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Abstract—We study power control in a multi-cell CDMA
wireless system whereby self-interested users share a common
spectrum and interfere with each other. Our objective is to
design a power control scheme that achieves a (near) optimal
power allocation with respect to any predetermined network
objective (such as the maximization of sum-rate, or some
fairness criterion). To obtain this, we introduce the potential-
game approach that relies on approximating the underlying
noncooperative game with a “close” potential game, for which
prices that induce an optimal power allocation can be derived. We
use the proximity of the original game with the approximate game
to establish through Lyapunov-based analysis that natural user-
update schemes (applied to the original game) converge within
a neighborhood of the desired operating point, thereby inducing
near-optimal performance in a dynamical sense. Additionally, we
demonstrate through simulations that the actual performance can
in practice be very close to optimal, even when the approximation
is inaccurate. As a concrete example, we focus on the sum-
rate objective, and evaluate our approach both theoretically and
empirically.

I. INTRODUCTION

In contrast to wireline network architectures which can often
provide quality of service (QoS) guarantees to end-users by
strict division of the network resources, the shared nature of
the wireless domain inherently implies that the performance of
each mobile depends on the resources allocated to others. In
code division multiple access (CDMA) systems, the transmis-
sion power of each mobile translates into interference noise for
the other mobiles and thus degrades their performance in terms
of the obtained data rates. Due to this mutual effect and in
view of the scarcity of the power resource itself, power control
has inarguably become a fundamental problem in wireless
networks research. The power control problem, even when
formulated as a centralized optimization problem with full
information, is a fairly complex problem. For example, in
general-topology CDMA network with multiple transmitters
and receivers, each transmitter affects each of the receivers in
a different manner, therefore it is not a priori clear how to
assign the transmission powers in a system-efficient manner.
Specifically, basic system objectives, such as the sum-rate, turn
out to be difficult-to-solve optimization problems (see, e.g.,
[1]–[3] and references therein).

An additional concern within the power allocation frame-
work is the possible selfish behavior of mobiles, who may
autonomously control their transmission power to satisfy their

own interests. For example, each mobile may plausibly be
interested in adjusting its power allocation in order to max-
imize its individual data-rate (throughput), while sustaining
a physical-layer mandated power constraint. Naturally, game-
theoretic tools have been widely applied over the last decade
to study such competitive situations in wireless networks (see
[4] and [5] for recent surveys). The agenda of bulk of the
research in this area includes the study of the conditions for
existence and uniqueness of a Nash equilibrium, and analysis
of the stability properties of greedy power-updating schemes
(see, e.g., [4], [6]–[8]).

In this paper, we consider the power allocation problem
from the viewpoint of a central planner. The planner wishes
to impose a certain power-dependent objective in the network,
by properly pricing excessive power usage. As a concrete
domain, we consider a multi-cell CDMA system with multiple
transmitters (henceforth referred to as “mobiles” or “users”),
each associated with a (possibly different) base-station. The
mobiles, which share a common spectrum and interfere with
each other, are interested in maximizing their net utility
(throughput minus monetary costs) subject to individual power
constraints.

Our objective is to provide a general distributed power
control scheme that would achieve (or approximately achieve)
any underlying system objective, despite the selfishness of
the mobiles. We accomplish this using a novel potential-game
approach, which entails approximating the original game with
a potential game that has a (additively) separable structure
in the individual power allocations. This enables design of
a simple pricing scheme that induces the equilibrium of the
potential game to coincide with the optimal power allocation
of any underlying system objective. Moreover, since natural
user-update schemes converge to a Nash equilibrium for
potential games, the closeness of the two games allows us to
establish near-optimal performance for user dynamics applied
to the original game.

We apply the potential-game approach to the CDMA do-
main, by showing that the power game can be approximated by
a potential game, with arbitrarily good accuracy as the signal to
interference-plus-noise ratio (SINR) increases (e.g., when the
interference due to other mobiles is negligible). We show that
best-response dynamics applied to the original game converges
within a neighborhood of the optimal operating point, where
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the size of the neighborhood depends on the SINR. This
shows that this approach can be used for network regulation
under any SINR regime with explicit performance guarantees.
We supplement the theory with experimental results, which
demonstrate that the obtained performance can in practice be
very close to optimal, even when operating at a relatively low-
SINR regime.

Related work. There has been much work in the literature
on pricing in communication networks in general, and wireless
networks in particular. However, to the best of our knowledge,
there is no general framework that tackles the problem of
achieving (near) optimal performance for any given underlying
system objective. One branch of this literature focuses on the
profit maximization objective where service providers price
usage of network resources to maximize their profits (see,
e.g., [9]–[11]). Another branch assumes that prices are set by
a social planner to regulate selfish user behavior and drive the
system to a more desirable operating point (e.g., [7], [8], [12]
and references therein).

Paper structure. The rest of the paper is organized as
follows. The model is presented in Section II. We then proceed
in Section III to present the potential-game approach. Section
IV provides performance-loss bounds for the mobile inter-
action under a general SINR regime, and examines through
simulations the actual performance of the pricing scheme.
We also briefly describe in this section how to distribute the
price generation process. As a concrete example, we focus in
Section V on the sum-rate objective, and evaluate the resulting
performance both theoretically and empirically. We conclude
in Section VI.

II. THE MODEL

A. Preliminaries

We consider a set of mobiles M = {1, . . . , M} that share
the same wireless spectrum. Each mobile m ∈ M transmits
to a pre-assigned base station (we allow for multiple mobiles
transmitting to the same base station).

Denote by p = (p1, . . . , pM ) the power allocation of the
mobiles (we shall also refer to p as the operating point of the
network). The basic performance measure that determines the
mobiles’ rates is their SINR. The SINR of user m is given by

SINRm(p) =
hmmpm

N0 +
∑

k �=m hkmpk
, (1)

where hkm is the gain between user k’s transmitter and user
m’s base station, and N0 is the noise power. Note that in
CDMA systems, the signals of other users are often treated as
interfering noise (i.e., there is no interference cancellation at
the receiver), hence the user rate directly depends on its SINR,
as we elaborate below.

Over the time-period of interest, we assume that the channel
gains are fixed (i.e., fading effects take place at a much slower
time-scale). Let rm(p) be the rate (throughput) of user m, as
determined by the power allocation p = (p1, . . . , pM ). Then,

rm(p) = log (1 + γSINRm(p)) , (2)

where γ > 0 is the spreading gain of the CDMA system. The
rate function rm(·) can be interpreted as being proportional
to the Shannon capacity of user m, while we make the
simplifying assumption that the noise plus the interference of
all other users constitute an independent Gaussian noise.

It is assumed that each user m can adjust its transmission
power pm within a bounded range

0 < Pm ≤ pm ≤ P̄m. (3)

The upper bound P̄m represents a constraint on the maximal
usage of the battery, while the lower bound P m > 0 is the
lowest power level at which the user’s transmitter can operate.
In practice, a transmitter would have a finite number of power
levels in a bounded range, however we assume for simplicity
that any power in the above range can be sustained1.

B. Utilities and Equilibrium

A basic modelling assumption in our work is that users are
selfish and adjust their power in a self interested manner. As a
result, the individual power usage has to be regulated in some
way. To that end, we consider in this paper the following user-
based linear pricing scheme: User m pays cm monetary units
per-power unit. The prices cm are set in accordance with a
global network objective (see Section II-C).

Note that the overall payment of user m is given by cmpm.
The user objective is to maximize a net rate-utility, which
captures a tradeoff between the obtained rate and the monetary
cost, given by

um(p) = rm(p)− ζmcmpm, (4)

where ζm > 0 is a user-specific rate vs. money trade-
off coefficient. The individual user optimization prob-

lem, fixing other users’ power allocation p−m
�
=

(p1, . . . , pm−1, pm+1, . . . , pM ), can be formulated as

max
p̃m∈Pm

um(p̃m,p−m), (5)

where Pm = {pm | Pm ≤ pm ≤ P̄m}. We refer to P =
P1 × · · · × PM as the joint feasible strategy space, and to
P−m = P1 × · · · × Pm−1 × Pm+1 × · · · × PM as the joint
feasible strategy space of all users but the m-th one.

We formally denote a game instance by G =
〈M, {um}m∈M, {Pm}m∈M〉 and refer to this game as the
power game. A Nash equilibrium (NE) of G is a feasible
power allocation p ∈ P from which no user has an incentive
to unilaterally deviate, namely

um(p) ≥ um(p̃m,p−m) (6)

for every p̃m ∈ Pm. The existence of a Nash equilibrium
follows in view of the fact that the underlying game is a
concave game [13] (i.e., um(·) is concave in pm and the joint
strategy space P is convex).

1In general, a user could decide not to use its power at all. We exclude
this option here, by implicitly assuming that each user must sustain a nonzero
lower bound on its rate, which is guaranteed to be satisfied by transmitting
at a power of at least Pm > 0.
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In this paper we also consider operating points which
are approximately Nash equilibria. To formally address such
operating points, we use the concept of ε-(Nash) equilibrium.
An operating point p is an ε-equilibrium of the game G if for
every qm ∈ Pm and m ∈ M

um(pm,p−m) ≥ um(qm,p−m)− ε. (7)

C. System Utility

Assume that a central planner wishes to impose some per-
formance objective over the network. Generally, the objective
relates to the transmission powers employed by the users,
hence can alternatively be posed as an optimization problem

max
p∈P

U0(p), (8)

where U0(·) is the system utility-function. As a concrete
example, we will consider in Section V the sum-rate objective,
given by U0(p) =

∑
m rm(p), where rm(·) is defined in (2).

For the analysis in this paper, we shall assume that the
central planner is equipped with the required information to
solve (8) (i.e., the knowledge of all channel gains and the
feasible power region), and actually is able to solve this
optimization problem. We denote the optimal solution of (8)
by p∗, and refer to it henceforth as the desired operating point.
In the sequel, we consider the price setting problem faced by
the central planner, who is interested in inducing the optimal
utility value U0(p∗).

III. THE POTENTIAL-GAME APPROXIMATION

As an intermediate step in our analysis, we consider in this
section a noncooperative game with modified utilities

ũm(p) = r̃m(p)− ζmcmpm, (9)

where
r̃m(p) = log (γSINRm(p)) . (10)

We refer to this game as the potentialized game and denote it
by G̃ = 〈M, {ũm}m∈M, {Pm}m∈M〉.

When the spreading gain γ satisfies γ � 1 (or alternatively
hmm � hkm for all k �= m), we say that users operate in
high-SINR regime. Note that under this regime, the modified
rate formula r̃m(p) ≈ rm(p) serves as a good approximation
for the true rate, and thus ũm(p) ≈ um(p).

A. Properties of the Potentialized Game

In this subsection, we obtain some basic properties of
the potentialized game G̃. Specifically, we show that a Nash
equilibrium point for the game always exists and is unique.
Furthermore, we establish that the game G̃ is a potential game.

A Nash equilibrium for the potentialized game is defined
as in (6), with um(p) replaced by ũm(p). Noting that ũm(p)
remains (strictly) concave in pm and that the feasible strategy
space remains P , the existence of a NE is guaranteed [13].
We proceed to show that G̃ belongs to the class of potential
games. A game G̃ = 〈M, {ũm}m∈M, {Pm}m∈M〉 is said to

be a potential game if there exists a function φ : P → R

satisfying

φ(pm,p−m)−φ(qm,p−m) = ũm(pm,p−m)−ũm(qm,p−m),
(11)

for every m ∈M, pm, qm ∈ Pm, p−m ∈ P−m.
Proposition 1: The game G̃ is a potential game. The corre-

sponding potential function is given by

φ(p) =
∑
m

log(pm)− ζmcmpm. (12)

Proof: This follows using the characterization of potential
games in [14], i.e., ∂φ(p)

∂pm
= ∂ũm(p)

∂pm
, m ∈M.

The uniqueness of the equilibrium now follows by exploit-
ing the potential formula (12).

Proposition 2: The potentialized game G̃ has a unique Nash
equilibrium.

Proof: Note that the potential function (12) is strictly
concave and continuously differentiable. It is shown in [15]
that if the potential function is concave and continuously
differentiable and if the users’ strategy spaces are convex
(intervals in our case), then the set of pure strategy Nash
equilibria coincides with the set of maximizers of the poten-
tial function. The potential function (12) is strictly concave
over a convex strategy-space, hence the maximizer is unique,
implying that the NE is unique.

B. Assigning Prices

Our interest in this subsection is in deriving prices c∗ =
(c∗1, . . . , c

∗
M ) for the potentialized game G̃ such that the unique

equilibrium of G̃ will coincide with the desired operating point
p∗ (recall that the prices affect the utilities of the game). As
mentioned earlier, we do not consider here how p∗ is obtained
and assume it has been calculated by a central planner; we
show below that equipped with p∗ ∈ P , the central planner
can set the prices c∗ in a simple way.

Theorem 3: Let p∗ be the desired operating point. Then the
prices c∗ are given by

c∗m = (ζmp∗m)−1, m ∈M. (13)

Proof: We show that when cm = c∗m for every user m,
then p∗ is the unique equilibrium of the potentialized game.
Since G̃ is a potential game, the maximum of its potential φ is
a Nash equilibrium. We next show that p∗ is a maximum of
the potential. Using {c∗m} as the prices, the partial derivative
of the potential is given by

∂φ(p)
∂pm

=
1

pm
− ζm

1
ζmp∗m

=
1

pm
− 1

p∗m
.

Setting p = p∗, we thus have ∂φ(p∗)
∂pm

= 0 for all m ∈ M.
Recalling that φ is concave, it follows that p∗ is a global
maximum of the potential; hence p∗ ∈ P is an equilibrium of
G̃, which is unique by Proposition 2.

Adopting the price vector c∗ (given in (13)), the desired
operating point p∗ is generally not an equilibrium of the
power game G. Nonetheless, due to the relation between the
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games G and G̃, employing c∗ as the per-user prices induces
near-optimal performance in G, in the sense that natural
game dynamics converges within a neighborhood of p ∗. This
property is formalized in the next section.

IV. NEAR-OPTIMAL DYNAMICS

In this section, we analyze the dynamical properties of
the game G, for which the per-user prices are set according
to (13). Our main results herein are Theorems 4–5, which
establish that best-response dynamics for G converges within
a neighborhood of the desired operating point p ∗, and con-
sequently induce near-optimal performance in terms of the
system utility U0. The section is organized as follows. We
describe best-response dynamics in Section IV-A and analyze
their properties in Section IV-B. We then provide in Section
IV-C some numerical examples to highlight several aspects of
the dynamics. We conclude this section by a brief discussion
of the results and some practical aspects of our method. The
technical proofs for this section can be found in the Appendix.

A. Best-Response Dynamics

A natural class of dynamics in multiuser noncooperative
systems is the so-called best-response dynamics, in which each
player updates its strategy to maximize its utility, given the
strategies of other players. In our specific context, let βm :
P−m → pm denote the best response mapping for the mth
user, which satisfies

βm(p−m) = argmax
pm∈Pm

um(pm,p−m). (14)

Note that best response maps are in general set-valued, how-
ever in our setting βm(p−m) is single-valued due to strict
concavity of each user’s utility in its strategy.

We assume that users update their power allocation in
accordance with their best-response. Specifically, we assume
the following update rule:

pm ← pm + α (βm(p−m)− pm) for all m ∈M,

where α > 0 is a fixed step-size. Assuming that users update
their power allocation frequently enough and for small α, the
above update rule may be approximated by the differential
equation

ṗm = βm(p−m)− pm for all m ∈M. (15)

This continuous-time dynamics is similar to continuous time
fictitious play dynamics and gradient-play dynamics (see, e.g.,
[16] and [17]). We henceforth refer to (15) as the best-response
(BR) dynamics of our game. We note that if the users were to
play the potentialized game, this dynamics would converge to
p∗. This observation can be easily shown through a Lyapunov
analysis using the potential function of G̃ (e.g., by adapting
the analysis in [18] to BR dynamics). Yet, our interest is in
studying the dynamical properties of the power game G, which
is the subject of the next subsection.

B. Convergence Analysis

We study in this subsection the properties of best-response
dynamics (15). Before proceeding with the analysis, we re-
quire additional notations and definitions.

Since our solution method compares the outcomes of the
power game G to those of the potentialized game G̃, we need
to define the user’s best-response in the latter. Because G̃ is
a potential game, it follows by definition (see (11)) that the
corresponding best-response β̃m(p−m) of any user can be
obtained by maximizing the potential function φ given the
other users’ strategies. Thus,

β̃m(p−m) = argmax
pm∈Pm

φ(pm,p−m). (16)

Note that β̃m(p−m) is also a single-valued function (by the
strict concavity of the potential function).

We show below that the BR dynamics (15) operates in a
neighborhood of p∗. To formalize this property, we introduce
the notion of uniform convergence (see [19] for related con-
cepts). Let pt be the operating point at time t. We say that
the dynamics converges uniformly to a set S if there exists
some T ∈ (0,∞) such that for any initial operating point
p0 ∈ P , pt ∈ S for every t ≥ T . In our context, the
sets of interest relate to the equilibrium of the potentialized
game. Specifically, for any given ε, denote by Ĩε the set of
ε-equilibria of G̃, namely

Ĩε =
{
p | ũm(pm,p−m) ≥ ũm(qm,p−m)− ε (17)

for every qm ∈ Pm and m ∈M}
.

Our first result establishes that the dynamics (15) converges
uniformly to a set Ĩε, where ε is explicitly characterized by
the game parameters. Let

SINRm =
Pmhmm

N0 +
∑

k �=m hkmP k

be the minimal SINR of user m. Then,
Lemma 1: The best-response dynamics (15) in G converges

uniformly to Ĩε (i.e., the set of ε-equilibria of G̃), where ε
satisfies

ε ≤ 1
γ

∑
m∈M

1
SINRm

. (18)

The proof of the lemma follows from a Lyapunov-based
analysis, where the Lyapunov function used is related to the
potential function φ of the potentialized game G̃ (see Appendix
for the proof)2. Observe that ε above is inversely proportional
to both γ and SINRm . This form of dependence is expected
from the rate formula (2), as for large values of these terms
we have ũm(p) ≈ um(p). We note that the above lemma still
does not provide an answer to how “far” the set of ε-equilibria
of G̃ is from the desired operating point p∗. However, it is used
below to establish that any point in the set Ĩε (to which the
BR dynamics converges) is in a neighborhood of p∗.

2It also follows that the BR dynamics converges to a set of ε-equilibrium
of the power game G. This result is omitted here due to lack of space, and
can be found in the accompanying technical report for this paper [20].
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Theorem 4: Let Ĩε be given by (17), where ε satisfies (18).
Then |p̃m − p∗m| ≤ Pm

√
2ε for every p̃ ∈ Ĩε and every m ∈

M.
Under smoothness assumptions on the system utility U0, a

small ε leads to near-optimal performance in terms of system
utility. This is stated in the next theorem (the proof of which
immediately follows from Theorem 4, see [20] for details).

Theorem 5: Let Ĩε be given by (17), where ε satisfies (18).
(i) Assume that U0 is a Lipschitz continuous function, with a
Lipschitz constant given by L. Then

|U0(p∗)− U0(p̃)| ≤
√

2εL

√ ∑
m∈M

P
2

m (19)

for every p̃ ∈ Ĩε.
(ii) Assume that U0 is a continuously differentiable function
such that | ∂U0

∂pm
| ≤ Lm, m ∈ M. Then

|U0(p∗)− U0(p̃)| ≤
√

2ε
∑

m∈M
PmLm, (20)

for every p̃ ∈ Ĩε.
The expression |U0(p∗) − U0(p̃)| can be regarded as a

performance-loss measure. Theorem 5 implies that the bound
on the performance-loss decreases with ε. This is expected,
since by Theorem 4, a small value of ε implies that BR
dynamics converges to a small neighborhood of p ∗; hence, the
dynamics operates in the proximity of the desired operating
point. On the other hand, the bound increases with L (or Lm),
as the difference between p∗ and p̃ is translated to a difference
in the associated values of U0 (which is scaled proportionally
to L or Lm).

We emphasize that Theorems 4–5 hold without requiring
any assumptions on the SINRs of the users. Consequently, the
performance bounds we obtain are valid for any choice of the
system parameters {hkm}, {Pm}, {Pm}, γ.

C. Numerical Examples

Our objective in this subsection is to validate the actual
performance of the suggested pricing scheme through basic
experiments. Specifically, we are interested in examining how
close we get in practice to the desired operating point, as a
function of the “accuracy” of the potential-game approxima-
tion. As discussed in Section III (and also verified through the
theoretical bounds of the preceding section), the approximation
becomes better for larger spreading gain γ, or alternatively
when the self-gain coefficients hmm are much larger than the
cross-gain coefficients hkm and the noise power N0. For sim-
plicity of implementation, we execute the simulations below
for different values of γ, rather than significantly modifying
the ratio between the self-gain coefficients and the cross-gain
coefficients3.

3Typical values of the spreading gain in CDMA systems may range between
5–300 [7], [21]. In our experiments, we focus on a lower subset of this
range, as when the spreading gain is above 100, the actual performance is
indistinguishable from the optimal one.

We now describe the setup used for the experiments. We
consider a network with three users. For all simulations, we
assume that the desired operating point is p∗ = [5, 5, 5] and
that the prices are set as in Theorem 3. Note that we actually
do not specify here the underlying system utility, as our main
concern in this set of simulations is to observe how close to p∗

best-response dynamics eventually converges. Since the gain
coefficients and N0 can be scaled without changing the SINR,
we normalize N0 to 1. The self-gain coefficients hmm are
chosen uniformly at random (from the interval [2, 4]), and so
do the cross-gain coefficients hkm (from the interval [0, 2]). We
consider three different values of γ, {5, 10, 50}. We assume
that P m = 1, Pm = 10 for each player m ∈ M. The
dynamics are initialized at the operating point p0 = [1, 1, 1].

We next examine the evolution of the operating point in time
from two different angles. Figure 1 shows the time evolution of
the operating point for different values of γ, starting from p 0

and ending in a neighborhood of p∗ (depending on the value
of γ). As expected, the dynamics tends to converge closer to
p∗ as γ increases. Figure 2 depicts the L2-norm distance of pt

from p∗. We observe that larger γ’s lead to shorter distances
from p∗, not only as a final outcome, but also at any point in
time. Note further that all curves are monotonously decreasing,
i.e., the dynamics tend to get consistently closer to the desired
operating point, which is a desired property. An additional
observation which is worth noting is that the trajectories of
the dynamics seem to converge to a point (rather than to a
larger set). This was not guaranteed by our theoretical results.
An interesting future research direction is to examine whether
this convergence behavior is theoretically guaranteed.

Overall, the qualitative behavior reported above matches
our theoretical results in Section IV (e.g., the distance from
p∗ is inversely proportional to γ). We emphasize that the
actual deviations from p∗ are much smaller than the theoretical
guarantees. For example, the bounds in Theorem 4 can be
an order of magnitude larger than the ones obtained in our
experiments. This gap is quite expected, as our bounds are
general, independent of the desired operating point and the
actual system-utility. It remains a future research direction
to tighten the bounds for specific cases of interest, e.g.,
by considering concrete system utilities and restricting the
parameter space of the problem.

D. Discussion

We briefly discuss here some consequences of our results,
and also highlight some practical aspects. We have demon-
strated in this section, both theoretically and empirically, that
we can apply the so-called potential-game approach in order
to enforce the network operating point to be close to a desired
one. The appeal of the scheme lies in its generality, in the sense
that any system objective can be (nearly) satisfied despite the
self-interested nature of the underlying users.

The focus of this paper is on the game-theoretic analysis
of a wireless network, where the prices are assumed to be set
properly by a central network authority. Such central authority
thus has to be equipped with full information on the parameters
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Fig. 1. The evolution of the power levels under best response dynamics. The
starting point is p0 = [1, 1, 1], the desired operating point is p∗ = [5, 5, 5].
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Fig. 2. The distance ||pt − p∗|| between the current and desired power
allocations, under best-response dynamics.

of the problem (such as the power constraints and the gain
coefficients). In practice, however, such information may not
be available centrally. A plausible way of dealing with this
issue, is to set the prices themselves in a distributed manner,
as we highlight below.

Assume that each base-station has complete knowledge of
the parameters that affect the performance of its associated
users (such as the cross-gain coefficients). Assume further
that the base stations can communicate among themselves
(e.g., through wired-based connections). Consider a system
utility that is separable in m, i.e., of the form U0(p) =∑

m∈M U0,m(p), where U0,m(·) is the system-utility com-
ponent associated with user m (the sum-rate objective is an
example of such utility with U0,m(p) = rm(p)). Under this
utility structure, one may consider the following two stage
procedure for distributed price generation. At the first stage,
the base stations exchange private information and jointly
“agree” on a desired operating point (e.g., by using one of
the distributed methods described in [22]). Consequently, each
base-station sets the price for its associated mobile according

to (13). This two-stage procedure generates the prices c∗,
provided that the maximization of U0(p) can be solved in a
distributed manner (e.g., when U0,m(·) are concave functions).
Otherwise (e.g., for non-concave system utilities) distributed
price setting remains an open issue, since distributed optimiza-
tion methods lack the tools to deal with such cases.

A final comment relates to possible inaccuracies in chan-
nel gain information. We have assumed throughout that the
information about the channel gains is perfect, i.e., coincides
with the true gains of the underlying network. Due to tech-
nological limitations, however, the estimated gains (i.e., the
gains used for price setting) might differ from the true gains
that determine the users’ throughputs (e.g., as a consequence
of information quantization effects). In our framework, these
differences translate to having different gains for the original
game (the true gains) and the potentialized game (the estimated
gains). Nonetheless, our analysis methodology can be extended
to accommodate such inaccuracies. This direction will be
formalized in future versions of the current work.

V. THE SUM-RATE OBJECTIVE

We consider in this section the natural system objective
of maximizing the sum rate in the network. The sum-rate
objective can be formulated as maximization of the following
utility

U0(p) =
∑
m

rm(p). (21)

We next apply Theorem 5 to obtain explicit bounds on the
performance of BR dynamics.

Theorem 6: Let p∗ be the operating point that maximizes
(21), and let Ĩε be the set of ε-equilibria to which BR dynamics
converges (where ε is given by (18)). Then

|U0(p∗)− U0(p̃)| ≤ √2ε(M − 1)
∑

m∈M

Pm

Pm

(22)

for every p̃ ∈ Ĩε.
Proof: (outline) The proof follows by bounding the partial

derivatives of (21); we show in Lemma 2 (given in the
appendix) that

∣∣∣ ∂U0
∂pm

∣∣∣ ≤ M−1
P m

. We then apply Theorem 5(ii),
which immediately leads to (22).

We now examine through simulations the actual (sum-rate)
performance of our scheme. Specifically, we are interested in
both the temporal performance (i.e., the evolution of the sum-
rate measure (21) in time), as well as the effect of γ on the
overall deviation (in terms of the sum-rate) from the desired
operating point.

We consider a network of ten users. We set N0 = 1, the
cross-gain coefficients hkm and the self-gain coefficients hmm

are chosen uniformly at random (from the intervals [0, 2] and
[9, 11] respectively). The power constraints are identical for all
players, P m = 10−2, P m = 10 for all m ∈ M. We consider
different values of γ in the range γ ∈ [1, 100]. For each
simulation instance, we solve for the desired operating point
p∗ (the maximizer of (21)) and set the prices according to
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(13). We note that the underlying optimization problem is non-
convex and therefore (approximately) solved numerically by
multiple executions of an optimization solver, each initialized
at different starting points.

Figure 3 demonstrates the evolution of the sum-rate U0

in time for a typical simulation run (with γ = 10). We
initialize the dynamics at the minimal-power operating point
[P 1, P 2 . . . P 10]. We observe that the sum-rate in the system
monotonously increases, obtaining a four-fold improvement in
the sum-rate. From a practical perspective, this is an appealing
property, since users, albeit selfish, keep increasing the system-
utility, i.e., there is no degradation of performance at any point
in time.

We conclude our experiments by examining the outcome of
the best-response dynamics as a function of γ. As a concrete
performance measure, we are interested in the (percentage)
deviation of the obtained sum-rate from its optimal value. For
a given t this measure is given by

100× U0(p∗)− U0(pt)
U0(p∗)

. (23)

Since the dynamics is guaranteed to converge in finite time
to a set, the long-run average deviation can be estimated by
averaging (23) over t > T for large T (i.e., after the dynamics
is confined in a small neighborhood of the desired operating
point). Figure 4 depicts the (estimated long-run) average
deviation as a function of γ. Two properties of the graph
should be emphasized. First, the average deviation decreases
with γ, as expected. More importantly, we see that even for
small values of γ, the average deviation is quite small (around
3%). This indicates that despite setting the prices without
considering the true utilities, the potential game approach leads
to prices which induce near-optimal performance.
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Fig. 3. The change in sum-rate as a function of time for γ = 10. The
optimal sum-rate is marked by a dashed line for reference.

VI. CONCLUDING REMARKS

This paper has considered the power control problem in
CDMA wireless networks with self-interested wireless users.
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Fig. 4. The Effect of γ on performance loss. This graph depicts the
(percentage) deviation of the obtained sum-rate from its optimal value, as
a function of γ.

We have introduced the potential-game approach for dis-
tributed power allocation, which (approximately) enforces any
power-dependent system-objective. This approach involves ap-
proximating the power game by a “close” potential game, for
which target prices can be derived. By exploiting the relation
between the power game and its approximation, the same
prices induce near-optimal performance in the underlying
system. Applying the potential-game approach for the CDMA
wireless domain, we have established through Lyapunov-
based analysis that best-response dynamics converges within a
neighborhood of the desired operating point. We demonstrated
through simulations that the actual performance could in
practice be very close to optimal, even when operating at a
low-SINR regime.

The scope of our work may be extended in several respects.
As indicated in Section IV-D, the distributed implementation
of pricing is possible, however we have not pursued in this
paper any specific distributed method. The design and incorpo-
ration of distributed optimization schemes into our framework
remains an important future research direction. In the network-
pricing context, a challenging direction is to consider the case
where the system is restricted to setting a user-independent
price for power usage (which could be easier to implement in
some configurations). It is of interest to examine the possible
performance degradation due to this simpler pricing scheme.

On a higher level, our pricing scheme is made possible
because the underlying user utilities form a game that is
“close” to a potential game. In general noncooperative games,
however, it is not apparent how to identify such a potential
game with desirable properties. In an ongoing work [23], we
develop a systematic procedure for choosing an appropriate
potential game for any given game. We believe that the
general paradigm of identifying “near-potential” games can be
applied to other networking applications, thereby improving
the controllability of networked systems with selfish users.
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APPENDIX

Throughout this section, we use the notation λm � ζmcm

for all m ∈M.
Proof of Lemma 1: Let φ � maxp∈P φ(p) and φ �

minp∈P φ(p), and define the function V = φ − φ ≥ 0. The
idea behind the proof is to use V as a Lyapunov function for
the analysis of the BR dynamics in G̃.

Consider the time derivative of V , it is easy to see that

−V̇ (p) =
∑

m∈M

∂φ(p)
∂pm

ṗm

=
∑

m∈M

∂φ(p)
∂pm

(βm(p−m)− pm)

=
∑

m∈M

∂φ(p)
∂pm

(
β̃m(p−m)− pm

)

+
∑

m∈M

∂φ(p)
∂pm

(
βm(p−m)− β̃m(p−m)

)
.

(24)

Note that by the strict concavity of the potential function it
follows that

∂φ(p)
∂pm

(
β̃m(p−m)− pm

)
≥ φ(β̃m(p−m),p−m)− φ(pm,p−m)

= ũm(β̃m(p−m),p−m)− ũm(pm,p−m).

(25)

We next obtain a lower bound on the term∑
m∈M

∂φ(p)
∂pm

(
βm(p−m)− β̃m(p−m)

)
. Considering the

bounds on the power investment of players, any p ∗ satisfies
Pm ≤ p∗m ≤ Pm. In view of (13), λm satisfies

Pm ≤
1

λm
≤ Pm, m ∈M. (26)

Hence, it follows that∣∣∣∣∂φ(p)
∂pm

∣∣∣∣ =
∣∣∣∣ 1
pm
− λm

∣∣∣∣ ≤ 1
Pm

− 1
Pm

. (27)

For a given fixed p−m the unconstrained maximum of um

with respect to pm (denoted by qm) satisfies ∂um(qm,p−m)
∂pm

=
0, where

∂um(qm,p−m)
∂pm

=
γhmm

N0+
P

k �=m hkmpk

1 + γhmmqm

N0+
P

k �=m hkmpk

− λm.

Hence, solving for qm we obtain,

qm =
1

λm
− N0

γhmm
− 1

γ

∑
k �=m

hkm

hmm
pk.

It follows from (26) that qm ≤ Pm; using the concavity of
um, it can be seen that the best response of player m satisfies

βm(p−m) = max {Pm, qm} . (28)

Similarly, it can be shown that for a fixed p−m, the
unconstrained maximum of ũm with respect to pm (denoted
by q̃m) satisfies ∂ũm(q̃m,p−m)

∂pm
= ∂φ(q̃m,p−m)

∂pm
= 0. Using the

partial derivatives of the potential function, it follows that
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q̃m = 1
λm

. By (26) it follows that the unconstrained maximum
q̃m always satisfies the power constraints, hence

β̃m(p−m) =
1

λm
. (29)

For every p−m ∈ P−m and m ∈ M, (28)–(29) imply that
βm(p−m) ≤ β̃m(p−m), and furthermore

β̃m(p−m)− βm(p−m) ≤ N0

γhmm
+

1
γ

∑
k �=m

hkm

hmm
pk

≤ N0

γhmm
+

1
γ

∑
k �=m

hkm

hmm
P k =

ξm

γ
,

(30)

where ξm � N0
hmm

+
∑

k �=m
hkm

hmm
P k for every m ∈M. It thus

follows from (27) and (30) that∣∣∣∣∂φ(p)
∂pm

(
βm(p−m)− β̃m(p−m)

)∣∣∣∣ ≤
(

1
Pm

− 1
Pm

)
ξm

γ
.

By (24) and (25) it can be readily seen that V satisfies

−V̇ (p) ≥
∑

m∈M
ũm(β̃m(p−m),p−m)− ũm(pm,p−m)

−
∑

m∈M

(
1

Pm

− 1
Pm

)
ξm

γ

(31)

Therefore, (31) implies that V̇ (p) ≤ −∑
m∈M

ξm

γP m
unless

∑
m∈M

ũm(β̃m(p−m),p−m)− ũm(pm,p−m) ≤
∑

m∈M

ξm

γPm

.

Note that ũm(β̃m(p−m),p−m)− ũm(pm,p−m) ≥ 0 for every
p−m and m ∈M, because β̃m(p−m) is the maximizer of ũm

when the users other than m are using p−m. Thus, V̇ (p) ≤
−∑

m∈M
ξm

γPm
, unless

ũk(β̃k(p−k),p−k)− ũk(pk,p−k) ≤
∑

m∈M

ξm

γPm
(32)

for all k ∈ M. Hence, with V as a Lyapunov function, we may
apply a standard Lyapunov analysis argument to conclude that
the dynamics in (15) converges to a set such that (32) holds for
all k ∈M. Note that (32) implies that no player can improve
its utility by more than

∑
m∈M

ξm

γPm
by modifying its action.

Thus, the dynamics converges to the set of ε-equilibria ( Ĩε)
of the game G̃ where ε ≤∑

m∈M
ξm

γPm
. By the definitions of

ξm and SINRm it follows that P m

ξm
= SINRm, hence

ε ≤ 1
γ

∑
m∈M

1
SINRm

.

The uniform convergence follows by noting that 0 ≤ V ≤ φ+
φ. Since the potential function has bounded partial derivatives
and the joint strategy space is compact the latter term is
bounded by some V 4. Since V̇ ≤ −∑

m∈M
ξm

γPm
if the

operating point is not in Ĩε, the convergence time to Ĩε,

4Specifically, it can be shown that V ≤P
m∈M | log P m|+ | log P m|+

λmPm using the properties of the potential function.

which we denote by T , satisfies T ≤ γV
P

m∈M
ξm
P m

regardless

of the initial operating point of the dynamics. Thus, the BR
dynamics, converge uniformly to Ĩε.

Proof of Theorem 4: The key idea behind the proof is
to translate a deviation in the potential function value to a
deviation in the strategy space P , by using properties of the
partial derivatives of the potential.

Since p̃ ∈ Ĩε, it follows that φ(p∗
m, p̃−m)−φ(p̃m, p̃−m) ≤

ε, or equivalently

(log p∗m − λmp∗m)− (log p̃m − λmp̃m) ≤ ε, (33)

for every m ∈M. Let fm : Pm → R be a function such that

fm(pm) = (log pm − λmpm) .

Using second order expansion, it follows that

fm(p̃m) = fm(p∗m) + (p̃m − p∗m)
∂f(p∗m)

∂pm

+
1
2
(p∗m − p̃m)2

∂2f(p∗m + α(p̃m − p∗m))
∂p2

m

for some α ∈ [0, 1]. Note that ∂f(p∗
m)

∂pm
= φ(p∗)

∂pm
= 0, because

p∗ is the desired operating point and all the partial derivatives
of the potential vanish at this power allocation. Observing that
∂2f(pm)

∂p2
m

= − 1
p2

m
, the previous equation can be rewritten as

fm(p∗m)− fm(p̃m) =
1
2
(p∗m − p̃m)2

1
(p∗m + α(p̃m − p∗m))2

,

or equivalently,

2(p∗m + α(p̃m − p∗m))2 (fm(p∗m)− fm(p̃m)) = (p∗m − p̃m)2.

Using (33) and the fact that 0 < p∗
m, p̃m ≤ Pm, the previous

equation implies that 2εP
2

m ≥ (p∗m − p̃m)2. We therefore
conclude that P m

√
2ε ≥ |p∗m − p̃m|.

Lemma 2: The sum-rate function (21) satisfies | ∂U0
∂pm
| ≤

M−1
P m

for every m ∈ M.
Proof: Differentiating U0 with respect to pm we obtain

∂U0(p)
∂pm

=
γhmm

N0+
P

k �=m hkmpk

1 + γhmmpm

N0+
P

k �=m hkmpk

−
∑
l �=m

γhllhmlpl

(N0+
P

k �=l hklpk)2

1 + γhllpl

N0+
P

k �=l hklpk

.

Thus it follows that

∂U0(p)
∂pm

≤
γhmm

N0+
P

k �=m hkmpk

1 + γhmmpm

N0+
P

k �=m hkmpk

≤ 1
pm
≤ 1

Pm

and

∂U0(p)
∂pm

≥ −
∑
l �=m

γhllhmlpl

(N0+
P

k �=l hklpk)2

1 + γhllpl

N0+
P

k �=l hklpk

≥ −
∑
l �=m

hml(
N0 +

∑
k �=l hklpk

) ≥ −M − 1
Pm

for all p ∈ P . Therefore,∣∣∣∣ ∂U0

∂pm

∣∣∣∣ ≤ M − 1
Pm


