Seq[Event]

run twoPriorityQueuePolicy for 3 but 4 CentralRegistryState, 4 SeqEvent]



----------



Bibliography

[1] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley, 1995.

[2] J. Dingel, D. Garlan, S. Jha, D. Notkin. Reasoning about implicit invocation. In International
Symposium on the Foundations of Software Engineering, Nov. 1998.

[3] D. Jackson, I. Shlyakhter, M. Sridharan. A Micromodularity Mechanism. In Foundations of
Software Engineering/European Software Engineering Conference (FSE/ESEC '01), September
2001.

[4] D. Jackson, J. Chapin. Redesigning Air-Traffic Control: A Case Study in Software Design. In
IEEE Software, May/June 2000.

[5] A. Lauder. EventPorts. In ECOOP Workshop for PhD Students in 00 Systems, 1999.

[6] D. Garlan, S. Khersonsky. Model Checking Implicit-Invocation Systems. In 10th International
Workshop on Software Specification and Design, November 2000.

[7] Course material for MIT Laboratory in Software Engineering (6.170). Available electronically
at http://web.mit.edu/6.170/archive/Old-FallOl/psets/gb/gizmoball.html.

[8] D. Jackson Lecture Notes on Software Design. Available electronically at
http://theory.cs.mit.edu/dnj/pubs/fallOO-lectures.pdf. Fall 2000.

[9] D. Jackson, A. Fekete. Lightweight Analysis of Object Interactions. In Fourth International
Symposium on Theoretical Aspects of Computer Software, Japan, October 2001.

[10] Vlissides, J. "Pattern Hatching: Multicast" C++ Report, February 1997.

[11] D. Garlan, G. Kaiser, D. Notkin. Using Tool Abstraction to Compose Systems. In IEEE Com-
puter June 1992.

[12] B. Liskov, J. Guttag. Program Development in Java; Abstraction, Specification, and Object-
Oriented Design. Addison-Wesley, 2001.

[13] D. Parnas. Designing software for ease of extension and contraction. In IEEE Transactions on
Software Engineering, 1979.

[14] G. Sullivan. Design Patterns in a Dynamic Language. Guest lecture in
MIT Advanced Topics in Software Design (6.898). Available electronically at
http://www.ai.mit.edu/gregs/proglangsandsofteng.pdf. April 2002.

[15] L. Lin. Visualization Framework for Software Design Analysis MIT Thesis, May 2002.


