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Abstract

This project aims to improve the operation and planning of a specific type of
manufacturing system, a serial flow line that entails a sequence of process stages. The
objective is to investigate inventory policy, raw material ordering policy, production
planning and scheduling policy, in the face of demand uncertainty, raw material arrival
uncertainty and in-process failure.

The tactics being explored include segmenting the serial flow line with decoupling
buffers to protect against demand and raw material arrival uncertainty, and production
smoothing to reduce production-related costs and the variance in upstream processes.
Key policies for each segment include a work release policy from the decoupling buffer
before the segment, and a production control policy to manage work-in-process inventory
level within the segment and to meet inventory targets in each downstream decoupling
buffer. We also explore raw material ordering policy with fixed ordering times, long
lead-times and staggered deliveries in a make-to-order setting.

A tactical model has been developed to capture the key uncertainties and to determine the
operating tactics through analysis and optimization. This study also includes extensive
numerical tests to validate the output of the tactical model as well as to gain a better
understanding of how the tactical model reacts to different parameter variations.

Thesis Supervisor: Stephen C. Graves
Abraham J. Siegel Professor of Management Science
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Chapter 1

Introduction

1.1 Project Motivation

A serial flow line in a manufacturing context consists of a set of process steps or stages in

sequence, which covers machining, heat treatment, inspection and rework operations. In

the case that a work piece fails inspection, it may go through several pre-specified rework

processes depending on why it failed and join the main routing afterwards. At each

process step, there can be a set of parallel machines that perform the same task. Some

processes can be batch processes wherein the process takes in a batch of work pieces and

outputs them at the same time upon finishing.

This project aims to optimize the total cost of the serial flow line mentioned above in the

face of various uncertainties. Firstly, the demand of finished goods can vary from month

to month. A placed order can be cancelled, or the due date can be advanced or delayed by

a few months. To accommodate this variability and maintain a robust manufacturing

system, we have to forecast the demand and plan our production accordingly. Secondly,

there is uncertainty in the procurement times for the raw material; there can also be some

yield uncertainty with the received raw material. Thirdly, in the production line there can

be yield uncertainty, which is detected at inspection processes. A product might fail

inspection and become scrap or go through a series of rework processes. The in-process

failure uncertainty has a significant impact on the estimation of the lead time of

production.

The costs involved in a typical manufacturing system include penalty cost, overtime cost

and inventory cost. Penalty cost occurs when an order is not fulfilled at the due date,

which is particularly significant when there is an unexpected spike in the demand.

Overtime cost occurs when the regular capacity is not enough to produce to the desired

production rate. In addition, there are three types of inventory, raw material inventory,



work in process inventory and end item inventory. Each of these three types of inventory

incurs an inventory holding cost, due to the capital invested in the inventory as well as

handling and storage related costs.

To minimize these costs while taking uncertainties into account, there are a few questions

to be addressed.

1. Where in the serial flow line do we place decoupling buffers to protect against

demand and raw material arrival uncertainty, and reduce variance in upstream

processes?

2. What level of work in process inventory do we aim at? How much inventory do

we keep at each decoupling buffer?

3. To maintain the inventory level in the segment as well as in the decoupling buffer,

what kind of work release policy do we apply to each decoupling buffer? What

production rate control policy is good for each segment?

4. How much raw material do we order at the fixed ordering dates, considering the

long lead time and staggered, yet possibly delayed, deliveries?

This project aims to address all the questions above through theoretical analysis and

mathematical modeling. Before we go into details of how the optimization is carried out,

we shall review several key concepts involved.

1.2 Literature Review

1.2.1 MMFE

The Martingale Model of Forecast Evolution (MMFE), developed by Graves et al. (1986)

[1] and Heath and Jackson (1994) [2], provides a framework to model the evolution of a

demand forecast process in a discrete time setting. For the serial flow line, we model the

demand process as an MMFE process and develop the tactical model based on that

assumption. Thus, it is important to review what an MMFE process is. We define the

following variables.



H : Forecast horizon;

D,: Demand at time t;

f, (t + i): Forecast at time t for demand in period t+i;

Af, (t + i): Forecast revision at time t for the demand forecast for period t+ i;

Here we only consider the time period from now until H units of time later. Thus at time t,

f, (t) is simply the actual demand D, at time t and the forecasts are f, (t +1) , f (t + 2),

f, (t + H). Assuming the next revision happens at time t+ 1, we revise the nearer term

forecasts and make the following amendment.

f, (t + 1) = f, (t + 1) + Aft+, (t + 1)= D,

f,+1 (t + 2) = f (t + 2) + Afn+ (t + 2)

f,+1(t + H) = f(t + H) + Aft, (t + H)

Then at period t+1 we need to make the first forecast for period t+H+1, namely

f+1 (t + H +1). This is how we model the forecast process. To arrive at the actual demand

of time t, we have the previous forecast at time t-H and then make H revisions. Thus, we

can express the demand as the following.

H

f,(t )= D = f,_H (t) + Aft-H+i (t)
i=1

In each time period, we assume that the vector of H revisions, Af, , is an independent,

identically distributed (i.i.d.) random vector with E[Af, (j)] = 0, Vt, j . Under this

assumption, Graves et al. [1] and Heath and Jackson [2] have established several

properties for this forecast evolution model.

Property]. f, (t + i) is a martingale and an unbiased estimate of D,+ ;

Property 2. The variance of the forecast error D, - f,(t +i) increases in i;



Property 3. The variance of the random variable D, is the trace of the covariance matrix

for Af,, which we denote by E.

For this project, the initial forecast f, (t + H) is assumed to be the average demand u for

all t. Combined with Property 1, it is evident that E[D,]= p and Var[D,] is equal to the

trace of E .

1.2.2 Safety Stock

Graves [3] gives a summary of the previous work on Safety Stock and suggests that if

everything is deterministic, there would be a minimum inventory level that a

manufacturing system would need to satisfy the fixed demand. However, in reality we

need a certain amount of excess inventories besides the minimum inventories in order to

buffer the uncertainties in raw material arrival, production and demand, and also due to

the inflexibility of manufacturing system. That excess inventory, namely the Safety Stock,

is used to fulfill customer's demand at a satisfactory performance level and also to reduce

production costs under those uncertainties.

This broader definition of Safety Stock includes not only the stocks that protect against

various uncertainties, but also the stocks that help perform production smoothing or serve

the purpose of decoupling the line. In a real scenario, factories do not label any part of

their inventory explicitly as the Safety Stock; instead, they simply have in-process

inventories to perform the functions intended for safety stock.

1.3 Assumptions

Before developing the tactical model, we need to make several assumptions.

First of all, we assume a discrete time model with an underlying time period, for example,

one month. It is the same frequency at which we would make the release decisions and

production rate decisions for each segment. Forecasts get updated at this frequency as

well or maybe less frequently.



The demand process for the end items is assumed to be a MMFE process. Thus, given

the covariance matrix Y for the forecast updates, the variance of the demand process is

simply the trace of E. At times it might be preferable to use standard deviation, i.e. the

square root of the trace.

Moreover, we assume that an inventory target will be set for each decoupling buffer in

terms of a safety factor, z. A typical z value of 2 corresponds to a protection level of two

times the standard deviation to the right of the mean value and provides a service level

(probability of not stocking out in a period) of 98% of the time, under the assumption that

the forecast revisions are normally distributed. Even with a high buffer inventory target,

it can still happen that the buffer does not have enough inventory to release to the

downstream segment. For this project, we assume that the upstream buffer never starves

the segment; in other words, the desired release rate is always realizable.

We also assume that we only have one product type. However, the tactical model can be

extended to multiple product types fairly easily. These assumptions make it easier to

develop an effective tactical model that well serves the purpose of this project.
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Chapter 2

Tactical Model

In this chapter, the tactical model will be described in detail to address the objectives

mentioned in Chapter 1.

2.1 Dynamic Programming Approach

This part describes how to determine the location of each decoupling buffer, which

breaks the serial flow line into segments. Each segment has several process stages

followed by a decoupling buffer. Two important parameters of a segment are (Yi and ac

corresponding to the standard deviation of the release and demand processes for the

segment, respectively. Given two potential buffer locations at i and j, i < j, and a pair of

values set for amT and a, we define C(i, j,ain,a out) as the inventory and production

cost for the segment consisting of steps i+], ... , j for this specific set of parameter values.

How to calculate this cost function will be explained step by step in the following

sections. For now let us assume that we know how to calculate this cost function. Thus,

we have the DP structure as:

G(i,a in) = min{C(i, j,n , ou,)+G(j,aou,)} (2.1)
Jayout

Vj,aou,{ j,aou, I j= i+,...,N;a in a, out <ademand

where ademand is the standard deviation for the end item and G(i,a in) is the cost of the

optimal solution for process stages i+1, ... , N (process N is the end of serial flow line),

under the assumption that there is a decoupling buffer after process i and the standard

deviation of the release process into step i+1 is am .

To find the optimal solution for the entire serial flow line, we solve for



G(O)= min{G(0,T)} V{o 0 <o G a , de}and

with boundary condition

G( N,) = 0 for aT = demand

oo otherwise

We now have the big picture of how to find the optimal configuration for the entire serial

flow line. The following sections will explain how to determine the operating policy of

each segment and evaluate the cost function based on the policy parameters. From this

point onwards, our discussion is mostly within the scope of a single segment.

2.2 Release of Work

We introduce a smoothing parameter for the release rule, a. The following release rule is

applied.

r(t) = ccx f,(t)+(1-a)x r_1(t -1) (2.2)

where r (s) is the planned release rate for time s determined at period t, s>t and r (t) is

simply the release rate for period t; f, (s) is the demand forecast for time s determined at

period t, s > t and f (t) is the demand at period t.

It is obvious that with a larger a, the new release rate reflects more of the current demand

whereas smaller a means that the new release rate is closer to the previous release rate. In

other words, larger a indicates more responsiveness to the demand while smaller a leads

to more smoothing and flatter production rate. It can be derived from the release rule (2.2)

that the release process is also an MMFE process if the demand is an MMFE process.



t-1

r, ()ax f, (t)+ (1 -a)x r,_, (t - 1)=
i=0

=a (1-a)' Aft-(t-i)+f0 (t-
i=0 j=0

= O(1-a) Af,- + 1: -
i=0 k=i i=0

a (1-a )1f,_ (t -i) +a (1-a )t r (0)

i) +(i-a)'r(0)

t-I k

k=0 i=0

t-1

k=O

where

t-1

k.

Artk (t) = La (1-a Y Afk
i=O

(t-i) for 0 k t-l

The second equation can be rewritten as

Ar, (t +k) =[a (1-a )' Af, (t +k - i) for 0 k t -1
i=0

(2.3)

We observe that the revision vector Ar, is an i.i.d. vector with zero mean value, similar to

Af, as shown in Section 1.2.1. Thus, from Equation (2.3), Ar, can be expressed as a

transformation of Af.

Ar, = M1 Af,

where Mi has zeros above the diagonal and a on the diagonal, followed by geometric

weights a (1-a)' for i rows below the diagonal.

However, since we are only considering the revision within the horizon H, Equation (2.3)

does not hold for k>H. We can argue that each column of M, has to sum up to one since

)i Af,_k (t - ') + r (t

fo (t -i)+ac (1 -a0 )'f (0)



the sum of every possible adjustment to r, (s) must be equal to one. Thus, the last row of

Mi can be shown to be (1 -)H-1, (O)H-2 (J ) 1.

As mentioned in Section 1.2.1, the variance for f, is simply the trace of E. Thus, the

variance for r, is the trace of M EM . Here we propose an approximation as a simpler

way of calculating the variance.

Var(r,(t)) = tr(MEM[)~

=cc x Var(f, (t))+(
2c)

S a x tr(E) + (1 - a) x sum(E))
2 - cc

(2.4)
1 -a)x sum(E))

where sum(E) represents the sum of all elements in E.

Since each column of M sums up to one, sum(M EM[) is equal tosum(E). Thus, the

sum of covariance matrix remains constant as we move upstream from the last segment.

Rewriting Equation (2.4), we have

aY 2  a xai, +(-c)xsum(E))
in-2-ac ou

If we are given the variance of demand Tout and a possible smoothing parameter a , we

can calculate ai. If we are given a1 and a o, we can solve for a directly, which

simplifies the computation of DP significantly.

2.3 Inventory Target and Safety Stock for Decoupling Buffer

We define the following notation.

x, (t): Finished goods inventory after a line segment, as of the end of period t;

subscript t can be omitted;

x, (t + k): Forecast of finished goods inventory for period t+k, as of period t;

r(t): Release into the segment for period t;



r (t + k): Forecast of the planned release for period t+k;

p(t): Production rate for the segment for period t;

pt (t + k): Forecast of the planned production rate for period t+k;

X Finished goods inventory target for the decoupling buffer;

pg Average demand rate.

The inventory variability is largely correlated with the production rule and, therefore, we

need to define the production rule first. Assuming a linear control, we have the

production rule as

p(t)= g+ x(X -x(t)) (2.5)

The interpretation of production rule (2.5) is that as $ goes down, we have greater

production smoothing and the production becomes less responsive to the variability of the

demand. That in turn requires more inventory to accommodate more variability so as to

assure some desired service level.

We assume that the following balance equation holds.

x(t) = x(t -1)+ p(t)- f (t) (2.6)

Substitute Equation (2.5) into (2.6), we have

x(t)= x(t -1)+( + p x(X -x(t-1)))- f, (t)

(1- )x x(t -1)+(g - f, (t))+ $X

=(1- )x((1- P )x x(t -2)+( g- f (t -1))+ PX )+(

xx()+E (- p)k x4X=(-)x(R - f,_k(t-k0))+ (1- )'
k=0

=((1- )k x( -f,_ (t-k))+X
k=O

where we assume x(0) = X. Similar to the release rule deduction, we can show that the

inventory process is also an MMFE process.



t-1

x(t) = ((1-p)k X( - f,_k(t-k))+ X
k=0

fo(t-k)
k-0

t-1 t-1-j

= X -E(I(- )* x t,_-_ (t -k)
j=0 k=0

t-1 i

= X -((1-0)kX x ,_(t -k )
i=0 k=0

t-1

=x0 (t) +( EAx,_, (t )
i=O

where we assume

fo (t -k)= g,Vk

x0 (t) = X

Ax_(t) = ( _(1 p )k xAf,_,(t - k)
k=0

The last equation shows that Ax, can be expressed as - M 2 Af, , where M2 has zeros

above the diagonal and 1 on the diagonal, followed by geometric weights (1 - f )'for i

rows below the diagonal. Similar to the release process, we have an approximation for the

variance of inventory.

Var(x, (t)) = tr(M2 E2M) (2.7)I Px tr(E)+ (1 - x sum(E))2P - 2)

where E is the covariance matrix of f,.

The implication of this approximation is that given the demand standard deviation of a

segment, ao,, i.e. tr(E) , the variance of finished goods inventory becomes a function

of P . Moreover, given the variance of finished goods inventory, finished goods safety

t-1 t-k-1

)k X ( _Af,_

k=0 j=0

(t-k )

t-k-1

-0 P)' x - E Af,_k_ (t -k) -
j=0



stock should be set to z Var(x, (t)) where z is the safety factor as mentioned in Section

1.2.2. From this we can calculate the FGI cost.

Here we choose 0.1 for the lower limit of because the decoupling buffer at the end of

the segment experience extremely high variance as /3 goes lower than 0.1. This can be

observed from Equation (2.7). Intuitively, it is obvious that the production rate is close to

average demand [L with a small /p, which can result in a very low FGI inventory level

when there is a spike in the demand. It will take a long time to recover from this situation,

which also increases the penalty cost. Thus, # cannot be lower than 0.1.

2.4 Production Planning and Smoothing

Using the result for x(t) in Section 2.3, we have

p(t)= .+% x(X -x(t))

(X t-1 i
- ~ ~ -r - L(l p )k XAL. (k)Y'=[t+%xX -X ~ -( (- *xg_(t -

i=0 k=O

= + $ x (1- % )k x f,_ (t -k)
i=0 k=0

t-1

Po (t )+E Ap (t )
i=0

where

P0 (t) =

Ap,_(t) - = x0(1- p )k x A,_,(t -k)
k=O

or Ap,(t +i)=p xt (-)xA (t+i-k)
k=0

This implies that production process is an MMFE process as well as other process proven

to be MMFE in previous sections. Ap, can be expressed as %MAf, , where M3 has

zeros above the diagonal and 1 on the diagonal, followed by geometric weights (1- P)'



for i rows below the diagonal. Similar to the approximation of release process and

finished goods inventory, we have

Var(p(t)) = 2Var(x(t)) 2 2

( x tr(E)+ (1- ) x sum(E))
2 - $

p x tr(E) + (2.8)

It is worthwhile to take note that given the demand standard deviation of a segment, a,,

i.e. tr(E) , the variance of production rate becomes a function of the smoothing

parameter .

2.5 Work in Process Inventory in a Segment

Work in process inventory in a segment is defined as follows.

W= gx segment lead time + z xG o 2
1- (1 )2

1 (1-a)2 (2.9)

where k is the average demand rate.

The segment lead time is equal to the sum of the lead times at each process in the

segment. The following notations are defined.

$: Number of times a work piece visits the process;

t: Process time for a work piece;

C: Capacity of the process in time units per period;

ca : Coefficient of variation for arrivals to the process;

p : Utilization for the process;

To estimate the waiting time at each process, we use a G/D/l queuing approximation.

(1 - P) x sum(E))

2(1 - P)(1 - ax)

1 -( (- p )(1 - aX)



c2 tp
Waiting time = -"--

2 1-p

where ca= G" and p =
9 C

The second term in Equation (2.9) is a function of a and P, which represents additional

WIP needed to accommodate variability due to the release and production rules. An

intuitive way of understanding this is that as the difference between a and P gets larger,

more WIP is needed in the segment. However, we note that when one of a and

approaches 0, the term goes to infinity.

2.6 Raw Material Ordering Policy

We are working with a specific raw material order generation process as follows. Raw

material orders are placed N times a year, with the time between orders being the same. L

denotes the lead time of the first raw material arrival after order placement. Each raw

material order has staggered deliveries, i.e., an order placed at month t will be delivered

in month t+L, t+L+1, ..., t+L+(12/N)-1. If N is 2 and L is 6 months, an order placed in

month 3 will have six installments from month 9 until month 14, or month 2 of next year.

We define the following terms.

v, (t): Quantity of raw materials on-hand at the end of month t; the subscript can

be dropped;

v, (t + k): Forecast of raw material inventory at the end of month t + k as of

month t;

r, (t): Quantity of raw materials to be released into production during month t; the

subscript can be dropped;

r, (t + k) : Forecast for the quantity of raw materials to be released during month t

+ k as of month t;

q (t + k) : Quantity of raw material ordered for delivery at month t + k. We

assume delivery occurs in the beginning of the month.

29



Thus we can model the inventory dynamics as follows.

v(t)=v(t -)+ q(t)- r(t)
L-1 L

> v, (t + L) =v(t) + q(t + L) + q(t + i) - r, (t + i)
i=1 i=1

k-1

=> v, (t + k) = v(t) + q(t + k) + q(t + i)
i=1

k

-( r, (t + i)
i=1

We take note that the forecasts v, (t + k), r (t + i) in Equation (2.10) are random variables.

If N is 2 and L is 6, at time t the future orders q(t),...q(t+5) have been previously

determined and are scheduled for receipt in the next 6 months. However, we need to

determine the orders q (t +6),...q (t +11) at time t. More generally, we need to set the

quantities for q(t + L),..., q(t + 12 / N -1).

It is obvious that we need to know the safety stock target prior to determining the

quantity of raw material orders. From Equation (2.10), if we assume that there is no

uncertainty in raw material delivery time, the mean and variance for the inventory

random variable can be characterized as follows.

(2.11)

(2.12)
k

Var~v,(t+k)]=Var (r(~)
Ii=1 ,tt 

i

We propose that the order quantities should be set in the following way.

E[vt(t+k)]=za Varv,(t+k)] =
k

za Var r,(t+i) =Zp a

where za is the safety factor to satisfy a protection level of a percentile. In this project we

use a za of value 2.4. This can be interpreted as the safety stock target for month t+k,

which we denote by SS(t+k).

k L (2.10)

(2.13)

k-1 k

E (v, ( t + k )] = v(t )+ q(t + k) )+( q(t +i) - E (r(t +
i=1 Ii=1

r, (t +i) )



SS(t +k) = za Var r,(t +i) for k = L,..., L+ -1

Thus, the safety stock target level is dependent on the cumulative variance term, which in

turn requires us to determine the covariance matrix of the release into the first segment.

The covariance matrix of release process is

E, =M M ,MTr M 3 f 3~

where Ef is the covariance matrix of demand process at the end of the first segment.

However, there are numerous ways that the processes from process 2 to the end of the

line can be segmented and, therefore, the first segment can end at any process.

Meanwhile, we do not track segmentation, which means that Ef and ao, of segment 1

cannot be easily determined. As a result, when the DP proceeds to the first process, we

have to handle things a little differently. In Section 2.2, we had

a f jxxal, +(1-aL)x sum(E2))2 - aX

Given the fact that a out cannot be predetermined for segment 1, we assume that aout is

simply ademand , the standard deviation of demand process at the end of the serial flow line.

Hence for each possible segment that starts at process step 1 and a,,, we can calculate

the estimated cest .

a 2( est ~1 a, 2 + ( - ) x sum(E))
inL2 cest I est demand est

By doing this, we reduce the search space of DP enormously. Now we can set M3 to be a

weight matrix with zeros above the diagonal, C, eston the diagonal and est (1 - , est )' for i

rows below the diagonal. After we obtain E ., we can calculate the cumulative variance

term.



Var Lrt(t+i)i=varL(E[1 (t i)] t+ (t+i)+Art+(t+i)+...+Ari (t+i))]i=1 __i=1
k k k k

=Var (Ar, {t +i )+ L Ar, (t + i )+... + (: Ar,,_ -1 ( &)~ ,,k (t+Q
i=2 i=k-1 i-k

k k

=(LVar (Ar,+j(t+i)]
j=1 Ii=j

We observe that

k k-j

Var L Ar,j (t +i ) =Var L Art (t +i)
_ i=j _ i=0

which is exactly the sum of all elements in the (k-j+]) principal minor of the covariance

matrix E,.

After the cumulative variance term and the safety stock target for SS(t+k) for k=L,

L+12/N-1 are obtained, we can determine q(t + L),..., q(t + 12 / N -1).

If we set vt(t+k) in Equation (2.10) to be the safety stock target, we have

k-1 k

q(t + k) = SS(t + k) - v(t) - q(t + i) + r, (t + i) (2.14)
i=1 i=1

As we can determine q(t+L),...,q(t+k-1) before we determine q(t+k), we see that q(t+k)

is the only unknown variable in Equation (2.14). Hence, we can use (2.14) to iteratively

solve for each q(t+L), ... , q(t+L+12/N-1).

At this point, the raw material ordering policy is well defined. We determine the

smoothing parameter a, the covariance matrix of release into the first segment and the

cumulative variance term, which we eventually use to determine the safety stock target

level and the ordering quantity for each ordering month, to be received L months later in

several installments.



2.7 Evaluation of Cost Function

Having analyzed each component of the tactical model, we are now able to evaluate the

entire cost structure.

Given two potential buffer locations at i and j, i < j, and a pair of values set for cT i and

aY,, C(i, j,cYn,'Gout), as defined in Section 2.1, is the inventory and production cost for

the segment from process i+1 to process j. To evaluate this cost, we go through the

following steps.

1. Given (Yi and a, outwe determine a by solving this quadratic equation.

afT ~ - ((1 )Cxa , + (1 -ac)x sum(E))

There are two solutions for the value of a, and at times some extra work needs

to be done to find out which value is better.

2. Determine the value of z. If the segment contains the last process of the serial

flow line, we need to determine z by solving an optimization problem over

minimizing FGI holding cost and penalty cost, for which the solution is

attached in Appendix A. We will have the penalty cost determined after this

step. If the segment is not the last segment, we simply use a predetermined

fixed safety factor, for instance z =1.6.

3. Determine the value of fi by minimizing the inventory cost and overtime cost.

To do this, we do a line search over 0.1 P f3 1. How to calculate overtime

cost is attached in Appendix B. We will have determined the overtime cost

after this step.

4. Part of inventory holding cost is due to decoupling buffer safety stock, which

is determined by

X =zX Var(x,(t))

=zxj 1  2 X( XGvr+(1- + )xsum2 -Y



5. Inventory holding cost also include work in process inventory, which is

described in Section 2.5. After step 4 and 5, we multiply the total inventory

level by inventory cost per day per work piece to get the total inventory cost.

After we determine all the parameters using a given pair of values for (,, and T ou, and

two potential decoupling buffer locations i andj, we have a minimum cost for

C(i, joainG,). For the special case when the DP goes upstream to the first process, we

need to determine the raw material ordering policy as specified in Section 2.6 and hence

calculate the raw material inventory cost. Now we can construct the DP cost table and

determine the optimal configuration with minimum total cost for the entire serial flow

line.



Chapter 3

Model Output Analysis

In the following section we report on the test results of our tactical model and investigate

how the operation policies vary depending on different statistics of the serial flow line.

Our test cases are based on a serial flow line of 30 processes, each of which has its own

inventory cost, overtime hourly cost, process time, regular capacity and overtime capacity.

For the simplicity of this project, we assume that the batch size is 1 for all processes and

work pieces go through each process exactly once. Another assumption is that raw

material orders are delivered with no possibility of being delayed. Based on these

assumptions, an initial base case is set up, which will be described in the next section. We

build other test cases upon the base case by varying the utilization level, inventory cost,

overtime cost and penalty cost.

3.1 Case 1 - Base Case

The base case is described as follows.

1) The horizon H is 6 months;

2) The number of times raw material orders are placed per year N is 4 and delivery

lead time L is 3 months;

3) The average monthly demand pi is 300 with a standard deviation G of 76.4;

4) The production line consists of 30 processes. Assuming that there is only one shift

of 7.6 hours per day for 22 days per month, the maximum regular capacity of each

process is around 10,000 minutes/month. We want 60% of the regular capacity to

be able to cover average demand pt; thus for all process steps the process time for

one work piece should be around 60%x 10,000 minutes /300, which is 20 minutes;

5) Since the value of the work pieces increases as the production goes on, the

conventional way is to have uniformly increasing inventory holding cost from

process 1 to process 30. Here we set the holding cost of process 1 as 200 Japanese



yen/(day - piece) and it reaches 1000 yen/(day -piece) at process 30 with an

increment of 27.59 per process step. Following this trend, finished goods

inventory holding cost is set to 1020 yen/(day - piece);

6) OT cost is set to 100,000 yen/hr;

7) Penalty cost is set to 100,000 yen/(day -piece);

8) For all the cases, we assume there is no delay for raw material;

9) Possible value of ratio ain/aout in each segment can be 0.1, 0.2, ... , 1; this is a

setting for determining how we decide the state space for the DP.

Table 3-1 summarizes the most important information above, and this format is used in

all test cases to describe the selected values for different parameters.

Table 3-1: Case 1 description

Utilization to Inventory cost FGI inventory Penalty cost OT cost
produce I r cost

60% 200-1,000 1,020 100,000 100,000
yen/(day-piece) yen/(day-piece) yen/(day-piece) yen/hour

After running tactical model, the optimal serial flow line configuration and cost structure

breakdown is shown as follows.

Table 3-2: Case 1 cost structure breakdown

Raw Material Inv Cost WIP Cost Buffer Cost OT Cost Penalty Cost Total Cost
36,229 14,612 385,210 1,076 59,228 496,354

Table 3-3: Case 1 overview of segmentation and parameters

Segmentation No segmentation

Gin 22.93

a 0.26

p3 0.25
z 1.7

Here we give an explanation of the summary of results and the results of following test

cases will be reported in the same manner. The detailed data is attached in Appendix C

for reference.

Table 3-2 shows the optimal overall cost structure breakdown, which allows us to see the

different cost entities and analyze the tradeoff between different costs. The three types of



costs are overtime cost, penalty cost and inventory cost. We report the values of three sub

categories under inventory cost, namely, raw material inventory cost, WIP inventory cost

and decoupling buffer cost, denoted as "Buffer cost" for conciseness. The total sum of all

the costs is given as well.

Table 3-3 contains information on how the flow line is segmented and what values the

production parameters are set to in each segment. The standard deviation of release into

the segment, cin, is given. This table also shows the value for work release smoothing

parameter, a, production rate smoothing parameter, p, and FGI safety factor, z, in each

segment. If the segment is not the last segment in the line, z is omitted because we use a

fixed value of 1.6 for it.

These data elaborate the work release policy, production planning policy and how the

demand variance is smoothed out as we move from the end of the line towards upstream

processes.

Now let's analyze the results for Case 1. We can see that there is no decoupling buffer

added in the line, and therefore, there is only one segment. In addition, a and P are fairly

low, indicating a high smoothing effect. As a result, Tin is as low as 22.93 while (out for

the segment is the standard deviation of customer's demand, 76.4.

3.2 Variation of the Utilization Level

In the base case all processes have utilization level of 60% to fulfill mean demand pi. In

this section we are going to vary the utilization level across the serial flow line. To

increase the utilization level to 100%, we set each process time to be 10,000 minutes /300,
which is around 33 minutes.

3.2.1 Case 2 - Utilization Level Variation

Table 3-4: Case 2 description



If we set all the processes to 100% utilization level, the result is as follows.

Table 3-5: Case 2 cost structure breakdown

Raw Material Inv Cost WIP Cost Buffer Cost OT Cost Penalty Cost Total Cost

33,801 34,766 715,358 745,984 67,086 1,596,995

Table 3-6: Case 2 overview of segmentation and parameters

Segmentation Before process 30

Segment 1

Gin 15.28
aL 0.19

p 0.15
Segment 2

Gin 15.28
a 0.14

p 0.15
z 1.7

If we increase the utilization level of all processes to 100%, there is a breaking point

before process 30, as shown in Table 3-6. Thus there are now 2 segments in this case.

Segment 2 smooth out the production significantly and has Gin as 15.28 while Gout is 76.4.

Therefore, Gout of segment 1 is also 15.28 and process steps 1 to 29 experience low

variance in the demand. Putting a short segment at the end of the line is an effort to

reduce overtime cost in as many processes as possible.

We plot the cost structure of Case 2 against that of base case.
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Figure 3-2: Overall cost comparison of Case 1 vs. Case 2

Since the processes are at 100% utilization level in order to meet the average demand t,

the production line runs into overtime easily. Thus, compared with Case 1, the production

line in Case 2 has much higher overtime cost. Although adding a decoupling buffer

doubles the buffer inventory cost compared to Case 1, it is necessary to do so in order to

reduce overtime cost, due to the high utilization level here. Overall speaking, the result is

consistent with our expectation that the production should be smoothed out more.



3.2.2 Case 3 - Utilization Level Variation

Table 3-7: Case 3 description

From the base case, if we only modify the process time of process 1 to process 15 to be

33 minutes to increase the utilization level to 100%, the result is as follows.

Table 3-8: Case 3 cost structure breakdown

Raw Material Inv Cost WIP Cost Buffer Cost OT Cost Penalty Cost Total Cost

33,801 22,660 571,567 382,274 58,930 1,069,231

Table 3-9: Case 3 overview of segmentation and parameters

Segmentation Before process 16

Segment 1

Gin 15.28
a 0.19
p 0.15

Segment 2

Gin 22.93
aL 0.26
p3 0.25
z 1.7

The difference in the utilization level breaks the line into 2 segments. For segment 1, 100%

utilization means there has to be greater smoothing to reduce the overtime cost. To

achieve this, segment 2 with 60% utilization has high smoothing, which brings down (in

of segment 2, i.e. aot of segment 1, to 22.93. Thus, segment 1 experiences low demand

variance and in addition, it also has low values for a and pi, thus the production is made

rather flat to reduce overtime cost within the segment.



3.2.3 Case 4 - Utilization Level Variation

Table 3-10: Case 4 description

Utilization to
nrmniire ii

Inventory cost FGI inventory
cost

Penalty cost

200-1000 1,020 100,000 100,000
yen/(day-piece) yen/(day-piece) yen/(day-piece) yen/hour

From the base case, if we only modify the process time of process 16 to process 30 to be

33 minutes, the second half of the line will have 100% utilization level. The result is as

follows.

Table 3-11: Case 4 cost structure breakdown

Raw Material Inv Cost WIP Cost Buffer Cost OT Cost Penalty Cost Total Cost
33,801 22,080 418,536 624,664 67,728 1,166,809

Table 3-12: Case 4 overview of segmentation and parameters

Segmentation No segmentation
Gin 15.28
a 0.14
@ 0.15
z 1.7

There is no segmentation in this case. Since processes from P16 to P30 have 100%

utilization, the production line will easily run into overtime. Thus, we have low a and p
value to smooth out the production line and control the overtime cost.

It is interesting to observe the difference in the cost structure of Case 3 versus that of

Case 4.

OT cost
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A: P1-P15 100% P16-P30 60%

B: P1-P15 60% P16-P30 100%

Compared with Case 3, which has a decoupling buffer before process 16, Case 4 has no

decoupling buffer and, therefore, much less inventory but more overtime cost. The

overall cost for Case 4 is higher because processes with 100% utilization level are nearer

j



to FGI, where the inventory holding is more expensive and it is more difficult to do

production smoothing.

3.2.4 Case 5 - Utilization Level Variation

Table 3-13: Case 5 description

Utilization to
produce Lt

Inventory cost
FGI inventory

cost
Penalty cost OT cost

200-1000 1,020 100,000 100,000
yen/(day-piece) yen/(day-piece) yen/(day-piece) yen/hour

Building upon the base case, if we modify

be 33 minutes and that of process 11 to 20

modified as shown in the shaded box. The

the process time of process 1 to process 10 to

to be 26.7 minutes, the utilization level is

result is as follows.

Table 3-14: Case 5 cost structure breakdown

Raw Material Inv Cost WIP Cost Buffer Cost OT Cost Penalty Cost Total Cost
33,801 24,030 555,524 260,325 66,353 940,032

Table 3-15: Case 5 overview of segmentation and parameters

Segmentation Before process 11

Segment 1

(Yin 15.28
a 0.19

0.15
Segment 2

(Yin 15.28
a 0.14
@3 0.15
z 1.7

Process 1 to 10 are grouped as a segment and differentiated from other processes because

the utilization level of 100% is very high. Due to the smoothing effect of segment 2,

segment 1 has flat production rate and although it runs into overtime easily, the overtime

cost will be scaled down.

3.2.5 Case 6 - Utilization Level Variation

I II



Table 3-16: Case 6 description

Utilization to
nnciie ii

Inventory cost
FGI inventory

cost
Penalty cost

200-1000 1,020 100,000 100,000
yen/(day-piece) yen/(day-piece) yen/(day-piece) yen/hour

Building upon the base case, if we modify the process time of process 11 to process 20 to

be 26.7 minutes and that of process 21 to 30 to be 33 minutes, the result is as follows.

Table 3-17: Case 6 cost structure breakdown

Raw Material Inv Cost WIP Cost Buffer Cost OT Cost Penalty Cost Total Cost

33,801 22,092 418,572 435,959 67,737 978,162

Table 3-18: Case 6 overview of segmentation and parameters

Segment 1

'gin 15.28

a 0.14

P 0.15
z 1.7

Similar to Case 4, there is no segmentation and the entire production line is smoothed out

at a fairly high level because of the utilization level bottleneck at the end of the line.

3.3 Variation of Overtime Cost and Penalty Cost

3.3.1 Case 7 - Overtime Cost Variation

Table 3-19: Case 7 description

Utilization to
produce p

Inventory cost
FGI inventory

cost
Penalty cost

P1-P10 100% 200-1000 1,020 100,000

P21-P30 60% yen/(day-piece) yen/(day-piece) yen/(day-piece)

Building upon Case

as follows.

5, if we increase the overtime cost to 500,000 yen/hour, the result is

Table 3-20: Case 7 cost structure breakdown

OT cost

Segmentation No Segmentation

OT cost

Raw Material Inv Cost WIP Cost Buffer Cost OT Cost Penalty Cost Total Cost

31,247 58,705 590,598 1,230,625 66,329 1,977,504



Table 3-21: Case 7 overview of segmentation and parameters

Segmentation Before process 11, 12
Segment 1

Gin 7.64
a 1

Segment 2

Gin 7.64
a 0.05

Segment 3
Gin 15.28

0.14
@_ _0.15

z 1.7

If we increase the overtime cost to 500,000 yen/hour, the production line needs to be

smoothed out even more compared to Case 5 and the demand variance needs to go lower.

In order to achieve this, there is an additional decoupling buffer before process 12,

besides the decoupling buffer before process 11 which is already in Case 5. Having this

short segment, consisting of only process 11, makes it possible to lower a from 15.28 to

7.64 and hence, processes 1 to 10 can have a flatter production rate.

It might sound reasonable to have process 11 to 30 grouped as one segment and this

segment can reduce a from 76.4 to 7.64. However, in order for this to happen, pi has to go

lower than 0.15, which leads to enormous growth in the end decoupling buffer inventory

level as explained in Section 2.3. Thus, the last segment can only lower a from 76.4 to

15.28 and we need to have a short segment to double smooth the production.

3.3.2 Case 8 - Overtime Cost Variation

Table 3-22: Case 8 description

Utilization to
produce g

Inventory cost
FGI inventory

cost Penalty cost

P1-PlO 100% 200-1000 1,020 100,000
P11-P20 80% 2010 ,2 0,0
P21 -P30 60% yen/(day-piece) yen/(day-piece) yen/(day-piece)

OT cost



Building upon Case 5, if we increase the overtime cost to 1,000,000 yen/hour, the result

is as follows.

Table 3-23: Case 8 cost structure breakdown

Raw Material Inv Cost WIP Cost Buffer Cost OT Cost Penalty Cost Total Cost

31,247 64,789 694,085 2,282,856 58,831 3,131,808

Table 3-24: Case 8 overview of segmentation and parameters

Segmentation IBefore process 11, 2l1
Segment 1

Gin 7.64

Segment 2

ain 7.64
a 0.04

p 0.15
Segment 3

Gin 22.93
Ca 0.26

p3 0.25
z 1.7

If we increase the overtime cost to 1,000,000 yen/hour, the difference in utilization level

has more impact and the line breaks into three segments at the exact places where the

utilization level changes. Segment 2 and 3 largely smooth out the demand signal and

hence segment 1 has very low variance in the demand even though a and p are both 1.

Thus the entire production is flat and the tactics try to scale overtime cost down as much

as possible.

3.3.3 Case 9 - Penalty Cost Variation

Table 3-25: Case 9 description

Utilization to
produce

Inventory cost
FGI inventory

cost
Penalty cost

Pl-P10 60% 200-1000 1,020
P211P0 10% yen/(day-piece) yen/(day-piece)P21-P30 100%

OT cost

100,000
yen/hour



Building upon Case 6, if we only increase the penalty cost to 1,000,000 yen/(day-piece),

the result is as follows.

Table 3-26: Case 9 cost structure breakdown

Raw Material Inv Cost WIP Cost Buffer Cost OT Cost Penalty Cost Total Cost
33,801 22,092 570,466 435,959 39,266 1,101,584

Table 3-27: Case 9 overview of segmentation and parameters

Segmentation No Segmentation
Segment 1

Gin 15.28

a 0.14
p3 0.15
z 2.7

When penalty cost increases we will keep more FGI and hence z is increased to 2.7

compared to 1.7 in Case 6.

3.4 Variation of the Inventory Cost

3.4.1 Case 10 - Inventory Cost Variation

Table 3-28: Case 10 description

Utilization to Inventory cost FGI inventory Penalty cost OT cost
produce pI cost Penaltycost OTcost

P1-P15 100% P-P30 200-300 1,020 100,000 100,000
P16-P30 60% Pd2-P30 82-10 yen/(day-piece) yen/(day-piece) yen/houryen/(day-piece) I______ I____

From Case 3, if we modify the inventory cost so that there is a leap from process 11 to

process 12, the result is as follows.

Table 3-29: Case 10 cost structure breakdown

Raw Material Inv Cost WIP Cost Buffer Cost OT Cost Penalty Cost Total Cost
33,801 25,851 507,231 450,086 67,456 1,084,425



Table 3-30: Case 10 overview of segmentation and parameters

Segmentation Before process 1 I
Segment 1

Gin 15.28
Ca 0.19

0.15

Segment 2

Gin 15.28
Ca 0.14

p_ _0.15

z 1.7

The breaking point for Case 3 is before process 15. The leap in inventory cost shifts the

breaking point to before process 11. In this case, the leap in inventory cost is more

significant than the difference in utilization level. We note that the decoupling buffer

should not be placed at the process where the inventory cost increases much, because the

inventory cost at this process is high. We select the process upstream instead to place a

decoupling buffer. In this case, we place the decoupling buffer before process 11 instead

of before process 12.

3.4.2 Case 11 - Inventory Cost Variation

Table 3-31: Case 11 description

Utilization to
produce [t

P1-Plo 100%
P11-P20 80%
P21-P30 60%

Inventory cost
FGI inventory

cost
Penalty cost OT cost

1,020 100,000 100,000
yen/(day-piece)_I yen/(day-piece) yen/hour

Building upon Case 5, we modify the inventory cost so that there is a leap from process

20 to process 21 and the result is as follows.

Table 3-32: Case 11 cost structure breakdown

Raw Material Inv Cost WIP Cost Buffer Cost OT Cost Penalty Cost Total Cost

33,801 19,683 510,581 265,466 60,811 890,341

I~ i



Table 3-33: Case 11 overview of segmentation and parameters

Segmentation Before process 20
Segment 1

(Tin 15.28
a 0.19
@ 0.15

Segment 2

(Tin 22.93

a 0.26
@ 0.25
z 1.7

Case 5 initially has the breaking point before process 11. If we vary the inventory cost

such that it increases significantly at process 21, the breaking point shifts to before

process 20.

3.5 Variation of Standard Deviation

3.5.1 Case 12 - Standard Deviation Variation

Table 3-34: Case 12 description

Table 3-35: Case 12 cost structure breakdown

Raw Material Inv Cost WIP Cost Buffer Cost OT Cost Penalty Cost Total Cost
36,526 24,403 631,424 8,764 122,340 823,458

Table 3-36: Case 12 overview of segmentation and parameters

Segmentation No segmentation

(Yin 30.17
a 0.16

p 0.15
z 1.7

Compared to Case 1, a goes down from 0.26 to 0.16 and @ goes down from 0.25 to 0.15,
which indicates more smoothing. In order to reduce overtime cost, the production line is



largely smoothed out and less responsive to demand variance. We note that FGJ safety

stock increases from 225 to 464 to accommodate larger demand variance.
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Figure 3-5: Individual cost comparison of Case 1 vs. Case 12
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Figure 3-6: Overall cost comparison of Case 1 vs. Case 12

The cost breakdown shows some increase in the penalty cost, and the increment is

primarily in the buffer cost, which is due to higher FGI safety stock target.



3.5.2 Case 13 - Standard Deviation Variation

Table 3-37: Case 13 description

Table 3-38: Case 13 cost structure breakdown

Raw Material Inv Cost WIP Cost Buffer Cost OT Cost Penalty Cost Total Cost
32,148 61,144 882,239 674,895 121,774 1,772,200

Table 3-39: Case 13 overview of segmentation and parameters

Segmentation Before process 16
Segment 1

(Fin 15.08
aL 0.16

@3 0.15
Segment 2

(Yin 30.17
aL 0.16

s3 0.15
z 1.7

Compared to Case 3, segment 1 decoupling buffer safety stock and segment 2 decoupling

buffer safety stock, i.e. FGI safety stock, experience significant increment, which can be

verified by the detailed results provided in Table C- 13 of Appendix C. a in segment 1

goes down from 0.19 to 0.16 while both a and p of segment 2 go down. The smoothing

effect is a lot stronger in this case compared to Case 3. This is similar to the comparison

between Case 1 and Case 12.

3.5.3 Case 14 - Standard Deviation Variation

Table 3-40: Case 14 description

Utilization FGI inventory Penalty cost OT cost ol
to produce p Incost
P1-PlO 100% 200-1000 1,020 100,000 100,000
P21-P30 60% yen/(day-piece) yen/(day-piece) yen/(day-piece) yen/hour



Table 3-41: Case 14 cost structure breakdown

Raw Material Inv Cost WIP Cost Buffer Cost OT Cost Penalty Cost Total Cost

32,148 66,830 938,392 477,492 121,585 1,636,448

Table 3-42: Case 14 overview of segmentation and parameters

Segmentation Before process 21

Segment 1

Gin 15.08
a 0.06

p3 0.15
Segment 2

Gin 30.17
a 0.16

0.15
z 1.7

In Case 5, because processes of utilization level 80% and 60% do not experience high

variance in the demand, they still have sufficient capacity and are grouped as one

segment. In this case, as we increase the demand variance, processes of 80% utilization

level are not able to handle the high variance and hence are grouped with the first 10

processes of 100% utilization level. This shifts the breaking point from before process 11

to before process 21.

To summarize the above, the test case results are mostly consistent with our expectations

and the tactics work well in terms of determining the best locations of decoupling buffer

and the optimal policies.



Chapter 4

Conclusion

In this project we have explored the tactics of a serial flow line that entails a sequence of

process stages. We aim to improve the operation and planning by looking into inventory

policy, raw material ordering policy, production planning and scheduling policy. Our

goal is to develop a robust model that determines the optimal policies to minimize

inventory cost, penalty cost and overtime cost, in the face of demand uncertainty, raw

material arrival uncertainty and in-process failure.

To achieve this, we model the demand process, release process, inventory process and

production process as MMFE processes and investigate the dynamics and correlation of

them. The concept of decoupling buffer and safety stock is crucial because it helps

smooth out the production and prepare for unexpected spike in demand.

At the top level, we use dynamic programming to locate breaking points to place

decoupling buffer. In between every possible pair of decoupling buffer locations, we

formulate sub optimization problems and equations to search for the ideal parameters that

minimize the overall cost within the segment. By constructing the cost table, we

eventually obtain the optimal configuration for the entire serial flow line.

We certainly acknowledge the limitations of this theoretic model, one of which being that

the production rate is set based on the mean demand and the difference between

decoupling buffer inventory level and target safety stock level. This production rate is not

always realizable in real life due to constraints on workers, WIP and other resources.

Another limitation is that we assume the prescribed production in the previous period will

enter the end decoupling buffer in the current period. This assumption is based on the

ideal case that there is enough WIP and production capacity within the segment so that

the same number of work pieces as the released amount in the previous period will arrive

at the end of the segment in current period. Again this ideal case is not always true in real



life situations. Besides looking into these assumptions, we may also work on finding a

better approach to estimate WIP and gaining a better understanding of the relationship

between WIP and two parameters, a and p.

Overall speaking, this project is meaningful as it links several key concepts successfully

and forms a systematic way of improving the operation and planning of a serial flow line.
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Appendix A

Optimization Problem to Determine z

The variance of the end-item demand is known to be tr(E), where E is the covariance

matrix of the demand process revision vector Af, . In 2.3, we have shown that

E[x,(t)] = X

Var(x, (t))= tr(M2EM) ~ P x tr(E) + (1- P) x sum(E))
2 ~2 - 2 p

We also suggested that X = z Var(x,(t)) = zaT,. Now we have to find out the optimal

value for z so that it minimizes the FGI cost and penalty cost.

We define the following terms.

h: FGI holding cost per work piece per time period;

Q: Number of work pieces per order;

r: Expected time for the segment to produce an order of size Q;

pj: Probability that there is a j-th order delayed, in other words, the probability

that the number of orders delayed is j or more;

7r: Penalty cost per order per time period;

The optimization problem to be solved is

Min hX +n7Q'r p, x 2j2-1

where X = zax, p, = Pr[x < -(j -1) x Q]=1-<D(z)=1-<D .

Thus z is in both X and p; of the objective function. There is no analytical solution for this

problem and we need to do a line search over a range of values for z.
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Appendix B

Calculation of Overtime Cost

To determine the optimal value of for each choice of (i, j, Gi ,o,), we need to do an

optimization over possible values of#f.

E[p(t)] denotes the average number of work pieces to be produced per time unit, which

can be obtained from the average demand. If o is the average processing time per work

piece at a particular process stage, oE[p(t)] is the expected production in time units for

this process step. The variance of production rate Var(p(t)) can be obtained easily since it

is a function of as shown in 2.4.

Var(p(t)) ~ ($ x tr(E)+ (1- ) x sum(E))

Thus we can model the actual desired production (in time units) as a random variable g

with mean value as oE[p(t)] and variance as o2Var[p(t)].

We can easily calculate the nominal capacity X at each process step based on the number

of parallel machines at the process step and the number of shifts. If the machines are

shared by other processes, the capacity has to be divided proportionally among the

sharing process steps.

Thus, the overtime per period is the difference between the desired production rate g and

the nominal capacity X , denoted by E[(g - X)+].
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Appendix C

Table C- 1: Case 1 detailed results

Segment StartProc EndProc Alpha Beta Sigma-in Sigma out
1 1 30 0.26 0.25 22.93 76.42

Product Type OT Cost Total Cost Target WIP Buffer Inv Buffer SS WIP Cost Buffer Cost Safety Factor Penalty Cost
1 1,076 496,354 24 378 225 14,612 385,210 1.7 59,228

Raw Material Type Raw Material Inv Raw Material SS Raw Material Inv Cost Safety Factor
1 181 31 36,229 2.4

Table C- 2: Case 2 detailed results

Segment StartProc EndProc Alpha Beta Sigmain Sigma out
1 1 29 0.19 0.15 15.28 15.28

Product Type OT Cost Total Cost Target WIP Buffer Inv Buffer SS WIP Cost Buffer Cost Safety Factor Penalty Cost

1 704,769 1,060,738 39 299 149 22,831 299,338 1.6 0

Raw Material Type Raw Material Inv Raw Material SS Raw Material Inv Cost Safety Factor
1 169 19 33,801 2.4

Segment StartProc EndProc Alpha Beta Sigmain Sigma out
2 30 30 0.14 0.15 15.28 76.42



Product Type OT Cost Total Cost Target WIP Buffer Inv Buffer SS WIP Cost Buffer Cost Safety Factor Penalty Cost
1 41,216 536,257 12 408 255 11,935 416,020 1.7 67,086

Table C- 3: Case 3 detailed results

Segment StartProc EndProc Alpha Beta Sigma in Sigma out
1 1 15 0.19 0.15 15.28 22.93

Product Type OT Cost Total Cost Target WIP Buffer Inv Buffer SS WIP Cost Buffer Cost Safety Factor Penalty Cost
1 381,767 613,393 26 306 156 10,303 187,523 1.6 0

Raw Material Type Raw Material Inv Raw Material SS Raw Material Inv Cost Safety Factor
1 169 19 33,801 2.4

Segment StartProc EndProc Alpha Beta Sigma-in Sigma out
2 16 30 0.26 0.25 22.93 76.42

Product Type OT Cost Total Cost Target WIP Buffer Inv Buffer SS WIP Cost Buffer Cost Safety Factor Penalty Cost
1 507 455,837 15 377 224 12,357 384,043 1.7 58,930

Table C- 4: Case 4 detailed results

Segment StartProc EndProc Alpha Beta Sigma-in Sigma out
1 1 30 0.14 0.15 15.28 76.42

Product Type OT Cost Total Cost Target WIP Buffer Inv Buffer SS WIP Cost Buffer Cost Safety Factor Penalty Cost

1 624,664 1,166,809 34 410 258 22,080 418536 1.7 67,728

Raw Material Type Raw Material Inv Raw Material SS Raw Material Inv Cost Safety Factor

1 169 19 33,801 2.4



Table C- 5: Case 5 detailed results

Segment StartProc EndProc Alpha Beta Sigma in Sigma-out
1 1 10 0.19 0.15 15.28 15.28

Product Type OT Cost Total Cost Target WIP Buffer Inv Buffer SS WIP Cost Buffer Cost Safety Factor Penalty Cost
1 242,772 424,994 19 299 149 6,043 142,379 1.6 0

Raw Material Type Raw Material Inv Raw Material SS Raw Material Inv Cost Safety Factor
1 169 19 33,801 2.4

Segment StartProc EndProc Alpha Beta Sigma in Sigma out
2 11 30 0.14 0.15 15.28 76.42

Product Type OT Cost Total Cost Target WIP Buffer Inv Buffer SS WIP Cost Buffer Cost Safety Factor Penalty Cost

1 17,554 515,038 25 405 252 17,987 413,144 1.7 66,353

Table C- 6: Case 6 detailed results

Segment StartProc EndProc Alpha Beta Sigma in Sigma out
1 1 30 0.14 0.15 15.28 76.42

Product Type OT Cost Total Cost Target WIP Buffer Inv Buffer SS WIP Cost Buffer Cost Safety Factor Penalty Cost
1 435,959 978,162 35 410 258 22,092 418,572 1.7 67,737

Raw Material Type Raw Material Inv Raw Material SS Raw Material Inv Cost Safety Factor

1 169 19 33,801 2.4



Table C- 7: Case 7 detailed results

Segment StartProc EndProc Alpha Beta Sigma-in Sigmaout
1 1 10 1 1 7.64 7.64

Product Type OT Cost Total Cost Target WIP Buffer Inv Buffer SS WIP Cost Buffer Cost Safety Factor Penalty Cost
1 1,135,057 1,250,832 10 171 21 3,104 81,424 1.6 0

Raw Material Type Raw Material Inv Raw Material SS Raw Material nv Cost Safety Factor
1 156 6 31,247 2.4

Segment StartProc EndProc Alpha Beta Sigmain Sigma-out
2 11 11 0.05 1 7.64 15.28

Product Type OT Cost Total Cost Target WIP Buffer Inv Buffer SS WIP Cost Buffer Cost Safety Factor Penalty Cost

1 16,718 150,676 80 191 41 37,836 96,122 1.6 0

Segment StartProc EndProc Alpha Beta Sigma in Sigma out
3 12 30 0.14 0.15 15.28 76.42

Product Type OT Cost Total Cost Target WIP Buffer Inv Buffer SS WIP Cost Buffer Cost Safety Factor Penalty Cost

1 78,850 575,996 24 405 252 17,765 413,052 1.7 66,329

Table C- 8: Case 8 detailed results

Segment StartProc EndProc Alpha Beta Sigma in Sigma.out
1 1 10 1 1 7.64 7.64

Product Type OT Cost Total Cost Target WIP Buffer Inv Buffer SS WIP Cost Buffer Cost Safety Factor Penalty Cost

1 2,270,115 2,385,889 10 171 21 3,104 81,424 1.6 0



Raw Material Type Raw Material Inv Raw Material SS Raw Material Inv Cost Safety Factor

1 156 6 31,247 2.4

Segment StartProc EndProc Alpha Beta Sigma-in Sigma out
2 11 20 0.04 0.15 7.64 22.93

Product Type OT Cost Total Cost Target WIP Buffer Inv Buffer SS WIP Cost Buffer Cost Safety Factor Penalty Cost
1 9,430 289,349 85 305 155 50,911 229,008 1.6 0

Segment StartProc EndProc Alpha Beta Sigmain Sigma out

3 21 30 0.26 0.25 22.93 76.42

Product Type OT Cost Total Cost Target WIP Buffer Inv Buffer SS WIP Cost Buffer Cost Safety Factor Penalty Cost

1 3,312 456,570 12 376 224 10,774 383,653 1.7 58,831

Table C- 9: Case 9 detailed results

Segment StartProc EndProc Alpha Beta Sigma-in Sigma out
1 1 30 0.14 0.15 15.28 76.42

Product Type OT Cost Total Cost Target WIP Buffer Inv Buffer SS WIP Cost Buffer Cost Safety Factor Penalty Cost

1 435,959 1,101,584 35 559 409 22,092 570,466 2.7 39,266

Raw Material Type Raw Material Inv Raw Material SS Raw Material Inv Cost Safety Factor

1 169 19 33,801 2.4



Table C- 10: Case 10 detailed results

Segment StartProc EndProc Alpha Beta Sigma-in Sigma-out
1 1 10 0.19 0.15 15.28 15.28

Product Type OT Cost Total Cost Target WIP Buffer nv Buffer SS WIP Cost Buffer Cost Safety Factor Penalty Cost
1 242,772 370,901 19 299 149 4,568 89,761 1.6 0

Raw Material Type Raw Material Inv Raw Material SS Raw Material Inv Cost Safety Factor
1 169 19 33,801 2.4

Segment StartProc EndProc Alpha Beta Sigma-in Sigma-out
2 11 30 0.14 0.15 15.28 76.42

Product Type OT Cost Total Cost Target WIP Buffer Inv Buffer SS WIP Cost Buffer Cost Safety Factor Penalty Cost
1 207,314 713,524 25 409 257 21,283 417,470 1.7 67,456

Table C- 11: Case 11 detailed results

Segment StartProc EndProc Alpha Beta Sigma-in Sigma out
1 1 19 0.19 0.15 15.28 22.93

Product Type OT Cost Total Cost Target WIP Buffer Inv Buffer SS WIP Cost Buffer Cost Safety Factor Penalty Cost
1 255,462 416,464 28 306 156 8,039 119,163 1.6 0

Raw Material Type Raw Material Inv Raw Material SS Raw Material Inv Cost Safety Factor
1 169 19 33,801 2.4

Segment StartProc EndProc Alpha Beta Sigma-in Sigma-out
2 20 30 0.26 0.25 22.93 76.42



Product Type OT Cost Total Cost Target WIP Buffer Inv Buffer SS WIP Cost Buffer Cost Safety Factor Penalty Cost
1 10,005 473,877 13 384 231 11,643 391,418 1.7 60,811

Table C- 12: Case 12 detailed results

Segment StartProc EndProc Alpha Beta Sigma in Sigma out
1 1 30 0.16 0.15 30.17 150.85

Product Type OT Cost Total Cost Target WIP Buffer Inv Buffer SS WIP Cost Buffer Cost Safety Factor Penalty Cost
1 8,764 823,458 41 619 464 24,403 631,424 1.7 122,340

Raw Material Type Raw Material nv Raw Material SS Raw Material Inv Cost Safety Factor
1 183 33 36,526 2.4

Table C- 13: Case 13 detailed results

Segment StartProc EndProc Alpha Beta Sigmain Sigmaout

1 1 15 0.06 0.15 15.08 30.17

Product Type OT Cost Total Cost Target WIP Buffer Inv Buffer SS WIP Cost Buffer Cost Safety Factor Penalty Cost

1 670,682 991,485 91 412 263 35,628 253,026 1.6 0

Raw Material Type Raw Material Inv Raw Material SS Raw Material Inv Cost Safety Factor

1 161 11 32,148 2.4

Segment StartProc EndProc Alpha Beta Sigma in Sigma out

2 16 30 0.16 0.15 30.17 150.85



Product Type OT Cost Total Cost Target WIP Buffer Inv Buffer SS WIP Cost Buffer Cost Safety Factor Penalty Cost
1 4,213 780,715 32 617 462 25,515 629,213 1.7 121,774

Table C- 14: Case 14 detailed results

Segment StartProc EndProc Alpha Beta Sigma-in Sigmaout
1 1 20 0.06 0.15 15.08 30.17

Product Type OT Cost Total Cost Target WIP Buffer Inv Buffer SS WIP Cost Buffer Cost Safety Factor Penalty Cost
1 474,721 858,564 94 412 263 41,776 309,919 1.6 0

Raw Material Type Raw Material Inv Raw Material SS Raw Material Inv Cost Safety Factor
1 161 11 32,148 2.4

Segment StartProc EndProc Alpha Beta Sigma-in Sigma out
2 21 30 0.16 0.15 30.17 150.85

Product Type OT Cost Total Cost Target WIP Buffer Inv Buffer SS WIP Cost Buffer Cost Safety Factor Penalty Cost
1 2,772 777,884 29 616 461 25,054 628,473 1.7 121,585


