
MIT Open Access Articles

Efficient Memory Shadowing for 64-bit Architectures

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Qin Zhao, Derek Bruening, and Saman Amarasinghe. 2010. Efficient memory
shadowing for 64-bit architectures. In Proceedings of the 2010 international symposium on
Memory management (ISMM '10). ACM, New York, NY, USA, 93-102.

As Published: http://doi.acm.org/10.1145/1806651.1806667

Publisher: Association for Computing Machinery

Persistent URL: http://hdl.handle.net/1721.1/62002

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/62002
http://creativecommons.org/licenses/by-nc-sa/3.0/

Efficient Memory Shadowing for 64-bit Architectures

Qin Zhao
CSAIL

Massachusetts Institute of Technology
Cambridge, MA, USA
qin zhao@csail.mit.edu

Derek Bruening
VMware, Inc.

bruening@vmware.com

Saman Amarasinghe
CSAIL

Massachusetts Institute of Technology
Cambridge, MA, USA
saman@csail.mit.edu

Abstract
Shadow memory is used by dynamic program analysis tools to
store metadata for tracking properties of application memory. The
efficiency of mapping between application memory and shadow
memory has substantial impact on the overall performance of such
analysis tools. However, traditional memory mapping schemes that
work well on 32-bit architectures cannot easily port to 64-bit archi-
tectures due to the much larger 64-bit address space.

This paper presents EMS64, an efficient memory shadowing
scheme for 64-bit architectures. By taking advantage of application
reference locality and unused regions in the 64-bit address space,
EMS64 provides a fast and flexible memory mapping scheme with-
out relying on any underlying platform features or requiring any
specific shadow memory size. Our experiments show that EMS64
is able to reduce the runtime shadow memory translation overhead
to 81% on average, which almost halves the overhead of the fastest
64-bit shadow memory system we are aware of.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors – Run-time environments, Memory manage-
ment

General Terms Algorithms, Performance

Keywords Shadow Memory, Dynamic Optimization

1. Introduction
Dynamic program analysis tools often use shadow memory to store
metadata that tracks properties of application memory. These tools
shadow every application data location for a wide variety of pur-
poses, including detecting memory usage errors [21, 24], dynamic
information flow tracking [5, 18, 20], detecting race conditions [9,
12, 22, 23], and many others [3, 14, 15, 28].

1.1 Shadow Memory Mapping Schemes
The shadow memory conceptually resides in a different address
space from the application address space, and is updated simul-
taneously as the application executes. In practice, shadow memory
shares the same address space as the application memory, and is
updated by instrumentation code inserted into the application in-
struction stream by dynamic program analysis tools.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ISMM’10, June 5–6, 2010, Toronto, Ontario, Canada.
Copyright c© 2010 ACM 978-1-4503-0054-4/10/06. . . $10.00

 0x

 1x

 2x

 3x

 4x

 5x

CINT CFP CPU2006

T
im

e
 v

e
rs

u
s
 n

a
ti

v
e

DMS32

SMS32

SMS64

EMS64

Figure 1. Performance comparison of different memory map-
ping schemes for a one-shadow-byte-per-application-byte map-
ping. DMS32 and SMS32 are DMS and SMS on a 32-bit archi-
tecture, while SMS64 is SMS using a multi-level table on a 64-bit
architecture. Our novel scheme, EMS64, achieves similar perfor-
mance to DMS32 while supporting the full 64-bit address space.

For 32-bit architectures, there are two shadow memory mapping
schemes commonly used to translate an application memory ad-
dress addrA to its corresponding shadow memory address addrS :
direct mapping and segmented mapping.

A direct mapping scheme (DMS) reserves a single contiguous
memory region for shadowing the entire address space of the pro-
cess. The address translation then becomes a simple displacement
with a scaling factor that depends on the relative sizes of the spaces.
However, the large reserved address space often conflicts with the
memory layout requirements imposed by operating systems or ap-
plications, which constrains the deployment of DMS.

A segmented mapping scheme (SMS) segregates the applica-
tion address space into segments, and allocates shadow memory
for each segment separately when necessary. When translating an
address addrA, SMS must first locate which segment addrA be-
longs to, typically via a table lookup, and then apply an offset and
scale appropriate to that segment. Though it gains the flexibility to
resolve address conflicts by allocating shadow memory segments
in variable locations, SMS pays for this freedom with the overhead
of a segment lookup on every address translation.

Both DMS and SMS have problems when scaling to 64-bit
architectures. Current hardware implementations do not use the
whole 64-bit virtual address space, but only 48 bits in a canoni-
cal form: [0x0000000000000000, 0x0000800000000000) and
[0xffff800000000000, 0x10000000000000000). In addition,
operating systems may impose their own restrictions on memory
layout. For example, applications can only allocate memory from
certain address ranges, and system modules can only be located in

other specific areas. Table 1 lists an example memory layout of a
simple HelloWorld program. It shows that the higher canonical half
is reserved for kernel modules, and the user program can only allo-
cate memory from the lower canonical half and usually only from
memory below the stack. The executable is located near the start of
the address space while the libraries, stack, and vdso (virtual dy-
namic shared object for system call entry/exit) are located near the
top of the user address space.

Module Memory Range
User Space 0000000000000000-0000800000000000

a.out 0000000000400000-0000000000601000
libc 00007fa890116000-00007fa890469000
ld 00007fa890469000-00007fa890686000
[stack] 00007fffef71e000-00007fffef733000
[vdso] 00007fffef7ff000-00007fffef800000

Non-canonical 0000800000000000-ffff800000000000

Kernel Space ffff800000000000-10000000000000000

[vsyscall] ffffffffff600000-ffffffffff601000

Table 1. Application memory modules for a simple 64-bit appli-
cation HelloWorld.

It is clear that with such memory layout constraints we cannot
find a single contiguous shadow memory region to represent the
entire application address space so that a simple equation can be
used for address translation. If we are not able to relocate the
application memory modules, which is typically the case, DMS
cannot be used.

SMS also does not work well on a 64-bit architecture. It is im-
practical to have a single table to represent the whole address space.
SMS typically uses a multi-level table instead, which is similar to
what the operating system does for its page table. However, this so-
lution adds significant runtime overhead for retrieving the shadow
segment from the multiple levels of table, which makes the already
bad SMS performance even worse. MemCheck [16, 24] avoids a
multi-level table by using a single table to represent the first 32GB
of the address space. If the addrA is in the first 32GB, the shadow
lookup is the same as SMS on a 32-bit architecture. Otherwise,
translation falls to a slow path to find the correct segment. In or-
der to improve performance, MemCheck also intercepts the mem-
ory allocation system calls and attempts to allocate all application
memory from the first 32GB of the address space. Still, MemCheck
suffers from a 389% translation-only overhead which excludes the
runtime overhead of the underlying code cache system and any
shadow metadata update overhead.

In this paper, we present a novel, efficient, and flexible shadow
memory mapping scheme called EMS64 (Efficient Memory Shad-
owing for 64-bit architectures). The key insight of EMS64 is the
observation that the 64-bit address space is very large and mostly
empty. Thus, we can speculatively use a simple displacement with
no table lookup by arranging the shadow memory in such a way that
if we use the wrong displacement the mapping will fall into unused
space, generating a page fault. In the common case this is as fast
as DMS, and clever memory arrangement ensures catching the rare
incorrect cases via page fault handling. In addition, to minimize the
number of page faults for better performance, we take advantage of
application reference locality and dynamic instrumentation: adding
displacement lookup code to application references that frequently
incur page faults. How to allocate the shadow memory is the key
challenge for EMS64. We have solved the allocation problem in a
provably correct and efficient way. Figure 1 compares EMS64 with
existing mapping schemes. EMS64 achieves similar performance
to 32-bit DMS, and is 2.5× faster than a 64-bit multi-level-table
SMS implementation, while maintaining the flexibility of SMS.

1.2 Contributions
The following are the key contributions of this paper:

• We propose EMS64, a novel shadow memory mapping scheme
for 64-bit architectures that is simple, flexible, and efficient: it
out-performs all 64-bit mapping schemes known to us.

• We prove the feasibility conditions for finding a valid EMS64
memory mapping. In a 64-bit architecture, EMS64 can always
accommodate at least 256GB application memory in theory,
and much more in practice.

• We derive the computational complexity of calculating a valid
memory layout for EMS64, which is O(k5) where k is the
number of application address space units.

• We present an efficient randomized algorithm to find suitable
shadow memory locations for EMS64 that lowers the running
time to O(k3) in theory, and much faster in practice.

• We implement EMS64 on top of Umbra [29] and show that its
average overhead is 81%, which nearly halves the overhead of
the fastest 64-bit shadow memory system we are aware of and
is much lower than MemCheck’s 389% overhead.

1.3 Paper Layout
The rest of the paper is organized as follows: Section 2 de-
scribes the EMS64 memory mapping scheme. Section 3 explains
the shadow memory allocation model of EMS64, and Section 4
presents optimizations to improve the performance of the shadow
memory allocation algorithm. Section 5 shows our implementation
of EMS64; Section 6 evaluates EMS64’s performance. Section 7
discusses related work and Section 8 concludes the paper.

2. EMS64: Efficient Memory Shadowing
In this section we present EMS64, our efficient memory shadowing
scheme. We begin by noting that the address translation process of
DMS can be summarized as Equation 1.

addrS = addrA × scale + disp (1)

We observe that the translation process of SMS involves first find-
ing the segment and then scaling the address and applying the cor-
rect displacement value. In other words, the SMS process can also
be expressed as Equation 1, with an appropriate disp.

This observation allows us to further optimize the SMS transla-
tion process, which is the key idea of EMS64: instead of looking
up the correct disp value for address translation, we speculatively
use a disp without checking its correctness. If the disp is correct,
the program continues execution without any problem. If the disp
is not correct, we rely on being notified by an implicit check, a
memory access violation fault, and can then find the correct disp
to use.

Figure 2 shows an example memory layout explaining how
EMS64 arranges the shadow memory. The whole address space is
split into 16 units of equal size. The last four units, i.e., 12-15,
are unavailable to the user as they may be reserved for the kernel.
However, since a memory reference to these pages will generate a
fault, they can used by EMS64 as reserved units. Units 0, 7, and
11 host application memory modules A0, A1, and A2. There is no
single offset that can be used to place shadow memory for all the
application units as units 12-15 are unavailable; thus, DMS cannot
be used. EMS64 allocates units 2, 6, and 10 as S0, S1, and S2 for
hosting shadow memory. There are two valid displacement values:
2 for translating from A0 to S0, and -1 for translating from A1 to
S1 or from A2 to S2. There is also a list of units that are reserved
by EMS64 and cannot be used for either application memory or
shadow memory. By arranging memory units this way, we can

A0

A2

S0

0: Application

3: Empty
2: Shadow

11: Application

4: Reserved

12: Unavailable/Reserved

S2
9: Reserved

10: Shadow

13: Unavailable/Reserved

1: Reserved

15: Unavailable/Reserved

14: Unavailable

5: Reserved
6: Shadow
7: Application
8: Reserved

A1
S1

Figure 2. An example EMS64 memory layout for a one-shadow-
byte-per-application-byte mapping. For each allocated unit, the
translations resulting from applying the two valid displacements
of 2 and -1 are shown by arrows. These displacements map each
application unit to its corresponding shadow unit. As can be seen,
an incorrect displacement from an application unit, or from a wild
address in any other unit, always originates from or maps to an
invalid unit.

use either 2 or -1 for translating each memory address without
checking whether it is the right displacement, because EMS64
guarantees that any address calculated from application memory
with an incorrect displacement value will land in a reserved unit.
For example, A0 with displacement value -1 results in unit 15.
A1 and A2 with displacement value 2 result in unit 9 and 13,
respectively. Moreover, even a wild address will cause at least one
memory access fault: as we can see, any unit that can be calculated
from an S unit with a valid displacement value is reserved by
EMS64, including units 1, 4, 5, 8, 9, 12. This prevents EMS64 from
suppressing an application page fault.

There are two major challenges to the success of this approach:

• We need a guarantee that if a shadow memory address addrS is
calculated from an addrA that was not allocated by the appli-
cation or from an incorrectly speculated disp then a hardware
fault will occur.

• Because handling the memory access violation fault is expen-
sive, the frequency of an incorrect disp must be low enough to
result in negligible overhead. Since an un-allocated addrA re-
sults in a fault when the application is run natively, its frequency
does not concern us.

To solve the first challenge, EMS64 makes use of the largely
empty 64-bit address space and carefully allocates shadow mem-
ory in such a way that any shadow address addrS calculated from
a non-application-address addrA or incorrect disp is an invalid
memory address. Although the memory allocation is controlled
by EMS64, we fully respect the application or system’s require-
ments for memory layout. For example, if the application requests
memory from a specific address that conflicts with existing shadow
memory, we relocate the shadow memory to accommodate the new
application memory. The second challenge is solved by taking ad-
vantage of application reference locality and dynamic instrumenta-
tion, and will be discussed in Section 5.

EMS64 assumes that metadata does not need to be maintained
for memory that is not currently allocated in the address space,

other than knowing that the memory is in fact not allocated. This is
true for all shadow value tools we are aware of.

To apply EMS64, we virtually split the available address space
into fixed-size (e.g., 4GB) address space units. Each unit has four
possible states:

A is a unit that hosts application memory only.

S is used for storing shadow memory only.

R is a unit that is reserved either by the operating system or
EMS64, and cannot be used for application or shadow mem-
ory.

E is an empty unit that is not currently in use.

Table 2 shows an example of how the application and shadow
memory modules are clustered into different units in a HelloWorld
program for a one-shadow-byte-per-application-byte mapping.
There are four application units, and four corresponding shadow
units. Two valid disp values 0x1000000000 and -0x500000000000
are used for address translation between units. If the program ac-
cesses module a.out or [vsyscall], EMS64 should use 0x1000000000
as the disp to locate the corresponding shadow memory address.
If the address addrA is in module libc, ld, [stack], or [vdso], -
0x500000000000 should be used for address translation.

Module Memory Range
User Space 0000000000000000-0000800000000000

A: a.out 0000000000400000-0000000000601000

(disp = 0x1000000000)
S: [vsyscall] 0000000fff600000-0000000fff601000

(disp = 0x1000000000)
S: a.out 0000001000400000-0000001000601000

(disp = -0x500000000000)
S: libc 00002fa890116000-00002fa890469000
S: ld 00002fa890469000-00002fa890686000

(disp = -0x500000000000)
S: [stack] 00002fffef71e000-00002fffef733000
S: [vdso] 00002fffef7ff000-00002fffef800000

A: libc 00007fa890116000-00007fa890469000
A: ld 00007fa890469000-00007fa890686000

A: [stack] 00007fffef71e000-00007fffef733000
A: [vdso] 00007fffef7ff000-00007fffef800000

Non-canonical 0000800000000000-ffff800000000000

Kernel Space ffff800000000000-10000000000000000

A:[vsyscall] ffffffffff600000-ffffffffff601000

Table 2. EMS64 memory layout of shadow memory and applica-
tion memory for a simple HelloWorld application, with one shadow
byte per application byte.

EMS64 maintains a simple translation table that maps each A
unit to its corresponding S units, whose number depends on the rel-
ative mapping size between application memory and shadow mem-
ory. If two A units are adjacent to each other, their corresponding
S units must also be allocated contiguously in order to handle an
access that spans the two A units. For example, the shadow units
corresponding to the application units hosting a.out and [vsyscall]
are reserved contiguously. Because of the large unit size (4GB), the
total number of used units is small, and thus the cost of querying
and maintaining the table is low.

During program execution, EMS64 intercepts every memory
allocation system call to monitor its parameters and results. If
the system returns memory from existing S or R units, and the
application has no specific address requirement, we will request
memory again from existing A units or E units instead. If the
operating system returns memory from existing A units or from E
units that then become A units, we allocate corresponding shadow

memory from existing S units or from E units that then become
S units based on the disp for those A units. If an application
allocation requests a specific address that conflicts with an S or R
unit, we can relocate the S and R units and update the translation
table accordingly. In addition to the system reserved R units, we
also reserve some R units so that any shadow mapping from an
incorrect disp will hit an R unit.

EMS64 has the flexibility of a segmented mapping scheme, sup-
porting multiple regions with different disp to accommodate the
system and application’s memory layout requirements. In addition,
it avoids the runtime overhead of disp lookup and achieves similar
efficiency to a direct mapping scheme.

In the next section, we prove the possibility of this approach.
We then discuss the algorithm design and implementation.

3. Shadow Memory Allocation Model
Although the 64-bit address space is large, EMS64 may fail to find
a suitable address space unit to host new shadow memory due to
the restrictions on shadow memory placement. In this section, we
prove the feasibility of EMS64’s mapping scheme and determine
limits within which the scheme can successfully operate.

The key to success of the scheme is the displacement disp
selection and the corresponding shadow memory allocation. We
must answer the question: given an application memory layout,
can we find a set of disps to guarantee that any translation using an
incorrect disp or an addrA that was not allocated by the application
will result in an invalid address?

To study whether this is possible, we consider the equivalent
shadow slot finding problem. The application’s memory address
space is divided into n equally-sized address space unit slots. Each
slot can be labeled as A (application), S (shadow), R (reserved), or
E (empty).

Assuming one byte of application memory is mapped to one
byte of shadow memory, given an application memory layout of n
slots including k A-slots, m R-slots, and x E-slots, can we find k
S-slots taken from the E-slots that satisfy the following properties:

1. For each slot Ai, there is one associated slot Si with displace-
ment di where di = Si −Ai.

2. For each slot Ai and each existing displacement dj where
di 6= dj , slot ((Ai + dj) mod n) is an R-slot or an E-slot.

3. For each slot Si and any existing valid displacement dj , slot
((Si + dj) mod n) is an R-slot or an E-slot.

A0 A1 E0 E1 E2 E3 E4 R0

Figure 3. A sample application memory layout. For this layout we
can use E0 and E1 as S0 and S1 and satisfy properties 1, 2, and 3.

The answer depends on the layout of the slots and on how many
E-slots we have. Figure 3 shows a sample layout, for which we can
use E0 and E1 as S0 and S1 and satisfy properties 1, 2, and 3.

A0 E0 A1 E1 E2 E3 E4 R0

Figure 4. Another sample application memory layout. There is no
assignment of shadow slots that will satisfy properties 2 and 3 for
this layout, as shown in Table 3.

However, there exist layouts for which there is no set of S-
slots that satisfy properties 2 and 3. Figure 4 shows an example
of such a layout. To map the S-slots we check each E-slot in turn
to see whether it can be used as an S-slot. Table 3 summarizes

the conflicts for each selection. The first column is the Ei slot to
be checked, and the second and fourth column show whether Ei

can be used as Sj , and what the disp value would have. The third
and fifth columns show the reason that Ei cannot be used as Sj .
For example, E0 cannot be S0 for A0, because the disp value of 1
causes E0+1 to conflict with A1, which violates the third property.
E2 cannot be S1 for A1 because the disp value of 2 results in A0

being translated into A1, which violates the second property. From
the table we can see that there is no solution for this layout, since
only one slot E1 can be used as an S-slot, even though there are
five empty slots.

E-slots S0 (disp) Conflict S1 (disp) Conflict

E0 × (1) E0 + 1 => A1 × (7) E0 + 7 => A0
E1

√
(3)

√
(1)

E2 × (4) E2 + 4 => A0 × (2) A0 + 2 => A1
E3 × (5) E3 + 5 => A1 × (3) E3 + 3 => A0
E4 × (6) A1 + 6 => A0 × (4) E4 + 4 => A1

Table 3. Possible shadow slot assignments for the application
memory layout of Figure 4, the displacement disp for each, and
the conflicts, if any, of each assignment.

In fact, we cannot find a solution even if we use R0 as an S-
slot. If we use E1 as S1 (disp = 1), and R0 as S0 (disp = 7), E1

can translated into A1 using disp value 7. Similarly, if using E1

as S0 and R0 as S1, the valid disp values are 3 and 5 and E1 + 5
translates into A0. Thus, there is no solution for such an application
layout even with six E-slots.

We will prove that we can always find k S-slots to satisfy the
first two properties, if the number of unassigned slots x is greater
than or equal to 2k2 − k. Then we prove that O(k2) is also the
bound when satisfying property 3.

Following is the informal proof, which also describes the steps
to find a possible S-slot assignment. We start with two empty sets:

• The difference set stores the values that cannot be used as valid
disp assignments.

• The translation set stores the existing valid disp values for S-
slots that have already been assigned.

We perform the following steps to identify k S-slots:

1. Given k A-slots, we first calculate all pairwise differences
among the A-slots and add each to the difference set. There
are at most (k − 1)k distinct values added.

2. We pick an A-slot Ai that is not yet associated with any S-
slot and try to find an E-slot U whose displacement value
d = U −Ai is not in the difference set.

3. We assign slot U as S-slot Si, and add di = Si − Ai into the
translation set.

4. In addition, we calculate the difference vj between Si and every
A-slot Aj (vj = Si − Aj) where i 6= j, and add each vj into
the difference set. This is to prevent Aj from being translated
to Si using vj . There are at most k − 1 distinct values added.

5. If there are still A-slots that are not associated with an S-slot,
we go to step 2. Otherwise, we have found k S-slots satisfying
the properties 1 and 2.

Having x E-slots, we can have x different possible displace-
ment values from an A-slot Ai. It is clear that we can always find
a slot U for an A-slot Ai at step 2 if the total number of E-slots is
greater than the total number of difference values in the difference
set. There are at most (k− 1)k + (k− 1)k values in the difference
set, the first (k − 1)k values from A-slot pairs at step 1 and the
second (k−1)k values from A-slot S-slot pairs at step 4. Thus, we

can guarantee finding k S-slots if there are at least 2(k − 1)k + k
E-slots, i.e., if x ≥ 2k2 − k.

If an application inadvertently references a wild memory ad-
dress due to a bug in the application, or deliberately probes un-
allocated memory, the target address may happen to lie in a shadow
memory unit. The third property guarantees that we do not suppress
what would be a fault during native execution, by ensuring that a
shadow mapping fault will be raised. When a mapping fault occurs,
EMS64 checks whether the application address is in a shadow unit;
if so, EMS64 sends a fault to the application.

To incorporate the third property, the steps for finding shadow
slots are similar to the algorithm above but with additional checks
at step 2 as shown below.

1. Given k A-slots, we first calculate all pairwise differences
among the A-slots and add each to the difference set. There
are at most (k − 1)k distinct values added.

2. We pick an A-slot that is not yet associated with an S-slot and
try to find an E-slot U whose displacement value is d = U−Ai,
where

(a) d is not in the difference set;

(b) slot ((U + d) mod n) is neither an A-slot nor an S-slot;

(c) for each value v in the translation set, slots ((U±v) mod n)
are neither A-slots nor S-slots.

3. We assign slot U as S-slot Si, and add d into the translation set.

4. We calculate and add to the difference set:

(a) the difference vj between Si and every A-slot Aj except
value vj = Si−Ai, which has been stored in the translation
set already.

(b) the difference uj between Si and every S-slot Sj except
uj = Si − Si.

5. If there are still A-slots that are not associated with an S-slot,
we go to step 2. Otherwise, we are done.

The key question is whether we can find a slot U in step 2. There
are no more than 4k2−3k values in the difference set: all 4k2 pairs
from the 2k A-slots and S-slots combined, minus (Ai, Ai), (Si,
Si), and (Ai, Si). There are at most 2k displacements d that may
cause ((U +d) mod n) to conflict with existing S-slots or A-slots.
And there are at most 4k2 (k different v with 2k different S-slots or
A-slots) possible slots U that may cause slots ((U ± v) mod n) to
conflict with A-slots or S-slots. Thus, if x is greater than or equal
to 4k2− 3k + 2k + 4k2 + k, or 8k2, we can always find k E-slots
for S-slots in step 2.

For a 64-bit architecture, if using 4GB as the slot size, there
are 215 slots in the 47-bit user-allocatable address space. We can
guarantee to support around 64 slots (256GB) regardless of the A-
slot layout.

A S R

Figure 5. An optimal memory layout in EMS64. For this layout
application, shadow, and reserved memory each occupy 1/3 of the
overall address space.

The 8k2 result is a very loose bound. The actual space depends
on the A-slot distribution and how many different displacement
values are used. In an optimal case, application memory can use up
to 1/3 of the overall available address space, as shown in Figure 5.
Assuming that y different displacement values are used, each A-
slot will reserve y slots as either S-slot or R-slots, and each S-slot
will reserve y R-slots, resulting in ((2y + 1)× k) total slots used.

This is a much lower value than the 8k2 bound. This is only an
estimate as different A-slots or S-slots may reserve the same R-
slot, and some slots are reserved for other reasons. In practice, we
can always find a feasible set of S-slots with a small number of
displacement values for a given layout with much fewer E-slots
available than the upper bound (e.g., Figure 3).

The proof steps above also describe an algorithm to find suitable
shadow address space units. To find an S-slot for a given A-slot,
we may have to check O(k2) E-slots before finding a valid S-
slot location. The process of checking each E-slot incurs O(k2)
operations, including:

• Step 2(a): check if the new d is in the difference set, which is
an O(k2) operation.

• Step 2(b): check if ((U +d) mod n) conflicts with any existing
A-slot or S-slot, which is an O(k) operation.

• Step 2(c): check for all v in the translation set whether slots
((U ± v) mod n) conflict with any existing A-slot or S-slot,
which is an O(k2) operation.

Since there are k A-slots, the overall runtime is O(k5) (= k ×
O(k2)×O(k2)).

The proof and algorithm for application memory mapping to
different sized shadow memory is similar, and the bound is also
O(k2) with a larger leading constant.

4. Efficient Shadow Slot Finding Algorithm
There are several ways to improve on the algorithm from Section 3.
We focus on reducing the overhead at step 2.

First, instead of linearly scanning the available E-slots to check
whether each can be used as an S-slot, we randomly select a slot
and check whether it is an E-slot and can be used as an S-slot.
Because of the large number of available E-slots (215) compared
to the number of unsuitable slots O(k2), we expect to find a suitable
one in a small number of attempts. The expected number of E-slots
we must check is O(1).

Second, we use an O(k2)-size hashtable to store the O(k2) val-
ues in the difference set, and use a linked list to resolve hash colli-
sions. The expected running time for step 2(a) of checking whether
a value is in the difference set is reduced to O(1). Similarly, we
use hashtables of size O(k2) to store the A-slots, S-slots, and the
R-slots that are reserved by EMS64. We use the base address of
each slot as the key. The running time of checking whether a slot
conflicts with any existing slots is reduced to O(1). Thus, the run-
ning time of step 2(b) is reduced to O(1). The running time of step
2(c) is reduced to O(k) for checking the O(k) valid values in the
translation set.

The third optimization is to reuse existing valid displacements
disp in the translation set whenever possible. As shown in Table 2,
there are two disps for 6 modules, or 4 different application address
space units. Ideally, if we can find one disp for every possible ap-
plication unit, every speculative disp is correct, and the overall per-
formance would be the same as the direct mapping scheme. Even
if we cannot find a single one to fit all units, the fewer disp, the
better. If a memory reference dynamically varies and accesses two
different units that have the same disp, it can reference the correct
shadow memory without raising any fault. In addition, a smaller
number of disps in the translation set also reduces the possibility of
conflicts at step 2(c), which makes it easier to accommodate more
S-slots. Before looking for a suitable unit S for application unit A,
we first try all existing disp values and check whether the unit cal-
culated from A and disp could be a valid S-slot. If so, we use the
existing disp value. Since the running time to check whether slot
((Ai + disp) mod n) is valid is O(k), the running time to check

Shadow-Slot-Search(Ai)
A : A-slot set
S : S-slot set
R : R-slot set
D : difference set
T : translation set

1. For each value d ∈ T , U = ((Ai + d) mod n)
(a) if U ∈ (A ∪ S ∪R), try next d at step 1.
(b) if ((U + d) mod n) ∈ (A ∪ S), try next d at step 1.
(c) if ((U ± v) mod n) ∈ (A ∪ S) for any v ∈ T and v 6= d,

try next d at step 1.
(d) add ((U ± v) mod n) except Ai = ((U − d) mod n) into

R, for all v ∈ T .
(e) add value U − Aj , Aj − U , U − Sj , and Sj − U except

d = U −Ai into D for all Aj ∈ A, Sj ∈ S.
(f) assign U as Si and return.

2. Randomly select a slot U , d = U −Ai.
(a) if d ∈ D, jump to step 2.
(b) if U ∈ (A ∪ S ∪R), jump to step 2.
(c) if ((U + d) mod n) ∈ (A ∪ S), jump to step 2.
(d) if ((U ± v) mod n) ∈ (A∪S) for any v ∈ T , jump to step

2.
(e) add d into T .
(f) add ((U ± v) mod n) except Ai = ((U − d) mod n) into

R, for all v ∈ T .
(g) add value U − Aj , Aj − U , U − Sj , and Sj − U except

d = U −Ai into D for all Aj ∈ A, Sj ∈ S.
(h) assign U as Si and return.

Figure 6. Shadow slot finding algorithm for each A-slot Ai.

every valid disp is O(k2). In practice, however, there are only 2 to
3 displacement values in the translation set.

Given an A-slot, our final algorithm to locate a valid S-slot is
shown in Figure 6, whose running time is O(k2)+ (O(1)×O(k))
= O(k2). Thus, the overall running time to find k S-slots is O(k3).
If a scale is needed when mapping application memory due to
differently-sized shadow memory, the algorithm is the same except
((U + d) mod n) is replaced with ((U × scale + d) mod n) for
the slot calculation.

5. Implementation
To demonstrate the feasibility of EMS64, we have built a prototype
using Umbra [29].

5.1 Umbra
Umbra is an efficient and scalable memory shadowing tool built
on top of DynamoRIO [1, 2], which is a state-of-the-art run-
time code manipulation system. Using the APIs provided by Dy-
namoRIO, Umbra inserts code into the application’s runtime in-
struction stream to perform memory address translation from ap-
plication memory to shadow memory. Umbra also provides an
interface allowing users to write an Umbra client to insert code for
updating shadow memory metadata without needing to know the
memory translation details.

Umbra uses a segmented mapping scheme. Instead of represent-
ing the whole address space, Umbra uses a small mapping table
to store information only about each allocated application mem-
ory module and its corresponding shadow memory module. This
allows Umbra to easily scale to the full 64-bit address space. How-
ever, Umbra must walk the whole table to find the correct segment.
Umbra uses several optimizations to avoid this table walk. One of

lea [addr] => %r1
and %r1, TAG_MASK => %r1
cmp %r1, rc->tag
je label_hit
...

label_hit:
lea [addr] => %r1
add %r1, rc->offset => %r1

Figure 7. Umbra’s instrumented code for the reference cache
check and address translation on the fast path for a reference cache
hit. The code for context switching is omitted.

the key optimizations is the reference cache. A reference cache
is a software data structure that stores the last translated applica-
tion address unit tag and displacement (offset) of the corresponding
shadow address:

struct ref_cache {
void *tag;
ptrdiff_t offset;

}

Umbra associates each static application memory reference with
a reference cache, and takes advantage of application locality to
avoid table walking. If the instruction accesses the same applica-
tion unit again, Umbra will use the cached displacement for the
translation directly. If it is different, Umbra will execute the slow
path to find the right unit and displacement and update the reference
cache. Experiments show that the hit ratio of the reference cache is
99.97% on average, with most address translation taking the fast
path and avoiding a table walk.

The high hit rate (99.97%) of the reference cache in Umbra
suggests that most reference cache checks are redundant. However,
Umbra cannot hardcode the offset as in DMS, and has to check to
make sure that it is correct. This is because Umbra must handle
the 0.03% cache misses and provide correct translation for the case
that an application instruction references a different module from
its last execution.

Figure 7 lists the instrumented instructions for the reference
cache check and address translation on the fast path for the case of
a reference cache hit. Even with a high cache hit rate, Umbra is still
unable to match the performance of 32-bit DMS. Umbra achieves
a 2.5× slowdown compared to native execution, which is mainly
attributable to redundant checks and code expansion.

5.2 EMS64
Implementing EMS64 involved three major modifications to Um-
bra:

• adding our shadow slot finding algorithm to Umbra’s shadow
memory manager,

• adding signal handling to handle page faults,
• changing Umbra’s instrumenter to selectively insert reference

check code for application references that frequently cause page
faults.

We implemented Section 4’s shadow slot finding algorithm in
Umbra’s shadow memory manager. We also changed Umbra’s in-
strumentation. The reference cache of Umbra has a natural role un-
der EMS64. The most straightforward implementation is to simply
assign a valid disp value to the reference cache’s offset field on
initialization, and remove all reference cache check code inserted
by Umbra. The instrumented code is shown in Figure 8, which is
the same code as the address translation on a reference cache hit in
Umbra. If an addrS is calculated from an unmatched addrA and

lea [addr] => %r1
add %r1, rc->offset => %r1

Figure 8. EMS64 instrumented code for address translation. The
code for context switching is omitted.

disp, the resulting memory reference for accessing shadow mem-
ory will raise a fault. Our fault handler will catch the fault, find
the correct disp value, re-calculate the addrS , update the reference
cache, and re-execute the instruction that raised the fault.

In most cases, a single memory reference instruction only ever
references one address space unit. However, there are some excep-
tions. For example, the C library function memcpy is often called
by applications to perform a memory copy from source to destina-
tion. The memory reference in such a function may access different
address space units in different invocations, and thus often have an
incorrect disp. For such instructions, we should use an inline check
to find disp instead of paying the cost of frequent notification by a
fault. The question is how to detect such memory references.

DynamoRIO’s basic block cache and trace cache duality pro-
vides us a ready answer. DynamoRIO first copies application code
into its basic block cache and executes from there. It upgrades fre-
quently executed sequences of basic blocks, or traces, into its trace
cache. We add a counter for each memory reference to record the
number of reference cache misses. For basic blocks emitted into
the basic block cache, we insert the reference cache checks just
as Umbra does. In addition, we insert code to update the refer-
ence cache miss counter on the slow path when the inline reference
cache check misses. When hot code is to promoted into the trace
cache, we check the reference cache miss counter, and remove the
inline check code if the counter value is below a threshold (2 in our
implementation).

It is still possible that a memory reference in a trace accesses
different address space units. Our fault handler addresses that prob-
lem. In addition to finding disp and recalculating the addrS , the
fault handler marks the trace to be removed from the trace cache
after the current execution instance. If the code is executed again
later, it will be emitted into the basic block code cache with refer-
ence cache check and profiling. Thus, memory references are re-
profiled when their behavior changes.

In this way, we can identify memory references that often
change their access targets and add or remove the reference cache
checks adaptively. Because basic blocks only host code that is in-
frequently executed, the profiling overhead in the basic block cache
incurs negligible overhead.

6. Experimental Results
We conducted several experiments to evaluate the performance of
EMS64.

6.1 Experimental Setup
We have implemented EMS64 on top of Umbra for Linux. We used
the SPEC CPU2006 benchmark suite [25] 1 with reference input
sets for evaluating EMS64. All benchmarks were compiled as 64-
bit using gcc 4.3.2 with -O2 optimization. The hardware platform is
a dual-die quad-core Intel Xeon processor with 3.16GHz clock rate,
12MB L2 cache on each die, and 8GB total RAM. The operating
system is 64-bit Debian GNU/Linux 5.0. We configured 4GB as the
address space unit size.

1 400.perlbmk, 464.h264ref, and 481.wrf are excluded because they fail to
run correctly natively.

6.2 Performance Evaluation
We first evaluate the runtime overhead of Umbra and our EMS64
translation scheme with and without a shadow memory update. Fig-
ure 9 shows the performance results. The Umbra-null and EMS64-
null datasets show the performance of translation without any
shadow memory update. Umbra-AD and EMS64-AD add an ac-
cess detection tool that uses shadow memory to detect whether the
corresponding application data has been accessed by the applica-
tion after allocation. This involves additional instrumentation to
update shadow memory after translation.

With translation only, Umbra incurs a 149% overhead while
EMS64 only has an 81% overhead, which is comparable to the 80%
runtime overhead of the direct mapping scheme (DMS) in Figure 1.
This shows that EMS64’s profiling overhead from reference cache
checks in the basic block cache has negligible performance impact.
Note that in this comparison the performance of EMS64 is the ide-
alized performance. Because it performs translation without touch-
ing the shadow memory, it will not incur any faults even if a wrong
disp is used.

The results for Umbra-AD and EMS64-AD show the perfor-
mance overhead of a sample shadow memory tool for memory ac-
cess detection. Umbra-AD’s runtime overhead is 626%, while that
for EMS64-AD is only 448%. The difference of 178% is signif-
icantly larger than the 68% difference between Umbra-null and
EMS64-null. Although the shadow memory update code is iden-
tical for the two tools, EMS64-AD has less code for address trans-
lation, which leads to a much smaller code cache size. The code
cache size difference has more impact when shadow memory up-
date code is included, where the cache pressure is higher.

6.3 Statistics Collection
To better understand the impact of EMS64, we also collect statistics
on Umbra and EMS64. In Table 4, the check-rate statistic shows
the ratio of the number of reference cache checks versus the total
number of memory references executed. Umbra uses static anal-
ysis to cluster memory references to avoid redundant reference
cache checks, such as when two memory references access dif-
ferent members of the same data object. In contrast, EMS64-AD
performs significantly fewer reference cache checks, only 1/20 of
the number of checks for Umbra-AD. The hit-rate is the reference
cache hit ratio, which is decreased from 99.97% in Umbra-AD to
97.83% in EMS64-AD, due to the removal of a large number of
redundant reference checks that always hit in Umbra-AD.

Umbra-AD EMS64-AD
Metric CINT CFP All CINT CFP All
check-rate 62.29% 50.73% 57.87% 2.09% 3.42% 2.91%
hit-rate 99.98% 99.96% 99.97% 98.81% 97.21% 97.83%

Table 4. Statistics on the effectiveness of Umbra and EMS64. The
check-rate data shows the ratio of the number of reference cache
checks versus the total number of memory references executed. The
hit-rate is the reference cache hit ratio.

Table 5 lists the number of reference cache checks for each
benchmark for both Umbra-AD and EMS64-AD. The BB column
shows the number of checks executed in the basic block cache,
while Trace shows the number of checks executed in the trace
cache. The FAULT column displays the total number of access vio-
lation faults raised. The table shows that the number of checks ex-
ecuted in traces with EMS64-AD is much smaller than the number
of checks with Umbra-AD. On average, the number of checks in
the trace cache for EMS64-AD is only 7% of the number of checks
in the trace cache for Umbra-AD. This means that EMS64-AD
has removed a significant number of redundant checks. In contrast,

 0x

 2x

 4x

 6x

 8x

 10x

 12x

 14x

401.bzip2
403.gcc
429.m

cf
445.gobm

k
456.hm

m
er

458.sjeng
462.libquantum
471.om

netpp
473.astar
483.xalancbm

k
C
IN
T

410.bw
aves

416.gam
ess

433.m
ilc

434.zeusm
p

435.grom
acs

436.cactusA
D

M
437.leslie3d
444.nam

d
447.dealII
450.soplex
453.povray
454.calculix
459.G

em
sF

D
T

D

465.tonto
470.lbm
482.sphinx3
C
F
P

C
P
U
2
0
0
6

T
im

e
v
er

su
s

n
at

iv
e

Umbra−null

EMS64−null

Umbra−AD

EMS64−AD

Figure 9. The performance of EMS64 compared to Umbra on the SPEC CPU2006 benchmarks, without (Umbra-null and EMS64-null) and
with (Umbra-AD and EMS64-AD) shadow memory updates. The shadow memory updates implement an access detection tool that detects
whether application data has been accessed after allocation. Both Umbra and EMS64 are configured to use 1 shadow byte per application
byte.

Umbra-AD has slightly fewer checks executed in basic blocks. This
is because some memory references in EMS64-AD will fault and
subsequently be removed from the trace cache and profiled again
in the basic block cache.

The number of checks reduced depends on the characteristics
of the application. The better reference locality the application
has, the fewer number of checks are kept in traces and the fewer
faults are raised, resulting in better performance. For example, the
benchmark 470.lbm has excellent reference cache locality. There
is only one fault raised, and the number of checks in traces is re-
duced from 6.12 × 1010 to merely 6.72 × 103. It only incurs a
66.7% runtime overhead under EMS64-AD. Benchmarks 429.mcf,
444.namd, 459.GemsFDTD, 462.libquantum have similar proper-
ties. A particularly interesting result is that 429.mcf also shows
good locality. 429.mcf is a benchmark that causes a significant
amount of hardware cache misses, but in the coarse-grained ad-
dress space unit level, most of its accesses are to the same address
space unit. In contrast, benchmarks like 465.tonto do not have a
good unit-level locality: it contains more than 600 references that
cause access violations and result in a 6.44× slowdown. Similar
benchmarks include 436.cactusADM and 447.dealII. There are a
few anomalies. For example, 403.gcc causes many faults (360) but
has only moderate slowdown (2.99×). One cause may be gcc’s time
spent on disk i/o overshadowing this overhead. 458.sjeng has only
7 faults, and EMS64 eliminates 99% of its checks, but it still has a
5.58× slowdown. This might be because the code cache overhead
due to instrumented code dominates the overall runtime overhead.
For 458.sjeng, Umbra-AD has 10.34× slowdown, which implies
that the code cache size has a significant impact on this benchmark.

7. Related Work
There are two common types of shadow memory mapping for 32-
bit architectures used by dynamic program analysis tools: direct
mapping schemes (DMS) and segmented mapping schemes (SMS).
A direct mapping scheme maps the full user address space into a
single shadow address space. This simplifies translation, requiring

Umbra-AD EMS64-AD
Benchmark BB Trace BB Trace Faults
401.bzip2 7.12e5 6.99e11 8.77e5 1.79e10 53
403.gcc 2.50e7 2.56e11 4.05e7 2.42e10 360
429.mcf 5.50e4 7.89e10 5.51e4 1.26e06 13
445.gobmk 5.05e6 4.09e11 5.25e6 2.79e09 134
456.hmmer 2.38e5 1.34e12 2.94e5 3.34e08 38
458.sjeng 1.57e5 4.72e11 1.59e5 2.37e09 7
462.libquantum 3.37e4 2.43e11 4.20e4 1.28e08 17
471.omnetpp 5.73e5 1.74e11 6.51e5 2.56e10 134
473.astar 1.88e5 3.39e11 2.74e5 8.64e09 109
483.xalancbmk 1.02e6 2.99e11 1.14e6 6.59e09 202

410.bwaves 1.66e5 1.14e12 1.82e5 2.62e11 93
416.gamess 2.53e6 1.52e12 2.66e6 2.01e09 57
433.milc 1.50e5 2.04e11 2.12e5 6.42e10 86
434.zeusmp 4.81e5 3.86e11 4.98e5 2.77e06 13
435.gromacs 2.48e5 2.20e11 3.01e5 7.25e09 56
436.cactusADM 2.51e5 1.98e11 2.95e5 1.19e11 187
437.leslie3d 2.08e5 6.32e11 2.35e5 2.30e10 13
444.namd 2.43e5 2.56e11 2.49e5 4.89e07 10
447.dealII 1.01e6 5.13e11 1.22e6 5.42e10 256
450.soplex 6.73e5 2.12e11 7.85e5 1.04e09 88
453.povray 4.25e5 1.91e11 5.05e5 7.24e10 102
454.calculix 8.05e5 1.77e12 9.20e5 1.92e10 213
459.GemsFDTD 4.70e5 4.85e11 4.83e5 8.30e08 37
465.tonto 1.36e6 5.63e11 1.87e6 6.34e10 619
470.lbm 3.64e4 6.12e10 3.64e4 6.72e03 1
482.sphinx3 2.84e5 8.58e11 3.33e5 7.07e08 119

Table 5. Number of reference cache checks performed in the ba-
sic block cache (BB) and trace cache (Trace) by Umbra-AD and
EMS64-AD, and the number of faults raised in EMS64-AD.

only an offset and potentially a scale if the shadow memory size
does not match its corresponding application size. However, using
a single shadow region sacrifices robustness, as it requires stealing
a large chunk of space from the application.

LIFT [20] uses a direct mapping scheme to shadow each appli-
cation byte with only one shadow bit. Consequently its mapping

uses both a scale and an offset, and its shadow region only requires
one-eighth of the user address space.

TaintTrace [5], Hobbes [3], and Eraser [23] all use direct map-
ping schemes as well, but with one shadow byte per application
byte. They assume a 3GB 32-bit user address space and take 1.5GB
for shadow memory. Their shadow memory mapping involves a
simple offset and incurs little overhead. However, claiming a full
half of the address space gives up flexibility and presents problems
supporting applications that make assumptions about their address
space layout. Such a design is problematic on operating systems
that force various structures to live in certain parts of the address
space or use different address space splits for kernel versus user
space.

A segmented mapping scheme splits the user address space into
segments, and allocates corresponding shadow memory only when
necessary. The segmented mapping scheme has the flexibility to
avoid address conflicts, and allows shadow memory to be larger
than application memory. However, it sacrifices efficiency for this
flexibility. A segmented mapping scheme must first locate which
memory segment an application address lies in, and then apply
the correct address translation. To achieve better performance, a
tool using a segmented mapping scheme often uses a page-table-
like data structure to maintain the segment information for the full
address space, and uses the most significant bits of each memory
address as an index to quickly retrieve the segment information
from the table. A number of shadow value tools use segmented
mapping schemes for flexibility and robustness. Using segment
mapping schemes gives up some performance but provides support
for a wider range of applications and platforms.

MemCheck [24] employs a segmented mapping scheme [16].
MemCheck’s scheme was designed for a 32-bit address space. It
splits the space into 64K regions of 64KB each. A first-level table
points at the shadow memory for the 64KB region containing the
address in question. MemCheck originally kept all of its shadow
memory in a single contiguous region but was forced to split it up
in order to support a wider range of applications and platforms,
due to the limitations discussed earlier with claiming too large of a
contiguous fraction of the application address space.

MemCheck extends its scheme to 64-bit address spaces with
a larger first-level table that supports the bottom 32GB of the ad-
dress space. It uses a slower translation path for addresses above
32GB, and attempts to keep as much memory as possible in the
lower 32GB. The MemCheck authors report problems with their
approach on other platforms and suggest it may need improve-
ment [16]: “It is unclear how this shadow memory scheme can best
be scaled to 64-bit address spaces, so this remains an open research
question for the future.”

MemCheck uses several optimizations to reduce overhead, but
most of them are specific to MemCheck’s particular metadata se-
mantics. It saves memory and time by pointing shadow memory re-
gions that are filled with a single metadata value to a shared shadow
memory structure. For aligned memory accesses it processes all
bytes in a word simultaneously. And it maintains bit-level shadow-
ing granularity without requiring shadow bits for every application
bit by compressing the shadow metadata to only use such granular-
ity when byte-level granularity is not sufficient.

The TaintCheck [18], Helgrind [12], and Redux [15] tools are
all built on the same Valgrind [17] dynamic binary instrumentation
platform as MemCheck. They all use the same segmented mapping
scheme as MemCheck.

pinSel [14] uses a segmented mapping scheme similar to Mem-
Check’s, but with 4KB shadow units rather than 64KB units. Visu-
alThreads [9] uses 16MB units in its two-level approach.

EDDI [28] shadows each memory page with a shadow page that
stores for each application byte whether a data watchpoint has been

set. It uses a similar approach to pinSel. A table is used to locate the
shadow page for each memory page. Unlike most segmented map-
ping schemes, EDDI stores the displacement instead of a pointer
in the table for translation, which enables several optimizations for
better performance.

DRD [22] uses a nine-level table to hold its shadow memory,
which shadows memory accessed during each unit of time.

Commercial shadow value tools include Purify [21], Intel Par-
allel Inspector [11], Insure++ [19], and Third Degree [10]. Unfor-
tunately, their shadow translation details are not published.

MemTracker [27] and HARD [30] propose using additional
hardware to provide low-overhead shadow memory translation and
memory access monitoring (but not propagation) for MemTracker,
and data race detection for HARD. The introduced hardware is
targeted to a specific tool in each case.

Metadata management and propagation directly in hardware [7,
8, 26] imposes limitations on the metadata format stored in shadow
memory but can reduce overheads significantly for tools that can
use the supported formats. Other hardware proposals support a
wider range of dynamic analysis tools using shadow memory by
targeting the costs of dynamic binary instrumentation [6, 31] or
providing metadata support independently of the metadata struc-
ture [4].

Although it uses a segmented mapping scheme, unlike other
tools that map the entire address space uniformly Umbra [29]
maps regions based on application memory allocation. This key
difference allows Umbra to scale up to 64-bit architectures, but also
forces Umbra to walk the entire table to locate a segment. Umbra
uses several optimizations to avoid the slow table walk and provide
efficient mapping.

EMS64 improves on Umbra. It takes advantage of the large 64-
bit address space and application reference locality to provide a
fast and flexible mapping scheme for 64-bit architectures based on
insights from the similarities between the DMS and SMS address
translation process.

EMS64 is implemented entirely in software on top of Umbra us-
ing the DynamoRIO [2] dynamic binary instrumentation system. It
could be implemented using other binary instrumentation systems
such as Pin [13] or Valgrind [17].

8. Conclusion
In this paper we present EMS64, an efficient memory shadowing
scheme for 64-bit architectures. It achieves comparable efficiency
to a direct mapping scheme while providing the flexibility of a seg-
mented mapping scheme. EMS64 does not rely on idiosyncrasies of
the operating system or underlying architecture and is not limited
to specific shadow metadata sizes or semantics.

We proved the feasibility of EMS64 and proposed an efficient
algorithm to find suitable shadow memory locations. We imple-
mented EMS64 on top of Umbra and evaluated its performance.
EMS64 shows substantial performance improvements over Umbra
and over all existing 64-bit shadow mapping schemes known to us.
We hope that the EMS64 approach can be applied to other mapping
problems beyond mapping application memory to shadow memory.

References
[1] DynamoRIO dynamic instrumentation tool platform, Febru-

ary 2009. http://dynamorio.org/.

[2] Derek Bruening. Efficient, Transparent, and Comprehensive
Runtime Code Manipulation. PhD thesis, M.I.T., September
2004.

[3] Michael Burrows, Stephen N. Freund, and Janet L. Wiener.
Run-time type checking for binary programs. In Proc. of the

12th International Conference on Compiler Construction (CC
’03), pages 90–105, 2003.

[4] Shimin Chen, Michael Kozuch, Theodoros Strigkos, Babak
Falsafi, Phillip B. Gibbons, Todd C. Mowry, Vijaya Ra-
machandran, Olatunji Ruwase, Michael Ryan, and Evangelos
Vlachos. Flexible hardware acceleration for instruction-grain
program monitoring. In Proc. of the 35th International Sym-
posium on Computer Architecture (ISCA ’08), pages 377–388,
2008.

[5] Winnie Cheng, Qin Zhao, Bei Yu, and Scott Hiroshige. Taint-
trace: Efficient flow tracing with dynamic binary rewriting.
In Proc. of the Proceedings of the 11th IEEE Symposium on
Computers and Communications (ISCC ’06), pages 749–754,
2006.

[6] Marc L. Corliss, E. Christopher Lewis, and Amir Roth. Dise:
a programmable macro engine for customizing applications.
In Proc. of the 30th International Symposium on Computer
Architecture (ISCA ’03), pages 362–373, 2003.

[7] Jedidiah R. Crandall and Frederic T. Chong. Minos: Control
data attack prevention orthogonal to memory model. In Proc.
of the 37th International Symposium on Microarchitecture
(MICRO 37), pages 221–232, 2004.

[8] Michael Dalton, Hari Kannan, and Christos Kozyrakis. Rak-
sha: a flexible information flow architecture for software se-
curity. In Proc. of the 34th International Symposium on Com-
puter architecture (ISCA ’07), pages 482–493, 2007.

[9] Jerry J. Harrow. Runtime checking of multithreaded appli-
cations with visual threads. In Proc. of the 7th International
SPIN Workshop on SPIN Model Checking and Software Veri-
fication, pages 331–342, 2000.

[10] Hewlett-Packard. Third Degree. http://h30097.www3.hp.
com/developerstoolkit/tools.html.

[11] Intel. Intel Parallel Inspector. http://software.intel.com/
en-us/intel-parallel-inspector/.

[12] OpenWorks LLP. Helgrind: A data race detector, 2007.
http://valgrind.org/docs/manual/hg-manual.html/.

[13] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil,
Artur Klauser, Geoff Lowney, Steven Wallace, Vijay Janapa
Reddi, and Kim Hazelwood. Pin: Building customized pro-
gram analysis tools with dynamic instrumentation. In Proc. of
the ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI ’05), pages 190–200, June
2005.

[14] Satish Narayanasamy, Cristiano Pereira, Harish Patil, Robert
Cohn, and Brad Calder. Automatic logging of operating
system effects to guide application-level architecture simula-
tion. In Proc. of the Joint International Conference on Mea-
surement and Modeling of Computer Systems (SIGMETRICS
’06/Performance ’06), pages 216–227, 2006.

[15] Nicholas Nethercote and Alan Mycroft. Redux: A dynamic
dataflow tracer. In Electronic Notes in Theoretical Computer
Science, volume 89, 2003.

[16] Nicholas Nethercote and Julian Seward. How to shadow every
byte of memory used by a program. In Proc. of the 3rd
International Conference on Virtual Execution Environments
(VEE ’07), pages 65–74, June 2007.

[17] Nicholas Nethercote and Julian Seward. Valgrind: A frame-
work for heavyweight dynamic binary instrumentation. In
Proc. of the ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI ’07), pages 89–

100, June 2007.

[18] James Newsome. dynamic taint analysis for automatic de-
tection, analysis, and signature generation of exploits on com-
modity software. In Proc. of the Network and Distributed Sys-
tem Security Symposium (NDSS 2005), 2005.

[19] Parasoft. Insure++. http://www.parasoft.com/
jsp/products/insure.jsp?itemId=63.

[20] Feng Qin, Cheng Wang, Zhenmin Li, Ho-seop Kim, Yuanyuan
Zhou, and Youfeng Wu. Lift: A low-overhead practical infor-
mation flow tracking system for detecting security attacks. In
Proc. of the 39th International Symposium on Microarchitec-
ture (MICRO 39), pages 135–148, 2006.

[21] Rational Software. Purify: Fast detection
of memory leaks and access errors, 2000.
http://www.rationalsoftware.com/products/

whitepapers/319.jsp.

[22] Michiel Ronsse, Bastiaan Stougie, Jonas Maebe, Frank Cor-
nelis, and Koen De Bosschere. An efficient data race detec-
tor backend for diota. In Parallel Computing: Software Tech-
nology, Algorithms, Architectures & Applications, volume 13,
pages 39–46. Elsevier, 2 2004.

[23] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobal-
varro, and Thomas Anderson. Eraser: a dynamic data race de-
tector for multithreaded programs. ACM Trans. Comput. Syst.,
15(4):391–411, 1997.

[24] Julian Seward and Nicholas Nethercote. Using Valgrind to
detect undefined value errors with bit-precision. In Proc. of
the USENIX Annual Technical Conference, pages 2–2, 2005.

[25] Standard Performance Evaluation Corpora-
tion. SPEC CPU2006 benchmark suite, 2006.
http://www.spec.org/osg/cpu2006/.

[26] G. Edward Suh, Jae W. Lee, David Zhang, and Srinivas De-
vadas. Secure program execution via dynamic information
flow tracking. In Proc. of the 11th International Conference
on Architectural Support for Programming Languages and
Operating Systems (ASPLOS ’04), pages 85–96, 2004.

[27] Guru Venkataramani, Brandyn Roemer, Yan Solihin, and Mi-
los Prvulovic. Memtracker: Efficient and programmable sup-
port for memory access monitoring and debugging. In Proc. of
the 2007 IEEE 13th International Symposium on High Perfor-
mance Computer Architecture (HPCA ’07), pages 273–284,
2007.

[28] Qin Zhao, Rodric M. Rabbah, Saman P. Amarasinghe, Larry
Rudolph, and Weng-Fai Wong. How to do a million watch-
points: Efficient debugging using dynamic instrumentation. In
Proc. of the 17th International Conference on Compiler Con-
struction (CC ’08), pages 147–162, 2008.

[29] Qin Zhao, Derek Bruening, and Saman Amarasinghe. Umbra:
Efficient and scalable memory shadowing. In Proc. of the In-
ternational Symposium on Code Generation and Optimization
(CGO ’10), April 2010.

[30] Pin Zhou, Radu Teodorescu, and Yuanyuan Zhou. Hard:
Hardware-assisted lockset-based race detection. In Proc. of
the 2007 IEEE 13th International Symposium on High Perfor-
mance Computer Architecture (HPCA ’07), pages 121–132,
2007.

[31] Yuanyuan Zhou, Pin Zhou, Feng Qin, Wei Liu, and Josep Tor-
rellas. Efficient and flexible architectural support for dynamic
monitoring. ACM Transactions on Architecture and Code Op-
timization (TACO), 2(1):3–33, 2005.

