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Decomposition, Approximation, and Coloring
of Odd-Minor-Free Graphs

Erik D. Demaine∗ MohammadTaghi Hajiaghayi† Ken-ichi Kawarabayashi‡

Abstract
We prove two structural decomposition theorems about graphs ex-
cluding a fixed odd minor H , and show how these theorems can
be used to obtain approximation algorithms for several algorithmic
problems in such graphs. Our decomposition results provide new
structural insights into odd-H-minor-free graphs, on the one hand
generalizing the central structural result from Graph Minor The-
ory, and on the other hand providing an algorithmic decomposition
into two bounded-treewidth graphs, generalizing a similar result for
minors. As one example of how these structural results conquer dif-
ficult problems, we obtain a polynomial-time 2-approximation for
vertex coloring in odd-H-minor-free graphs, improving on the pre-
vious O(|V (H)|)-approximation for such graphs and generalizing
the previous 2-approximation for H-minor-free graphs. The class
of odd-H-minor-free graphs is a vast generalization of the well-
studied H-minor-free graph families and includes, for example, all
bipartite graphs plus a bounded number of apices. Odd-H-minor-
free graphs are particularly interesting from a structural graph the-
ory perspective because they break away from the sparsity of H-
minor-free graphs, permitting a quadratic number of edges.

1 Introduction
Decomposition or partitioning of graphs into smaller pieces
is a fundamental way to design graph algorithms. One
of the most famous such decompositions is the divide-
and-conquer separator decomposition for planar graphs of
Lipton and Tarjan [LT80], which has been generalized to
arbitrary graphs via sparsest cut [LR99, ARV04]. These
decompositions are based on finding relatively small cuts in
the graph to minimize the interaction between the pieces. To
make the pieces relatively small, the decompositions cut the
graph into many pieces.

A different kind of decomposition that has received
more attention recently is to partition the graph into a
small number of computationally simpler (but not neces-
sarily small) pieces, without much regard to the interaction
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between the pieces. For example, many optimization prob-
lems can be solved exactly on graphs of bounded treewidth;
what graphs can be partitioned into a small number k of
bounded-treewidth pieces? In many cases, each piece gives
a lower/upper bound on the optimal solution for the entire
graph, so solving the problem exactly in each piece gives a
k-approximation to the problem. Such a decomposition into
bounded-treewidth graphs would also be practical, as many
NP-hard optimization problems are now solved in practice
using dynamic programming on low-treewidth graphs; see,
e.g., [Bod05, Ami01, Tho98]. Recently, this decomposi-
tion approach has been successfully used for graph coloring,
which is inapproximable within n1−ε for any ε > 0 unless
P = NP [Zuc07], yet has a 2-approximation in any minor-
closed graph family by this approach [DHK05]. Refinements
of this approach have led to PTASs for many graph problems
[DHK05, Bak94, Epp00].

Decomposition of graphs into computationally simpler
pieces goes back to the work of Nash-Williams in 1964
[NW64] and of Chartrand et al. [CGH71]. In particular,
Chartrand et al. [CGH71] conjectured in 1971 that any
planar graph can have its edges partitioned into two pieces,
each inducing an outerplanar graph. This conjecture was
only just proved by Goncalves [Gon05], together with a
linear-time algorithm for computing the decomposition. In
particular, this result establishes that any planar graph can be
decomposed into two graphs of treewidth 2, a result proved
earlier [Ked96]. Ding et al. [DOSV00] proved that every
bounded-genus graph can be decomposed into two graphs of
bounded treewidth (where the bound depends on the genus).
Thomas [Tho95] conjectured that every graph excluding a
fixed minor has such a decomposition. This conjecture has
been proved in two papers [DDO+04, DHK05]; the latter
proof is both simpler and algorithmic. A recent extension of
this result [DHM07] allows the bounded-treewidth pieces to
be formed by contractions instead of deletions/subgraphs.

In this paper, we generalize the decomposition result
to odd-minor-free graphs: every graph excluding a fixed
odd minor can be decomposed into two bounded-treewidth
graphs. The family of odd-H-minor-free graphs is strictly
more general thanH-minor-free graphs for any graphH; for
example, it includes all complete bipartite graphs Kn/2,n/2.
In interesting contrast, the Lipton-Tarjan separator decom-
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position (and thus its algorithmic consequences) cannot be
generalized to odd-minor-free graphs, because small sep-
arators do not exist. Another contrast between odd-H-
minor-free graphs and H-minor-free graphs is that the for-
mer can have a quadratic number of edges, while the latter
are always sparse. Odd-minor-free graphs have been con-
sidered extensively in the graph theory literature (see, e.g.,
[Gue01, GGG+04, Gue05, JT95]) and recently in theoreti-
cal computer science [KM06].

We prove our result by generalizing a structural result
that is the heart of Graph Minor Theory [RS03], which
has many algorithmic applications [Gro03, DFHT05, DH05,
DHK05], to the case of odd-minor-free graphs. Specifically,
we prove that every odd-minor-free graph can be decom-
posed into a clique-sum of “almost-bipartite” graphs and
graphs that are “almost-embeddable” into bounded-genus
surfaces. (In the original Graph Minor version, only graphs
of the second type exist.) Our primary challenge in this result
is that odd-minor-free graphs can be dense, and this density
may be equally spread throughout the graph, so we cannot
hope to find small separations to split the graph into pieces as
in previous decomposition theorems. Nonetheless, we show
how to decompose odd-minor-free graphs, by showing a con-
nection to the existence of clique minors; this algorithmic
technique may be useful for future structural algorithms on
dense graphs.

All of our results are algorithmic: the decompositions
can be computed in polynomial time. Our decompositions
can also be used to obtain a variety of approximation algo-
rithms for problems on odd-minor-free graphs. In particular,
our decomposition into two bounded-treewidth graphs (The-
orem 1.1 below) immediately leads to a 2-approximation for
many NP-complete problems in odd-minor-free graphs. For
example, our 2-approximation for graph coloring in odd-Kk-
minor-free graphs improves the recent O(k)-approximation
algorithm [KM06] and generalizes the 2-approximation for
Kk-minor-free graphs [DHK05]. We also believe that com-
bining our clique-sum decomposition (Theorem 1.2 below)
with Grohe’s technique [Gro03] leads to PTASs for maxi-
mum independent set, maximum clique, and minimum ver-
tex cover. Grohe’s technique for minor-free graphs uses the
property that removing small sets of vertices in such graphs
results in components with treewidth bounded in terms of
diameter; this property simply for odd-minor-free graphs
(e.g., the complete bipartite graph has diameter 2 but huge
treewidth even after removing small sets of vertices), mak-
ing this generalization particularly interesting.

The classes of graphs excluding a fixed minor H have
already proved extremely useful and powerful, with appli-
cations in many areas such as network design and com-
pact routing; see, e.g., [AG06, Tho04]. Our thesis is that
most algorithmic results that have been obtained for both
H-minor-free graphs and bipartite graphs can be general-

ized to odd-H-minor-free graphs. Our results provide the
first step in this direction by providing new algorithmic
structural tools for odd-minor-free graphs. In particular,
the minor-free analogs of our decomposition results have
found many applications in just the past few years—see, e.g.,
[BBCH07, APS07, ASS07, Kle05, DFHT05, DHM]—and
we analogously expect our new tools to enable several new
algorithmic results for odd-minor-free graphs.

Our immediate goal is not to develop practical algo-
rithms: it is not clear where odd-minor-free graphs would
arise in practice, and even most algorithms for H-minor-
free graphs are currently impractical because of huge bounds
from Graph Minors. Rather, the goal of this paper is to im-
prove our algorithmic structural understanding, in particu-
lar powerful decompositions enabling efficient approxima-
tion algorithms, beyond standard graph families.

1.1 Odd-Minor-Free Graphs and Their Importance.
Recall that a graph H is a minor of G if H can be obtained
by contracting and deleting edges in G. Equivalently, H is a
minor ofG precisely if there are |V (H)| vertex-disjoint trees
in G, one tree Tv for each vertex v of H , such that for every
edge e = {v, w} in H there is an edge ê in G connecting the
two corresponding trees Tv and Tw. Now H is an odd minor
of G if, in addition, all the vertices of the trees can be two-
colored in such a way that (1) the edges within each tree Tv in
G are bichromatic, while (2) the edge ê connecting trees Tv

and Tw in G corresponding to each edge e = {v, w} of H is
monochromatic. In particular, the class of odd-H-minor-free
graphs (excluding a fixed graph H as an odd minor) is more
general than the class of H-minor-free graphs (excluding a
fixed graph H as a minor).

Indeed, the class of odd-H-minor-free graphs is strictly
more general: the complete bipartite graph Kn/2,n/2 cer-
tainly contains a Kk minor for k ≤ n/2, but on the other
hand, it does not contain Kk as an odd minor for k ≥ 3. In
fact, any Kk-minor-free graph G is O(k

√
log k)-degenerate,

i.e, every induced subgraph has a vertex of degree at most
O(k
√

log k); see [Kos84, Tho01]. Thus, any Kk-minor-
free graph G has O(k

√
log kn) edges. On the other hand,

some odd-Kk-minor-free graphs such asKn/2,n/2 may have
Θ(n2) edges.

This contrast seems to make a big difference between
minor exclusion and odd minor exclusion. On the other
hand, as we shall see later, odd minors are actually motivated
by Graph Minor Theory and structural graph theory, and
many researchers believe that there is an analogue of Graph
Minor Theory for the case of odd minors. In addition,
odd minors have an intriguing connection to the well-known
conjecture of Hadwiger [Had43], detailed below.

Connections to Maximum Cut. Odd minors play an
important role in the field of discrete optimization. A long-
standing area of interest in this field is finding conditions un-



der which a given polyhedron has integer vertices, so that
integer optimization problems can be solved as linear pro-
grams. In the case of a particular set-covering formulation
of the maximum-cut problem, there is a structural character-
ization based on excluding odd minors.

Specifically, consider the following problem. A signed
graph is a pair (G,Σ), where G = (V,E) is an undirected
graph and Σ ⊆ E. A circuit in (G,Σ) is odd if it contains
an odd number of edges in Σ. An odd circuit cover is a set
of edges intersecting all odd circuits. The problem of finding
an odd circuit is more general than finding a maximum cut
in G (which is NP-hard); see [GP82, Sch02]. The linear
relaxation of a natural integer programming formulation of
the problem is the following:

1. x(e) ≥ 0, for each edge e in G;

2.
∑

e∈C x(e) ≥ 1, for each odd circuit C in G.

A signed graph (G,Σ) is weakly bipartite if each vertex of
the polyhedron determined by these constraints is integral.
Weakly bipartite graphs are important because we can find a
maximum-capacity cut in such graphs in polynomial time by
solving the above linear program via the ellipsoid method.

Guenin [Gue01] characterized weakly bipartite graphs
in terms of forbidden odd minors, for which he won the
Fulkerson prize in 2003. The characterization says that a
signed graph (G,Σ) is weakly bipartite if and only if G does
not contain an odd K5 minor. This theorem proves a special
case of a well-known conjecture of Seymour [Sey77]. It
also generalizes a result of Seymour [Sey77] that a signed
graph (G,Σ) is “strongly bipartite” if and only if G does not
contain an odd K4 minor. (For the definition of strongly
bipartite graphs, we refer the reader to [Gue01, Sch02].)
Guenin’s result [Gue01] has motivated several remarkable
subsequent papers; see [GG02, Sch02].

Thus, as we see, odd minors are useful for proving
structure theorems in discrete optimization.

Connections to Hadwiger’s Conjecture. Odd-minor-
free graphs has also been used to generalize Hadwiger’s
conjecture, considered by many as the deepest open problem
in graph theory. Hadwiger’s conjecture is a far-reaching
generalization of the Four Color Theorem [AHK77, AH77,
RSST97]. It states that every H-minor-free graph has a
vertex coloring with |V (H)| − 1 colors. Hadwiger [Had43]
posed this problem in 1943, and proved the conjecture for
|V (H)| ≤ 4. The case |V (H)| = 5 is equivalent to the
Four Color Theorem, as proved by Wagner in 1937 [Wag37],
and therefore is also true [AHK77, AH77, RSST97]. The
case |V (H)| = 6 was proved by Robertson, Seymour, and
Thomas [RST93], also using the Four Color Theorem. All
cases |V (H)| ≥ 7 remain unsolved. The only known
results for |V (H)| = 7 are that any 7-colorable graph has
K7 or K4,4 as a minor [KT05] and has K7 or K3,5 as
a minor [Kawb], whereas Hadwiger’s conjecture suggests

that the graph should always have a K7 minor. The best
general upper bound is that every H-minor-free graph has a
vertex coloring with O(|V (H)|

√
lg |V (H)|) colors, which

follows immediately from bounds on the average degree of a
vertex in an H-minor-free graph; see, e.g., [Kos84, Tho01].
Thus, Hadwinger’s conjecture is not resolved even up to
constant factors. On the other hand, a 2-approximation for
graph coloring inH-minor-free graphs was recently obtained
in [DHK05].

In 1993, Gerards and Seymour [JT95, p. 115] conjec-
tured a substantially stronger form of Hadwiger’s conjecture
in terms of odd minors: every odd-Kk-minor-free graph has
a vertex coloring with k − 1 colors. The cases k ≤ 3 are
straightforward; for example, the case k = 3 states that a
graph with no odd cycles is 2-colorable. The case k = 4 was
proved by Catlin in 1978 [Cat78]. Recently, Guenin [Gue05]
announced a solution for the k = 5 case, which certainly im-
plies the Four Color Theorem because a graph with no K5

minors also has no odd K5 minors. All cases k ≥ 6 remain
unsolved.

As with Hadwinger’s conjecture, it is not even known
whether there is a constant c ≥ 1 such that any ck-colorable
graph contains an odd Kk minor. The best general upper
bound is that every odd-Kk-minor-free graph has a vertex
coloring withO(k

√
lg k) colors, which follows from bounds

on the average vertex degree in such graphs by Geelen et
al. [GGG+04]. On the other hand, Kawarabayashi [Kawa]
gave an algorithm for any fixed k that either (1) colors a
given graph with ck colors, (2) finds an odd Kk minor
in the graph, or (3) constructs a counterexample to the
weaker conjecture that every ck-colorable graph contains
an odd Kk minor. Here, c = 2496. The proof also
implies that this weaker conjecture has only finitely many
minimal counterexamples, and that any such counterexample
is k/2497-connected (improving on 4-connectivity as proved
by Guenin [Gue05]).

One of the major consequences of this work is an
O(k)-approximation for graph coloring in odd-Kk-minor-
free graphs [KM06]. In this paper, we improve this approxi-
mation factor to 2, independent of k. This result generalizes
the previous 2-approximation algorithm for Kk-minor-free
graphs [DHK05] to a much more general graph family.

1.2 Our Results. One main result of this paper is the fol-
lowing decomposition into two bounded-treewidth graphs,
which we also show is tight in a certain sense (see Section 3):

THEOREM 1.1. For every positive integer k, there is a
constant ck such that, for every odd-Kk-minor-free graphG,
the vertices of G can be partitioned into two sets such
that each set induces a graph of treewidth at most ck.
Furthermore, such a partition can be found in polynomial
time.



Because graph coloring can be solved in polynomial
time on graphs of bounded treewidth, we obtain a 2-
approximation algorithm for graph coloring:

COROLLARY 1.1. There is a polynomial-time 2-
approximation algorithm for graph coloring in graphs
that exclude a fixed odd minor.

This result significantly generalizes the previous 2-
approximation algorithm for graph coloring in graphs ex-
cluding a fixed minor [DHK05]. Furthermore, our result
improves on the recent O(k)-approximation algorithm for
graph coloring in odd-Kk-minor-free graphs [KM06]. This
approximation factor is particularly impressive given that
graph coloring is one of the hardest problems to approxi-
mate. In general graphs, it is inapproximable within n1−ε

for any ε > 0, unless P = NP [Zuc07]. Even for 3-colorable
graphs, the best approximation algorithm achieves a factor
of O(n0.2072) [Chl07]. In planar graphs, the problem is 4/3-
approximable, and that is the best possible unless P = NP,
essentially because all planar graphs are 4-colorable. In con-
trast, H-minor-free graphs (or even bounded-genus graphs)
are not O(1)-colorable for a constant independent of H (or
genus).

The approximation approach of Corollary 1.1 applies
more generally to many other optimization problems, includ-
ing a variety of hereditary maximization problems (as de-
fined in [DHK05, Section 3.3] and [Yan78]) and some mini-
mization problems such as minimum color sum [BNBH+98,
FK98, HK02]:

COROLLARY 1.2. There is a polynomial-time 2-
approximation algorithm for minimum color sum and
for finding a maximum (weighted) induced subgraph with
a given hereditary property in graphs that exclude a fixed
odd minor. In particular, the hereditary maximization
problems include independent set and finding the maximum
induced subgraph that is chordal, acyclic, without cycles of
a specified length, of maximum degree r ≥ 1, bipartite, a
clique, or planar.

Our decomposition of Theorem 1.1 is based on the
following structural result about odd-H-minor-free graphs,
which is our second main result. This decomposition gener-
alizes a similar structure theorem for H-minor-free graphs
by Robertson and Seymour [RS03], which is the heart of
Graph Minor Theory, and which has been used recently to
obtain many algorithmic consequences in polynomial-time
approximation schemes, subexponential fixed-parameter al-
gorithms, approximating treewidth, approximating grid mi-
nors, and half-integrality of multicommodity flow [Gro03,
DFHT05, DH05, DHK05]. For the definition of h-almost-
embeddable graphs, we refer the reader to Section 2. Let us
remark that h-almost-embeddable graphs involve bounded
genus graphs.

THEOREM 1.2. For any fixed k, there is a constant h such
that any odd-Kk-minor-free graph G can be obtained by
clique-sums (at most h-sums) of the following two types of
graphs:

1. bipartite graphs together with at most h apex vertices;
and

2. h-almost-embeddable graphs.

Moreover, if G1 ⊕ G2 is a clique sum and G2 is a child
of G1, then G1 ∩ G2 is contained in the apex vertex set
of G2. Furthermore, if G1 is a bipartite graph W together
with at most h apex vertices, then |G2 ∩W | ≤ 1. Finally,
the decomposition can be computed in polynomial time.

This result is proved in Section 4 and made algorith-
mic in Section 5. We believe that this decomposition result
can be combined with Grohe’s dynamic programming tech-
niques for such decompositions [Gro03] to obtain PTASs
for many graph problems that can be solved in bounded-
treewidth graphs and bipartite graphs with a bounded num-
ber of apices, such as minimum vertex cover, maximum
clique, and maximum independent set. In addition, we be-
lieve that the decomposition result can be combined with the
sublinear parameter-treewidth bounds and complex dynamic
programming techniques of [DFHT05] to obtain subexpo-
nential fixed-parameter algorithms for such problems, with
running times 2O(

√
k)nO(1).

Our proof of Theorem 1.2 uses recent deep results
concerning odd S-paths, which generalize the well-known
Mader’s S-paths theorem, and odd clique minors. In addi-
tion, we use the seminal structure theorem in Graph Minors.

Roughly, our proof proceeds as follows. If G does not
contain a huge clique minor, then we just apply the Graph
Minors structure theorem. So we may assume that G has a
huge clique minor. We can either translate it into a huge odd
clique minor or else conclude that the component containing
a huge clique minor is a “nearly” bipartite graph, with the
help of the recent deep results. In the second case, this
component becomes one of the pieces of the decomposition,
and this helps us find a decomposition.

Our decomposition Theorem 1.1 allows us to partition
the graph into two parts of bounded treewidth. In contrast
with theH-minor-free case [DHK05], this result is no longer
true if we require more than two parts. Therefore, in this
sense, odd-minor-free graphs behave very differently from
H-minor-free graphs.

2 Basics of Graph Minor Decomposition
This section describes the Robertson-Seymour decomposi-
tion theorem characterizing the structure of H-minor-free
graphs and the relevant basic concepts.

First we define the basic notion of treewidth, introduced
by Robertson and Seymour [RS86]. To define this notion,



first we consider a representation of a graph as a tree, called
a tree decomposition. Precisely, a tree decomposition of a
graph G = (V,E) is a pair (T, χ) in which T = (I, F ) is
a tree and χ = {χi | i ∈ I} is a family of subsets of V (G)
such that

1.
⋃

i∈I χi = V ;

2. for each edge e = {u, v} ∈ E, there exists an i ∈ I
such that both u and v belong to χi; and

3. for all v ∈ V , the set of nodes {i ∈ I | v ∈ χi} forms a
connected subtree of T .

To distinguish between vertices of the original graph G and
vertices of T in the tree decomposition, we call vertices of
T nodes and their corresponding χi’s bags. The width of
the tree decomposition is the maximum size of a bag in χ
minus 1. The treewidth of a graph G, denoted tw(G), is
the minimum width over all possible tree decompositions
of G. A tree decomposition is called a path decomposition
if T = (I, F ) is a path. The pathwidth of a graph G,
denoted pw(G), is the minimum width over all possible path
decompositions of G.

Second, we need a basic notion of embedding; see, e.g.,
[RS94, CM05]. In this paper, an embedding refers to a 2-
cell embedding, i.e., a drawing of the vertices and edges of
the graph as points and arcs in a surface such that every face
(region outlined by edges) is homeomorphic to a disk. A
noose in such an embedding is a simple closed curve on the
surface that meets the graph only at vertices. The length of a
noose is the number of vertices it visits. The representativity
or face-width of an embedded graph is the length of the
shortest noose that cannot be contracted to a point on the
surface.

At a high level, the deep decomposition theorem of
Robertson and Seymour [RS03, Theorem 1.3] says that, for
every graph H , every H-minor-free graph can be expressed
as a “tree structure” of pieces, where each piece is a graph
that can be drawn in a surface in which H cannot be
drawn, except for a bounded number of “apex” vertices and
a bounded number of “local areas of nonplanarity” called
“vortices”. Here the bounds depend only on H . To make
this theorem precise, we need to define each of the notions
in quotes.

Each piece in the decomposition is “h-almost-
embeddable” in a bounded-genus surface where h is a con-
stant depending on the excluded minor H . Roughly speak-
ing, a graphG is h-almost embeddable in a surface S if there
exists a set X of size at most h of vertices, called apex ver-
tices or apices, such that G − X can be obtained from a
graph G0 embedded in S by attaching at most h graphs of
pathwidth at most h to G0 within h faces in an orderly way.
More precisely, a graph G is h-almost embeddable in S if

there exists a vertex set X of size at most h (the apices) such
that G−X can be written as G0 ∪G1 ∪ · · · ∪Gh, where

1. G0 has an embedding in S;

2. the graphs Gi, called vortices, are pairwise disjoint;

3. there are faces F1, . . . , Fh of G0 in S, and there are
pairwise disjoint disks D1, . . . , Dh in S, such that for
i = 1, . . . , h, Di ⊂ Fi and Ui := V (G0) ∩ V (Gi) =
V (G0) ∩Di; and

4. the graph Gi has a path decomposition (Bu)u∈Ui of
width less than h, such that u ∈ Bu for all u ∈ Ui.
The sets Bu are ordered by the ordering of their indices
u as points along the boundary cycle of face Fi in G0.

An h-almost embeddable graph is apex-free if the set X of
apices is empty.

The pieces of the decomposition are combined accord-
ing to “clique-sum” operations, a notion which goes back
to characterizations of K3,3-minor-free and K5-minor-free
graphs by Wagner [Wag37] and serves as an important tool
in the Graph Minor Theory. Suppose G1 and G2 are graphs
with disjoint vertex sets and let k ≥ 0 be an integer. For
i = 1, 2, let Wi ⊆ V (Gi) form a clique of size k and let G′i
be obtained from Gi by deleting some (possibly no) edges
from the induced subgraph Gi[Wi] with both endpoints in
Wi. Consider a bijection h : W1 → W2. We define a k-sum
G of G1 and G2, denoted by G = G1 ⊕k G2 or simply by
G = G1 ⊕ G2, to be the graph obtained from the union of
G′1 and G′2 by identifying w with h(w) for all w ∈W1. The
images of the vertices of W1 and W2 in G1 ⊕k G2 form the
join set. Note that each vertex v of G has a corresponding
vertex in G1 or G2 or both. Also, ⊕ is not a well-defined
operator: it can have a set of possible results.

Now we can finally state a precise form of the decom-
position theorem:

THEOREM 2.1. [RS03, Theorem 1.3] For every graph H ,
there exists an integer h ≥ 0 depending only on |V (H)| such
that every H-minor-free graph can be obtained by at most
h-sums of graphs that are h-almost-embeddable in some
surfaces in which H cannot be embedded.

In particular, if H is fixed, any surface in which H cannot
be embedded has bounded genus. Thus, the summands
in the theorem are h-almost-embeddable in bounded-genus
surfaces.

A polynomial-time algorithm for computing the struc-
ture guaranteed by this theorem was recently obtained in
[DHK05].

3 Partitioning Odd-Minor-Free Graphs into
Bounded-Treewidth Graphs

In this section, we prove Theorem 1.1 about partitioning
any odd-Kk-minor-free graph into two induced subgraphs



of bounded treewidth. Our proof uses the decomposition
result for odd-minor-free graphs from Theorem 1.2, which
is proved in the rest of the paper. We also need the following
result from [DHK05]:

THEOREM 3.1. [DHK05, Theorem 3.1] For any fixed
graph H , there is a constant cH such that, for any integer
k ≥ 1 and for every H-minor-free graph G, the vertices
of G (or the edges of G) can be partitioned into k + 1 sets
such that any k of the sets induce a graph of treewidth at
most cH k. Furthermore, such a partition can be found in
polynomial time.

Now we proceed to the proof of Theorem 1.1.

Proof of Theorem 1.1: By Theorem 1.2, every odd-Kk-
minor-free graph can be written as a clique sum P1 ⊕ P2 ⊕
· · · ⊕ P` of either h-almost-embeddable graphs or bipartite
graphs together with at most hk apex vertices such that the
ith clique sum (P1⊕P2⊕· · ·⊕Pi)⊕Pi+1 has join set Ji+1

contained in the set Xi+1 of apices in piece Pi+1.
We prove the statement of Theorem 1.1 by induction on

i. Suppose i = 1. If Pi is an h-almost embeddable graph,
then we are done by Theorem 3.1. Also, if Pi is a bipartite
graph W together with at most hk apex vertices, clearly we
can 2-partition Pi by taking each partite set of W together
with some vertices in apex vertices. Note that the labeling of
apex vertices is arbitrary. It is easy to see that the treewidth
of each set is at most hk+1, and hence it is at most ck. (Here,
we assume that ck ≥ hk + 1.)

Suppose by induction that P1 ⊕ P2 ⊕ · · · ⊕ Pi has a
labeling with two labels such that each label induces a graph
of treewidth at most ck. We merge the labelings of P1 ⊕
P2⊕ · · ·⊕Pi and Pi+1 by preferring the former labeling for
any vertex in the join set Ji+1. Because Ji+1 ⊆ Xi+1, this
labeling of Ji+1 is just a particular choice for the arbitrary
labeling of Xi+1. By [DHN+04, Lemma 3], for any two
graphs G′ and G′′, tw(G′ ⊕G′′) ≤ max{tw(G′), tw(G′′)}.
Thus, the treewidth of each label set in (P1⊕P2⊕· · ·⊕Pi)⊕
Pi+1 is at most the maximum of the treewidth of each label
set within P1⊕P2⊕· · ·⊕Pi and the treewidth of each label
set within Pi+1. The latter is at most ck as argued above,
and the former is at most ck by the induction hypothesis.
Therefore the label sets form the desired partition.

The construction of the label sets runs in linear time
given the decomposition from Theorem 1.1, for a polynomial
overall time bound. �

Theorem 1.1 is the best analog of Theorem 3.1 that can
be obtained for odd-minor-free graphs. The two-set partition
is the best possible because the complete bipartite graph
Kn/2,n/2 cannot be partitioned into k + 1 > 2 sets such
that any k of the sets induce a bounded-treewidth graph.
(For example, for k = 2, each side of the bipartition must
have at least n/6 vertices in a single set, and choosing these

two sets and omitting the third one induces Kn/6,n/6.) The
partition with respect to vertices is best possible because any
partition of the edges of Kn/2,n/2 into O(1) sets has Ω(n2)
edges in one set, which is impossible for a graph of bounded
treewidth.

4 Structure Theorem for Odd-Minor-Free Graphs
In this section, we prove Theorem 1.2 about the structure of
odd-H-minor-free graphs, which is the foundation for our
paper. Later, in Section 5, we show that this structure can
be computed algorithmically. This theorem generalizes the
main structural result for H-minor-free graphs developed in
Graph Minor Theory [RS03] (see Section 2).

Our proof is by induction on the number of vertices.
For inductive purposes, we prove the following somewhat
stronger statement:

THEOREM 4.1. For any odd Kk-minor-free graph G and
any vertex set Z with at most Θ vertices where Θ comes
from Theorem 3.1 in Graph Minors XVI [RS03] (and hence
depends only on k), G can be obtained by clique-sums (h-
sums) of the following two classes of graphs:

1. bipartite graphs together with a bounded number of
apex vertices (at most |Θ|+ 16k), and

2. h-almost-embeddable graphs, where h is the constant
in Theorem 4.2 below for H = K32k, (16k−1)(32k

16k)+1.

In addition, Z is contained in the apex vertex set of some
bag (a “bag” is one of the summands in the clique sum).
Moreover if G1 ⊕ G2 is a clique sum and G2 is a child of
G1, then G1 ⊕ G2 is contained in the apex vertex set of
G2. Furthermore, if G1 is a bipartite graph W together
with bounded number of apex vertices, say at most hk apex
vertices, then |G2 ∩W | ≤ 1.

This theorem is in contrast with the remarkable follow-
ing theorem in [RS03].

THEOREM 4.2. [RS03, Theorem 1.3] For every graph H ,
there exists an integer h ≥ 0 depending only on |V (H)| such
that every H-minor-free graph can be obtained by at most
h-sums of graphs that are h-almost-embeddable in some
surfaces in which H cannot be embedded.

We need the following result, proved in [KS]. For
completeness, we include a proof.

THEOREM 4.3. Suppose G has a K32k, (16k−1)(32k
16k)+1-

minor. Then either G has an odd-Kk-minor or G has a ver-
tex setX of order at most 8k such thatG−X has a bipartite
subgraph F and each odd cycle is contained in either com-
ponents ofG−X that do not intersect F or blocks with a cut
vertex to F . Furthermore, F hits all but at most 8k nodes of
the original K32k, (16k−1)(32k

16k)+1-minor.



Proof: A complete minor of order l can be thought of l
vertex disjoint trees, every two of which are joined by an
edge. We call such a minor even if the union of these trees
is bipartite. We call such a minor odd if its vertices can be
two-colored so that the edges in the trees are bichromatic but
the edges between two disjoint trees are monochromatic.

Geelen et al. [GGG+04] proved the following result.

THEOREM 4.4. IfG has an even complete minor of order at
least 16k, then either G has an odd complete minor of order
k or G has a vertex set X with |X| < 8k such that G − X
has a bipartite subgraph F and each odd cycle is contained
in either components of G − X that do not intersect F or
blocks with a cut vertex to F . Furthermore, F hits all but at
most 8k nodes of the original even complete minor of order
at least 16k.

Now we can think of a K32k, (16k−1)(32k
16k)+1-minor as

follows:

There are 32k + (16k − 1)
(
32k
16k

)
+ 1 disjoint

trees T1, . . . , T32k, T
′
1, . . . , T

′
(16k−1)(32k

16k)+1
such

that there is an edge between Ti and T ′j for any i, j
with 1 ≤ i ≤ 32k and 1 ≤ j ≤ (16k−1)

(
32k
16k

)
+1.

We first two-color (using colors 1 and 2) the trees
T1, . . . , T32k such that each Ti is bichromatic. Then for each
j, we two-color T ′j in such a way that T ′j is bichromatic
and there are at least 16k bichromatic edges between T ′j
and

⋃32k
i=1 Ti, for 1 ≤ j ≤ (16k − 1)

(
32k
16k

)
+ 1. This is

possible because we have two choices for two-coloring of
T ′j . Then by the Pigeonhole Principle, there are 16k disjoint
trees in {T1, . . . , T32k}, say trees T1, . . . , T16k, and there
are 16k disjoint trees in {T ′1, . . . , T ′(16k−1)(32k

16k)+1
}, say trees

T ′1, . . . , T
′
16k, in such a way that each edge between Ti and

T ′j is bichromatic for i = 1, . . . , 16k and j = 1, . . . , 16k.
Now let T ∗i = Ti ∪ T ′i , where i = 1, . . . , 16k. Clearly⋃16k

i=1 T
∗
i is bipartite and forms an even complete minor of

order 16k in G. By Theorem 4.4, either G has an odd
complete minor of order k orG has a vertex setX of order at
most 8k such thatG−X has a bipartite subgraph F and each
odd cycle is contained in either components ofG−X that do
not intersect F or blocks with a cut vertex to F . Furthermore,
F hits all the nodes of the original even complete minor
of order 16k. Because the size of X is at most 8k, and
K32k, (16k−1)(32k

16k)+1 has minimum degree at least 32k, it is
easy to see that F hits all the nodes of the original minor of
K32k, (16k−1)(32k

16k)+1.
This completes the proof of Theorem 4.3. �

Let us remark that in the proof of this result, once
we detect a K32k, (16k−1)(32k

16k)+1-minor, we can find an
even complete minor of order 16k in the polynomial time,

actually, in the linear time. By the result of Robertson and
Seymour [RS95], we can actually detect the minor inO(n3).
Hence we can detect the even minor, too. It remains to
find a polynomial-time algorithm for Theorem 4.4. The
proof of Theorem 4.4 in [GGG+04] certainly implies the
polynomial-time algorithm to find the desired conclusion.
Actually, it detects either a desired odd minor or a vertex
set X of bounded number of vertices in G such that G −X
has a bipartite subgraph F and each odd cycle is contained
in either components of G − X that do not intersect F or
blocks with a cut vertex to F . Furthermore, F hits all but at
most 8k nodes of the original even complete minor of order
at least 16k. Geelen et al. [GGG+04] reduces this problem to
the problem of finding the maximum matching which can be
solved inO(n3) time; see [Gab73, Law76, CM78, GMG82].

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1: Suppose G has a separation (A,B)
of order at most Θ/2 such that both B − A and A − B are
nonempty. Furthermore, suppose that both |(Z ∩ A) ∪ (A ∩
B)| ≤ Θ and |(Z ∩ B) ∪ (A ∩ B)| ≤ Θ. We first apply
induction to A with Z = (Z ∩ A) ∪ (A ∩ B). We also
apply induction to B with Z = (Z ∩ B) ∪ (A ∩ B). If
we glue A and B at A ∩ B, then it is easy to see that the
resulting decomposition is as desired in Theorem 4.1 because
A ∩ B is contained in one bag of the decompositions of A
and B, respectively. Actually, A ∩ B is contained in the
apex vertex set of one bag of the decompositions of A and
B, respectively. Also both Z ∩ A and Z ∩ B are contained
in the apex vertex sets of bags of the decompositions of A
and B, respectively. So we can glue the decompositions of
A and B at A ∩ B. Hence for any separation of order at
most Θ/2 such that both B − A and A − B are nonempty,
we may assume that either |(Z ∩ A) ∪ (A ∩ B)| > Θ or
|(Z ∩B) ∪ (A ∩B)| > Θ.

Then this defines tangle T of order Θ/2, assuming that
|(Z ∩B)∪ (A∩B)| > Θ for any separation (A,B) of order
at most Θ/2. This “tangle” will not be used in the proof, but
we mention it out of interest.

From now on, we assume that Θ > 16k. So Θ/2 > 8k,
which we shall use many times in our proof.

Suppose G has a K32k, (16k−1)(32k
16k)+1-minor M such

that there is no separation (A,B) of order at most 8k in
such a way that A contains all but at most Θ/2 vertices in
Z, and B hits all the nodes in M . Then by Theorem 4.3,
G has a vertex set X of order at most 8k such that G − X
has a bipartite subgraph F and each odd cycle is contained
in either components of G − X that do not intersect F or
blocks with a cut vertex to F . Furthermore, F hits all but
at most 8k nodes of the original minor M . Moreover, each
component in G−X − F has at most Θ/2 vertices of Z by
our assumption.

Let us now observe that there is one big component W



in G − X such that W contains a bipartite subgraph F and
each odd cycle is contained in either components of G −X
that do not intersect F or blocks in W with a cut vertex to
F . For any block or any component, say B, in G −X such
that |B ∩ Z|+ |X| is at most Θ− 1, we apply the induction
with G = B ∪X and Z = X ∪ {v} ∪ (B ∩ Z), where v is
a cut vertex of G − X if B is a block. By our assumption,
there is no block or component B such that |B ∩ Z| + |X|
is at least Θ. Hence the induction hypothesis is satisfied for
B∪X for each component or blockB. Then we get a desired
decomposition ofB∪X for each block and each component
B of G − X such that all the vertices in Z are in the apex
vertex set of one bag, and if G1 ∩G2 is a clique-sum, where
G2 is a child of G1 and G1 consists of a bipartite graph
W with at most hk apex vertices, then |W ∩ G2| ≤ 1. In
addition, if G1 ∩ G2 is a clique-sum, where G2 is a child
of G1, then G1 ∩ G2 is contained in the apex vertex set
of G2. In addition, we can glue all these decompositions
at Z∪X ∪{v}, where v is a cut vertex for the corresponding
block, because each decomposition has a bag such that Z is
contained in the apex vertex set of the bag. Let us observe
that F −Z together with Z ∪X as apex vertices satisfies the
first graph as described in Theorem 4.1. So this becomes a
bag, and in fact the “root” of the resulting decomposition.
Hence this resulting decomposition satisfies Theorem 4.1.
So we finish the case when there is a K32k, (16k−1)(32k

16k)+1-

minor M such that there is no separation (A,B) of order at
most 8k in such a way that A contains all but at most Θ/2
vertices in Z, and B hits all the nodes in M .

IfG does not contain aK32k, (16k−1)(32k
16k)+1-minor, then

we can just apply Theorem 5.1 to G, and get a desired
decomposition after putting all the vertices in Z in the apex
vertex set of some bag.

So it remains to consider the case that G has a
K32k, (16k−1)(32k

16k)+1-minor M , but there is a separation

(A,B) of order at most 8k in such a way that A contains
all but at most Θ/2 vertices in Z, and B hits all the nodes
in M . To prove this case, we need some theorems.

Given a subset S ⊆ V (G), an S-cut is a pair (A,B) of
nonempty subsets of V (G) such that V (G) = A∪B, S ⊆ A,
B−A 6= ∅, and G has no edge joining A−B to B−A. The
order of the S-cut is |A ∩B|.

The next lemma, proved in [Kaw04, Kawc], is heavily
used in our proof. For completeness, we include a proof
inspired by the proof of Robertson and Seymour [RS95].

LEMMA 4.1. Let G be a graph and S = {s1, . . . , sk} be
a set of k vertices. Suppose G has a K2k-minor and no
S-cut of order less than k. Then G has vertex disjoint
nonempty connected subgraphs C1, . . . , Ck such that, each
1 ≤ i ≤ k, the subgraph Ci contains si and is adjacent to
all the subgraphs C1, . . . , Ci−1, Ci+1, Ck.

Proof: We will prove the following slightly stronger state-
ment, which immediately implies Lemma 4.1:

(*) Let G be a graph and S = {s1, . . . , sk} be a
set of k vertices. Suppose G contains 2k vertex
disjoint nonempty subgraphs Di for 1 ≤ i ≤ 2k
such that each Di is either connected or each of
its components meets S, and moreover each Di is
adjacent to all Dj (i 6= j) which do not meet S.
Also suppose G has no S-cut (A,B) of order less
than k with at least one Di in B − A. Then G
satisfies the conclusion of (3.1).

We prove by induction on |V (G)|. It is easy to check
that the statement (*) is true for |V (G)| = 2k. Let G be
a minimal counterexample to (*), that is, take G such that
|V (G)|+ |E(G)| is as small as possible. Let E(S) be edges
joining two vertices in S. If all Di’s disjoint from S are
single vertices, then by Hall’s Theorem, there is a perfect
matching between S andG−S, and the result easily follows
because |G − S| ≥ k. We claim that there is no Di disjoint
from S containing an edge. For suppose e ∈ E(G) − E(S)
is an edge contained in some Di. If we contract e, then
the resulting graph is either no longer counterexample or
has an S-cut of order exactly k. In the former case, we
are done. So, we may assume that there exists an S-cut
(A,B) of order exactly k containing e. Because each Di

is adjacent to all Dj’s (i 6= j) which do not meet S, Di is
adjacent to at least k of Dj’s. Hence for any i, Di cannot
be contained in A − B. Let S′ = A ∩ B, G′ = 〈B〉, and
let D′i = Di ∩ G′ for 1 ≤ i ≤ 2k. Note that S ⊆ A. If
S′ = S, then G − e would give a minimal counterexample.
So A − B 6= ∅. By the assumption and Menger’s theorem,
there exist k disjoint paths from S to S′. Then G′, S′ and
D′i for 1 ≤ i ≤ 2k satisfy the assumption of (*). Hence G′

satisfies the conclusion of (*) by the induction, and so does
G, a contradiction. Therefore there are no such edges. This
implies that each Di either has |Di| = 1 or contains a vertex
in S and has no edges except for E(S). Moreover, at least k
of Di’s consist of only one vertex which is not in S. Let R
be the set of Di which is not in S. We claim that there exists
a matching from S to R. Otherwise, there would be an S-
cut of order less than k by Hall’s Theorem. Now contracting
each edge of this matching would satisfy the conclusion of
(*). This completes the proof of (*). �

Because a K32k, (16k−1)(32k
16k)+1-minor contains a K24k-

minor, by Lemma 4.1, for each minimal separation (A,B)
such that B hits all the nodes of a K32k, (16k−1)(32k

16k)+1-
minor, we can contract B onto A ∩ B such that A ∩ B
becomes a clique. We call this operation clique reduction.

So if the current graph G has a K32k, (16k−1)(32k
16k)+1-

minor M , but there is a separation (A,B) of order at most
8k in such a way that A contains all but at most Θ/2 vertices



in Z, and B hits all the nodes in M , then we take a minimal
separation (A,B), and we contract B onto A ∩ B such that
A ∩ B becomes a clique. Let G′ be the resulting graph. Let
Z ′ ⊆ ((A∩Z)∪(A∩B)), where |Z ′| ≤ Θ and (A∩Z) ⊆ Z ′.
Because A contains all but at most Θ/2 vertices in Z, it is
easy to see that such a vertex set Z ′ does exist. Then we
apply the whole argument above to G′ with Z ′ as long as we
can. Then the resulting graph G′′ either contains

1. a K32k, (16k−1)(32k
16k)+1-minor M such that there is no

separation of (A,B) of order at most 8k in such a way
that A contains all but at most Θ/2 vertices in Z ′, and
B hits all the nodes in M in G, or

2. no K32k, (16k−1)(32k
16k)+1-minor M .

In the first case, we claim we are done. First we apply
the whole argument above to G′′ (actually A). Then we
can extend this decomposition of A to the whole graph G,
because each time we perform the clique reduction—say
there is a separation (A,B), and we shall contractB−A onto
A∩B—the resulting graph inA∩B becomes a clique. More
precisely, this clique is contained in one bag of the desired
decomposition of A. Also Z ∩ A is contained in one bag of
the desired decomposition of A. In fact, Z ∩ A is contained
in the apex vertex set of the bag of the desired decomposition
of A, and the clique A ∩ B can be contained only in either
the torso of h-almost embeddable graphs or bipartite graphs
together with at most h vertices. Then we shall extend this
decomposition of A by applying the induction to B with
Z = (B ∩Z)∪ (A∩B). Because A contains all but at most
Θ/2 vertices inZ, |(B∩Z)∪(A∩B)| ≤ Θ. So the induction
hypothesis is satisfied for B with Z = (B ∩ Z) ∪ (A ∩ B).
Hence we can extend the decomposition ofA toB, and if we
glue A and B at A ∩ B, and put all the vertices in B ∩ Z to
the apex vertex set of the bag of the decomposition of A in
such a way that this bag contains all the vertices of Z in the
apex vertex set, then clearly this is a desired decomposition
of Theorem 4.1. Note that Z ∩ A is contained in the apex
vertex set of that bag of the decomposition of A, and A ∩ B
is in the apex vertex set of one bag of the decomposition
of B.

In the second case, we can just apply Theorem 4.2
to G′′. Suppose that there is a separation (A,B), and we
contracted B − A onto A ∩ B. Suppose furthermore that
the resulting A satisfies the second case. Then we shall
extend the decomposition by applying the induction to B
with Z = (B ∩ Z) ∪ (A ∩ B). Because A contains all
but at most Θ/2 vertices in Z, |(B ∩ Z) ∪ (A ∩ B)| ≤ Θ.
So the induction hypothesis is satisfied for B with Z =
(B ∩ Z) ∪ (A ∩ B). Note that each time we perform the
clique reduction—say there is a separation (A,B), and we
shall contractB−A ontoA∩B—the resulting graph inA∩B
becomes a clique. So this clique is contained in one bag of

the desired decomposition of A. Also Z ∩ A is contained in
one bag of the desired decomposition of A. In fact, Z ∩ A
is contained in the apex vertex set of the bag of the desired
decomposition of A, and the clique A ∩ B can be contained
only in either the torso of h-almost embeddable graphs or
bipartite graphs together with at most h vertices. Hence, by
the same argument in the previous paragraph, we can extend
the decomposition of A to B, and if we glue A and B at
A∩B, and put all the vertices inB∩Z to the apex vertex set
of the bag of the decomposition of A in such a way that this
bag contains all the vertices of Z in the apex vertex set, then
clearly this is a desired decomposition of Theorem 4.1. Note
that Z ∩ A is contained in the apex vertex set of that bag of
the decomposition of A, and A ∩ B is in the apex vertex set
of one bag of the decomposition of B.

This completes the proof. �

Section 6 gives an alternate proof of Theorem 4.1.
While this alternate proof seems shorter, it is difficult if not
impossible to make algorithmic without reworking through
a major part of Graph Minor Theory. See the discussion in
that section.

5 Algorithm for Structure of Odd-Minor-Free Graphs
In this section, we give a polynomial-time algorithm to
compute the structure guaranteed by Theorem 4.1. First we
need the following theorem from [DHK05].

THEOREM 5.1. [DHK05] There is a polynomial-time algo-
rithm to obtain a decomposition as described in Theorem 4.2
for H-minor-free graphs. Actually, we can specify a vertex
set Z with |Z| ≤ Θ so that Z is contained in the apex ver-
tex set of the desired decomposition as described in Theo-
rem 4.2.

Now we are ready to describe our algorithm for Theo-
rem 4.1. This algorithm is based on the proof of Theorem 4.1
from Section 4.

Algorithm for Theorem 4.1

Input: A graph G and Z ⊆ V (G) with |Z| ≤ Θ.

Output: As described in Theorem 4.1.

Running time: nO(h).

Description:

Step 1. Test whether G has a separation (A,B) of
order at most Θ/2 such that both B − A and A − B are
nonempty. Suppose that both |(Z ∩A) ∪ (A ∩B)| ≤ Θ and
|(Z∩B)∪ (A∩B)| ≤ Θ. Then we first apply this algorithm
toAwithZ = (Z∩A)∪(A∩B), recursively. Then we apply
this algorithm toB with Z = (Z∩B)∪(A∩B), recursively.
Then we glue A and B at A ∩ B. Then it is easy to see
that the resulting decomposition is as desired in Theorem 4.1



becauseA∩B is contained in one bag of the decompositions
of A and B, respectively. Actually, A∩B is contained in the
apex vertex set of the bag of the decomposition of A and B,
respectively. Also both Z∩A and Z∩B are contained in the
apex vertex set of the bags of the decomposition of A and B,
respectively. So we can glue the decompositions of A and B
at A ∩B.

If for any separation of order at most Θ/2 such that both
B − A and A−B in the current graph are nonempty, either
|(Z ∩A)∪ (A∩B)| > Θ or |(Z ∩B)∪ (A∩B)| > Θ, then
go to Step 2.

Step 2. From here, any separation of order at most
Θ/2 such that both B − A and A − B in the current
graph are nonempty, either |(Z ∩ A) ∪ (A ∩ B)| > Θ
or |(Z ∩ B) ∪ (A ∩ B)| > Θ. Test whether G′ has a
K32k, (16k−1)(32k

16k)+1-minor M . If it has, then go to Step 3.
Otherwise, go to Step 7. This test can be done by the result
of Robertson and Seymour [RS95]. The time complexity is
O(n3). In fact, we can detect the minor in O(n3) time.

Step 3. Check whether there is a separation (A,B) of
order at most 8k in such a way thatA contains all but at most
Θ/2 vertices in Z, and B hits all the nodes in M . If there
is no such a separation, then go to Step 4. Otherwise, take a
minimal such separation (A,B), and deleteB−A and make
A ∩B a clique. In addition, set Z ′ ⊆ ((A ∩ Z) ∪ (A ∩B)),
where |Z ′| ≤ Θ and (A ∩ Z) ⊆ Z ′. Because A contains all
but at most Θ/2 vertices in Z, it is easy to see that such a
vertex set Z ′ does exist. Then go to Step 1 with the current
graph.

Step 4. Find an even K16k-minor by using the argu-
ment in the proof of Theorem 4.3. This can be done in
polynomial time, actually in linear time if we can detect a
K32k, (16k−1)(32k

16k)+1-minor in Step 2.

Step 5. Detect a separation X of order |X| < 8k
as described in Theorem 4.3. The proof in Geelen et
al. [GGG+04] reduces this problem to the problem of finding
the maximum matching that can be solved inO(n3) time; see
[Gab73, Law76, CM78, GMG82]. So it takes at most O(n3)
time.

Step 6. We have one big component W in G − X
such that W contains a bipartite subgraph F and each odd
cycle is contained in either components ofG−X that do not
intersect F or blocks with a cut vertex to F . For any block
or any component, say B, in G−X such that |B ∩Z|+ |X|
is at most Θ − 1, we apply this algorithm recursively with
Z = X ∪ {v} ∪ (B ∩ Z), where v is a cut vertex of G−X
if B is a block. Note that there are no block nor component
B such that |B ∩ Z| + |X| is at least Θ by Step 3. Now
F−Z together with Z∪X becomes one of the bag, and each
block and each component of G−X−F becomes a desired
decomposition such that all the vertices in Z are in the apex

vertex set of some bag. In addition, we can glue all these
decompositions at Z ∪X ∪ {v}, where v is a cut vertex for
the corresponding block, because each decomposition has a
bag such that Z is contained in the apex vertex set of the bag.
Hence the resulting decomposition satisfies Theorem 4.1.

Step 7. At this moment, G does not have a
K32k, (16k−1)(32k

16k)+1-minor. So we just apply the algorithm
of Theorem 5.1 to G, and output the resulting decomposi-
tion.

Step 8. Finally, we shall glue two graphs, and repeat this
recursively. More precisely, supposeG′ = G1∪G2 andZ ′ =
G1 ∩ G2. If both G1 and G2 have a desired decomposition
such that Z ′ ∈ Z1 and Z ′ ∈ Z2, where Z1 is Z for G1

in Theorem 4.1 and Z2 is Z for G2 in Theorem 4.1, and in
addition, both Z1 and Z2 are contained in the apex vertex set
of one bag of the decomposition of G1 and G2, respectively,
then we glue G1 and G2 with Z ′. We repeat this procedure
recursively until the end. Also, if there is a separation (A,B)
as in Step 3, then we can extend the decomposition of A to
the whole graph G. Note that A ∩ B becomes a clique. So
this clique is contained in one bag. Also Z ∩ A is contained
in one bag of the desired decomposition of A. In fact, Z ∩A
is contained in the apex vertex set of the bag of the desired
decomposition of A, and the clique A ∩ B can be contained
only in either the torso of h-almost embeddable graphs or
bipartite graphs together with at most h vertices. Then we
extend the decomposition of A by applying this algorithm to
B with Z = (B ∩Z)∪ (A∩B). Because A contains all but
at most Θ/2 vertices in Z, |(B ∩Z)∪ (A∩B)| ≤ Θ. So we
can apply this algorithm to B with Z = (B ∩Z)∪ (A∩B).
Hence we can extend the decomposition ofA toB, and if we
glue A and B at A∩B, and put all the vertices in B∩Z into
the apex vertex set of the bag of the decomposition of A in
such a way that this bag contains all the vertices of Z in the
apex vertex set, then clearly this is a desired decomposition.
Note that Z∩A is contained in the apex vertex set of that bag
of the decomposition of A, and A ∩ B is in the apex vertex
set of one bag of the decomposition of B. This completes
the description of the algorithm.

The correctness of the algorithm follows from the proof
of Theorem 4.1, but for the completeness, we shall give some
remarks, and sketch the proof.

This algorithm is constructive, in particular, in Step 6,
we can get one bag that consists of bipartite graphs with
at most Θ + 16k apex vertices. Furthermore, once
we conclude that the current graph does not contain a
K32k, (16k−1)(32k

16k)+1-minor, then the algorithm uses Theo-
rem 5.1. Moreover, at Step 1, suppose G has a separation
(A,B) of order at most Θ/2 such that bothB−A andA−B
are nonempty. Furthermore, suppose both |(Z ∩ A) ∪ (A ∩
B)| ≤ Θ and |(Z ∩B)∪ (A∩B)| ≤ Θ. Then we first apply



the algorithm to A with Z = (Z ∩ A) ∪ (A ∩ B). Then we
also apply the algorithm to B with Z = (Z ∩B)∪ (A∩B).
If we glueA andB atA∩B, then it is easy to see that the re-
sulting decomposition is as desired in Theorem 4.1 because
A ∩ B is contained in one bag of the decompositions of A
andB, respectively. Actually, A∩B is contained in the apex
vertex set of the bag of the decompositions of A and B, re-
spectively. Also, both Z ∩A and Z ∩B are contained in the
apex vertex set of the bag of the decompositions of A and B,
respectively. So we can glue the decompositions of A and B
at A ∩ B. Hence after Step 1, for any separation of order at
most Θ/2 such that both B − A and A − B are nonempty,
either |(Z∩A)∪ (A∩B)| > Θ or |(Z∩B)∪ (A∩B)| > Θ.

We may now assume that there is a
K32k, (16k−1)(32k

16k)+1-minor.

In Step 3, if there is a separation (A,B) of order at most
8k in such a way that A contains all but at most Θ/2 vertices
in Z, and B hits all but at most 8k nodes in the minor M ,
then as we did in the previous section, take a minimal such
separation (A,B) and deleteB−A and makeA∩B a clique.
This is possible by the clique reduction as we argued in the
previous section. In addition, set Z ′ ⊆ ((A∩Z)∪ (A∩B)),
where |Z ′| ≤ Θ and (A ∩ Z) ⊆ Z ′. Because A contains
all but at most Θ/2 vertices in Z, it is easy to see that
such a vertex set Z ′ does exist. Then by applying the
algorithm repeatedly, A has a desired decomposition with
the set Z ′. Then we can extend this decomposition of A to
the whole graph G, because each time we perform the clique
reduction, the resulting graph in A ∩ B becomes a clique.
More precisely, this clique is contained in one bag of the
desired decomposition of A. Also Z ∩ A is contained in
one bag of the desired decomposition of A. In fact, Z ∩ A
is contained in the apex vertex set of the bag of the desired
decomposition of A, and the clique A ∩ B can be contained
only in either the torso of h-almost embeddable graphs or
bipartite graphs together with at most h vertices. Then we
extend the decomposition by applying the algorithm to B
with Z = (B ∩ Z) ∪ (A ∩ B). Because A contains all
but at most Θ/2 vertices in Z, |Z| = |(B ∩ Z) ∪ (A ∩
B)| ≤ Θ. So the hypothesis for the algorithm to B with
Z = (B ∩ Z) ∪ (A ∩ B) is satisfied. Hence we can extend
the decomposition of A to B, and if we glue A and B at
A∩B, and put all the vertices inB∩Z to the apex vertex set
of the bag of the decomposition of A in such a way that this
bag contains all the vertices of Z in the apex vertex set, then
clearly this is a desired decomposition of Theorem 4.1. Note
that Z ∩ A is contained in the apex vertex set of that bag of
the decomposition of A, and A ∩ B is in the apex vertex set
of one bag of the decomposition of B.

Also, by Theorem 4.3, because we know that G has no
odd-Kk-minors, it must contain a separation X as described
in Theorem 4.3. Hence, in each block and component B of
G − X such that |B ∩ Z| + |X| ≤ Θ, we can apply this

algorithm recursively with Z = X ∪{v}∪ (B∩Z), where v
is a cut vertex ofG−X ifB is a block, toB∪X . Note that by
Step 3, for each component or block B, |B ∩Z|+ |X| < Θ.
Hence the hypothesis for the algorithm on B ∪X is satisfied
for each component or block B. Then we get a desired
decomposition for each block and each component ofG−X
such that all the vertices in Z are in the apex vertices of one
bag, and if G1 ∩ G2 is a clique-sum, where G2 is a child
of G1 and G1 consists of a bipartite graph W with at most
hk apex vertices. Moreover |W ∩ G2| ≤ 1. In addition,
if G1 ∩ G2 is a clique-sum, where G2 is a child of G1, then
G1∩G2 is contained in the apex vertex set ofG2. In addition,
we can glue all these decompositions at Z ∪X ∪{v}, where
v is a cut vertex for the corresponding block, because each
decomposition has a bag such that Z is contained in the apex
vertex set of the bag. Let us observe that F − Z together
with Z ∪ X as apex vertices satisfies the first outcome as
described in Theorem 4.1. So this becomes a bag, and in
fact the “root” of the resulting decomposition. Hence this
resulting decomposition satisfies Theorem 4.1.

Finally, let us estimate the time complexity of the algo-
rithm. We need to detect the minor of K32k, (16k−1)(32k

16k)+1

in Step 2. This takes O(n3) time by [RS95]. In Step 2, we
need to detect the separation (A,B). This can be done by the
algorithm of Henzinger, Rao, and Gabow [HRG00] which
needs O(n2) time. Another n pops up because we may use
this step recursively. Also it takes O(n3) time to detect X in
Step 4, as we remarked just after the proof of Theorem 4.3.
So, in Step 5, we runO(n4) times. In Step 7, because we run
Theorem 5.1, it takes no(h). Hence this is the most expensive
part.

This completes the analysis of the correctness and of the
stated time complexity of the algorithm.

Let us observe that we can detect the odd Kk-minor
provided that G has a K32k, (16k−1)(32k

16k)+1-minor. To see
this, we first detect a K32k, (16k−1)(32k

16k)+1-minor by Robert-
son and Seymour [RS95]. Then the argument in the proof of
Theorem 4.3 allows us to detect the desired odd-minor, as we
remarked just after the proof of Theorem 4.3. As we noted
before, the proof of Theorem 4.4 in [GGG+04] certainly im-
plies a polynomial-time algorithm to find the desired conclu-
sion of Theorem 4.4. Actually, it detects either a desired odd
minor or a vertex set X of a bounded number of vertices in
G such that G−X has a bipartite subgraph F and each odd
cycle is contained in either components of G − X that do
not intersect F or blocks with a cut vertex to F . Moreover,
B hits all but at most 8k nodes in the minor. The time com-
plexity isO(n3). Hence we can detect the desired odd-minor
if the outcome (2) of Theorem 4.4 holds, provided that there
is a K32k, (16k−1)(32k

16k)+1-minor. �



6 Alternate Proof of Theorem 4.1
Here we give an alternate proof of Theorem 4.1. This proof
is easier and shorter for obtaining the existential result, but
it is difficult if not impossible to make algorithmic without
reworking through a major part of Graph Minor Theory. See
the discussion at the end of the proof.

We follow the notation in the first proof of Theorem 4.1.
The easiest way to prove this theorem is to start with the grid
minor controlled by this tangle T of order Θ/2. We assume
that the order of this tangle T is big enough to apply The-
orem 3.1 in Graph Minors XVI. So Θ is as in Theorem 3.1
in Graph Minor XVI. We apply Theorem 3.1 in Graph Mi-
nors XVI with the minor L = K32k, (16k−1)(32k

16k)+1 and this
tangle T to G. We may assume that G contains a minor L
controlled by the tangle T ; otherwise, it follows from [RS03,
Theorem 3.1] that we can get a desired decomposition. So
assume that there is a minor L in G controlled by the tangle
T . If L is controlled by this tangle T , then we know that
there is no separation (A,B) of order at most Θ/2 such that
both B−A and A−B are nonempty, and furthermore, both
|(Z ∩ A) ∪ (A ∩ B)| ≤ Θ and |(Z ∩ B) ∪ (A ∩ B)| ≤ Θ.
In addition, there is no separation of order at most 8k such
that both B −A and A−B are nonempty, and furthermore,
|(Z ∩B)∪ (A∩B)| ≤ Θ and B−A strictly contains a node
of L. (This also follows from the fact that the starting point
of the proof of Theorem 3.1 in Graph Minor XVI is the grid
minor controlled by this tangle T of order Θ/2, and for any
separation (A,B) ∈ T , B − A contains most of the vertices
in this grid, i.e., B −A contains all but at most |A ∩B| ver-
tices of this grid.) Let us recall that we say that the tangle
T controls the minor L if, for any separation (A,B) ⊆ T of
order at most 8k in G, at most 8k − 1 nodes of L is strictly
contained in A−B.

Because G does not contain an odd Kk-minor, by
Theorem 4.3, G has a vertex set X of order at most 8k such
that G−X has a bipartite subgraph F and each odd cycle is
contained in either components ofG−X that do not intersect
F or blocks with a cut vertex to F . Furthermore, F hits all
but at most 8k nodes of the original minor L, so there is no
separation (A,B) of order at most 8k such that both A− B
and B − A strictly contains a node of L. Moreover, there
is no block or component B such that |B ∩ Z| + |X| is at
least Θ because L is controlled by the above tangle T and F
hits all but at most 8k nodes of the original minor L. This
means the following. G−X consists of the bipartite graph F
together with blocks B1, . . . , Bl for some l and components
C1, . . . , Cp for some p such that each block Bi has an odd
cycle for all i, each block Bi contains at most Θ/2 vertices
of Z, and each component Cj contains at most Θ/2 vertices
of Z. Then for each block Bi with 1 ≤ i ≤ l, we apply
induction with Z = (Bi∩Z)∪X ∪{v}, where v = Bi∩F ,
to Bi ∪ Z. Note that |(Bi ∩ Z) ∪ X ∪ {v}| ≤ Θ. So the
induction hypothesis is satisfied forBi∪Z for each blockBi.

Furthermore, for each component Ci with 1 ≤ i ≤ p, we
apply induction with Z = (Ci ∩ Z) ∪ X to Ci ∪ X . Note
that |(Ci ∩ Z) ∪ X| ≤ Θ. So the induction hypothesis is
satisfied for Ci ∪X for each component Ci. Hence we get a
desired decomposition for each block and each component
of G − X − F such that all the vertices in Z are in the
apex vertices of one bag, and if G1 ⊕ G2 is a clique-sum,
where G2 is a child of G1 and G1 consists of a bipartite
graph W with at most hk apex vertices, then |W ∩G2| ≤ 1.
In addition, G1 ⊕ G2 is contained in the apex vertex set of
G2. In addition, we can glue all these decompositions at
Z ∪X ∪ {v}, where v is a cut vertex for the corresponding
block, because each decomposition has a bag such that Z is
contained in the apex vertex set of the bag. Let us observe
that F −Z together with Z ∪X as apex vertices satisfies the
first outcome as described in Theorem 4.1. So this becomes
a bag, and in fact the “root” of the resulting decomposition.
Hence this resulting decomposition satisfies Theorem 4.1.
This completes the alternate proof of Theorem 4.1.

As we see here, the difference between the first proof
and the second proof is that, if we start with the tangle T ,
and detect the minor L = K32k, (16k−1)(32k

16k)+1 controlled
by this tangle T , then the proof is much shorter and easier.
But on the other hand, this approach has some problems,
which could be resolved by following the whole series of
Graph Minors papers or [DHK05]. The biggest problem is
that the algorithm in Theorem 5.1 assumes thatG excludes L
as a minor. This assumption makes the proof much simpler
than the whole Graph Minors argument, simply because we
may assume that we can detect the apex vertex set, so the
resulting structure is as described in Theorem 4.2. But once
we do not confirm whether a given graph G has L as a minor
controlled by the tangle T , then the situation becomes much
more difficult. Let us observe that we can test whetherG has
L as a minor by the algorithm of Robertson and Seymour
[RS95]. But for the shorter proof, we need to test whether G
has L as a minor controlled by the tangle T . To do this, we
need to follow the whole Graph Minors argument, and need
to rework the argument in [DHK05], making sure that the
result in [DHK05] is still valid if we replace “no L-minor”
by “no minor L controlled by the tangle T ”. We believe that
this could be done, with a lot of additional work, leading to
the following claim:

CLAIM 6.1. Let T be a tangle of order Θ. There is a
polynomial-time algorithm to obtain either an H minor
controlled by the tangle T or a decomposition as described
in Theorem 4.2 for H-minor-free graphs. Actually, in the
second case, we can specify a vertex set Z with |Z| ≤ Θ
so that Z is contained in the apex vertex set of the desired
decomposition as described in Theorem 4.2.

However, again, the correctness of Claim 6.1 would



need the whole argument of the Graph Minors papers, and
reworking and extending the long arguments in [DHK05].
For this reason, the main body of the paper uses the lengthier
proof of Theorem 4.1 and the algorithm based on that proof,
which is self-contained and has no such dependency.

If we assume, though, that we have Claim 6.1, then we
can give an algorithm for Theorem 4.1 based on the shorter
proof above:

Algorithm for Theorem 4.1, Version 2.

Input: A graph G and Z ⊆ V (G) with |Z| ≤ Θ.

Output: As described in Theorem 4.1.

Running time: nO(h).

Description:

Step 1. Test whether G has a separation (A,B) of
order at most Θ/2 such that both B − A and A − B are
nonempty. Suppose that both |(Z ∩A) ∪ (A ∩B)| ≤ Θ and
|(Z∩B)∪ (A∩B)| ≤ Θ. Then we first apply this algorithm
to A with Z = (Z ∩ A) ∪ (A ∩ B), recursively. Then we
apply this algorithm to B with Z = (Z ∩ B) ∪ (A ∩ B),
recursively. Then we glue A and B at A ∩ B. Then it is
easy to see that the resulting decomposition is as desired in
Theorem 4.1 because A ∩ B is contained in one bag of the
decompositions of A and B, respectively. Actually, A ∩ B
is contained in the apex vertex set of the bag of the desired
decomposition of A and B, respectively. Also both Z ∩ A
and Z ∩B are contained in the apex vertex set of the bags of
the decomposition of A and B, respectively. So we can glue
the decompositions of A and B at A ∩B.

If for any separation of order at most Θ/2 such that both
B − A and A−B in the current graph are nonempty, either
|(Z ∩A)∪ (A∩B)| > Θ or |(Z ∩B)∪ (A∩B)| > Θ, then
go to Step 2.

Step 2. From here, any separation of order at most
Θ/2 such that both B − A and A − B in the current
graph are nonempty, either |(Z ∩ A) ∪ (A ∩ B)| > Θ or
|(Z ∩ B) ∪ (A ∩ B)| > Θ. This defines the tangle T of
order at least Θ/2 assuming that any separation of order at
most Θ/2 such that both B − A and A − B in the current
graph are nonempty, |(Z ∩ B) ∪ (A ∩ B)| > Θ. So, now
we detect all the separations (A,B) of order at most Θ/2
which are created by this tangle T . Test whether G′ has a
K32k, (16k−1)(32k

16k)+1-minor M controlled by this tangle T .
If it has, then go to Step 3. Otherwise, go to Step 6. This
can be done by Claim 6.1. We know that once the tangle
T is detected, we can find a grid minor as required in the
algorithm of Theorem 4.2 by the standard flow method and
the proof in [DJGT99]. Also, detecting all the separations
consisting of the tangle T can be done by the standard flow
method because Θ is fixed.

Step 3. Find an even K16k-minor by using the argu-
ment in the proof of Theorem 4.3. This can be done in
polynomial time, actually in linear time if we can detect a
K32k, (16k−1)(32k

16k)+1-minor in Step 2.

Step 4. Detect a separation X of order |X| < 8k
as described in Theorem 4.3. The proof in Geelen et al
[GGG+04] reduces this problem to the problem of finding
the maximum matching that can be solved in O(n3) time;
see [Gab73, Law76, CM78, GMG82]. So it takes at most
O(n3) time.

Step 5. We have one big component W in G − X
such that W contains a bipartite subgraph F and each odd
cycle is contained in either components ofG−X that do not
intersect F or blocks with a cut vertex to F . For any block
or any component, say B, in G−X , we apply this algorithm
recursively with Z = X ∪ {v} ∪ (B ∩ Z), where v is a cut
vertex of G − X if B is a block, to B ∪ X . Note that for
each component or block B, |B ∩Z|+ |X| is at most Θ− 1
because we start with the tangle T and L is controlled by the
tangle T . Now F − Z together with Z ∪X becomes one of
the bags, and each block and each component of G−X −F
becomes a desired decomposition such that all the vertices
in Z are in the apex vertex set of some bag. In addition, we
can glue all these decompositions at Z ∪ X ∪ {v}, where
v is a cut vertex for the corresponding block, because each
decomposition has a bag such that Z is contained in the apex
vertex set of the bag. Let us observe that F−Z together with
Z ∪ X as apex vertices satisfies the first graph as described
in Theorem 4.1. So this becomes a bag, and in fact the
“root” of the resulting decomposition. Hence this resulting
decomposition satisfies Theorem 4.1.

Step 6. At this moment, G does not have a
K32k, (16k−1)(32k

16k)+1-minor. So we just apply the algorithm
of Theorem 5.1 to G, and output the resulting decomposi-
tion.

The time complexity and the correctness is almost same
as the first version of the algorithm. So we omit them.

7 Conclusion
Our algorithms are among the first efficient algorithms for
the general family of odd-minor-free graphs. Our tech-
niques and structural theorems open the door for further de-
velopment of efficient algorithms that exploit this structure.
In particular, it would be interesting to generalize more of
our knowledge from minor-free graphs to odd-minor-free
graphs.

One of the major results of this paper is that any odd-
minor-free graph can be partitioned into two induced sub-
graphs of bounded treewidth. Such partitions enable us
to immediately approximate many NP-hard problems. The



main open problem along these lines is the following. Sup-
pose that a graph can be partitioned into k induced subgraphs
each of treewidth at most w. Is there a fixed-parameter al-
gorithm in terms of k and w that partitions the graph into
c1 k induced subgraphs each of treewidth at most c2 w, for
constants c1 and c2? This problem generalizes the prob-
lem of fixed-parameter treewidth approximation (as in, e.g.,
[Ami01]), and is interesting even if c1 and c2 are small but
nonconstant. Such algorithms would be powerful tools, even
in practice, for approximating NP-hard problems in graphs
with this structure for small k and w.
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Halldórsson, Hadas Shachnai, and Tami Tamir. On chromatic

sums and distributed resource allocation. Information and
Computation, 140(2):183–202, February 1998.

[Bod05] Hans L. Bodlaender. Discovering treewidth. In Proceed-
ings of the 31st Conference on Current Trends in Theory and
Practice of Computer Science, volume 3381 of Lecture Notes
in Computer Science, pages 1–16, Liptovský Ján, Slovakia,
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1943.
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