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Abstract

Remote storage of data has become an increasingly attractive and advantageous option, especially
due to cloud systems. While encryption protects the data, it does not hide the access pattern to the
data. A natural solution is to access remote storage using an Oblivious RAM (ORAM) which provably
hides all access patterns. While ORAM is asymptotically efficient, the best existing scheme (Pinkas and
Reinman, Crypto’10) still has considerable overhead for a practical implementation: for M stored items,
it stores 4 times and sometimes 6 times more items remotely, requires O(log2 M) round trips to storage
server per request, and periodically blocks all data requests to shuffle all storage (which is a lengthy
process).

In this paper, we first define a related notion to ORAM, oblivious storage (OS), which captures more
accurately and naturally the security setting of remote storage. Then, we propose a new ORAM/OS
construction that solves the practicality issues just outlined: it has a storage constant of ≈ 1, achieves
O(1) round trips to the storage server per request, and allows requests to happen concurrently with
shuffle without jeopardizing security. Our construction consists of a new organization of server memory
into a flat main part and a hierarchical shelter, a client-side index for rapidly locating identifiers at the
server, a new shelter serving requests concurrent with the shuffle, and a data structure for locating items
efficiently in a partially shuffled storage.

Keywords: oblivious RAM, oblivious storage, traffic analysis, cloud storage.

1 Introduction
Today, outsourcing data to a cloud system or to other remote entity/server is becoming increasingly

popular and beneficial for individual users and companies. Most companies protect confidentiality of their
outsourced data using encryption. While encryption protects that data, it does not protect access patterns
to the data. Often access patterns reveal too much. For example, consider a medical database (used by a
clinic) encrypted and stored on a remote server. Suppose the database contains a file with information for
each disease. During H1N1 peak time, likely, the doctors/clinic retrieve the H1N1 record frequently. Using
this information, the server can identify the H1N1 record. This is problematic because, if the server knows
when a certain patient goes to the doctor, it can see whether the supposed H1N1 record is retrieved, in which
case the server can deduce important private information about the medical condition of the patient: “he is
suspected of having H1N1”. Moreover, by doing frequency analysis of access patterns to files and using
some public studies of frequency of diseases, a server can identify some diseases.

Goldreich and Ostrovsky [8] investigated the problem of hiding access patterns in the context of RAM
machines. Their motivation was to hide the program executed by a processor from an attacker snooping on
the traffic to main memory. Their model consists of a physically shielded CPU that contains a key secret
to the outside world; the key is used to store the program encrypted in memory. The CPU progressively
fetches instructions from the program and decrypts them using its internal (and also shielded) registers. The
execution is said to be oblivious (and the RAM machined called an oblivious RAM – ORAM) if the access
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patterns for any two inputs causing the same number of accesses to RAM are indistinguishable. Goldreich
and Ostrovsky propose two solutions. The first solution, called Square-Root, has low constants, but much
higher complexity so is only presented as a first step towards the second solution, the Hierarchical solution.
The Hierarchical solutions makes any program oblivious by replacing M stored items with O(M log M)
items and replacing a direct access to an item in RAM by O(log3 M) accesses to RAM.

An elegant recent work of Pinkas and Reinman [13] improves both the complexity and constants of the
Goldreich-Ostrovsky approach by leveraging recent techniques such as Cuckoo Hashing and Randomized
Shell Sort. In their construction, storing M items is replaced by storing ≈ 8M (and occasionally ≈ 12M ).
Each data access is replaced by O(log2 M) requests to memory. Both solutions [8] and [13] are efficient
asymptotically, adding only polylogarithmic overhead.

Limitations of ORAM in practice. For concrete parameters, the state-of-the-art ORAM has the following
limitations:

1. Storage cost. Considering the large quantities of data involved there is a strong desire not to expand
storage needs in the cloud, not even by a factor of 2. The best approach [13] requires 8 times storage
overhead and occasionally 12 times (and an optimized version can achieve 4 times overhead and
occasionally 8). In fact, most cloud providers charge the customer per megabyte stored. In practice,
even a factor of two, most often discards the profit made by a company by outsourcing the data to a
cloud, or the price a user is willing to pay for their stored data.

2. Blocking requests while shuffling. The ORAM solutions require periodic shuffling of all or most of
the data in memory. In previous work, during a shuffle, requests to the data are blocked to preserve
security. In a cloud storage system with lots of data, shuffling can take many hours and the clients
cannot afford to lose access to the data for that long.

3. Client-server interactions. A client–server interaction requires one network round trip time between
the client and the server. Such latency seems to be one of the most important challenges with out-
sourcing data to the cloud or other remote server [10, 3]. The best approach, [13], requires about
log M client-server sequential interactions for one request and the next request cannot start before the
previous one finished. Decreasing the number of client–server interactions is essential for a practical
protocol.

Our Contributions. We begin by introducing a closely related concept called oblivious storage (OS) that
captures more accurately the privacy requirements of cloud storage. Since the original ORAM motivation is
a shielded CPU accessing an encrypted program it is not surprising that variations in the model are needed
when applying the techniques to privacy in the cloud. While the existing ORAM solutions [8, 13], with some
relatively straightforward extensions, also satisfy the OS requirements, we show in Section 2 that there are
constructions that satisfy the ORAM definitions, but fail to satisfy the OS requirements.

Second, we provide new constructions that reduce the overhead of ORAM to more practical values:
• We present a new shuffling algorithm that allows requests to proceed concurrently with data shuffling

so there is no need to block access to data while shuffling. Moreover, shuffling happens “in-place,”
meaning that the total storage at the server at any point in time is only ≈ M . While our algorithms
copy small parts of data, they never perform a copy of a linear fraction of memory.

To do so we introduce two new techniques. First, we provide a protocol to locate some data from
a partially-shuffled memory efficiently; we use a data structure called shuffleMap that summarizes
where each identifier can be found at some middle point during the shuffle. Second we add a sec-
ond “shelter” (called the concurrent shelter) to prevent repetitions in the data accessed before, dur-
ing, and after the shuffle. Considering that requests access partially-shuffled data and all accesses to
shuffleMap are not oblivious, understanding and proving why security is preserved was quite delicate.
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• We present a hybrid algorithm between the Square-Root algorithm of [8] and the optimized Hierarchi-
cal algorithm from [13]. The algorithm, coupled with a client-stored index, is attempting to achieve
the small constants and the small number of interactions between client and server of the Square-Root
solution of [8], while mostly maintaining the better asymptotics of the Hierarchical solution of [13].

With these contributions, we eliminate all the limitations discussed above: the storage constant is about
1, accesses can proceed in parallel with shuffling, and a data request requires a constant number (≈ 5) of
client–server interactions (round trips).

Our algorithms make use of limited storage capacity at the client, which is available in all real world
cloud settings. The storage capacity at the client is much smaller than the one in the cloud (on the order
of square root), but is nevertheless larger than O(1). In contrast, the original ORAM model assumed O(1)
storage at the client (indeed, CPUs only have a small number of registers available).

2 Security Definitions
There are two main parties: a server and a client. The storage server has a large amount of storage, called

the server storage, where it stores the data from the client. The client also has some storage capacity, though
considerably less than the server. The more storage available at the client, the faster will our algorithms be.

We chose to represent the storage at the server as a random-access memory with a “key-value” interface
similar to that provided by cloud storage services (e.g., Amazon S3 [2] and Windows Azure [4]). The
customer is charged based on the amount of storage used and the number of requests performed. Most cloud
services use a hashing algorithm allowing O(1) data retrieval time. To avoid ambiguity of terms, we use the
term “identifier-block” pair (or simply “id-block” pair) instead of key-value pair. We use the notation v to
denote an identifier, to be consistent with the virtual addresses/identifiers from ORAM. We use the notation
b to denote a certain block.

Let c be the size of the identifiers (in bits) and B be the sum of the size of a block and the size of an
identifier. Note that, in practice, B is much larger than c. For example, a common value for B is 4 KB
and c is 32 bits, resulting in B = 1024c. We decided to introduce notation for B and c, despite its absence
in previous work, because of this large difference in size; this will allow us to avoid large constants when
designing algorithms. There are M id–block pairs in the server storage, resulting in a total of MB storage.

At a high-level, we try to prevent any information about the data from being leaked to the server or to an
adversary who has access to both the data stored at the server and the messages exchanged between the client
and server. We consider a curious, but honest adversary. We use a definition similar to semantic security
where the adversary cannot distinguish between the access patterns of any two programs. The adversary
cannot tamper with the data requested to and returned by the server, but would like to learn information
about the content of the data. Allowing the adversary to tamper with the data is a straightforward extension
to our protocol similar to the one from [8] and we will thus not focus on this case. (If identifiers are selected
from a large field to prevent repeats, adding a simple MAC to the block corresponding to each identifier will
allow detection of tampering.)

We are now ready to define formally the notion of oblivious storage (OS). OS models more naturally
and accurately both the setting and security requirements of remote storage on an untrusted server. Figure 1
provides a high-level overview of the following security definitions.

Definition 1 (Server). Given positive integers M , B, c, an (M, B, c)-server, S, is an interactive algorithm
(formally modeled as an interactive Turing machine). The server S has access to O(MB) storage modeled
as random access memory consisting of entries of the form (v, b), where |v| = c and |b| = B − c. (When S
starts, its storage contains pairs (i, 0), for i = 1 . . . M ). The server S responds to the following messages:

• get(v): S returns v for which there exists entry (v, b) in its storage or ⊥ if there is no such entry.
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Figure 1: Overview of the parties involved in OS.

• put(v, b): S places entry (v, b) in its memory; if an entry for v existed already, S overwrites it.
• getRange(v1, v2): S retrieves from memory all entries (v, b) for some v, v1 ≤ v ≤ v2, and b.
• delRange(v1, v2): S deletes all entries (v, b) for some v, v1 ≤ v ≤ v2, and b.
• halt: S halts.

One might wonder why we define getRange when it can be implemented with get. Indeed, getRange is
entirely optional for security. However, we chose to introduce it because, in real storage, performing such
queries rather than their get equivalents results in much smaller constants, and it is useful to design and
evaluate our algorithms in terms of such interfaces.

Definition 2 (Client). Given positive integers k, m, B, c, a (k, m, M, B, c)-client, C, is an interactive
algorithm (formally modeled as an interactive Turing machine) with m+O(B) memory. Upon starting, the
client C receives as input a secret key SK, with |SK| = k. C responds to messages of the form get(v) and
put(v, b). For each get(v), the client must return the value b that corresponds to the most recent put to v.

Definition 3 (Program). Given positive integers k, M , B, c, a (k, M,B, c)-prog, P , is an interactive
algorithm that can send to a client (k, ∗, M, B, c)-client messages of the form get(v) and put(v, b) for some
v, b s.t. |v| = c and |b| = B − c. The program P only sends a new message to the client after it received an
answer to the previous message.

Definition 4 (Storage). Given positive integers k, M , B, c, a (k, M,B, c)-storage is a pair of an (k,m, M, B, c)-
client and an (M,B, c)-server, where the client sends messages to the server in order to satisfy requests
received from some (k, M,B, c)-prog. The input to storage is SK, with |SK| = k, and it becomes the input
to the client.

Definition 5 (Adversarial View). For any (k,M,B, c)-storage, (C, S), the adversarial view, VIEW(C,S),
is a string-valued function defined on all programs P that are (m, M, c,B)-prog. VIEW(C,S)(P ) contains
the list of all requests sent by C to S in chronological order and all the data stored at S after each request
from C, for the duration of C’s interaction with P .

Security game. We define what it means for a (k, m, M, c, B)-storage, ST, to be oblivious using a security
game between a challenger C and an adversary A.

1. Setup. C picks at random SK with |SK| = k and begins simulating ST on input SK.
2. Preparation. A picks adaptively n programs Q1, . . . , Qn and sends them to C. After simulating the

storage on each Qi, C sends to A: VIEWST(Qi) based on which A adaptively selects Qi+1.
3. Query. A picks two programs P1 and P2 that are (k, M,B, c)-prog.
4. Response. C picks a bit b at random. Then, it simulates further ST on an interaction with Pb and

sends VIEWS(Pb) to A.

4



5. Challenge. A returns a bit b′, which is a guess at the value of b.
We define the advantage of the adversary A as the quantity

AdvA := |Pr[b′ = 1|b = 0]− |Pr[b′ = 1|b = 1]|. (1)

Definition 6 (Oblivious Storage). A (k, m, M, B, c)-storage is oblivious if, for all polynomial time adver-
saries A, AdvA is a negligible function of k.

Differences between ORAM and OS. OS captures more naturally and comprehensively the outsourced
storage setting and its appropriate security properties.

Let us first establish the correspondence between components in ORAM and OS. Recall that, in the
ORAM setting, an encrypted program lies in memory and a CPU executes one instruction from the program
at a time by fetching it from memory. ORAM aims to hide accesses to the program in memory. The
client from OS loosely corresponds to the CPU in ORAM and the server in OS to the memory in ORAM.
Therefore, the data at the server in OS corresponds to the ORAM program and any other in-memory data.
The programs interacting with the client in OS correspond to one fixed, well-known program in ORAM: the
interpreting job of the CPU which fetches and executes instructions sequentially. Let’s denote this program
command executer.

The main differences from ORAM are:
1. Existence of Programs. We allow a variety of programs to interact with the client; in the real-world

scenario, users of some remote cloud storage can run any kind of programs that generate accesses to
the server.

2. Stronger security definition. The adversary in OS is stronger and its ability to get certain information
is motivated by practice.

(a) OS provides stronger access pattern indistinguishability. ORAM requires that access patterns
to the encrypted ORAM program be indistinguishable for any two encrypted programs that
produce the same number of accesses. OS requires that access patterns be indistinguishable for
any inputs of the same program (even if they produce a different number of accesses) and for
any programs. The reason is that the access pattern length can leak important information about
the data stored at the server. For example, if a program reads block 1 and if the block’s content
is 0, it makes two more accesses to some other blocks, else it halts. By observing the number
of accesses, an adversary can tell whether the value of block 0 is 1. Moreover, in real use cases,
users can run any kind of programs requesting data from the storage and mere knowledge of
these programs can leak information about the data at the server (e.g., if a financial program is
running, the data at the server is financial).

(b) The adversary should be able to see the state of the unencrypted data at the server before the
final challenge (i.e. the encrypted program in ORAM). After it sees the data, it should not be
able to distinguish between the access patterns of two challenge programs of its choice. Such
protection is needed; for example, consider an employee of a company that formally had access
to the data of the company, but was subsequently fired; he must not be able to see or deduce any
future changes to the data from the access patterns to it.

(c) The adversary should be adaptive. It can see VIEW and the output of the client to the program
and select new programs for the challenger. Such adversarial behavior is encountered in practice
because the adversary itself may sometimes be a user of a storage system.

3. Presence of non-constant client storage. Most client machines using a remote storage system posses
a significant amount of memory (RAM and disk). Moreover, in most cloud storage systems, the client
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is formed of a cluster of local machines that together contain a significant amount of storage, though
still less than the server-side storage capacity.

Thus, our OS model is different and our oblivious OS definition stronger than ORAM’s. However, we
point out that the current ORAM solutions (e.g., [8], [14], [15], [13]) can still satisfy our definition with a
few straightforward extensions (e.g., the client running the ORAM protocol should perform an initial shuffle
before running any program, execute requests at a constant rate, and keep the total number of requests for
each program equal).

Nevertheless, one can exhibit a pedagogical example protocol that satisfies the ORAM definition, but
does not satisfy our OS definition and is in fact not a secure in practice. Given a program, the client begins
by following the ORAM protocol as long as the requests of the program are the same with the requests of a
program executer defined above (that is, they correspond to fetching identifiers sequentially or fetching an
identifier according to a branch jump). At the first request that deviates from the next request of a program
executor, the client executes in plain all future requests, making the access patterns visible. This protocol
follows the ORAM definition because, as long as the program is a command executor, it executes the ORAM
protocol; for other programs, it leaks access patterns.

3 Related Work
There has been significant related work on Oblivious RAM [8, 6, 11, 13, 14, 15, 1, 5]. Some of this

work focuses on finding algorithms that do not rely on any cryptographic assumptions such as the work by
Ajtai [1] and Damgård et al. [5]. While the lack of cryptographic assumptions is very useful, the complexity
costs of these schemes are much higher: the storage overhead is polylogarithmic in the number of data pairs,
as opposed to being O(1), and the number of requests made for one program request is polylogarithmic. As
such, we will focus on cryptographic approaches to Oblivious RAM.

Goldreich and Ostrovsky [8] first introduced the notion of oblivious RAM and provided two solutions:
the Square-Root and the Hierarchical solutions.
3.1 The “Square-Root” Solution

We describe the “Square-Root” solution [8] in terms of the terminology introduced in Section 2. Con-
sider the server memory divided in two parts: the main part and a “shelter.” The main part contains M pairs
of client data and

√
M dummy pairs. The shelter is an append-only log of pairs that can grow to size

√
M .

For the Square-Root solution only, consider that any data placed in the shelter has the high-order bits of the
identifier v set to a distinguished value to allow clients to retrieve the entire shelter with a single getRange.

When the client receives a get(v) or put(v, b) request, it begins by issuing a getRange command for the
shelter and scanning the shelter’s contents. If the client finds v in the shelter, it sends a get request to the
server for a dummy identifier-block pair from the main part; otherwise, it makes a request for v from the
main part. The client now appends v and the block data (b for a put or the block value returned by get for a
get) to the shelter. When the shelter grows to

√
M entries, the client merges its contents back into the main

part and shuffles the main part, both operations being done obliviously.
The Square-Root solution has remarkably small constants. Each get involves three requests. Even

though each operation requires a sequential scan of the shelter, there are only three client-server interactions/
round trips: a retrieval of the shelter and two one-pair accesses. However, the complexity of the Square-Root
solution is clearly not satisfactory because B

√
M can grow large even for reasonable workloads.

3.2 Hierarchical Solution
The hierarchical solution [8] reduces the number of server requests per program request to O(log4 M)

or O(log3 M) with a higher constant. The storage cost, though, becomes O(MB log M). The idea is
to organize the server’s memory into a hierarchy with O(log M) levels, the size of each level growing
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exponentially.
To perform a request (get/put) for v, the client performs a request to each level of the hierarchy se-

quentially; for each level, the client checks if v exists on that level and if so, it makes dummy requests on
subsequent levels; if v is not found on that level, the client continues with requests looking for v at the next
level. After the client traverses the hierarchy in this way, the client adds an entry for v and its associated
value to the first level of the hierarchy.

If a level, i, in the hierarchy gets full, the client must “spill” its contents onto level i + 1 and shuffle the
latter level, both of which should be done obliviously.

William and Sion [14] provide an improvement to the hierarchical solution: using O(B
√

M) memory at
the client, they reduce the number of requests at the server generated for one program request to O(log2 M),
keeping the server storage cost at O(MB log M). The idea is to use an oblivious merge sort algorithm which
merges two sorted lists of items by doing a linear pass of the two lists, copying data items in client memory,
merging them, and putting them back at the server sorted. The reason the linear scan is possible is that
among the first n items of the merged list, with overwhelming probability, there are at most n/2 + O(

√
n)

items from each list. William et al. [15] improve the hierarchical solution by storing an encrypted Bloom
filter for each level of the hierarchy and using it to learn if an identifier is stored in the level.

Recent work by Pinkas and Reinman [13], improves both complexity and constants over all these hier-
archical approaches. They use recent algorithmic tools such as Cuckoo hashing [12] and Randomized Shell
Sort [9]. Each request is replaced by O(log2 M) requests, with at least O(log M) client-server interactions,
and storage used is ≈ 4MB, and ≈ 6MB during shuffling, with their proposed optimizations applied.

The Hierarchical solution is more complex and has higher constants than the Square-Root solution.
One particular worrisome constant is the cost of client-server interaction; as discussed, such interactions
are expensive because they require a network round trip between client and server. In the Hierarchical
solution, this constant is multiplied by O(log M): each request gets transformed in O(log M) sequential
server requests. One such server request can only be processed after the previous one completed: the client
cannot just perform all requests at once because it would violate security or correctness.

In practice, both constants and complexity matter. Of course, it would be desirable to have both the
low constants of the Square-Root solution and the complexity of Hierarchical solution, which is what our
algorithm provides.
3.3 Performance Comparison

Let’s compare the complexity and relevant constants of our OS scheme with the performance of relevant
related work. Besides the amortized number of requests, we also compute the online number of requests.
This is the number of requests that are performed for one program request and does not contain requests for
shuffling. We include this metric as well because, in most cases in practice, this measures the delay of a
request; requests for shuffling can happen after the actual request when the system is less busy with requests.

We also compare these protocols based on the number of individual get or put requests the client makes
at the server (each getRange and delRange are counted as many times as there are identifiers in their range).
We include this metric for fairness, because this was the metric used for analysis in previous work. We
adjust all previous work values to our notation using B and c.

Table 1 compares our proposal, described in Section 4, to existing ORAM solutions. We illustrate OS for
two values of m: B

√
M and

√
MB log MB. As we discuss in Section 5, the second value is of particular

interest because its gives good asymptotics and its value is actually small for real-life parameters: 2 MB of
client memory for 1 TB of server storage.

We can make the following observations:

• The number of online interactions in OS are constant (and the amortized number of round trips is either
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Table 1: Comparison of our OS scheme to related work. If “online” is not specified, the metric is amor-
tized. The storage cost for the Pinkas-Reinman approach is computed after applying the proposed optimiza-
tions [13].

Protocol No. roundtrips No. of get/put Conc- Client Server storageOnline Amortized Online Amortized urrent memory
Goldreich
Ostrovsky

O(log M) O(log3 M) O(log M) O(log3 M) No O(1) O(MB log MB)

MergeSort O(log M) O(log2 M) O(log M) O(log2 M) No O(B
√

M) O(MB log MB)
Pinkas
Reinman

O(log M) O(log2 M) O(log M) O(log2 M) No O(1) ≈ 4MB (+2MB
on shuffle)

OS O(1) O( log M
B ) O(log M) O(

√
M
B log MB) Yes B

√
M ≈MB

OS O(1) O(1) O(log M) O(
√

M log MB
B ) Yes

√
MB log MB ≈MB

also constant or approximately constant) whereas it is logarithmic (and polylogarithmic) in the other
approaches. Even if the Pinkas-Reinman solution would use client memory to reduce interactions
during shuffle, they still require the logarithmic term for security. We removed this term using the
hybrid construction and the client-stored index, as discussed in Section 4.
• We increase the number of amortized operations, but we decrease the number of amortized interac-

tions. We believe that, in a real system, much of shuffling is done at times with low traffic so the
actual requests are not affected by the delay of shuffling.
• Our storage constant is one, unlike previous approaches.
• We allow concurrent requests (up to m/c such requests) during shuffle. In previous work, if a request

happens when one of the larger levels are being shuffled, it has to wait for O(M log M) requests to
finish before it can proceed.

4 Our OS Protocol
4.1 Overview

How can we maintain the asymptotic properties of the Hierarchical solution and have the low constants
of the Square-Root solution?

Our protocol is a hybrid of the two solutions. First, we keep the shelter from the Square-Root solution,
but we make it hierarchical. Second, we use client memory to record a map between levels in the hierarchical
shelter and identifiers that are cached in them. Note that this map only contains identifiers and level numbers,
and does not store any data blocks, which are considerably larger in size than identifiers. Using this client
map, the client does not have to scan the whole shelter to find an identifier and can avoid the bad complexity
of the Square-Root solution. Moreover, all the requests to the levels of the hierarchy can be performed in
one client–server interaction because the client now knows which level contains the desired identifier and for
which level he needs to request dummy values; in this way, we avoid the O(log M) client-server interactions
from previous work.

Third, we support data requests concurrently with shuffling. There are two main ideas here. First is to
find a data structure, called shuffleMap, that summarizes concisely where each identifier can be found at
some middle point in the shuffle stage; this data structure should be smaller than O(M) because otherwise
the storage cost constant will not be one any more. The second idea is to add a new shelter, denoted
the concurrent shelter to maintain security. The concurrent shelter is used only during shuffling to store the
identifier–block pairs that have been accessed during shuffling. The original and concurrent shelters together
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Figure 2: Memory layout.

ensure that over the entire period covering before, during, and after shuffling no single identifier–block is
requested from the server ( get) more than once (which would violate security). The concurrent shelter also
enables shuffling in place. Accesses to shuffleMap are not oblivious and our proof shows that this does not
affect security.
4.2 Protocol

Figure 2 shows the layout of memory for our protocol, and we now elaborate on each part of it.
The client stores in memory a map, called the LevelMap, mapping each identifier for which there is an

entry in the shelter to the level numbers in which the entry exists. The reverse is also stored in the map: a map
from each level number to all identifiers present in that level in the shelter. LevelMap consists of any efficient
search data structure, (for example, a B+ tree), where the search field is the identifier and the node in the B+
tree corresponding to the identifier contains the corresponding levels in the shelter. Therefore, the client can
store O(m/c) such identifier–level pairs. Then, the shelter will store at most O(m/c) identifier–block pairs
and there will be NoLevels := O(log(m/c)) levels in the shelter. The shelter size will be O(mB/c). Note
that, in practice, B � c so the maximum shelter size will often be much larger than client memory.

The main part is similar to the one from the Square-Root solution. Besides M identifier–block pairs,
the main part also contains D = O(mB/c) pairs of a dummy identifier and a random block value. The
dummy identifiers are selected to be larger than any actual identifier; let {d0, . . . , d0 + D − 1} be the set of
identifiers of all dummy variables. Like in the Square-Root solution, the client makes a request to a dummy
identifier to mask the fact that it found the identifier of interest in the shelter.

The shelter is a simplified version of the hierarchy from [8, 13]. Level i of the hierarchical shelter
contains 2·2i identifier–block pairs: 2i actual pairs and the rest are dummy pairs. Because of the client-stored
map, there is no need for hashing and bucketing as in previous approaches, which needed these techniques
to hide when a request for a certain identifier does not find that identifier; with the level–identifier map, the
client knows exactly what identifiers to request in each level so its requests will not fail. This makes the
size of the shelter smaller by a factor of log M compared to [8] and a factor of two compared to [13] and
avoids the constants and complexity of (Cuckoo) hashing. The dummy identifiers in each shelter also have
identifiers starting from d0 incrementally onwards. Consider that within each level i, all identifiers begin
with the prefix “i :” to allow getRange to request a whole level and to make sure insertions in a certain level
stay logically together. For simplicity, we will not include this detail in our algorithms below.

The period between the end of two overall shuffles is denoted an epoch. The period between two level
shuffles is denoted a sub-epoch. During each epoch a different random secret key s is used to permute
identifiers stored in the main part. For each level i, during each sub-epoch, the client uses a different random
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secret key si to permute identifiers in level i.
In addition to identifier–block pairs, the client maintains in memory the following information: a secret

key SK with |SK| = k for encrypting blocks, the value s and all si mentioned above, as well as a dummy
counter d for the main part and dummy counters di for each level that allow the client to fetch the next
dummy identifier by incrementing these values (and thus preventing repeated accesses to the same dummy
identifier).

We use PRPs to denote a length-preserving pseudorandom permutation [7] with domain and range
being the identifier space. The main part consists of all the identifiers encrypted with PRPs and each pair
in the level i of the shelter has the identifier permuted with PRPsi . For the rest of the paper, for simplicity,
we say that the client searches, requests, or puts an identifier v from/to the server to mean that the client
searches, requests, or puts the permuted identifier v, permuted using a PRP seeded with a client secret. Let
encryptSK, decryptSK : {0, 1}B → {0, 1}B be an encryption and its corresponding decryption algorithm
given key SK. Also, the client re-encrypts each data block before it puts it at the server. To prevent having
to store many PRP seeds, the client can deduce the seeds from SK using a PRP.

In OS, get and put consist of three steps: request values from the shelter, request a value from the main
part, and insert a value in the shelter. These three steps are similar to the ones from the Square-Root solution
and any access to the shelter is similar to the one in the Hierarchical solution. In the following procedure,
if a program request comes at the client when the client is performing a shuffle, the client should execute
conc get and conc put with (v, b) as arguments instead of for any get and put to be sent at the server,
respectively; we will present conc get and conc put in the next subsection, but for simplicity, they should
be thought of as a typical get or put for now.

Algorithm 1 (get(v)/put(v, b) of program to the client).
1. If v /∈ LevelMap, the client does the following.

// v is not in the shelter, so request dummies from shelter and v from the main part
1) In one client–server interaction, send the server a list of requests to an unused dummy identifier

for each level (get(PRPsi(di))), receive the corresponding dummy blocks, and discard their
values.

2) Send get(PRPs(v)) at the server and let b be the result.
3) Execute shelterInsert(v, b),
4) Send decryptSK(b) to the requesting program.

2. Else
// v is in the shelter, so request a dummy id from the main part

1) Let l be the highest level of v, given by LevelMap(v).
2) In one client-server interaction, send the server a list of requests: dummy requests for levels

i 6= l, get(PRPsi(di)), and a request to v, get(PRPsl
(v)). Let b be the answer from the server

for v.
3) Send get(PRPs(d)) to the server and ignore the result.
4) Execute shelterInsert(v, b).
5) Send decryptSK(b) to the requesting program.

Algorithm 2 (shelterInsert(v, b)). The client executes the following.
1. b := encryptSK(decryptSK(b)) // refresh the encryption
2. Send put(PRPs1(v), b) to the server // put in the first level of the hierarchical shelter
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Figure 3: Shuffle algorithms overview.

3. Execute shuffleLevel() (to be presented in the next subsection) to “spill” the data in a full level onto
the next level, repeating the procedure as long as a level is full. If the last level of the hierarchy gets
full, call shuffleMainPart().

4.3 Shuffling protocols
Figure 3 shows an overview of our shuffling algorithms:

• shuffle(): Obliviously shuffles a part of the server’s memory in which the identifiers have been per-
muted with the same PRP. This algorithm is in-place and allows concurrent accesses.
• shuffleMainPart() : Obliviously incorporates a flat (non-hierarchical) shelter into the main part of

storage and obliviously shuffles the latter. This algorithm is in-place and allows concurrent accesses.
• shuffleLevel() : Obliviously “spills” a level of the hierarchy i into level i + 1 of the hierarchy. This

algorithm does not allow requests to proceed concurrently and is not in-place. One could follow the
example in shuffleMainPart() and similarly allow concurrent accesses and design an in-place scheme,
but this more complicated algorithm does not bring significant gains because shuffling levels is not as
expensive as shuffling the whole main part, and does not provide significant space savings.

Allowing concurrent accesses and shuffling in-place are two goals in tension because it seems natural to
make a copy of the data on which to allow accesses to happen while shuffling the original data in parallel.
Our solution has three main ideas:

• During shuffling, the client builds a data structure shuffleMap that summarizes to what identifier each
identifier was mapped after a step of the shuffle and stores it at the server. This allows the client to
find a requested identifier in a partially-shuffled memory efficiently.
• The client creates a new shelter, the concurrent shelter, where any concurrent requests must be stored

to prevent repetitions with the data accessed in the preceding epoch, during the shuffle, and in the
following epoch.
• The client either only allows a maximum number of concurrent requests during a shuffle or delays

such requests, both in order to ensure that shuffling ends before a new shuffle must begin.

shuffle() splits the memory in portions that are O(m) in size and thus fit in the client’s memory, and
shuffle pairs of these portions at a time.

Algorithm 3 (shuffle()).
1. Logically split the memory in ranges of pairs such that each contains a chunk of data of size O(m),

numbered by i = 1 . . . #Chunks. #Chunks = O(MB/m).
2. Using getRange, get each chunk, one at a time, delete the chunk from the server using delRange, add

to each identifier the prefix “i :” of the chunk in which it is located, and put back the range at the
server using put (all requests sent in a message).

3. For i := 0 to log #Chunks− 1 do:
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Figure 4: The shuffleMap. Each box corresponds to an iteration of the for loop in Algorithm 3 for the main
part. Each entry j of box i represents an encryption of the lowest and highest permuted id in the j-th chunk,
where the ids are permuted with the permutation used at iteration i of the shuffle. The arrows at the right of
the “IT i” box indicate which chunks are combined in iteration i of the shuffle to become what chunks for
the next iteration. The shuffleMap is also stored at the server as id-block pairs: the identifier of iteration i
and chunk j is “IT(i, j)”.

1) Form logical pairs of chunks: chunk j is paired with chunk j∗ = j + 2i, if chunk j was not
already paired with an earlier chunk

2) Shuffle each chunk pair at a time using PRPi (seeded with a random number to be used only
for this step and this epoch): copy both chunks locally using getRange(j : 0 . . . 0, j : 9 . . . 9)
and getRange(j∗ : 0 . . . 0, j∗ : 9 . . . 9), delete them from the server using delRange, apply
PRPi(PRP−1

i−1()) to each identifier (here, let PRP0 be the permutation with which the identifiers
were permuted at the server), re-encrypt the blocks, sort the pairs by the new identifier, add the
prefix “j :” to all the identifiers in the first half of the pairs and the prefix “j∗ :” to all identifiers in
the second half of the pairs, put each range at the server using put (all sent in the same message).

3) Construct “IT i” in the shuffleMap.
4. Make a pass through entire memory removing the prefixes from all identifiers. Recall the last permu-

tation used for processing requests.

After shuffle(), the client deletes the shuffleMap(), except for the data corresponding to the last iteration.
In Step 2, since the ids are permuted randomly, there can be a different number of ids in each range of the
id space of equal size so such data can aid with the delimitation of data chunks in the next shuffle.

The client will perform O(MB/m log(MB/m)) requests (round trips) and it will get/put O(M log(MB/m))
pairs.

In the following algorithm, we incorporate obliviously a flat level of the hierarchical shelter into the
main part and shuffle the main part obliviously.

Algorithm 4 (shuffleMainPart()).
1. Create a new hierarchical shelter, the concurrent shelter, containing no pairs.
2. Make a copy of the current shelter at the server; the copy is denoted the copy shelter.
3. Shuffle the main part using shuffle().
4. Shuffle the original shelter using shuffle().
5. For each item in the shelter, update directly the item in the main part. If the item in the shelter is a

dummy, update a dummy from the main part.
6. Shuffle the main part using shuffle().
7. Delete the copy shelter and the original shelter. The concurrent shelter becomes the new shelter.
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The complexity of shuffling is given by the complexity of shuffling the main part.
Assume we want to shuffle level i into level i+1. The algorithm functions mostly like shuffleMainPart(),

except for some details.

Algorithm 5 (shuffleLevel(i): Shuffles level i into level i + 1).
1. Shuffle level i using shuffle().
2. Shuffle level i + 1 using shuffle().
3. For each pair in i, update a pair in i + 1. For each identifier from level i for which there is the same

(permuted) identifier in level i + 1, update the value in level i + 1 with the value from level i; for all
other identifiers in level i that are not dummies, set the value of a dummy variable to contain their
value.

4. Delete all contents from level i.
5. Shuffle level i + 1 using shuffle().

Once the last level of the hierarchy is filled, the client uses shuffleMainPart() to shuffle the last level
into the main part. The shelter in shuffleMainPart() is the last level in the hierarchy.

We can see that shuffle() is “in-place” because it always deletes a chunk of data before adding a new
chunk of equal length. shuffleMainPart() does not make any copy of the main part, just of the shelter
which has an asymptotically smaller size than the main part. Therefore, the overall storage at the server is
MB + O(mB/c), where the constant in O(mB/c) is about 5 (4 from shelter and 1 from dummies stored
in the main part).

While shuffling, any request to an identifier in the shelter will be satisfied from the copy shelter. We
need to explain how requests to the main part are satisfied when the main part is being shuffled considering
that we cannot make a copy of the main part because it would introduce too much storage overhead. Given
an identifier v, applying a permutation can no longer provide us with the identifier at the server because
the items are partially shuffled at the server (and in particular, we do not know the prefix of the permuted
v in the current shuffle iteration). To find the identifier at the server corresponding to v, when the client
performs shuffle() on the main part, it builds shuffleMap described in Figure 4. shuffleMap has a size of
MB/m log(MB/m) and is deleted at the end of shuffle. Accesses to shuffleMap are not oblivious, but as
we will see in Section 5, our proof of security still holds. Given an identifier v, using a binary search and
knowledge of PRP0 (the PRP used at the beginning of the shuffle for the ids in the main part), the client can
find the chunk in which v is located. The client then only needs to check the two chunks in which v could
have been mapped to in the next iteration of shuffle() and so forth until the current iteration. This requires
O(log(MB/m)) requests and interactions. If m > MB/m log(MB/m), the client can store the entire
shuffleMap and avoid the extra requests and interactions.
Algorithm 6 (conc get(v)/conc put(v, b) by the client to the server.). Consider the appropriate case:

// Case 1: This request is not concurrent with shuffleMainPart() and accesses main part.
1. Simply perform get(v)/put(v, b) at the server and return any results.

//Case 2: This request is concurrent with shuffleMainPart() and accesses the main part.
2. The client first needs to perform requests to the concurrent shelter to make sure that the identifier

of interest is not there. Requests to this shelter also follow the hierarchical shelter algorithm. If the
desired id is found in the concurrent shelter, the client needs to make a dummy request to the the main
part, else it needs to request v from the main part.

3. To request an id from the main part, if this request comes in Algorithm 4
• before Step 3 starts: perform the dummy or permuted-v request directly to the main part as in

the unchanged algorithm;
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• Step 3 starts – Step 4 starts: use shuffleMap to find the permuted identifier at the server and
request it;
• Step 4 starts – Step 6 starts: make the request to the main part using the last permutation used

by the client in the shuffle at Step 3;
• Step 6 starts – Step 7 starts: use shuffleMap to find the permuted identifier at the server and

request it;
• after Step 7 starts: make the request to the main part using the last permutation used by the client

in the shuffle at Step 6.
4. Add an entry to the concurrent shelter as in the original algorithm.

// Case 3: This request accesses the original shelter.
5. If shuffleMainPart() is happening, use the copy shelter. If shuffleLevel() is happening, the client first

finishes this shuffle and then proceeds with the request.
Note that one shuffle must finish before the next one needs to start. Since a shelter can hold as many

as O(m/c) pairs before it needs to be shuffled into the main part, at most O(m/c) requests can happen
concurrently for the duration of shuffleMainPart().

One can choose to have shuffleLevel also be concurrent in a very similar way to shuffleMainPart (in
fact, even leveraging the fact that the shuffle does not need to be in place and can make copies of the levels
currently shuffled). In that case, we need to prevent level i − 1 from getting filled and spilling onto level i
before we finished shuffling of level i into i+1. In order to fill level i−1, one needs 2i−1 accesses. Shuffling
will take O(2i+1B/m log(2i+1B/m) requests for every 2i−1 requests, and summing over all levels, some
requests will have to be delayed is O(B/m log2(m/c)) shuffling requests.

From all the protocols above, we can see that the number of online client-server interactions is 5+
O(B/m log2 m/c) = O(1) and of amortized interactions is O(B/m log2(m/c))+ O(MBc

m2 log(MB/m)),
where the last term comes from the amortized cost of shuffling the main part.

We discussed how the client executes requests, and now we need to discuss of how the client starts and
ends. The client will perform a shuffle() of the main part (and include all shelter data into the main part)
before interacting with any program to prevent known initial configurations to leak information about the
requests made. To prevent the adversary from getting information about data content from access pattern
length, each client needs to send an equal number (standard number) of requests to the server for any
program and initiate the get/put protocol for each request at a constant rate. If the program finishes, the
client sends “cover” requests to arbitrary identifiers to maintain the standard number of requests per program.

Theorem 1. The storage protocol defined in this section is an oblivious storage according to Definition 6.

The proof is in the appendix.

5 Discussion
What is the smallest m that makes the amortized number of interactions constant? The amortized num-

ber of interactions is O(B/m log2 m/c + (MBc/m2) log MB/m) = O((MBc/m2) log MB/m), when
m � B. We can see that m =

√
MB log MB bits makes the number of interactions constant. Moreover,

such value for m is very convenient for practice: to store 1TB of data we need m = 2 MB and to store 1 PB
of data we need ≈ 86MB of data. 1 PB is a large amount of storage for an application, yet most commodity
computers have a main memory of at least 1 GB.

We now give some suggestions for building a real system in practice.
Caching can benefit OS because it avoids running the algorithm when there are repeated requests. In

fact, the overhead of the any oblivious algorithm comes from trying to mask repeated accesses, which is
exactly what caching mitigates.
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As discussed, one should use as much client memory as there is available because this will increase
performance. In most practical cases, in fact, the client can afford to use memory size of O(M) provided
that the client does not store the content of the blocks. For example, an implementation of OS would require
≈ 2 GB of memory at the client to store our metadata for 1 TB of data at the server, each data item being 4
KB blocks; similarly, for a server storage of 100 GB, our algorithm requires 200 MB of client storage. In
this case, our algorithm has O(log M) amortized number of get/put requests per one client request and the
number of round trips will also be a small constant (≈ 3).
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A Proof of Theorem 1
Preliminaries. Id-s are selected from ID = Σk × Σk and they are represented as two strings from Σk

separated by colon (the first being the prefix).

15



Figure 5: INFO1 and INFO2: Every small square indicates a request to the server and every filled in square
indicates a request at the server that is part of a shuffle procedure. As such, requests 2 and 3 are concurrent.

We use the notation x
R← X to mean that x is drawn at random from the distribution given by X . Let

(d1
R← D1) ∼ (d2

R← D2) denote computational indistinguishability between two distributions D1 and D2.
Let INFOb be a string representing the amount of information available at the adversary when the client

is interacting with program Pb.

Proof. Strategy. The proof strategy is to characterize the amount of information available at the adversary in
the case when Pb = P1 and Pb = P2 and prove that the distribution of INFO1 and INFO2 are computationally
indistinguishable. Then, the adversary cannot distinguish between P1 and P2 with chance significantly better
than half. Once we characterize these two strings of information, we proceed to eliminate parts of these
strings until they become very simple and indistinguishability is easy to prove. In the process of elimination,
we maintain the guarantee that if the distributions of the newly formed strings are indistinguishable, then
the distributions of the original strings were indistinguishable as well.

The information at the adversary. INFOb consists of: the initial configuration of the unencrypted data
at the server (pairs (i, 0) for i ∈ {1, . . . ,M}), programs Qi, ∀i, Pb, VIEW(Qi), and VIEW(Pb).

Recall from Definition 5 that the state of server memory is included in the view after each request. Note
that this state can be reconstructed from the initial data configuration and the requests the client makes to
the server; it is thus superfluous information and we can discard it.

Note that each data block is (re)encrypted with fresh coins every time it is put at the server. Therefore,
we can ignore block contents in VIEW(∗).

Therefore, INFOb becomes: the initial configuration of unencrypted data at the server, programs Qi and
Pi, and all requests with their id arguments from VIEW(Qi) and VIEW(Pb).

By analyzing our protocols, we can see an important observation: the structure of the information strings
is the same for any program. This is because the client makes the same type and number of requests to
the server for any program request, the shuffle procedures start deterministically after the same number of
requests (independent of what the requests are and the contents of the data), all shuffle procedures make the
same number of requests and combine the same chunks of memory independent of the data content, and
the client ensures that the same number of requests (and at the same rate) are sent to the server for every
program. Figure 5 shows schematically the information available at the adversary.

Concurrent requests. During a concurrent request to v, the client makes requests to shuffleMap. The
access patterns of the client’s requests are entirely determined by PRPi(v), for each PRPi used during
shuffling. To make the indistinguishability analysis simple, we replace all get accesses to shuffleMap for
v in an epoch with the sequence get(PRP0(v)), . . . , get(PRP#Chunks−1(v)). If the indistinguishability of
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the new information strings holds, so does the indistinguishability of the original ones holds (because the
original information strings were a polynomial function of the new strings).

Introducing PRP0(v), . . . , PRP#Chunks−1(v) in the information strings and proving indistinguishability
may sound alarming: we are allowing the adversary to track v during shuffling (in particular, initial and final
permuted identifiers). This point is rather subtle and this proof will show formally why it holds. Meanwhile,
here is some intuition. Repeated accessed to the same identifier using the same PRP leak access patterns.
Even though both PRP0(v) and PRP#Chunks−1 are revealed, v has never been accessed with PRP0(v)
(because it would have been in the shelter and not fetched from the main part) and will never be accessed
again with PRP#Chunks−1 (because v is placed in the concurrent shelter which becomes the new shelter for
the new epoch and thus will be retrieved from the shelter and not from the main part).

Discarding the information from the adaptive programs. Recall that the client executes each program
by starting with a complete shuffle of the data. Let INFOPb

be the part of V IEW (Pb) after the first shuffle
corresponding to Pb and INFOQi be the rest of INFOb. Note that INFOPb

only depends on the data put in the
last step of the for loop of shuffle() because all future requests will be based on this new server data. Note that
INFOQi is the same (chosen from the same distribution) for INFO1 and INFO2 so it is indistinguishable. We
can just focus on proving indistinguishability of INFOP1 and INFOP2 if these are independent of INFOQ1 .
This is true because at the last step of the for loop of shuffle(), we apply a PRP with a fresh random seed
to all identifiers (which are distinct) from the previous step of the four loop – this is indistinguishable from
placing random identifiers at the server.

Ignoring getRange and delRange. Due to common structure of INFOP1 and INFOP2 as argued above,
all getRange and delRange will be at the same positions in INFOP1 and INFOP2 and moreover their contents
will be the same (this is because in all our algorithms they have fixed arguments of the form (i : 0 . . . 0, i :
9 . . . 9)).

No repeats property. Therefore, all that is left to prove is that the distribution of the sequence of
identifiers in get and put requests at the server for programs P1 and P2 are indistinguishable. Due to
common structure of these sequences, the positions of get and put in the two strings are the same.

Note that each identifier in a get or put has been permuted with a PRP of random seed. For the adversary
who does not know the random seed, these look like random numbers. However, some of these numbers
may repeat. For each configuration of repeats, we need to prove that the probability of appearing in any of
the two distributions is the same.

There are two cases when an id v together with a PRP are repeated:
Case 1. Exactly two put have the same permuted identifier. This can happen in Algorithm 4– Step 5 and

in Algorithm 5 – Step 3. Basically, it happens when a memory chunk A of n elements needs to be used to
update a memory chunk B of m elements and the later needs to be shuffled. The algorithms shuffle A, then
B, then make each update from A tom some pair in B and then shuffle B again. Since B has been shuffled
with a PRP with a random seed, the chance that i updates j for any program is the same.

Case 2. Exactly one get uses the same permuted identifier as exactly one put. This happens with every
get because the data had to be put at the server.

First, let’s prove why only one get can have the same permuted identifier as a put. get is used to fetch
elements from the main part, the shelter, or shuffleMap.

• Once v is fetched from the main part, it will never be fetched from the main part until the next epoch
when v will be in the main part permuted with a different PRP. When v is placed in the shelter it is
permuted with a different PRP.
• When v is fetched from a level l of the shelter, it is placed on the top level of the shelter and permuted

with a different PRP. The identifier v from level l will never be accessed again (until the next shuffle
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of level l) because v will be found in the higher levels and dummies will be used from l.
• Recall that we replaced the get accesses to shuffleMap with get(PRPi) for every PRPi used in the

shuffle. The sequence of put(PRP0(v)), get(PRP0(v)), . . . , put(PRP#Chunks−1(v)), get(PRP#Chunks−1(v))
has the same probability of appearing for any program because we are using freshly seeded PRPs.

The put requests for which there is a get with the same permuted id are only the put in the last step of
shuffle() (Algorithm 3 - Step 4) and the ones to shuffleMap. The reason is that all other puts are followed
by getRange.

Since shuffle() permutes pairs obliviously according to a randomly seeded PRP, the chance of any
configuration of repeats is the same for any program.

Having treated all cases, we showed the the distributions of INFO1 and INFO2 are indistinguishable,
thus completing our proof.
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