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A FREQUENCY DOMAIN STRIP THEORY
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by
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Master of Science in Naval Architecture and Marine Engineering

ABSTRACT

Seakeeping analysis of the Zumwalt-Class destroyer was carried out in the framework of linear
strip theory and potential flow. First, the problem was formulated and solved analytically.
Second, a program called Ship Motions Analyzer (SMA) was written in MATLABTM to carry
out the seakeeping analysis for regular waves in a discretized frequency range. SMA calculates
sectional added mass and damping coefficients first. Then, it calculates excitation forces and
moments acting on a ship advancing at constant forward speed with arbitrary heading for sway,
heave, roll, pitch and yaw modes of motion. Finally, SMA evaluates Response Amplitude
Operators (RAO's) in the same modes of motion. In addition, it also includes a subroutine which
evaluates steady drift forces acting on a ship in the plane of undisturbed free surface.

The added mass and damping coefficients of a fully submerged heaving circle and a semi-circle
in heave and sway were calculated to validate the results of SMA. The results were compared to
the results of Vugst [1] and Frank [2]. They match each other exactly. In addition, the
magnitudes of heave and pitch excitation force and moment, and RAO's in the same modes of
motions were calculated. The results agree with the theory. Finally, added resistance of Mariner
type ship was calculated by SMA to compare the results to the ones given by Salvasen [3] and to
validate the calculations. These results are also in very good agreement with the available
computational and experimental results.
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Title: William I. Koch Professor of Marine Technology
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v Wave Number
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0 Velocity Potential
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0, Velocity potential of a panel
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16 Moment of inertia due to yaw motion
k Wave number
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N, 2D generalized normal

n, 3D generalized normal. j=1, 2,...,6

, Hydrodynamic force/moment in the j' direction due to unit amplitude motion in k'
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Sectional hydrodynamic force/moment in the j' direction due to unit amplitude motion in
tjk kth direction
U Ship's speed

P Incident wave angle
(i Complex amplitudes of oscillatory body motions
x Wave length

# 3D oscillatory potential

#f P Speed independent part of oscillatory potential

# 0 Speed dependent part of oscillatory potential
fO Diffraction potential
0I Incident wave potential
#T Complex amplitude of unsteady potential
Vik 2D oscillatory body potential. k=2,3,4
CO Wave frequency (rd/s)
we Frequency of encounter (rd/s)
(P Total velocity potential
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Incident wave angle
First order amplitude of time dependent potential

OT) Second order amplitude of time dependent potential
ODC Second order DC potential

(PB Body potential due to body motions including diffraction effects
T Second order steady state force

* Complex conjugate of incident wave potential

Steady state force component due to incident waves

yD Steady state force component due to body motions
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CHAPTER 1

INTRODUCTION

1 Introduction

Seakeeping analysis is one of the major steps of ship design. The major interests in

seakeeping analysis can be summarized as the following:

* Calculation of the magnitudes of forces exerted by waves coming toward the ship

from different directions,

e Calculation of the amount of displacements in different modes of motion,

e Calculation of added resistance due to waves,

* Calculation of the number of occurrences of green water on the deck,

e Calculation of the possibility of slamming of the ship,

e Calculation of the magnitude of bending moment and shear force acting on any

section of the ship.

Understanding the motions of a ship as a response to the forces exerted by the waves is important

to naval architects. The forces and motions must be well understood because they are closely

related to the safety of both personnel and cargo, and to the strength of the ship's structure.

1.1 Historical Background

Calculating the forces exerted by waves on floating bodies and the motions of the bodies

as a response to the wave forces has been of interest to many researchers for many years. The

hydrodynamic properties of a ship must be known to calculate the responses of a ship in any sea

state. Calculation of the hydrodynamic coefficients of arbitrary ship sections and the excitation

11



forces and moments are the primary objectives of this thesis. Frank's [2] close-fit source

distribution method constitutes the main frame of the calculation of hydrodynamic coefficients of

arbitrary ship sections. Many people contributed to the calculation of hydrodynamic coefficients

of cylinders in a free surface for different modes of motion. Frank [2] summarizes their works as

follows.

"Ursell formulated and solved the boundary-value problem for the semi-immersed

cylinder using the linearized free-surface theory. He represented the velocity potential as the

sum of an infinite set of multipoles, each satisfying the linear free-surface condition and each

being multiplied by a coefficient determined by requiring the series to satisfy the kinematic

boundary condition at a number of points on the cylinder. Grim used a variation of the Ursell

method to solve the problem for two-parameter, Lewis-form cylinders by conformal mapping

onto a circle. Tasai and Porter, using the Ursell approach, obtained the added mass and damping

for oscillating contours mappable onto a circle by the more general Theodorsen transformation.

Ogilvie calculated the hydrodynamic forces on completely submerged heaving circular

cylinders." [2]

The boundary of any arbitrary two dimensional body can be represented easily using

Frank's [2] method. Frank [2] represented the velocity potential of an arbitrary two dimensional

body by a distribution of pulsating sources over the submerged portion of the body. First, he

approximated body contour as a sum of two dimensional panels and distributed constant -

strength sources over each panel. Then, he calculated unknown source strengths by satisfying the

kinematic boundary condition on the body boundary. Finally, he obtained added mass and

damping coefficients of different cylinders oscillating in or below the free surface in different



modes of motion. The method described in his research will be used to calculate added mass and

damping coefficients of arbitrary ship sections.

Vugst [1] conducted experiments on different cylinders in different modes of motion and

compared the experimental results to theoretical results. His research gives added mass and

damping coefficients of semi-circular, rectangular, triangular cylinders and Lewis-form sections

in heave; sway; roll motions and coupling coefficients of roll into sway and sway into roll. The

added mass and damping coefficients presented in Vugst's [1] research are used to compare the

added mass and damping coefficients obtained by Frank's [2] method.

Wave induced forces and moments exerted on a ship advancing at constant forward speed

must also be well understood since they are other key elements in determining the ship motions.

Many studies have been done to predict the wave induced forces, moments and motions of the

ships since the late 1950's and various researchers contributed to this subject in different ways.

The theory of Korvin-Kroukovsky and Jacobs[4] to predict heave and pitch motions in head

waves is considered, "the first motion theory suitable for numerical computations" [5]. St.Denis

and Pierson showed that the responses of ships in irregular waves can be computed by summing

the responses of the ship in regular waves. "Gerritsma and Beukelman validated a strip theory

with experimental results." [6] Salvasen, et al. [5] discussed the calculation of wave induced

forces and moments including forward speed effects. The study of Salvasen, et al. [5] constitutes

the mainframe of the calculations regarding excitation forces and moments exerted on a ship

advancing at constant forward speed in regular waves with arbitrary heading.



1.2 Goal of This Thesis

Hydrodynamic coefficients of a ship and the excitation forces and moments should be

calculated to determine the responses of a ship advancing at constant forward speed in regular

waves. The goal of this thesis is to develop a computational tool to calculate added mass and

damping coefficients of arbitrary ship sections and to evaluate excitation forces and moments

induced by the waves. First, the boundary integral equations given by Frank [2] will be evaluated

in a step-by-step manner. Second, a program in MATLAB will be written to calculate sectional

added mass and damping coefficients. Results obtained by the MATLAB program will be

compared to the results presented by Vugst [1]. Third, the excitation forces and moments will be

calculated using the equations given by Salvasen, et al. [5]. In addition, sectional Froude-Krylov

and diffraction forces will be calculated by integrating the pressure field around the body due to

incident wave system and diffracting waves, respectively. After that, responses of a ship in

regular head waves will be calculated. Finally, the calculation of added resistance in waves,

steady drift forces and slowly varying forces will be covered briefly.



CHAPTER 2

FORMULATION AND SOLUTION OF RADIATION PROBLEM

2 Panel Method

Panel or boundary element methods were developed by Hess and Smith [7] in the late

1950's to early 1960's. The technique simply consists of representing the boundary of a body in

a fluid domain by a number of panels. Each panel is considered to generate a simple flow field.

The strength of each panel is determined by satisfying appropriate boundary conditions on each

panel. The body boundary is represented by the sum of all panels.

Panel methods have some limitations. They require the flow field to be described by

potential flow. They are incapable of modeling the viscous effects that are evident in real world

applications including boundary layers and flow separation. This thesis requires the investigation

of only small amplitude harmonic motions of arbitrary ship sections, so nonlinear effects will be

ignored throughout the evaluation of added mass and damping coefficients.

2.1 Potential Flow

A flow must satisfy certain conditions to be considered as potential. The flow must be

In addition, th

flow, Laplace'

* Incompressible

* Irrotational (o=O)

e Inviscid (v=0)

e flow must satisfy Laplace's equation everywhere in the fluid domain. For a 2D

s equation is given as the following:



a20 a2
Ox2 +-= 0 (1)

If the flow satisfies all of these conditions, the velocity vector can be represented as the gradient

of a scalar function. This scalar function is called the potential function. Potential flow theory

can also be used to model irrotational, compressible flows, but the fluid velocities considered in

this work has low Mach numbers.

As described in Newman [8], "the velocity field can be represented by analytic functions

of a complex variable. Assuming that the flow depends only on the coordinates x and y, which

are taken to be the real and imaginary parts of the complex variable z = x + iy, where i is the

imaginary unit. The complex potential F (z) is defined to be

F (z) = 0 + i$r (2)

where 0 is the velocity potential and $p the stream function. The two velocity components can be

determined by differentiating either of these real functions:"

U a alp V ao= ao 3u=---, -- -- (3ax ay' ay ax

The real and imaginary parts of F satisfy Cauchy-Riemann equations. Therefore, the complex

potential F is an analytic function of the complex variable z, and its derivative is

d F
-= U - iv (4)
dz

If the velocity vector at any point in the fluid domain for any time is known, pressure can also be

calculated at that point, which will lead to the calculation of the total force on a body.

The pressure at any point in the flow field is given by Bernoulli's Equation:

o 1
p =- - + - 70 + gy , (5)



where p is the fluid density, g the acceleration of gravity and y the depth of the point in question.

The second order term in Bernoulli's Equation will be neglected and the linearized form of this

equation will be used to calculate pressure on the surface of the body while calculating added

mass and damping coefficients.

2.2 Boundary Value Problem

Certain boundary conditions must be satisfied by the velocity potential to solve the

radiation problem. These are

e Linearized Free Surface Boundary Condition

" Bottom Boundary Condition

" Infinite Boundary Condition

" Kinematic Body Boundary Condition.

2.2.1 Linearized Free Surface Boundary Condition

As described by Newman [8], "the physical nature of a free surface requires both a

kinematic and a dynamic boundary condition. The kinematic boundary condition states that the

normal velocities of the fluid and of the boundary surface must be equal and the pressure on the

free surface must be atmospheric according to the dynamic boundary condition."

The motions of the body and the disturbances in the free surface are assumed small

compared to body length and the wave length. The linearized form of the free surface boundary

condition is of interest and higher-order terms in the wave amplitude and associated fluid

motions will be neglected throughout this thesis.

First, in order to formulate the linearized free surface boundary condition, a Cartesian

coordinate system will be adapted, with y = 0 the plane of the undisturbed free surface and the y-
17



axis positive upwards. The vertical elevation of any point on the free surface may be defined by a

function y = r (x, z, t). In the case of a two dimensional fluid motion, parallel to the x-y plane, the

dependence of z will be deleted. The linearized kinematic boundary condition is given by

at ay

This approximate boundary condition simply states that the vertical velocities of the free surface

and the fluid particles are equal.

The dynamic boundary condition is obtained from Bernoulli's equation. The exact condition to

be satisfied on the free surface is

1 00 1
-1(P-Pa)= +-VOV0+gy=0 (7)

p at 2

Substituting the free-surface elevation for y and neglecting the second order term in the fluid

velocity, the linearized equation for the free-surface elevation is

1 a0
77 = -_ -(8)g at

On the plane of y = 0, the dynamic boundary condition can be differentiated with respect to time

and combined with the kinematic boundary condition. This combination gives a single boundary

condition for the velocity potential:

20 (9)



2.2.2 Other Boundary Conditions

The body in question is bounded horizontally in a horizontally infinite fluid domain and it

is stationary but steadily oscillates in the free surface. It does not extend to infinity horizontally

and the fluid is infinitely deep. In this case, it is reasonable to impose that the fluid motion will

vanish far below the body and outgoing waves at infinity on all sides will be generated. The

bottom boundary condition can be expressed as the following:

-= 0 y -* -c0 (10)
ay

The last boundary condition to be satisfied is the kinematic body boundary condition.

This condition states that the fluid velocity on the body boundary in normal direction must be

equal to the body velocity in normal direction. The fluid particles can slip on the body surface

since the viscosity is assumed to be 0, but the fluid cannot pass the body boundary.

2.3 Evaluation of Added Mass and Damping Coefficients of a 2D Ship Section

The seakeeping analysis will be carried out in the framework of linear strip theory, so the

sectional added mass and damping coefficients of ship sections should be calculated first. The

added mass and damping coefficients of a ship will be obtained by integrating the sectional

added mass and damping coefficients along the ship's length. Added mass and damping

coefficients of two dimensional ship sections will be calculated using 2D panel method and the

principles of potential flow.

First, the boundary of a ship section will be approximated by 2D panels. The contour of

the boundary will be divided into N equal segments. Then, pulsating point sources will be

distributed over each panel. The potential of a pulsating source is given by Wehausen and

Laitone [9] as



1 1 ( e-ik(z-c)
D (z,t) = [- (log(z - c) - log(z - ) ) - -PV dk ]Q cos(wt)

- [e-iv(z--]Q sin(wt)

where v = w /g. In solving oscillatory problems it is convenient to eliminate the time variable

by the use of complex notation. In this thesis, i will represent the imaginary part of space

complex variables and j will represent the imaginary part of time complex variables. The

potential function can now be written in a frequency dependent form and converted to the form

given in (10) by multiplying by eI" and taking the time real part. Thus, the potential function in

frequency domain is

(D (z) = - (log(z - c) - log(z - ) PV eik(z) dk Q +j[e-Iv(z-]Q (12)
2Tx7 R 0 k- v I

Next, the boundary value problem will be solved to calculate the unknown source

strengths (Q). The strength of each point source on a panel is assumed to be constant, but the

source strengths of other panels may be different. Finally, the pressure distribution around the

body will be calculated and this will help to determine the added mass and damping coefficients

of a ship section.

2.3.1 Calculation of Source Strengths

Equation (11) satisfies all boundary conditions and Laplace's Equation except body

boundary condition. This problem should be solved to determine the unknown source strengths.

The kinematic boundary condition on the body boundary states that the fluid velocity in normal

direction is equal to body velocity in normal direction:

V -n = U,, (13)



where n is the unit normal vector pointing into the body. First, the influences of all panels on the

collocation points will be calculated. The collocation points are the mid-points of all panels. The

influence matrix includes the velocities induced on the collocation points by all panels with unit

source strength:

[Ikm][Q] = [Un] (14)

The motions of interest in this thesis are harmonic motions of a body in the free surface of a deep

fluid. Particularly, source strengths will be calculated for heave, sway and roll motions. The

normal velocities on the collocation points are

UnHeave = jOny (15)

UnSway = jnx (16)

UnRoll = jo(r x n) (17)

where ny is the y component of unit normal vector pointing into the body, n. the x component of

unit normal vector and r is the position vector.

For N panels, the influence matrix will be a N x N matrix. Un matrix includes normal velocities

at N collocation points. Finally, the unknown source strengths of panels are obtained by

[Q] = [Ikm]\ [Un] (18)

After source strengths of all panels are found, the hydrodynamic pressure can be evaluated on the

collocation panels, and eventually it will lead to the calculation of complex force coefficient.



2.3.2 Calculation of Added Mass and Damping Coefficients

Final task is the calculation of pressures on collocation points and the calculation of total

force exerted on the body. This total force is also known as the "complex force coefficient" [8],

which will be used to obtain the added mass and damping coefficients. Total force can be

calculated by integrating pressures on collocation points over the body boundary. The pressures

will be obtained using the linearized Bernoulli's Equation:

BCD
p =-pat (19)

The total force is given by integrating dynamic pressure over the body boundary:

f = pnds (20)

Complex force coefficient has strong frequency dependence and it can be written as

f = w2 a - iwb (21)

where o is the wave frequency, a the added mass coefficient and b the damping coefficient.

Finally, added mass and damping coefficients are obtained by separating real and imaginary

parts of the complex force coefficient and normalizing them by o2 and -o, respectively:

a Ref 
(22)

b - Imff} (23)
CL)



2.3.3 Evaluation of the Components of Influence Matrix

The potential of a pulsating source is given by Wehausen and Laitone [9] as following:

1 1 e-ik(z-j) -]
<D (Z) = - (log(z - c) - log(z - I)) - PV dkI Q +j[e-iv(z-c]Q (24)

Here, z is the position of any point in fluid domain, and c is the position of a pulsating source. z

and c are defined in the complex plane. U is the complex conjugate of c and Q is the unknown

complex source strength.

z =X + y (25)

c =a + b *i (26)

where -oo<x<oo, -oo<y<O, -oo<a<oo, -00<b<O, v=co 2/.

The contour of the body is divided into N straight line elements or panels, and the velocities

induced by each panel at the midpoints of all other panels will be calculated. It is convenient to

solve this problem for each term separately.

1
Velocity Components Induced by the First Term: 1 = - log(z - c)

Complex potential function is constituted of two parts. The real part of complex potential is

called the velocity potential and the imaginary part is called the stream function. (D1 can be

written as

D= - log[(x - a)2 + (y - b) 2 ]os + i * tan- '- b) (27)
27 (x - a)

and the velocity potential can be written as

1
#1= -log[(x - a)2 + (y - b)2 ] (28)



The velocity components in x and y directions can be calculated by differentiating the first term

with respect to x and y and then integrating along the panel. The velocity components can be

written in the following forms:

1 f (x - a) ds (29)
2u = [(x - a)2 + (y - b)2]

V1 f (y - b) ds
Ai = [(x - a)2 + (y - b)2] (30)

These integral equations are evaluated between the end points of the panels. The body is defined

in third and fourth quadrants as described in Figure 1. The direction from ci to c2 is assumed to

be counter clockwise for each panel, e.g.: ci is in the undisturbed free surface and c2 is in the

third quadrant of the complex plain, in other words in the fluid domain for the panel, which is

drawn in red in Figure 1.

Evaluating these integrals in this form is quite hard. Adapting a local coordinate system

on the panel whose horizontal axis is aligned with the panel will simplify the solution.



Figure 1: Representation of body surface by panels, body coordinate system (x, y) and adaptation of local coordinate

system (x', y') on a panel.

(x'.y')

(X, 0) (x6, 0)
Figure 2: Local coordinate system adapted on the panel. (Adapted from Katz and Plotkin [10])
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Since a local coordinate system is adapted and the integral equations will be solved in the local

coordinates, the coordinates of the midpoints of panels, which are defined in body coordinate

system (x, y), should be defined in the local coordinate system.

Xm =(Xi+Xi+1)2 
(31)

ym = (yj + yi+1)/ 2  (32)

where i= 1, 2, 3, ... , N.

*= Xm - Xo (33)

Yn = Ym - YO (34)

X = X* sin a + y* cos a (35)

Ym -X* sin a + y* cos a (36)

Here, Xm and ym are the coordinates of the midpoint of a panel, xO and yo are the coordinates of

the origin of the local coordinate system in body coordinate system. a is the angle between the

positive horizontal axes of both coordinate systems. The coordinates of the midpoint of a panel

in the local coordinate system can be found using equations from (31) to (36).

The integral equation for u1 and vican now be written in the following forms:

, Q xz (x - )
u, = -- , dxO (37)X (Xm- XO) 2 +Ym

, Q X2 y,
v1=- , ,f 2dx (38)

The evaluation of these integral equations can also be found in Katz and Plotkin [10]. They can

be solved using appropriate variable transformations:

26



X = (Xm - XO)2 + ym 
(

dX = -2(x' - xo)dxo (40)

x 2

-Q dX
ui: - (41)

x1

2= (x - X2 
+ Y2 and X= (x xi)2+ym (42)

Q (Xm - X1) + ym (43u 1 =--log , , ,z(43)
41r (Xm- z m

Y= Ym (44)
(xm - x0)

dY = 'n 2 dxO (45)
(Xm - x0 )2

_X2  (xm ~ xO) 2  dxO (46)
1T 2 ,'1 1 + [(X m - 2

(xm - XO)

Q Y2 dY
1  J 1 + y2 (47)

Y2  ym and Y1', y (48)
(xm - x 2 ) (xm ~ x1 )

= (tan- Y2 - tan 1 Y1) (49)
2vn

V' = (tan-1 ,m ,-tan-' m (50)
1r (X, - Xz) (Xm - X1



Recalling r1, r2, 01 and 02 from Figure 2, (43) and (50) can be written as the following:

, Q ri
U1 = -1og

4r r22

Q
Vi -021)

27=

r 2 =)

r2=( - X )2 + y, 2

ym
01 = tan-1 _.Y

Xm -j

ym
62 = tan-

Xm - X

(51)

(52)

(53)

(54)

(55)

(56)

0, and 02 are in radians.

In the special case when the midpoint is on the panel itself, where z = TO, the velocity

components become

U1 = 0 (57)

I -Q
V1 =T (58)

at the panel center and

U1 = 00

(59)

at the panel edges.

Equations (43) and (50) give velocity components in x' and y' directions respectively. Finally,

the velocity components in x and y directions in the body coordinate system can be found using

following equations:

where



ui = ui co s a - v, sm a (60)

V1 - Ui sin a + vi cos a (61)

1
Velocity Components Induced by the Second Term: 0 2 = -log(z - Z)

The evaluation of velocity components induced by the second term is identical to the first

term except that this time the path of the line integral is reversed. J represents the positions of

corresponding imaginary sources. The path of the integration to calculate velocity components

u2 and v2 is between the end points of the corresponding imaginary panel. Recalling the example

used to demonstrate the path of integration for the first term, the beginning point of the first

imaginary panel El is going to be in the undisturbed free surface and the end point 2- is going to

be in the second quadrant of the complex plane. This time, a right handed local coordinate

system is required to be adapted on the imaginary panel such that the positive x axis will be

aligned with the imaginary panel and it will point 2j - 2- direction.

1 oo e-ik(z-c)
Velocity Components Induced by the Third Term: 4P3 = PV fY -_, dk

g 0 k-v

Solving this integral equation is easier by using complex variables than using real

variables. PV stands for Cauchy Principal Value of the integral. One can easily see that the

integrand becomes indefinite when k = v. This integral equation can be solved as the following

7 k(z-c- r e-kz--
PV i dk = i dk + 6iwe-iv(z-C) (62)

j k-v jo k - v
0

where Siwre-iv(z~c is the residue of PV integral at k = v, and 6 is defined by Holloway [11] as

the following:



8=1 if Re(z) < Re(E)

6=-1 if Re(z) > Re(E)

-o ik(z-c)
Applying a variable transformation, o0 k-v dk

dt = i(z - e)dk

dk = e-iv(z-0 edt

is given by Frank [2] as the following:

(65)

(66)

(67)

The integral equation on the right hand side of (67) is given by Abramowitz and Stegun [12] as

the following:

E1 (Z) = - dt = -Y - log Z - (1)n n
JZ t Z n n!n=1

(68)

Here,Z = -iv(z - j), log is the natural logarithm and y is the Euler-Mascheroni constant.

y =0.577215665... Finally, (62) can be written in the following form:

PV k-) dk = e-iv(z-) Y- log(-iv(z - 1)) - z (-1)" [ iv(z - 9]"
0 1 n=1

00

-ik(z-E)
PV k -v dk = e-Iv(Z-){E1[-iv(z -)] + in)

0

+ Sin (69)

(70)

Velocity components u3 and V3 induced by each panel on the collocation points can be

calculated as the following:

Us = Re 1 [e-iv(z-O{E1[-iv(z - Z)] + Sin}]ds} (71)

(72)e -iV(Z-2){E 1 [-iv(z - )] + Siw}]ds}

(63)

(64)

t = i(k - v)(z - E)

(|arg!!(Z)| < n

V3 = R e f;



Applying a variable transformation and chain rule, the derivatives under the integral sign can be

taken as the following:

r = -iv(z - E) (73)

a der rE 1[r] aer
-[e{E 1 [r] + Siir}] = x E1 [r] + er + Sin a (74)

aer aer ar
- = - er ( iv) = ive-iv(z-c (75)ax ar ax

aE1 [r] _ aE1[r] ar e-r e-r eiv(z -)
-- (-iv) = iv -= iv (6

ax ar ax r r (-iv(z - E))

Equation (74) can be written as the following by combining (75) and (76).

a [er {E 1 [r] + Sin}]
ax

-ive-iv(z-0 E1[-iv(z - J)] + e-iv(z-c)iv eiv(ZC) (77)
(-iv(z - I))

+ Sir(-ive-iv(z-j))

1
~[er{E1[r] + Sin}] = -ive-iv(z-){E1[-iv(z - J)] + Sin} z - (78)

Us = Ret-f t-ive-iv(z-0{E1[-iv(z - e)] + 8iir} - z -e ds} (79)

Following the same steps in (74), (75) and (76) the integral in (72) can be calculated as the

following:

a aer aE1[r] aer
- [er{E1[r] + Sin}] = -E 1 [r] + er + Si -- (80)
ay ay ay 8)y

aer aer aor (81)
ve iv(z-)

ay ar ay



aE1[r] 0E1 [r] ar e-r eiv(z-cD

ay Or ay r (z-E)

a- [e'{E1 [r] + 6ii}] = ve
ay

-iv(z-cE1[-iv(z - i)] - ie-iv(z-c) eiv(Z) ie-ivtz-) (83)
z-c

-- [erfE1 [r] + Siw}] = ve-iv(z-c{ 1 [-iv(z - e)] + 6in} - _
ay z - c

V3 = Re ve-iv(z--c){E1[-iv(z - e)] + Siyr} - zeds

(84)

(85)

Here, ds is the infinitesimal length variable over the boundary of the body. It can also be

expressed using the positions of sources along the boundary of the body:

c = a + ib

dc = da + idb

(86)

(87)

(88)

(89)

dc = ds cos a + ids sin a

ds = dce-ia

Since the integrals in (79) and (85) are over the imaginary panels, (89) can be written in the

following form.

ds = d e-if (90)

(91)# = tan- 1 (Im( 2 -Re(c2 - c1)l

where fl is the angle between the positive x axis of the body coordinate system and the imaginary

panel. Equations (79) and (85) can now be written as

U3 = Re f -ive-iv(z-c){E [-iv(z - )] + 6iw} - (92)
{1 1

(82)

(92)



C2

V3 =Re
1l

(93)
tve-iv(z-t{E[-iv(z - Z)] + Sirc- de-ifl

These integral equations can be solved applying Integration by Parts (IBP).

m = E1[-iv(z - Z)]

eiv(z-)
dm = _d

z - c

dn e-iv(z-cDdE

e-iv (z-E)

-iv (E1[-iv(z -
e -iv(z-j)

iv

e -iv(z-E) eiv(z-E)

iv z - C
de)

(98)

- iv f
Ci

C2

d )Sire-iv(z-c- dif - _if
z -cI

us3 = Ret[-eiv(z-e)E1[-iv(z - -)] + 6ire-iv(z-)C2 e-iP (99)

Following the same steps taken to calculate U3, V3 can be calculated as the following:

V3 = Re v E1 [-iv(z -
eiv(z-E) -v(z--c) eiv(z-c)

iv f iv z - c

+ f Sifce-iv(z-) dZ -
?1

Z2

z I
1

e-i4l

2
V3 = Re -[-ie-iv(z-e)E1 [- iv(z - e)] - 6rre-iv(z-i ) Le-ifl

(100)

(101)

(94)

(95)

(96)

(97)

Us = Ret-



Velocity Components Induced by the Fourth Term:

( eiv(z-c3u4 = Re U) dx dsj (102)

(103)d e~ f I
U4 = Ret f(ive-v(zc))

U4 = Re {[-e-i(z-Z) 12e-ip = Re{[e-iv(z-1) -

v 4 = Re f

v4 = Ref (v

e-iv(z-Z2)]e-i#)

a e-iv(z-c)

ay dsj

e-'v(z -0) d e-'fl

V 4 = Re {[-ie-iv(z-C2 e-ip) = Reti[e-iv(z-1) - e-iV(z-c2)]e-ift

(104)

(105)

(106)

(107)

2.3.4 Evaluation of the Potentials of Panels

The potential of a two dimensional body can be calculated by integrating the potentials of

point sources along the body boundary.

b =JPs(z) ds (108)

Since the body boundary is divided into N panels, this integral equation can be written as the

sum of the potentials of all panels.

N

#b = #p5
i=1

(109)

Following similar steps in the calculation of the influences of panels, the potentials of all panels

will be calculated term by term.

094= e-iviz-e)



1
Potential Induced by the First Term: (P1 = - log (z - c)

Recalling (27) and writing it by using variables in local coordinate system, the potential

of a panel due to first term can be calculated as the following:

X2

log((x - xo) 2 + y )dxo (110)

X1

X = (xm - xo)

dX = -dx 0

(111)

(112)

Xm ~X
2

XPP1 -~1
Xm -X

Equation (113) can be solved by applying Integration by Parts:

m = log(X 2 + y 2

2X
dm = , 2 dX

dn = dX

n =X

PP1 = - X log(X2 + y 2)

OX log(X2 + y 2 ) -2
47r IY

-22 2 dX

dX

1 +

O =-1 t (,2

log(X 2 + y 2 )dX (113)

(114)

(115)

(116)

(117)

(118)

dX} (119)

(120)2) x
+ YM - 2X + 2YM tan-1 T



p= -(x - xo) Iog((x - xo)2 + y') + 2(x - x0 )

(121)

- 2y M tan-1 7 -

Equation (121) is given in a different form by Katz and Plotkin [10] using the variables defined

in equations (53) to (56). Finally, (121) becomes

1
P1 = [(Xm - x) log r12 - (XA - x2) log r22 (2 - 01)] (122)

Returning to original variables, (122) can be written as the following:

1
<pp1 = [(x - x1) log((xm - X')2 + y 2 ) - (XI - X2) log((xm - x'2)2 + Yn 2 )]( (123)

+ 2Ym tan~ , - tan-1  , y
xm-X 2  kXm -x 1 /

Potential Induced by the Second Term: cP 2 = log(z - )

Calculation of the potential due to the second term is identical to the calculation of

potential due to the first term. One must pay attention while calculating the potentials due to the

second term that the integration is over the corresponding imaginary panel. So, the variables

should be calculated accordingly.

1 co e-ik(z-?)
Potential Induced by the Third Term: d53 = - PV fd, _ k

#P3 = Re {e-iv(z-O{E1[-iv(z - i)] + Sircd fe-i) (124)

r = -iv(z - E) (125)

dr = ivdE (126)



m = E1 [r] = E1 [-iv(z - E)]

dm dm dr e-r
- --- - - iv

dif dr de r

eiv(z-)
dm = _d

z - c

dn e-iv(z-)dif

e-iv(z-C)

iv

e-iv(z--)P3 = Re .( E1( 7r iv
[-iv(z - E)] f e -v (z -0 eiv(z-c)

iv z-cCe1

j 2

+ Sirf e-iv(z-ed)

E1 [-iv(z - c)] + log(z -O3= Re I Ei

Potential Induced by the Fourth Term: (P4 = e-iv(z-c)IC2
#, = Re f e-iv(z-c)dze-i}

-N = Re [e-v(z)- e-ip

(127)

(128)

(129)

(130)

(131)

(132)

SC2

c)) + e-iv(z-)) e-i

l

(133)

(134)

(135)



2.3.5 Influence Matrix and Complex Force Coefficient

The final task to obtain added mass and damping coefficients is to calculate the unknown

source strengths of panels. As mentioned before, this problem is solved by satisfying body

boundary condition on the body surface. The N x N influence matrix I can be formed as the

following:

Ikm [ZI
IN1

(136)

Ikm means the influence of mth panel at the midpoint of kth panel, where k, m = 1, 2, 3,..., N.

Recalling the velocity components evaluated in 2.3.3, Ikm can be calculated using appropriate

panel midpoint coordinates and panel end points coordinates.

Ikm = (u1 - u 2 -u3 + ju 4 )nx + (V1 - V2 - V3 + jv4)ny (137)

If the normal velocity matrix for sway, heave and roll

strength matrix are written as the following respectively:

Un =

-UN-

modes of motion and unknown source

(138)

(139)

Q can be obtained as the following:

Q = [Ikm]\Un (140)

(Q



Once the source strengths of all panels are determined, added mass and damping

coefficients of ship sections can be calculated easily. The complex force coefficient can be

calculated following the same steps taken to calculate influence matrix:

lul- 1N

Jkm (.(141)
N1 'INNJ

where Jkm represents the potential induced by the mth panel at the midpoint of kthpanel.

km = Pp - p2 -- Pp3 +jPp4 (142)

f = -pjin Y kmQdl (143)

j represents time complex unit in (142) and (143) and dl is the length of each panel.

Multiplication of J and Q matrices produces a N x 1matrix. Multiplying the elements of this

matrix with the corresponding panel lengths and summing all of them gives the complex force

coefficient. Finally, added mass and damping coefficients can be found by decomposing (143) as

shown in (21), (22) and (23).

2.4 Results and Discussions

The added mass and damping coefficients of a semicircle in heave and sway motions

calculated by SMA can be seen in Figure 3 and Figure 4, respectively. It can be seen in both

figures that the results of panel method and Vugst [1] are in very good agreement. The added

mass and damping coefficients of a fully submerged circle is also investigated. The results can be

seen in Figure 5. The results of panel method and Frank [2] are in good agreement. One also can

check the accuracy of results for a fully submerged body by integrating the source strengths of

panels along the body boundary. The integral of source strengths must be 0 for a fully submerged

body.



fQds = 0 (144)

This integral equation can also be written in a summation form.

N

Qjds = 0 (145)
i=1

One of the problems with the panel method solution is the presence of irregular

frequencies which can be seen easily in Figures 3 and 4. The presence of irregular frequencies is

not related to the physics of the problem but is related to the solution of the boundary integral

equations. The solutions of boundary integral equations suffer from natural frequencies of the

enclosed fluid inside the body that manifest themselves as irregular frequencies and the panel

method estimates added mass and damping coefficients with great inaccuracy. Note that if the

body is not surface piercing and if it is fully submerged, the effects of irregular frequencies will

not be seen in the solutions. The irregular frequencies can be suppressed by paneling the free

surface inside the body, also known as the "lid method" or by modifying the potential function.

The studies of Ursell [13] , Lee and Sclavounos [14] and Liapis [15] can be mentioned here

regarding irregular frequencies and methods used to suppress them, however suppression of

irregular frequencies is not within the scope of this thesis.

The second problem with the panel method is that it cannot provide accurate results for

bulbous sections. According to Frank [2], "if any portion of a surface piercing body remains

outside of a cylinder drawn downward from the intersection of the body and the free surface, the

panel method will fail to give accurate added mass and damping coefficients." The added mass

and damping coefficients of one of the bulbous sections of the Zumwalt-Class destroyer, which

are shown in Figure 6, seem to support this argument, however without any supporting

experimental results it is hard to comment on the accuracy of these results.
40



2.5 Conclusions

The results obtained by using panel method are satisfactory except the presence of the

irregular frequencies. SMA can be improved by solving the problem regarding irregular

frequencies. The effects of irregular frequencies were observed during the calculation of the

sectional added mass and damping coefficients of the Zumwalt-Class destroyer. The results were

almost useless for some sections, especially at high frequency range.

One also must pay attention while using panel method to calculate added mass and

damping coefficients of bulbous sections. The results may sometimes be inaccurate at very low

frequencies as shown in Figure 6, but this method can also give inaccurate results in medium

frequencies as well, as it was observed during the calculation of sectional added mass and

damping coefficients of the Zumwalt-Class destroyer.



4-

3--

2-

0 0.5 1 1.5 2 2.5 3 3.5

0.7( tt
0.7_ Panel Method(N=100)

0.6- Vugst,1968

0.5

( 0.4

- 0.3

rr hegular Frequecs
n0.2

0.1

0 0.5 11.5 2 2.5 3 3.5
w4(B/2g)

Figure 3: Heave added mass and damping coefficients of a semicircle with R=5m.calculated by SMA



1.2 Vugst, 1968

0.8 - - - - -

0.6 -

0.4

0.2

0
0 0.5 1 1.5 2 2.5 3

0.8

0.. - - - - - - - ---- -Panel Method(N=100)
Vugst, 1968

0.6

S 0.5 - -- -- - - -

c 0.4-

0.3-

0.2-

0.1

0
0 0.5 1 1.5 2 2.5 3

wo(B/2g)

Figure 4: Sway added mass and damping coefficients of a semicircle with R=5m.calculated by SMA

43



0.50

0
0 0.51 1.5 2

1.4

1.2

0.8

~0.6-
0.4-

0.2

0 0.5 1 1.5 2

Fc
2
Rbg

Figure 5: Added mass and damping coefficients of a circle whose center is 1 .25R below the free surface (R7 in.)



0.1 0.2 0.3 0.4 0.5 0.6

0 0.1 0.2 0.3
roq(B/(2g

0.4 0.5 0.6 0.7

Figure 6: Added mass and damping coefficients of a bulbous section (One of the bulbous sections of the Zumwalt-Class destroyer)

7 - -- - ....

6-

6 --5

5 -

0.
0



CHAPTER 3

SHIP MOTIONS IN REGULAR WAVES

3 Introduction

The motions of a ship in six degrees of freedom are of great interest for naval architects

since the performance of a ship in a seaway is the ultimate criterion for a ship's design.

Hydrodynamic coefficients of the ship's hull and excitation forces/moments in the equation of

motion must be known to calculate the motions of the ship advancing at a constant forward speed

in waves.

In the previous chapter, a method was developed to calculate sectional added mass and

damping coefficients. The added mass and damping coefficients of a ship are evaluated using

these sectional hydrodynamic coefficients in the framework of linear strip theory. In addition, the

excitation forces and moments are derived both using sectional Froude-Krylov and diffraction

forces and taking forward speed effects into account. The theory of Salvasen et al. [5] constitutes

the mainframe of above mentioned calculations.

3.1 Evaluation of Added Mass and Damping Coefficients of a Ship

The oscillatory motions in six degrees of freedom are assumed to be linear and harmonic

for a ship moving at constant forward speed with arbitrary heading in regular sinusoidal waves.

A right-handed Cartesian coordinate system (x, y, and z) is fixed with respect to the mean hull

position of the ship, with z vertically upward through the center of gravity of the ship, x in the



direction of forward motion and the origin in the plane of undisturbed free surface. The ship is

assumed to oscillate as a rigid body in six degrees of freedom with amplitudes Cj (j=1, 2... 6).

j= 1, 2, 3,4,5,6 refer to surge, sway, heave, roll, pitch and yaw respectively. The incident wave

angles, pl, with respect to the direction of forward motion are defined as in Figure 8 such that p8

0 degrees for following seas and p 180 degrees for head seas.

'74 x 7

= surge heave s pitch

n2 sway )4 roll = yaw

Figure 7: Cartesian coordinate system fixed to the ship and modes of motions in six degrees of freedom (Adapted

from Salvasen et al. [4])

Wave Propagation Direction

Y

Wave Crests

xo

Figure 8: Definition of incident wave angle



In addition, the ship oscillates with the frequency of encounter, we , which is related to wave frequency ,co, with

Oe = co -kU cos fl (146)

where k is wave number, U is forward speed of the ship and # is incident wave angle.

If viscous effects are ignored, the fluid motions can be assumed irrotational and the problem can

be solved in the framework of potential flow theory.

The total velocity potential can be written in the following form:

CD(x,y,z,t) = [-Ux + #/s(x,y,z)] + #r(x,y,z)ee (147)

where -Ux + #ks (x, y, z) is the steady contribution with U the forward speed of the ship, #T is

the complex amplitude of the unsteady potential. As discussed in the previous chapter, this

potential function must also satisfy Laplace's Equation in the fluid domain, linearized free

surface condition, bottom boundary condition, radiation condition in the far field and body

boundary condition on the surface of the body.

In order to linearize body boundary condition and free surface condition, it is assumed

that the hull geometry is such that the steady perturbation potential, #s , and its derivatives are

small. Since small oscillatory motions are of interest, potential er and its derivatives are also

assumed small. The problem can be linearized by disregarding higher order terms in #s and PT ,

and taking first order terms into account. The amplitude of the time dependent part of the

potential, eT ,can be written in the following form.

6

OT = I1 +OD +Y<jj (148)
j=1



Here #; is the incident wave potential, #D is the diffraction potential and #j is the contribution

to the velocity potential from the jth mode of motion. All of these potentials must satisfy

following boundary conditions individually.

Using the notations of Salvasen et al. [5], the problem is formulated as follows. The

steady perturbation potential,4s , must satisfy the body condition on the mean hull position.

-'[-Ux + #s] = 0 (149)
an

It must also satisfy free surface boundary condition on the undisturbed free surface.

U +.g2- a =O onz = 0 (150)
-x2 + oz=

The incident wave potential and diffraction potential must satisfy the following boundary

condition on the mean position

_#_ O#D
a+ = 0 (151)

an an

and following boundary condition on the undisturbed free surface.

a 2 aj
i, n U + g I (#, #D) = 0 onz = 0 (152)

The oscillatory potentials, # , (jl, 2, ... 6) must satisfy the following body boundary condition

= i5oen; + Umy. (153)
an

on the hull at mean position and

a2
(ioe - U + g O = 0 onz = 0 (154)

at the undisturbed free surface.



Here n is the generalized normal defined by (ni, n 2, n 3) = n and (n4, ns, n 6) = r x n where n is

the unit normal vector and r is the position vector with respect to the origin of the coordinate

system. m =0 forj=1, 2, 3, 4 while

ms = n 3 and m 6 = -n2 (155)

The hull condition (153) for oscillatory potential components can be simplified by dividing the

oscillatory potential into speed independent and speed dependent parts.

U
# =I#9 +- P' (156)

io,

Here #0 is the speed independent part and #P' is the speed dependent part of oscillatory potential

So (153) can be expressed as the following:

= ioen and = iWemj (157)
an an

#p9and #, must also satisfy Laplace's Equation in the fluid domain, free surface condition,

radiation condition, bottom boundary condition and body boundary condition. It follows from the

relationships in (155) that $P-=0 forj=1, 2, 3, 4 and

#S- = #andq # 2 (158)

It can be seen from the last equation that the oscillatory potential components can be expressed

in terms of speed independent part of the potential, #0.

= forj = 1,2,3,4 (159)

U
S =S#o + .i &(160)



U
#6 = 060 # ((161)

iWe

The pressure in the fluid can be found by applying Bernoulli's Equation.

p = -p( + IV 2 + gz (162)

If the pressure is linearized by including only first order terms in es and #T, and the steady

pressure term is ignored, then the linearized time-dependent pressure on the hull can be written

as the following:

p = -p te - U ) #reie t - pg((3 + (4y - ( 5 x)ete t  (163)

"The last term in (163) gives the ordinary buoyancy restoring force and moment, which is

ignored in the derivation of hydrodynamic coefficients and excitation forces and moments."[5]

The amplitudes of forces and moments acting on the hull can be calculated by integrating

(163) on the mean hull position. The amplitudes of forces and moments can be evaluated as the

following:

Hj = pf nj (ioe - U #Tds j = 1,2,3,4,5,6 (164)

Here H1, H2, H3 are the force components in x, y and z directions, and H4, Hs, H6 are the

moments about x, y and z axes. The force and moment components can be decomposed as

following using (148).

H; - F + G (165)

Here Fj represents excitation forces and moments, and G represents force and moment due to the

motions of the body in six degrees of freedom.



f = P ff nj ie U a(I + D) ds (166)

6 6

G; = -Pff n ie -U Y (kk ds = Ti(k (167)
k=1 k=1

Here 7 k refers to hydrodynamic force and moment in thejth direction due to the motion with unit

amplitude in kth direction.

'j k = -P ffnj ie -U kds (168)

Tjk can be separated into its real and imaginary parts as the following:

Tjk = WeAjk - iUe Bk (169)

Here Ajk is the added mass and Bk is the damping coefficient of the ship. These hydrodynamic

coefficients are expressed in terms of three dimensional oscillatory potentials,4k(k = 1, 2, 3, 4, 5,

6). Ajk and Bk will now be expressed as the integral of sectional added mass and damping

coefficients along the length of the ship. Following a variant of Stokes' theorem given as

following by Salvasen et al. [5],

f njU -Ods = U Tm; (Pk ds - U nj qpkdl (170)

(168) can be written in a new form:

"jk = -Pie ffnkds +Up ffm pkds -Up f nkdI (171)

Here CA refers to the aftermost section of the ship. Using the definition of oscillatory potential

given in (156), speed independent part of Tjk and speed independent part of the line integral at

any cross section can be written as following respectively:



iT = -piff n;#P ds (172)

tjk = -Pie fj 0bdl (173)

Finally, the added mass and damping coefficients (171) can be expressed in terms of speed

independent terms (172) and (173) by applying the potential functions given in (159), (160) and

(161).

Forj,k =1,2,3,4

U
Tjk =jk + tjk (174)

where tk represents the hydrodynamic force/moment evaluated at the aftermost section.

Forj=5,6andk-1,2,3,4

U UA
T5k = T5k T3k + '~tk (175)

iWe iWe

U UA
T6k = T6k + T2"k +--t6k (176)

LWe lWe

Forj 1,2,3,4 and k 5,6

U U u2
T + t 2 (177)

iWe iWe We

U 0 U u2
T T0 T+ t;6 z 2  (178)
tWe iWe We

Forj=k=5, 6

U2 U U
T= Tso + -- T33 +- ts A _u2 ts3  (179)

We iWe We

U2 U U
T66 = T 6 + - T22 + - t 6 +--2 t2 (180)

We lWe We



T0In order to reduce the surface integrals in speed independent terms, Tik, to integrals along

the length of the ship, following assumptions are made by Salvasen et al.[5].

e The beam and the draft of the ship are much smaller than her length (L>>B, T). So, the

surface integration variable ds and T can be written as following the respectively:

ds = dxdl (181)

Here dx is the integration variable in the x direction.

i =PiWef fn; id x =f tjk dx (182)

* Since the hull is assumed to be long and slender, the derivatives in the longitudinal

direction must be much smaller than those in lateral directions.

a a a
- - or -
ax ay az (183)

* It follows from the slender hull assumption that the x component of the hull normal

should be much smaller than y and z components.

ni n2, n3 (184)

Following this assumption, three components of the three dimensional generalized normal,

nj(j=2, 3, 4) can be replaced by the two dimensional generalized normal, N, in the y-z plane.(j=2,

3,4)

ns = -xN 3 and n 6 = xN2  (185)

* Finally, in order to linearize the free surface condition, it is assumed that the frequency of

encounter is high(we >> U . This assumption requires that the wave length is of the order of

ship's beam. Although this assumption seems to be inappropriate for the low frequency range,



calculations show that the heave and pitch motions are predicted very accurately by the theory

since these motions are dominated by hydrostatic terms in the low frequency range.

The three dimensional Laplace's Equation and boundary conditions reduce to two

dimensional Laplace's Equation and boundary conditions under these assumptions. The three

dimensional problem can now be considered as a two dimensional problem of a cylinder with

cross section C, oscillating in the free surface. The speed independent three dimensional

oscillatory potential <4 can be replaced with a two dimensional potential:

Gk = k for k = 2, 3 , 4  (186)

#50= -x4' 3 and #0 = x2 (187)

Here Opk represents the potential of any cross section in sway, heave and roll for k = 2, 3, 4

respectively, and it can be calculated using the panel method described in the previous chapter.

The hydrodynamic force or moment can now be written using the two dimensional

sectional potential as the following:

t; = -Pie N V[1 dI = Wz - iWeb (188)

Here aj and b;j are the sectional added mass and damping coefficients for sway, heave and roll.

(j 2, 3, 4) The cross-coupling coefficient can also be written in the following form:

tz4 = -Pie fc N2 @)4 dl = wea 2 4 - iWeb 24  (189)

Considering only ships with lateral symmetry, the non-zero added mass and damping

coefficients are as follows.

A33 = a33 dx (190)



A3 3 = a 33 dx - -b 3  (191)
fL e

B3s = fb 3 3 dx (192)

B3 3 = f b33 dx + Ua33  (193)

U U Uz-fxaA3 u2x (194)A35 - x33dx - Bo3 + -2xAb 33 -- 2 a 33
We We We

Uz
B35 =- xb 33 dx + UA3 3 - Uxa af 3 _u2 b3 (195)

LWe

A 53 = xa33 dx + - B3 + x b (196)
JL e We

B5 3 = - xb 33 dx - UA3 3 - UxAa33  (197)

A2 = +U2  U U2 A (198)

As =xza 3 3 dx +- A3 - xjb + -7 xxa33
Le e We

X2d U U2

Bss=xzb33dx + -B 3 + Uxjas + -x b3 (199)
We We

A4z = fa 2 2 dx (200)

I- U
A22  a22 dx - b 2  (201)

L We

B22 = b2dx (202)

B22 =f b2 2 dx + Ua2z (203)

A= A4 2 = f a24 dx (204)

A2 4 = A4 2 =a4dx 2 b24 (205)
fL We



B24 =B42 =fb2 4 dx (206)

B24 = B4 2 = f b24 dx + Ua$4 (207)

A xazzdx + B2 2 xAbz + - 2 a (208)A26 = +L -2B 12 -- ~xb e ±22 22
JL We We We

B26 = xb 22dx - UA0 2 + UxAa 2 + u 2  (209)
We

r U
A4 4 =Ja 44 dx - b4^ (210)

fL e

B44 = f b44dx + Ua44 + B44  (211)

A46  xa4dx +-- B4 UxAb4 +2a4 (212)46+-B2 4  24X 24
JL We e e

AU2
B46 = x UA2 4 +UxAa4 +U-2b$ (213)46 x24 d2 We

fL e

A 6 2 = - - B2 2  2 xAb 22  (214)

B6 2 ~~~~ 2 f xb2d + A 2 XAa(2)
JL We e

B6z = f xb 2dx + UA0z + UxAa2 (215)

U U
A64  Xa 24dx B 2  (218)

fL We e

B64 = xb24dx +24 + Ux a24 (217)

A6- xazz dx +- Az z2xAbz +-2 xA az (218)

B66= xbzzdx +- BS2 + UxAa$ +-xaz (219)6 exAb 2 2
JfL We We



In equations (190) to (219), xA is the x-coordinate of the aftermost section of the ship, a, and b;

are the added mass and damping coefficients of the aftermost section of the ship; U is the

forward speed of the ship.

In equation (211), B44 represents viscous roll damping. Although the viscous effects are

ignored throughout the derivations of all hydrodynamic forces and moments, they should be

included in the calculation of roll damping coefficient. The roll motion is strongly affected by

viscous damping. In Salvasen et al.[5] B*4 is given by K 4max where K is a function of

frequency, viscosity, the bilge keel dimensions and the hull geometry. 1 4 m represents

maximum roll velocity and it must be estimated before the motions are calculated. If the

difference between estimated and calculated values of maximum roll velocities is too high, a new

value must be estimated and the motions must be calculated using the new value. Here, the

studies of Ikeda et al.[16], Ikeda et al.[17] and Ikeda [18] can be cited as references regarding the

calculation of viscous roll damping.

3.2 Evaluation of Excitation Forces and Moments

The excitation forces and moments were given by (166) as following in the previous

section.

1J = -p n iWe - U (# + #D) dS (220)

This expression can be separated into its incident wave part and diffraction part respectively as

the following:

Fj = -pff n; (iWe - U #;ds (221)



FD = f-p ln tWeU $Dds (222)

The incident wave potential, which satisfies linear free surface condition, Laplace's Equation in

the fluid domain, infinite radiation condition and consistent with the coordinate system and wave

angle defined in the beginning of this chapter, is

_ igA e-ik (x cos f-y sin fl)ekz (223)

where A is the wave amplitude, g the acceleration of gravity, a the wave frequency and k the

wave number which is o 2/g for deep water. This form of the incident wave potential is

consistent with the coordinate system defined in the beginning of this chapter and the incident

wave angle defined in Figure 8. The incident wave part of the excitation forces and moments can

be computing by introducing (223) to (221).

FI = -p nj (We + k cos f) e-ik (x cos f-y si" f )e kz ds (224)

This equation can be written in a simpler form using the relationship given in (146),

Fj' = -piff n $ ds (225)

and known as Froude-Krylov force and moment.

The diffraction part of excitation force and moment can be written as following by

applying Stokes Theorem[5]:

FD = -p ff(iwen; -Umj)$D ds - pU n;(Dd (226)

codiios s c Wel

an =n = i (157), (226) is written as

F j ) ds - ~Df (22
san iOe t Oe an



"For any two functions # and 4) satisfying the same Laplace's Equation, the free surface

condition, the radiation condition at infinity and the bottom condition, it is found by using

Green's second identity [5], that"

ns p nds = fs 4,Lds (228)

This relationship is also valid for two dimensional cases and it can be applied to both surface

integrals and line integrals.[5] Now, (227) can be written in a new form using the relationship in

(228).

D _ O

Ff Pe fCA ~O 29

This equation can be expressed as following by introducing hull condition (151).

FpJp - ds+ CA p dI (230)

The excitation forces and moments can be written in their final forms using the relationships in

(158) and combining (230) with (225) as the following:

F) =-pixf n pds+p p p ds + p fd (231)

Fj -pia ins ;j - u ~ ds + G PS d (34

- nd PU dn
F,=-pjiwnb! - 0102L ds + Ull CA (PI dI (232)

F ff 00l,1''oi ds±+PUf , aP1 di

(iw201020 On CA O (233)

O3fs(wn 3 n-) ds+ Ae fCA O3 n dt(234)

F4 =-Pif(inA 040 an) ds±+HYWefA 4 an ~d 1 (235)



Fs = -- p iwns@ - P ds + c p0 3dl (236)
JJS' ( -n L((eJCA O n

F6=~ 6_- ds +  4 ds + p i d (237)

an J) ds P0 effs an0 -ds+ 1q a

The surface integrals can be transformed into integrals along the length of the ship following the

assumptions in (181) and (184). In addition, excitation forces and moments can be written as the

following by introducing the normal derivative of incident wave potential.

= (in 2 sin f + n3)k#p, (238)
an

pU 0
F1 = -p [ioni - #PO (in 2 sin # n3 )k] 1ds + c (51

ffs i (e J CA

F2 = -P i [in 2 - #(in 2 sinft + n3 )k]$P1ds + c (P 0

F3 = -p [n 3 - GP0(in 2 sin f + n3 )k]# Pds + P 0
3 ffs 3 i~te fCA3

F4 = -p [ian4 -- QP in 2 sin f + n3 )k]Plds + c #P

p U CF
FS = -p if [iwn5 - 00 (in 2 sinfl + n3)k]$P1ds - p 0

+ f $P (in 2 sinfl + n3 )kPjdl
ije A

(in 2 sinf# + n3)k#; dl

(in 2 sinI + n3)kpidl

(in 2 sin# + n3)k# 1dl

(in 2 sinI + n3 )kq5dl

(in2 sinI + n3)kpids

F6 = -p [iwn 6 - q5Oin2 sinfl + n3)klq$ds + p 4)0 (in2 sinfl + n)kq5ds

(244)

+ $We 00(in2 sinI + n3)kpidl
iae JCA

The amplitudes of both motion and force in surge direction are assumed to be small compared to

other modes of motion while analyzing ship motions in the framework of strip theory, so surge

motion and corresponding force are neglected. If the generalized three dimensional normal and

(239)

(240)

(241)

(242)

(243)



speed independent oscillatory potentials are replaced by generalized two dimensional normal and

two dimensional potentials respectively, the remaining forces can be expressed as the integral of

sectional Froude-Krylov, fj(x), and diffraction forces, hj(x), along the length of the ship:

fx) = pgAe-ikx cosfl f N eiky sin fl ekz dl ; j = 2, 3,4 (245)

h (x) = pw Ae-ikx cos f (iN3 - N2 sin fl)eiky sin fi ekz V'; dl; j = 2,3,4 (246)

Fj = f( + h )dx + - hj =2,3,4 (247)

Ui U
F6 = Xf +h) +--hz dx --- xAh (249)

L [xf + 2 +ie 2 1 e X

In these equations, sectional diffraction forces with superscript A refer to the sectional diffraction

force calculated for the aftermost section of the ship.

3.3 Calculation of Ship Motions by Ship Motions Analyzer

The ultimate goal of this thesis is to develop a computational tool to calculate ship

motions. A program called Ship Motions Analyzer (SMA) is written in MATLABTM using the

equations derived in Chapter 2 and Chapter 3 to calculate added mass and damping coefficients

of arbitrary ship sections and excitation forces and moments respectively. In order to calculate

ship motions in six degrees of freedom, the six linear coupled differential equations of ship

motions must be solved. The equation of ship motions can be written in the following form:

6

[[M + A )4k+Bk k +,Cjk)= Fe"wet ;j = 1,2,3,4,5,6 (250)
k=1



Here, Mjk is the generalized mass matrix, Ajk and Bjk are the added mass and the damping

coefficients of the ship, Ck are the hydrostatic restoring coefficients, and F is the complex

magnitude of excitation force and moment. The dots refer to time derivatives, so 4k and k

represent acceleration and velocity terms. For a ship with lateral symmetry, generalized mass

matrix, added mass and damping coefficient matrices can be formed as the following:

M 0 0 0 MZC 0
0 M 0 -Mzc 0 0
S 0 M 0 0 0

ik 0 -MZc 0 14 0 146 (251)
Mze 0 0 0 is 0

0 0 0 -146 0 16

-A11  0 A1 3  0 A1 s 0 -
0 A22  0 A24  0 A2 6

Ajkjk A3 1  0 A3 3  0 A35  0 (252)
A~ (~k -0 A42  0 A44  0 A46 (2)

As1  0 As3  0 Ass 0
0 A62  0 A64  0 A66 -

In (251), M is the mass of the ship, z, is the coordinate of the vertical center of gravity of the ship

measured from the origin of the coordinate system defined in the beginning of this chapter, 14, 15

and 16 are the moments of inertia in roll, pitch and yaw modes of motion respectively, and I46 is

the product of inertia. These terms can be calculated using following equations.

14 = fffpsY 2 + z2 ) dv (253)

Is = fff ps(X 2 + zz) dv (254)

16 = ff S(X 2 + y2 ) dv (255)

146 S fff (-xz) dv (256)



ps represents the mass density of the ship, dv the integration variable over the volume of the ship

in these equations. Although the weight distribution is different all over a ship, the weight

distribution is assumed homogeneous and ps is set equal to the density of sea water in the

calculations (ps= 1025 kg/m3).

The only non-zero hydrostatic restoring coefficients for a ship with lateral symmetry are

C33 , C44, C55 and C35=C53.

C33 = Pg bdx (257)

C35 = C53 = -pg fxbdx (258)

C55 = pg fxbdx (259)

C4 4 = pgVGM (260)

Here p is the density of fluid, g the acceleration of gravity, b the sectional beam, V the

displacement volume of the ship, and GM the well known metacentric height.

For a ship with lateral symmetry, surge, heave and pitch motions are decoupled from

sway, roll and yaw motions. Therefore, six linear coupled differential equations are reduced to

two sets of three linear coupled differential equations. As mentioned previously, since surge

motion is small compared to other modes of motion and ignored, one set of equation remains for

coupled heave and pitch motions and another set of equation remains for coupled sway, roll and

yaw motions. If linear and harmonic motions of the ship are expressed as the following

( = (; e ; j = 2,3,4,5,6 (261)



where (j is the complex magnitude of motion in jth mode, equations of motions for coupled

heave-pitch and coupled sway-roll-yaw motions can be written in the matrix form as following

respectively.

3 2 [(M+ A33) A35  1 [B 3 3 B35 ] + C3 3 C3s F3 (

= LW v As 3  (s5 + Ass) B53 Bss C5 3 C55  Fs

2 1 (A22 + M) (A 24 - Mzc) A2 6  B22 B24 B26 1

(4 e= -wz (A42 - Mze) (A44 +14) (A46 -- 46) + iWe B42 B44 B46

L6  A62  (A64 ~ '46) (A66 + 16)] . B62 B64 B66

(263)
0 0 Fz

+ 0 C44 0 \ F4
0 0 0 F6

In the last two equations, "\" means matrix division and the results of these operations are

matrices which contain the complex magnitudes of motions for a given frequency of encounter.

3.4 Results and Discussions

The ship motions were calculated by SMA for the bare hull of DDG-1000 (Zumwalt-Class

destroyer) for regular head waves in a frequency range between 0.01 rd/s and 1.5 rd/s, and the

following results were obtained for different forward speeds. Figures 9 to 13 show heave

response amplitude operator (RAO), heave excitation force normalized by wave amplitude, A,

pitch RAO, pitch moment normalized by wave number, k, and wave amplitude, A, and

magnitude of pitch moment.

The results for heave motion seem to be consistent with the linear strip theory. The

magnitude of heave force normalized by the wave amplitude converges to hydrostatic restoring

coefficient C33 and the amplitude of heave motion normalized by the wave amplitude converges

to 1, while the frequency of encounter goes to 0. Since the excitation forces and moments are



dominated by the hydrostatic forces in the very low frequency range, and the motions of the

ships are assumed to be linear with fluid motions, the present results support these assumptions.

For the case of pitch motion, the magnitude of pitch moment and the magnitude of pitch

motion normalized by wave number and the wave amplitude should converge to hydrostatic

restoring coefficient Css and I respectively, while the frequency of encounter goes to 0. Figures

11 and 12 do not seem to support this argument. Although these results tend to converge above

mentioned values, the theory breaks down in very low frequencies.

According to Lewis [19], the maximum value of pitch moment generally occurs around

Ls/l =0.75. The results shown in Figure 13 support this argument. It can be seen that the

maximum values of pitch moment at different speeds occur around frequencies of encounter

which correspond to wave frequencies where Ls/l =0.75

For both modes of motion, the magnitudes of excitation forces (moments) and the

amplitudes of motions decay in the high frequency range since the waves cancel out each other's

effects along the ship. It is seen in Figure 10 that heave excitation force is not predicted very well

in high frequency range. This result may be because of the choice of the number of panels used

to describe the boundaries of ship sections. The number of panels was 100 in these calculations

and the diffraction part of the excitation force may not have been predicted accurately.

Increasing the number of panels will definitely increase the sensitivity of the calculations.
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DDG-1000 Heam RAO in Head Seas (s=1804)
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Figure 9: DDG 1000 Heave RAO in Head Seas

DDG-1000 Normalized Heaw Force in Head Seas (p=180*)
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Figure 10: DDG 1000 Normalized Heave Excitation Force in Head Seas



DDG-1000 Pitch RAO in Head Seas(P=180*)
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Figure 11: DDG 1000 Pitch RAO in Head Seas
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DDG-1000 Normaized Pitch Moment in Head Seas (P=180*)
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Figure 12: DDG 1000 Normalized Pitch Moment in Head Seas
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DDG-1000 Pitch Moment in Head Seas (0=180*)
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Figure 13: DDG 1000 Magnitude of Pitch Moment in Head Seas

3.5 Conclusions

It can be seen that the heave motion in head waves is predicted well by the theory. The

pitch motion also seems to agree with the theory except for very low frequencies. The key

assumption of this theory is that the hull is long and slender. DDG 1000 has a length to beam

ratio of Ls/B -182/24=7.58. The same calculations were repeated with a semi cylinder whose

length is 180 m. and beam is 14 m. This semi cylinder has the same mass with DDG 1000 and its

length to beam ratio is Ls/B =180/14=12.86. It was observed that the pitch RAO converged to 1

for both 0 speed and different forward speed cases. This result suggests that the slenderness of

the ship may affect the results significantly. The same convergence was not observed for pitch

moment.
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In order to determine the effects of forward speed and body geometry, more calculations

should be carried out with different types of hulls. In addition, the results shown here must be

supported by experimental results which were not available during the theoretical calculations.



CHAPTER 4

SECOND ORDER FORCES AND MOMENTS

4 Introduction

The responses of a ship to regular waves were assumed to be linear and harmonic in the

previous chapter. However, the ship experiences steady drift motions in the horizontal plane due

to the lack of hydrostatic restoring forces and moments. "Similarly, in irregular seas, a ship will

experience slowly varying surge, sway and yaw motions with non zero means in addition to

motions with frequency components equal to frequency of encounter of the individual wave

components." [3]

The steady state force component in the direction of the ship's longitudinal axis is known as

the added resistance and the component in the lateral direction in horizontal plane is known as

the sideways drift force. These forces are of particular interest in this study since the added

resistance is an important factor affecting the ship's additional power requirement to maintain a

particular speed in a seaway and the drift force is closely related to the course keeping of the

ship. In determining the total power requirement of a ship, an allowance is added to the calm

water resistance of the ship. Added resistance due to waves has a significant contribution to this

allowance. This quantity is known as "Sea Margin" or "Weather Margin."[20]

In this study, a method developed by Salvasen [3] is chosen to evaluate added resistance and

drift force acting on a ship in oblique regular waves since this method is based on the results

obtained by Frank's [2] close-fit source distribution method and the linear strip theory, which

were covered in chapters 2 and 3 respectively.



4.1 Evaluation of Second Order Steady State Force

The steady state second order force component in the horizontal plane (x-y plane) is of

interest in this study. It is assumed that the ship is advancing at constant forward speed with

arbitrary heading in regular sinusoidal waves. The same coordinate system which was used in

Chapter 3 will be used in the derivation of second order forces and moments. The incident wave

angle should be measured as shown in the following figure with respect to the direction of

forward motion and wave propagation direction. This definition is consistent with the way the

steady state force is derived in Salvasen [3] and the direction of the steady state force. Incident

wave angle becomes 0 for following waves (p=0) and 180 for head waves (p=1 80).

Figure 14: Definition of incident wave angle.

Wave Crests

Wave Propagation Direction



The hydrodynamic force acting on a body in the free surface can be expressed in the

following form:

d 1
F =-p-f nds -p V I |VI|2n ds (264)dt sB JSF sw

Here, cP is the total velocity potential, n the generalized normal pointing out of the fluid domain,

SB the body surface, S,,, a control surface in the far field and SF the portion of the free surface

inside the far field control surface. The total velocity potential can be written in the following

form

(1) + (2) +-) + (#let + #P (2) e i2et + (2) +) (265)

neglecting third order terms. Here, () and #4 are the first and second order amplitudes of the

time dependent potential. and 2) is the second order DC potential. Considering only the first

integral in (264), and substituting (265) into this integral results in an expression as the following

since the time derivative of the steady part of the potential does not have any contribution.

ffLs Fnds = A + Be wet + Cei 2wet + (266)

The total potential can now be written as the following:

D = (I + (B (267)

Here, I is the incident wave potential given as the following

=# A e-ik(x cos 0+y sin fl)ekz (268)
(0

and @PBthe potential due to the body motions in six degrees of freedom and diffraction effects.

Substituting (267) into (264) and "performing some manipulations, Newman has shown that the

second integral in equation (264) can be expressed as the following"[3]:
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F = p QPB Vi+- BS 2F=PjJB-g ---g-)Ijl + VP ) ds (269)
san an 2

Following Newman's "weak scatterer" assumption, the body potential clB can be assumed small

compared to incident wave potential. This is a reasonable assumption if the ship's beam and draft

are much smaller than its length. By assuming QB « 0; and neglecting second order terms in

body potentialc@B, the force can be written in the following form:

-* j-( 0 dclB\V d
F = J B )Vq;)ds (270)

If the body potential is expressed as QB = OS + IBeatand the incident wave potential as

0, = #ieiwe t, and by taking the mean value of (270), the steady state second order force can be

written as

P = -p V$B ds (271)
2 fsoO an an

Here, F refers to second order steady state force and #* is the complex conjugate of incident

wave potential. The integration over S( can be converted to integration over the surface of the

body by applying Green's Theorem[3]:

7 = -- Pk (pBB )VP ;ds (272)
2 fs B an On

The horizontal component of steady state force is of interest in this study, so the two dimensional

gradient of the conjugate of incident wave potential is

V#;* = ik(cos #T+ sin fD)/ (273)

Here, i represents the x component, j the y component of the second order steady state force in x-

y plane, and #* can be written as the following:



=-igA
e kz e ik(xcos fl+y sin f) (274)

The second order force can be expressed as the following by substituting (273) into (272),

i ar /0B P*F-pk(cos f3T + sin/j flP O~jB - - I4d
2 ffS Bann

(275)

and its magnitude can be written as

F = - pk ff (B
an aOpB

an ) 3 P* (276)

The x and y components of F are given by the following equations. The negative of the x

component of F is usually known as the added resistance and y component as the sideways drift

force.

Fx = F cos #l

7F = F sinf#

(277)

(278)

"The integral in (276) is known as the Kochin function."[3] If the body potential #Bis expressed

in terms of the diffraction potential and the oscillatory body potentials

(279)

(276) can be written as the following:

F =-pk (
j=1

f $ 1*dsj

Equation (280) can be separated into three components.

- pk f (D
OPD s (280)

#B jjyD

j=1
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= (F;' + FD) + [D (281)
j=1

Here, F' represents the contribution to second order steady state force from jth mode of motion

due to incident waves, FgDthe contribution from oscillatory body potentials in hmode of motion

and FD the contribution from the diffraction potential. These components can be expressed as the

following:

i 2 (282)

P -pk(J p ds (283)
i i aqp cc*~D OD

-TD =-pk i(Pds--.pkjj /Da-ds (284),2 ffj B an SB an

it can be shown that the first integral in (284) is zero by applying the hull boundary condition

(15 1), so0RD becomes

RD =--pkI -D ds (285)2 Jp sB an

Equations (282), (283) and (285) can now be evaluated as follows.

The normal derivative of oscillatory body potential in jth mode of motion can be

expressed using (156) and (157), so (282) can be written as the following:

7;' = i pk(; f (iwen; + Urm;qp*ds
2 1SB1 (286)

In this equation, n is the three dimensional generalized normal and m; is as given in (155).

Applying a variant of Stoke's theorem as given in Salvasen et al. [5],



Um;0ds = f U -Ods (287)

(286) now takes the following form:

=TI pkJJ ilj (w, + Uk cos fl)/ds (288)

Recalling the expression for frequency of encounter given in (146), (288) can be written as the

following:

- pkg B n w*ds (289)

Equation (289) can also be expressed using the complex amplitude of excitation force due to

incident waves, in other words using the Froude-Krylov part of the excitation force. If the

Froude-Krylov part of the excitation force is written as the following,

F' = -ipofIsB n #1ds (290)

FI/ can be written as

?I = k ( (FI)* (291)
S 2 ~

Here, (F5)* represents the complex conjugate of Froude-Krylov excitation force.

The second contribution to the steady state force comes from (283). The normal

derivative of #P*in (283) can be expressed as the following

= k(n 3 + in 2 sin f)#j* (292)
an

including the slender body assumption given in (184). Substituting (292) into (283) and replacing

#) with speed independent oscillatory potential Pforj=2, 3, 4 as given in (159) result in



jD 2  f (n3 + in2 sinO ds (293)

Forj=5 and 6, Rj can be expressed as the following using the equations given in (160) and

(161).

D 2 0 U (PF = -- pk 2 + (n3 - in 2 sin/ ) ds (294)

??~ ~ = -k26s 3 2 1iO (295)

2 f B i Oe

6 2 -JB 6 O) 2) (2 - in 2 sin fl)(P'ds(25

Using the strip theory assumptions (184)-(187), if the three dimensional generalized normal n

and three dimensional speed independent oscillatory potential #1? are replaced by two

dimensional generalized normal N and potential Oi respectively, (293), (294) and (295) can be

written as the following:

h;(x) = -pk Vp (N3 + iN 2 sin /)1*d1 (296)

IC 1J (297)jc

F;D kjfh(x) dX f OT f = 2, 3, 4 (297)

D 5 -X + h(x) dx (298)

72 = k( 6 f -)2xdx (299)

The integration in (296) is along the boundary of any section. This expression is similar to

sectional diffraction force defined in chapter 3, but the conjugate of incident wave potential is

used in this equation.

Finally, the force component due to the diffraction potential can be expressed by

substituting (292) into (285) as the following:



D - kj 2 -D 3 i sin flcds (300)

This integral equation can be expressed as an integral along the length of the ship if a sectional

force similar to (296) is written.

hD(X) = -ipk 2 f D (n3 + in 2 sin dl 301)
fcx(31

RD = fhD (x)dx (302)
2 ,

Substitution of #* into (301) results in the following:

hD(X) = -pw Ake ikx o f D (n3 - in 2 sinf) e iky sin fe ekzdl (303)

"It is assumed that in the integral in (303), ekz and e-iky sinfl can be replaced by e-kUs and

e-ik(Tjb)ssing respectively. Here, s represents sectional are coefficient, sectional area divided by

sectional beam times draft,(s = A,/(bd)); b the sectional beam and dthe sectional draft. The

first assumption is often used in strip theory calculations and has been shown to give accurate

results for conventional ship hull forms."[3] The second assumption is considered reasonable if

the wave length is considerably larger than the half beam of the shipA >> -B). Substituting

these assumptions into (303) results in

hD(x) = -po Akeikx 'os feik ) "f e-ks f D n 3 + in 2 sinSD dl (304)

Denoting the integral in (304) by ID and substituting the first body boundary condition given in

(157), this integral equation can be written as the following:

ID ~ OD +isinfl dl (305)
We cx an an)



Applying Green's second identity in two dimensions, which was previously given in (228), this

integral equation now turns into the following form:

ID fsin O D
e Jc, On (306)

The following form of hD (x) is obtained after the hull boundary condition (151) is applied to

(306).

hD (x) = -pwAk 2eikx cos -ik( b)s sin fle -kds

- in2 sin #)]dl

sin fl)) [-4 (n3

(307)

Substituting incident wave potential into this equation results in

hD(X) = pA 2 k -2kds
e cx 

(4n 3 - in 2 Sinfl (P + in sin fl
(308)

+ n 2 (sin #) 2 g2) dl

The following relationship is assumed valid for symmetric sections by Salvasen [3].

fNPn 2dl -= /n 3dl = 0

Finally, (308) takes the following form:

fWe JC
(0sn3 + n2 (sin fl) 2 ) dl

This equation can also be expressed using sectional added mass and damping coefficients.

Recalling the strip theory assumptions (184)-(187) and introducing the following equation

i if
ajk bjk P NiPdl (3 d

into (310) results in

(309)

hD(x) = pA e-kds (310)

(311)

We fc"



hD =2 k&j- 2kds [b 33 + (sin3 ) 2b 22 + ice(a3 3 + (sin f) 2 a 2 2)] (312)
We

Since only the real part of hD is needed in the calculation of steady state force, (302) can be

written in its final form as the following:

2(2
hD(x) = A2k -- e--2 kds[b 3 3 + (sin #) 2 b22] (313)

FD jfhD(x)dx (314)

The total second order steady state force can now be calculated by summing (289), (297),

(298), (299) and (314).

= Re Y +D + FD (315)

4.2 The Steady State Moment

The hydrodynamic moment on a body in the free surface can be expressed in a similar

form used to evaluate the force given in (264).

M = -(i' x fi)ds -p r V<D - nICi] ds (316)
s B +SF P fB +SF1

Here, r' is the position vector in a coordinate system fixed in space and r' the position vector with

respect to the coordinate system fixed to the mean hull position. r can be related to r' as

r x n = r + - Un 3tj+ Un2 tk (317)

If the first integral in (316) is denoted by I and only the moment about the z axis is considered,

substitution of (317) into (316) results in



d

dtfSB +SF

<(n x n)zds - p
d fB +SF

In this equation, the first term does not give any steady state contribution.[3] The contribution

from the second term can be written as

y = 2 Uf ((3 - x(s) [kf2*(x) + g (x)]dx (319)

where

f(x) = Apgeikx cos fl Nj eiky sin flekz dl (320)

(321)g(x) = -Apgeikx cos f N2 cos -kb sinp)

Following the same steps in deriving the steady state force, the steady state moment can be

expressed as

(322)a

Only the moment about the z axis is considered, so that

a a a
(323)

since it is assumed that x a >>y a for slender ships.

Substitution of (323) into (322) gives the following expression.

MV- y -- ipk sinf3 B 0L xq~jds
2 ffsB ( On On )

(324)

Equation (324) is similar to (276) except for the presence of moment arm x. If the same steps

which were taken in the calculation of steady state force are taken and the total moment is

written as

<bUnztds (318)

ap'!B) f )O
Xn J zf
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m = y m; (325)
j=2

and the moment components can be expressed as the following:

M = k cos fl (; x (f; + it;) dx for j = 2,3,4 (326)
1 iU

-M = - kcos #(sx xf3 + x + - h, dx (327)
L

1 
i U

M6 = - k cosfl (6 xL X f2 + (X +----) h2) dx (328)

1
M7 = -Cos fl xhD (x)dx (329)

2 f

Here fj (x), ij (x) and hf(x) are defined by (320), (296) and (313) respectively.

4.3 Results and Discussions

The added resistance of Mariner type ship in head waves for various speeds was calculated

using SMA. Figure 15 shows the results both obtained by SMA and given by Salvasen [3]. It can

be seen that the results are close to each other; however, the greatest differences occurred near

the maximum values of added resistance. Similar differences can also be seen in Figure 16 in

which the results were calculated by using MIT-5D seakeeping program. In addition, added

resistance of Mariner type ship at 15 knots for various headings was also calculated by SMA. It

can be seen in Figure 17 that the results are very close to the ones given by Salvasen[3], even

though SMA does not include viscous roll damping in the calculations which affects the results

obtained for sway, roll and yaw motions. Since the steady state force is calculated using the

results obtained from close-fit source distribution method and the linear strip theory, its accuracy



depends on the accuracy of the responses, sectional hydrodynamic coefficients and the excitation

forces and moments.

Added Resistance of Marner Type Ship in Head Waws

1.2 1.4
/L-Waw Length/Ship Length

Figure 15: Added resistance of Mariner type ship in head waves at various speeds. Solid lines represent the results

obtained by SMA and dashed lines are adapted from Salvasen [3].
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Added Resistance of Mariner Type Ship at 15 Knots for Different Headings

< IQ %

34-

1 I1

0 r -/

% %I %

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

V/L-Wave Length/Ship Length

Figure 17: Added Resistance of Mariner type ship at 15 Knots for different headings (Solid lines represent results

obtained by SMA and dashed lines are adapted from Salvasen[3])

4.4 Conclusions

The results presented here are only for one type of ship. Even though very close results

were obtained during the calculations, more calculations should be carried out using different

hull forms and the results should be compared to experimental results. As mentioned before,

SMA does not take viscous roll damping into account at the moment, so this factor must be

included first to obtain better results for sway, roll and yaw motions.
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