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ABSTRACT
The popularity of Aloha(-like) algorithms for resolution of
contention between multiple entities accessing common re-
sources is due to their extreme simplicity and distributed
nature. Example applications of such algorithms include
Ethernet and recently emerging wireless multi-access net-
works. Despite a long and exciting history of more than
four decades, the question of designing an algorithm that is
essentially as simple and distributed as Aloha while being
efficient has remained unresolved.

In this paper, we resolve this question successfully for
a network of queues where contention is modeled through
independent-set constraints over the network graph. The
work by Tassiulas and Ephremides (1992) suggests that an
algorithm that schedules queues so that the summation of
“weight” of scheduled queues is maximized, subject to con-
straints, is efficient. However, implementing such an algo-
rithm using Aloha-like mechanism has remained a mystery.
We design such an algorithm building upon a Metropolis-
Hastings sampling mechanism along with selection of“weight”
as an appropriate function of the queue-size. The key ingre-
dient in establishing the efficiency of the algorithm is a novel
adiabatic-like theorem for the underlying queueing network,
which may be of general interest in the context of dynamical
systems.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Stochastic processes,
Markov processes, Queueing theory; C.2.1 [Network Ar-
chitecture and Design]: Distributed networks, Wireless
communication
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1. INTRODUCTION
A multiple-access channel is a broadcast channel that al-

lows multiple users to communicate with each other by send-
ing messages onto the channel. If two or more users simul-
taneously send messages, then the messages interfere with
each other (collide), and the messages are not transmitted
successfully. The channel is not centrally controlled. In-
stead, users need to use a distributed protocol or algorithm
to resolve contention. The popular Aloha protocol or algo-
rithm was developed more than four decades ago to address
this (e.g. see [1]). The key behind such a protocol is using
collision or busyness of the channel as a signal of congestion
and then reacting to it using a simple randomized rule.

Although the most familiar multiple-access channels are
wireless multiple-access media (a la IEEE 802.11 standards)
and wired local-area networks (such as Ethernet networks),
now multiple-access channels are also being implemented us-
ing a variety of technologies including packet-radio, fiber-
optics, free-space optics and satellite transmission (e.g. see
[12]). These multiple-access channels are used for commu-
nication in many distributed networked systems, including
emerging communication networks such as the wireless mesh
networks [25].

Despite the long history and great importance of multi-
access contention-resolution protocols, the question of de-
signing an efficient Aloha-like simple protocol (algorithm)
has remained unresolved in complete generality even for one
multiple-access channel. In this paper, we are interested in
designing a distributed contention resolution protocol for a
network of multiple-access channels in which various subsets
of these network users (nodes) interfere with each other. For
example, in a wireless network placed in a geographic area,
two users interfere with each other if they are nearby and
do not interfere if they are far apart. Such networks can be
naturally modeled as queueing networks with contentions
modeled through independent-set constraints over the net-
work interference graph. For this setup, we will design a
simple randomized, Aloha-like, algorithm that is efficient.
Indeed, as a special case, it resolves the classical multiple-
access single broadcast channel problem as well.

1.1 Related work



Design and analysis of multiple-access contention resolu-
tion algorithms have been of great interest for four decades
across research communities. Due to its long and rich his-
tory, it will be impossible for us to provide a complete his-
tory. We will describe a few of these results that are closer
to our result. Primarily, research has been divided into two
classes: single channel multiple-access protocols and net-
work multiple-access protocols.

Single multi-access channel. The research in single chan-
nel setup evolved into two branches: (a) Queue-free model
and (b) Queueing model. For the queue-free model, some
notable works about inefficiency of certain class of proto-
cols are due to Kelly and McPhee [18][19][20], Aldous [2],
Goldberg, Jerrum, Kannan and Paterson [10] and Tsybakov
and Likhanov [32] — the last one establishing impossibil-
ity of throughput optimality for any protocol in the queue-
free model. On the positive side for the queue-free model,
work by Mosley and Humblet establishes existence of a“tree-
protocol” with a positive rate. There are many other re-
sults on related models; we refer an interested reader to
Ephremides and Hajek [6] and the online survey by Leslie
Goldberg [11].

For the queueing model, a notable positive result is due
to Hastad, Leighton and Rogoff [15] that establishes that if
there are N users with each having the same rate λ/N , a
(polynomial) version of the standard back-off protocol is sta-
ble as long as λ < 1. Of course, this does not extend to case
when users have different rates even though their net rate
might be less than 1. In summary, there is no known algo-
rithm that operates without any information exchange be-
tween queues while being efficient (or throughput-optimal)
in the queueing model even for single multi-access channel.

Network of multiple-access channels. The lack of any
efficient protocol without information exchange even for a
single channel has led to an exciting progress in the past 5
years or so for designing message-passing algorithms for a
network of multiple-access channels. Interest in such algo-
rithms has been fueled by emergence of wireless multi-hop
networks as a canonical architecture for an access network
in a residential area or a metro-area network in a dense city.
In what follows, we briefly describe some of the key recent
results.

Primarily, the focus has been on a network queueing model
with an associated interference graph. Here two queues
can not transmit simultaneously if they are neighbors in
their interference graph. Therefore effectively a contention-
resolution protocol or scheduling algorithm is required to
schedule, at each time, transmissions of queues that form
an independent set of the network interference graph (see
Section 2 for a detailed formal description).

Now, ignoring implementation concerns, the work by Tas-
siulas and Ephremides [31] established that the maximum
weight (MW) algorithm, which schedules queues satisfying
independent-set constraints with maximum summation of
their weights, where the weight of a queue is its queue-size,
is throughput-optimal. However, implementing the MW al-
gorithm, i.e. finding a maximum weighted independent set
in the network interference graph in a distributed and sim-
ple manner, is a daunting task. Ideally, one wishes to design
a MW algorithm that is as simple as the random-access pro-
tocols (or Aloha). This has led researchers to exploit two

approaches: (1) design of random-access algorithms with ac-
cess probabilities that are arrival-rate-aware, and (2) design
of distributed implementations of MW algorithms.

We begin with the first line of approach. Here the ques-
tion boils down to finding appropriate channel access prob-
abilities for head-of-line packets as a function of their local
history (i.e. age, queue-size or backoff). In a very impor-
tant and exciting recent work, Bordenave, McDonald and
Proutiére [3] obtained characterization of the capacity region
of a multi-access network with given (fixed) access probabil-
ities in the limit of the large network size (mean-field limit).
Notably, this work settled an important question that had
remained open for a while. On the flip side, it provides
an approximate characterization of the capacity region for
a small network (precise approximation error is not clear
to us). Also, a fixed set of access probabilities is unlikely
to work for any arrival rate vector in the capacity region.
Therefore, to be able to support a larger capacity region, one
needs to select access probabilities that should be adjusted
depending on system arrival process and this will require
some information exchange.

In an earlier work motivated by this concern, Marbach
[21] as well as Eryilmaz, Marbach and Ozdaglar [22] did con-
sider the selection of access probabilities based on the arrival
rates. In a certain asymptotic sense, they established that
their rate-aware selection of the access probabilities allocate
rates to queues so that the allocated rates are no less than
the arrival rates. A caveat of their approach was “saturated
system” analysis and the goodness of the algorithm in an
asymptotic sense.

Another sequence of works by Gupta and Stolyar [14],
Stolyar [30] and Liu and Stolyar [17] considered random-
access algorithms where the access probabilities are deter-
mined as a function of the queue-sizes by means of solving
an optimization problem in a distributed manner. The algo-
rithm has certain throughput (Pareto) optimality property.
However, it requires solving an optimization problem in a
distributed manner every time! This can lead to a lot of
information exchange per time step. We take note of a very
recent work by Jiang and Walrand [16] that employs a sim-
ilar approach for determining the access probabilities using
arrival rate information. They also speculate an intuitively
pleasing connection between their rate-aware approach with
a queue-aware approach. However, they do not establish the
stability of the network under their algorithm. Interestingly
enough, we strongly believe that our proof techniques may
establish the stability of (a variant of) their algorithm.

Many of these approaches for determining access prob-
abilities based on rates are inherently not ‘robust’ against
change of rates and this is what strongly motivates queue-
based approaches, i.e. distributed implementation of MW al-
gorithm. As the first non-trivial step, Modiano, Shah and
Zussman [24] provided a totally distributed, simple gossip al-
gorithm to find an approximate MW schedule each time for
matching constraints (it naturally extends to independent-
set constraints and to cross-layer optimal control of a multi-
hop network, e.g. see [7]). This algorithm is throughput-
optimal, like the standard MW algorithm it does not re-
quire information about arrival rates, or it does not suffer
from the caveat of “saturated system” analysis. In this al-
gorithm, the computation of each schedule requires up to
O(n3) information exchange. In that sense, the algorithm
is not implementable and merely a proof-of-concept. Mo-



tivated by this, Sanghavi, Bui and Srikant [26] designed
(almost) throughput-optimal algorithm with constant (but
large) amount of information exchange per node for comput-
ing a new schedule. However, their approach is applicable
only to matching constraints and it does require (large) con-
stant amount of co-ordination between local neighborhoods
for good approximation guarantee (e.g. for 95% throughput,
it requires co-ordination of neighbors within ∼ 20 hops!).
Finally, their approach does not extend to independent-set
constraints.

In summary, none of the random-access based algorithms
that are studied in the literature have desirable properties,
as one or more of the following limitation exists. (1) They
assume“saturated system”, hence need to solve an optimiza-
tion problem using the knowledge of arrival rate that re-
quires a lot of message-passing. (2) The capacity region is
not the largest possible. (3) The distributed implementation
of the MW algorithm, though provides the proof-of-concept
of existence of a distributed, simple and throughput-optimal
algorithm; they require a lot of information exchange for the
computation of each schedule. That is, they are not simple
or elegant enough (like Aloha) to be of practical utility.

1.2 Contributions
As the main contribution of this paper, we design a through-
put-optimal and stable1 random-access algorithm for a net-
work of queues where contention is modeled through inde-
pendent set constraints. Our random-access algorithm is
elegant, simple and, in our opinion, of great practical im-
portance. And it indeed achieves the desired throughput-
optimality property by making the random-access probabil-
ities time-varying and a function of the queue-size. The key
to the efficiency of our algorithm lies in the careful selection
of this function.

To this end, first we observe that if queue-sizes were fixed
then one can use Metropolis-Hastings based sampling mech-
anism to sample independent sets so that sampled indepen-
dent sets provides a good approximation of the MW algo-
rithm. As explained later in detail (or an informed reader
may gather from the literature), the Metropolis-Hastings
based sampling mechanism is essentially a continuous time
random access protocol (like Aloha). Therefore, for our pur-
poses the use of Metropolis-Hastings sampler would suffice
only if queue-sizes were fixed. But queue-sizes change es-
sentially at unit rate and the time for Metropolis-Hastings
to reach “equilibrium” can be much longer. Therefore, in
essence the Metropolis-Hastings mechanism may never reach
“equilibrium”and hence such an algorithm may perform very
poorly.

We make the following crucial observations to resolve this
issue: (1) the queue-size may change at unit rate, but a func-
tion (say f) of the queue-size may change slowly (i.e. has
a small derivative f ′); (2) the MW algorithm is stable even
when the weight is not the queue-size but some slowly chang-
ing function of the queue-size. In this paper, we will use a
function f(x) ∼ log log x for this purpose. Motivated by
this, we design Metropolis-Hastings sampling mechanism to
sample independent sets with weights defined as this slowly
changing function of the queue-size. This is likely to allow
our network to be in a state so that the random-access al-

1In this paper, the notion of stability is defined as posi-
tive recurrence or positive Harris recurrence of the network
Markov process.

gorithm based on Metropolis-Hastings method is essentially
sampling independent sets as per the “correct” distribution
all the time. As the key technical contribution, we indeed
establish this non-trivial desirable result. This technical re-
sult is a“robust probabilistic”analogue of the standard adia-
batic theorem [4, 13] in physics which states that if a system
changes in a reversible manner at an infinitesimally small
rate, then it always remains in its ground state (see state-
ment of Lemma 12 and Section 5.5 for precise details).

As a consequence of this (after overcoming necessary tech-
nical difficulties), we obtain a random-access based algo-
rithm under which the network Markov process is positive
Harris recurrent (or stable) and throughput-optimal. We
present simulation results to support its practical relevance.
Our results (both in simulation and theory) suggest that our
choice of f is critical since the natural choice of weight as
the queue-size (i.e. f(x) = x) will not lead to a throughput-
optimal algorithm.

2. PRELIMINARIES
Notation. We will reserve bold letters for vectors: e.g.
u = [ui]

d
i=1 denotes a d-dimensional vector; 1 and 0 denote

the vector of all 1s and all 0s. Given a function φ : R→ R, by
φ(u) we mean φ(u) = [φ(ui)]. For any vector u = [ui], define
umax = maxi ui and umin = mini ui. For a probability vector
π ∈ Rd

+ on d elements, we will use a notation π = [π(i)]
where π(i) is the probability of i, 1 ≤ i ≤ d.

Network model. Our network is a collection of n queues.
Each queue has a dedicated exogenous arrival process through
which new work arrives in the form of unit-sized packets.
Each queue can be potentially serviced at unit rate, result-
ing in departures of packets from it upon completion of their
unit service requirement. The network will be assumed to
be single-hop, i.e. once work leaves a queue, it leaves the net-
work. At first glance, this appears to be a strong limitation.
However, as we discuss later in Section 3, the results of this
paper, in terms of algorithm design and analysis, naturally
extend to the case of the multi-hop setting.

Let t ∈ R+ denote the (continuous) time and τ = btc ∈ N
denote the corresponding discrete time slot. Let Qi(t) ∈ R+

be the amount of work in the ith queue at time t. Queues
are served in First-Come-First-Serve manner. Qi(t) is the
number of packets in queue i at time t, e.g. Qi(t) = 2.7
means head-of-line packet has received 0.3 unit of service and
2 packets are waiting behind it. Also, define Qi(τ) = Qi(τ

+)
for τ ∈ N. Let Q(t), Q(τ) denote the vector of queue-
sizes [Qi(t)]1≤i≤n, [Qi(τ)]1≤i≤n respectively. Initially, time
t = τ = 0 and the system starts empty, i.e. Q(0) = 0.

Arrival process is assumed to be discrete-time with unit-
sized packets arriving to queues, for convenience. Let Ai(τ)
denote the total packets that arrive to queue i in [0, τ ] with
assumption that arrivals happen at the end in each time slot,
i.e. arrivals in time slot τ happen at time (τ + 1)− and are
equal to Ai(τ +1)−Ai(τ) packets. For simplicity, we assume
Ai(·) are independent Bernoulli processes with parameter λi.
That is, Ai(τ+1)−Ai(τ) ∈ {0, 1} and Pr(Ai(τ+1)−Ai(τ) =
1) = λi for all i and τ . Denote the arrival rate vector as
λ = [λi]1≤i≤n.

The queues are offered service as per a continuous-time
(or asynchronous/non-slotted) scheduling algorithm. Each
of the n queues is associated with a wireless transmission-
capable device. Under any reasonable model of communica-



tion deployed in practice (e.g. 802.11 standards), in essence
if two devices are close to each other and share a common
frequency to transmit at the same time, there will be inter-
ference and data is likely to be lost. If the devices are far
away, they may be able to simultaneously transmit with no
interference. Thus the scheduling constraint here is that no
two devices that might interfere with each other can trans-
mit at the same time. This can be naturally modeled as an
independent-set constraint on a graph (called the interfer-
ence graph), whose vertices correspond to the devices, and
where two vertices share an edge if and only if the corre-
sponding devices would interfere when simultaneously trans-
mitting. Specifically, let G = (V, E) denote the network in-
terference graph with V = {1, . . . , n} representing n nodes
and

E = {(i, j) : i and j interfere with each other} .

Let N (i) = {j ∈ V : (i, j) ∈ E} denote the neighbors of
node i. We assume that if node i is transmitting, then all of
its neighbors in N (i) can “listen” to it. Let I(G) denote the
set of all independent sets of G, i.e. subsets of V so that no
two neighbors are adjacent to each other. Formally,

I(G) = {σ = [σi] ∈ {0, 1}n : σi + σj ≤ 1 for all (i, j) ∈ E}.
Under this setup, the set of feasible schedules S = I(G).

Given this, let σ(t) = [σi(t)] denote the collective schedul-
ing decision at time t ∈ R+, with σi(t) being the rate at
which node i is transmitting. Then as discussed, it must be
that σ(t) ∈ I(G), σi(t) ∈ {0, 1} for all i, t.

The queueing dynamics induced under the above described
model can be summarized by the following equation: for any
0 ≤ s < t and 1 ≤ i ≤ n,

Qi(t) = Qi(s)−
∫ t

s

σi(y)1{Qi(y)>0}dy + Ai(s, t),

where Ai(s, t) denotes the cumulative arrival to queue i in
time interval [s, t] and 1{x} denotes the indicator function.
Finally, define the cumulative departure process D(t) =
[Di(t)], where

Di(t) =

∫ t

0

σi(y)1{Qi(y)>0}dy.

Performance metric. We need an algorithm to select
schedule σ(t) ∈ S = I(G) for all t ∈ R+. Thus, a scheduling
algorithm is equivalent to scheduling choices σ(t), t ∈ R+.
From the perspective of network performance, we would like
the scheduling algorithm to be such that the queues in net-
work remain as small as possible given the arrival process.
From the implementation perspective, we wish that the algo-
rithm be simple and distributed, i.e. perform constant num-
ber of logical operations at each node (or queue) per unit
time, utilize information only available locally at the node
or obtained through a neighbor and maintain as little data
structure as possible at each node.

First, we formalize the notion of performance. In the setup
described above, we define capacity region C ⊂ [0, 1]n as the
convex hull of the feasible scheduling set I(G) = S, i.e.

C =





∑

σ∈S
ασσ :

∑

σ∈S
ασ = 1 and ασ ≥ 0 for all σ ∈ I(G)



 .

The intuition behind this definition of capacity region comes
from the fact that any algorithm has to choose schedule from

I(G) each time and hence the time average of the ‘service
rate’ induced by any algorithm must belong to C. Therefore,
if arrival rates λ can be ‘served’ by any algorithm then it
must belong to C. Motivated by this, we call an arrival rate
vector λ admissible if λ ∈ Λ, where

Λ = {λ ∈ Rn
+ : λ ≤ σ componentwise, for some σ ∈ C} .

We say that an arrival rate vector λ is strictly admissible if
λ ∈ Λo, where Λo is the interior of Λ formally defined as

Λo = {λ ∈ Rn
+ : λ < σ componentwise, for some σ ∈ C} .

Equivalently, we may say that the network is underloaded.
Now we are ready to define the performance metric for a
scheduling algorithm.

Definition 1 (throughput-optimal). We call a sch-
eduling algorithm throughput-optimal, or stable, or provid-
ing 100% throughput, if for any λ ∈ Λo the underlying
network Markov process is positive Harris recurrent.

Positive Harris recurrence & its implications. For
completeness, we define the well known notion of positive
Harris recurrence (e.g. see [5]). We also state its useful im-
plications to explain its desirability. In this paper, we will
be concerned with discrete-time, time-homogeneous Markov
process or chain evolving over a complete, separable metric
space X. Let BX denote the Borel σ-algebra on X. Let X(τ)
denote the state of Markov chain at time τ ∈ N.

Consider any A ∈ BX. Define stopping time TA = inf{τ ≥
1 : X(τ) ∈ A}. Then the set A is called Harris recurrent if

Prx(TA < ∞) = 1 for any x ∈ X,

where Prx(·) ≡ Pr(·|X(0) = x). A Markov chain is called
Harris recurrent if there exists a σ-finite measure µ on (X,BX)
such that whenever µ(A) > 0 for A ∈ BX, A is Harris recur-
rent. It is well known that if X is Harris recurrent then an
essentially unique invariant measure exists (e.g. see Getoor
[9]). If the invariant measure is finite, then it may be nor-
malized to obtain a unique invariant probability measure (or
stationary probability distribution); in this case X is called
positive Harris recurrent.

A popular algorithm. In this paper, our interest is in
scheduling algorithms that utilize the network state, i.e. the
queue-size Q(t), to obtain a schedule. An important class of
scheduling algorithms with throughput-optimality property
is the well known maximum-weight scheduling algorithm
which was first proposed by Tassiulas and Ephremides [31].
We describe the slotted-time version of this algorithm. In
this version, the algorithm changes decision in the begin-
ning of every time slot using Q(τ) = Q(τ+). Specifically,
the scheduling decision σ(τ) remains the same for the entire
time slot τ , i.e. σ(t) = σ(τ) for t ∈ (τ, τ +1], and it satisfies

σ(τ) ∈ arg max
ρ∈S

∑
i

ρiQi(τ).

Thus, this maximum weight or MW algorithm chooses sched-
ule σ ∈ S that has the maximum weight, where weight is
defined as σ ·Q(τ) =

∑n
i=1 σiQi(τ). A natural generaliza-

tion of MW algorithm uses a weight f(Qi(·)) instead of Qi(·)
as above for some function f (e.g. see [27, 28]).

3. MAIN RESULT



This section presents the main result of this paper, namely
an efficient distributed scheduling algorithm. In what fol-
lows, we begin by describing the algorithm. Our algorithm
is designed with the aim of approximating the maximum
weight in a distributed manner. For our distributed algo-
rithm to be efficient (or throughput-optimal), the approxi-
mation quality of the maximum weight has to be good. As
we shall establish, such is the case when the selection of
weight function is done carefully. Therefore, first we de-
scribe the algorithm for a generic weight function. Next,
we formally state the efficiency of the algorithm for a spe-
cific weight function. This is followed by some details for
distributed implementation. Finally, we discuss the exten-
sion of the algorithm for the multi-hop setting, as well as a
conjecture.

3.1 Algorithm description
As before, let t ∈ R+ denote the time. Let W (t) =

[Wi(t)] ∈ Rn
+ denote the vector of weights at the n queues

at time t. As we shall see, W (t) will be a certain func-
tion of the queue-sizes Q(t). The algorithm we describe is a
continuous time algorithm that wishes to compute schedule
σ(t) ∈ I(G) in a distributed manner so as to have weight∑

i σi(t)Wi(t) as large as possible.
The algorithm is randomized and asynchronous. Each

node has an independent Exponential clock of rate 1. Let
T i

k be the time when the clock of node i ticks for the kth time.
Initially, k = 0 and T i

0 = 0 for all i. Then T i
k+1−T i

k are i.i.d.
and have Exponential distribution of mean 1. The nodes
change their scheduling decisions only upon their clock ticks.
That is, σi(t) remains constant for t ∈ (T i

k, T i
k+1]. Note that

due to the property of continuous random variables, no two
clock ticks at different nodes will happen at the same time
(with probability 1).

Let the algorithm start with null-schedule, i.e. σ(0) =
[0] ∈ I(G). Consider time T i

k, the kth clock tick of node i
for k > 0. Now node i at this particular time instant t = T i

k

“listens” to the medium and does the following:

◦ If any neighbor is transmitting, then σi(t
+) = 0.

◦ Else, σi(t
+) = 1 with probability exp(Wi(t))

1+exp(Wi(t))
and

σi(t
+) = 0 otherwise. This randomized decision is

done independently of everything else.

We assume that if σi(t) = 1, then node i will always transmit
data irrespective of the value of Qi(t) so that the neighbors
of node i, i.e. nodes in N (i), can infer σi(t) by “listening” to
the medium.

3.2 Efficiency of algorithm
We describe a specific choice of weight W (t) for which

the above described algorithm is throughput-optimal for any
network graph G. In what follows, let f(·) : R+ → R+

be a strictly concave monotonically increasing function with
f(0) = 0. We will be interested in functions growing much
slower than log(·) function. Specifically, we will use the func-
tion f(x) = log log (x + e) in our algorithm, where log(·)
is the natural logarithm. For defining the weight, we will

utilize a given small constant ε > 0. Let Q̃max,i(t) be an
estimation of Qmax(t) at node i at time t. A straightfor-

ward algorithm to compute Q̃max(t) is described in Section
3.3. As will be established in Lemma 2, Qmax(t) − 2n ≤

Q̃max,i(t) ≤ Qmax(t) for all i and t > 0. Now define the
weight at node i,

Wi(t) = max
{

f(Qi(btc)), ε

n
f(Q̃max,i(btc))

}
. (1)

For such a choice of weight, we state the following through-
put optimality property of the algorithm.

Theorem 1. Consider any ε > 0. Suppose the algorithm
uses weight as defined in (1) with f(x) = log log(x+ e), and

|Q̃max,i(t) − Qmax(t)| is uniformly bounded2 by a constant
for all t. Then, for any λ ∈ (1 − 2ε)Λo, the (appropriately
defined) network Markov process is positive Harris recurrent.

3.3 Distributed implementation
The goal here is to design an algorithm that is truly dis-

tributed and simple. That is, each node makes only constant
number of operations locally each time, communicates only
constant amount of information to its neighbors, maintains
only constant amount of data structure and utilizes only lo-
cal information. Further, we wish to avoid algorithms that
satisfy the above properties by collecting some information
over time. In essence, we want simple “Markovian” algo-
rithms.

The algorithm described above, given the knowledge of
node weight Wi(·) at node i for all i, does have these prop-
erties. Now the weight Wi(·) as defined in (1) depends on

Qi(·) and Qmax(·) (or its estimate Q̃max,i(·)). Trivially, the
Qi(·) is known at each node. However, the computation
of Qmax(·) requires global information. Next, we describe
a simple scheme in which each node maintains an estimate

Q̃max,i(·) at node i. To keep this estimate updated, each
node broadcasts exactly one number to all of its neighbors
every time slot. And, using the information received from
its neighbors each time, it updates its estimate. Before de-
scribing it, we make a note of the following: In section 3.5,
we provide a conjecture (supported by simulation results,
see section 6) that the algorithm without the term corre-

sponding to Q̃max,i(t) in (1) should be throughput-optimal.
Therefore, for the practioner we recommend the algorithm
that is conjectured in section 3.5.

Now, we state the precise procedure to compute Q̃max,i(t),
the estimate of Qmax(t) at node i at time t. It is updated

once every time slot. That is, Q̃max,i(t) = Q̃max,i(btc). Let

Q̃max,i(τ) be the estimate of node i at time slot τ ∈ N. Then
node i broadcasts this estimate to its neighbors at the end

of time slot τ . Let Q̃max,j(τ) for j ∈ N (i) be the estimates
received by node i at the end of time slot τ . Then, update

Q̃max,i(τ +1) = max

{
max

j∈N (i)∪{i}
Q̃max,j(τ)− 1, Qi(τ + 1)

}
.

We state the following property of this estimation algorithm,
the proof follows in a straightforward manner from the fact
that Qi(τ) is 1-Lipschitz.

Lemma 2. Assuming that graph G is connected, we have,
for all τ ≥ 0 and all i,

Qmax(τ)− 2n ≤ Q̃max,i(τ) ≤ Qmax(τ).

2See Lemma 2.



3.4 Extensions
The algorithm described here is for the single-hop net-

work with the exogenous arrival process. As the reader will
find, the key reason behind the efficiency of the algorithm is
similar to the reason behind the efficiency of the standard
maximum weight scheduling (here, the weight is log log(·)
function of the queue-size). The standard maximum weight
algorithm has a known version for a general multi-hop net-
work with choice of routing by Tassiulas and Ephremides
[31]. This is popularly known as back pressure algorithm,
where weight of an action of transferring a packet from node
i to node j is determined in terms of the difference of queue-
sizes at node i and node j. Analogously, our algorithm can
be modified for such a setup by using the weight of an action
of transferring a packet from node i to node j as the differ-
ence of log log(·) of queue-sizes at node i and node j. The
corresponding changes in algorithm described in Section 3.1
is strongly believed to be efficient using the similar proof
method as that in this paper. More generally, there have
been clever utilizations of such a back-pressure approach in
designing congestion control and scheduling algorithm in a
multi-hop wireless network, e.g. see the survey by Shakkot-
tai and Srikant [29]. Again, we strongly believe that the uti-
lization of our algorithm with appropriate weights will lead
to a complete solution for congestion control and scheduling
in a multi-hop wireless network.

3.5 A conjecture
The algorithm described for the single hop network uti-

lizes the weight Wi(t) defined as (1). This weight Wi(t)

depends on Qi(btc), the queue size of node i; and Q̃max,i(t),

the estimate of Qmax(t). Among these, the use of Q̃max,i(t)
is for ‘technical’ reasons. While the algorithm described here
provides a provably random access algorithm, we conjecture

that the algorithm that operates without the use of Q̃max,i(·)
in the weight definition should be efficient. Formally, we
state our conjecture.

Conjecture 3. Consider the algorithm described in Sec-
tion 3.1 with weight of node i at time t as

Wi(t) = f(Qi(btc)). (2)

Then, this algorithm is positive Harris recurrent as long as
λ ∈ Λo and f(x) = log log(x + e).

This conjecture is empirically found to be true in the context
of a specific class of network graph topologies (grid graph)
as suggested in section 6. However, such a verification can
only be accepted with partial faith.

4. TECHNICAL PRELIMINARIES
We present some known results about stationary distri-

bution and convergence time (or mixing time) to stationary
distribution for a specific class of finite-state Markov chains
known as Glauber dynamics (or Metropolis-Hastings). As
the reader will find, these results will play an important role
in establishing the positive Harris recurrence of the network
Markov chain.

4.1 Finite state Markov chain
Consider a time-homogeneous Markov chain over a finite

state space Ω. Let the |Ω| × |Ω| matrix P be its transition
probability matrix. If P is irreducible and aperiodic, then

the Markov chain has an unique stationary distribution and
it is ergodic in the sense that limτ→∞ P τ (j, i) → πi for any
i, j ∈ Ω. Here π = [πi] denotes the stationary distribution
of the Markov chain. The adjoint of the transition matrix
P , also called the time-reversal of P , is denoted by P ∗ and
defined as: for any i, j ∈ Ω, π(i)P ∗(i, j) = π(j)P (j, i). By
definition, P ∗ has π as its stationary distribution. If P = P ∗

then P is called reversible.
Our interest is in a specific irreducible, aperiodic and re-

versible Markov chain on the finite space Ω = I(G), the set
of independent sets of a given network graph G = (V, E).
This is also known as Glauber dynamics (or Metropolis-
Hastings). We define it next.

Definition 2 (Glauber dynamics). Consider a node
weighted graph G = (V, E) with W = [Wi]i∈V the vector of
node weights. Let I(G) denote the set of all independent
sets of G. Then the Glauber dynamics on I(G) with weights
given by W , denoted by GD(W ), is the following Markov
chain. Suppose the Markov chain is at state σ = [σi]i∈V ,
then the next transition happens as follows:

◦ Pick a node i ∈ V uniformly at random.

◦ If σj = 0 for all j ∈ N (i), then

σi =

{
1 with probability exp(Wi)

1+exp(Wi)

0 otherwise.

◦ Otherwise, σi = 0.

As the reader will notice, our algorithm described in Sec-
tion 3 is effectively an asynchronous version of the above
described Glauber dynamics with time-varying weights. In
essence, we will be establishing that even with asynchronous
time-varying weights, the behavior of our algorithm will be
very close to that of the Glauber dynamics with fixed weight
in its stationarity. To this end, next we state a property of
this Glauber dynamics in terms of its stationary distribu-
tion, which follows easily from the reversibility of GD(W ).

Lemma 4. Let π be the stationary distribution of GD(W )
on the space of independent sets I(G) of the graph G =
(V, E). Then,

π(σ) =
1

Z
exp(W · σ) · 1σ∈I(G),

where Z is the normalizing factor.

4.2 Mixing time
The Glauber dynamics as described above converges to its

stationary distribution π starting from any initial condition.
To establish our results, we will need quantitative bounds on
the time it takes for the Glauber dynamics to reach “close”
to its stationary distribution. To this end, we start with the
definition of distances between probability distributions.

Definition 3. (Distance of measures) Given two proba-
bility distributions ν and µ on a finite space Ω, we define
the following two distances. The total variation distance,
denoted as ‖ν − µ‖TV is

‖ν − µ‖TV =
1

2

∑
i∈Ω

|ν(i)− µ(i)| .



The χ2 distance, denoted as
∥∥∥ ν

µ
− 1

∥∥∥
2,µ

is

∥∥∥∥
ν

µ
− 1

∥∥∥∥
2

2,µ

= ‖ν − µ‖22, 1
µ

=
∑
i∈Ω

µ(i)

(
ν(i)

µ(i)
− 1

)2

.

More generally, for any two vectors u,v ∈ R|Ω|+ , we define

‖v‖22,u =
∑
i∈Ω

uiv
2
i .

We make note of the following relation between the two
distances defined above: using the Cauchy-Schwarz inequal-
ity, we have

∥∥∥∥
ν

µ
− 1

∥∥∥∥
2,µ

≥ 2 ‖ν − µ‖TV . (3)

Next, we define a matrix norm that will be useful in de-
termining the rate of convergence or the mixing time of a
finite-state Markov chain.

Definition 4 (Matrix norm). Consider a |Ω| × |Ω|
non-negative valued matrix A ∈ R|Ω|×|Ω|+ and a given vec-

tor u ∈ R|Ω|+ . Then, the matrix norm of A with respect to u
is defined as follows:

‖A‖u = sup
v:Eu[v]=0

‖Av‖2,u

‖v‖2,u
,

where Eu[v] =
∑

i uivi.

For a probability matrix P , we will mostly be interested in
the matrix norm of P with respect to its stationary distri-
bution π, i.e. ‖P‖π. Therefore, in this paper if we use a
matrix norm for a probability matrix without mentioning
the reference measure, then it is with respect to the station-
ary distribution. That is, in the above example ‖P‖ will
mean ‖P‖π.

With these definitions, it follows that for any distribution
µ on Ω

∥∥∥∥
µP

π
− 1

∥∥∥∥
2,π

≤ ‖P ∗‖
∥∥∥µ

π
− 1

∥∥∥
2,π

, (4)

since Eπ

[
µ
π
− 1

]
= 0, where µ

π
= [µ(i)/π(i)]. The Markov

chain of our interest, Glauber dynamics, is reversible i.e.
P = P ∗. This suggests that in order to bound the distance
between a Markov chain’s distribution after some steps and
its stationary distribution, it is sufficient to obtain a bound
on ‖P‖. One such bound can be obtained as below using
Cheeger’s inequality, and the details of its proof are omitted
due to space constraints.

Lemma 5. Let P be the transition matrix of the Glauber
dynamics GD(W ) on a graph G = (V, E) of n = |V | nodes.
Then,

‖P‖ ≤ 1− 1

8n2 exp(4nWmax)
,

where Wmax = max{1, Wmax} and Wmax = maxi∈V Wi.

5. PROOF OF MAIN RESULT
This section presents the detailed proof of Theorem 1. We

will present the sketch of the proof followed by details.

5.1 Proof sketch
We first introduce the necessary definition of the network

Markov process under our algorithm. As before, let τ ∈ N be
the index for discrete time. Let Q(τ) = [Qi(τ)] denote the

vector of queue-sizes at time τ , Q̃(τ) = [Q̃max,i(τ)] be the
vector of estimates of Qmax(τ) at time τ and σ(τ) = [σi(τ)]
be the scheduling choices at the n nodes at time τ . Then

it can be checked that the tuple X(τ) = (Q(τ), Q̃(τ), σ(τ))
is the Markov state of the network operating under the al-
gorithm. Note that X(τ) ∈ X where X = Rn

+ × Rn
+ × I(G).

Clearly, X is a Polish space endowed with the natural prod-
uct topology. Let BX be the Borel σ-algebra of X with respect
to this product topology. Let P denote the probability tran-
sition matrix of this discrete-time X-valued Markov chain.
We wish to establish that X(τ) is indeed positive Harris re-

current under this setup. For any x = (Q, Q̃, σ) ∈ X, we
define norm of x denoted by |x| as

|x| = |Q|+ |Q̃|+ |σ|,

where |Q| and |Q̃| denote the standard `1 norm while |σ|
is defined as its index in {0, . . . , |I(G)| − 1}, which is as-
signed arbitrarily. Thus, |σ| is always bounded. Further, by

Lemma 2, we have |Q̃| ≤ |Q| under the evolution of Markov
chain. Therefore, in essence |x| → ∞ if and only if |Q| → ∞.
Next, we present the proof based on a sequence of lemmas.
The proofs will be presented subsequently.

We will need some definitions to begin with. Given a
probability distribution (also called sampling distribution) a
on N, the a-sampled transition matrix of the Markov chain,
denoted by Ka is defined as

Ka(x, B) =
∑

τ≥0

a(τ)P τ (x, B), for any x ∈ X, B ∈ BX.

Now, we define a notion of a petite set. A non-empty set
A ∈ BX is called µa-petite if µa is a non-trivial measure on
(X,BX) and a is a probability distribution on N such that
for any x ∈ A,

Ka(x, ·) ≥ µa(·).
A set is called a petite set if it is µa-petite for some such non-
trivial measure µa. A known sufficient condition to establish
positive Harris recurrence of a Markov chain is to establish
positive Harris recurrence of closed petite sets as stated in
the following lemma. We refer an interested reader to the
book by Meyn and Tweedie [23] or the recent survey by Foss
and Konstantopoulos [8] for details.

Lemma 6. Let B be a closed petite set. Suppose B is
Harris recurrent, i.e. Prx(TB < ∞) = 1 for any x ∈ X.
Further, let

sup
x∈B

Ex [TB ] < ∞.

Then the Markov chain is positive Harris recurrent.

Lemma 6 suggests that to establish the positive Harris re-
currence of the network Markov chain, it is sufficient to find
a closed petite set that satisfies the conditions of Lemma 6.
To this end, we first establish that there exist closed sets
that satisfy condition of Lemma 6. Later we will establish
that they are indeed petite sets. This will conclude the proof
of positive Harris recurrence of the network Markov chain.



Recall that the ‘weight’ function is f(x) = log log(x + e).
Define its integral, F (x) =

∫ x

0
f(y)dy. The system Lyapunov

function, L : X → R+ is defined as

L(x) =

n∑
i=1

F (Qi)
4
= F (Q) · 1, where x = (Q, Q̃, σ) ∈ X.

We will establish the following, whose proof is given in Sec-
tion 5.3.

Lemma 7. Let λ ∈ (1−2ε)Λo. Then there exist functions
h, g : X → R such that for any x ∈ X,

E [L(X(g(x)))− L(X(0))|X(0) = x] ≤ −h(x),

and satisfy the following conditions: (a) infx∈X h(x) > −∞,
(b) lim infL(x)→∞ h(x) > 0, (c) supL(x)≤γ g(x) < ∞ for all
γ > 0, and (d) lim supL(x)→∞ g(x)/h(x) < ∞.

Now define Bκ = {x : L(x) ≤ κ} for any κ > 0. It will follow
that Bκ is a closed set. Therefore, Lemma 7 and Theorem
1 in survey [8] imply that there exists constant κ0 > 0 such
that for all κ0 < κ, the following holds:

Ex [TBκ ] < ∞, for any x ∈ X (5)

sup
x∈Bκ

Ex [TBκ ] < ∞. (6)

Now we are ready to state the final nugget required in prov-
ing positive Harris recurrence as stated below.

Lemma 8. Consider any κ > 0. Then, the set Bκ = {x :
L(x) ≤ κ} is a closed petite set.

The proof of Lemma 8 is technical and omitted due to
space constraints. Lemmas 6, 7 and 8 imply that the net-
work Markov chain is positive Harris recurrent. This com-
pletes the proof of Theorem 1.

5.2 Some preliminaries
Now we relate our algorithm described in Section 3.1 with

an appropriate continuous time version of the Glauber dy-
namics described in Section 4.1. To this end, recall that the
algorithm changes its scheduling decision when a node’s Ex-
ponential clock of rate 1 ticks. Due to the property of the
Exponential distribution, no two nodes have clocks ticking
at the same time. Now given a clock tick, it is equally likely
to be any of the n nodes. The node whose clock ticks, decides
its transition based on probability prescribed by the Glauber
dynamics GD(W (t)) where recall that W (t) are determined

based on Q(btc), Q̃(btc). Thus the transition probabilities
of the Markov process determining the schedule σ(t) change
every discrete time. Let P (t) denote the transition matrix
prescribed by the Glauber dynamics GD(W (t)) and π(t)
denote its stationary distribution. Now the scheduling al-
gorithm evolves the scheduling decision σ(·) over time with
time varying P (t) as described before. Let µ(t) be the dis-
tribution of the schedule σ(t) at time t. The algorithm is
essentially running P (t) on I(G) when a clock ticks at time
t. Since there are n clocks with rate 1 and P (t) = P (btc),
we have

µ(t) =
∞∑

i=0

Pr(ζ = i)µ(btc)P (btc)i

= µ(btc)en(t−btc)(P (btc)−I), (7)

where ζ be the number of clock ticks in time (btc, t] and
it is distributed as a Poisson random variable with mean
n(t− btc). Thus, for any τ ∈ N,

µ(τ + 1) = µ(τ)en(P (τ)−I). (8)

The equation (8) gives the discrete-time interpretation on
µ, hence the mixing-time based analysis on µ with the tran-
sition matrix en(P (τ)−I) becomes possible. The transition
matrix en(P (τ)−I) has properties similar to that of P (τ), as
stated below. The details of its proof are omitted due to
space constraints; they use Lemma 5 and properties of the
matrix norm.

Lemma 9. en(P (τ)−I) is reversible and its stationary dis-
tribution is π(τ). Furthermore, its matrix norm is bounded
as

∥∥∥en(P (τ)−I)
∥∥∥ ≤ 1− 1

16n exp(4nWmax(τ))
.

5.3 Proof of Lemma 7
We have λ ∈ (1 − 2ε)Λo. That is, for some δ > 0, λ ≤

(1 − 2ε − δ)Λ. The proof of Lemma 7 crucially utilizes the
following Lemma 10, which we will prove in Section 5.4.

Lemma 10. For given δ, ε > 0, let λ ≤ (1 − 2ε − δ)Λ.
Define a large enough constant B = B(n, ε) such that it
satisfies the following:

B ≥ (16n− 1)16n−1 and
256n2 (log (x + e))4n

e(log(x−2n+e))ε/n − e− 1
< ε,

for all x ≥ B. 3 Now, given any starting condition x =

(Q(0), Q̃(0), σ(0)), there exists a constant C
4
= C(Q(0))

such that for T ∈ I ∩ N where I = [C, Qmax(0)−B],

Ex[L(X(T ))− L(X(C))]

≤ − δ

n

T−1∑

τ=C

Ex[f(Q(τ)) · 1] + 6n(T − C),

with C(Q(0)) = O
(
log16n+1 Qmax(0)

)
. Here, as usual,

Ex[·] denotes expectation with respect to the condition that
X(0) = x.

Now proceed towards the proof of Lemma 7. We choose
g(x) = dlog Qmax(0) + 2eC. Since g = O(C log Qmax(0)) =
O

(
log16n+2 Qmax(0)

)
, there exists a constant D = D(n, ε, δ)

such that g < Qmax(0)− B whenever Qmax(0) ≥ D. Hence
if Qmax(0) ≥ D, using Lemma 10,

Ex[L(X(g(x)))− L(X(0))]

≤ − δ

n

g(x)−1∑

τ=C

Ex[f(Q(τ)) · 1] + 6n(g(x)− C)

+ Ex[L(X(C))− L(X(0))]

≤ − δ

n

g(x)−1∑

τ=C

Ex[f(Qmax(τ))] + 6n(g(x)− C)

+ Ex[L(X(C))− L(X(0))]

≤ − δ

n
(g(x)− C)f

(
(Qmax(0)− g(x))+

)
+ 6n(g(x)− C)

+ Ex[F (Q(C)) · 1− F (Q(0)) · 1]

≤ − δ

n
(g(x)− C)f

(
(Qmax(0)− g(x))+

)
+ 6n(g(x)− C)

+ C n f(Qmax(0) + C)

4
= k(x). (9)

3There exists such a constant B since
lim

x→∞
256n2(log(x+e))4n

e(log(x−2n+e))ε/n−e−1
= 0 for any fixed n, ε > 0.



When Qmax(0) ≤ D, Ex[L(X(g(x)))−L(X(0))] is bounded
by a constant E = E(n, ε, δ) since g(x) is bounded in terms
of Qmax(0) and Qmax(g(x)) ≤ Qmax(0) + g(x). Therefore,
we can define functions h as follows

h(x) =

{
−k(x) if Qmax(0) ≥ D

−E otherwise
,

which satisfies

E [L(X(g(x)))− L(X(0))|X(0) = x] ≤ −h(x).

The desired conditions of Lemma 7 can be checked as: (c) is
trivial and (a), (b) and (d) follow since h/g grows in order
of f(Qmax(0)) for a large Qmax(0) due to our choice of g(x).

5.4 Proof of Lemma 10
Here we prove Lemma 10 using the following two lemmas.

Lemma 11. Consider a vector of queue-sizes Q ∈ Rn
+.

Let the vector of estimation of Qmax be Q̃ ∈ Rn
+ satisfying

the property of Lemma 2. Let weight vector W based on
these queues be defined as per equation (1). Consider the
Glauber dynamics GD(W ) and let π denote its stationary
distribution. If σ is distributed as per π then

Eπ[f(Q) · σ] ≥ (1− ε)

(
max

ρ∈I(G)
f(Q) · ρ

)
− 3n.

The proof of Lemma 11 is omitted due to space constraints.

Lemma 12 (Network adiabatic Theorem). For any

given F = {Q(τ), Q̃(τ)|τ = 0, 1, . . . btc}, let µ̄(t) be the (con-
ditional) distribution of the schedule over I(G) at time t,
and let π(t) be the stationary distribution of the Markov
process over I(G) given by the probability transition ma-
trix P (t) as defined in Section 5.2. Then, for t ∈ I =
[C1(Qmax(0)), Qmax(0)−B],

∥∥∥∥
µ̄(t)

π(t)
− 1

∥∥∥∥
2,π(t)

< ε, with probability 1,

where C1(x) is given by

⌈
16

2
n

2
log

8n
(x + 1 + e) log

(
2

ε
(2 log(x + e))

n/2
)⌉2

+ 1.

Remark 1. µ̄(t) and π(t) are random variables depend-
ing on F , hence µ(t) = E[µ̄(t)] where the expectation is taken
over the distribution of F . The statement of Lemma 12 sug-
gests that, if queue-sizes are large, the distribution µ̄(t) of
schedules is essentially close to the stationary distribution
π(t) for large enough time, despite the fact that the weights
(or queue-sizes) keep changing.

The proof of Lemma 12 is presented in Section 5.5. Now
we proceed towards proving Lemma 10. From Lemma 12
and relation (3) we have that for t ∈ I,

∣∣Eπ(t)[f(Q(t)) · σ]− Eµ̄(t)[f(Q(t)) · σ]
∣∣ ≤ ε

(
max

ρ∈I(G)
f(Q(t)) · ρ

)
.

Thus from Lemma 11,

Eµ̄(t)[f(Q(t)) · σ] ≥ (1− 2ε)

(
max

ρ∈I(G)
f(Q(t)) · ρ

)
− 3n.

Now we can bound the difference between L(X(τ +1)) and
L(X(τ)) as follows.

L(X(τ + 1))− L(X(τ))

= (F (Q(τ + 1))− F (Q(τ))) · 1
≤ f(Q(τ + 1)) · (Q(τ + 1)−Q(τ)), (as F is convex),

(a)

≤ f(Q(τ)) · (Q(τ + 1)−Q(τ)) + n

= f(Q(τ)) ·
(

A(τ, τ + 1)−
∫ τ+1

τ
σ(y)1{Qi(y)>0} dy

)
+ n

(b)

≤ f(Q(τ)) ·A(τ, τ + 1)−
∫ τ+1

τ
f(Q(y)) · σ(y)1{Qi(y)>0} dy + 2n

= f(Q(τ)) ·A(τ, τ + 1)−
∫ τ+1

τ
f(Q(y)) · σ(y) dy + 2n, (10)

where (a) and (b) follow from the fact that f is 1-Lipschitz4

and Q(·) changes at unit rate. For τ, τ + 1 ∈ I, if we take
the expectation of (10) over the distribution of σ given F ,
we have

E[L(X(τ + 1))− L(X(τ)) | F ]

≤ E[f(Q(τ)) ·A(τ, τ + 1) | F ]−
∫ τ+1

τ
Eµ̄(t)[f(Q(y)) · σ(y)] dy + 2n

≤ f(Q(τ)) · λ−
∫ τ+1

τ
(1− 2ε)E

[
max

ρ∈I(G)
f(Q(y)) · ρ

]
dy + 5n

≤ f(Q(τ)) · λ− (1− 2ε)

(
max

ρ∈I(G)
f(Q(τ)) · ρ

)
+ 6n

≤ −δ

(
max

ρ∈I(G)
f(Q(τ)) · ρ

)
+ 6n,

where the last inequality follows from λ ∈ (1 − 2ε − δ)Λ.
If we take the expectation again over the distribution of F
given the initial state X(0) = x, we obtain

Ex[L(X(τ + 1))− L(X(τ))] ≤ −δEx

[
max

ρ∈I(G)
f(Q(τ)) · ρ

]
dy + 6n

(a)

≤ − δ

n
Ex [f(Q(τ)) · 1] dy + 6n.

In above, for (a), we use the fact that 1 can be written
as a convex combination of n singleton independent sets.
Therefore, by summing over τ from C1 = C1(Qmax(0)) to
T − 1, we have

Ex [L(X(T ))− L(X(C1))]

≤ − δ

n

T−1∑

τ=C1

Ex[f(Q(τ)) · 1] + 6n(T − C1).

From Lemma 12, by the choice of C(Q(0)) = C1(Qmax(0)) =
O

(
log16n+1 Qmax(0)

)
, we obtain the desired result and com-

plete the proof of Lemma 10.

5.5 Proof of Network adiabatic theorem
This section establishes the proof of Lemma 12. In words,

Lemma 12 states that, if queue-sizes are large, the observed
distribution of schedules is essentially the same as the de-
sired stationary distribution for large enough time despite
the fact that the weights (or queue-sizes) keep changing. In a
nutshell, by selecting the weight function f(·) = log log(·+e),
the dynamics of weights become “slow enough”, thus allow-
ing for the distribution of scheduling decisions to remain

4A continuous function f : R→ R is K-Lipschitz if |f(x)−
f(y)| ≤ K|x− y| for all x, y ∈ R.



close to the desired stationary distribution. This is anal-
ogous to the classical adiabatic theorem which states that
if the system is changed gradually (slowly) in a reversible
manner and if the system starts in the ground states then it
remains in the ground state.

5.5.1 Two useful results
We state two lemmas that will be useful for establishing

Lemma 12. Before we state these lemmas, we define a trans-

formation of the queue-size vector: define Q̂i = f−1(Wi) and

let Q̂ be its corresponding vector.

Lemma 13. Given τ ∈ N, define

ατ =
(
f ′(Q̂(τ)) + f ′(Q̂(τ + 1))

)
· 1.

Then if ατ < 1, the followings hold:

1. For any ρ ∈ I(G), exp (−ατ ) ≤ π(τ+1)(ρ)
π(τ)(ρ)

≤ exp (ατ ) .

2. And, ‖π(τ + 1)− π(τ)‖2, 1
π(τ+1)

≤ 2ατ .

The proof of Lemma 13 is quite standard and omitted due
to space constraints. Next, we state a lemma which implies
that the change in π(·) is “small” compared to the “mixing
time” of the Glauber dynamics when the queue-size is large.
It will play a crucial role in establishing Lemma 12, and
the appropriate choice of large enough B in Lemma 10 is
necessary for its proof.

Lemma 14. If Qmax(τ + 1) ≥ B,

Tτ+1ατ ≤ ε

8
, (11)

where Tτ stands for the mixing time of the transition matrix
en(P (τ)−I) and is defined as Tτ = 1

1−‖en(P (τ)−I)‖ . Note that

ατ < Tτ+1ατ ≤ ε
8

< ε
4+ε

< 1.

Proof. First note that

Q̂min = f−1(Wmin) ≥ f−1
( ε

n
f(Q̃max,i)

)

≥ f−1
( ε

n
f

(
(Qmax − 2n)+

))

= f−1
( ε

n
f

(
(Q̂max − 2n)+

))
,

from Qmax = Q̂max and Lemma 2. From Lemma 9, we have

that Tτ+1 ≤ 16n
(
log

(
Q̂max(τ + 1) + e

))4n

. Additionally

by using f ′(x) = 1
(x+e) log(x+e)

< 1
x
, the following bound

can be obtained:

Tτ+1ατ

≤ 16n log4n
(
Q̂max(τ + 1) + e

) [(
f ′(Q̂(τ)) + f ′(Q̂(τ + 1))

)
· 1

]

≤ 16nlog4n
(
Q̂max(τ + 1) + e

) (
n

Q̂min(τ)
+

n

Q̂min(τ + 1)

)

≤
32n2log4n

(
Q̂max(τ + 1) + e

)

Q̂min(τ + 1)− 1
(as Q̂ is 1-Lipschitz)

≤
32n2log4n

(
Q̂max(τ + 1) + e

)

f−1
(

ε
n

f
(
Q̂max(τ + 1)− 2n

))
− 1

(from (12))

≤ 32n2log4n (x + e)

e(log(x−2n+e))
ε
n − e− 1

, (12)

where x := Q̂max(τ +1) ≥ B. By our choice of B in Lemma
10, the right hand side of (12) is bounded above by ε/8.
This completes the proof of Lemma 14.

5.5.2 Proof of Lemma 12
For simplifying notations, let µ(t) = µ̄(t) in this sec-

tion. First note that we can assume 0 < C1(Qmax(0)) ≤
Qmax(0) − B. Otherwise the conclusion is trivial since I is
empty. We wish to establish that for t ∈ I,

∥∥∥∥
µ(t)

π(t)
− 1

∥∥∥∥
2,π(t)

< ε.

It is enough to show the statement for τ = btc ∈ I since
∥∥∥∥

µ(t)

π(t)
− 1

∥∥∥∥
2,π(t)

=

∥∥∥∥
µ(t)

π(btc) − 1

∥∥∥∥
2,π(btc)

(as π(t) = π(btc))

≤
∥∥∥en(t−btc)(P (btc)−I)

∥∥∥
∥∥∥∥

µ(btc)
π(btc) − 1

∥∥∥∥
2,π(btc)

(from (7))

≤
∥∥∥∥

µ(btc)
π(btc) − 1

∥∥∥∥
2,π(btc)

< ε.

Now we first show that for any τ ∈ N with τ + 1 ∈ I,
∥∥∥∥

µ(τ + 1)

π(τ)
− 1

∥∥∥∥
2,π(τ)

< ε/2. (13)

Suppose (13) is correct. Then, for τ ∈ I, using (13), Lemmas
13 and 14, one can obtain the desired bound:

∥∥∥∥
µ(τ)

π(τ)
− 1

∥∥∥∥
2,π(τ)

= ‖µ(τ)− π(τ)‖2, 1
π(τ)

≤ (eατ−1/2) ‖µ(τ)− π(τ)‖2, 1
π(τ−1)

(a)

≤ (1 + ατ−1) ‖µ(τ)− π(τ)‖2, 1
π(τ−1)

≤ (1 + ατ−1)
(
‖µ(τ)− π(τ − 1)‖2, 1

π(τ−1)

+ ‖π(τ − 1)− π(τ)‖2, 1
π(τ−1)

)

≤ (1 + ατ−1)
( ε

2
+ 2ατ−1

) (b)

≤
(
1 +

ε

8

) ( ε

2
+

ε

4

)
< ε, (14)

where (a) and (b) are due to ατ−1 ≤ ε/8 < 1 from Qmax(τ) ≥
Qmax(0) − τ ≥ B and Lemma 14. Therefore, it suffices to
establish (13) for completing the proof of Lemma 12. For
simplicity of notation, define

aτ
4
=

∥∥∥∥
µ(τ + 1)

π(τ)
− 1

∥∥∥∥
2,π(τ)

.

Consider the following recursive relation for aτ :

aτ+1 =

∥∥∥∥
µ(τ + 2)

π(τ + 1)
− 1

∥∥∥∥
2,π(τ+1)

≤
∥∥∥en(P (τ+1)−I)

∥∥∥
∥∥∥∥

µ(τ + 1)

π(τ + 1)
− 1

∥∥∥∥
2,π(τ+1)

(from (8))

=

(
1− 1

Tτ+1

)
‖µ(τ + 1)− π(τ + 1)‖2, 1

π(τ+1)

≤
(

1− 1

Tτ+1

) (
‖µ(τ + 1)− π(τ)‖2, 1

π(τ+1)

+ ‖π(τ)− π(τ + 1)‖2, 1
π(τ+1)

)

≤
(

1− 1

Tτ+1

) (
eατ /2 ‖µ(τ + 1)− π(τ)‖2, 1

π(τ)
+ 2ατ

)

≤
(

1− 1

Tτ+1

)
((1 + ατ ) aτ + 2ατ ) , (15)



where each inequality can be derived similarly as we derived
(14). From (15), if we have aτ < ε/2 and τ + 1 ∈ I, then

aτ+1 <

(
1− 1

Tτ+1

)
(ε/2 + (2 + ε/2)ατ )

≤
(

1− 1

Tτ+1

) (
ε/2 +

ε

2Tτ+1

)
(from Lemma 14)

< ε/2. (16)

Hence, for establishing (13) it is enough to show that there
exists a C such that aC < ε/2 and C ≤ C1(Qmax(0)) − 1.
To this end, fix τ < Qmax(0) − B and assume as ≥ ε/2 for
all integers s < τ . Then, from (15),

aτ ≤
(

1− 1

Tτ

)
((1 + ατ−1) aτ−1 + 2ατ−1)

≤
(

1− 1

Tτ

) (
(1 + ατ−1) aτ−1 + 4ατ−1

aτ−1

ε

)

=

(
1− 1

Tτ

) (
1 +

(
1 +

4

ε

)
ατ−1

)
aτ−1

≤
(

1− 1

Tτ

) (
1 +

1

Tτ

)
aτ−1 (from Lemma 14)

< e
− 1

T2
τ aτ−1

< e
−∑τ

s=1
1

T2
s a0. (17)

Now,
∑τ

s=1
1

T2
s

can be bounded as:

τ∑

s=1

1

T 2
s

≥
τ∑

s=1

1

162n2e8nf(Qmax(s))
(from Lemma 9)

=
1

162n2

τ∑

s=1

(
1

log (Qmax(s) + e)

)8n

≥ 1

162n2

τ∑

s=1

(
1

log (Qmax(0) + s + e)

)8n

>
τ

162n2 (log (Qmax(0) + τ + e))8n

(a)

≥
√

τ

162n2 (log (Qmax(0) + 1 + e))8n
,

where (a) follows from the fact that τ ≥ 1, Qmax(0) ≥ B ≥
(16n− 1)16n−1 and

√
x ≥

(
log(x + y)

log(1 + y)

)8n

, ∀x ≥ 1, y ≥ (16n− 1)16n−1.

Finally, a0 is also bounded above as:

a0 =

∥∥∥∥
µ(1)

π(0)
− 1

∥∥∥∥
2,π(0)

<

√
1

πmin(0)
<

√
Z(0)

≤
√

2nenf(Qmax(0)) ≤ (2 log(Qmax(0) + e))n/2 .

Now if we choose C as
⌈
16

2
n

2
log

8n
(Qmax(0) + 1 + e) log

(
2

ε
(2 log(Qmax(0) + e))

n/2
)⌉2

,

it can be checked that e
−∑C

i=1
1

T2
i a0 < ε/2. So from (17),

if as ≥ ε/2 for all s < C, aC < e
−∑C

i=1
1

T2
i a0 < ε/2. Other-

wise, there exists C′ < C such that aC′ < ε/2, which also
implies aC < ε/2 from (16). In either case, aC < ε/2 and it
completes the proof of (13) and hence the proof of Lemma
12.

6. SIMULATION RESULTS
Setup. We consider a N × N two-dimensional grid graph
topology to understand the performance of our algorithm.
The selection of such a topology is for two reasons: One,
due to the bipartite nature of the grid graph, we have a
precise characterization of the capacity region, denoted by
Λ(1), given by

Λ(ρ) = {λ : λu + λv ≤ ρ for all edges (u, v)}
where ρ ∈ [0, 1] is the load and λv is the arrival rate at node
v. Two, it is a reasonable approximation of the wireless
network arising in the mesh network scenario. We assume
arrival process to be Bernoulli. For a given load ρ ∈ [0, 1],
we consider two traffic patterns: (1) Uniform traffic, where
λu = ρ/2 for all u; and (2) chessboard traffic, where for
u = (i, j), λu = 2ρ/3 if i + j is even, and ρ/3 otherwise.

Results/observations. Our algorithm is, in essence, a
learning mechanism that tries to find good schedules. For
that reason, the uniform traffic pattern is good as there are
many options for good independent sets and hence it is eas-
ier for an algorithm to learn them. On the other hand,
the chessboard pattern is much harder as it requires the al-
gorithm to essentially select one of the few good schedules
almost all the time. Indeed, our simulation results verify
this intuition. For uniform traffic, the algorithm does very
well. Due to space constraints, we therefore present results
for the chessboard traffic only.

Here we report results for N = 10 (total N2 = 100 nodes)
and different loading ρ = 0.5, 0.6, 0.7, 0.8 for algorithm that
uses weight f(x) = log log(x + e) along with adjustment us-

ing Q̃max,i(·).The time-evolution of the total queue-size over
the whole network is presented in Figure 1. As the reader
will notice, the algorithm keeps queue-sizes stable as ex-
pected for all loads. We observe that the algorithm without

using information of estimation of Q̃max(·) has essentially
identical performance (see performance of log log weight in
Figure 2)! And thus it supports our conjecture.

Figure 1: The evolution of queue-size with time, for
different arrival rates

Finally, we try to understand the effect of the weight func-
tion f : we simulate for f(x) = x, log(x+1) and log log(x+e).
As expected, we find that for f(x) = x, system is clearly un-
stable (we do not report here due to space constraints). A

comparison of log and log log (without any Q̃max,i(·) based
modification) weight functions is presented in Figure 2. It



clearly shows that the algorithm is stable for both of these
weight functions; it is more stable (milder oscillations) for
log log compared to log weight but at the cost of higher
queue-sizes. This plot clearly explains the effect of the selec-
tion of weight function: for stability, slowly changing weight
function is necessary (i.e. log x or log log x but not x); and
among such functions slower function (i.e. log log compared
to log) leads to more stable network but at the cost of in-
creased queue-sizes.

Figure 2: A comparison of log and log log policies

7. CONCLUSION
In this paper, we resolved the long-standing and impor-

tant question of designing an efficient random-access algo-
rithm for contention resolution in a network of queues. Our
algorithm is essentially a random-access based implementa-
tion, inspired by Metropolis-Hastings sampling method, of
the classical maximum weight algorithm with“weight”being
an appropriate function (f(x) = log log(x+e)) of the queue-
size. The key ingredient in establishing the efficiency of the
algorithm is a novel adiabatic-like theorem for the underly-
ing queueing network. We strongly believe that this network
adiabatic theorem in particular and methods of this paper
in general will be of interest in understanding the effect of
dynamics in networked system.
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