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ABSTRACT

In this paper we investigate the use of data driven clustering methods
for functional connectivity analysis in fMRI. In particular, we con-
sider the K-Means and Spectral Clustering algorithms as alternatives
to the commonly used Seed-Based Analysis. To enable clustering of
the entire brain volume, we use the Nyström Method to approximate
the necessary spectral decompositions. We apply K-Means, Spectral
Clustering and Seed-Based Analysis to resting-state fMRI data col-
lected from 45 healthy young adults. Without placing any a priori
constraints, both clustering methods yield partitions that are associ-
ated with brain systems previously identified via Seed-Based Analy-
sis. Our empirical results suggest that clustering provides a valuable
tool for functional connectivity analysis.

Index Terms— Magnetic Resonance Imaging, Clustering
Methods, Biomedical Imaging, Brain Modeling

1. INTRODUCTION

Recent studies based on functional Magnetic Resonance Imag-
ing (fMRI) reveal the presence of spontaneous, low-frequency
(< 0.08 Hz) fluctuations in the brain. While independent of ex-
ternal stimuli, these signals are strongly correlated across brain
structures. Functional connectivity analysis aims to detect and char-
acterize these coherent patterns of activity as a means of identifying
brain systems. Analysis is typically performed on resting-state fMRI
data collected in the absence of any experimental tasks. See [1, 2]
for an overview of this method.

Seed-Based correlation Analysis (SBA) [3] is the most common
approach for functional connectivity analysis. It identifies the set
of voxels correlated with the mean time course in a user-specified
‘seed’ region. SBA has been extremely useful in identifying brain
systems reliably across subjects. However, SBA does have some
inherent limitations. It requires a priori knowledge of the brain’s
functional organization. Furthermore, since the detected systems
are dependent on the seed region locations, the additional challenge
of consistent seed placement arises in group analysis. We propose
clustering as a means to automatically identify candidate “seed time
courses” based on the fMRI data.

Independent Component Analysis (ICA) [4, 5] is an alternative
data-driven method, which has gained popularity for functional con-
nectivity analysis. ICA isolates independent spatial sources to ac-
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count for activity variation across the brain and can be used to de-
lineate different functional networks. A limitation of using ICA is
the need to select sources of interest from the often numerous spatial
sources that emerge. There is currently no standard or robust so-
lution for prioritizing the sources. Clustering provides a potentially
powerful data-driven approach to solving the prioritization challenge
while still allowing for data exploration with minimal a priori as-
sumptions. Although this paper focuses on comparing clustering
with the traditional SBA, exploring the connection between cluster-
ing and ICA is clearly an interesting direction for future work.

Here we investigate the application of clustering algorithms as
a complementary approach to SBA. Clustering methods are entirely
data-driven and thus do not require any prior information about the
brain’s spatial or functional organization. Although clustering has
previously been used for fMRI analysis [6, 7, 8], we take the novel
approach of applying two distinct algorithms to resting-state data
collected over the entire brain volume. This allows us to partition
the whole brain into an increasing number of clusters. Both K-
Means and Spectral Clustering yield cluster patterns that correspond
to known functional systems. This result supports the effectiveness
of clustering for functional connectivity analysis.

2. K-MEANS CLUSTERING

The K-Means (KM) algorithm assumes that the time course xi of
voxel i is drawn from one of k multivariate Gaussian distributions
with unique means {mj}k

j=1 and a spherical covariance σ2I.

xi = mj + ei, ∀i = 1, . . . , N (1)

where N is the number of voxels in the volume and {ei}N
i=1 model

i.i.d. Gaussian noise.
K-Means uses the hard-assignment version of the Expectation-

Maximization algorithm [9] to simultaneously determine the Gaus-
sian means and to estimate which Gaussian is responsible for each
time course. In each iteration the time courses are first assigned to
the closest mean, as measured by the L2 Euclidean distance:

d2(xi,xj) =
T∑

n=1

(xi[n]− xj [n])2 (2)

where T is the length of the time courses. The mean signals of each
cluster are then recomputed as the average of all time courses as-
signed to it. To ensure that KM properly explores the non-convex
solution space, we perform multiple runs of the algorithm using dif-
ferent random initializations. We then select the solution that mini-
mizes the overall sum of L2 distances.

This naı̈ve hard KM implementation has some attractive proper-
ties when applied to functional connectivity analysis. The algorithm
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is based on minimizing the L2 distance between the time courses
and a template signal. For functional connectivity analysis, the time
courses are typically normalized to have zero mean and unit vari-
ance. Therefore, d2(xi,mj) = 2−2ρ(xi,mj), where ρ(xi,xj) =∑

n xi[n]xj [n] represents the discrete-time correlation. Minimizing
L2 distance is therefore equivalent to maximizing correlation, and
KM can be viewed as a natural data-driven extension of SBA.

KM can be implemented using a linear amount of memory with
respect to N , the number of voxels in the brain volume. Moreover,
KM typically converges in under 30 iterations, each of which termi-
nates in linear time with respect to k · N , where k is the number of
clusters. Consequently, we have no parameters to tune, and no need
for approximations as the amount of data increases.

3. SPECTRAL CLUSTERING

Spectral Clustering (SC) employs the eigen-decomposition of a pair-
wise affinity matrix constructed from the data points [10, 11]. The
eigenvectors of this matrix induce a low-dimensional representation
for the data, which is then clustered using the simple KM algorithm.
SC often outperforms model-based approaches such as KM because
it does not presume any parametric form for the data. Instead, it cap-
tures the natural structure of the dataset. This implies that SC can
identify clusters with complex signal geometries [11].

3.1. The Spectral Clustering Algorithm

We model elements of the symmetric pairwise affinity matrix W as

Wij = e−d2(xi,xj)/2σ2
(3)

where xi and xj represent two voxel time courses, d2(xi,xj) is the
distance defined in Equation (2), and σ2 is the kernel width param-
eter. Equation (3) corresponds to the standard Gaussian kernel often
used in Spectral Clustering [11]. The exponential is used to trans-
form d2(xi,xj) into a consistent similarity measure.

Given the affinity matrix W , SC seeks a partitioning of the cor-
responding dataset based on a spectral decomposition of the data.
In this work, we use the Normalized Cut (Ncut) variant of SC [12],
which minimizes an objective based on the ratio of the sum of affini-
ties Wij between clusters to the sum of affinities within a cluster.

While the optimal solution requires a combinatorial search over
all possible partitions, we can formulate a continuous relaxation of
the Ncut optimization as the eigenvalue problem

D−1/2WD−1/2y = λy (4)

where D is a diagonal matrix such that Dii =
∑

j Wij . We define
a vector of row sums d, i.e., di = Dii. The left and right mul-
tiplications by D−1/2 in Equation (4) correspond to a symmetric
normalization of W where each entry Wij is divided by

√
didj .

The largest eigenvectors {y1, . . . ,yk+1} of D−1/2WD−1/2

contain important information about the underlying geometry of the
dataset {xi}N

i=1. We exploit this information by clustering the rows

of the matrix Y = [D−1/2y1 . . . D−1/2yk+1]. Since the new rep-
resentation Y tends to isolate voxel groups with small pairwise L2

distances, the resulting clusters form the desired partition.

3.2. The Nyström Approximation

One downside of Spectral Clustering is that it relies on the eigen-
decomposition of an N×N matrix, where N is the number of voxels
in the whole brain. Since N is on the order of ∼200,000 voxels, it
is infeasible to compute the full eigen-decomposition given realistic

memory and time constraints. To solve this problem, we approxi-
mate the leading eigenvalues and eigenvectors of D−1/2WD−1/2

via the Nyström Method [13].

Given an N -sample dataset, we first select Ns � N samples at
random. The N ×N affinity matrix W can be represented as

W =

[
A B

BT C

]
(5)

where A is the Ns × Ns matrix of affinities between the randomly
selected samples, and B is the Ns × (N − Ns) matrix of affinities
between the random samples and the remaining data points. C is a
large (N −Ns)× (N −Ns) matrix of remaining affinities that we
want to avoid computing.

For Ncut SC we first normalize W by the matrix D−1/2. As
shown in [13], we can approximate the row sum vector d via

d̂ =

[
A1Ns + B1N−Ns

BT 1Ns + BT A−1B1N−Ns

]
(6)

where 1M denotes an all-ones vector of length M . The normalized
matrices Ã and B̃ are given by

Ãij =
Aij√
d̂id̂j

B̃ij =
Bij√

d̂id̂j+Ns

The Nyström Method approximates the eigenvectors of W̃ =
D−1/2WD−1/2 using Ã and B̃. Let UΛUT denote the SVD of the
Ns×Ns symmetric matrix Ã+Ã−1/2B̃B̃T Ã−1/2. The Ns leading
eigenvectors of W̃ are then computed as

V =

[
Ã

B̃T

]
Ã−1/2UΛ−1/2

(7)

Once we obtain V , the dataset is partitioned by clustering rows of

the matrix Ŷ = D̂−1/2V .

4. MATCHING CLUSTER LABELS

Clustering algorithms arbitrarily assign label indices in each run.
However, a correspondence between the labels assigned to each
voxel across runs is required in order to perform a group-wise anal-
ysis of the cluster patterns. Ideally, indices would be assigned to
maximize the number of voxels consistently labeled across cluster
patterns. Unfortunately, a naı̈ve approach reduces to a combinatorial
search over all possible labeling combinations.

In this work, we employ a pairwise greedy algorithm to approx-
imate the above result. Given two clusterings, we first pick one of
them to be our “template” image. We then compute a k×k histogram
matrix H , which contains the number of corresponding voxels be-
tween labels of the template image (down the rows of H) and of the
test image (across the columns of H). During each iteration of the
algorithm, we (1) select the largest element of the histogram Hij , (2)
reassign voxels labeled j in the test image to have the cluster index
i, and (3) set all values in the ith row and in the jth column of H to
be−1. The algorithm terminates when all entries of H are negative,
meaning that the label indices of the test image have been matched
to those of the template.

When aligning more than two trials, we match each of the im-
ages to a selected template using the above procedure. While this
approach may not yield the globally optimal alignment across runs
given arbitrary data, the cluster patterns in our application are often
similar enough for this method to accurately match corresponding
systems across subjects and/or trials.
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Median Maximum % Minimum L2 Pattern

Two Clusters 1 4 90
Three Clusters 2 5 80
Four Clusters 2 5 67
Five Clusters 2 7 70

Table 1. Statistics on the number of different KM cluster patterns
across participants for 10 random initializations. The third column
shows how often KM found the clustering that corresponds to the
minimum L2 distance.

5. EXPERIMENTAL SETUP

We study the performance of the algorithms on resting-state fMRI
data obtained from 45 healthy young adults (mean age 21.5, 26 fe-
male) [14]. The structural (MPRAGE) and functional (EPI-BOLD)
rest-state images for each participant were collected using a Siemens
Vision 3T scanner. Four 2mm isotropic functional runs were ac-
quired from each participant. Each scan lasted for 6m20s with
TR = 5s. The first 4 time points in each run were discarded, yield-
ing 72 time samples per run.

We performed standard preprocessing on each of the four runs
using FSL [15]. This included motion correction by rigid body align-
ment of the volumes, slice timing correction and registration to the
MNI atlas space. The data was spatially smoothed with a 6mm 3D
Gaussian filter, temporally low-pass filtered using a 0.08Hz cutoff,
and motion corrected via linear regression. Next, we estimated and
removed contributions from the white matter, ventricle and whole
brain regions (assuming a linear signal model). We masked the data
to include only brain voxels and normalized the time courses to have
zero mean and unit variance. Finally, we concatenated the four runs
into a single time course for analysis.

The main goal of this work is to compare the performance of
SC and KM to that of SBA, which provides a good baseline due
to the close relationship between correlation (the core of SBA) and
Euclidean L2 distance (the basis for SC/KM). We consider SC and
KM partitions for k = 2, . . . , 5 clusters.

We select the SC Gaussian variance σ2 independently for each
participant based on a qualitative measure of clustering integrity.
Empirically, we observe that the resulting cluster patterns are robust
for values of σ2 in the range 100− 250. For most participants σ2 is
set to 100 or 150. We use these values in all experiments, regardless
of the number of Nyström samples Ns or the number of clusters k.

For SBA, we select five seeds, corresponding to the motor and
visual cortices, the ventral anterior cingulate cortex (vACC), the pos-
terior cingulate cortex (PCC), and the intraparietal sulcus (IPS).

6. RESULTS

We first examine the variation in KM clustering results and the ro-
bustness of the Nyström approximation for SC.

For each value of k, we perform KM ten times on each partic-
ipant using different random initializations. We then compute the
number of distinct clustering patterns for each participant. We de-
fine two clustering results to be equivalent if they agree on at least
97% of the voxels. Equivalent clusterings are then grouped into dis-
tinct patterns. Table 1 summarizes the statistics of these different
clustering patterns. In many cases, the KM trials converge to differ-
ent local minima, especially as k increases. Thus, it is important to
iterate KM several times to ensure a good quality clustering.

Next, we study the robustness of Spectral Clustering to the num-
ber of random samples. In this experiment, we start with a 4,000-
sample Nyström set, which is the computational limit of our ma-
chine. We then iteratively remove 500 samples and examine the ef-
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Fig. 1. Median clustering difference when varying the number of
Nyström samples. Values represent the percentage of mismatched
voxels w.r.t. the 4,000-sample template. Error bars delineate the
10th−90th percentile region.
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Fig. 2. Nyström clustering consistency for Ns = 2, 000. The red
lines indicate median values, the box corresponds to the upper and
lower quartiles, and error bars denote the 10th and 90th percentiles.

fect on clustering performance. After matching the resulting clusters
to those estimated with 4,000 samples, we compute the percentage
of mismatched voxels between each trial and the 4,000-sample tem-
plate. This procedure is repeated twice for each participant.

Figure 1 shows the median mismatch between the estimated
clusterings over all 90 (45 × 2) trials, with error bars correspond-
ing to the 10th and 90th percentiles. The median clustering differ-
ence is less than 1% for 1,000 or more Nyström samples, and the
90th percentile difference is less than 1% for 1,500 or more sam-
ples. This experiment suggests that Nyström-based SC converges to
a stable clustering pattern as the number of samples increases. Based
on these results, we chose to use 2,000 Nyström samples for the re-
mainder of this work. At this sample size, less than 5% of the runs
for 2,4,5 clusters and approximately 8% of the runs for 3 clusters
differed by more than 5% from the 4,000-sample template.

The box plot in Figure 2 summarizes the consistency of Nyström-
based Spectral Clustering across different random samplings. Here,
we perform SC 10 times on each participant using 2,000 Nyström
samples. We then align the cluster maps and compute the percent-
age of mismatched voxels between each unique pair of runs. This
yields a total of 45 comparisons per participant. Figure 2 reports
the statistics over all 2025 (45 × 45) pairwise comparisons. In all
cases, the median clustering difference is less than 1%, and the 90th

percentile value is less than 2.1%. Empirically, we find that Nyström
SC predicably converges to a second or third cluster pattern in only a
handful of participants. This experiment suggests that we can obtain
consistent clusterings with only 2,000 Nyström samples.

In the second series of experiments, we compare the regions
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identified via Spectral Clustering, K-Means Clustering and standard
SBA, as illustrated in Figure 3. We use SC and KM to partition the
brain into five clusters. Only voxels assigned to the respective cluster
in at least half of the participants are shown. For SBA we compute
correlations over the entire brain using each seed. The third column
in Figure 3 shows voxels where the correlation coefficient with the
seed region was 0.2 or higher in at least 50% of the participants.

SC KM SCA

(a) Cluster 1, Slice 37 (b) Cluster 1, Slice 37 (c) PCC, Slice 37

(d) Cluster 1, Slice 55 (e) Cluster 1, Slice 55 (f) vACC, Slice 55

(g) Cluster 2, Slice 55 (h) Cluster 2, Slice 55 (i) Visual, Slice 55

(j) Cluster 3, Slice 31 (k) Cluster 3, Slice 31 (l) Motor, Slice 31

(m) Cluster 4, Slice 31 (n) Cluster 4, Slice 31 (o) IPS, Slice 31

(p) Cluster 5, Slice 47 (q) Cluster 5, Slice 47

Fig. 3. Clustering results across participants. The brain is partitioned
into 5 clusters using SC/KM, and various seed are selected for SCA.
The color indicates the proportion of participants for whom the voxel
was included in the detected system.

Figure 3 shows clearly that both SC and KM can identify well-
known structures such as the default network (a-f), the visual cortex
(g-i), the motor cortex (j-l), and the dorsal attention system (m-o).
SC and KM also identified white matter (p-q). In general, one would

not attempt to delineate this region using SBA. Since we regress out
the white matter signal during the preprocessing, we would not ex-
pect SBA to isolate white matter as a system. In our experiments SC
and KM achieve similar clustering results across participants. Fur-
thermore, both methods identify the same functional systems as SBA
without requiring a priori knowledge about the brain and without
significant computation. Thus, clustering algorithms offer a viable
alternative to standard functional connectivity analysis techniques.

7. DISCUSSION

The results presented in Section 6 indicate that clustering methods
provide a promising approach for functional connectivity analysis.
Although SC and KM make different assumptions about the data,
both algorithms successfully identify well-characterized functional
systems of the brain. Neither method requires a priori knowledge
about the location of seed regions to the extent that SBA does, and
both algorithms provide informative partitions with just five clusters.

The fact that K-Means produces fairly consistent clusterings
across participants suggests that a simple multivariate Gaussian may
be a realistic model for the pre-processed resting state fMRI data.
Nonetheless, Spectral Clustering may still be useful for this applica-
tion. Figures 1 and 2 show that the Nyström Method is robust while
allowing for drastic decreases in memory and runtime. Furthermore,
it enables exploration of alterative similarity measures.

In the future, we will use KM and SC to explore a potential
hierarchical organization of the brain’s functional systems. We also
plan to partition the brain into a larger number of clusters, aiming to
identify new and robust structures across the population. Finally, in
future analysis we will compare data-driven clustering with ICA.
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