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Abstract

We develop semiparametric tests for conditional independence in time series models of causal effects. Our

approach is motivated by empirical studies of monetary policy effects. Our approach is semiparametric

in the sense that we model the process determining the distribution of treatment —the policy propensity

score —but leave the model for outcomes unspecified. A conceptual innovation is that we adapt the

cross-sectional potential outcomes framework to a time series setting. We also develop root-T consistent

distribution-free inference methods for full conditional independence testing, appropriate for dependent

data and allowing for first-step estimation of the (multinomial) propensity score.

Keywords: Potential outcomes, monetary policy, causality, conditional independence, functional

martingale difference sequences, Khmaladze transform, empirical Rosenblatt transform



1 Introduction

The causal connection between monetary policy and real economic variables is one of the most important

and widely studied questions in macroeconomics. Most of the evidence on this question comes from

regression-based statistical tests. That is, researchers regress an outcome variable such as industrial

production on measures of monetary policy, while controlling for lagged outcomes and contemporaneous

and lagged covariates, with the statistical significance of policy variables providing the test results of

interest. Two of the most influential empirical studies in this spirit are by Sims (1972, 1980), who

discusses conceptual as well as empirical problems in the money-income nexus.

The foundation of regression-based causality tests is a simple conditional independence assumption.

The core null hypothesis is that conditional on lagged outcomes and an appropriate set of control variables,

the absence of a causal relationship should be manifest in a statistically insignificant connection between

policy surprises and contemporaneous and future outcomes. In the language of cross-sectional program

evaluation, policy variables are assumed to be “as good as randomly assigned”after appropriate regression

conditioning, so that conditional effects have a causal interpretation. While this is obviously a strong

assumption, it seems like a natural place to begin empirical work, at least in the absence of a randomized

trial or compelling exclusion restrictions. The conditional independence assumption is equivalent to

postulating independent structural innovations in a structural vector autoregression (SVAR), a tool that

has taken center stage in the analysis of monetary policy effects. Recent contributions to this literature

include Bernanke and Blinder (1992), Christiano, Eichenbaum and Evans (1996, 1999), Gordon and

Leeper (1994), Sims and Zha (2006), and Strongin (1995).

While providing a flexible tool for the analysis of causal relationships, an important drawback of
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regression-based conditional independence tests, including those based on SVAR’s, is the need for an

array of auxiliary assumptions that are hard to assess and interpret, especially in a time series context.

Specifically, regression tests rely on a model of the process determining GDP growth or other macro-

economic outcomes. Much of the recent literature in monetary macroeconomics has focused on dynamic

stochastic general equilibrium (DSGE) models for this purpose. As discussed by Sims and Zha (2006),

SVAR’s can be understood as first-order approximations to a potentially non-linear DSGE model. More-

over, as a framework for hypothesis testing, the SVAR approach implicitly requires specification of both

a null and an alternative model.

The principal contribution of this paper is to develop an approach to time series causality testing

that shifts the focus away from a model of the process determining outcomes towards a model of the

process determining policy decisions. In particular, we develop causality tests that rely on a model for the

conditional probability of a policy shift, which we call the “policy propensity score”, leaving the model for

outcomes unspecified. In the language of the SVAR literature, our approach reduces the modeling burden

to the specification, identification, and estimation of the structural policy innovation while leaving the

rest of the system unspecified. This limited focus should increase robustness. For example, we do not

need to specify functional form or lag length in a model for GDP growth. Rather, we need be concerned

solely with the time horizon and variables relevant for Federal Open market Committee (FOMC) decision-

making, issues about which there is some institutional knowledge. Moreover, the multinomial nature of

policy variables such as the one we study provides a natural guide as to the choice of functional form for

the policy model.

A second contribution of our paper is the outline of a potential-outcomes framework for causal research
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using time series data. In particular, we show that a generalized Sims-type definition of dynamic

causality provides a coherent conceptual basis for time series causal inference analogous to the selection-

on-observables assumption widely used in cross-section econometrics. The analogy between a time series

causal inquiry and a cross-sectional selection-on-observables framework is even stronger when the policy

variable can be coded as a discrete treatment-type variable. In this paper, therefore, we focus on the

causal effect of changes in the federal funds target rate, which tends to move up or down in quarter-point

jumps. Our empirical work is motivated by Romer and Romer’s (2004) analysis of the FOMC decisions

regarding the intended federal funds rate. This example is also used to make our theoretical framework

concrete. In an earlier paper, Romer and Romer (1989) described monetary policy shocks using a dummy

variable for monetary tightening. An application of our framework to this binary-treatment case appears

in our working paper (Angrist and Kuersteiner, 2004). Here, we consider a more general model of the

policy process where Federal Funds target rate changes are modeled as a dynamic multinomial process.

Propensity score methods, introduced by Rosenbaum and Rubin (1983), are now widely used for

cross-sectional causal inference in applied econometrics. Important empirical examples include Dehejia

and Wahba (1999) and Heckman, Ichimura and Todd(1998), both of which are concerned with evaluation

of training programs. Heckman, Ichimura, and Todd (1997), Heckman, et al (1998), and Abadie (2005)

develop propensity score strategies for differences-in-differences estimators. The differences-in-differences

framework often has a dynamic element since these models typically involve intertemporal comparisons.

Similarly, Robins, Greenland and Hu (1999), Lok et.al. (2004) and Lechner (2004) have considered panel-

type settings with time-varying treatments and sequential randomized trials. At the same time, few, if

any, studies have considered propensity score methods for a pure time series application. This in spite
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of the fact that the dimension-reducing properties of propensity score estimators would seem especially

attractive in a time series context. Finally, we note that Imbens (2000) and Lechner (2000) generalize the

binary propensity score approach to allow for ordered treatments, though this work has not yet featured

widely in applications.

Implementation of our semiparametric test for conditional independence in time series data generates

a number of inference problems. First, as in the cross-sectional and differences-in-differences settings

discussed by Hahn (1999), Heckman, Ichimura and Todd (1998), Hirano, Imbens, and Ridder (2003),

Abadie (2005), and Abadie and Imbens (2009), inference should allow for the fact that in practice the

propensity score is unknown and must be estimated. First-step estimation of the propensity score changes

the limiting distribution of our Kolmogorov-Smirnov (KS) and von Mises (VM) test statistics.

A second and somewhat more challenging complication arises from the fact that non-parametric tests

of distributional hypotheses such as conditional independence may have a non-standard limiting distrib-

ution, even in a relatively simple cross-sectional setting. For example, in a paper closely related to ours,

Linton and Gozalo (1999) consider KS- and VM-type statistics, as we do, but the limiting distributions

of their test statistics are not asymptotically distribution-free, and must therefore be bootstrapped.1

More recently, Su and White (2003) propose a nonparametric conditional independence test for time

series data based on orthogonality conditions obtained from an empirical likelihood specification. The Su

and White procedure converges at a less-than-standard rate due to the need for nonparametric density

estimation. In contrast, we present new Kolmogorov-Smirnov (KS) and von Mises (VM) statistics that

provide distribution-free tests for full conditional independence, are suitable for dependent data, and

1See also Abadie (2002), who proposes a bootstrap procedure for nonparametric testing of hypotheses about the distri-

bution of potential outcomes, when the latter are estimated using instrumental variables.
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which converge at the standard rate.

The key to our ability to improve on previous tests of conditional independence, and an added benefit

of the propensity score, is that we are able to reduce the problem of testing for conditional distributional

independence to a problem of testing for a martingale difference sequence (MDS) property of a certain

functional of the data. This is related to the problem of testing for the MDS property of simple stochastic

processes, which has been analyzed by, among others, Bierens (1982, 1990), Bierens and Ploberger (1997),

Chen and Fan (1999), Stute, Thies and Zhu (1998) and Koul and Stute (1999). Our testing problem

is more complicated because we simultaneously test for the MDS property of a continuum of processes

indexed in a function space. Earlier contributions propose a variety of schemes to find critical values

for the limiting distribution of the resulting test statistics but most of the existing procedures involve

nuisance parameters.2 Our work extends Koul and Stute (1999) by allowing for more general forms

of dependence, including mixing and conditional heteroskedasticity. These extensions are important

in our application because even under the null hypothesis of no causal relationship, the observed time

series are not Markovian and do not have a martingale difference structure. Most importantly, direct

application of the Khmaladze (1988,1993) method in a multivariate context appears to work poorly in

practice. We therefore use a Rosenblatt (1952) transformation of the data in addition to the Khmaladze

transformation3. This combination of methods seems to perform well, at least for the low-dimensional

2In light of this diffi culty, Bierens and Ploberger (1997) propose asymptotic bounds, Chen and Fan (1999) use a bootstrap

and Koul and Stute (1999) apply the Khmaladze transform to produce a statistic with a distribution-free limit. The

univariate version of the Khmaladze transform was first used in econometrics by Bai (2003) and Koenker and Xiao (2002)

.
3In recent work, independent of ours, Delgado and Stute (2008) discuss a specification test that also combines the

Khmaladze and Rosenblatt transforms. Song (2009) considers a nonparametric test (as opposed to our semiparametric
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multivariate systems explored here.

The paper is organized as follows. The next section outlines our conceptual framework, while Section

3 provides a heuristic derivation of the testing strategy. Section 4 discusses the construction of feasible

critical values using the Khmaladze and Rosenblatt transforms as well as a bootstrap procedure. Finally,

the empirical behavior of alternative causality concepts and test statistics is illustrated through a re-

analysis of the Romer and Romer (2004) data in Section 5.4 As an alternative to the Romers’approach,

and to illustrate the use of our framework for specification testing, we also explore a model for monetary

policy based on a simple Taylor rule. Appendix A extends the tests of Section 3 to a general testing

framework. Appendix B provides detailed descriptions on how to implement the test statistics. Appendix

C summarizes theoretical results and technical assumptions.5 Appendices D and E contain model and

data definitions for the empirical work in Section 5.

2 Notation and Framework

Causal effects are defined here using the Rubin (1974) notion of potential outcomes. The potential

outcomes concept originated in randomized trials, but is now widely used in observational studies. Our

definition of causality relies on the distinction between potential outcomes that would be realized with

and without a change in policy. In the case of a binary treatment, these are denoted by Y1t and Y0t. The

test) of conditional independence using the Rosenblatt transform. In his setup, parameter estimation involving conditioning

variables, unlike in our case for the propensity score, does not affect the limiting distribution of test statistics. This eliminates

the need for the Khmaladze transform.
4A small Monte Carlo study can be found in our NBER working paper Angrist and Kuersteiner (2004).
5Proofs are available in an Auxiliary Appendix published online.
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observed outcome in period t can then be written Yt = Y1tDt+(1−Dt)Y0t, where Dt is treatment status.

In the absence of serial correlation or covariates, the causal effect of a treatment or policy action is defined

as Y1t − Y0t. Since only one or the other potential outcome can ever be observed, researchers typically

focus on the average causal effect E(Y1t−Y0t), or the average effect in treated periods, E(Y1t−Y0t|Dt = 1).

When Dt takes on more than two values, there are multiple incremental average treatment effects, e.g.,

the effect of going up or down. This is spelled out further below.

Time series data are valuable in that, by definition, a time series sample consists of repeated ob-

servations on the subject of interest (typically a country or economy). At the same time, time series

application pose special problems for causal inference. In a dynamic setting, the definition of causal

effects is complicated by the fact that potential outcomes are determined not just by current policy ac-

tions but also by past actions, lagged outcomes, and covariates. To capture dynamics, we assume the

economy can be described by the observed vector stochastic process χt = (Yt, Xt, Dt) , defined on the

probability space (Ω,F ,P), where Yt is a vector of outcome variables, Dt is a vector of policy variables,

and Xt is a vector of other exogenous and (lagged) endogenous variables that are not part of the null

hypothesis of no causal effect of Dt. Let X̄t = (Xt, ..., Xt−k, ...) denote the covariate path, with similar

definitions for Ȳt and D̄t. Formally, the relevant information is assumed to be described by Ft = σ (zt)

where zt = Πt(X̄t, Ȳt, D̄t−1) is a sequence of finite dimensional functions Πt :
⊗dim(χt)

i=1 R∞ → Rk2 of the

entire observable history of the joint process. For the purposes of empirical work, the mapping Πt and

zt are assumed to be known.

A key to identification in our framework is the distinction between systematic and random components

in the process by which policy is determined. Specifically, decisions about policy are assumed to be
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determined in part by a possibly time-varying but non-stochastic function of observed random variables,

denoted D(zt, t). This function summarizes the role played by observable variables in the policy makers’

decision-making process. In addition, policy makers are assumed to react to idiosyncratic information,

represented by the scalar εt, that is not observed by researchers and therefore modeled as a stochastic

shock. The policy Dt is determined by both observed and unobserved variables according to Dt =

ψ(D(zt, t), εt, t), where ψ is a general mapping. Without loss of generality we can assume that εt has a

uniform distribution on [0, 1]. This is because ψ(a, b, t) can always be defined as ψ̃(a, F−1(b), t) where F

is any parametric or non-parametric distribution function. We assume that ψ takes values in the set of

functions Ψt. A common specification in the literature on monetary policy is a Taylor (1993) rule for the

nominal interest rate. In this literature, ψ is usually linear while zt is lagged inflation and unemployment

(see, e.g., Rotemberg and Woodford (1997)). A linear rule implicitly determines the distribution of εt.

A second key assumption is that the stochastic component of the policy function, εt, is independent

of potential outcomes. This assumption is distinct from the policy model itself and therefore discussed

separately, below. Given this setup, we can define potential outcomes as the possibly counterfactual

realizations of Yt that would arise in response to a hypothetical change in policy as described by alternative

realizations for ψ(D(zt, t), εt, t). The definition allows counterfactual outcomes to vary with changes in

policy realizations for a given policy rule, or for a changing policy rule:

Definition 1 A potential outcome, Y ψ
t,j (d), is defined as the value assumed by Yt+j ifDt = ψ(D(zt, t), εt, t) =

d, where d is a possible value of Dt and ψ ∈ Ψt.

The random variable Y ψ
t,j (d) depends in part on future policy shocks such as εt+j−1, that is, random

shocks that occur between time t and t + j. When we imagine changing d or ψ to generate potential
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outcomes, the sequence of intervening shocks is held fixed. This is consistent with the tradition of

impulse response analysis in macroeconomics. Our setup is more general, however, in that it allows the

distributional properties of Y ψ
t,j (d) to depend on the policy parameter d in arbitrary ways. In contrast,

traditional impulse response analysis looks at the effect of d on the mean of Y ψ
t,j (d) only.6

It also bears emphasizing that both the timing of policy adoption and the horizon matter for Y ψ
t,j (d).

For example, Y ψ
t,j (d) and Y ψ

t+1,j−1 (d) may differ even though both describe outcomes in period t + j. In

particular, Y ψ
t,j (d) and Y ψ

t+1,j−1 (d) may differ because Y ψ
t,j (d) measures the effect of a policy change at

time t on the outcome in time t + j and Y ψ
t+1,j−1 (d) measures the effect of period t + 1 policy on an

outcome at time t+ j.

Under the null hypothesis of no causal effect, potential and realized outcomes coincide. This is

formalized in the next definition.

Condition 1 The sharp null hypothesis of no causal effects means that Y ψ′
t,j (d′) = Y ψ

t,j (d) , j > 0 for all

d, d′ and for all possible policy functions ψ, ψ′ ∈ Ψt. In addition, under the no-effects null hypothesis,

Y ψ
t,j (d) = Yt+j for all d, ψ, t, j.

In the simple situation studied by Rubin (1974), the no-effects null hypothesis states that Y0t =

Y1t.7 Our approach to causality testing leaves Y ψ
t,j (d) unspecified. In contrast, it is common practice

6White (2006, 2009) develops a potential outcomes model for causal effects in a dynamic context. In contrast to our

approach, White is concerened with the causal effect of policy sequences rather than individual policy shocks. White also

discusses estimation of policy effects (as opposed to a focus on testing), but imposes stronger assumptions on the model

relating outcomes and policies than we do.
7In a study of sequential randomized trials, Robins, Greenland and Hu (1999) define potential outcome Y (0)t as the

outcome that would be observed in the absence of any current and past interventions, i.e. when Dt = Dt−1 = ... = 0. They
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in econometrics to model the joint distribution of the vector of outcomes and policy variables (χt) as a

function of lagged and exogenous variables or innovations in variables. It is therefore worth thinking

about what potential outcomes would be in this case.

We begin with an example based on Bernanke and Blinder’s (1992) SVAR model of monetary trans-

mission (see also Bernanke and Mihov (1998)). This example illustrates how potential outcomes can be

computed explicitly in simple linear models, and the link between observed and potential outcomes under

the no-effects null.

Example 1 The economic environment is described by an SVAR of the form Γ0χt = −Γ (L)χt + (η′t, εt)
′

where Γ0 is a matrix of constants conformable to χt and Γ (L) = Γ1L+ ...+ ΓpL
p is a lag polynomial such

that C (L) ≡ (Γ0 + Γ (L))−1 =
∑∞

k=0CkL
k exists. The policy innovations are denoted by εt and other

structural innovations are ηt. Then, χt = C (L) (η′t, εt)
′ such that Yt has a moving average representation

Yt =
∑∞

k=0 cyε,kεt−k +
∑∞

k=0 cyη,kηt−k

where cyε,k and cyη,k are blocks of Ck partitioned conformably to Yt, εt and ηt. In this setup, potential

outcomes are defined as

Y ψ
t,j (d) =

∑∞
k=0,k 6=j cyε,kεt+j−k +

∑∞
k=0 cyη,kηt+j−k + cyε,jd.

These potential outcomes answer the following question: assume that everything else equal, which in this

case means keeping εt+j−k and ηt+j−k fixed for k 6= j, how would the outcome variable Yt+j change if we

change the policy innovation from εt to d? The sharp null hypothesis of no causal effect holds if and only

denote by Y (1)t the set of values that could have potentially been observed if for all i ≥ 0, Dt−i = 1. This approach seems

too restrictive to fit the macroeconomic policy experiments we have in mind.
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if cyε,j = 0 for all j. This is the familiar restriction that the impulse response function be identically equal

to zero.8

When economic theory provides a model for χt, as is the case for DSGE models, there is a direct

relationship between potential outcomes and the solution of the model. As in Blanchard and Kahn

(1980) or Sims (2001) a solution χ̃t = χ̃t (ε̄t, η̄t) is a representation of χt as a function of past structural

innovations ε̄t = (εt, εt−1, ...) in the policy function and structural innovations η̄t =
(
ηt, ηt−1, ...

)
in the

rest of the economy. Further assuming that ψ(D(zt, t), εt, t) = d can be solved for εt such that for some

function ψ∗, εt = ψ∗(D(zt, t), d, t) we can then partition χ̃t =
(
Ỹt, X̃t, D̃t

)
and focus on Ỹt = Ỹt (ε̄t, η̄t) .

The potential outcome Y ψ
t,j (d) can now be written as Y ψ

t,j (d) = Ỹt+j

(
εt+j, ...εt+1, ψ

∗(D̃t, d, t), ε̄t−1, η̄t

)
9.

It is worth pointing out that the solution χ̃t, and thus the potential outcome Y
ψ
t,j (d) , in general both

depends on D (., .) and on the distribution of εt. With linear models, a closed form for χ̃t can be derived.

Given such a functional relationship, Y ψ
t,j (d) can be computed in an obvious way.10.

Definition 1 extends the conventional potential outcome framework in a number of important ways. A

8In this example, Y ψt+1,j−1 (d) typically differs from Y ψt,j (d) ,except under the null hypothesis of no causal effects.
9When Dt = D (zt, t) + εt, ψ

∗ (D (zt, t) , d) = d − D (zt, t) . However, the function ψ
∗ may not always exist. Then, it

may be more convenient to index potential outcomes directly as functions of εt rather than d. In that case, one could

define Y ψt,j (e) = Ỹt+j (εt+j , ...εt+1, e, ε̄t−1, η̄t) where we use e instead of d to emphasize the difference in definition. This

distinction does not matter for our purposes and we focus on Y ψt,j (d) .
10New Keynesian monetary models have multiple equilibria under certain interest rate targeting rules. Lubik and

Schorfheide (2003) provide an algorithm to compute potential outcomes for linear rational expectations models with mul-

tiple equilibira. Multiplicity of equilibria is compatible with Condition 1 as long as the multiplicity disappears under the

null hypothesis of no causal effects. Moreover, uniqueness of equilibria under the no-effects null need hold only for the

component Ỹt (ε̄t, η̄t) of χ̃t =
(
Ỹt, X̃t, D̃t

)
.
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key assumption in the cross-sectional causal framework is non-interference between units, or what Rubin

(1978) calls the Stable Unit Treatment Value Assumption (SUTVA). Thus, in a cross-sectional context,

the treatment received by one subject is assumed to have no causal effect on the outcomes of others.

The overall proportion treated is also taken to be irrelevant. For a number of reasons, SUTVA may fail

in a time series setup. First, because the units in a time series context are serially correlated, current

outcomes depend on past policies. This problem is accounted for here by conditioning on the history of

observed policies, covariates and outcomes, so that in practice potential outcomes reference alternative

states of the world that might be realized for a given history. Second, and more importantly, since the

outcomes of interest are often assumed to be equilibrium values, potential outcomes may depend on the

distribution —and hence all possible realizations —of the unobserved component of policy decisions, εt.

The dependence of potential outcomes on the distribution of εt is captured by ψ. Finally, the fact that

potential outcomes depend on ψ allows them to depend directly on the decision-making rule used by

policy makers even when policy realizations are fixed. Potential outcomes can therefore be defined in

a rational-expectations framework where both the distribution of shocks and policy makers’reaction to

these shocks matter.

The framework up to this point defines causal effect in terms of unrealized potential or counterfactual

outcomes. In practice, of course, we obtain only one realization each period, and therefore cannot

directly test the non-causality null. Our tests therefore rely on the identification condition below,

referred to in the cross-section treatment effects literature as “ignorability”or “selection-on-observables.”

This condition allows us to establish a link between potential outcomes and the distribution of observed

random variables.
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Condition 2 Selection on observables:

Y ψ
t,1 (d) , Y ψ

t,2 (d) , ...⊥Dt|zt, for all d and ψ ∈ Ψt.

The selection on observable assumption says that policies are independent of potential outcomes after

appropriate conditioning. Note also that Condition 2 implies that Y ψ
t,1 (d) , Y ψ

t,2 (d) , ...⊥εt|zt. This is

because Dt = ψ (zt, εt, t) such that conditional on zt, randomness in Dt is due exclusively to randomness

in εt. We think of εt as shorthand for idiosyncratic factors such as those detailed for monetary policy

by Romer and Romer (2004). These factors include the variation over time in policy makers’beliefs

about the workings of the economy, decision-makers’tastes and goals, political factors, the temporary

pursuit of objectives other than changes in the outcomes of interest (e.g., monetary policy that targets

exchange rates instead of inflation or unemployment), and harder-to-quantify factors such as the mood

and character of decision-makers. Conditional on observables, this idiosyncratic variation is taken to be

independent of potential future outcomes.

The sharp null hypothesis in Condition 1 implies Y ψ′
t,j (d′) = Y ψ

t,j (d) = Yt+j. Substituting observed for

potential outcomes in Condition 2 produces the key testable conditional independence assumption:

Yt+1, ..., Yt+j, ... ⊥ Dt|zt. (1)

In other words, conditional on observed covariates and lagged outcomes, there should be no relationship

between treatment and outcomes.

Condition 2 plays a central role in the applied literature on testing the effects of monetary policy.

For example, Bernanke and Blinder (1992), Gordon and Leeper (1994), Christiano, Eichenbaum and

Evans (1996, 1999), and Bernanke and Mihov (1998) assume a block recursive structure to identify policy
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shocks. In terms of Example 1, this is equivalent to imposing zero restrictions on the coeffi cients in

Γ0 corresponding to the policy variables Dt in the equations for Yt and Xt (see Bernanke and Mihov,

1998, p 874). Together with the assumption that εt and ηt are independent of each other and over time

this implies Condition 2. To see this, note that conditional on zt, the distribution of Dt depends only

on εt, which is independent of the history of shocks that determine potential outcomes. Christiano,

Eichenbaum and Evans (1999) discuss a variety of SVAR specifications that use recursive identification.

The key assumption here is that an instantaneous response of conditioning variables to policy shocks can

be ruled out a priori.

Tests based on Equation (1) can be seen as testing a restriction similar to the generalized version of

Sims causality introduced by Chamberlain (1982). A natural question is how this relates to the Granger

causality tests widely used in empirical work. Note that if Xt can be subsumed into the vector Yt, Sims

non-causality simplifies to Yt+1, ..., Yt+k, ... ⊥ Dt|Ȳt, D̄t−1. Chamberlain (1982) and Florens and Mouchart

(1982, 1985) show that under plausible regularity conditions this is equivalent to generalized Granger

non-causality, i.e.,

Yt+1 ⊥ Dt, D̄t−1|Ȳt. (2)

In the more general case, however, Dt potentially causes Xt+1, so X̄t can not be subsumed into Ȳt.

Therefore, (1) does not imply

Yt+1 ⊥ Dt, D̄t−1|X̄t, Ȳt. (3)

The fact that Sims and Granger causality are not generally equivalent was shown for the case of

linear processes by Dufour and Tessier (1993).11 We summarize the non-equivalence of Sims and Granger

11The relationship between Granger and Sims-type conditional independence restrictions is also discussed by Dufour and
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causality in the following theorem:

Theorem 1 Let χt be a stochastic process defined on a probability space (Ω,F ,P) as before, assuming

also that conditional probability measures Pr(Yt+1, Dt|zt) are well defined ∀t except possibly on a set of

measure zero. Then (1) does not imply (3) and (3) does not imply (1).

The intuition for the Granger/Sims distinction is that while Sims causality looks forward only at

outcomes, the Granger causality relation is defined by conditioning on potentially endogenous responses

to policy shocks and other disturbances. Even if the conditional independence assumption holds, the

Granger test can be systematically misleading for the same reason that control for endogenous variables

(i.e., other outcomes) complicates any kind of causal inference.12

Is the distinction between Granger and Sims causality empirically relevant in the money and income

context? In research on monetary policy, Shapiro (1994) and Leeper (1997) argue that lagged inflation

should be in the conditioning set when attempting to isolate the causal effect of monetary policy inno-

vations. Suppose yt is output, xt is inflation, and Dt is a proxy for monetary policy. Suppose also that

inflation is the only reason money affects output. In this case, Granger tests may fail to detect a causal

link between monetary policy and output while Sims tests should detect this relationship. One way to

understand this difference is through the impulse response function, which shows that Sims looks for an

effect of structural innovations in policy (i.e., εDt). In contrast, Granger non-causality is formulated as

a restriction on the relation between output and all lagged variables, including covariates like inflation

Renault (1998) who consider a multi-step forward version of Granger causality testing, and Robins, Greenland, and Hu

(1999) who state something like Theorem 1 without proof. Robins, Greenland and Hu also present restrictions on the joint

process of wt under which (1) implies (3) but these assumptions seem unrealistic for applications in macroeconomics.
12See, e.g., Section 3.2.3 in Angrist and Pischke (2009), on "bad control".
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that themselves have responded to the policy shock of interest. Granger causality tests therefore give the

wrong answer to a question that Sims causality tests answer correctly: will output change in response to

a random manipulation of monetary policy?

The nonequivalence between Granger and Sims causality has important operational consequences:

testing for (3) can be done easily with regression analysis by regressing Yt+1 on lags of Dt, Yt and Xt,

at least when additional distributional assumptions are imposed. While some implications of (1) can

also be tested relatively easily with parametric models, testing the precise form of (1) is diffi cult unless

Dt, Yt and Xt can be nested within a linear dynamic model such as an SVAR model.13 One of the main

contributions of this paper is to relax linearity assumptions implicitly imposed on Y ψ
t,j (d) by SVAR or

regression analysis and to allow for non-linearities in the policy function.

In the remainder of the paper, we assume the policy variable of interest is multinomial. This is in the

spirit of research focusing on Federal Reserve decisions regarding changes in the federal funds rate, which

are by nature discrete (e.g., Hamilton and Jorda (2002)). Typically changes come in widely-publicized

movements up or down, usually in multiples of 25 basis points if nonzero. As noted in Romer and Romer

(2004), the Federal Reserve actively sets interest rate targets for most of the period since 1969, even

when targeting was not as explicit as it is today. The discrete nature of monetary policy decisions leads

naturally to a focus on the propensity-score, the conditional probability of a rate change (or a change of

a certain magnitude or sign).14

13One example of a simple parametric test of (1) are our parametric Sims tests discussed in Section 5.
14Much of the empirical literature on the effects of monetary policy has focused on developing policy models for the

federal funds rate. See, e.g., Bernanke and Blinder (1992), Christiano, Eichenbaum, and Evans (1996), and Romer and

Romer (2004). In future work, we hope to develop an extension for continuous causal variables.
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Under the non-causality null hypothesis it follows that Pr(Dt|zt, Yt+1, ..., Yt+j, ...) = Pr(Dt|zt). A Sims-

type test of the null hypothesis can therefore be obtained by augmenting the policy function p(zt, θ0) with

future outcome variables. This test has correct size though it will not have power against all alternatives.

Below, we explore simple parametric Sims-type tests constructed by augmenting the policy function with

future outcomes. But our main objective is use of the propensity score to develop a flexible class of

semiparametric conditional independence tests that can be used to direct power in specific directions or

to construct tests with power against general alternatives.

A natural substantive question at this point is what should go in the conditioning set for the policy

propensity score and how this should be modeled. In practice, Fed policy is commonly modeled as being

driven by a few observed variables like inflation and lagged output growth. Examples include Romer

and Romer (1989, 2000, 2004) and others inspired by their work.15 The fact that Dt is multinomial

in our application also suggests that Multinomial Logit and Probit or similar models provide a natural

functional form. A motivating example that seems especially relevant in this context is Shapiro (1994),

who develops a parsimonious Probit model of Fed decision-making as a function of net present value

measures of inflation and unemployment.16 Importantly, while it is impossible to know for sure whether

a given set of conditioning variables is adequate, our framework suggests a simple diagnostic test that

can be used to decide when the model for the policy propensity score is consistent with the data.

15Stock and Watson (2002a, 2002b) propose the use of factor analysis to construct a low-dimensional predictor of inflation

rates from a large dimensional data set. This approach has been used in the analysis of monetary policy by Bernanke and

Boivin (2003) and Bernanke, Boivin and Eliasz (2005).
16Also related are Eichengreen, Watson and Grossman (1985), Hamilton and Jordà (2002) , and Genberg and Gerlach

(2004), who use ordered probit models for central bank interest rate targets.
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3 Semiparametric Conditional Independence Tests Using the

Propensity Score

We are interested in testing the conditional independence restriction yt⊥Dt|zt, where yt takes values in

Rk1 and zt takes values in Rk2 with k1+k2 = k finite. Typically, yt = (Y ′t+1, ..., Y
′
t+m)′ but we can also focus

on particular future outcomes, say, yt = Yt+m, when causal effects are thought to be delayed bym periods.

Let v ∈ Rk where v = (v′1, v
′
2)′ is partitioned conformingly with (y′t, z

′
t)
′ . We assume that Dt is a discrete

variable taking on M + 1 distinct values. Because
∑M

i=0 1 (Dt = i) = 1 and
∑M

i=0 Pr(Dt = i|zt) = 1

the conditional independence hypothesis can be written as a collection of theM non-redundant moment

conditions

Pr(yt ≤ v1, Dt = i|zt) = Pr(yt ≤ v1|zt) Pr(Dt = i|zt) for i = {1, ...,M} . (4)

We use the shorthand notation pi(zt) = Pr(Dt = i|zt) and assume that pi(zt) = pi(zt, θ) is known up to

a parameter θ. This is the policy propensity score. We assume that p(zt, θ0) does not depend on t (in

practice zt might include time dummies). In an SVAR framework, p(zt, θ0) corresponds to the SVAR

policy-determination equation. In the recursive identification schemes discussed earlier, this equation

can be estimated separately from the system. Our method differs in two important respects: We do not

assume a linear relationship between Dt and zt and we do not need to model the elements of zt as part

of a bigger system of simultaneous equations. This increases robustness and saves degrees of freedom

relative to a conventional SVAR analysis.

A convenient representation of the hypotheses we are testing can be obtained by noting that under

18



the null,

Pr(yt ≤ v1, Dt = i|zt)− Pr(yt ≤ v1|zt)pi (zt) = E [1 (yt ≤ v1) (1 (Dt = i)− pi(zt)) |zt] = 0. (5)

These moment conditions can be written compactly in vector notation. We define M×1 vectors Dt =

(1 (Dt = 1) , ...,1 (Dt =M))′ and

p(zt) = (p1 (zt) , ..., pM (zt))
′

so that the moment conditions (5) can be expressed as

E [1 (yt ≤ v1) (Dt − p(zt)) |zt] = 0. (6)

This leads to a simple interpretation of test statistics as looking for a relation between policy innovations,

Dt − p(zt), and the distribution of future outcomes. Note also that, like the Hirano, Imbens and Ridder

(2003) and Abadie (2005) propensity-score-weighted estimators and the Robins, Mark, and Newey’s

(1992) partially linear estimator, test statistics constructed from moment condition (5) work directly

with the propensity score; no matching step or nonparametric smoothing is required once estimates of

the score have been constructed.

We define Ut = (y′t, z
′
t)
′ so that (6) can be expressed in terms of a collection of unconditional moment

conditions. Correct specification of the policy model implies that E [(Dt − p(zt))|zt] = 0. Thus, testing

(6) is equivalent to testing the unconditional moment condition E [1 (Ut ≤ v) (Dt − p(zt))] = 0 over all

possible values of v. Appendix A presents a more general class of tests based on general test-functions,

φ (Ut, v) and not just indicators. In our empirical application, Dt indicates situations where the Fed

raises, lowers or leaves the interest rates unchanged. Note that in our framework, interest rate increases

may have causal effects while other sorts of movements do not. This possibility is explored by looking at
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individual moment conditions

E [1 (yt ≤ v1) ((Dt = i)− pi(zt)) |zt] = 0

for specific choices of i.

An implication of (6) is that the average policy effect is zero

E [E [1 (yt ≤ v1) (Dt − p(zt)) |zt]] = E [1 (yt ≤ v1) (Dt − p(zt))] = 0. (7)

In practice, the unconditional moment restriction (7) may be of grater interest than full conditional

independence. Tests based on an unconditional restriction may also be more powerful.

The framework outlined here produces a specification test for the policy model. In particular, if the

specification of p(zt) is correct, the conditional moment restriction E [(Dt − p(zt))|zt] = 0 holds, implying

E [1 (zt ≤ v2) (Dt − p(zt))] = 0. (8)

We use tests based on (8) to validate the empirical specification of p (zt) .

Equation (5) shows that the hypothesis of conditional independence, whether formulated directly or

for conditional moments, is equivalent to a martingale difference sequence (MDS) hypothesis for a certain

empirical process. The moment condition in (5) implies that for any fixed v1, 1 (yt ≤ v1) (Dt − p(zt)) is

a MDS. Our test is a joint test of whether the set of all processes indexed by v1 ∈ Rk1 have the MDS

property. We call this a functional martingale difference hypothesis. The functional MDS hypothesis is

an extension of Koul and Stute (1999). One way in which our more general null hypthesis differs from

their MDS test is that the dimension k of v is at least 2 while the simple MDS hypothesis is formulated

for scalar v.17

17Another important difference is that in our setup, the process 1 (yt ≤ y) (Dt − p(zt)) is not Markovian even under the

null hypothesis. This implies that the Koul and Stute results do not apply directly for our case.
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To move from population moment conditions to the sample, we start by defining the empirical process

Vn (v)

Vn (v) = n−1/2

n∑
t=1

m(yt, Dt, zt, θ0; v)

with

m(yt, Dt, zt, θ; v) = 1 {Ut ≤ v} [Dt − p(zt, θ)] .

Under regularity conditions that include stationarity of the observed process, we show in an Auxiliary

Appendix that Vn(v) converges weakly to a limiting mean-zero Gaussian process V (v) with covariance

function Γ(v, τ)

Γ(v, τ) = lim
n→∞

E [Vn(v)Vn(τ)′]

where v, τ ∈ Rk.18 Using the fact that under the null, E [Dt|zt, yt] = E [Dt|zt] = p (zt) and partitioning

u = (u′1, u
′
2)′ with u2 ∈ [−∞,∞]k2 , we define H(v) such that

H(v) =

∫ v

−∞

(
diag (p(u2))− p(u2)p (u2)′

)
dFu (u) (9)

where diag (p(u2)) is the diagonal matrix with diagonal elements pi (zt) , Fu(u) is the cumulative marginal

distribution function of Ut. It follows that Γ(v, τ) = H(v ∧ τ) where ∧ denotes the element by element
18It seems likely that stationarity can be relaxed to allow for some distributional heterogeneity over time. But unit

root and trend nonstationarity cannot be handled in our framework because the martinagle transformations in Section 4.1

rely on Gaussian limit distributions. Park and Phillips (2000) develop a powerful limiting theory for the binary choice

model when the explanatory variables have a unit root. Hu and Phillips (2002a, 2002b) extend Park and Phillips to the

mulitnomial choice case and apply it to the fed funds target rate. The question of how to adapt these results to the problem

of conditional independence testing is left for future work.
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minimum. Let ‖m‖2 = tr (mm′) be the usual Euclidean norm of a vector m. The statistic Vn(v) can be

used to test the null hypothesis of conditional independence by comparing the value of KS= supv ‖Vn (v)‖

or

VM =

∫
‖Vn (v)‖2 dFu(v) (10)

with the limiting distribution of these statistics under the null hypothesis.

Implementation of statistics based on Vn(v) requires a set of appropriate critical values. Construction

of critical values is complicated by two factors affecting the limiting distribution of Vn(v). One is the

dependence of the limiting distribution of Vn(v) on Fu (v), which induces data-dependent correlation in

the process Vn(v). Hence, the nuisance parameter Γ(v, τ) appears in the limiting distribution. This is

handled in two ways: first, critical values for the limiting distribution of Vn(v) are computed numerically

conditional on the sample in a way that accounts for the covariance structure Γ (v, τ) . We discuss this

procedure in Section 4.3. An alternative to numerical computation is to transform Vn(v) to a standard

Gaussian process on the k-dimensional unit cube, following Rosenblatt (1952). The advantage of this

approach is that asymptotic critical values can be based on standardized tables that only depend on the

dimension k and the function φ, but not on the distribution of Ut and thus not on the sample. We discuss

how to construct these tables numerically in Section 5.

The second factor that affects the limiting distribution of Vn(v) is the fact that the unknown parameter

θ needs to be estimated. We use the notation V̂n(v) to denote test statistics that are based on an estimate,

θ̂. Section 4 discusses a martingale transform proposed by Khmaladze (1988, 1993) to remove the effect

of variability in V̂n(v) stemming from estimation of θ. The corrected test statistic then has the same

limiting distribution as Vn(v), and thus, in a second step, critical values that are valid for Vn(v) can be
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used to carry out tests based on the transformed version of V̂n(v).

The combined application of the Rosenblatt and Khmaladze transforms leads to an asymptotically

pivotal test. Pivotal statistics have the practical advantage of comparability across data-sets because

the critical values for these statistics are not data-dependent. In addition to these practical advantages,

bootstrapped pivotal statistics usually promise an asymptotic refinement (see Hall, 1992).

4 Implementation

As a first step, let V̂n(v) denote the empirical process of interest where p(zt, θ) is replaced by p(zt, θ̂) and

the estimator θ̂ is assumed to satisfy the following asymptotic linearity property:

n1/2
(
θ̂ − θ0

)
= n−1/2

n∑
t=1

l (Dt, zt, θ0) + op(1). (11)

More detailed assumptions for the propensity score model are contained in Conditions 7 and 8 in Appendix

C. In our context, l (Dt, zt, θ) is the score for the maximum likelihood estimator of the propensity score

model. To develop a structure that can be used to account for the variability in V̂n (v) induced by the

estimation of θ, define the function m̄(v, θ) = E [m(yt, Dt, zt, θ; v)] and let

ṁ(v, θ) = −∂m̄(v, θ)

∂θ′
.

It therefore follows that V̂n (v) can be approximated by Vn (v) − ṁ(v, θ0)n−1/2
∑n

t=1 l (Dt, zt, θ0). The

empirical process V̂n(v) converges to a limiting process V̂ (v) with covariance function

Γ̂(v, τ) = Γ (v, τ)− ṁ(v, θ0)L(θ0)ṁ(τ , θ0)′,

with L (θ0) = E
[
l (Dt, zt, θ0) l (Dt, zt, θ0)′

]
as shown in the Auxiliary Appendix. Next we turn to details

of the transformations. Section 4.1 discusses a Khmaladze-type martingale transformation that corrects
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V̂ (v) for the effect of estimation of θ. Section 4.2 then discusses the problem of obtaining asymptotically

distribution free limits for the resulting process. This problem is straightforward when v is a scalar, but

extensions to higher dimensions are somewhat more involved.

4.1 Khmaladze Transform

The object here is to define a linear operator T with the property that the transformed process, W (v) =

T V̂ (v), is a mean zero Gaussian process with covariance function Γ(v, τ).While V̂ (v) has a complicated

data-dependent limiting distribution (because of the estimated θ), the transformed process W (v) has the

same distribution as V (v) and can be handled more easily in statistical applications. Khmaladze (1981,

1988, 1993) introduced the operator T in a series of papers exploring limiting distributions of empirical

processes with possibly parametric means.

When v ∈ R, the Khmaladze transform can be given some intuition. First, note that V (v) has

independent increments∆V (v) = V (v+δ)−V (v) for any δ > 0. On the other hand, because V̂ (v) depends

on the limit of n−1/2
∑n

t=1 l (Dt, zt, θ0) this process does not have independent increments. Defining

Fv = σ
(
V̂ (s), s ≤ v

)
, we can understand the Khmaladze transform as being based on the insight that,

because V̂ (v) is a Gaussian process, ∆W (v) = ∆V̂ (v) − E
(

∆V̂ (v) |Fv
)
has independent increments.

The Khmaladze transform thus removes the conditional mean of the innovation ∆V̂ . When v ∈ Rk with

k > 1 as in our application, this simple construction cannot be trivially extended because increments of

V (v) in different directions of v are no longer independent. As explained in Khmaladze (1988), careful

specification of the conditioning set Fv is necessary to overcome this problem.

Following Khmaladze (1993), let {Aλ} be a family of measurable subsets of [−∞,∞]k, indexed by
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λ ∈ [−∞,∞] such that A−∞ = ∅, A∞ = [−∞,∞]k, λ ≤ λ′ =⇒ Aλ ⊂ Aλ′ and Aλ′\Aλ → ∅ as λ′ ↓ λ.

Define the projection πλf(v) = 1 {v ∈ Aλ} f(v) and π⊥λ = 1− πλ such that π⊥λ f(v) = 1 {v /∈ Aλ} f(v).

We then define the inner product

〈f(.), g (.)〉 ≡
∫
f(u)′dH (u) g(u) (12)

and, for

l̄(v, θ) =
(
diag (p(v2))− p(v2)p (v2)′

)−1 ∂p(v2, θ)

∂θ′
,

define the matrix

Cλ =
〈
π⊥λ l̄(., θ), π

⊥
λ l̄(., θ)

〉
=

∫
π⊥λ l̄(u, θ)

′dH(u)π⊥λ l̄(u, θ). (13)

We note that the process V (v) can be represented in terms of a vector of Gaussian processes b(v) with

covariance function H(v ∧ τ) as V (1 {. ≤ v}) = V (v) =
∫
1 {u ≤ v} db(u) and similarly V (l (., θ0)) =∫

l(u, θ0)db(u) such that V̂ (f) = V (f(.))−
〈
f(.), l̄(., θ0)

〉
Σ−1
θ V (l̄(., θ0)′). The transformed statistic W (v)

is then given by

W (v) ≡ T V̂ (v) = V̂ (v)−
∫ 〈

1 {. ≤ v} , d
(
πλl̄(., θ)

)〉
C−1
λ V̂ (π⊥λ l̄(., θ)

′) (14)

where d
(
πλl̄(., θ)

)
is the total derivative of πλl̄(., θ) with respect to λ.

We show in the Auxiliary Appendix that the process W (v) is zero mean Gaussian and has covariance

function Γ(v, τ).

The transform above differs from that in Khmaladze (1993) and Koul and Stute (1999) in that l̄(v, θ)

is different from the optimal score function that determines the estimator θ̂. The reason is that here H(v)

is not a conventional cumulative distribution function as in these papers. It should also be emphasized
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that unlike Koul and Stute (1999), we make no conditional homoskedasticity assumptions. 19

Khmaladze (1993, Lemma 2.5) shows that tests based on W (v) and V (v) have the same local power

against a certain class of local alternatives which are orthogonal to the score process l (., θ0). The reason

for this result is that T is a norm preserving mapping (see Khmaladze, 1993, Lemmas 3.4 and 3.10). The

fact that local power is unaffected by the transformation T also implies that the choice of {Aλ} has no

consequence for local power as long as Aλ satisfies the regularity conditions outlined above.

To construct the test statistic proposed in the theoretical discussion we must deal with the fact that

the transformation T is unknown and needs to be replaced by an estimator Tn. This is obtained by

replacing p(u2) with p
(
u2, θ̂

)
, H (u) with Ĥn (u) , Cλ with Ĉλ and V̂ with V̂n in (14). Then Tn can be

written as

Ŵn(v) ≡ TnV̂n (v) = V̂n (v)−
∫
d

(∫
u≤v

dĤn (u)
(
πλl̄(u, θ)

))
Ĉ−1
λ V̂n(π⊥λ l̄(., θ̂)

′) (15)

with V̂n(π⊥λ l̄(., θ̂)
′) = n−1/2

∑n
s=1 π

⊥
λ l̄(Us, θ̂)

′
(
Ds − p(zs, θ̂)

)
and the empirical distribution Ĥn (u) and Ĉλ

are defined in Appendix B.

The transformed test statistic depends on the choice of the sets Aλ although, as pointed out earlier,

the choice of Aλ does not affect local power. Computational convenience thus becomes a key criterion in

selecting Aλ. Here we focus on sets

Aλ = [−∞, λ]× [−∞,∞]k−1 , (16)

19Stute, Thies and Zhu (1998) analyze a test of conditional mean specification in an independent sample allowing for

heteroskedasticity by rescaling the equivalent of our m(yt, Dt, zt, θ0; v) by the conditional variance. Here the relevant condi-

tional variance depends on the unknown parameter θ. Instead of correcting m(yt, Dt, zt, θ0; v) we adjust the transformation

T in the appropriate way.
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which lead to test statistics with simple closed form expressions. Denote the first element of yt by y1t.

Then (15) can be expressed more explicitly as

Ŵn(v) = V̂n(v)− n−1/2

n∑
t=1

[
1 {Ut ≤ v} ∂p(zt, θ̂)

∂θ′
Ĉ−1
y1t
n−1

n∑
s=1

1 {y1s > y1t} l̄(Us, θ̂)′
(
Ds − p(zs, θ̂)

)]
(17)

In Theorem 2 of Appendix C we show that Ŵn(v) converges weakly toW (v). In the next section we show

how a further transformation can be applied that leads to a distribution free limit for the test statistics.

4.2 Rosenblatt Transform

The implementation strategy discussed above has improved operational characteristics when the data

are modified using a transformation proposed by Rosenblatt (1952). This transformation produces a

multivariate distribution that is i.i.d on the k-dimensional unit cube, and therefore leads to a test that

can be based on standardized tables. Let Ut = [Ut1, ..., Utk] and define the transformation w = TR (v)

component wise by w1 = F1(v1) = Pr (Ut1 ≤ v1) , w2 = F2 (v2|v1) = Pr(Ut2 ≤ v2|U1t = v1), ..., wk =

Fk (vk|vk−1, ..., v1) where Fk (vk|vk−1, ..., v1) = Pr (Utk ≤ vk|Utk−1 = vk−1, ..., Ut1 = v1) . The inverse v =

T−1
R (w) of this transformation is obtained recursively as v1 = F−1

1 (u1) ,

v2 = F−1
2

(
w2|F−1

1 (w1)
)
, ....

Rosenblatt (1952) shows that the random vector wt = TR (Ut) has a joint marginal distribution which is

uniform and independent on [0, 1]k .

Using the Rosenblatt transformation we define

mw(wt, Dt, θ|v) = 1 {wt ≤ w}
[
Dt − p

([
T−1
R (wt)

]
z
, θ
)]

where w = TR(v) and zt =
[
T−1
R (wt)

]
z
denotes the components of T−1

R corresponding to zt.
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The null hypothesis is now that E [1 {wt ≤ w}Dt|zt] = E [1 {wt ≤ w} |zt] p(zt, θ), or equivalently,

E [mw(wt, Dt|v)|zt] = 0.

Also, the test statistic Vn(v) becomes the marked process

Vw,n(w) = n−1/2
∑n

t=1mw(wt, Dt, θ|w).

Rosenblatt (1952) notes that tests using TR are generally not invariant to the ordering of the vector

wt because TR is not invariant under such permutations.2021

We denote by Vw (v) the limit of Vw,n (v) and by V̂w (v) the limit of V̂w,n (v) which is the process

obtained by replacing θ with θ̂ in Vw,n (v) . Define the transform TwV̂w(w) as before by22

Ww(w) ≡ TwV̂w (w) = V̂w (w)−
∫ 〈

1 {. ≤ w} , dπλl̄w(., θ)
〉
C−1
λ V̂w(π⊥λ l̄w(., θ)′). (18)

Finally, to convert Ww(w) to a process which is asymptotically distribution free we apply a modified

version of the final transformation proposed by Khmaladze (1988, p. 1512) to the process W (v). In

particular, using the notation Ww(1 {. ≤ w}) = Ww(w) to emphasize the dependence of W on 1 {. ≤ w},

and defining

hw(.) =
(

diag
(
p(
[
T−1
R (.)

]
z
)
)
− p(

[
T−1
R (.)

]
z
)p
([
T−1
R (.)

]
z

)′)
it follows from the previous discussion that

Bw(w) = Ww

(
1 {. ≤ w} (hw(.))−1/2

)
20In the working paper (Angrist and Kuersteiner, 2004) we discuss ways to resolve the problem of the ordering in wt.
21Of course, the general form of our test statistic also depends on the choice of φ(., .), as outlined in Appendix A. This

sort of dependence on the details of implementation is a common feature of consistent specification tests. From a practical

point of view it seems natural to fix φ(., .) using judgements about features of the data where deviations from conditional

independence are likely to be easiest to detect (e.g., moments). In contrast, the wt ordering is inherently arbitrary
22For a more detailed derivation see Appendix B.
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is a Gaussian process with covariance function w ∧ w′.

In practice, wt = TR(Ut) is unknown because TR depends on unknown conditional distribution func-

tions. In order to estimate TR we introduce the kernel function Kk(x) where Kk(x) is a higher order

kernel satisfying Conditions 10 in Appendix C. A simple way of constructing higher order kernels is given

in Bierens (1987). For ω ≥ 2 let Kk(x) = (2π)−k/2
∑ω

j=1 θj |σj|
−k exp

(
−1/2x′x/σ2

j

)
with

∑ω
j=1 θj = 1

and
∑ω

j=1 θj |σj|
2` = 0 for ` = 1, 2, ..., ω − 1. Let mn = O(n−(1−κ)/2k) for some κ with 0 < κ < 1 be a

bandwidth sequence and define

F̂1(x1) = n−1

n∑
t=1

1 {Ut1 ≤ x1}

...

F̂k(xk|xk−1, ..., x1) =
n−1

∑n
t=1 1 {Utk ≤ xk}Kk−1((xk− − Utk−) /mn)

n−1
∑n

t=1 Kk−1((xk− − Utk−) /mn)

where xk− = (xk−1, ..., x1)′ and Utk− = (Utk−1, ..., Ut1)′ . An estimate ŵt of wt is then obtained from the

recursions

ŵt1 = F̂1(Ut1)

...

ŵtk = F̂k(Utk|Utk−1, ..., Ut1).

We define Ŵw,n (w) = Tw,nV̂w,n (w) where Tw,n is the empirical version of the Khmaladze transform

applied to the vector wt. Let Ŵŵ,n (w) denote the process Ŵw,n(w) where wt has been replaced with ŵt.

For a detailed formulation of this statistic see Appendix B. An estimate of hw(w) is defined as

ĥw(.) =

(
diag

(
p(., θ̂)

)
− p(., θ̂)p

(
., θ̂
)′)

.
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The empirical version of the transformed statistic is

B̂ŵ,n (w) = Ŵŵ,n

(
1 {. ≤ w} ĥw(.)−1/2

)
= n−1/2

n∑
t=1

1 {ŵt ≤ w} ĥ(zt)
−1/2

[
Dt − p(zt, θ̂)− Ân,t

]
(19)

where Ân,s = n−1
∑n

t=1 1 {ŵt1 > ŵs1} ∂p(zs,θ̂)∂θ′ Ĉ−1
ŵ1s
l̄(zt, θ̂)

′
(
Dt − p(zt, θ̂)

)
. Finally, Theorem 3 in Appendix

C formally establishes that the process B̂ŵ,n (v) converges to a Gaussian process with covariance function

equal to the uniform distribution on [0, 1]k .

Note that the convergence rate of B̂ŵ,n (v) to a limiting random variable does not depend on the

dimension k or the bandwidth sequence mn. Theorem 3 shows that B̂ŵ,n(w)⇒ Bw(w) where Bw(w) is a

standard Gaussian process. The set Υ[0,1] is defined as Υ[0,1] = {w ∈ Υε|w = πxw}where Υε is a compact

subset of the interior of [0, 1]k with volume 1−ε for some ε > 0, πxw = 1 (w ∈ Ax)w for some fixed x ∈ R

and Ax is the set defined in (16). The restriction to Υ[0,1] is needed to avoid problems of invertibility

of Ĉ−1
w . It thus follows that transformed versions of the VM and KS statistics converge to functionals of

Bw(w). These results can be stated formally as

VMw =

∫
Υ[0,1]

∥∥∥B̂ŵ,n(w)
∥∥∥2

dw ⇒
∫

Υ[0,1]

‖Bw(w)‖2 dw (20)

and

KSw = sup
w∈Υ[0,1]

∥∥∥B̂ŵ,n(w)
∥∥∥⇒ sup

w∈Υ[0,1]

‖Bw(w)‖ . (21)

Here VMw and KSw are the VM and KS statistics after both the Khmaladze and Rosenblatt transforms

have been applied to V̂n(v). In practice the integral in (20) and the supremum in (21) can be computed

over a discrete grid. The asymptotic representations (20) and (21) make it possible to use asymptotic

statistical tables. For the purposes of the empirical application below, we computed critical values for
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the VM statistic. These critical values depend only on the dimension k and are thus distribution free.

4.3 Bootstrap-Based Critical Values

In addition to tests using critical values computed using asymptotic formulas, we also experimented

with bootstrap critical values for the raw statistic, V̂n (v) , and the transformed statistic, B̂ŵ,n (w) . This

provides a check on the asymptotic formulas and gives some independent evidence on the advantages of

the transformed statistic. Also, because the transformed statistic has a distribution free limit, we can

expect an asymptotic refinement: tests based on bootstrapped critical values for this statistic should have

more accurate size than bootstrap tests using V̂n (v).

Our implementation of the bootstrap is similar to a procedure by Chen and Fan (1999) and Hansen

(1996), a version of the wild bootstrap called conditional monte carlo. This procedure seems especially

well-suited to time series data since it provides a simple strategy to preserve dependent data structures

under resampling. Following Mammen (1993), the wild bootstrap error distribution is constructed by

sampling ε∗t,s for s = 1, ..., S bootstrap replications according to

ε∗t,s = ε∗∗t,s/
√

2 +
((
ε∗∗t,s
)2 − 1

)
/2 (22)

where ε∗∗t,s ∼ N (0, 1) is independent of the sample. Let the moment condition underlying the transformed

test statistic (19) be denoted by

mT,t

(
v, θ̂
)

= 1 {ŵt ≤ w} ĥ(zt)
−1/2

[
Dt − p(zt, θ̂)− Ân,t

]
and write

B̂∗ŵ,n;s (w) = n−1/2

n∑
t=1

ε∗t,s

(
mT,t

(
v, θ̂
)
− m̄n;T

(
v, θ̂
))

(23)
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to denote the test statistic in a bootstrap replication, with m̄n;T

(
v, θ̂
)

= n−1
∑n

t=1mT,t

(
v, θ̂
)
. The

distribution of ε∗t,s induced by (22) guarantees that the first three empirical moments of mT,t

(
v, θ̂
)
−

m̄n;T

(
v, θ̂
)
are preserved in bootstrap samples. Theorem 4 in Appendix C shows that the asymptotic

distribution of B̂ŵ,n (w) under the null hypothesis is the same as the asymptotic distribution of B̂∗ŵ,n (w)

conditional on the data. This implies that critical values for B̂ŵ,n (w) can be computed as follows:

1) Draw s = 1, ...S samples ε∗1,s, ..., ε
∗
n,s independently from the distribution (22); 2) compute VMs =∫

Υ[0,1]

∥∥∥B̂∗ŵ,n;s (w)
∥∥∥2

dw for s = 1, ..., S; 3) obtain the desired empirical quantile from the distribution of

VMs, s = 1, ..., S. The empirical quantile then approximates the critical value for
∫

Υ[0,1]

∥∥∥B̂ŵ,n (w)
∥∥∥2

dw.

Bootstrap critical values for the untransformed statistic are based in an equivalent way on S bootstrap

samples of

V̂ ∗n;s (v) = n−1/2

n∑
t=1

ε∗t,s

(
m(yt, Dt, zt, θ̂; v)− m̄n(v, θ̂)

)
(24)

where m̄n(v, θ̂) = n−1
∑n

t=1 m(yt, Dt, zt, θ̂; v) and ε∗t,s is generated in the same way as before.

5 Causal Effects of Monetary Policy Shocks Revisited

We use the machinery developed here to test for the effects of monetary policy with data from Romer and

Romer (2004). The key monetary policy variable in this study is the change in the FOMC’s intended

federal funds rate. This rate is derived from the narrative record of FOMC meetings and internal

Federal Reserve memos. The conditioning variables for selection-on-observables identification are derived

from Federal Reserve forecasts of the growth rate of real GNP/GDP, the GNP/GDP deflator, and the

unemployment rate, as well as a few contemporaneous variables and lags. The relevant forecasts were

prepared by Federal Reserve researchers and are called Greenbook forecasts.
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The key identifying assumption in this context is that conditional on Greenbook forecasts and a hand-

ful of other variables, including lagged policy variables, changes in the intended federal funds target rate

are independent of potential outcomes (in this case, the monthly percent change in industrial produc-

tion). The Romers’(2004) detailed economic and institutional analysis of the monetary policy-making

process makes their data and framework an ideal candidate for an investigation of causal policy effects

using the policy propensity score.23 In much of the period since the mid-1970s, and especially in the

Greenspan era, the FOMC targeted the funds rate explicitly. The Romers argue, however, that even in

the pre-Greenspan era, when the FOMC targeted the funds rate less closely, the central bank’s intentions

can be read from the documentary record. Moreover, the information used by the FOMC to make policy

decisions is now available to researchers. The propensity-score approach begins with a statistical model

predicting the intended federal funds rate as a function of the publicly available information used by the

FOMC.

The propensity-score approach contrasts with SVAR-type identification strategies of the sort used by

(among others) Bernanke and Blinder (1992), Bernanke, Boivin and Eliasz (2005), Christiano, Eichen-

baum, and Evans (1996), Cochrane (1994), Leeper, Sims and Zha (1996). In this work, identification

turns on a fully-articulated model of the macro economy, as well as a reasonably good approximation

of the policy-making process. One key difference between the propensity-score approach developed here

and the SVAR literature is that in the latter, policy variables and covariates entering the policy equation

may also be endogenous variables. Identifying assumptions about how policy innovations are transmitted

23Romer and Romer (2004) can be seen as a response to critiques of Romer and Romer (1989) by Leeper (1997) and

Shapiro (1994). These critics argued that monetary policy is forward-looking in a way that induces omitted variables bias

in the Romers’(1989) regressions.
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are then required to disentangle the causal effects of monetary policy from other effects.

Our approach is closer in spirit to the recursive identification strategy used by Christiano, Eichenbaum,

and Evans (1999), hereafter CEE. Like ours, the CEE study makes the central bank’s policy function

a key element in an analysis of monetary policy effects. Important differences, however, are that CEE

formulate a monetary policy equation in terms of the actual federal funds rate and non-borrowed reserves

and that they include contemporaneous values of real GDP, the GDP deflator and commodity prices

as covariates. These variables are determined in part by market forces and are therefore potentially

endogenous. For example, Sims and Zha (2006) argue that monetary aggregates and the producer price

index are endogenous because of an immediate effect of monetary policy shocks on producer prices. In

contrast, the intended funds rate used here is determined by forecasts of market conditions based on

predetermined variables, and is therefore sequentially exogenous by construction. Finally, the CEE

approach is parametric and relies on linear models for both outcomes and policy variables.

The substantive identifying assumption in our framework (as in Romer and Romer, 2004) is that,

conditional on the information used by the FOMC and now available to outside researchers (such as

Greenbook forecasts), changes in the intended funds rate are essentially idiosyncratic or “as good as

randomly assigned.”At the same time, we don’t really know how best to model the policy propensity score

- even maintaining the set of covariates, lag length is uncertain, for example. We therefore experiment

with variations on the Romers’original specification. We also consider an alternative somewhat less

institutionally grounded model based on a simple Taylor rule. Our Taylor specification is motivated by

Rotemberg and Woodford (1997).

Our reanalysis of the Romer data uses a discretized version of changes in the intended federal funds
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rate. Specifically, to allow for asymmetric policy effects while keeping the model parsimonious, we treat

policy as having three values: up, down, or no change. The change in the intended federal funds rate is

denoted by dff t, and the discretized change by dDff t. For 29% of the monthly observations in our data,

the intended funds rate fell, for 32% it rose, and the rest of time the intended rate was unchanged.24

Following Hamilton and Jorda (2002), we fit ordered probit models with dDff t as the dependent variable;

this can be motivated by a linear latent-index model of central banker intentions.

The first specification we report on, which we call the baseline Romer model (a), uses the variables

from Romer and Romer’s (2004) policy model as controls, with the modifications that the lagged level

of the intended funds rate is replaced by the lagged change in the intended federal funds rate and the

unemployment level is replaced by the unemployment innovation.25 Our modifications are motivated

in part by a concern that the lagged intended rate and the unemployment level are nonstationary. In

addition, the lagged change in the intended federal funds rate captures the fact that the FOMC often

acts in a sequence of small steps. This results in higher predicted probabilities of a change in the

same direction conditional on past changes. A modified specification, constructed by dropping regressors

without significant effects, leads to the restricted Romer model (b). To allow for non-linear dynamic

responses, the lag-quadratic Romer model (c) adds a quadratic function of past intended changes in

the federal funds rate to the restricted Romer model (b). We also consider versions of (a)-(c) using a

24We use the data set available via the Romer and Romer (2004) AER posting. Our sample period starts in March 1969

and ends in December 1996. Data for estimation of the policy propensity score are organized by “meeting month”: only

observations during months with Federal Open Market meetings are recorded. In the early part of the sample there are a

few occasions when the committee met twice in a month. These instances are treated as separate observations.
25The unemployment innovation is the Romers’ũm0, the Greenbook forecast for the unemployment rate in the current

quarter, minus the unemployment rate in the previous month.
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discretized variable for the lagged change in the intended federal funds rate. Romer models with discrete

baseline are labeled (d), (e), and (f).

As an alternative to the policy model based on Romer and Romer (2004) we consider a Taylor-type

model similar to the one used by Rotemberg and Woodford (1997). The Taylor models have dDff t as the

dependent variable in an ordered Probit model, as before. The covariates in this case consist of two lags

of dff t, 9 lags of the growth rate of real GDP, and 9 lags of the monthly inflation rate.26 This baseline

Taylor specification is labeled model (g). We also consider a modification replacing dff t−2 with (dfft−1)2

to capture nonlinearities in the lag-quadratic Taylor model (h). Finally, we look at Taylor models with

discrete baseline controls, replacing lags of dff t with the corresponding lags of dDff t. These versions of

models (g) and (h) are labeled (i) and (j).

As a benchmark for our semiparametric analysis, we begin with parametric Sims-type causality tests.

These are simple parametric tests of the null hypothesis of no causal effect of monetary policy shocks

on outcome variables, constructed by augmenting ordered Probit models for the propensity score with

future outcome variables. Under the null hypothesis of no causal effect, future outcome variables should

have insignificant coeffi cients in the policy model. This is the essence of Equation (1) and Condition 2.

Tables 1a and 1b report results for parametric Sims tests for the effect of policy on industrial pro-

duction. The table shows t-statistics and significance levels for the coeffi cient on the cumulated change

in the log of the non-seasonally adjusted index of industrial production, cIPt+k, up to three years ahead.

More specifically, each row in Tables 1a and 1b corresponds to separately estimated augmented ordered

26Monthly GDP is interpolated from quarterly using a program developed by Mönch and Uhlig (2005). We thank Emanuel

Mönch and Harald Uhlig for providing the code for this. The inflation rate is calculated as the change in the log of the

seasonally unadjusted CPI of urban consumers, less food and energy.
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probit models p ((zt, cIPt+k) , θ) for values of k up to 12 quarter leads. The variables zt are the covariates

specified for models (a)-(j), as defined in Appendix D. The models with lagged dDff t on the right hand

side point to a significant response to a change in monetary policy at a 5% significance level at 8 or more

quarters lead. This result is robust across the Romer models (d)-(f) and the Taylor models (i)-(j). There

is also isolated evidence of a response (at the 10% level) at earlier leads using models (e)-(j) in Table 1b.

For models with dff t on the right hand side, the lag pattern is more mixed. The baseline and restricted

Romer models (a),(b) and the lag-quadratic Taylor model (h) predict a response after 7 quarters, while

the lag-quadratic Romer model (c) predicts a response after 8 quarters and the baseline Taylor model

(g) predicts a response after 6 quarters. The lag-quadratic Taylor model (h) generates an isolated initial

impact of the monetary policy shock, but this does not persist at longer horizons. Tests at the 10 percent

level generally show earlier effects, 6-7 quarters out for the restricted and lag-quadratic Romer models

(b) and (c).

While easy to implement, the parametric Sims-causality tests do not tell us about differences in the

effects of rate increases and decreases, and may not detect nonlinearities in the relationship between

policy and outcomes, or effects of policy on higher-order moments. The semiparametric tests developed

in Sections 3 and 4 do all this in an internally consistent way without the need for an elaborate model

of the response function. The semiparametric tests can also be used to explore possible misspecification

of the propensity score. This is done by substituting 1 {z̃ti ≤ v2i} for 1 {zt ≤ v2} in (8) where z̃it denotes

all the covariates that appear in models (a) through (j).

The specification tests reported in Table 2 suggest the baseline Romer model (a) and modifications
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(c) and (e) fit well.2728 The Taylor models fit less well, with moment restrictions violated most notably

for the innovation in the Greenbook forecast for the percentage change in GDP/GNP. This suggests that

the Taylor models do not fully account for all information the Federal Reserve seems to rely on in its

policy decisions. The Taylor models also generate some rejections of moment conditions related to lagged

dDff t, an indication that they do not fully account for the dynamic pattern of Federal Reserve policy

actions. The Romer models appear to implicitly account for lagged real GDP growth and inflation, in

spite of the fact that these variables are not included in the Romer propensity score.

We now turn to the semiparametric causality tests based on the unconditional moment conditions

in (7). All p-values reported in Tables 3-5 are based on the VM statistic defined in (20). In the first

implementation, Dt is a bivariate vector containing dummy variables for an up or down movement in

dDff t. This amounts to a joint test of the overall effect of a monetary policy shock, analogous to the

parametric tests in Tables 1a and 1b.

The first set of semiparametric test results are reported in Tables 3a and 3b. As in Tables 2a and

2b, these tables show p-values and starred significance levels.29 These tests look simultaneously at the

27The specification tests reported here should not be interpreted as pretests. A fully data-dependent propensity score

model selection and subsequent testing approach is beyond the scope of this paper. We check for robustness to model

specification be reporting causality tests for all models considered here.
28We show only results based on the VM statistic defined in (20) to save space. Other results are similar and available

on request.
29Causality tests using ASY (not reported) and BSK are generally similar, though ASY appears to reject slightly more

often. This is particularly true for Romer model (d) in Table 3b and to a lesser extent for models (a) and (f). Size distortions

may arise due to multicollinearity induced by discretizing the lagged dff t variables in these specifications. At the same

time BSK sometimes rejects where ASY does not, for example, in Models (i) and (j) in Table 3b. Bootstrap based critical

values based on untransformed statistic and based on (24) tend to reject much less often in most models, indicating some
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significance of up and down movements in a single test statistic, in a manner analogous to the parametric

tests in Table 1.

The results in Table 3 show significant effects at the 5% level starting 10 quarters ahead. The baseline

Taylor model (a) also generates significant effects as early as in quarter 7, using both asymptotic and

bootstrap critical values. The lag-quadratic Taylor model (h), and the Taylor models with discrete

baseline (i) and (j) also generate significant effects starting in quarter 8. The restricted and lag-quadratic

Romer models, (b), (c), (e) and (f), generate the longest lag in policy effects at about 10 quarters,

although the restricted and lag-quadratic Romer models with discrete baseline (e) and (f) also show

weaker significance at the 10% level as early as 4 quarters ahead in the restricted model (e) and 3

quarters ahead in the lag-quadratic model (f).

We also considered the effects of positive and negative monetary shocks separately. The asymmetric

tests again use moment condition (7), but the tests in this case are constructed from Dt =dDffU t

indicating upward movements in the intended funds rate and Dt =dDffD t indicating decreases in the

intended funds rate. Ordered Probit models for the policy propensity score generate the conditional

expectation of both dDffD t and dDffU t, and can therefore be used to construct the surprise variable at

the core of our testing framework. The asymmetric results are shown only for models that do well in the

undersizing for these tests, especially in light of the parametric tests in Tables 1a and 1b.

Critical values for the asymptotic distribution were obtained by randomly drawing the k-dimensional vector U∗∗t,i

from a multivariate independent uniform distribution. In addition we draw independetly εt,i from an iid standard

normal distribution. The sample size was set to n = 300 and 100,000 replications were done. We then com-

pute B∗∗i (w) = n−1/2
∑n
t=1 ε

∗
t1
{
U∗∗t,i ≤ x

}
for each replication sample i. The final step consists in forming the sum

B∗∗i = n−1
∑n
t=1 1

{
U∗∗j,i ∈ Υ[0,1]

}∥∥B∗∗i (U∗∗j,i)∥∥2 . Asymptotic critical values are then obtained from the quantiles of the

empirical distribution of B∗∗i .
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model specification tests in Table 2. These are the baseline and lag-quadratic Romer models (a), (c),

and the restricted Romer model with discrete baseline (e) and the lag-quadratic Taylor model (h).

The picture that emerges from Table 4 is mostly one of insignificant responses to a surprise reduction

in the intended Federal Funds rate. In particular, the only models to show a statistically significant

response to a decrease at the 5% level are the baseline Romer model (a) and the lag-quadratic Romer

model (c), where a response appears after 10 quarters. Results for Taylor model, (h), generate an isolated

significant test two-and-a-half years out. There is a less significant (10% level) response in the lag-

quadratic Romer model with discrete baseline (e) and the lag-quadratic Taylor model (h) at a 10-11

quarter lead as well.

The results in Table 5 contrast with those in Table 4, showing significant effects of an increase in the

funds rate after 6 quarters for Romer specification (a) and after 3 quarters for Romer specification (e).

Taylor specification (h) also shows a strongly significant effect somewhere between quarter 7 or 8. Models

(a) and (h) generate a less significant early response at 4 and 5 quarters. Also in contrast with Table 4,

some of the results in table 5 are significant at the 1% level.

The results in Table 5 shed some light on the findings in Tables 3a and 3b, which pool up and

down policy changes. The pooled results suggest a more immediate response for the baseline Romer

specification (a) than for the lag-quadratic Taylor specification (h). This is consistent with the results in

Table 5, where Romer model (a) uncovers a more immediate response to interest rate increases with a

particularly strong response at 7 quarters lead but generates less significant test results than the Taylor

models at leads farther out.
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6 Conclusions

This paper develops a causal framework for time series data. The foundation of our approach is an

adaptation of the potential-outcomes and selection-on-observables ideas widely used in cross-sectional

studies. This adaptation leads to a definition of causality similar to that proposed by Sims (1972).

For models with covariates, Sims causality differs from Granger causality, which potentially confuses

endogenous system dynamics with the causal effects of isolated policy actions. In contrast, Sims causality

hones in on the effect of isolated policy shocks relative to a well-defined counterfactual baseline.

Causal inference in our framework is based on a multinomial model for the policy assignment mech-

anism, a model we call the policy propensity score. In particular, we develop a new semiparametric test

of conditional independence that uses the policy propensity score. This procedure tests the selection-

on-observables null hypothesis that lies at the heart of much of the empirical work on time series causal

effects. A major advantage of our approach is that it does not require researchers to model the process

determining the outcomes of interest. The resulting test has power against all alternatives but can be

fine-tuned to look at specific questions, such as mean independence or a particular direction of causal

response. Our testing framework can also be used to evaluate the specification of the policy propensity

score.

Our approach is illustrated with a re-analysis of the data and policy model in Romer and Romer (2004)

along with a simple Taylor model. Our findings point to a significant response to monetary policy shocks

after about 7 quarters, while the Taylor model and a restricted Romer specification shows responses that

take a little longer to develop. These results are broadly in line with those in Romer and Romer (2004),

which reports the strongest response to a monetary shock after about 2 years with continued effects
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for another year. Our results therefore highlight the robustness of the Romers’original findings. An

investigation into the statistical significance of different responses to rate increases and decreases shows

an early and significant response to rate increases without much of a response to rate decreases. This

result has not featured in most previous discussions of the causal effects of monetary shocks.

In contrast with the Romers findings and those reported here, SVAR studies generally report more

immediate responses to a monetary shock. For example, Christiano, Eichenbaum and Evans (1999) report

a decline in real GDP two quarters after a policy shock with the impulse response function showing a

‘hump’shaped pattern and a maximal decline one to one and half years after the shock. Sims and Zha

(2006) also find a statistically significant decline of real GDP in response to a money supply shock with

most of the effect occurring in the first year after the shock. SVAR analysis of Taylor-type monetary

policy functions in Rotemberg and Woodford (1997) similarly generates a response of real GDP after 2

quarters and a rapidly declining hump shaped response. Thus, while SVAR findings similarly suggest

that monetary policy matters, some of the early impact that crops up in the SVAR literature may be

generated in part by the structural assumptions used to identify these models.

An important topic for future research is the estimation of causal effects in situation where our

tests reject the null hypothesis of no causal effect. In work in progress, we are exploring estimation

strategies using a propensity score framework. The resulting estimators are similar in spirit to propensity

score estimators for cross-sectional causal effects. However, a complication relative to the cross-sectional

literature is the dynamic nature of responses to a policy shock. We are developing simple strategies to

summarize and do inference for these dynamics.
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A General Test Statistics

This Appendix shows how to extend the statistics from test functions 1 {Ut ≤ v} to general functions

φ(Ut, v). The null hypothesis of conditional independence can be represented very generally in terms of

moment conditions for functions of Ut. Let φ(., .) : Rk × Rk → H be a function of Ut and some index v

where H is some set. Our development below allows for φ (Ut, v) to be a M×M matrix of functions

of Ut and v such that H = RM × RM. However, it is often suffi cient to consider the case where φ (., .) is

scalar valued with H = R, a possibility that is also covered by our theory. Under the null we then have

E [φ(Ut, v)(Dt − p(zt))|zt] = 0. Examples of functions φ (., .) are φ(Ut, v) = exp(iv′Ut) where i =
√
−1, as

suggested by Bierens (1982) and Su and White (2003), or φ(Ut, v) = 1 {Ut ≤ v} , the case considered in

Section 3.

While omnibus tests can detect departures from the null in all directions this is associated with a

loss in power and may not shed light on specific alternatives of interest. Additional tests of practi-

cal relevance therefore focus on specific alternatives. An example is the test of the moment condition

E [yt(Dt − p(zt))|zt] = 0 which is rejected if there is correlation between yt and the policy innovation

conditional on zt. Such a test can be implemented by choosing φ (Ut, v) = yt1 {zt ≤ v2} . Generalizations

to the effects on higher moments can be handled similarly.

To specify the generalized tests we extend the definition of Vn (v) = n−1/2
∑n

t=1 m(yt, Dt, zt, θ0; v) by

setting

m(yt, Dt, zt, θ; v) = φ(Ut, v) [Dt − p(zt, θ)] .

It follows that

Γ(v, τ) = lim
n→∞

E [Vn(v)Vn(τ)′] =

∫
φ(u, v)dH (u)φ(u, τ)′.
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where H (v) is defined in (9). The transformation T now is given by

W (v) ≡ T V̂ (v) = V̂ (v)−
∫ 〈

φ (., v)′ , d
(
πλl̄(., θ)

)〉
C−1
λ V̂ (π⊥λ l̄(., θ)

′) (25)

where Cλ, V̂ (.) and π⊥λ l̄(., θ) are defined as before. In the same way define an estimator Tn where

Ŵn(v) ≡ TnVn (v) = V̂n (v)−
∫ (∫

φ(u, v)dĤn(u)d
(
πλl̄(u, θ)

))
Ĉ−1
λ V̂n(π⊥λ l̄(., θ̂)

′) (26)

with V̂n(π⊥λ l̄(., θ̂)
′) and Ĥn(v) as in Section 4.1. For Aλ = [−∞, λ]× [−∞,∞]k−1 one obtains

Ŵn(v) = V̂n(v)− n−1/2

n∑
t=1

[
φ (Ut, v)

∂p(zt, θ̂)

∂θ′
Ĉ−1
y1t
n−1

n∑
s=1

1 {y1s > y1t} l̄(Us, θ̂)′
(
Ds − p(zs, θ̂)

)]
(27)

The Rosenblatt transform for Ŵn(v) based on general functions φ (., .) is obtained by extending (18) to

Ww(w) ≡ TwV̂w (w) = V̂w (w)−
∫ 〈

φ (., w)′ , dπλl̄w(., θ)
〉
C−1
λ V̂w(π⊥λ l̄w(., θ)′). (28)

and

Bw(w) = Ww

(
φ(., w)(hw(.))−1/2

)
.

is a Gaussian process with covariance function
∫ 1

0
· · ·
∫ 1

0
φ(u,w)φ(u,w′)′du.

The empirical version of the transformed statistic is

B̂ŵ,n (w) = Ŵŵ,n

(
φ(., w)ĥw(.)−1/2

)
= n−1/2

n∑
t=1

φ (ŵt, w) ĥ(zt)
−1/2

[
Dt − p(zt, θ̂)− Ân,t

]
(29)

where Ân,s is as defined before. For the bootstrapped statistic B̂∗ŵ,n;s (w) replace mT,t

(
v, θ̂
)
with

mT,t

(
v, θ̂
)

= φ (ŵt, w) ĥ(zt)
−1/2

[
Dt − p(zt, θ̂)− Ân,t

]
in (23).
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B Implementation Details

B.1 Details for the Khmaladze Transform

To construct the test statistic proposed in the theoretical discussion we must deal with the fact that the

transformation T is unknown and needs to be replaced by an estimator. In this section, we discuss the

details that lead to the formulation in (17). We also present results for general sets Aλ. We start by

defining the empirical distribution

F̂u(v) = n−1

n∑
t=1

{Ut ≤ v} , (30)

and let

Hn(v) =

∫ v

−∞

(
diag (p(u2, θ0))− p(u2, θ0)p (u2, θ0)′

)
dF̂u (u)

= n−1

n∑
t=1

(
diag (p(zt, θ0))− p(zt, θ0)p (zt, θ0)′

)
1 {Ut ≤ v}

as well as

Ĥn(v) =

∫ v

−∞

(
diag

(
p(zt, θ̂)

)
− p(zt, θ̂)p

(
zt, θ̂

)′)
dF̂u (u)

= n−1

n∑
t=1

(
diag

(
p(zt, θ̂)

)
− p(zt, θ̂)p

(
zt, θ̂

)′)
1 {Ut ≤ v} .

We now use the sets Aλ and projections πλ as defined in Section 4.1. Let

Ĉλ =

∫
π⊥λ l̄(v, θ̂)dĤn(v)π⊥λ l̄(v, θ̂)

′

= n−1

n∑
t=1

(1− 1 {Ut ∈ Aλ}) l̄(Ut, θ̂)′
(

diag
(
p(zt, θ̂)

)
− p(zt, θ̂)p

(
zt, θ̂

)′)
l̄(Ut, θ̂)

such that

TnV̂n (v) = V̂n (v)−
∫
d

(∫
φ(u, v)dĤn(u)πλl̄(u, θ)

)
Ĉ−1
λ V̂n(π⊥λ l̄(u, θ̂))
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where ∫
φ (u, v) dĤn(u)πλl̄(., θ̂) = n−1

n∑
t=1

1 {Ut ∈ Aλ}φ(Ut, v)
∂p(zt, θ̂)

∂θ′
.

Finally, write

V̂n(π⊥λ l̄(u, θ̂)) = n−1/2

n∑
t=1

(1− 1 {Ut ∈ Aλ}) l̄(Ut, θ̂)′
(
Dt − p(zt, θ̂)

)
.

We now specialize the choice of sets Aλ to Aλ = [−∞, λ]× [−∞,∞]k−1 . Denote the first element of

yt by y1t. Then

Ĉλ = n−1

n∑
t=1

1 {y1t > λ} l̄(zt, θ̂)
(

diag
(
p(zt, θ̂)

)
− p(zt, θ̂)p

(
zt, θ̂

)′)
l̄(zt, θ̂)

′, (31)

V̂n(π⊥λ l̄(u, θ̂)) = n−1/2

n∑
t=1

1 {y1t > λ} l̄(Ut, θ̂)′
(
Dt − p(zt, θ̂)

)
(32)

and ∫
φ(u, v)dĤn(u)πλl̄(u, θ̂) = n−1

n∑
t=1

1 {y1t ≤ λ}φ {Ut, v}
∂p(zt, θ̂)

∂θ′
(33)

Combining 31, 32 and 33 then leads to the formulation 17.

B.2 Details for the Rosenblatt Transform

As before implementation requires replacement of θ with an estimate. We therefore work with the

process V̂w,n (v) = n−1/2
∑n

t=1mw(wt,Dt, θ̂;w). Define

E [mw(wt, Dt, θ);w)] =

∫ 1

0

· · ·
∫ 1

0

φ(u,w)
(
p
([
T−1
R (u)

]
z
, θ0

)
− p(

[
T−1
R (u)

]
z
, θ)
)
du
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such that ṁ(w, θ) evaluated at the true parameter value θ0 is

ṁw(w, θ0) = E [φ(Ut, w)∂p(zt, θ0)/∂θ′]

=

∫
[0,1]k

φ(u,w)
∂p(
[
T−1
R (u)

]
z
, θ0)

∂θ′
du

It therefore follows that V̂w,n (v) can be approximated by Vw,n (v) − ṁw(w, θ0)′n−1/2
∑n

t=1 l (Dt, zt, θ0).

This approximation converges to a limiting process V̂w (v) with covariance function

Γ̂w(w, τ) = Γw (w, τ)− ṁw(w, θ0)′L(θ0)ṁw(τ , θ0)

where

Γw (w, τ) =

∫
[0,1]k

φ(u,w)hw (u)φ(u, τ)′du.

where hw(., θ) =
(
diag

(
p(
[
T−1
R (.) , θ

]
z
)
)
− p(

[
T−1
R (.) , θ

]
z
)p(
[
T−1
R (.)

]
z
, θ)′
)
and hw (.) ≡ hw(., θ0).

We represent V̂w in terms of Vw. Let Vw(lw (., θ0)) =
∫
lw(w, θ0)bw(dv) where bw(v) is a Gaussian

process on [0, 1]k with covariance function Γw (v, τ) as before, for any function lw(w, θ). Also, define

l̄w(w, θ) = hw (w, θ)−1 ∂p(
[
T−1
R (w)

]
z
, θ)

∂θ′

such that V̂w(w) = Vw(w)− ṁw(w, θ0)Vw
(
l̄w(w, θ)

)
as before.

Let {Aw,λ} be a family of measurable subsets of [0, 1]k, indexed by λ ∈ [0, 1] such that Aw,0 = ∅,

Aw,1 = [0, 1]k, λ ≤ λ′ =⇒ Aw,λ ⊂ Aw,λ′ and Aw,λ′\Aw,λ → ∅ as λ′ ↓ λ. We then define the inner product

〈f(.), g(.)〉w ≡
∫

[0,1]k
f(w)′dHw(w)g(w) where

Hw(w) =

∫
u≤w

hw (u) du

and the matrix

Cw,λ =
〈
π⊥λ l̄w(., θ), π⊥λ l̄w(., θ)

〉
w

=

∫
π⊥λ l̄w(w, θ)′dHw(w)π⊥λ l̄w(w, θ).
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and define the transform TwVw(w) as before by

Ww(w) ≡ TwV̂w (w) = V̂w (w)−
∫ 〈

φ (., w)′ , dπλl̄w(., θ)
〉
C−1
λ V̂w(π⊥λ l̄w(., θ)′).

Finally, to convert Ww(w) to a process which is asymptotically distribution free we apply a modified

version of the final transformation proposed by Khmaladze (1988, p. 1512) to the process W (v). In

particular, using the notation Ww(φ(., w)) = Ww(w) to emphasize the dependence of W on φ, it follows

from the previous discussion that

Bw(w) = Ww

(
φ(., w)(hw(.))−1/2

)
where Bw(w) is a Gaussian process on [0, 1]k with covariance function

∫ 1

0
· · ·
∫ 1

0
φ(u,w)φ(u,w′)du.

The empirical version of Ww(w), denoted by Ŵw,n(w) = T̂wV̂w,n(w), is obtained as before from

Ŵw,n(w) = n−1/2

n∑
t=1

[
mw(wt, Dt, θ̂|w)− φ (wt, w)

∂p(zt, θ̂)

∂θ′
Ĉ−1
wt1
n−1

n∑
s=1

1 {ws1 > wt1} l̄(zs, θ̂)′
(
Ds − p(zs, θ̂)

)]

where Ĉws1 = n−1
∑n

t=1 1 {wt1 > ws1} l̄(zt, θ̂)′h
(
zt, θ̂

)
l̄(zt, θ̂).

C Formal Results

This Appendix provides formal results on the distribution of the test statistics described above. Let

χt = [y′t, z
′
t, Dt]

′ be the vector of observations. Assume that {χt}
∞
t=1 is strictly stationary with values in

the measurable space
(
Rk+1,Bk+1

)
where Bk+1 is the Borel σ-field on Rk+1 and k is fixed with 2 ≤ k <∞.

Let Al1 = σ (χ1, ..., χl) be the sigma field generated by χ1, ..., χl. The sequence χt is β-mixing or absolutely

regular if

βm = sup
l≥1

E

[
sup

A∈A∞l+m

∣∣Pr
(
A|Al1

)
− Pr (A)

∣∣]→ 0 as m→∞. (34)
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Condition 3 Let χt be a stationary, absolutely regular process such that for some 2 < p < ∞ the

β-mixing coeffi cient of χt defined in (34) satisfies m
(p+δ)/(p−2) (logm)2(p−1)/(p−2) βm → 0 for some δ > 0.

Condition 4 Let Fu(u) be the marginal distribution of Ut. Assume that Fu (.) is absolutely continuous

with respect to Lebesgue measure on Rk and has a density fu(u) with fu(u) > 0 for all u ∈ Rk.

Condition 5 The matrix of functions φ(., .) belongs to a VC subgraph class of functions (see Pollard

1984) with envelope M(χt) such that E ‖M(χt)‖
p+δ <∞ for the same p and δ as in Condition 3.

Condition 6 Let H(v) be as defined in (9). Assume that H(v) is absolutely continuous in v with respect

to Lebesgue measure and for all v, τ such that v ≤ τ with vi < τ i for at least one element vi of v it

follows that H(v) < H(τ). Let the M×M matrix of derivatives h(v) = ∂kH(v)/∂v1...∂vk and assume

that det (h(v)) > 0 for all v ∈ Rk.

Condition 7 Let θ0 ∈ Θ where Θ ⊂ Rd is a compact set and d < ∞. Assume that E [Dt|zt] = p(zt|θ0)

and for all θ 6= θ0 it follows E [Dt|zt] 6= p(zt|θ). Assume that p(zt|θ) is differentiable a.s. for θ ∈

{θ ∈ Θ| ‖θ − θ0‖ ≤ δ} ≡ Nδ(θ0) for some δ > 0. Let N(θ0) be a compact subset of the union of all

neighborhoods Nδ (θ0) where ∂p(zt|θ)/∂θ, ∂2p(zt|θ)/∂θi∂θj exists and assume that N(θ0) is not empty.

Let ∂pi(zt|θ)/∂θj be the i, j-th element of the matrix of partial derivatives ∂p(zt|θ)/∂θ′ and let l̄i,j(zt, θ)

be the i, j-th element of l̄ (zt, θ) . Assume that there exists a function B(x) and a constant α > 0 such that

|∂pi(x|θ)/∂θj − ∂pi(x|θ′)/∂θj| ≤ B(x) ‖θ − θ′‖α ,

|∂2pk(x|θ)/∂θi∂θj − ∂2pk(x|θ)/∂θi∂θj| ≤ B(x) ‖θ − θ′‖α and
∣∣∂l̄i,j(x|θ)/∂θk − ∂l̄i,j(x|θ′)/∂θk∣∣ ≤ B(x) ‖θ − θ′‖α

for all i, j, k and θ, θ′ ∈ intN (θ0), E |B(zt)|2+δ <∞, E |∂pi(zt|θ0)/∂θj|4+δ <∞, E
[
pi(zt, θ0)−(4+δ)

]
<∞

and E
[
|∂pi(zt|θ0)/∂θj|

4+δ
2

]
<∞ for all i, j and some δ > 0.
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Condition 8 Let l (Dt, zt, θ) = Σ−1
θ

∂p′(zt,θ)
∂θ

h (zt, θ)
−1 (Dt − p(zt, θ)),

h(zt, θ) =
(
diag (p(zt, θ))− p(zt, θ)p (zt, θ)

′)
and

Σθ = E

[
∂p′ (Dt|zt, θ)

∂θ
h (zt, θ)

−1 ∂p (Dt|zt, θ)
∂θ′

]
. (35)

Assume that Σθ is positive definite for all θ in some neighborhood N ⊂ Θ such that θ0 ∈ intN and 0 <

‖Σθ‖ <∞ for all θ ∈ N. Let li (Dt, zt, θ) be the i-th element of l (Dt, zt, θ) defined in (11). Assume that

there exists a function B(x1, x2) and a constant α > 0 such that ‖∂li (x1, x2, θ) /∂θj − ∂li (x1, x2, θ
′) /∂θj‖ ≤

B(x1, x2) ‖θ − θ′‖α for all i and θ, θ′ ∈ intN , E [B(Dtzt)] <∞ and E |l (Dt, zt, θ)| <∞ for all i.

Condition 9 Let {Aλ} be a family of measurable subsets of [−∞,∞]k, indexed by λ ∈ [−∞,∞] such

that A−∞ = ∅, A∞ = [−∞,∞]k, λ ≤ λ′ =⇒ Aλ ⊂ Aλ′ and Aλ′\Aλ → ∅ as λ′ ↓ λ. Assume that the sets

{Aλ} form a V-C class (polynomial class) of sets as defined in Pollard (1984, p.17). Define 〈f(.), g(.)〉 as

in (12) and Cλ as in (13). Assume that 〈f(v), πλg(v)〉 is absolutely continuous in λ and Cλ is invertible

for λ ∈ [−∞,∞).

Condition 10 The density fu(u) is continuously differentiable to some integral order ω ≥ max(2, k) on

Rk with supx∈Rk |Dµfu(x)| <∞ for all |µ| ≤ ω where µ = (µ1, ..., µk) is a vector of non-negative integers,

|µ| =
∑k

j=1 µj, and D
µfu(x) = ∂|µ|fu(x)/∂x

µ1
1 ....∂x

µk
k is the mixed partial derivative of order |µ| . The

kernel K(.) satisfies i)
∫
K(x)dx = 1,

∫
xµK(x)dx = 0 for all 1 ≤ |µ| ≤ ω − 1,

∫
|xµK(x)| dx < ∞

for all µ with |µ| ≤ ω, K(x) → 0 as ‖x‖ → ∞ and supx∈ Rk max (1, ‖x‖) |DeiK(x)| < ∞ for all i ≤ k

and ei is the i-th elementary vector in Rk. ii) K(x) is absolutely integrable and has Fourier transform

K(r) = (2π)k
∫

exp(ir′x)K(x)dx that satisfies
∫

(1 + ‖r‖) supb≥1 |K(br)| dr <∞ where i =
√
−1.
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Our main results are stated next. All proofs are available in the Auxiliary Appendix published online.

Theorem 2 Assume Conditions 1-9 are satisfied. Fix x <∞ arbitrary and define

Υx =
{
v ∈ [−∞,∞]k |v = πxv

}
.

Then, for Tn defined in (15), supv∈Υx

∣∣∣TnV̂n(v)−W (v)
∣∣∣ = op(1).

Theorem 3 Assume Conditions 1-10 are satisfied. Fix x < 1 arbitrary and define

Υ[0,1] = {w ∈ Υε|w = πxw}

where Υε is a compact subset of the interior of [0, 1]k with volume 1− ε for some ε > 0. Then,

sup
w∈Υ[0,1]

∣∣∣B̂ŵ,n(w)−Bw(w)
∣∣∣ = op(1).

Theorem 4 Assume Conditions 1-10 are satisfied. For B̂∗ŵ,n (w) defined in (23) it follows that B̂∗ŵ,n (w)

converges on Υ[0,1], defined as in Theorem 3 to a Gaussian process Bw(w).
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D Model Definitions

The model names below summarize variation in control sets across propensity score specifications.. All

models fit ordered Probit specifications to the change in the discretized intended federal funds rate

(dDff t).

• Models a-f; Romer.specificaitons

—(Romer baseline) Baseline specification (a) uses the covariates included in Romer and

Romer’s (2004) equation (1), with two modifications: We use the change in the lagged in-

tended federal funds rate instead of the lagged level of the intended federal funds rate; we use

the innovation in the unemployment rate, defined as the Greenbook forecast for the unemploy-

ment rate in the current quarter minus the unemployment rate in the previous month, instead

of the unemployment level used by the Romers. These modifications are meant to eliminate

possibly nonstationary regressors. The complete conditioning list includes: the lagged change

in the intended federal funds rate, plus the covariates graymt, gray0t, gray1t, gray2t, igrymt,

igry0t, igry1t, igry2t, gradmt, grad0t, grad1t, grad2t, igrdmt, igrd0t, igrd1t, igrd2t, and our

constructed unemployment innovation. For variable names, see Appendix E.

— (Restricted Romer) Specification (b) modifies our baseline specification by eliminating vari-

ables with very low significance levels in the multinomial Probit model for the intended rate

change. Specifically, we dropped variables with low significance subject to the restriction that

if a first-differenced variable from the Romers’list is retained, then the undifferenced version

should appear as well. The retained variable list includes the lagged intended rate change,
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gray0t, gray1t, gray2t, igry0t, igry1t, igry2t, grad2t, and our constructed unemployment inno-

vation.

— (Romer lag-quadratic) Specification (c) adds a quadratic term in the lagged intended federal

funds rate change to the restricted model (b).

— (Romer-discrete baseline/restricted/quadratic) Specifications (d)-(f) are versions of (a)-

(c) which use a discretized variable for the lagged change in the intended federal funds rate.

• Models g - j; Taylor specifications

— (Taylor baseline) Specification (g) uses two lags of dff t, 9 lags of the growth rate of real

GDP as well as 9 lags of the monthly inflation rate as covariates.

— (Taylor lag quadratic) Specification (h) replaces dff t−2 with (dfft−1)2 in specification (g).

— (Taylor-discrete baseline/lag quadratic) Specifications (i) and (j) are versions of (g) and

(h) where covariates based on dff t are replaced by covariates based on dDff t.
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E Variable Names

dff t Change in the intended federal funds rate

Dff t Discretized intended federal funds rate

dDff t Change in the discretized intended federal funds rate

innovationt Unemployment innovation

dDffU t a dummy indicating increases in the intended federal funds rate

dDffD t a dummy indicating decreases in the intended federal funds rate

gdpt−k kth lag of GDP growth

inft−k kth lag of inflation

dIPt change of log of non-seasonally adjusted index of industrial production

cIPt+k
∑k

j=1dIPt+j; cumulative change in dIPt.

From Romer and Romer (2004)

graymt Greenbook forecast of the percentage change in real GDP/GNP (at an annual rate) for the

previous quarter.

gray0t Same as above, for current quarter.

gray1t Same as above, for one quarter ahead.

gray2t Same as above, for two quarters ahead.
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igrymt The innovation in the Greenbook forecast for the percentage change in GDP/GNP (at an

annual rate) for the previous quarter from the meeting before. The horizon of the forecast

for the meeting before is adjusted so that the forecasts for the two meetings always refer to

the same quarter.

igry0t Same as above, for current quarter.

igry1t Same as above, for one quarter ahead.

igry2t Same as above, for two quarters ahead.

gradmt Greenbook forecast of the percentage change in the GDP/GNP deflator (at an annual rate)

for the previous quarter.

grad0t Same as above, for current quarter.

grad1t Same as above, for one quarter ahead.

grad2t Same as above, for two quarters ahead.

igrdmt The innovation in the Greenbook forecast for the percentage change in the GDP/GNP

deflator (at an annual rate) for the previous quarter from the meeting before. The horizon

of the forecast for the meeting before is adjusted so that the forecasts for the two meetings

always refer to the same quarter.

igrd0t Same as above, for current quarter.

igrd1t Same as above, for one quarter ahead.

igrd2t Same as above, for two quarters ahead.
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Lead
1 1.08 0.99 1.50 1.64 2.34 **
2 0.25 0.17 0.73 0.60 1.45
3 -0.40 -0.48 0.04 -0.37 0.36
4 -1.30 -1.55 -0.40 -1.40 -0.15
5 -0.93 -1.16 -0.23 -1.32 -0.32
6 -1.42 -1.69 * -0.89 -2.06 ** -1.27
7 -2.21 ** -2.45 ** -1.66 * -2.69 *** -1.97 **
8 -3.67 *** -3.84 *** -3.19 *** -4.16 *** -3.45 ***
9 -3.92 *** -4.01 *** -3.36 *** -4.72 *** -3.97 ***

10 -3.86 *** -3.98 *** -3.41 *** -4.82 *** -4.20 ***
11 -4.03 *** -4.12 *** -3.66 *** -4.82 *** -4.34 ***
12 -4.02 *** -4.03 *** -3.90 *** -4.93 *** -4.70 ***

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes: The table reports t-statistics for parametric Sims-causality tests for the response of 

the change in the log of the non-seasonally-adjusted index of industrial production to

monetary policy shocks. Columns report results using  alternative models for the policy

 propensity score. Model details are summarized in the model definitions appendix.

Table 1a: Parametric Sims-causality Tests for models using lagged dfft

Model
 (a)  (b)  (c)  (g)  (h)
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Lead (i)

1 1.18 1.04 0.98 * 1.88 1.92 *

2 0.94 0.96 0.92 1.41 1.50

3 -0.37 -0.30 -0.40 0.05 0.14

4 -0.94 -0.92 -0.99 -0.49 -0.42

5 -0.49 -0.52 -0.60 -0.34 -0.27

6 -0.62 -0.63 -0.71 -0.85 -0.72

7 -1.59 -1.55 * -1.65 * -1.65 * -1.49

8 -2.78 *** -2.70 *** -2.78 *** -2.75 *** -2.55 **

9 -3.02 *** -2.97 *** -3.05 *** -3.29 *** -3.05 ***

10 -2.83 *** -2.81 *** -2.83 *** -3.32 *** -3.02 ***

11 -3.28 *** -3.23 *** -3.25 *** -3.53 *** -3.27 ***

12 -3.37 *** -3.26 *** -3.27 *** -3.62 *** -3.45 ***

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes: The table reports t-statistics for parametric Sims-causality tests for the response of the 

change in the log of the non-seasonally-adjusted index of industrial production to monetary 

policy shocks. Columns report results using  alternative models for the policy propensity 

score. Model details are summarized in the model definitions appendix.

Table 1b: Parametric Sims-causality Tests for models using lagged dDfft

 (d)  (e)  (f)  (j)
Model
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Variable p-val Sig p-val Sig p-val Sig p-val Sig p-val Sig
dfft 0.235 0.167 0.557 0.000 *** 0.120
graymt 0.655 0.346 0.880 0.844 0.578
gray0t 0.118 0.696 0.515 0.660 0.090 *
gray1t 0.522 0.666 0.867 0.824 0.305
gray2t 0.203 0.437 0.856 0.975 0.645
igrymt 0.509 0.703 0.439 0.631 0.727
igry0t 0.609 0.908 0.915 0.004 *** 0.001 ***
igry1t 0.231 0.627 0.868 0.117 0.100
igry2t 0.209 0.472 0.621 0.033 ** 0.006 ***
gradmt 0.626 0.574 0.472 0.143 0.673
grad0t 0.176 0.721 0.882 0.297 0.631
grad1t 0.505 0.394 0.060 * 0.478 0.349
grad2t 0.362 0.431 0.111 0.268 0.432
igrdmt 0.496 0.713 0.397 0.615 0.705
igrd0t 0.789 0.652 0.704 0.836 0.645
igrd1t 0.185 0.299 0.510 0.536 0.594
igrd2t 0.089 * 0.265 0.248 0.087 * 0.132
innovationt 0.535 0.043 ** 0.687 0.451 0.581
gdpt-1 0.167 0.134 0.272 0.385 0.450
gdpt-2 0.715 0.219 0.302 0.614 0.308
gdpt-3 0.950 0.295 0.653 0.135 0.800
gdpt-4 0.592 0.644 0.235 0.922 0.791
gdpt-5 0.060 * 0.320 0.508 0.613 0.539
gdpt-6 0.538 0.760 0.386 0.540 0.163
gdpt-7 0.738 0.588 0.371 0.646 0.820
gdpt-8 0.737 0.663 0.872 0.604 0.228
gdpt-9 0.311 0.306 0.358 0.535 0.656
Inft-1 0.744 0.760 0.649 0.609 0.800
Inft-2 0.823 0.829 0.802 0.699 0.929
Inft-3 0.866 0.571 0.337 0.495 0.338
Inft-4 0.318 0.262 0.094 * 0.585 0.431
Inft-5 0.407 0.731 0.704 0.215 0.547
Inft-6 0.128 0.460 0.327 0.136 0.772
Inft-7 0.721 0.290 0.682 0.429 0.985
Inft-8 0.093 * 0.273 0.187 0.118 0.652
Inft-9 0.736 0.502 0.617 0.394 0.897

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes: The table reports p-values for the semiparametric causality tests VM defined in (17) and based 

on the moment condition (8) with (zti,v2) equal to 1{zti ≤ v2}. Each line uses the specified variable as 

zti. Variables are defined in the variable names appendix.  Columns report results using  alternative models 

for the policy propensity score. Model details are summarized in the model definitions appendix.  P-values 

use a bootstrap of the transformed test statustic.  See text for details.

Table 2a: Specification Tests for models using lagged dff t

Model
(a) (b) (c) (g) (h)
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Variable p-val Sig p-val Sig p-val Sig p-val Sig p-val Sig
dDfft 0.028 ** 0.133 0.000 *** 0.197 0.013 **
graymt 0.762 0.547 0.750 0.848 0.850
gray0t 0.031 ** 0.114 0.230 0.135 0.135
gray1t 0.285 0.548 0.974 0.358 0.343
gray2t 0.183 0.664 0.622 0.529 0.502
igrymt 0.539 0.138 0.502 0.287 0.371
igry0t 0.580 0.454 0.745 0.010 ** 0.009 ***
igry1t 0.212 0.570 0.686 0.035 ** 0.033 **
igry2t 0.278 0.124 0.422 0.007 *** 0.008 ***
gradmt 0.738 0.145 0.613 0.806 0.851
grad0t 0.295 0.563 0.272 0.703 0.834
grad1t 0.682 0.151 0.636 0.381 0.345
grad2t 0.412 0.172 0.220 0.371 0.361
igrdmt 0.507 0.136 0.492 0.316 0.371
igrd0t 0.651 0.600 0.352 0.785 0.788
igrd1t 0.220 0.395 0.558 0.358 0.408
igrd2t 0.034 ** 0.162 0.081 * 0.091 * 0.093 *
innovationt 0.642 0.190 0.492 0.654 0.747
gdpt-1 0.143 0.198 0.174 0.439 0.511
gdpt-2 0.740 0.252 0.246 0.720 0.676
gdpt-3 0.967 0.909 0.697 0.410 0.332
gdpt-4 0.526 0.599 0.532 0.805 0.858
gdpt-5 0.071 * 0.460 0.228 0.601 0.714
gdpt-6 0.556 0.403 0.757 0.741 0.683
gdpt-7 0.787 0.168 0.623 0.812 0.821
gdpt-8 0.823 0.815 0.852 0.264 0.285
gdpt-9 0.197 0.304 0.144 0.647 0.660
Inft-1 0.533 0.607 0.705 0.838 0.832
Inft-2 0.638 0.840 0.582 0.619 0.793
Inft-3 0.861 0.566 0.740 0.857 0.801
Inft-4 0.253 0.096 * 0.148 0.769 0.768
Inft-5 0.204 0.882 0.310 0.151 0.203
Inft-6 0.150 0.318 0.279 0.198 0.340
Inft-7 0.718 0.464 0.417 0.737 0.903
Inft-8 0.068 * 0.415 0.138 0.278 0.325
Inft-9 0.755 0.686 0.775 0.648 0.778

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes: The table reports p-values for the semiparametric causality tests VM defined in (17) and based 

on the moment condition (8) with (zti,v2) equal to 1{zti ≤ v2}. Each line uses the specified variable as 

zti. Variables are defined in the variable names appendix.  Columns report results using  alternative models 

for the policy propensity score. Model details are summarized in the model definitions appendix.  P-values 

use a bootstrap of the transformed test statustic.  See text for details.

Table 2b: Specification Tests for models using lagged dDff t

Model
(d) (e) (f) (i) (j)
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Lead p-val Sig p-val Sig p-val Sig p-val Sig p-val Sig
1 0.616 0.748 0.398 0.902 0.850
2 0.731 0.888 0.611 0.544 0.780
3 0.325 0.500 0.500 0.853 0.533
4 0.109 0.247 0.275 0.462 0.200
5 0.141 0.450 0.548 0.560 0.216
6 0.127 0.347 0.726 0.428 0.125
7 0.040 ** 0.158 0.697 0.205 0.094 *
8 0.053 * 0.116 0.144 0.094 * 0.005 ***
9 0.124 0.157 0.063 * 0.044 ** 0.010 **

10 0.092 * 0.048 ** 0.020 ** 0.038 ** 0.006 ***
11 0.025 ** 0.008 *** 0.019 ** 0.018 ** 0.002 ***
12 0.062 * 0.042 ** 0.020 ** 0.021 ** 0.001 ***

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes: The table reports p-values for the semiparametric causality tests VM defined in (17) and based on 

the moment condition (7) with (Ut,v) equal to 1{yt ≤ v1}. In this implementation, Dt is a bivariate vector 

containing dummy variables for an up or down movement of dDff t .  Columns report results using  alternative 

models for the policy propensity score. Model details are summarized in the model definitions appendix.  

P-values use  a bootstrap of the transformed test statustic.  See text for details.

Table 3a: Semiparametric Causality Tests  using lagged dfft, for Up and Down Policy Changes
Model

(a) (b) (c) (g) (h)
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Lead p-val Sig p-val Sig p-val Sig p-val Sig p-val Sig
1 0.552 0.555 0.461 0.645 0.613
2 0.561 0.740 0.674 0.299 0.313
3 0.150 0.177 0.143 0.371 0.403
4 0.100 0.108 0.096 * 0.070 * 0.092 *
5 0.100 0.180 0.166 0.255 0.317
6 0.085 * 0.175 0.158 0.167 0.241
7 0.054 * 0.117 0.125 0.066 * 0.074 *
8 0.047 ** 0.083 * 0.079 * 0.014 ** 0.020 **
9 0.114 0.097 * 0.064 * 0.014 ** 0.016 **

10 0.167 0.100 0.026 ** 0.025 ** 0.026 **
11 0.054 * 0.030 ** 0.020 ** 0.012 ** 0.013 **
12 0.065 * 0.032 ** 0.013 ** 0.005 *** 0.008 ***

* significant at 10%; ** significant at 5%; *** significant at 1%

Notes: The table reports p-values for the semiparametric causality tests VM defined in (17) and based on 

the moment condition (7) with (Ut,v) equal to 1{yt ≤ v1}. In this implementation, Dt is a bivariate vector 

containing dummy variables for an up or down movement of dDff t .  Columns report results using  alternative 

models for the policy propensity score. Model details are summarized in the model definitions appendix.  

Table 3b: Semiparametric Causality Tests  using lagged dDfft, for Up and Down Policy Changes
Model

(d) (e) (f) (i) (j)
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Lead p-val Sig p-val Sig p-val Sig p-val Sig
1 0.417 0.210 0.398 0.597
2 0.740 0.395 0.520 0.775
3 0.896 0.420 0.654 0.618
4 0.209 0.212 0.274 0.264
5 0.508 0.470 0.491 0.681
6 0.673 0.824 0.527 0.638
7 0.393 0.675 0.523 0.665
8 0.315 0.166 0.404 0.398
9 0.743 0.092 * 0.603 0.115

10 0.095 * 0.020 ** 0.100 0.052 *
11 0.036 ** 0.022 ** 0.072 * 0.069 *
12 0.176 0.044 ** 0.105 0.178

* significant at 10%; ** significant at 5%; *** significant at 1%

Table 4: Effects of a Surprise Decrease in the Federal Funds Target Rate

Notes: The table reports p-values for the semiparametric causality tests VM 

defined in (17) and based on the moment condition (7) with (Ut,v) equal to 

1{yt ≤ v1}. In this implementation, Dt is a dummy variable defined to equal one 

when the intended federal funds rate is changed downwards.  Columns report 

results using  alternative models for the policy propensity score. Model details 

are summarized in the model definitions appendix.  P-values use  a bootstrap 

of the transformed test statustic.  See text for details.

(a) (c) (e) (h)
Model
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Lead p-val Sig p-val Sig p-val Sig p-val Sig
1 0.582 0.610 0.484 0.874
2 0.503 0.778 0.681 0.494
3 0.154 0.407 0.093 * 0.336
4 0.082 * 0.398 0.066 * 0.169
5 0.086 * 0.401 0.098 * 0.079 *
6 0.046 ** 0.361 0.078 * 0.052 *
7 0.020 ** 0.466 0.068 * 0.027 **
8 0.026 ** 0.169 0.041 ** 0.004 ***
9 0.043 ** 0.167 0.044 ** 0.007 ***

10 0.114 0.349 0.136 0.013 **
11 0.037 ** 0.084 * 0.036 ** 0.001 ***
12 0.027 ** 0.040 ** 0.041 ** 0.000 ***

* significant at 10%; ** significant at 5%; *** significant at 1%

Table 5: Effects of a Surprise Increase in the Federal Funds Target Rate

Notes: The table reports p-values for the semiparametric causality tests VM 

defined in (17) and based on the moment condition (7) with (Ut,v) equal to 1{yt ≤ v1}. 

In this implementation, Dt is a dummy variable defined to equal one when 

the intended federal funds rate increases.  Columns report results using  alternative 

models for the policy propensity score. Model details are summarized in the 

model definitions appendix.  P-values use  a bootstrap of the transformed test 

statistic.  See text for details.

Model
(a) (c) (e) (h)
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