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Abstract

We discuss the conditions that are necessary for a given banded matrix to have a banded inverse.
Although a generic requirement is known from previous studies, we tend to focus on the ranks of
the block matrices that are present in the banded matrix. We consider mainly the two factor 2-by-
2 block matrix and the three factor 2-by-2 block matrix cases. We prove that the ranks of the
blocks in the larger banded matrix need to necessarily conform to a particular order. We show
that for other orders, the banded matrix in question may not even be invertible.

We are then concerned with the factorization of the banded matrix into simpler factors. Simpler
factors that we consider are those that are purely block diagonal. We show how we can obtain
the different factors and develop algorithms and codes to solve for them. We do this for the two
factor 2-by-2 and the three factor 2-by-2 matrices. We perform this factorization on both the
Toeplitz and non-Toeplitz case for the two factor case, while we do it only for the Toeplitz case
in the three factor case.

We then look at extending our results when the banded matrix has elements at its corners. We
show that this case is not very different from the ones analyzed before. We end our discussion
with the solution for the factors of the circulant case. Appendix A deals with a conjecture about
the minimum possible rank of a permutation matrix. Appendices B & C deal with some of the
miscellaneous properties that we obtain for larger block matrices and from extending some of the
previous work done by Strang in this field.
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Chapter 1

Introduction

1.1 Banded Matrices

Matrices are an integral part in the effective working of many of the modern day technologies.
The compression of pictures and the prediction of flow over a model fighter aircraft under
extremely complicated maneuvers are two examples. In the first case, we make use of the fast
Fourier transform that is extremely effective in dealing with very large systems of matrices [1].
In the second case we construct extremely large matrices that need to be inverted quickly, in
order to get the solution vector such as the velocity of the aircraft and also other control

parameters.

In general, inverting a matrix is a memory intensive and operation intensive process. There are a
lot of algorithms that are used to compute the inverse of a matrix and consequently to solve for a
linear system of equations. We have the common Gaussian elimination method, the LU
decomposition and so on. The Gaussian elimination is of complexity 0(n3)[2] where n is the
size of the square matrix. Please note that the number of operations quoted is for the situation

where the matrices are full.



The vast majority of matrices that occur in nature are generally sparse. However, there is no
guarantee that a sparse matrix will have a sparse inverse. In general this is not the case. A sparse
matrix can have an inverse that is full which in turn can increase the overhead when computing
solutions to linear equations. However, there are certain conditions under which a sparse matrix

will also have a sparse inverse. It is this kind of scenario that we are interested in.

The simplest possible case of a sparse matrix having a sparse inverse is when the matrix under
consideration is purely diagonal. In this case the inverse is simply the inverse of each of the
elements on the diagonal. We then move on to the scenario where there are non-zero elements in
positions apart from the main diagonal. However we restrict the non-zero elements to a small
band on either side of the main diagonal, as described in [1]. For the time being we shall
consider a matrix that has elements only next to the main diagonal — we call this type of matrix a

tri-diagonal matrix. A typical tri-diagonal matrix would be the 1D Laplacian finite-difference

matrix (K).
2 -1.0 0 0 O 6 5 4 3 2 1
-1 2 -1 0 0 © 510 8 6 4 2
k=0 -1 2 -1 0 o0 k-1=1{4 8 12 9 6 3
0 0 -1 2 -1 o0} 713 6 9 12 8 4
0 0 0 -1 2 -1 2 4 6 8 10 5
0o 0 0 0 -1 2 1 2 3 4 5 6

While K is indeed banded, its inverse is unfortunately not. In fact we can later try to examine the

conditions under which a tri-diagonal matrix’s inverse will also be banded.

There are cases when banded matrices also produce banded inverses. These are the cases we are

interested in. A typical example of a banded matrix having a banded inverse is shown next

10



12 7 20 0 0 O
60 7 20 0 0 0
L_|o 8 12 7 200
0 410 60 7 20 O
o0 0 0 8 12 7
0 0 0 410 60 7
- —1/48 1/48 0 0 0 0
~15/1556 3/1556  —5/1556  5/1556 0 0
-1 _|205/3112 -41/3112  7/6224  —7/6224 0 0
- 0 0 -15/1556  3/1556 —5/1556 5/1556
0 0 205/3112 —41/3112 7/6224 —7/6224
[0 0 0 0 5/28 —~1/28 |

Why are we so interested in banded matrices and their inverses? Why take the time and effort to
figure out under what conditions the banded matrix will have a banded inverse also? The reason
is that if the inverse is also banded, then the speed of the linear transformation performed on an
input vector will also be very fast. By being banded we also reduce the memory requirement

when dealing with large systems. Computing inverses both ways will be extremely fast.

We wish to make another point here — while we are definitely interested in finding out under
what conditions we can get banded inverses, we are also very interested in trying to figure out if
we can factorize the banded matrices into much simpler factors. Ideally we are looking to get
them as block diagonal matrices for which the inverse can be obtained very easily. However we
will also look at some of the other cases where the elements are present on the minor diagonal

and try to figure out if we can extend our methods.

In this work we look at both the forward and reverse directions. In the forward direction, we take
the product of simple factors and then examine the structure of the product matrix. We do this to
gain a better understanding of what exactly is present in the final product and how it comes
about. Once we are done with the forward problem, we try to go in the reverse direction in order

to see if we can solve for the individual factors. Please note that the factors we get may not be

11



the exact same individual factors that were used to construct the product in the first place.
However, the product of the factors that we obtain matches the given matrix to within machine

precision.

As far as possible we will be looking at both the Toeplitz as well as the non-Toeplitz case. For
completeness sake, we furnish here examples of both cases (K=Toeplitz and M=Non-Toeplitz;

the repeated elements in the Toeplitz case are highlighted in different colors):

2 -1 0 0 0 0 0 O
o : 11 3 -9 0 0 0 0 O
0 = 0 1 4 -7 0 00 0
0 ® 0 0 13 5 —-10 0 0 O
k= 0 0 ’ M= 0 0 0 43 6 4 0 0
0 0 0 0 0 0 -257 10
0 o0 0 0 0 0 0 18 6
Lo 0 lo 0 0o o o o0 3 o

We will first look at the case where we have only two factors F; and F,. Each of these is a block
diagonal matrix that has full rank 2-by-2 matrices on the diagonal. We will then move on to the
case where there are three factors Fy, F, and Fs. F, and F; will share the same structure and all
three will be made up of 2-by-2 blocks. For this particular case, we will only consider the
Toeplitz form for F;, F, and F;. In each of the cases, we will also look to obtain the factors. We
then move on to the case with three factors G;, G, and Gs, each of which is made up of 3-by-3
blocks. We will however, not be looking at formulae for the different factors because of the
complexity of the problem in the three factor 3-by-3 block case. We will also study the effect of
having extra non-zero elements that are far away from the centre — the cyclic/circulant cases.
Finally, we will also look at the means to solve for them using the codes that we developed for

the non-cyclic cases.

12



The entire work has been done using MATLAB R2008a. The source codes used in this thesis can

be obtained by email from sven.mit@gmail.com

1.2 Notation With Determinants

Consider first a banded matrix that has two block matrices on every two rows. Let us call these
block matrices R and S. Previous studies have shown that for banded matrices, the inverse is also

banded only if the following holds [1]:
det(M) = monomial, M = R + Sz, z = arbitrary variable

Let us look closely at the two matrices R and S. Let

We then have for M:

M= [r1 +52z nn+ szz]
Tl 53z 14+ 842

which then leads to

rn+s51z 1+ 582

det(M) = 3 + S3Z Ty + SpZ

= (ry + 512)(1y + 542) — (13 + 5,2) (13 + 532)
It can be seen that the highest degree in the product is 7*. The different terms can be written as:
det(M) = (1,1, — 1o73) + (5173 — Sp73 + S35 — S411)Z + (5154 — 5253)2°

This can be re-ordered as follows:

det(M) = det(R) + (det(P) + det(Q))z + (det(S))z?

13



Where

Essentially P and Q are matrices that embody the combination principle (2)

We then have:
constant term = det(R) coefficient of z = det(S) coefficient of z = det(P) + det(Q)

This method of writing the coefficients of the powers of z in the form of determinants makes it
easier to understand which terms vanish and which terms remain. It also opens up the possibility
of exploring if there is more than one combination that can ensure that makes the matrix
invertible and if so is it banded. The proofs for some of these cases are shown later for which the

determinant notation is made use of extensively.

The case that was illustrated was the rather simple case with only two blocks, each of which is a
2-by-2 block. In order to prove the effectiveness of this notation, we look at two other cases —
one when we have three 2-by-2 blocks instead of just two (and consequently, three factors) and

the other is when we have three 3-by-3 blocks.

Let us first consider the case of three 2-by-2 blocks. Let us denote the blocks by Ry, S; and Ty:
M T2 _[S1 S2 _[t t
Ry = [7'3 r4] 1= [53 54] I = [t3 t4]
M1 = Rl + S]_Z + T1Z2

n+siz+tz2 1 +sz+ tzzz]

Ml:[ 2 2
3 +S3Z2+132° 1+ 542+ 8,2

14



2

The order of the determinant of M in this case would be 4 (since z*.z* =z*). The determinant

itself would be:
det(M]_) = (T1 + S1Z + tlzz)(T4 + SaZ + t4,ZZ) - (rz + 5,2 + tzzz)(r3 + S3Z + t3zz)

det(My) = (riry — 1213) + (1154 — 1383 + 1451 — 1352)Z + (5154 — 353 + Iy ty — Tots + 14ty — 13t,)z2

+ (S1ty — Spty + Saty — S3t5)z3 + (tyt, — tyt3)z?

Which can once again be written as:

det(M,) = det(R,) + (det(Pl) + det(Ql))z + (det(Sl) +det(U,) + det(Vl))z2

+ (det(Wy) + det(Xy))z® + (det(Ty))z*

Where:
pely ol a=[y 7
v=[n W w7
wi=li l w=[g ol

Now, we can extend it to the case for the 3-by-3 blocks

T,, where R;, S; and T are given as:

n ST Sz S3 t1 t; t3
RZ =1 T5 Tg SZ =|S4 S5 Sg T2 =ty 15 tg
r; Tg 719 S7; Sg So t7 tg tg

M2 = Rz + (Sz)z + (TZ)ZZ

n+ 5.2+t 2%
M2 =1n + SuZ + t4,ZZ
Ty + s,z + t,z2

p) + SoZ + t222
Ts + SsZ + tszz
Tg + Sgz + tgz?

15

73 + 32 + t3z°?
Te + SgZ + tz?
Ty + SqoZ + thZ



The highest power in the determinant of My is 6. The coefficients of the various terms are given

by

det(M;) = det(R,) + (det(P,) + det(Q,) + det(U,))z
+ (det(Vy) + det(Wy) + det(X,) + det(Y,) + det(Z,) + det(A,))z?
+ (det(S;) + det(B,) + det(C,) + det(D,) + det(E,) + det(F,) + det(G,))z3
+ (det(H,) + det(l,) + det(J,) + det(K,) + det(L,) + det(N,))z*

+ (det(0,) + det(A4,) + det(ABz))zS + (det(Tz))26

Where:
[Ty r, T3] n r 37 (Sl S, 83
P2 =1y T5 7Tg QZ =S4 S5 Sg UZ =1y Tg Tg
|S7 Sg  So] 7 Tg To9] \T7 Tg T9
n T T3 n 1 m3 (t1 iz 3]
Vo=1Ta Ts Te| W,=|ts ts tg Xo=|mm 75 Ts
t7 tg to n g Iy |77 Tg Tg
n T T3 {51 Sz S3 [S1 S22 S3
=15 S5 Se Z=|T Ts Tg A, =S4 Ss Se
S7 Sg S9 S7 Sg 59  Tg Ty
(1"1 rz 7‘37 Sl 52 S3 (Tl rz T3
B, =S4 S5 Sg| Cr=|Ta 15 Ts D,=|ts ts g
t7 ts tg t7 t8 tg S7 Sg So
S1 Sz  S3] tl tz t37 t1 tz t3
E;=|ts U5 te] F,=|s4 S5 Se G =|Ts Ts T
7 Tg 1o  Tg Tog S7 Sg g
non t1 & 3 1 t t3
H2 = t4 ts t6 ]2 =Ty T5 Tg ]2 = t4 ts t6
l; tg to t; tg o T, T3 Ty
S, S S3 S1 S S3 t, t; t3
KZ = 1S4 S5 Spg L2 = t4 t5 t6 NZ = 1S4 Sg Sg
t; tg tg S7 Sg Sg S7 Sg Sg




02 B3 [t4 ts t6] AAZ = [t4 ts t6] ABZ = [54 Ss Ssl
t7 tg tg S7 Sg So t7 tg tg
Naturally, this can be extended to any number of matrices of any order. We can see a particular
order in each of the matrices — the entries of any one row come from the same row of the

matrices R;, S, and T,. For example, in A4, the last row comes from the last row of the matrix

S,, while the first two rows come from the first two rows of T».

This notation is very powerful and its power will be seen when we attempt to prove a couple of

results involving the ranks of the block matrices.
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Chapter 2

Banded Matrices — Two factors with 2-by-

2 blocks

2.1 Toeplitz Case

Let us assume that there are two matrices F; and F, and each of them is made up of constantly
repeating 2-by-2 blocks. The matrix F; has blocks only on its diagonal, while the matrix F; has
its elements shifted one down and one to the right. We then take the product of F, and F,. The
resulting matrix is found to have two blocks per row. The structures of the matrices Fy, F, and

the product Fy, are shown next:

k 0000 O
goggg 0O b OO O O
a 00 b OO0 O
F,={0 0 a 0 O =0 0 0 b 0 0
ggggo 0000 Db O
a 000O0TO0Qg

_[@11 G12 _[b11 b1z _
@= [‘121 a22] b= [b21 bzz] B =bu

19



[kayy  aizbyn agpbs; 0 0 0 0 0 0 0
kayy az;byy  azybys 0 0 0 0 0 0 0
0 ay11by1 a11by;  agpbyy agpby; 0 0 0 0 0
0 Az1by1  Az1by;  aApbii agzby; 0 0 0 0 0
Fpp = 0 0 0 ay11by1  a11by;  agnbyy  agzby 0 0 0
0 0 0 Az1bp1  Az1b3;  azpbyy  azabg; 0 0 0
0 0 0 0 0 a11bzy  a11by;  agpbyy  agby; 0
0 0 0 0 0 az1b21  G21b3;  Gg2b1q  apzby; 0
0 0 0 0 0 0 0 ay1byy  aq1byy  aypbqy
L 0 0 0 0 0 0 0 ay1by1  Az1by;  apbyql

We see that the ranks of the repeated matrices in the product are both of rank one. The rank-one
matrices are obtained from the product of a column vector with a row vector. We show now that
in order to have exactly two matrices for every two rows in the product and have a banded

inverse, the ranks of each of them necessarily need to be unity.
Let the two matrices present in the product be R and S. Let the elements of the matrices be:
-2 2
3 Sa
Construct M as usual:
M=R+5z
This then leads to:

constant term = det(R) coefficient of z* = det(S) coefficient of z = det(P) + det(Q)

0=[n nlandr=[ 7]

= 2. rank(S) = 2: Not possible

Case i: rank(R

In this case,

constant term = det(R) # 0,  coefficient of z? = det(S) # 0

20



= det(M) = atleast (constant + az?) # monomial

Hence the case of (2, 2) (the first is the rank of R and the second is the rank of S) would

definitely not yield a banded inverse.

Case ii: rank(R) = 1, rank(S) = 2: Not possible

The next option would be to look at the case when one rank is 1 and the other rank is 2. Let us
assume for simplicity that the rank of R is one and the rank of S is two. We are currently looking

at the ordered pair (1, 2) of the ranks. This then leads to:
constant term = det(R) = 0, coefficient of z? = det(S) # 0

Clearly, if we want the inverse of the banded matrix to be banded, we need that the coefficient of

z be zero. (We already have a non-zero term in the coefficient of 72, as S is of full rank):
coef ficient of z = 0 = det(P) + det(Q)
The matrix R is of rank one. So, we can re-write the elements of R as:
Ty = pry, 13 = kry =1, = kpny

So then we have:

Q= [kS;1 k;zrl] and P = [53 A

det(P) = 1S4 — p1153, det(Q) = kprys, — krys;
det(P) + det(Q) = 1S4 — pr1S3 + kprys; —krys, =0
11 definitely cannot be zero. So we can cancel it from all the terms in the equation. We then get:

Sy —PS3 + kpsy — ks, =0

21



S4 — ks, = p(s3 —ks;)

Now in the big matrix we have the matrices R and S side-by-side. Using the first row of R to

perform elimination leads to:

[ X1 S1 Sy 0 0
X S3 Sy 0 0
0 n prn s S2

S O OO

H= 0 kry kpry s3 s,
0 0 0 o prn S
[0 0 0 kry kpry s;l
Xy 51 S» 0 0 0
Xy S3 S4 0 0 0
10 nn pny S1 Sz 0
=Hi=1o 0 0 (s5—ksy) (54— ksy) 0
0 0 O n pny $q
[0 0 O 0 0 (s3 — ksy)
X1 S1  So 0 0 0
Xy S3 S 0 0 0
10, pny S S 0
=Hi=lg o o (s3 —ksy) p(s3—ksy) 0
0 0 O n 461 51
L0 0 O 0 0 (s3 — ksy)
X1 S1 Sz 0 0 0
Xy S3 Sy 0 0 0
10 0 0 51 S 0
= Hiii - 0 0 0 (53 - kSl) p(S3 - ksl) 0
0 0 O 0 0 51
0 0 0 0 0 (53 - kSl)
Xy S S 0 0 0
Xy S3 S 0 0 0
0 0 0O s s 0
"l0 0 0 (s3—ks;) p(s3s—ksy) 0
0 0 0 0 0 51
0 0 O 0 0 0

22



Clearly we see that there is a zero row in Hj,. This means that any matrix that is made up of R
and S with ranks 1 and 2 respectively (or vice-versa) will not be invertible (if we impose that the

matrix have a banded inverse also)

By a similar argument, we can prove that the same holds (i.e. the matrix will not be invertible) if

R is of full rank and S has rank one.

Case iii: rank(R) = 1, rank(S) = 1: Possible

We write R and S as:

" gnas =[S 2%

R= [kr1 kpry Is; lgs,
Then we have:
constant term = det(R) =0,  coefficient of z2 = det(S) =0

coefficient of z = det(P) + det(Q)

P= [ lqs ] and Q = [kr1 I?:;l]

n s qs
det(P) = |pg. pa|=msila—tp),  det@ =|r | = 725200 — k)

det(P) + det(Q) = ry5,(lg — Ip) + 1y5,(kp — kq) = ry5,(1 — k)(q — p)

Now, we need to take care to ensure that the coefficient of z is not zero. For this, examine where

it does become zero.
coef ficientof z=0=nrs5,(I-k)(@q—p) =0

Clearly, s; and 1, are not zero. The other possibilities are:

23



l=korq=p

Consider first that / = k;

X1 S1 gqs; 0 0 07 X, S, gs; 0 0 O

X2 lS1 qul 0 0 0 Xy lSl lq51 0 0 0

{9 n pn s1 gy 0O 0 n pnn s gqs; O
M=o W ls, lgs, 0| lo 0 0 o0 o0 o0
0 o0 0 noopn S 0 O 0 nn prn 5

0 0 0 In In I51 Lo o o o o o

There are a couple of zero rows which make the matrix singular. A similar argument applies for

the case when p=g.

X1 S1  PS1 0 0 0 x; s¢ 0 0 0 07
x, Is; Ilps; O 0 0 X, lsy 0 0 0 O
|10 nn prn 51 psy 0 0O n 0 s 0 O
mat =4 kry kpry Is; lIlps; O =10 kry 0 Is; 0 O
0 o 0 P S 0 0 00 nn 0 s

(0 0 0 kry, kpry ks, [0 0 0 kry O ks,

Thus as long as the ratios of the two matrices R and S are not the same then, the coefficient of z

is non-zero and in that case it is possible to get an banded inverse matrix.

It can be shown that as long as the two conditions are not met, the reduced row echelon form of
the big matrix is the identity matrix. This implies that the matrix indeed is of full rank. And by

construction, it satisfies the conditions necessary to have a banded inverse.

Xy S1 gqsy 0 0 o0 1 0 0 0 0 O

X, ls; lgsg; 0 0 0O 0100 0 0

|10 n pnn s; gqs; O 001000
mat = kr, kpry Ils; lgs; O = rref(mat) = 0 00100
0 0 0 no P 5 0 0 0 01 0

0 0 0 kry kpry s, 0 0 0 0 0 1

24



Remark: Please note that if there exist factors Fy and F, that upon multiplication give matrices R

and S, then we would have:

R = —a11b21 a11b22- = k — azq and p — b22
(a31b21  Az1b2;] ai by,
S = (1211 @i2bia] 1 =222 na q= b1z
[az2b11  az2b17) a2 b4
So if we have
1) [ = k it means:
Q1 Az
a;; Qg2

> A3,Q11 — Q202 =0
aj1 Qg2
But:a=[ ]:)deta=a A1 — A0
a21 a22 ( ) 22411 12421

= det(a) =0

This would mean that the matrix F; is not invertible in the first place. But we are looking for

factors F; and F, such that they are invertible. Hence we would need to ensure that / should not
be the same as k£

i1) p = q means:

biz _ bza

= = byybyy — biaby; =0
by by 22011 —~ D12021

= det(b) =0

In this case, F, would be non-invertible and we would be stuck with the same scenario as in 1).

Thus we need to ensure that both / does not equal k and p does not equal g.

Next we look at the solution process for the Toeplitz case.

25



2.2 Solution Process: Toeplitz Case

We now look at the solution process for obtaining the 2-by-2 blocks in the factors, for both the
Toeplitz and the non-Toeplitz case. We will first consider the Toeplitz case and then extend the
same to the non-Toeplitz case. Let us call the two factors as F; and F,. Now we need to obtain

the blocks that are present in each of F; and F,.

Denote the two rank one matrices in the product as ‘x” and ‘y’; we call the first two elements of
the first column of F), as the vector ‘w’. Also, let us call the first and second columns of the
matrix a to be a; and a,. We call the rows of the matrix ‘b’ to be r{ and ;. Then we have the

following relations:
a1 =X, ayr =y, ka; =w, azbi1 =y
where y=[Y1 Y2]

To solve this set of equations, we need to set some of the entries of the matrices ‘a’ and ‘b’. The

simplest would be to set ‘b;;’ to 1 and choose a random value for the variable ‘k’. We then get:

w
a1=7c— and a, =y,

(i.e.) the second column of the matrix a is the same as the first column of the matrix ‘y’ in the

product.

Now that the vectors a, and a, are completely known, these can be used in order to solve for the

other unknowns — 7y and r;. This is accomplished as follows:

alrzl =X
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Multiply both sides with a3

(a'a)r; = a,'x

o= (a,'x)
=
(a;'ay)

Similarly

o = (ay'y)
! (az'ay)

We can check for consistency in our solutions by looking at the solution for ;. We had set ‘b;’

tobe 1. Since ry{ = [b1;  by,], we need that the first entry of 7, be 1. We have:

i (a1 Y2]) o T = [(az y1) (az '}’2)]
! (az'az) (az'ay) (az'az)

But we have, a, = y,

T _ @1'}’1) (yl'}’Z)] T _ (}’1’}’2)]
"= G ool TN G

We see that the first element of r; is indeed 1 and hence the solution we have obtained is

consistent.

The blocks ‘a’ and ‘b’ can now be written as

5]
a= [a1 a2]’ b= rT
2

The factor k> would go into the matrix F, as was seen in its structure. The method mentioned

here is exactly the one that is used by the code written to compute the factors.
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So far we have discussed the methods we use when the shift in position is in the second factor F,.
However, it is quite possible that the shift is not in F, but instead is in F,. Let us call the new
factors as f) and f,. In this case, a simple tweaking of the code solver2 2x2 is all that is needed.

Instead of using the product f;, and solving for the two factors, we solve for the product

F3 = f1’2

The structure of F34 will be the same as F;, that we worked with previously. We can then use the

same code to solve for F3 and F, (for the product F34). Then we have
F34 = FsF, and F3, = f{
> fi2 = Fsi' = (RF) = F'Fy'
= f=fif=F'F'
=>f=Fand fL,=F’

Thus we have solved for the factors in a slightly different case by a simple transformation.
2.3 Sample Problem: Toeplitz Case

Let us now apply the solution technique we have just discussed and apply it to the well-known
four wavelet coefficients presented by Daubechies [3]. We compare the results obtained with

those stated by Strang [4]. We write the problem out in the same way as it has been done in [4].

wolW W 0 W= [1+V3 3+¢§] w. = [3-V3 1_\/5]
0wy Wp|" P liov3 3443 TP 34v3 —1-43
0 0

The solution we obtain from the codes that were written is:
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kqy 0 0 0 0.5221 -0.3014 0 0

r |0 1 24286 0 p o 27321 47321 0 0
1710 -02679 9.0636 0|’ 2 0 0 0.5221
0 0 0 0 0 :
The solution obtained by Strang [4] is:
k, 0 0 01 [k, 0 0 0

0 1+4++v3 —1+4+3 0|_|0 27321 07321 0
0 1-v3 1+4++v3 o| |0 -07321 27321 0

0 0 0 0 0 0
V3 -1 0 0 1.7321 -1 0 0
ce|1 ¥3 0o of_| 1 17321 0 0
0 0 \[g 0 0 1.7321
0 0 : 0 0 :

Clearly, it can be seen that the factors obtained from the two different methods are not
equivalent. This does not mean that dne of the results is wrong and the other is right. It simply
means that the factors are non-unique. Depending on which variables are given values, the
individual factors in themselves will change. However, the product remains the same and hence
the product of the inverses is the same as the inverse of the matrix W. This is what is necessary

and hence this is all that is of concern.
2.4 Non-Toeplitz Case

The major difference in this case is that the blocks on the diagonal are varying. In such a case,
we need to determine each of the blocks in each of the factors. The properties concerning the
ranks of the matrices in the product F;, are exactly the same as the Toeplitz case. The matrices in
the product should be singular. The argument for the Toeplitz case is valid for the non-Toeplitz

case also, when the blocks are no longer constant along the diagonals of the two factors F; and
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F,. We shall now look at solving the interesting problem of finding out all the different blocks on

the diagonals of each of the factors.

2.5 Solution Process: Non-Toeplitz Case

For the time being we shall assume that the shift is in the second factor F, and the product is F,.

(Solving for the case where F; has the shift is the same as the one in the Toeplitz case - we

simply solve using the transpose instead of the original product Fi,). The structures for F; and F,

are shown next along with the structure F;.

a1 a;; O
az; az; O
10 0 Ay
BF=lo o a,
0 0 0
0 0 0

'ank

a21k

0

Fip = 0

0

| 0

0 0
0 0
A, 0
A, O
0 ap

O O OO

a1
a1

ay2by;
az2b12
Aq1by;
Az1bs;
0
0

0
Aq2By4
Az2Byq
11854
21871

A12B1;
Az2By;
11833
3183,

0 0 0 01

b, 0 0 0

b, 0 0 0
0 By Bz 0
0 By By O
0 0 0 By,

(=R i ]

0

a12611
®32P11

Define vector ‘w’ that consists of the first two elements of the first column of the matrix Fi..

Similarly, we define vector‘s’ to consist of the last two elements of the last column of Fi2. The

matrices that are to the right side of the diagonal element are denoted by ‘x;’ and the matrices to

the left of the diagonal element are denoted as ‘y;’. Thus the matrix x; starts from the first row

while the matrix y, begins only from the third row.

w=

ay2by4

1 - [
ay2by4

a11k] [‘1’12.311]
= ak, s= =a
[a21k e 22011 —2'811
a12b12] A12B11 A12312]
, X, = and so on ...
ayzby, z AzzByy  AyBy,
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Aq11byy Allbzz] = [a11B21 a“Bzz] and so on

Y= Az1byy  Azibas Y2 = az21B21 @182

In a bid to reduce the number of unknowns, we set the first element of every matrix to be 1 and
solve for the rest of the elements of that matrix. By doing this essentially we end up with a
situation where for each of the x;, the first column is the same as the second column of each of
the blocks in F,. Similarly, in each of the y;, the first row is the same as the second row of each

of the blocks in F,. This can be understood better by looking it as:

qu} = X, where p; is known = solve for g;

ujv]-' =y, where v; is known = solve for u;
Once this is understood, the solution process becomes straightforward and is given by:

PjQ} =X

(pi'pj)aj = (pj'x:)

7 = (p;x:)
T (i)
And in a similar manner, we have:
= )
T (')

In order to get the element k that is present in the matrix F,, we simply use:

W, wr
k=— and Az1 = 5
aqq k

Similarly the second column of the last block of F; is given as: g =s
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Now we have all the blocks and hence we can construct the big matrices F; and F, using these

smaller blocks.
2.6 Tri-diagonal Matrices

We will now try to apply what we have derived so far to tri-diagonal matrices. Let us consider a

generic tri-diagonal matrix. We then have

codg 00 0 0 0 0]
by ¢ dg 0 0 0 0 0
0 bz C3 d3 0 0 0 0
ko]0 0 biocody 0 0 0
0 0 0 b4 Cs ds 0 0
0 0 0 0 bs Ce d6 0
0 0 0 0 0 by ¢ d
0 0 0 0 0 0 b c

Define:
My = Ry + $1z = det(My) = det(R,) + (det(Py) + det(Q))z + (det(Sy))z>
det(M,) = byb3 + (bydy + byds — c4¢3)z + (d3dy)z2
Need: det(R,) = 0 and det(S;) =0
= det(R;) = b,b; = 0 and det(S;) = d3d, =0

b, =0, d;=0
b2=0, d4:O
bs=0, dy;=0
bs=0, d,=0

=>b,=00rb;=0andd; =0o0rd, =0,

Similarly we get:
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b4=0, d5=0
by=0, dg=0
b5=0, d5=0
b5=0, d6=0

b,=00rbs=0andds =0o0rdg =0, =

We thus have a total of 16 possible conditions based on what we have derived so far that states
that the tri-diagonal matrix K would have a banded inverse. However, studies done on tri-
diagonal matrices [5] impose the requirement that for a banded inverse, there can be no two
consecutive non-zero entries. This strict requirement is part of the 16 possible conditions. Thus
we find that what we have developed is actually a weaker statement, because the general

statement did not begin with blocks R; and S;.
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Chapter 3

Banded Matrices — Three factors with 2-

by-2 blocks

3.1 Toeplitz Case

So far we have analyzed the case where there are only two 2-by-2 blocks in the product. In this
chapter we take the next step which would be to increase that number to three. We would then
have three factors F;, F, and Fs. For the time being, we shall concentrate on the case where F,
has a shift in its elements. Please note that throughout this section, the structure of F3 is the same

as F;.

For the case of Fa3, it was seen that the ranks of the three matrices (R, S and T) in the product
were one, two and one (when F)2; is obtained from the product of factors). Once again like the
case for the two block case, this can be proved. The proof is what is discussed next. There are six
potential cases that need to be considered: (1,1,1), (1,2,1), (1,1,2), (2,1,2), (2,2,1) and (2,2,2).

The other scenarios are simply different ways of looking at the above 6 cases.

Let us now define the matrices R, S and T that we will be using in the proofs:
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=[5 sl 7=l )

Construct

M =R+ Sz + Tz?>

In the current scenario, the highest power in the determinant will be z*. The coefficients of the

different terms are given by:
constant term = det(R) coefficient of z* = det(T) coefficient of z = det(P) + det(Q)
coefficient of z* = det(S) + det(U) + det(V) coefficient of z3 = det(W) + det(X)

Where:
Pl & o=l u v=[ &

|4

t t Sy S t t

[ 1 z] W= 1 2] X = [ 1 z]

3 1 t3 t, S3 S

We have six cases to examine, out of which only two cases succeed. However, if we are looking to be

able to factorize the banded matrix, then there is only one case that works (case vi).

Case i: Ranks are (2,2, 2)

In this case it is obvious that there will be two non-zero terms in the determinant — the constant
term and the coefficient of z*. As a result, the resulting inverse will not be banded (because the

determinant is not a monomial)

Case ii: Ranks are (1. 1. 1)

In this case it is pretty clear to see that the constant term and the coefficient of z* will both

vanish. We now re-write R, S and T as:
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T, =pn, r3 = kny, 1, = kpny

S2 = 45y, s3 = lsy, sq = lgs,

t, = uty, t3 = mty, t4, = mut1
R = [T1 Pﬁ] [ q51] _ [ tp, uh ]
“ lkny  kpry Is; lgs; mt, mut,

Then we have:

s gs
det(P) = |jo foa| =nsil@—p),  det@ =|h ot | =risiko - @)

t ut

det(U) = Imtl mut, l =nrntm(u—p), det(V)= k71‘1 kp?fl =ntik(p —u)
S qs t uty

detW) = |y mut,| = Sstm@u—q),  detC) = ;2 H = sit11(q —w)

Which then leads to:
constant term = det(R) =0 coefficient of z* = det(T) =0
coef ficient of z = det(P) + det(Q) = ry5,(q —p)(I — k)
coefficient of z> = det(W) + det(X) = s t;(u— q)(l —m)
coef ficient of z2 = det(S) + det(U) + det(V) = rit;(p — w)(k — m)

If this is to be banded, then exactly one of the terms should be non-zero. Assume that the

coefficient of 7 is non-zero. Then we need:

coefficientof z2 =nty(p —u)(k —m) =0

coefficient of z2 = s;t;(u—q)(l —=m) =0
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Which implies:
p=uork=m, u=qorl=m
There are 4 sub-cases which would need to be considered
1) p=uand u=q=p=gq
= coefficient of z2 = rit;(p —w)(k —m) = 0
= coefficient of z3 = s;t;(u —q)(I —m) =0
= coefficientof z=r;5,(q—p)(l—k)=0

This means that for this particular scenario, the matrix is not invertible. Thus this case is

unfavorable.
if) k=mand l=m=1l=k
= coef ficient of z2 = rit;(p —u)(k —m) = 0
= coefficient of z3 = s;t;(u—q)(l—m) =0
= coefficientof z=r5,(q—p)(l—k)=0
The matrix is not invertible. As a result having k = m and | = m is not favorable.
1i1) p=uand l=m
Please note that x = [2 ;ﬂ is an arbitrary matrix of rank either one or two. Ideally,

x would come from the end effects and be of full rank.
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The matrix has a zero column which can be clearly seen. Thus it is not of full rank. Hence

p =u and [ = m also does not allow the big matrix to be invertible.

iv) u=qand k=m

( X1 X t, ut, 0 0 0 0
X3 X4, mty mut, 0 0 0 0
rn o pnn 5 qs, ty ut, 0 0
kry kpry sy lgs, mt; mut; 0 0

0 0 T pry Sq qs, ty ut,
0 0 kry kpry Is; lgs; mt, mut,
0 0 0 0 n pry 51 qs,
L 0 0 0 0 kry, kpry Is; lgs, |
X1 Xy t, qt; O 0 0 0
X4 k tl k q tl 0 0 0 0
pry 51 qs; t qt; O 0
=

0 n pn st gs1 t; qfy
0 kry kpry sy lIgs, kt; kqty
0 0 0 no oprn S, Q5
0 0 0 kry kpry Is; lgs,|

X3
n
kry kpry sy lgs, kt; kqt; O 0
0
0
0
0

(X1 X, ol 0 0 0 0 0

X3 x4 kty 0 0 0 0 o0

n o opn 5 0 ty 0 0 o

kry kpry sy 0 kt, 0 0 o0
=lo 0 n @-9rn s 0 t; O
0 0 kny k(p—q)ry sy 0 kt, 0

0 0 0 0 n @-q9ru s; O

L 0 0 0 0 kry k(p—-q)r, Is; 0.

The last column is a zero column meaning that the matrix is singular. Hence u = q and k = m

also does not allow the big matrix to be invertible.

Let us now look at the other two scenarios — where the coefficient of z* and z° are respectively

non-zero. Each of these scenarios results in:
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Coefficient of 7’ is non-zero:
coefficient of z3 = s;t;(u—q)(l—m) #0
coefficientof z2 =nt;(p—w)k—m) =0
coefficientof z=r;5;(q—p)(l—k)=0
>u=pork=m, g=porl=k

The cases for z° that we need to consider are very similar to what we did for z. Thus we can

expect that the matrix will not be invertible if we have only the coefficient of z* to be non-zero.
Coefficient of 7’ is non-zero:
coefficient of z* =rt,(p — u)(k —m) # 0
coefficientof z=r;5,(q—p)(U—k)=0
coefficient of z3 = s;t;(u—q)(l—m) =0
=>q=pork=1, u=qorl=m

The situation where the coefficient of z* is non-zero has one particular case that ensures that the
matrix has a banded inverse. This is the case where p = q and | = m. However, although this
case gives a banded inverse, the matrix cannot be decomposed into factors. We show very
quickly why this is so:
s = [51 psl] _ [aubzzcn +a13b11C21 @1ybyycin + a12b11czz]
Is; Ips, A21b22€11 + A22b11Co1 Ag1b22C12 + Agby1Co
det(S) = 0 = (a11b22€11 + a12b11€621)(A21b22€12 + a23b11623)
— (a21b22€11 + Gz2b11€21)(a11b25€12 + A12b11652) = 0
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= (det(a))bs1ba;(det(c)) = 0
= det(a) = 0 or det(c) =0 or b;,;b,, =0

In each of the cases, the factors will not be invertible. Thus although this case is invertible and
produces a banded inverse, it cannot be factorized. Hence for our purposes of being

factorizable, it is not useful.

Case iii: Ranks are (1,1,2)

The constant term vanishes in this particular case. We now re-write R, S and T as:

T2 =Ppr, r3 = kry, 7y = kpny
S2 =45y, s3 = lsy, sS4 =1qs;
pr1 51 qSl _ t1 tz
R= [kT1 kprl] lSl lqsl] T= [t3 t4]

Then we have:

o pr 51 gs
det(P) = llsll lq511| =nsl(q—p), det(Q)= krl kprl‘ll =n51k(p — q)

4 %)

pr:
b | =t =pty), detV)=[,1 2

det (V) = |,

= kry(pt; — t;)

t

S1 gs
detW) =, = sitta—ats), dern =22 |=1siat - 1)

Which then leads to:
constant term = det(R) =0 coefficient of z* = det(T) # 0

coef ficient of z = det(P) + det(Q) = ry5,(q — p)(l — k)
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coef ficient of z3 = det(W) + det(X) = s1[(t, — lt;) + q(lty — t3)]
coef ficient of z2 = det(S) + det(U) + det(V) = ry[(ts — kt) + p(kt; — t3)]
Because det(T) # 0, we need that the other coefficients all disappear. This then leads to:

coefficient of z = det(P) + det(Q) = r15:(q —p)({ —k) =0

=>|q=porl=kJ

coefficient of z3 = det(W) + det(X) = s;[(ty — It;) + q(lt; —t3)] =0

= W‘t —lt;) = q(tz — lt1)l

coef ficient of z% = det(S) + det(U) + det(V) = r1[(ty — kt;) + p(kt; —t3)] =0

= |(t4 —kt;) = p(t; — kt1)|

= (k=Dty = (@ -p)ts + (kp — gDty

Ifg=p

= (k= Dt = (k — Dpty

=t =pt

Now: (t4 e ltz) = q(t3 - ltl)

= (ty — plty) = q(t; — Ity)

= (ty —plty) =p(t; — 1ty), (P =¢q)

=2 (t, —plty) = (ptz —plty), =ty =pt3
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t, pyy
=T= t3 Pt3]
= rank(T) =1

Which violates the fact that we have T to be of full rank.

Ifl=k

=0=(@-pt; +(p—Plty

== t3 - ltl

Now: (t‘l- - ltz) = q(t3 - ltl)

= (ty — Ity) = q(lty — Ity)

=4 (t4 - ltz) = 0, = t4 = ltz

_[ta t
=T= [lt1 ltz]
= rank(T) =1

Which violates the fact that we have T to be of full rank. So this case is not useful in terms of

being able to get a banded matrix.

Case iv: Ranks are (1,2.2)

Once again the constant term vanishes in this case. We now re-write R as:
2 =pr, r3 = kn, T, = kpry

R=[ir ol S=[0 7] r=[2 2]
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Then we have:

T- pr 51 Sy
det(P) =g 5| =rlsa—psy). det(@ =i o | = knipsi—s)

4y t;

™ pr
det(U) = |, ¢, | =nlta=pta), detV) =} 7 | =kt - )

51 Sz L L
det(W) = |t3 t4| = 51t4 - Szt3, det(X) = |S3 S4| = S4t1 - Sgtz

Which then leads to:
constant term = det(R) =0 coefficient of z* = det(T) # 0
coefficient of z = det(P) + det(Q) = ry(s4 — ps3) + kry(psy — s2)
coefficient of z3 = det(W) + det(X) = s ty — Spt3 + Saty — S3t;
coef ficient of z* = det(S) + det(U) + det(V) = ry(ty — pt3) + kry(pty — t3) + (5154 — 5,53)

Need:

coefficient of z = r,(s, — ps3) + kry(ps; —s) =0
= (4 —ps3) + k(ps; —s2) =0
= (54 — ksz) = p(s3 — ksy)
= 54 = ps3 + ks, — pks,
coefficient of z% = r;(ty — pt3) + kry(pty — t3) + (5154 — 5253) = 0
coefficient of z3 = 51ty — Syt3 + S4t; — S3t, =0

We then have in the big matrix (we look at the matrix from the middle rows to the end):
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i 5 S2
kry kpry s3 s, t3 ty,2, 0 O
0 n pn 51 s t 4
0 kry kpr, s3 Sy t3 tg
0 0 0 T opry S1 Sy
0 0 0 kry kpry s3 s,
n pn 51 S5 t, t, 0 0
0 0 s3—ks; sy—ks, tz3—kt; t,—kt, 0 0
N 0 0 £ pnry $1 S, ty t,
0 0 0 0 S3— ks, sy—ks, t3—kt; t,—kt,
0 o 0 0 n pnr S S5
0 o0 0 0 0 0 S3— ks, s4—ks,
n pn Sy S5 t t, 0 0
0 0 s3—ksy p(s3—ksy) t3—kt; t,—kt, 0 0
N 0 O n pry St Sz t t,
0 o0 0 0 0 0 X1 Xy
0 0 0 0 £} 122¢} S S5
0 0 0 0 0 0 S3 — k51 p(S3 - ksl)
x1 = (t3 —kty) — (w) 51 X = (ty — ktz) — (w) S2
£ "
n o pn Sy 5 ty t, 0 0
0 0 s3—ks; p(s3—ksy) tz3—kt; t,—kt, 0 0
- 0 0 n 251 51 52 t iz —pYy
0 o 0 0 0 0 X Xy — PXq
0 0O 0 0 n ry $1 S, —psy
0 0 0 0 0 0 s3— ks, 0

s3— ks s3 —ks
Now:x; —px, = ((t4 —kt;) - (sTl') 52) -p ((ts —kty) — (%) 51)
1

1 .
S Xy —pxXp = E[(ﬁ(t«; — ktz) — (s3 — ksy)s;) — (np(ts — kty) — p(s3 — ksy)s;)]

1
DX, —pxX = Z [(ry(ts — ktz) — (53— ksy)sy) — (rp(ts — kty) — (54 — ksp)sy)]
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1
=Xy —pXp = - [(ry(ts — pts) + rk(pty — t;) — 5352 + kS1S; + 5451 — ks152)]

1

- [(5431 — 535, + 1y (ty — pt3) + rik(pty — tz))]
1

= X —PX1 =

1 .. 2
=Xy — DXy = E[coeffzaent of z*]

But we need the coef ficient of z2 =0

2x,—px; =0

n pn Sy Sy ty t, 0 0
0 0 s3—ks; p(ss—ksy) tz—kt; ty—kt, 0 0
0 0 L6 pry S1 . S2 iy t; —pty
0 0 0 0 0 0 X1 0
0 O 0 0 n el S S, — DSy
0 O 0 0 0 0 S3 — ks, 0
n o pn 51 S ty t, 0 0
0 0 S3 — ksl p(53 - kSl) t3 - ktl t4 - ktz 0 0
-0 0 n pn 51 S2 ty t2—pt
0 o0 0 0 0 0 X1 0
0 0 0 0 n pri Sy S —DpS1
0 o0 0 0 0 0 0 0

The matrix thus has a zero row making it singular and hence of no further interest.

Case v: Ranks are (2.1, 2)

In this case we have both R and T to be of full rank. As a result,
M=R+Sz+Tz?
constant term = det(R) # 0 coefficient of z* = det(T) # 0

Hence the inverse in this case is not going to be banded owing to the fact that det(M) is not a

monomial.
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Case vi: Ranks are (1,2, 1)

In this case we have both R and T to be of rank-1 while S is of full rank. We then have:

2 =pn, r3 = kry, 1y = kpry

tz = utl, t3 = mtl, t4 = mut1
R= [ pn ] [51 32] T = tp uty ]
kr, kpry S3 54 T Ilmt; mut,

Then we have:

T pr s s
det(P) = IS: 541| =11(ss —ps3), det(Q) = |k71'1 kpzrll = kr1(ps; — s3)

& pr t ut

det(U) = |m§1 mut,| = itimu—p),  det(V) = ke kpr,| = kit —w)
S s t, ut

det(W) = |m2 mlftl =mty(us; —s;), det(X) = Is; 1| = t,(s4 — us3)

Which then leads to:
constant term = det(R) = 0 coefficient of z* = det(T) = 0
coefficient of z = det(P) + det(Q) = ry(s4 — ps3) + kry (ps, — s,)
coefficient of z*> = det(W) + det(X) = t,(s, — us3) + mt, (us; — 52)
coef ficient of z2 = det(S) + det(U) + det(V) = (515, — 5,53) + nty(m—k)(u —p)

Let us assume that the coefficient of z is the only non-zero entry. Then we need that the

coefficient of z* and z° both be zero.

coefficient of z* = 0 = det(W) + det(X) = t,(s4 — us3) + mt;(us; — s,)
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= (54 —usz) +m(us; —s,) =0
= (s4 — ms,) = u(s3 —ms,)
= §, = MS, + US3 — Mus;
coefficient of z? = det(S) + det(U) + det(V) = (5,54 — 5253) + ity (m — k)(u — p)
(5154 — s283) + ity (m —k)(u—p) =0
(s, (ms, + usz —mus;) — s;53) +rity(m—k)(u—p) =0
(ms,8; + us3s; — mus;? — s,83) + rity(m — k)(u—p) =0
ms; (s, —usy) +s3(us; —sp) +rty(m—k)(u—-p) =0
(sz —usy)(ms; —s3) + rty(m—k)(u—p) =0

Looking at the big matrix (we look from the middle of the matrix to the end) leads to:

no P 5 S, t, uty 0 0
kr, kpry s3 s, mt; mut; 0 0
0 0 n o phn 5 Sz t; ut,

0 0 kry kpry s sS4 mty mut;
0 0 0 0 n Py 51 Sy
0 0 0 0 kry kpry  s3 Sy

n o pnn 5 Sz t, 0 0 0
kry kpry s3 sS4 mt 0 0 0
0 0 n pry 51 Sy — U8, ty 0
0 0 kry kpry s3 m(s;—us;) mt 0
0 0 0 0 n p-uwrn s S; —Uus;
0 0 0 0 kry k(p—-wr s3 m(s,—us,)
o Py S1 S ty 0 0 0
kry kpry s3 s, mty 0 0 0
0 0 n, pn 51 (s, —usy) ty 0
0 0 0 0 s3—ks; (m—k)(s,—us;) (m—-k)t, 0
0 0 0 0 2] (p—uwn S1 (s, —usy)
0 0 0 0 0 0 s3—ks; (m—k)(s, —us;)
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rn P ST S ty 0 0 0
kry, kpry s3 S, mt, 0 0 0
S§3 — k$1
0 0 rn prn S1— m 0 0 0
0 0 0 0 sy — ks, (m—-k)(s, —us;) (m—k)t; 0
S3 — ks,
0 0 0 o " (p—wn S1— =) 0
0 0 0 o0 0 0 S3 — ks, (m — k)(s; —us;)
n pnn S1 S ty 0 0 0
kry kpry s3 8, mtq 0 0 0
ms; — Sz
0 0 n pn m 0 0 0
0 0 0 0 s3—ks; (m—k)(s;—usy) (m—k)t, 0
msy — S3
0 0 0 0 &1 (p - u)r1 m 0
0 0 0 0 0 0 0 (m — k)(s; —usy)
rn prn S1 S» ty 0 0 0
kr, kpry s3 S, mty 0 0 0
ms; — S3
0 0 nn pn m 0 0 0
0 0 0 0 s3—ks; (m—k)(s;—usy) 0 0
msy; — S3 tl
0 0 0 0 n (p—uwn =0 G, —w) (p—uwny 0
0 0 0 0 0 0 0 (m —k)(s; —usy)
(ms; — s3) _ ty (0 —wr, = (ms; — s3)(s, —usy) + (m—k)(u —p)nty
m—k)  Gz-usp T (m = k)(sz — us;)
But

coefficient of z% = (5154 — $383) + rity(m —k)(u—p) =0
= (s —usy)(ms; —s3) + ity (m—k)(u—p) =0

(ms; — s3) _ 4
(m—k) (s —usy)

(p —u)ry = (msy — s3)(s, —usy)) + (m —k)(u—p)ryit; =0
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n pri S1 Sz ty 0 0 0
kry kpry s3 S mt, 0 0 0
ms, — S3
0 0 n pn (—m—__—k) 0 0 0
0 0 0 0 s3—ks; (m—k)(s;—usy) O 0
0 0 0 0 7 (p—wn 0 0
0 0 0 O 0 0 0

(m — k)(sy — usy)

In which there is a column of zeros. Hence it is not possible to get an invertible banded matrix
such that the only non-zero term in the determinant comes from the 7’ term for the (1, 2, 1)

case.
By symmetry, we can say that the same holds true for the Z* term.

Finally we assume that the coefficient o 2 is the only non-zero entry. Then we need that the
'y

coefficient of z and z> both be zero
coef ficient of z% = 0 = det(W) + det(X) = t;(s4 — us3) + mty(us; — s2)
= t,(s4 — us3) + mty(us; —s3) =0
= (54 —ms;) = u(ss —ms,)
= §4 = MS; + US3; —mus,
coefficient of z = 0 = det(P) + det(Q) = r1(s; — ps3) + kr1(psy — s2)
= 11(s4 — ps3) + kri(ps; —s2) =0
= (54 — ksz) = p(s3 — ksy)
= s, = ks, + psz — pksy
= ms, + us; — mus, = ks, + psz — pks;

(u —p)sz = (k —m)s, + (mu — kp)s;
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If(u—p)=0,(k—m)=0
= s, = kS, + ps3 — pks; = s4 = ms, +usz —mus,
= coefficient of z3 = coef ficient of z =0
coefficient of z2 = (5154 — S353) + ity (m — k)(u — p) = (5154 — 5253) = det(S)

[ X9 X2 tl ptl 0 0 1
X3 X4 ktl kptl 0 0
nooprn S1 Sz bty phy

mat = kr, kpry s3 s, kty kpt;
0 0 rn P 5 Sz
L 0 0 kry kpry s3 54
(X, Xo ty pty 0 0
X3 Xy kt, kpt, 0 0
nopn 51 Sz 2] pYy
0 0 (s3—ksy) (sq4—ksy) 0 0
0 o n yug $1 S,
0 0 0 0 (3 —ksy) (54 — ksy)]
(X, Xy ty pty 0 0
X3 Xg kt, kpt, - 0 0
nopn 51 S2 ty pty
0 0 (s3—ksy) p(s3—ksy) 0 0
0 O n pry Sy S,
L0 0 0 0 (s3 —ksy) p(s3—ks;)l
PC]_ X2 tl 0 0 0 1.0 0 0 0 O
X3 Xq kty 0 ) 0 0 010000
rnopn S1 (s2 —ps1 ty 0 001000
0 0 (s5—ksy) 0 0 o [PTefmad =15 6 0 1 0 0
0 0 n 0 S1 (s —ps1) 0 00 010
[0 0 0 0 (s3 — ksy) 0 0 00001

This situation is indeed invertible and the inverse is banded.
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fu-p)=0k-m)+0
= 0= (k—m)s, + p(m —k)s;
=S, =Dp5
= s4 = ks, + ps3 — pks; = s, = ps;3

S1 P51

5= [53 pSs3

] = rank(S) =1

If(u—p)#0

_ (k—m)s, + (mu — kp)s,
27 (u—p)

coef ficient of z% = det(S) + det(U) + det(V) = (5154 — 5383) + ity (m — k)(u — p)
= 5154 — S,53 = S1(ms, + us; —mus;) — 5,53
= 5154 — 5253 = (ms; — 53)(s; — usy)

= (5154 — 5253) + ity (m — k)(u — p) = (ms; — s3)(s; — us;) + nty(m —k)(u —p)

(ms; — s3) = msy ———[(k —m)s; + (mu — kp)s,] = (m — k)(sz — ps1)

(u-p) (u—-p)

(m — k)(s; — ps1)(s; —us;)
(u—p)

(msy — s3)(s; —usy) =

We then have:

(m — k)(s; — ps1)(sz —usy)

o +1362(m = k) (u = p)

(ms; — s3)(sp —usy) +rty(m —k)(u—p) =

(s2 = ps1)(s2 —usy)

w—p) + 1t (u—p)

(msy — $3)(s2 — usy) + nty(m —k)(u—p) = (m — k)
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Let us examine when this is zero:

(msy —s3)(s; —usy)) +nty(m—k)(u—p) =0

—psy)(sy —usy)
(u-p)

=>(m-k) [(SZ + it (u— p)] =0

—psy)(sy —usy)
(u—p)

_ [(32 ]_
=>(m—-k)=0 or +ntiylu—p)|=0

= (m—k) =0 or[(s; —ps1)(sz —us;) + ity (u—p)?] =0

(s2 —psy)(sy —usy)
ri(u —p)? e

=>m=k or —

Letm = k:
(54 — ksz) = p(s3 — ksq), (54 —msz) = u(s3 —msy)
= (m—k)s; = (p —u)sz + (mu — pk)s;
=0=(p—ws;+k(u—p)s;
=0 =(p —w)s3 — ksy)
= (s3—ks;) =0, ~weassume (p—u) #0
= 53 = ks,
Ifs; =ks; =
Sy = ks, + ps3 — kpsy = sy = ks, + kps, — kps, = ks,

— = [Sl Sz] S1 S2 ]

s3 S4) T lksy ks,

= rank(§) =1
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But the case we are dealing with has rank(S) = 2. Thus it is a contradiction if m=k and

S3 =ks 1
For the other possibility, it can only be opined that the matrix will be invertible as long as

_ (s2 — ps1)(sy —usy)
r(u—p)?

Ft,

Essentially we can show that the reduced row echelon form for the big matrix with the current
rank order is the identity matrix which means that there are no zero rows or columns (as long as

the above condition holds and the conditions on the coefficients of z and z’ hold).

[ Xy X t ut, 0 0 10 0 0 0 O

X3 X4 mt1 mut1 0 0 0 1.0 0 0 O

_ n e S1 Sy ty utl _ 0 01 0 0 O
mat =lpr kpr,  ss Sy mt; mut, = rref(mat) = 000100
0 0 n Py Sy Sz 0 000 10

L 0 0 kry kpry s3 Sy | 0 00 0 01

This proves that the matrix in question is invertible under certain conditions.

Remark: Another way to look at it is to assume that the current matrix is obtained from the

product of F, F, and F3 having block diagonal matrices a, b and c respectively. In that case:

__[a11b21€21  @11b21C22

[ €22 Kk = azi
a1b21C21  A21b21C22

] =711 = a11b21021, p=—,
C21 a1

Rz[ﬁ PT1]

kr, kpn

S = 51 sz] — [a11b22011 + a12b11C21  @q11b22C12 + a12b11022] [51] _ [allbzzcn + a1zb11021]
S3 S Az1b22€11 + 22b11C21  G21b22C12 + Az2b11C22 S2 ay1b22C12 + A12b11C22

It uty 1 _ [@12b12¢11  G12b12012 _ _ 62 _ 22
=\mt mut.l = b b = tl = alzblzcll, u=—, m=—
1 1 A22012C11  A22012€C12 €11 a;
as, azq C22 C12
m=k=>—"=—>=det(a) =0, p=u=>—=—=>det(c) =0
alz all C21 C11
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Which would not be acceptable because each of the factors is invertible and that means that each

of matrices a, b and c are invertible.
Now consider:

(52 —ps1)(s; —us) _
r(u —p)? e

(52 — ps1)(s; —usy)
r(u—p)?

LHS == —

a;1b b
(s —ps1) =— (_1'1‘2') det(c), (sz —usy) = (M) det(c)
C21 €11

€ det(c) det(c)\?
w-p)=—=-2=— =>(u—p)2=(
€11 €21 €11€21 €11€21
(aubzz) (a1zb11) (det(c))z
_ (s — ps1)(sz —usy) _ C21 C11 _ ay2b11b22€14
r(u —p)? det(c) 2 b1
b (Giees)
Q11021621 C11C1
RHS = t; = ajzbip011

a,2b,1b,,C
'%1—1 = Qq2b12€11 = by1byy = bypbyy

= det(b) =0

But this would again mean that one of the factors would not be invertible which is not what we

want.

Remark: So far we have only dealt with the scenario where F; has the shift in its elements. In
order to be complete, we need to look at the scenario where F; and F3 have the shifts instead. In

this situation too, we get results very similar to what we have already discussed. The ordered sets

56



of ranks - (2, 2, 2), 2, 1, 2), (1, 1,2), (1, 2, 2) - for the matrices R, S and T yield singular
matrices. The lone exceptions are the cases (1, 1, 1) and (1, 2, 1). The former cannot be

factorized and both lead to banded inverses only when the coefficient of Z* is not zero.
3.2 Solution Process: Toeplitz Case

Now that we are done with proving that the ranks for the three factor case need to necessarily be
(1, 2, 1) (in order to be able to factorize the matrix), we proceed to solve for the factors. There
are two cases to consider here — one when there is only one matrix that has been shifted (F» only)
and the other case when two of the matrices have shifts (F; and F3). Please note that we can’t
have both F; and F, to have a shift at the same time. We are trying to get three matrices in the
product and that is possible only if no two consecutive matrices have the same structure.
Otherwise, it would simply result in a degenerate case and we can only solve for two factors
instead of three. (If F; and F, both have shifts, then they both have the same structure which
means that the product will have the same structure. Hence F); can be replaced by a single matrix
with only one block in it and thus we would be able to solve only for (F1,) and F3. We will not

get three matrices in the product and hence we cannot get three factors)

First let us consider the case when only F, has a shift. For this situation, the structures of Fj, F;

and F are shown. The structure of the product is also shown.

rdy; a1z O 0 0 0 0 0

a; Gy, O 0 0 0 0 0

0 0 a; a, O 0 0 0

Fo= ax1 04z 0 0 0 0
1= 0 0 a; a, 0 0
Gy G O 0

(el B e B e B o)
OO OO

0 0
0 0 0 0 a4 Qg2
0 0 0 0 a1 Qg2
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k0 0 0 0 0 0 0 1
0 by by, O 0 0 0 0
0 byy by, O 0 0 0 0
F = 0 0 0 by by O 0 0
2710 o 0 by by, O 0 0
0 0 0 0 0 by by O
0 0 0 0 0 by by, O
0 0 0 0 0 0 0 byl
€11 C12 0 0 0 0 0 07
Cz21 Cpo 0 0 0 0 0 0
0 0 ¢4 ¢c12 O 0 0 0
= 0 0 ¢ ¢ 0 0 0 O
3710 0 0 0 ¢4 ¢ 0 O
0 0 0 0 ¢33 ¢, 0 0
0 0 0 0 0 0 c¢1 ¢z
L0 0 0 0 0 0 ¢y ¢y
Fi23
(aukcn +a12b11C21  ay3kciz + agpby102; a12b12¢11 ay2b15612
Ap1kCyy + Az2b11Co1  Agikey; + azobyqcop az2b12€11 Az2b12¢12
a11b21621 ay1b21C22 A11b22€11 + A12b11C21 A11ba2C12 + agaby1Cp
— az1b21¢1 az1b21¢5; A21D22C11 + Q22b11C21  Ap1bp2C15 + azzby505
0 0 a11b1¢29 a11b21¢52
0 0 az1b21621 az1b21€22
0 0 0 0
0 0 0 0
0 0 0 0 1
0 0 0 0
a12b13¢11 ai2b12¢12 0 0
Az2b12€11 Az2b12¢12 0 0
"aq1ba2€11 + @12b11Ca1 Ay1b23015 + AgabiCp; a12b12¢14 a12b12¢42
A21b22€11 + Ap2D11C21  A21b22€15 + agzb11Co; Az2b12€14 Az2b12€12
a11b21¢24 a11b21¢2; @11b22C11 + @12b11Co1  @31baaC1p + A1byqCop
az1b21¢21 az1b21¢22 Az1b22C11 + Az2b11€21  @21b2€15 + azpbyycpp ]

It can be seen from the structure of the product that once again, we would need to set some
values to be able to solve for the remaining values. Although there is no hard and fast rule as to
which values should be set, the best combination was found when the values of aj;, byy, by and

c11 were all set to unity. Using these values, the other variables can be solved for.
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Before we start solving for the different entries of the matrices ‘a’, ‘b’ and ‘c’, let us label the
matrices that are present in the product. We consider first only the blocks that are repeated in the
product. Starting from left to right, we label the first 2-by-2 matrix as R (F23(3:4,1:2)), the
second 2-by-2 matrix as S and the final 2-by-2 matrix as T. Please note that the ranks of the
matrices R, S and T need to be 1, 2 and 1 in order to be able factorize the matrix. Denote the 2-

by-2 matrix starting at the position (1, 1) as w.

_ [a11b21‘321 a11b21522] _ [011b22C11 +a2b11621 @11baaCin t+ a12b11C22]
az1b21C21  Az1b21C22 Az1by5€11 + A22b11C21  G21b22€12 + A22b11C22
T = [a12b12011 a12b12c12] _ [‘111kc11 + a12b11€21  Aq1kcip + a12b11C22]
Ay2b12€11  A2b12C12 az1kcyq + azabiicz1  azikeyz + azabiiczn

Now, we are ready to solve for the entries of the matrices ‘a’, ‘b’ and ‘c’. In this case doing an
clement-wise comparison in each of R, S and T helps to get the remaining values. From this, we

have:
€21 = Ry, €22 = Rqz, az; = Rz1/Ryy and ¢y = T12/T11

Please note that we haven’t solved for all the elements yet. It is prudent to stop at this juncture
and to mention that some of the elements (bs, and ay,) that we solve for will yield two different
solutions when solved by two different methods. If Fy3 can indeed be broken up into different
factors, then the two methods would yield an identical result. So what we can do is to actually
get the values of some of the variables such that the two methods always yield the same solution.

In essence, we make what is expected as what is required and solve from there. If we do this it

leads to

aip; = [S11 — {(T21511 - T11521)/ (Tz1 — T11a21)}/¢21
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bi; = Ty1/ay;
baz = [S31 — {ca1a4, (T21)/(T11)}]/a21
azz = (T21/Ti1)as,
And

k =wyy =811 + by

Now we have all the elements needed in order to get the matrices ‘a’, ‘b’ and ‘c’ which are

present in the factors.

Moving on, we now consider solving for the case when both F; and F; have shifts and there is no

shift in F». The structure of the product Fi,3 is shown next:

[ kbyym kbizc14 kbizc12 0
Qy1baam  A11by2€11 + A12b11C21 Ay1baaCin + agobysCpp ay2b15¢15
A21b21M  Ap1b32C11 + Az2b11C21  Ap1barcip + Ap2by4C; Az2b12€11
Fips = 0 a11b21621 a11by1¢y, A11b22€11 + A12b11C54
0 az1b21€24 az1b21¢27 Az1b22¢11 + Az2b11C4
0 0 0 ay1by1¢51
0 0 0 az1b21€21
L0 0 0 0
0 0 0 0
aq2b15C12 0 0 0
aj,by,5¢45 0 0 0
ay1b22¢12 + A12b11C22 a12b12¢14 A12b12€12 0
a21b22€12 + Az2b11 €22 az2b12¢14 Az2b12C17 0
ay1by1C22 @11b22€11 + @13b11C21 @11b23C12 + A1zbia G @gbipcy,
az1b21€22 a21b22€11 + @22b11C21  G21b25C12 + Apobi1Cyy  Anpbyincyy
0 A11b21€2, a11b21C2; A11b22€14

Once again, we label the different matrices and vectors that we would need. We denote as ‘g’ the
first element of the product Fj,3, as ‘h’ the last element of F);3, ‘s’ the vector of non-zero

elements in the first row excluding the first element, ‘w’ the vector of non-zero elements in the
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first column in the first column excluding the first element, ‘y’ the matrix to the immediate right

of the vector w, ‘z’ the matrix to the right of the matrix y, ‘x’ the matrix just below matrix y.

In this case we set by, €11, b1 and m to be unity. The initial equations that we have are:

a1by 1 = X, azbiom = 2, aybyomy + azbyr; =y

kb12T1 =S, a1b21m =W, kbum =9, a11b22C11 =h

Using the values we set leads us to

_ . X k= __kzs’ b = h
a =w, Tz—al,al: =9 a; = o'’ 22— Ny
= a'1(}’ —apry’) _ (5(1))

! b2 (a;'ay) ’ 12 k (T1 (1))

Now we have all the entries of each of the matrices ‘a’, ‘b’ and ‘c’ in order to be able to get the

factors F,, F, and F3 along with the multipliers for the shifts - k and m.
3.3 Sample Problem: Toeplitz Case

In the two 2-by-2 factors case, we tested our code against the available factorization for the four
Daubechies wavelet coefficients. Now, we take it to a higher level. We test it and look for factors
for the six Daubechies wavelet coefficients. Unlike the previous case where we could compare it
with the solution obtained by Strang, we do not have a formal set of factors to compare against.
Our only way of ensuring that the factors are indeed correct would probably be to multiply the
factors and to get the norm of the error between the original matrix and the product that we have

just formed.
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The six Daubechies coefficients [6] that we use are the following:

\/—2_(1+\/E+ 5+2x/ﬁ> <5+w/_+3/5+2x/T6)
x/i<1+\f1_— 5+2\/ﬁ) —\/_<5+\/—_ 3}5+2x/—0)

\/5(10—2\/ﬁ+2 5+2\/1_> (10—2@—2/5+2@)

]

T \/§<1o—2x/1_0—2/5+2x/1_0> —\/'<10 2x/_+2}5+2x/_>
W(5+¢_ 3/5+2\/E) (1+\/_— f5+2\/ﬁ)
T =

\/_(5+\/_+3 5+ 2 0) —\/_<1+\/_+ f5+2w/—>

This then yields the following three factors —

1 0.0578 0 0 k 0 0 0
F = |01059 -05461 0 0 g o=|0 1 —472820 0
1 0 0 1 2710 1 141005 of
0 0 0 0 0 "
1 -0.4123 0 0
Py = 10.6455 25.8205 0 0

0 0 1
0 0 :

For completeness sake we also furnish the norm of the error between the original matrix with R,

S and T as blocks and the product of F;, F, andv Fs.
norm(error) = 2.8377¢ — 014 = O(round — of f error)

Thus we can say that the factors that we obtained are correct to round off errors.
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Chapter 4

Banded Matrices — Three factors with 3-

by-3 blocks

In this chapter, we will look at the results of the products of three matrices G;, G2 and Gs. All the
three matrices are made up of 3-by-3 blocks. G, has no shift, G; has elements that are shifted one
down and one to the right and G; is further shifted one down and one to the right with respect to

G,. The typical structure of the three matrices is shown next

[dq1 agn aq3 0 0 0
aip; Az A3 0 0 0
aq3 dazz Aazz 0 0 0
0 0 0 a1 a2 ag3
azy Qzz Qzs
az; 4asz daszs
0 0 0 a1 a2 Q13
0 0 0 ay Gy a3
0 0 0 a3 az; aszsl

[en I e i e Y« B e B e
OO OO0
COO0OOCOO

r
OO O OO
[ I e B e B e R e}
OO oo
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G,=10 0 0 0 byy by bys
0 o 0 0 byy by bys
0 0 0 0 b3y b3y bi3
0 0 0 0 0 0 0 byy byy
0 O 0 0 0 0 0 by by
rm 0 0 0 0 0 0 01
0 n O 0 0 0 0 0 0
0 0 ¢1 €2 463 0 0 0 O
0 0 ¢34 €32 ¢33 0 0 0 O
G3 =10 0 €31 C32 C33 0 0 0 0
0 0 O 0 0 ¢1 €2 ¢35 0
0 0 0 0 0 Cr1 C22 C3 0
0 0 0 0 0 C3q C3o C33 0
10 0 0 0 0 0 0 0 ¢4/
'Wl U]_ Xll X12 X13 0 0 0 01
W, U, X1 Xoo Xp3 O 0 0 O
Wy Us X31 X3 X33 O 0 0 O
0 W Y1 Y, Y3 Xy X2 X3 O
Gizz=|0 V2 Y Yoo Yo3 Xy Xo2 Xp3 O
0 V3 Y3 Yay Va3 X33 X33 X33 O
0 0 Zyy Zyy Zy3 Yy Y Y3 Ty
0 0 Zy Zy; Z3 Yoy Yoy Yo To
L0 0 Zsyy Zsp Zy Yay Vi Yy Tl
X11 X1z Xi3 Y11 Y2 Yi3
X =|X21 X2 Xp3f, Y= [Y21 Y22 st]
X3 X3z Xz3 Y33 Y3 Va3

(X11 = (@12b12 + @13b22)C11 + (@y2b13 + @i3bp3)Ca1  Yig = (@11b32¢11 + Ay1b33C51) + (@12byg + A13byq)Cay
X12 = (@12b12 + a13b23)C12 + (agab13 + 13baz)cry  Yiz = (@1b32615 + @y1b33¢23) + (@12b11 + ay3by1)Csy
X13 = (a12b12 + @13b23)Ci3 + (@y2b13 + Qi3bp3)Co3 Vi3 = (A11b32613 + ay1b33C03) + (ag2byg + a13bz1)c33
Xz1 = (@22b12 + az3baz)cr1 + (Az2bi3 + ap3b3)cy Yoy = (ag1b3y¢11 + agyb33cay) + (agpby; + az3bz1)c3q
X22 = (az2b12 + a33b23)C12 + (@g2b13 + Az3bp3)cay; Yoz = (az1b32C15 + Az1b33¢55) + (azabyg + az3bz1)C3;
X23 = (azz2b12 + Az3bpa)ciz + (azabiz + Gp3bp3)Co3 Yoz = (A21b35C13 + Ap1b33C23) + (azzb1q + az3ba1)c33
X31 = (@32b12 + As3baz)ciy + (Azpbis + az3ba3)cyn Yag = (azgbsyciyg + azgbsscay) + (agpbyg + azzby1)csq
X32 = (a32b12 + as3by)c1z + (Agpbyz + A33bp3)Co0 Yoz = (A31b35¢15 + Ag1b33¢2;5) + (azzbyq + azzbsq)cs;
X33 = (asz2biz + aszbzz)c13 + (aszzbis + a33bp3)cas Yaz = (a31bsy3 + az1bazcys) + (agpbyg + az3by1)c33!
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Z11 Ziz Z33 A11h31C31  @11b31C32  A11b31C33
Z=\Zy1 Zy; Za3|=|a21b31631 Qz1b31C3z  G21b31C33

Z31 Z3p Z33 a31b31C31  A31b31C32  A31b31C33
ay km (ayzby1 + ag3by)n ay1b31n (aszbs2 + ay3ba2)c1q
W = |az km|, U = |(az;b11 + azsbai)n|, V = |az1 bz n|, T = |(azzb1z + az3by2)c1q
az1km (aszbiq + azzbyn az1bzin (azzbq2 + aszbzz)cry

What we observe from the product is that as expected, there are three matrices in the product as a
result of the different shifts in each of the individual matrices. As always we are interested in the
ranks of the smaller matrices that are repeated in the product. With the current order of
multiplication we see that the matrices are of ranks 1, 2 and 2 in that order. Please note that for
this particular pattern for the factors — G, Gz and G — yields this particular result. If however,
we were to change the ordering, then we would get a bunch of different sequence for the ranks.
Thus it would be impossible to furnish proofs in this particular situation. The 2-by-2 case was
simple because there were only two possible ranks — one or two. Moreover, there were only two

sequences for the Fs, while here we have many more.

There is an interesting point that we would like to point out when considering the three 3-by-3
blocks case. This concerns the order of multiplication of the factors G;, G, and Gi;. When the
order of multiplication was changed, in some cases the order of the ranks also changed. What we
found was that there seemed to be some sort of a cyclic relation for the products that shared the

same ranks. We illustrate this with the following table:
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Gl G2 G3 R S T

no. of shifts ranks

P ONONZR
NP P NNPRE
N N_NV;,NZN,HN,‘\
= NN =N

2
1
0
1
0

Table 1: Shifts and ranks for different G, G, and G;

We see that in cases (0, 1, 2), (1, 2, 0), (2, 0, 1) share the same order for the ranks in the product
Gi23 — (1, 2, 2). In a similar manner, the cases (0, 2, 1), (2, 1, 0) and (1, 0, 2) share the same order
for the ranks — (2, 2, 1). In fact, it was also seen that the cases where the ranks were (2, 2, 1) can

be obtained by transposing the cases with ranks (1, 2, 2).

We make here a short remark about the case involving two factors in the 2-by-2 blocks case —
there we did not have any such problems with the order based on the shift. This is because the
ranks of the matrices were (1, 1) and as a result no matter which order we obtain the product, the
ranks will always be (1, 1). Even in the three factors 2-by-2 block situation, this was the case.
The ranks in the product were (1, 2, 1) which was symmetric and independent of the order we
chose for Fy, F; and F3 (admittedly, there were only two possible choices — both F; and F; have a

shift or F; has a shift).

We now look at trying to solve for the entries of the factors — G, G, and G; — given the product
Gi23. We can see that just like in the 2-by-2 blocks case, we would need to look at the end rows
and columns. This would give us an idea of what the order of multiplication should be. However,
since each of the matrices ‘a’, ‘b’ and ‘c’ contain 9 unknowns, it is difficult to solve for all of
them. We could set a few entries to be specific values, but which ones is in itself a big question.

For the 2-by-2 case, there were far fewer unknowns and as a result, the unknowns that needed to
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be set could be arrived at by brute force in the worst case scenario. That however, would not be
useful in the 3-by-3 block case. What we can do is to examine what are the different matrices
and where they come from. An exact solution (as in the 2-by-2 block case) could not be obtained

in the duration of the current thesis. We present some of the formulations in the product below:

X = a2r1b12 + a3T1b22 + a2r2b13 + a3T2b23, Y = a1T1b32 + a1r2b33 + a2T3b11 + a31‘3b21

Z= a]_r:;b31, W = g——km, U= (E_Z_bll + a_3b21)n

V= ﬁl_bgln, T = (glblz + -a_3-b22) C11
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Chapter 5

Circulant Matrices

5.1 Two factors with 2-by-2 blocks — Toeplitz and Non-Toeplitz

In this chapter, we consider the effects of adding elements to the top right and bottom left of the
factor matrices. In order to be able to understand the process better, we only consider factors

with 2-by-2 blocks. However, we consider both the Toeplitz and the non-Toeplitz cases.

For the most part, the product that we obtain is very similar to what we obtained previously. The
difference, as expected, is seen only at the ends. The middle rows remain unaffected. In order to
make the discussion general, we consider a 2-by-2 matrix at the ends of the factors. Please note
that we add the 2-by-2 matrix only to the factor F, that already has a shift. We do not add

anything to the matrix F; that is free of the shift. The structures of F; and F, are shown next.

[a;; a2 O 0 0 0 0 0 T
ay az; O 0 0 0 0 0
0 0 a1 a2 O 0 0 0
F = 0 0 az; az O 0 0 0
1= 0 0 0 0 a1 Qaqp 0 0
0 0 0 0 ay; azp O 0

0 0 0 0 0 0 a; ag

) 0 0 0 0 0 a1 Qappl
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r k 0 0 0 o0 0 c¢11 c12

0 by b O 0 0 ¢ 2

0 byy b 0 O O 0 O

F = 0 0 0 by b 0 0 O
2710 0 0 byy by; O 0 0
0 0 0 0 0 by b O

dyy dy; O 0 0 by by O

ldyy dp; O 0 0 0 0 byl

-ZZI ZZZ

_[M11 Q12 _ b1 b12] _[f11 Cr2 _ [d11 dlZ]
a—[a21 azz]' b——[bZI baa 1’ C_[Cn 022]' 4= dy1 dy

A = [a11k A = [a1zb11] ¥ = [a1zb11 a11b12] Y = [a11b21 a11b22]
=L lay k!’ =2 Az2b11)’ Az2b11  azzby2)’ az1b21  az1by;

_ [a11d11 + a12dzy  aq1d42 + ay,dy,

_ [a11C11 +a12C21 A11C12 + a1zczz] [ ]
’ az1dy1 + az2dyy  Az1di; + azedy,

A21C11 + A22C21  A1C12 + A€o,

In a generic scenario, we see that the addition of the end elements and matrices in F; has resulted

in full rank matrices at the ends.

5.2 Solution Process: Toeplitz Case

In order to solve for the factors F; and F, in this case, we use the information from the middle
rows of the matrix F), first and solve it as for the two factor 2-by-2 case. The only addition that
we make here is to solve for the blocks ¢ and d also. The different steps in this process are shown

next:
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We set k and b;; to 1 to get:

I I e

Then

A=Y, Amn =X, Ac=W, Ad=1Z

A,Y . AX

_ 2t 4% =AW, d=4"1Z
aa, oA €

=1
a=[A1 4] b=|t|, c=aw, d=4a12z
4 A "

Which then implies that all the blocks — a, b, ¢ and d — are known and from which the matrices
F; and F, can be approximately constructed (approximately because we don’t know the original

factors)

One point to note in the above solution process is that we do not specify that the matrices ‘c’ and
‘d’ have to be of a particular rank. In fact ¢ and d can contain a single non-zero entry and this

solution method will still work.

At this juncture, we also make a few remarks under some of the cases. Let us assume for the
moment that the matrices ‘c’ and ‘d’ contain only a single non-zero entity. We assume that these

are the extreme top right (c;,) and the extreme bottom left(d,1) entries. We then get:

_[a11d11 + a12dz1  ag1dyz + ag2dz;

@11C11 + @12C21 G11C12 + Q12622
’ ay1dyq + azzdy1  Gp1dyp +agd
21011 T Az2021 Q21032 + A2203;

A31C11 + A32C21  A21C12 + Q22022

S W = [0 a11¢12]‘ 7= [a1zd21 0]

0 a2 azzdz; 0
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Ay X117 X2 O 0 0 0  ay1612
Arq X21 X2 O 0 0 0 azico
0 Yii. Y2 Xi1 X2 O 0 0
0 Y21 Yoo Xo1 Xy O 0 0

ﬁFlzz

[A11C12 Apq X1 X2 O 0 0 0
a1€12 A1 X1 X O 0O 0 O
0 0
0 0

0 0 Yia Y X3 X2
= fip = 0 0 Y21 Yoo Xon Xo
12 0 0 0 0 Yy Y Xin Xpp

Anl _ [allk] _ [an] A12] _ [a12b11] _ [a1z]
A21_ a21k azl’ A22 a22b11 azz

This then implies that the:

a11C12  Ag1]\ _ a1z Gy2dy ) _
rank ([‘121012 a21D =1 rank ([azz azzdn] =1

In essence, this is like analyzing an infinite dimensional banded matrix to see if it too has a
banded inverse. The major difference however, lies in the final two rows where the position of
the second matrix is not the same as where it would have been in the case of an infinite

dimensional matrix.

This particular re-arranged form can be solved for using the code that has been written to solve
for the cyclic factors. In essence, all this requires is a permutation matrix to be multiplied at
some point to change the position of the columns to get the standard formulation. The way to
check if a permutation matrix is needed or not is very simple and straight forward — we check the
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first and last rows of the matrix fi,. If the four elements are consecutively placed (in the first
row; and similarly there are two elements in the first four slots in the last row), then we know

that we should shift the first column over to the last. Now we solve as usual on this Fi;. We

essentially then have this:
fiz = Fi2P
But: F12 = F1F2

= f12 = F1F2P = fle' where f1 = F1 and fz = F2P

0 1.0 0 0 0 0 O
001000T00O0
00010000

p-|0 0001000
000007100
00000O0GO0T10
00000O0TUO0UO0 1
1. 0 00 0 0 0 o

For the non-Toeplitz case, there is not much of a difference between the current solution and the
solution that we obtained in the purely non-Toeplitz case. What this means is that, we solve for
the constituents of the factors as per normal, by setting the first entries of all the matrices to 1.
Finally, we use the very first matrix in F; (the one with no shift) to get the matrix ‘c’ and then
use the last matrix in F; to get the factor ‘d’. In this manner, we solve for all the factors as well as

all extra entries present in the factors.

5.3 Three factors with 2-by-2 blocks — Toeplitz

Now we deal with the three factors 2-by-2 blocks case. For this, we only deal with trying to solve
for the factors when F; is the only matrix that has a shift and consequently, is the one with entries
in the off-diagonal positions. The structure of the product is similar to that what we had obtained
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previously. The difference is the presence of the two blocks in the top right and bottom left

corners of the matrix. The structures of F, and of the product are shown next:

( k 0 0 0 0 0 dy; dqi3
0 byy by O 0 0 dyy dy
0 byy by, O 0 0 0 0
E=lo o 0 o 52 0 o o
21 D22
0 0 0 0 0 by; by, O
e;11 ez O 0 0 by by O
e,y e O 0 0 0 0 by,
Fiz3
[a11KkC11 + @y2b11C51  aq1keyp + agzbpi6p; ay2b12¢14 a12b12¢12
az1kc1y + Az2b11C21  Az1kcyp + azabiqcy ' Az2b12€11 Az2b12€12
ay1b21¢21 ay1b21C22 A11b22€11 + @12b11C21  Aq1ba2C12 + A42b11Co,
— a21b21C21 a21b21C22 A21b22€11 + @a2b11C21  G21D22€12 + agzbigcpp
0 0 ay1b21¢21 ay1b21¢25
0 0 az1b21¢21 az1b21C2,
X11 xlz 0 0
B X21 X202 0 0
0 0 Y11 Y12 1
0 0 Y21 Y22
ay2b12611 ay2b12¢12 0 0
Az2b12€11 az2b12¢12 0 0
T a431b25C11 + A12b11C21 A11b22C12 + A12b11Co A12b15C14 ay2b12¢4
Az1b22C11 + A32b11Co1  A21b22C15 + Azb11C2; az2b12€11 az2b12¢1,
ay1b51621 ay1b21¢22 A11b22€11 + @12b11C21  @11baaciz + agb11C2;
az1b21¢21 az1b21¢2; Az1b22€11 + Az2b11Co1  Ap1bpacyp + agzbyq055 ]

__[xn x12]__[a11 a12] [311 €12] [Cn C12
X21  X22 Az1 Axzllezy  €3211C €

ol B e el | el

To solve, we follow the exact same procedure stated previously to solve for the matrices ‘a’, ‘b’

& ‘¢’ and the factor ‘k’. We can then see that
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1

X =aec=e=a lxc}, y=adc=d=atyc?

From which we see that everything about the matrices Fj, F; and F3 is known. Hence we have the

complete solution for this case.
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Chapter 6

Conclusions and Future Work

This chapter serves as a final recap of all that we have looked at. We started by looking at the
two factor 2-by-2 blocks case. We proved that the ranks of the matrices in a banded matrix with
two blocks needed to be unity. Only under this situation was the banded matrix actually
invertible and also banded. We then looked at solving for the factors in this case. Owing to the
large number of unknowns vs. the number of equations to solve for them, we realized that we
had to assign values to a few of the variables. Once this was done, we could solve for the others
easily. We solved for the factors in situations where the factors were either Toeplitz or non-
Toeplitz. The non-Toeplitz case added a lot more unknowns into the mix than the number of
equations available. However, we were able to circumvent this problem by assuming a kind of

normalization for each of the blocks — we set the first element of every block to be unity.

We then went on to the case where we had three factors with 2-by-2 blocks. Once again we
proved that the ranks needed to be (1, 2, 1) for the inverse of the banded matrix to also be banded
and factorizable. Like the two factor case, here also we solved for the different factors after

assuming a few values.
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We then had a brief overview of the three factor 3-by-3 blocks case. We saw that simply going
from 2-by-2 to 3-by-3 causes a lot more hassles and it is a lot more complicated to solve. We
made observations regarding the different entries in the banded matrix but did not solve for them.
We believe that trying to solve for the three factors would be a nice and logical extension to the

current work done.

Finally, we looked at the case of circulant matrices, where we had non-zero entries in the minor
diagonals of the factors. We saw that for the most part we needed to add only an extra step to
compute the off-diagonal entries. We did this for the two factor Toeplitz and non-Toeplitz case
as well as for the three factor Toeplitz case. In this manner, we covered most of the ground for

the Toeplitz and non-Toeplitz cases.

We wrote solvers for each of the cases that we have discussed and the algorithm used in the
solvers is seen in the solution process section of Chapters 2 and 3. In some cases, we ensured that
given a random banded matrix, the solver itself would determine if it is a two factor Toeplitz or
non-Toeplitz case or if it needs to be permuted or transposed before being solved. The actual
solving though was done in a separate solvers — one for the two factor Toeplitz 2-by-2 blocks
case, one separate for the two factor 2-by-2 non-Toeplitz blocks case and so on. We also think it
would be great to see how much of a generalized solver we can write in order to be able to solve

for factors that have n-by-n sized blocks.
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Appendix A

Conjecture for an n-by-n matrix formed
from the various permutations of n

elements

In this section we conjecture that the minimum rank possible for an n-by-n matrix formed from

the permutation of n elements is given by the smallest possible q which satisfies the relation:
n<gq!

Let us now look at an example to illustrate the point. Consider a set of 7 distinct elements — a;

through a;. We now form a 7-by-7 matrix using only the different permutations of the 7 elements

Ay d; Az Qa4 4as Qg a7-\
a, a, az; a4 as ar; AQaeg
a; a, az a4 ag as Qay
M=|a; a; a3 a, a4 4dy; Qs
a, a, a3 Qa4 a; 4as Qqg
a, a, az ag a; ag Gas
la;, a; az Qas a Qag Ayl

According to this conjecture, we say that the minimum rank of M is 4

gq=3=7>3, q=4>7<4
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Now we try to show that this is indeed the case. Perform row operations to get:

Next, we perform column operations to get:

a; a

0 0

0 O
M=]0 0
0 O

0 O

[0 0

0 0

0 0

0 0
M=|0 0
0 0

0 o0

10 0

Now we prove that the last four columns are linearly independent. Denote

C1=

SO OO OO

[y + as + Qg +a7'

a, az ay as ag a;
0 0 0 0 a; —ag Qg —ay
0 0 0 g — Ag  dg — Qg 0
0 o0 0 ag—as a;—ag as—ay
0 0 0 a; —as as—0dg Qg —ady
0 O 0 a; — as 0 as —ay
0 0 as—a, a4—as 0 0 |
as a4 +as+ag+a, Qs Qg a;
0 0 0 a; —ag Qg —a;
0 0 ag —As 05 — dg 0
0 0 g —Qas a7 — g QA5 — Qg
0 0 a; —as as—0g Qg—ay
0 0 a; — Qag 0 as — ay,
0 0 a, —ds 0 0
0 as+as+ag+a, as ag a;
0 0 0 a; —ag Qg —a,
0 0 g —as as — ag 0
0 0 ag—as a; — Qg Qs —ay
0 0 a; —as ds—ag Qg —a
0 0 a; — as 0 as — a
0 0 as — ag 0 0
] Qg az
0 a; —ag as — ay
Qg — Ag as — dg 0
;€2 =|Q6 — Qs | ;03 =|ay; —ag ;€4 = |05 —ay
a; — as as — ae g — a7
ay — as 0 as — a,
LAy — a5J 0 o 0

Need: ¢y, ¢y, c3 and ¢y are linearly independent

S a6+ a0 +azc; +agc, =0,
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We need the above vector equation to be satisfied. In particular it should be satisfied no matter

which row we consider. We then get:

;.0 + ;.0 + a3. (a7 — ag) + a4.(ag —a;) =0, considering 2™ row
;.0 + ay.(ag — as) + az.(as —ag) + @,.0 =0, considering 37 row
a,.0 + ap. (a; —ag) + az3.0 + a4. (as — az) =0, considering 6" row
a;.0+ ay.(ay —as) +az.0+a,.0=0, considering 7" row
Which then leads to:
(a; —ag)(az —ay) =0, (ag—as)(a;—az) =0
(as —a;)(as —a3) =0, az(a,—as) =0

As per the construction, the a; are all distinct. This then leads to:
az = ay, a, = az, Qg = ay, a, =0
D2a3=a,=a,=a=0
Finally this yields:
ay.(ay +as +ag+a;) +az.a5 +az.a6+ag.a; =0
ay.(a, +as+ag+a;)+a.(as+ag+a;) =0
ay.(ay +as+ag+a;)=0
Now, if we also impose the condition (a4 + a5 + ag + a;) # 0, we get

a]_:O
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Thus
ap=a,=az=a,=a=0
And the four columns c; through c, are linearly independent.

We see that the smallest integer q which satisfies the conjecture:

The smallest q would be:q = 4
We see that the rank of the matrix M that we constructed is also the same as g=4.

The reason we call this the lowest possible rank is because in this particular case we change the
positions of only very few elements. The number of elements that need to be permuted is much
lesser than the size of the matrix. Hence we end up with a matrix that can be reduced to one with

a large number of zeros.

We now try to give a possible proof to support the conjecture. There are two cases we should

consider - when n = gq! and when n < ¢!

1) n=gq!
- a1 a2 CExY e e “ee aq—l aq aq+1 s sen see an_
ap+m aq—k see e see aee aq_p ai aq+1 ey s o an
M=
a6 ak_p S, R S, O am a} aq+ 1 cee con “ea an
| ak ai+j e e see e a6 ap aq+1 e e cee a‘nJ
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a;

Ap+m QAq-k

Construct: Apxq =

Qg
ay

az ey cee aq—l aq
g-p Qi

ak—p v oo am aj
ai+j s eve a6 ap

We need to prove now that 4 is of full column rank. Denote coefficients a;- one for each one of

the columns of the matrix 4. Then we need to prove:

a4, + @A, + -t ag-144-1 + aq_/_li= Oea=a,="=a,1=0;=0

Perform row operations to get:

ay )
Aps+m — A1 Qg — 02

Ag — aq ak_p —a,

ar — 4 Qjyj — QA

ag-1 aq
Ag—p ~Ag-1 @i —0q

Ap—0g-1 @ —0q

g — aq_]_ ap - aq

It can be seen that each of the ¢ numbers appear at each of the g positions exactly (g-1)! times.

As a result, for each a;, (i = 1to q) we can construct g-/ equations in the remaining g-/

numbers. Please note that every row sums to the same value (because we have the same set of

numbers in every row, only the ordering has changed). This trivial fact is highly important and is

used recursively. We then consider this reduced system of equations which we call Areq

Ap+m — A1 Qq-k — A2

Ag—p — Ag-171 N1

: a,
Ared.c_z = . : : = Q
g — aq ak—p —ap aAm — aq_1
A — a1 Qiyj— a2 g — Qg-1 1l3g-1
Apam — A1 Ggok — Gz - Ogop — Gg-1jp &1 ay 1
: : R : a a 1
: = 9 = : =«
g — A ak_p —day anm — aq_l :
A — 4 Qivj— Az g —Qg—1 ilq-1 Ag-1 1



In a similar manner we can prove that all the a are equal. This then leads to (from the first row of

A):
a0y +aza; + o+ ag1a41 t@ga, = 0> aa; +aa, + -+ aag 1 +aa; =0
Sa(a+a++a,4+a;)=0
2a(a;+ay+-+a,,+a;)=0
2a=0or (e +a;+-+a, 1+a,)=0

For the moment, let us suppose that (a; + a, + -+ a4, + a;) # 0. Then we have a = 0 and so
the g columns of A are linearly independent. Also, we have changed only the q elements in the
big matrix M. So the rank of the matrix M is essentially the same as the rank of A. And this is

gives us that the rank of the matrix M is
rank(M) = q, where:q! =n
1) n<gq!

In this situation, an exact proof could not be obtained. We leave the current problem in this

state with the hope that the second part can also be proved.
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Appendix B

Miscellaneous Properties

The thesis dealt with the problem of obtaining the factors for the 2-by-2 block matrices cases.
We also looked at the results that we obtained from the 3-by-3 block matrices cases. We made an
observation that the ranks of the matrices in the product of Gj;; seemed to follow a particular
pattern. We furnished a table that showed the same. We now briefly extend that result that we
obtained to the case where we have 4-by-4 block matrices in the product. The table for this is

presented below
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No. of shifts Rank of matrix
H1 H2 H3 H4 rank(R ) rank(S) rank(T) rank(U)
o 1 2 3 1 2 3 3
1 2 3 o 1 2 3 3
> s o0 | S e 5
3 0 1 2 1 2 3 3
0o 1 3 2 1 3 3 1
1 3 2 0 2 4 3 1
3 2 0 1 1 3 3 1
> 0 1 3 . e : -
0 2 1 3 2 4 3 1
— 5 2 5 5 T
T a0 2 - 4 5
3 0 2 1 1 3 3 1
0 2 3 1 1 3 4 2
2 3 1 0 1 3 3 1
et S )  — 1
— 55 1 5 .
0o 3 1 2 1 3 3 1
3 1 2 0 1 3 4 2
1 2 o 3 1 3 3 1
2 0 3 1 2 4 3 1
0 3 2 1 3 3 2 1
3 2 1 0 3.3 21
2 1 o0 3 3 3 2 1
R R | 5 3 5 :

Table 2: Shifts and ranks for different H;, H,, H; and H,

We see that for the 4-by-4 blocks case, in some cases cyclically switching the order of
multiplication of the matrices results in the same order of ranks for the products. However, this is
not always the case as can be seen from the second set that is considered. This table might be

useful for those who want to have a quick idea of what the ranks look like without having to

perform the experiments in full.

From the work done over the period of the thesis, a couple of interesting patterns were obtained.

We list a couple of them here:
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Suppose we have n factors, each of which is made up of n-by-n block matrices. Let us
denote them to be f; through f,. Assume further that the each matrix from f; is shifted
one down and one to the right from its predecessor’s position. This would mean that
f; would have no shift, f, would have a shift one down and one to the right in position
with respect to f; and so on. Now, let us consider the product of the matrices f;

through fi, We then have
ranks of matrices in the product f; , =1,2,3 ..k, 2<k<n-1
ranks of matrices in the product f;_, =1,2,3..k—1k—1, k=n
Let us apply this to the three factor 3-by-3 case. We then have
n = 3 = ranks of matrices in the product f; , =1,2,3 ..k, 1<k<2
k = 2 = ranks of matrices in the product f12 = 1,2
k = 3 = ranks of matrices in the product f123 = 1,2,2

Another pattern that we obtained was related to the product factors made up of 2-by-2
block matrices. We saw that in the two factor case the ranks were simply (1, 1). This
became (1, 2, 1) when three factors were considered. We then multiply the product

F 23 with another matrix F4 (also made up of 2-by-2 blocks and with the same
structure as F,). The rank pattern we got in this case was (1, 2, 2, 1). When this was
continued with Fs, it lead to (1, 2, 2, 2, 1). Hence it became apparent that with every
extra factor that we add in, we get another full rank matrix in the product. There is a
logical explanation for this. Every additional multiplication essentially means that we

combine entries that are themselves linear combination of the previous cases. So
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initially we have two rank-1 matrices adding up to give a rank-2 (full rank) matrix.
Since we are looking at 2-by-2 blocks, more such additions will only give a full rank

matrix and that is why we keep getting rank-2 blocks in the product.
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Appendix C

Extension of results obtained in [1]

We now look at some of the properties that we can derive for the matrices P and Q as mentioned

in the paper by Strang[1]. We examine the construction of the matrices R, S and T among others.

Basically we look at the matrices P and Q. We need them to be of rank-1 each and we also need

to satisfy a few conditions. The properties we need from them are the following

PQ=QP=0, P+Q=1, P:=pP, (Q%*=Q

_ Al AZ - Bl BZ
P=1a, A4] Q‘[B3 BJ

Since P and Q should be of rank-1, we can re-write them as:

kA1 kpAl lBl qul
p2 — [A1 pA; ] [ p4, ] _[A1  pA ]
kA, kpA,llkA, kpA, kA, kpA,

- A [1+kp p + kp? ] [ ]
Yk +k2p kp + k?p? Hk kp

A [(1+kp)A1 p(1+kp)A1]= [1 p]
k(1 + kp)A; kp(1 + kp)A, k kp
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1 1
=>1+kp)d, =1, :(1+kp)=z—, =>kp=/T-—1
1 1

In a similar manner using Q2 = @, we get:
1
== (—— - 1)
A
Next, we make use of PQ = QP = 0 to get some more relations:

PQ=[A1 pA1”Bl qu]:A [1+pl q(1+pl)]=[0 0]
kA, kpAliBy 1gBi T Pl k@ +pD) kg +pD)] T Lo

o o
e

B, qu][Al pA1]=A131 1+kq p(1+kq)]_[0

QP =[131 1gB, ) kA, kpA, IA+kq) In(1+kg) = lo

=2>1+4+pl=0, 1+qgk=0

Finally, we make use of the last requirement:
P+Q=1

Aq PA1] [31 qu]:[l 0
kA, kpA, B, 9B, 0 1

Ay + By pAi +qB, ]:[1 0]

= A1 + Bl - 1, pAI + qu = 0, kAl + lBl = 0, kpAl + qul =1

Now, we make use of the relations connecting q with k, 1 with p and k with p to get:
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1

kBl___OﬁpkAl—Bl:O

pA; +qB; = 0= pA; —

1
(Z——l)Al—Bl=0=>1_A1—Bl=OﬁA1+BI=1
1

In a similar manner, the other two equations yield the same’result. Hence we need:
A +By =1
To recap, the following need to hold:
1

1 _ 1 _
k=(A1 1)/p z=(B1 1)/q z=—% q:—% = (4 +B=1)

Now let us use these relations in the simple case of a matrix formed from the product F, (where
F,, is obtained from the matrices F; and F,, with F, having a shift in its structure). As usual we

let the block matrices in F; be ‘a’ and those in F; be ‘b’:

_ [au alz] b= b14 b12]
dzy; 22 ba1  ba
Then we have:
by,
p= [aubn a11b22] = ay1b, by, = A, = a;b, p= 22_2 _ G2
= = a1102 = 1 = =
az1b1  az1by; az1 Aaz1by by, ay
ay1  @11by
1 by,
_[aizb1y a2b2] _ b4 _ _ b1z _ Q22
= b b |~ a;2b14 b = By =a;2b11 =7 l=—
Q22011 Q22012 Qz2 Q2012 by, a2

@iz Q12b11
We use the previously mentioned equations to get:
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= |a11b21 + dz1b,; = 1, = l@zbu + azby; = 1|
l=-1/p q=-1/k
= |a12b21 + a3, b,; = 0| = |a11b11 + az1b = 6'

Solving this set of equations leads to:

A4 = — b12 A9 = b22
11 det(b) 127 det(b)
Arq = bn azy = — b21
21 = Get(h) 22 det(b)
_ —biz by = [Pu e
a= (1/det(b)) [ b11 _b21] b - b21 b22]

We now look at the construction of 2-by-2 matrices R, S and T in the product and look at the
means of constructing them. We know that the matrices R and T need to be of rank-1 while the

matrix S is of full rank.

SRS U

"uq Tluz] _ R1 Rz
= R3

R=ru = [2] [a uz] = [r2u1 2l Ry

_ t1v1 tlvz]_ T1 Tz]

ty
=ty = V1 V] = =
T tv [tz] [ 1 2] t2 12 tzvz T3 T4

We construct two different S matrices — S; and S, — to determine which should be the one that

needs to be used to get a banded inverse.
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S,=rv +tu' = [:;] 1 v2] + [g] [ur  up]

_ [r1v1 7'1172] [t1u1 f1u2] _ [7’1171 ttu, nvt tluZ] _ [.81 Bz]
1 Uy T, t2u1 tzuz A7 + t2u1 U, + t2u2 3 ﬁ4

S =rv' e =[] v+ af]pa

_ [rlvl rlvz] tyuq tluz] [r1v1 +atyu;, nvy+ atluz] _ [)/1 yz]
25 vy vl T %lhu, tu, vy +atauy v, +atu; Y3 Ya

Now construct M; and M; as follows:
M1=R+SIZ+TZZ M2=R+52Z+TZZ

_ [r1u1 + (v + i)z + (4 v1)2%  ru, + (nv, + tiuy)z + (tlvz)zzl
Uy + (v + tu)z + (8,v1)22  ruy + (v, + tuy)z + (tv,) 22

B [r1u1 + (v, + atiu)z + (tv)z%  ruy + (nv, + atyuy)z + (tlvz)zz]
Uy + (v + atyaug)z + (8,11)22  ruy + (v, + atyuy)z + (tyv,)z?

Let us consider M; first:
M1 = R +512+TZZ

_ [T‘lul + (rlvl + tlul)z + (t1v1)22 rluz + (r1172 + tluz)z + (t1V2)ZZ]
oy + (v + tug)z + (511)22 Uy + (v, + thuy)z + (t,1,)22

Using our determinant notation we have:

_|R1 Rz _ . _ R .31 B
constant = R, Ry~ 0, coefficient of z = Bs ﬂ4 R, R,

. B1 ﬁz 1 R, n T

tof z2 = +

coefficient of z 2 34 T, T, R, R,

.. T B p .. T, T
coefficient of z3 = | ! ! z , coefficientof z* = |} . 2[=0

fricientof #* =[g' gl +[r! 7 fictentof 2 =|r, 7,
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Consider now, the remaining terms — coefficient of z, coefficient of z* and coefficient of z*:
We get: coef ficient of z = 0, coefficient of z3 =0
And: coef ficient of z% =
= det(M,) =0
This implies that the matrix with R, S; and T as blocks will not be invertible.
Let us now consider M;:
My =R + S,z + Tz?

_ [Tlul + (r1171 + atlul)z + (t1v1)22 U, + (7‘1122 + atluz)z + (tlvz)zz]
27 lpuy 4 (nvy + atyuy)z + (t2v1)2%  ryuy + (nv, + atyuy)z + (t,v,)z2

_ R1 Rz _ . . __ R1 R2 Vi Y2
constant—lR3 R, =0, coef ficient of z = |y3 Ya + R, R4|
» i V2| |Ri Ry Ty T
2 _ 1 Ry 1 Iz
coefficient of z% = Vs y4| T, T, + Ry R,
coefficient of z° = }7,: Z:: + ;,.; ]7:; ,  coefficient of z* = :g ;"i =0

Consider now, the remaining terms — coefficient of z, coefficient of z° and coefficient of z*:
We get: coef ficient of z = 0, coefficient of z3 =0
And: coef ficient of z% = (1 — a)(ryty — rity) (Upvy — U v,)
= det(M;) = ((1 — a)(ryty — 1ity) (upvy — 1‘1172))22

Let us look at det(M,) a bit more closely:
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det(M,) = ((1 — a)(rpty — rty) (Upvy — Uy vy)) 22
This will be zero when one of the terms is zero:
(1 = a)(raty — ryta)(upvy — Uy ) =0
>1—-a)=0 or (rt, —nty) =0 or (uv; —u,v,) =0

1) (pty—nt) =0

T t T t
2 1ty =iy, »>2=2 i[l]:“[tﬂ’ >r=ut

=85, =rv' + atu’ = utv’ + atu’ = t(uv' + au’)

This then implies that S, is of rank-1. However, we need it to be of rank-2 if we need the big

matrix to be factorizable with a banded inverse.
ii) (uzvy —uyv) =0

S S TN 1 R
SR U vy Uz Vol

=S, =rv' +atu’ =rpu+atu’ = (rp+at)u’

This once again implies that S, is of rank-1. However, we need it to be of rank-2 if we need the

big matrix to be factorizable with a banded inverse.
i) @Q-a)=0

sa=1 =>5=rm'+tu' =5
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We get that the matrix S; in this case is the same as S;. But we also know that S; does not lead to
a monomial determinant for M;. The determinant will instead be zero implying that the matrix is

not invertible.
Thus we see that as long as @ # 1, it is possible to have a monomial determinant for M,.
We also need the following to hold true:

PT=QR=0

PT — [Al pA; ] [tﬂ’l tﬂ’z]

_ _[B1 qu][rlul 7’11‘2]
kAl kpAl tzvl tzvz

=0 QR = IB; lgB,]lnu; 12Uy

PT = [ Aty vy + pAstavy A tv; + pAstyv, ]
- kA1t1v1 + kpA1t2v1 kA1t1v2 + kpAl tzvz

Binuy +qBynu; Biriu; + qBinu, ]
Biryuy +lgBruy  IByru, + lgBiru,

or =,

PT = [ tyvy + platy tiv; + ptav; ] _ [t +pty) vty +pt) ] _
ktivs + kptavy  ktyvp + kptava] kv (8 +pty)  kvy(ty +pty)

= (t; +ptz) =0, = Z—: =D 2] = [—119]

or =,

nu; +qrauy Uy +qru; ] _ [u1(7'1 +qry)  ux(r +qry) _
nuy +lgruy  Inu, + lgru, lug(ry + qry)  luy(ny +qry)

=em=o =g Gl=[=(

41 pAL M) _ _[B1 qB1][t1] _
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kA1T1 + kpAlrz T2 - lBltl + qultZ -

Ay + pAT; ] _ [rl] —r Qt= [ Byt + qByt; ] _ [Z] — ¢

Pr = [
It can be shown that r and t are linked to the eigenvectors of P and Q
P-ADHx=0

A — A pA,

kA, kpd,—a| = 0= detP—AD =0= (4, - A (kpA; — 1) — (pA1) (kAy)

(P—-Al) =
= (A — D(kpAy — A) = kPAlz
= (kpA % — A (1 + kp) + 22) = kpA,®
>121-40+ kp)) =0
=21=00rA=4;(1+kp)=1
Pe= [ i llal = [l ==
A1x; + pAix; = xp and kA;xq + kpAyx; = x;

n=12x=(r-1)=k= [ = []=[]=r

Thus r is an eigenvector of P. In a similar manner, it can be shown that t is an eigenvector of Q.
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