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Abstract

Sound-hole, an essential component of stringed musical instruments, enhances the
sound radiation in the lower octave by introducing a natural vibration mode called
air resonance. Many musical instruments, including those from the violin, lute and
oud families have evolved complex sound-hole geometries through centuries of trail
and error. However, due to the inability of current theories to analyze complex
sound-holes, the design knowledge in such sound-holes accumulated by time is still
uncovered. Here we present the potential physical principles behind the historical de-
velopment of complex sound-holes such as rosettes in lute, f-hole in violin and multiple
sound-holes in oud families based on a newly developed unified approach to analyze
general sound-holes. We showed that the majority of the air flow passes through
the near-the-edge area of the opening, which has potentially led to the emergence
of rosettes in lute family. Consequently, we showed that the variation in resonance
frequency and bandwidth of different traditional rosettes with fixed outer diameter is
less than a semitone, while the methods based on the total void area predicts varia-
tions of many semitones. Investigating the evolution of sound-holes in violin family
from circular geometry in at least 10th century to the present-day f-hole geometry,
we found that the evolution is consistent with a drive toward decreasing the void
area and increasing the resonance bandwidth for a fixed resonance frequency. We
anticipate this approach to be a starting point in discovering the concepts behind the
geometrical design of the existing sound-hole geometries, and helping the musicians,
instrument makers and scientists utilize this knowledge to design consistently better
instruments.
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Chapter 1

Introduction

Air resonance in musical instruments boosts the sound radiation at low frequencies

where the corpus suffers from absence of natural modes [14]. Studies of the fundamen-

tal air resonance, also referred to as Helmhotlz, cavity and AO resonance, has been

initiated by Savart [17], Helmholtz [23, 22], Rayleigh [15] and Lamb [12] by formu-

lating the resonance frequencies of the resonators with simple circular and elliptical

openings. However, many musical instruments, including those from the violin, lute

and oud families, have evolved far more complex sound-hole geometries. Existing

methods for characterizing the air resonance in such instruments rely on approximat-

ing the complex sound-holes by simple circular and elliptical geometries for which

the analytical solutions are available [9, 6, 18]. For example, f-hole geometry is ap-

proximated as an elliptical hole matching the sinuate slot, and two circular holes

matching the ends [6, 18, 10]. The error due to this approximation is usually cor-

rected by empirical fitting factors [4]. In the aforementioned approximate methods,

the air resonance frequency is assumed to be proportional to the square root of the

void area, which is not a valid approximation as will be shown in this paper. These

methods also suffer from being case dependent and complicated because of the need

to the correction factors. A unified theory for exact calculation of the air resonance

frequency in instruments with complex sound-holes is missing in the literature [4]. A

general theory can provide the analysis tools to pass on and interpret the knowledge

in instrument making, which is accumulated and evolved over centuries. Additionally,



a theoretical method for determining the air resonance characteristics in stringed in-

struments can help the instrument makers improve the instrument design by avoiding

empirical trial and error methods.

We developed a general method for numerical calculation of the air resonance

frequencies of instruments with complex sound-holes such as the one in violin, lute

and oud families. For this purpose, we found it necessary to go back to fundamental

theories on resonators by Rayleigh [15]. Applying our method on lute rosettes, we

showed that the majority of the air flow passes through near-the-edge area of the

opening, and consequently, the central part of such sound-holes contributes least to

the air resonance. This fact has been validated by measuring the resonance frequency

of resonators with sound-holes as circular rings of varying inner diameter. As a re-

sult, the resonance frequency of lute rosettes with the least void area (e.g. Hans

Frei rosettes) measured to vary within a semitone compared to circular sound-holes

(e.g. in guitar) with the same outer diameter. Measuring the resonance character-

istics of several different traditional lute rosettes, we observed that the variation in

resonance frequencies and bandwidths are less than one third of a semitone, much

smaller than the square root of the variation in the corresponding hole areas (used by

conventional methods) for a fixed outer diameter. Different roles such as improving

the aesthetic of the instrument, covering the sound bar and saving the soundboard

wood can be attributed to the appearance of the traditional lute rosettes, potentially

evolved through centuries to have low variation in resonance frequency and band-

width. The low dependence of resonance characteristics on rosette patterns provides

an ease of calculation for lute makers by only measuring the outer diameter.

Economy of void and increase in the bandwidth of air resonance curve have po-

tentially been the driving forces in the evolution of sound-hole geometry in violin

family. A systematic analysis of the sound-holes in violin ancestors shows a line of

development tracing back to circular openings toward the present-day f-hole geome-

try as it follows: circular sound-holes in early viols observed first in 10th century[8],

semi-circular sound-hole in the later ancestors of the violin such as Lyras in 13-th

century [3], crescent-shape sound-holes [16], semi-circular strips [20] and c-holes [20]



in early viols and violins of 16th century [5] and eventually to the present-day f-holes

stayed unchanged since 17th century [5]. Applying the method developed, we showed

that acoustic effects are consistent with this evolution process. For a given resonance

frequency, we observed an increasing trend in resonance bandwidth and a decreasing

trend in the void area of the chronological order mentioned above, which are both

favorable for the sound quality.

The increase in bandwidth, observed in the evolution of sound-hole in violin family,

enhances a wider range of frequencies at low-frequency region of the spectrum where

the absence of modes is well-known [14]. The increase in bandwidth is also favorable

to the instrument maker by giving more tolerance in placing the air resonance. We

also showed that the economy of wood can be another driving force in sound-hole

evolution in violin family. Comparing the two endpoints of the evolution process,

circular and f-hole geometries, at a fixed air resonance frequency, we observed a

reduction of missing wood by a factor of two. The conventional methods, which are

based on void area, would have ignored this fact on efficiency of f-hole in saving wood

area. The saved amount of wood can contribute in more efficient radiation of sound

from the sound board by increasing the radiating area and saving the vertical fibers

of the soundboard. Additionally, changing from circular to more stretched shape such

as f-hole suggests conformity to the violin corpus geometry to avoid interference with

the main mode of the sound board at low frequencies.
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Chapter 2

Method

Assuming the dimensions of the resonance box and the opening are much smaller

than the sound wavelength at resonance frequency, the equation governing air flux

through the opening (Fig. A-1) is given by (Eqs. 2.1-2.4 are derived by Lord Rayleigh

[15]):

d12U ~C2di + Cg U = 0 (2.1)

where U is the volume of the air passing through the opening, co the sound speed, V

the volume of the resonance box, C the conductance of the opening, and t the time.

The resonance frequency of the opening is then obtained as,

f = C (2.2)

In the above, C is an intrinsic property of the opening and depends on the geome-

try of the opening only. For an opening with cross-sectional area A and wall thickness

h, we have:
1 1 h
I- =I + h(2.3)
C C A

where the first term on the right-hand side represents the geometry effect of the

opening and the second term represents the thickness effect. The conductance for

the infinitely thin opening, C, is obtained generally by a potential flow problem. The



associated boundary-value problem for the potential function # consists of the field

equation, V2# =0, and the boundary conditions:

(i) #=1 on the opening surface S

(ii) O#/&n=O on the baffle (where n is the outward normal direction of the boundary

surface )

(iii) # -+ 0 as the distance from the center of the opening Irl -+ oc.

In terms of the normal velocity of the flow at the opening, C is given by

C =J ds (2.4)
2 san

The same expression for conductance can also be obtained from an alternative set of

boundary conditions:

(i) #=0 on the opening surface S

(ii) 8#/On=O on the baffle (where n is the outward normal direction of the boundary

surface )

(iii) #+ -- 1 and #- -1 where #+ is the potential at far infinity on the upper

side of the opening shown in Fig. A-1 and #- is the potential at far infinity on the

lower side of the opening (In Fig. A-1 only #+, the potential on the upper side is

schematically shown).

The conductance is then given by

ffs ads
C_ -san (2.5)

Replacing the value of the potentials in the denominator, which is equal to #+_ -

2, explains the coefficient of j in Eq. 2.4.

For the special case of circular and elliptical openings, the above boundary-value

problem can be solved analytically [12]. For a circular opening with radius R, in

particular, we have C=2R. This is usually used to approximate the conductance of

openings with complex geometries based on equivalent circular opening areas. In this



study we develop an effective and robust approach to obtain the exact solution of

# for an opening of arbitrary geometry. To do that, we apply the so-called source

method in which a source distribution with (unknown) strength a(r) is distributed

over the opening surface S. The resulting potential is

#(r) = f o(r')G(r; r')ds' (2.6)

where G(r; r') = 1/|r - r'| is the Ranking source Green function [11]. The potential #

in (2.6) satisfies all the conditions of the boundary-value problem except the boundary

condition (i). The imposition of this condition leads to an integral equation for

unknown o(r):

Jj o-(r')G(r; r')ds' = 1 (2.7)

In terms of u(r), we have

C = J o(r)ds (2.8)

where use has been made of Eq. 2.4 and the fact that the flux passing through the

surface S is half of the source strength u. Since the sources are distributed on the

infinitely thin surface S (Fig. A-1), half of the flux of the source is flowing above the

surface S (the direction of our interest) and the other half is flowing down the surface

S. So, the flux #/&n= a/2.

To solve the integral equation (2.6), we apply the constant panel method. To do

that, we divide S into N quadrilateral (or triangle) elements, Sj, j=1, 2,... , N, and

approximate u(r) on S by the constant value og = a(rj) where rj represents the

center of Si. With these, (2.7) becomes

N

P,(r)oj=1, rES (2.9)
j=1

where the influence coefficient Pj is given by

Pj (r) = I G(r;r')ds' , j = 1,2,.. .,N (2.10)



Imposition of (2.9) at the centers of the N elements leads to a system of N linear

equations from which the N unknowns, o, j = 1, 2,..., N, can be obtained. With

this method, the numerical error associated with the discretization vanishes with

increasing N as at least N-1/2

In order to validate the numerical scheme, we obtained the conductance of a

circular opening numerically and compared it with analytical results. For circular

opening the conductance is available analytically and is equal to the diameter of the

circle. The error percentage falls to less than one percent when we use the number of

element more than 60 x 60 (Fig. A-2).



Chapter 3

Experimental Setup

The experimental setup comprises of a resonance box with variable volume and re-

placeable top plate. The resonance box is made of a thick cardboard cylinder with

changeable diameter and height, confined with top and back plates (Fig. A-3). In

order to place the natural frequencies of the box much higher than the air resonance

frequencies the walls of the resonance box are chosen from thick 7-mm plywoods and

5-mm cardboards. Sound-holes geometries to be studied are carved in a plywood

with thickness 3 mm and are placed on the top plate (Fig. A-4). Use of advanced

laser-cutting technologies enabled us to carve complex sound-hole geometries such as

the lute rosettes. All the laser cutting process has been done in Media lab and the

workshops of the Architecture department at MIT.

The cavity mode is excited with a speaker (Digital BA735, Boston Acoustics Inc.),

placed in the distance of 20 cm from the sound-hole, and the receiver was chosen as

a microphone (Olympus ME-15) placed inside the resonance box. The microphone

is placed on the back plate inside the resonance box to reduce the ambient noise.

Moving the microphone to different locations on the back plate showed no significant

change in the measurements as is expected because of the small size of the resonance

box (30 cm) compared to the wavelength (150 cm). The speaker distance from the

resonance box has been changed from 10 cm to 100 cm. Different orientations of

the speaker have also been tried by changing the angle between the speaker and

resonance box top plates up to 30 degrees. The change in distance and orientation



of the speaker showed no significant change in the measurements. For distances over

100 cm a reduction in signal to noise ratio has been observed. The input signal was

designed as a slowly varying ramp around the resonance frequency of the specific

opening. The microphone outputs were analyzed by a computer-based acquisition

system. The measurements were made in the time domains, then a Fourier transform

was used to obtain the frequency domain spectra. The Fourier spectra were window-

averaged with a window width of 1000 samples (The sample frequency of the system

is 20000 Hz). The resonance frequency is measured as the mean of the two frequencies

at which 3-dB down line cuts the curve, that is fo = (fi + f2)/2 (Fig. A-5). This

method gives a low standard deviation for the peak of the curves symmetric around

the resonance peak as is in our case. The tests had been first run in closed spaces

where distorted resonance curve (as minor second or third peak) had been observed

due the reflection from the walls. In order to eliminate the effect of the room on

the resonance patterns [6], all the tests have been run in open area (in Killian court

at MIT) where the closest wall is at least 50 m far from the setup (the wavelengths

we worked with were below 1 m, which are much less than 50 m, the characteristic

length of the open area). The resonance curves we measured in the open area were

consequently clean of any distortion because of the long distance of the walls as

reflectors from the setup.

To quantify the damping effects, the 3-dB and 10-dB down bandwidth of the

pressure squared curve normalized to peak are measured directly from the spectrum

(Fig. A-5). The 3-dB bandwidth measurements have been cross validated by another

method [21], which measures the amplitude decay of the output when the sound-hole

is exposed to tone bursts at the resonance frequencies. After exciting the Helmholtz

resonator and then removing the excitation source, the system can be modeled as

a free simple damped oscillator ([13]). The pressure inside the box can then be

expressed as [13],

P(t) = Poe~-w"o sin(/1 - ( 227t + #) (3.1)



where P is the pressure amplitude, ( the damping factor, fo the resonance frequency

and <5 is a phase angle. The following relation holds between the damping factor (

and the 3-dB bandwidth Af [19]:

Af = 2(f (3.2)

So, by measuring the rate of the decay of the pressure oscillation inside the box,

we can find a different way to calculate the 3-dB bandwidth Af. The rate of the

decay is obtained by measuring the slope of the decay of ln(P(t)/Po) as a function

of time (see Fig. A-6) where P 1 is a reference pressure. The slope of the decay

is independent of the reference pressure P0 . From Eq. 3.1, this slope is given by the

coefficient of t in the exponential term,

a = -(27rfo (3.3)

From Eqs. 3.3 and 3.2 the 3-dB bandwidth, Af is given by,

Af = -a (3.4)
7r

One of the parameters for calculating the air resonance frequency is the cavity

volume, which is difficult to measure in instruments with complex sound box such

as violin. The cavity volume of the members of the violin family was measured

by assuming top and back plates to be flat. By taking picture of each instrument

individually at Johnson String Instrument and inserting the picture in AutoCAD

software, we measured the area of the top and back plate and the hight of the sound

box as shown in Fig. A-7. So, the volume of cavity can be found as the product of

the obtained area and the hight by neglecting the 3D curvature of the top and back

plates at this stage. To include the volume change due to 3D curvature of the top

and back plate, a correction factor was calculated for a full length violin by filling

the instrument with sand and measuring the exact cavity volume (Fig. A-8). The

volume of the cavity by flat top and back plates should be multiplied by 1.145 to give

the real volume. Due to lack of access to other instruments in the violin family for



the destructive volume measurement by sand, this correction factor has been used for

other instruments.



Chapter 4

Lute Rosette

The resonance due to Lute rosettes, considered as one of the most complex sound-

holes, has been characterized theoretically and empirically using the method devel-

oped. Lute rosettes come in variety of shapes from which we investigated the follow-

ing traditional roses: Wendelio Venere 1592 (Fig. A-9 a), Warwick Hans Frei 1540

(Fig. A-9 b and e), in Padov 1595 (Fig. A-9 c), Sebastian Schelle 1744 (Fig. A-9 d)

and Wendelin Tieffenbrucker 1590 (Fig. A-9 f) [1]. The percentage void area of the

above rosettes are 44%, 43%, 35%, 36%, 31% and 45%, respectively. The circular

sound-hole theory for air resonance frequencies, which is based on the void area, pre-

dicts the air resonance frequency to change more than three semi-tones from Warwick

Hans Frei rosette with 31% void to Wendelin Tieffenbrucker rosette with 45% void.

The resonance frequency in this theory is obtained by the following expression,

c_ A
S= (4.1)

where A is the total void area, h the wood thickness, V the cavity volume and co

is the sound speed. This formula works well for opening with neck length (here the

wood thickness) much greater than the opening diameter. For small opening neck

length, the above formula gives considerable error, which is corrected by replacing h

with effective thickness he. The effective thickness can only be obtained analytically

for circular and elliptical openings, which is equal to he = h + 7rR/2 for a circular



opening with radius R.

In contrast to the three semi-tone variation by previous methods, the variation

in air resonance frequencies of the above rosettes was observed to remain within 32

cents (each cent is one percent of a semi-tone) by our rigorous approach, with the

Hans Frei I (Fig. A-9 b) having the highest and the in Padov (Fig. A-9 c) having the

lowest resonance frequency. Hence, we concluded that the resonance frequency of the

lute rosettes has low dependency on the total void area of the rose pattern, which

is also in contrast with the general impression among some lute players. For better

understanding of the dependence of resonance frequency on hole density, a lower and

upper limit is found for the rosettes mentioned above. The resonance frequencies of

different lute rosettes are compared to the resonance frequencies of radial and angular

distributions of the void area. In the radial distribution (Fig. A-10 (a)), the void area

is distributed between nine rings with the diameter of the outer ring equal as the

outer diameter of lute rosettes. The width of each rings varies equally from zero to

its maximum value where the void covers the whole area. In the angular distribution

(Fig. A-10 (a)), the void area is distributed between angular sectors where the outer

diameter is again equal to the outer diameter of the lute rosettes. The sectors' angle

varies equally from zero to their maximum value where the whole area is covered by

void. The holes with angular distribution proved to be the lower limit and the holes

with radial distribution proved to be the upper limit for the resonance frequencies of

the above lute rosettes (Fig. A-11).

In a systematic analysis of a circular opening with diameter do, blocked with an

inner circle of diameter di, we showed that the resonance frequency of the resonators

has low dependency to the central blockage (Fig. A-12). We observed that the reso-

nance frequency changes less than a semi-tone while the central area of the opening is

blocked by 50 percent, i.e. di/d, = 0.7 (Fig. A-12). When the inner diameter exceeds

80 percent of the outer diameter (di/d, > 0.8), a steep drop in the resonance frequency

is observed. This theoretical analysis, validated closely by experiments, suggests that

the outer rim of circular openings has major effects on the resonance frequency. This

fact implies that the wood inside the circular sound-holes might be saved without



significant changes in Helmholtz resonance frequency of the instrument. In the case

of the lute rosettes, the central part is filled with patterns that add to the wood area

of the soundboard, as well as the aesthetics of the instruments [24].

In an experimental damping analysis, we showed that the 3 dB-down bandwidths

of the air resonance curves for the rosettes shown in Fig. 1 vary within 10 percent of a

semitone. The bandwidth of the air resonance curve is due to radiation damping and

viscous damping. The radiation damping is a direct function of the conductance of

the opening, or in another words, a direct function of the resonance frequency [7, 13].

Since the resonance frequencies for different patterns varies negligibly, the variation

in radiation damping is also small. The viscous damping is a function of the wall

area over which the majority of the air flux passes. According to the flux distribution

over a rosette (Fig. A-13), the majority of the flux passes by the outer edge of the

opening. As a result, for rosettes with the same outer diameters the effect of viscous

damping does not differ significantly among different patterns. So, the variation of

both the radiation and viscous damping would be small, which is consistent with the

experimental results.

The air flow distribution over the lute rosettes, obtained theoretically via the

developed method, confirms that the major flow passes through the outer edge of

the opening. For the case of the Tieffenbrucker rosette (Fig. A-13), 50 percent of

the flux passes through a rim enclosed between the outer boundary of the opening

with radius ro and a circle with radius 0.84ro. The air flow distribution explains the

slight changes of resonance frequency (less than a 32 cents) among different rosettes

studied, compared to the changes in void areas (more than 45 percent). As a general

trend, the flow speed tends to be higher near the edges, which can be observed even in

the small holes in the middle of the pattern. The overall flow through each individual

hole tends to be higher if the hole is closer to the outer boundary of the opening.

The rosettes in lute, as well as the ones in theorbo, also serves to cover the bracings

structure underneath, which would aesthetically be unpleasing. This baring structure

helps to transfer modal energy across what would otherwise be a void in the overall

soundboard structure of the instrument. The mentioned bracing structure is much



sparser than the rosette and so has negligible effect on the resonance frequency.

The air resonance frequency of Andreas Berr lute has been measured by using the

same experimental approach. The test has been carried out at the Museum of Fine

Arts in Boston where the instrument is kept. The instrument made by Andreas Berr

(Austrian, 1656-1722) is 81 cm in length, 28.3 cm in width and 13.5 cm in depth. The

rose diameter was measured as 59 mm (a replicate of the rose is shown in Fig. A-14).

The materials used are Ivory, spruce and ebony. The spectrum of the instrument at

low frequencies showed an air resonance frequency at 124 Hz Fig. A-15. Because of

the complex geometry of the sound box, the volume measurement has not been done.



Chapter 5

Violin f-hole

Violin sound-holes have been evolved over the course of centuries to the present-day

f-hole geometry. We showed that acoustic effects, including the economy of the void

and the increase in the bandwidth of the air resonance curve, are the potential driving

forces in this evolution process. In violin family, the circular openings in 10th-century

viols [8] has gone through gradual changes to semi-circular opening in Lyras in 13th

century [8], crescent-shape [16] and semi-circular strip [20] openings in 13th century,

primary c-hole [20] and c-hole in early viols and violin of 16th century [5] and even-

tually to the present-day f-holes stayed unchanged since 17th century [5]. We carved

openings with the above geometries with sizes that make the resonance frequencies

of all the patterns equal. This size for each opening was obtained theoretically by

the developed approach to measure the resonance frequency of general openings. The

resonance curve of each pattern has been measured experimentally and the 10-dB

bandwidth, defined as the width of the resonance curve at 10-dB down the peak, has

been measured. The 10-dB down bandwidth was chosen since the air resonance peak

in violin stands above the background trend by roughly 10-dB (Fig. A-17). We ob-

served the increase in the bandwidth of the air resonance curve and the decrease in the

void area as two significant trends in the mentioned evolutionary process (Fig. A-16).

Comparing the circular opening to the f-hole with a given resonance frequency, we

observed an increase of a semi-tone in the 10-dB-down bandwidth of the resonance

curve, and a saving of the missing wood by a factor of more than two (Fig. A-16). The



air resonance peak in violin spectrum [2] shows that the 10-dB down bandwidth is

more appropriate than the more standard 3-dB down bandwidth (Fig. A-17) because

the 10-dB bandwidth is the width of the peak that is added to the spectrum compared

to the nearby trend without the peak. The increase in bandwidth of f-hole can be

attributed to the high air velocity at the necks of the f-hole (Fig. A-21). The high

rate of flow at the necks increases the viscous damping substantially. The tendency in

bandwidth increase has the following potential bases: (i) error reduction in placing the

air resonance for design purposes, (ii) shortening of resonance duration and making

the instrument spectrum even by lowering the peak of the air resonance frequency,

which helps remove wolf notes and (iii) amplifying a wider range of frequencies. The

trend in evolving to a more stretched shape can be attributed to the tendency in

having parity with the geometry of the violin body. The more efficient sound-holes

in void economy, such as f-hole, have the benefit of less interference with the primary

mode shapes of the soundboard. Additionally, a soundboard with less missing wood

have less vertical fibers cut, which is beneficial in preserving the longitudinal strength

of the wood.

Previously, the air resonance frequency of violin is obtained by the following two

approaches. In the first approach, f-hole geometry is approximated by ellipse and

circles [6, 18, 10]. This approach is based on a network description of the air and

top plate resonances [18]. In this approach the inertance of f-hole is estimated by

reducing it to an ellipse matching to the sinuate slot and two circular holes matching

the ends. The initial parameters of the network include the inertance of each hole

and the capacitance of volume. The inertance of each hole itself is composed of

internal and external inertances describing the lower and upper parts of the f-hole,

which are in contact with the air in the body and outside the body, correspondingly.

The contribution of the internal and external inertance is assumed to be not equal

and a parameter is attributed to account for the ratio between them. By comparing

the resonance frequency from this network to the experimental results, the initial

parameters are adjusted. The change in parameters varied from zero percent to 33

percent [18]. In the second approach, the following equation is used to obtain the



resonance frequency [4]:

co A
2f 7 -- A-)-V (5.1)

where A is the total void area, co the sound speed, V the volume of the resonance box,

h the thickness of the board and a is adjusted empirically to agree with experimental

results [4], which depends on the shape of the opening. Both of these approaches

have the drawback of being case dependent, that is by changing the instrument the

empirically determined coefficient has to be determined again. In addition, this ap-

proach results in a different functionality of the resonance frequency on the void area

from the one obtained via the general sound-hole theory discussed below.

Plugging Eq. 2.3 into Eq. 2.2, we have the following relation for the air resonance

of general opening,

co A
f = - - AC)V (5.2)2 7r (h + ACV

where C is the conductance of the f-hole with zero wood thickness. Comparing

Eqs. 5.1 and 5.2, we see the difference in the functionality of the void area A between

the semi-empirical method used and our rigorous approach for general sound-hole.

We applied our approach developed for general sound-holes to violins with f-hole

geometry traced from a drawing of the Emiliani Stradivari of 1703 (The photograph

of this violin is shown in Fig. A-18 [5]). Using the geometry of Emiliani Stradivari of

1703 for a pair of f-holes with unit vertical length, we obtained the conductance of

an infinitely thin opening with the same geometry as C = 1.01 (unit legnth) and the

void area as A = 0.192 (unit length squared). Using Eq. 2.3, and scaling the vertical

length from the unit length to L, we have,

co L(0.193)f = -. ( .321r V(0.192 -+ 1.1h/L)

where L is the vertical length of the f-hole. Use of Eq. 5.3 is valid for all the members

of the violin family as long as the f-hole geometry remains the same as the Stradivari



of 1703. For violins with different f-hole geometry similar expression as Eq. 5.3 can

be obtained. The theoretical results obtained from Eq. 5.3 show a close agreement

to the experimental results (Fig. A-19), while using Eq. 5.1 results in a considerable

offset for each instrument that is usually corrected empirically for the corresponding

instrument [4]. To compare the air resonance frequencies of violin family obtained by

Eq. 5.1 and Eq. 5.3, we defined the following error function,

N

error = (fi - fe,,)2/N (5.4)

where the resonance frequency fi is the air resonance frequency of the i-th instrument

obtained either by Eq. 5.1 or 5.3 and fe,i is the the resonance frequency of the cor-

responding instrument obtained experimentally. N is number of instrument studied

in the family. The lower the error defined above, the better a formulation describes

the air resonance frequencies of the members of the violin family. The error between

the experimental frequencies and the ones obtained by Eq. 5.3 is obtained as 5.06

Hz. To obtain the error between the experimental frequencies and the ones obtained

by Eq. 5.1, first we should adjust the parameter a. We chose different members of

the violin family to find a, and then compare the experimental frequencies with the

one obtained from Eq. 5.1 using the same a. Based on which instrument to choose

for adjusting a the error would be different. The error of using Eq. 5.1 is shown in

Table B.1. The instruments shown in the table are the one that used for adjusting

the parameter a. The same value of a is then used for other instruments. As it can be

seen, a drawback of using Eq. 5.1 is that the error changes based on the instrument

chose to adjust the parameter a. In addition, the error of using Eq. 5.1 is always

more than the error of our approach given as 5.06 Hz.

In a systematic analysis we have also investigated the effect of changing the dis-

tance between the f-holes on air resonance frequency (Fig. A-20). According to our

result, by changing the distance the resonance frequency varies, implying the inter-

action between the two f-holes. Nevertheless, the frequency variation due to f-hole

spacing is not significant. As is shown in Fig. A-20, if the distance between f-holes is



changed by a factor of two, the variation in resonance frequency would be less than

a semi-tone. As it can be seen from Fig. A-20, variation within 5 percent in distance

between the f-holes results in variation of less than 5 cents.

In order to investigate the effect of the geometry of the f-hole on air resonance

frequency, the flux distribution over the opening is studied (Fig. A-21). The flux is

more concentrated at the neck of the f-hole (the location where the circular parts

are connected to the sinuate part), where the opening is more constricted. The high

rate of air displacement at the neck makes the damping sensitive to the shape of

the neck region. So, variation in the geometry of the neck results in variation in

bandwidth of the resonance curve. A comparison of an f-hole opening with a circular

opening with the same resonance frequency, shows 64 percent increase in bandwidth.

The substantial increase in the bandwidth can be attributed to the increase in viscous

damping due to irregular shape of f-hole, since the radiation damping is only a function

of the conductance, which is the same openings with the same resonance frequency.
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Chapter 6

Multiple Sound-holes

The sound-hole in instruments such as theorbo and oud appears in the form of three

circular holes. It might be expected that the main air resonance frequency can be

approximated by the linear superposition of the effect of each hole as has been done

in violin family [18] . In this approximation, the conductance of each hole, for which

the analytical expression exists, is superimposed to each other to obtain the conduc-

tance of the whole opening. Using the developed method to obtain the air resonance

frequencies in theorbo and oud, we have shown that the linear superposition approx-

imation leads to significant error (Fig. A-22). For oud, in which two of the holes are

much smaller than the other, the linear superposition leads to overestimation of more

than two semitones in air resonance frequency (Fig. A-22). For theorbo, in which the

holes are in comparable size and closer to each other, the error due to superposition

appears to be more than four semitones more than the actual value (Fig. A-22).

The error in superposition approximation stems from the assumption that each

hole acts independently at resonance. In contrast, the flow passing through each hole

interacts with each other that makes it essential to solve the flow field simultaneously

for the whole opening (Fig. A-23). As the distance between the holes increases, the

amount of the interaction decreases and the superposition method gives a better

approximation. This fact explains the higher error in theorbo in which the holes

are closer to each other compared to the one in the oud (Fig. A-22). It should be

mentioned that the use of the developed method is valid for multiple openings as long



as the distance between the holes (~ 5 cm in theorbos and - 20 cm in ouds) is much

less than the wavelengths at resonance (- 2 m).



Chapter 7

Conclusion

We developed a general method that enables us to calculate the air resonance fre-

quencies of instruments with complex sound-holes such as the one in violin, lute and

oud families. In addition, using this method we are able to analyze the flow transport

distribution over general openings. Using this method, we presented the potential

physical principles behind the geometrical design of complex sound-holes.

We showed that the majority of the air flow passes through the near-the-edge

area of the circular opening, and consequently, the central part of such sound-holes

contribute least to the air resonance. This theoretical analysis, confirmed closely by

experiments, suggests that the outer rim of circular openings has major effect on the

resonance frequency. An important consequence of this finding is that the resonance

frequency is not necessarily proportional to the square root of the void area. In fact

we showed that if the aspect ratio of the sound-hole geometry is fixed, the resonance

frequency is proportional to the forth root of the area. The fact that the majority of

the air transport happens at the outer rim implies that the wood inside the sound-hole

can be used more efficiently, which might have been the cause to the emergence of

the rosette lutes. Using the developed method, it was observed that variation in air

resonance frequencies of the rosettes studied (we studied seven different rosettes with

fixed outer diameters) varies within 32 cents. The air flow distribution over the lute

rosettes, obtained theoretically via the developed method, confirms that the major

flow passes through the outer edge of the opening.



Violin sound-holes have been evolved from circular geometry to the present-day

f-hole over the course of centuries. We showed that the acoustic effects, including the

economy of the void and the increase in the bandwidth of the air resonance curve,

are the potential driving forces in this evolution process. In violin family, the circular

openings in 10th-century viols has gone through gradual changes to semi-circular

opening in Lyras in 13th century, crescent-shape and semi-circular strip openings in

13th century, primary c-hole and c-hole in early viols and violin of 16th century [5]

and eventually to the present-day f-holes stayed unchanged since 17th century [5].

Comparing the circular opening to the f-hole with a given resonance frequency, we

observed an increase of a semi-tone in the 10-dB-down bandwidth of the resonance

curve, and a saving of the missing wood by a factor of more than two. The 10-dB

bandwidth was chosen because the peak of the air resonance in violin stands roughly

10-dB above the background trend. Additionally, a theoretical expression for the

main air resonance frequencies of violin family has been obtained using the developed

method. This new expression implies that for thin soundboard compared to the f-hole

length, the resonance frequency is proportional to the square root of the f-hole length.

Consequently, the resonance frequency is proportional to the forth root of the f-hole

area, provided that the aspect ratio remains fixed. This theoretical expression show

a close agreement to. the experimental results, while the approach based on circular

sound-hole theory results in a considerable offset that is usually corrected empirically.

The sound-hole in instruments such as theorbo and oud appears in the form of

three circular holes. Using the developed method to obtain the air resonance frequen-

cies in theorbo and oud, we have shown that the linear superposition approximation

leads to significant error. For oud, in which two of the holes are much smaller than the

other, the error due to linear superposition is more than two semitones. For theorbo,

in which the holes are in comparable size and closer to each other, the error due to

superposition appears to be more than four semitones.



Appendix A

Figures
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Figure A-1: Schematic of an opening. The potential # 0 on the opening surface,
80/8n = 0 on the baffle and # -± 0 as the distance from the center of the opening
|r| -+ oo.
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Figure A-2: The error in validation of the numerical scheme for calculating the con-
ductance of a circular opening. The error percentage, calculated as e = (Cnumerical -
Canalytical)/Canalytical x 100 is shown versus n the number of element on each side (i.e.,
the pattern is digitized as n x n grid and the total number of elements is N = n 2 ).



Figure A-3: Resonator setup is shown. The resonance box is made of a cardboard
with thickness of 5 mm, and top and back plates out of plywood with thickness of 7
mm. The pattern is carved on a 3-mm plywood and mounted on the top plate. The
contact between the top and back plates and the cardboard are sealed with rubber
tapes. The microphone as the receiver is placed inside the resonance box attached to
the back plate. The speaker is placed in front of the pattern.

46

NINE" ... . ......



Figure A-4: Opening patterns: (a) Lute rose (Wendelin Tiffenbrucker [1]), (b) Lute
rose (Warwick Hans Frei [1]), (c) Theorbo rose [1], (d) Violin f-hole, (e) Oud rose
(pattern removed) and (f) sound-hole in the form of a ring.
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Figure A-5: Air resonance curves of f-hole are shown for n = 9 measurements (gray
curves). The sound level is normalized by the peak level. Each curve is smoothed by
window averaging with window width of 1000 samples. The black line represents the
average of the nine measurements. The horizontal dotted line represents the 3-dB
and 10-dB down level from the peak. Frequencies fi and f2 are where the 3-dB down
level cuts the curve. The peak frequency is then obtained as fo = (fi + f2)/2.
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Figure A-6: Measuring the decay slope of the amplitude of the pressure inside the box
provides a different method to calculated the 3-dB down bandwidth of the resonance
curve shown in Fig. A-5. The slope a is measured during the free oscillation of the
resonator after the excitation source is removed (in this figure, after 5.65 s). The
3-dB down bandwidth Af is then obtained as Af = -2. The reference pressure P

ir
is set to PO= 1. The slope ax is independent of the value of P0.
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Figure A-7: The volume of the sound box is measured by first assuming the top and
back plates to be flat and then correct this assumption by a correction factor obtained
by filling the volume with sand. The flat area of the top and back plate and the height
of the box is measured in AutoCAD by inserting the images of each instruments.
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Figure A-8: The cavity volume is measured by filling the violin with sand.
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Figure A-9: The air resonance of the following lute rosettes is characterized: (a) Wen-
delio Venere 1592 (b) Hans Frei 1 1540 (c) in Padov 1595 (d) Sebastian Schelle 1744

(e) Hans Frei 2 1540 (f) Wendelin Tieffenbrucker 1590. Comparing the resonance fre-

quency due to each rosettes, we observed a variation within 30 percent of a semitone.

With center frequency of 123 Hz used in the experiment, the 3-dB-down bandwidth

variation stays within eight percent of a semi-tone. It should be mentioned that the

outer diameters and thicknesses of all the rosettes and the experimental setup such
as the box volume, microphone and speaker placements were the same in the above

comparison.



(a) radial distribution (b) angular distribution

Figure A-10: (a) The radial distribution of the void area, (b) the angular distribution
of the void area used as the lower and upper limits for the resonance frequencies of
the discussed lute rosettes (Fig. A-11). The radial distribution is composed of nine
rings with equal widths. To increase the void area, the width of each ring is equally
increased. The angular distribution is composed of 20 sectors with equal angles. To
increase the void area, the angle of each sector is increased equally.
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Figure A-11: Comparing the resonance frequencies of different lute rosettes to radial
and angular hole distributions (Fig. A-10). The frequency fo and the area Atotai
represent respectively the resonance frequency and the area of a circular opening
with the same diameter of the outer diameter of lute rosettes studied.
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Figure A-12: Resonance frequency of a ring with different ratio between the outer
and inner diameters is shown. The diameter of the inner and outer circles are shown
by d and D, respectively. The frequency fo corresponds to the resonance frequency
of an opening with diameter D (d=O). The vertical axis on the right are scaled on
semitones (In diatonic system, each octave is divided into 12 equidistant intervals
called semitone. So, each semitone is 21/12 of an octave). The results show that the
resonance frequency is highly dependent on the outer periphery of the opening.
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Figure A-13: Flux distribution profile in log scale, log(u) (the source strength o is
obtained from Eq. 2.9) is shown for Warwick Hans Frei lute. The flux is normalized
by its maximum value, so the zero value in the colorbar represents the maximum flux
value.



Figure A-14: The rosette on Andreas Berr lute. The image is taken from the website
of Stephen Barber and Sandi Harris, lute makers [1].

57



0.8-

0 0.6-

a)

N

ca
0.4-

~0

Z

0.2-

40 60 80 100 120 140 160 180 200 220 240
Frequency (Hz)

Figure A-15: The spectrum of the Andreas Berr lute at low frequencies. The sound

level is normalized by the peak level. The air resonance frequency corresponding the

peak shown was measured at 124 Hz. The blue curve shows the raw data, and the

red line shows the process data after taking Fourier Transform. The asymmetry of

the resonance curve is due to the reflection of sound from the walls.
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Figure A-16: The line of development of sound-holes in violin is shown for circular

opening (a) in 10th-century viols [8] (A), semi-circular opening (b) in Lyras in 13th

century [8] (B), crescent (c) [16] and semi-circular strip (d) [20] in 13th century

instruments (C), primary c-hole (e) [20] [20] and c-hole (f) in early viols and violins

(D,E) in 16th century [5] and present-day f-hole (g) in violins (F) staying unchanged

since 17th century [5]. The 10-dB downandwidths of air resonance of the above

openings are shown for a fixed resonance frequency (solid line). The 10-dB-down

bandwidth of resonance curve increases monotonically from circular opening to f-hole

up to a semitone. The opening area (dotted line), normalized by the area of the

present-day f-hole, is reduced by a factor of two from circular opening to c-hole and

f-hole.
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Figure A-17: The sound spectrum of four famous Cremonese violins from Martin
Schleske's website [2]. The air resonance at around 270 Hz shows that a 10-dB down
bandwidth is more appropriate than the more standard 3-dB down bandwidth.
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Figure A-18: The drawing of the Emiliani Stradivari of 1703 from which the expression
for air resonance frequency is obtained [5].



Experiment
General sound-hole theory
Circular sound-hole theory

0.FI

0

U
S

0

to

9 e

40 8 4 2 4 4 41,5116 T i 4 4 2

40 50 60 70 80 90 100

Body length L b (cm)

Figure A-19: The effectiveness of the developed approach is shown by applying it
to obtain exact air resonance frequency in violin family. The results using general
sound-hole theory (in blue) are compared to the results using circular sound-hole
theory (in black). A correction factor is used to for each member of the family to
scale the circular theory data to its corresponding experimental data. The numbers
below the figure shows the conventional sizes of each instrument.
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Figure A-20: The effect of the distance between f-holes on air resonance frequency.
The resonance frequency f is normalized by fo, the air resonance frequency of an f-hole
geometry the same as Stradivari of 1703 (Fig. A-18). The distance d is normalized by
do, the distance between f-holes of the same violin. The horizontal dotted lines shows
one semi-tone higher and lower than the reference frequency. The change in distance
by a factor of two results in resonance frequency variation of less than a semi-tone.
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Figure A-21: Flux distribution profile in log scale, log(o-) (the source strength o is
obtained from Eq. 2.9) is shown for f-hole. The flux is normalized by its maximum
value, so the zero value in the colorbar represents the maximum flux value. The
irregular shape of f-hole results in higher rate of flux at the necks. The consequent
effect is an increase in viscous damping and consequently, an increase in resonance
bandwidth. The flux is normalized by the maximum velocity.
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Figure A-22: The distance between the holes D, normalized by a reference distance
Do in standard theorbos and ouds, is varying having the hole diameters d fixed. For
theorbo, the upper three circles, Do = 1.24d, and for oud, the lower three circles, Do =
1.39d. The frequencies f and fo represent the corresponding resonance frequencies.
The resonance frequencies of theorbo and oud (Do/D = 0), obtained via the developed
method, is compared with the superposition approximation, which is equivalent to the
case that the holes are infinitely far (Do/D -* 0, shown by the arrows). The lower and
upper sketches represent the oud and theorbo sound-holes, respectively. The arrows
a and b indicate the resonance frequencies when the holes are infinitely far from each
other. In this case, using superposition to calculate the resonance frequency is valid.
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Figure A-23: Flux distribution profile in log scale, log(o) (the source strength o is
obtained from Eq. 2.9) is shown for oud sound-hole. The flux is normalized by its
maximum value, so the zero value in the colorbar represents the maximum flux value.



Appendix B

Tables

Table B.1: The error obtained using Eq. 5.4 based on the semi-empirical Eq. 5.1. Each
instrument shown in the table is the one used to find the parameter a in Eq. 5.1. The
resonance frequencies of other instruments of the family is then obtained based the
same value of a.

Instrument violin viola cello bass
Size 3 15" 16" 3 4 1 3

4 8 4 2 4 4 2 4
Error (Hz) 13.77 5.14 5.78 6.19 7.62 6.81 7.59 6.55 5.14 10.89
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