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Abstract

Addressing the problem of omitted attributes and employing a sampling of alternatives
strategy, are two key requirements of practical spatial choice models. The omission of
attributes causes endogeneity when the unobserved variables are correlated with the
measured variables, precluding the consistent estimation of the model parameters. The
consistent estimation while sampling alternatives in non-Logit models has been an open
problem for three decades. This dissertation is concerned with both the endogeneity and
the sampling of alternatives in non-Logit models, two problems that have hindered the
development of suitable modeling tools for urban policy analysis, but have been
neglected in spatial choice modeling.

For the problem of endogeneity, this research applies, enhances, adapts, and develops
efficient and tractable methods to correct and test for it in models of residential location
choice, and also develops novel methods to validate the success of the correction. For the
problem of sampling of alternatives in non-Logit models, this study develops and
demonstrates a novel method to achieve consistency, relative efficiency, and asymptotic
normality when the underlying model belongs to the Multivariate Extreme Value class.
This development allows for the estimation of spatial choice models with more realistic
error structures. Monte Carlo experiments and real data from Lisbon, Portugal, are
employed to illustrate the significant benefits of these novel methods in correcting for
endogeneity and addressing sampling of alternatives in non-Logit models, with specific
reference to urban policy analysis.
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Chapter 1

Introduction

1.1 Motivation

A model is a simplified representation of a complex phenomenon. Models of urban

systems are important decision support tools for policy analysis. Limitations in

computational and methodological tractability have led to the formulation of models that

consider the behavior of aggregates of agents. These models neglect to consider the

interactions within the different decision levels and time scales involved in urban

systems. These simplifications have significantly reduced the ability to perform adequate

policy analysis (Ben-Akiva, 1973; Kitamura et al., 1996; Bowman, 1998; Badoe and

Miller, 2000) and have consequently limited the ability to control traffic congestion, air

pollution, noise and other externalities that jeopardize urban sustainability.

Any model will be only as valid as the behavioral assumptions on which it is based.

Therefore, models of urban systems will be ultimately wrong if they neglect the fact that

the behavior of the system is the end result of the choices made by millions of

heterogeneous agents, with varying levels of information, unique motivations, and at

distinct time and space scales. Consequently, it has become the common goal of various

research teams around the world to work toward the development of microscopic

integrated models of urban systems (Miller et al., 2004; Strauch et al., 2005; Waddell et

al., 2008; Almeida et al., 2009).



The development of trustworthy and practical microscopic integrated models of urban

systems is still a challenge. Current models are plagued by shortcomings such as the lack

of a practical framework that can represent agent behavior (Ben-Akiva, 2010); the

estimation, simulation and integration of different modeling components (Antoniou et al.,

2008); and the collection, processing, and integration of data (Chen et al., 2009). In terms

of the estimation and application, there are two important modeling drawbacks that are

shared by several components of microscopic integrated models of urban systems.

Microscopic spatial choice modeling requires a detailed representation of numerous

quasi-unique alternatives. This would be impossible to implement in practice and results

in the omission of certain attributes of the alternatives, and in that only a subset of the

true choice-set can be considered by the researcher.

The need for omitting attributes and sampling of alternatives is common in different

spatial choice models that are embedded into microscopic integrated urban models. These

simplifications are required, for example, in models of residential or job location choice,

where the number of dwellings or workplaces in the choice-set may be extremely large

and varied. These simplifications are also required in route-choice models, where there

may be many different routes linking two places. Equivalently, these simplifications are

also necessary in activity-based models because the number of potential combinations of

activities, schedules, duration, and participation choices may be enormous and

heterogeneous.

The omission of attributes results in inconsistent estimators when the omitted

attributes are correlated with the observed ones. This problem is known as endogeneity

and it has been systematically ignored by the literature on transportation and spatial

choice modeling. Besides, the problem of obtaining consistent estimators of the model

parameters when only a sample of the true choice-set is available has been resolved only

for Logit, a model type that is unrealistic for several spatial choice models. This research

focuses on addressing the issues of endogeneity in discrete choice models and sampling

of alternatives in Multivariate Extreme Value models, a family of closed-form choice

models that includes Logit among other models that allow for more realistic error

structures for spatial choice modeling.



1.2 Objectives and Methodology

This research focuses on addressing endogeneity and samplii

Multivariate Extreme Value (MEV) models, two major model

shared by several spatial choice models embedded into microsc

models.

In terms of the motivation, the framework for analysis and th

thesis is concerned with the estimation of models of residential lo

where the modeling drawbacks under study have special rele

methodological advances resulting from this research will be gen

vast range of choice models, including other spatial choice models

activities scheduling and firm and job location.

The research methodology used in this study was threefold. In

from different fields in order to enhance, adapt or develop pote

modeling drawbacks being studied. The proposed methods were de,

in mind that they must be computationally tractable, theoretically t

consistent with the problem of residential location choice. In th

advancements were assessed and enhanced using Monte Carlo

performance of the proposed methods under diverse circumstc

Finally, the methods under development were applied to a case stt

residential location choice from the city of Lisbon, Portugal. All

g of alternatives in

,stimation drawbacks

)pic integrated urban

- examples used, this

cation choice, a case

iance. However, the

-rally applicable to a

such as route choice,

the first stage, I drew

itial solutions for the

,eloped while keeping

ased and behaviorally

second stage, these

experimentation. The

nces was compared.

dy using real data on

Vonte Carlo and real

data experiments developed in this thesis were generated and estimated using the open-

source software R (R Development Core Team, 2008).

1.3 Modeling Framework

This thesis is concerned with a modeling framework where there are agents (n) that

choose an alternative (i) among a set of elements or choice-set C, (typically households

choosing among potential residences). Besides the agents making choices, the framework

is completed by a researcher who wants to model the agents' behavior in order to develop

policy analysis.



Households (n) are assumed to behave rationally. Households perceive certain utility

from the combination of activities their members are involved in. When choosing among

a set of potential dwellings (i), households evaluate the maximum level of utility (Uin)

that they may achieve, conditional on the selection of each alternative. Then, households

choose the alternative that allows them obtaining the largest level of utility.

Utility functions (Uin) are indirect in nature because they depend on the attributes of

alternative i (typically dwelling price pin and some other attributes xi, and qin) and the

characteristics of household n (typically income).

Utilities are considered to be random variables. Utilities are assumed to be

compounded by a systematic part Vi, and a random part ei. The systematic part is

assumed to depend linearly on the dwelling's attributes (potentially interacted with

household characteristics) with coefficients p*. The random part consists of an error term

or discrepancy (Ein), which is a random variable.

Uin=V,+Ei, = $*pi,+*x +'q +E

The researcher can observe the dwelling's attributes and the choices made by a total

of N households, but not the utilities, which are latent. Assuming a certain distribution of

the error terms (Ein), the researcher can formulate the following choice probability model

for alternative i:

P(i) = P(Uin > U jn Vj E C,).

When the researcher observes the true choices, precisely measures all attributes (pin

xin and qin) for the full choice-set Cn, and uses the correct distribution for the error term

(Ein), the researcher will be able to retrieve consistent estimators for the model

parameters. This means that estimators 8 will be as close to p* as desired (if N is large

enough). This also implies that the choice probability model will be a reliable

representation of household behavior, and would allow for the effective policy analysis.

The main purpose of this thesis is to determine the impact and to investigate solutions for

cases where certain attributes (like qi) are not measured by the researcher, and when only

a subset D, of the true choice-set C is observed.



1.4 Endogeneity

Endogeneity is an inevitable problem for all spatial choice models. In the case of

residential location choice, endogeneity usually occurs when a researcher who wants to

model household behavior cannot account for all the attributes that may influence a

household's final residential location choice. Since dwelling attributes are likely to be

correlated with price, a model that accounts for price but omits other relevant attributes

will suffer from endogeneity: the error term of the model will be correlated with the

observed price. The result of this misspecification is that the model will fail to account

for the correct impact of price in the choice process because the effect of price will be

confounded with the impact of the omitted attributes.

Consider, for example, the case of seemingly equal apartments that differ only in two

attributes: their price and their location within the building. An apartment that is in the

corner of the building usually has a better view and better lighting. The preference for

these attributes triggers a larger demand for corner apartments in the market, and a

consequent increase in their price. Household's choices are then based on the trade-off

between apartments' price and location within the building. If the researcher's model

omits apartment's location, choices toward the more expensive apartments will be then

misinterpreted as the result of an unrealistically small deterrence to price.

Endogeneity might significantly impact the suitability of models of urban systems as

reliable tools for policy analysis. For example, consider that the policy under study is the

distribution of a subsidy to urban residents geared toward encouraging households to

reside in the city center. In this case the underestimation of the deterrence to price caused

by endogeneity will result in an overestimation of the subsidy required and in a

misleading picture of the effects of the policy. A policy maker deluded by this

misspecified model may end up trashing the subsidy policy because it may seem too

expensive to implement (as informed by the spurious model); or the policy maker may

end up ignoring the model completely, only to apply subsidies at a level that seems

intuitively reasonable. In both cases, the modeling effort is almost useless.

Different methods to treat for endogeneity in discrete choice models have been

developed. One of them is known as the control-function method (Heckman, 1978,



Hausman, 1978). This technique corrects for endogeneity even when it occurs at the level

of each alternative, making it more practical for residential location choice modeling

when compared to the method proposed by Berry et. al (1995), which can only correct for

endogeneity when it occurs at the level of markets or large sets of alternatives. The

control-function method can be applied to Logit and non-Logit models, such as the

Nested Logit or the Probit. In Chapter 2, I study the problem of endogeneity in models of

residential location choice and analyze a two-stage version of the control-function

method. First, I use Monte Carlo experimentation to study some theoretical issues about

the application of the control-function method. Then, I deploy all the practical

considerations involved in applying the method to estimate a model of residential

location choice for Lisbon, Portugal.

One alternative to the control-function method is to consider the omitted attributes as

latent variables (Walker and Ben-Akiva, 2002). In Chapter 3, I show that the

simultaneous estimation of the control-function method in a full-information-maximum-

likelihood framework (Train, 2009; Newey, 1987; Rivers and Vuong, 1988; Villas-Boas

and Winner, 1999; Park and Gupta, 2009) is fully equivalent to the latent-variable

approach. This method can be applied to Logit and non-Logit models, such as the Nested

Logit or the Probit. Chapter 3 also shows how, given certain assumptions, the maximum-

likelihood estimator can be reduced to a tractable form that avoids multidimensional

integration. This avoidance is important because the large number of alternatives in

residential location choice models makes integration impracticable. I also show that

under these conditions, both the two-stage and the tractable maximum-likelihood

estimator can efficiently estimate model parameters; however, only the standard errors of

the latter do not need to be corrected by bootstrapping (Petrin and Train, 2002) or other

techniques such as the delta-method (Karaca-Mandic and Train, 2003). The properties of

the different estimators are studied using both Monte Carlo experimentation and real

data.

Much like the other methods used to correct for endogeneity, the control-function

method relies on the availability of valid instrumental variables. The instruments need to

comply with two conflicting properties. They need to be correlated with the endogenous

variable (the price) and, at the same time, to be uncorrelated with the unobserved



attributes that cause endogeneity. Whether or not the instrumental variables correlate with

the endogenous variable is trivial to verify because the endogenous variable is

observable. In turn, it is more difficult to verify that the instruments are uncorrelated with

the omitted attributes because the omitted attributes are unobservable.

In Chapter 4, I review the state-of-the-art in testing for the validity of instruments,

which can be summarized by the Sargan (1958) test for linear models and the Amemiya-

Lee-Newey (Lee, 1992) test for discrete choice models. Then, I develop two novel tests

for discrete choice models. The first test, termed Regression-based, was developed by

adapting Sargan's test into the Logit framework. The second test, termed Direct, was

constructed from a different framework, is much easier to implement using commercial

software, and is applicable for Logit and non-Logit models. Monte Carlo experimentation

on a binary Logit case showed that these two novel tests are statistically more powerful

than the Amemiya-Lee-Newey test. The tests were also applied for the validation of the

instruments used in the residential location choice model for Lisbon.

1.5 Sampling of Alternatives in MEV Models

The number of alternatives in spatial choice models is usually huge. Collection,

processing and estimation costs for such big databases render the use of the full choice-

set for modeling impractical. McFadden (1978) showed that the consistent estimation of

Logit models using only a sample of the alternatives is possible by adjusting the

likelihood function based on the sampling protocol. However, the Logit assumption is

difficult to sustain in spatial choice models since the alternatives are expected to be

correlated according to proximity or to be nested according to different decision levels.

Ignoring a non-Logit structure in spatial choice modeling may significantly impact

the quality of spatial choice models. For example, if the underlying model is a Nested

Logit with nests defined by geographical areas, a location subsidy will trigger more intra-

area than inter-area household relocation. This effect would be impossible to capture with

a Logit model, resulting in misleading guidance for urban policy analysis.

Few significant extensions of McFadden's consistency result to non-Logit models

have been made. Some researchers have studied the problem of choice-based samples in



non-Logit models, which are cases where the complete choice-set is available but the

observations are sampled conditional on the choices (Manski and Lerman, 1977; Manski

and McFadden, 1981; Cosslett, 1981; Imbens and Lancaster, 1994; Garrow et al., 2005;

Bielaire et al., 2009). Other advances have been made in the empirical study of the

impact of sampling of alternatives in Logit Mixture models (McConnel and Tseng, 2000;

Nerella and Bhat, 2004; Chen et al., 2005). Finally, for the case of the Nested Logit, the

problem of sampling of alternatives has been largely ignored and erroneously assumed to

be solvable by the application of the sampling correction derived by McFadden (1978)

for the Logit model (Berkovec and Rust, 1985; Train et al., 1987; Hansen, 1987; Rivera

and Tiglao, 2005).

Building on an idea originated by Ben-Akiva (2009), in Chapter 5, I present a method

that allows for the consistent estimation of model parameters for models belonging to the

Multivariate Extreme Value (MEV) class, when only a sample of the true choice-set is

observed. The MEV model class is a family of models that allows for different

correlation structures among alternatives. The method is deployed in detail for the Nested

and Cross-Nested Logit models, the principal members of the MEV class. I illustrate the

properties of the method and the impact of the misspecification using Monte Carlo

experimentation and real residential location data from the city of Lisbon. In the Lisbon

case study, I combine the tools developed to address sampling of alternatives in MEV

models with those to correct for endogeneity deployed in the previous chapters.

1.6 Contributions

Regarding the problem of endogeneity, I applied, enhanced, and developed methods to

test and to correct for endogeneity in models of residential location choice, as well as

methods to validate and apply such models in simulation. To achieve these goals, I

synthesized the latest research in this topic and developed one of the first comprehensive

applications to address this problem for residential location choice modeling.

I also studied some methodological issues that have been debated in the literature, and

developed maximum-likelihood estimators that are consistent, efficient, and are tractable

in problems with large choice-sets, such as residential location choice models. I also



developed two tractable tests for the validity of instrumental variables in discrete choice

models that showed better power properties than an existing test in a set of binary Logit

Monte Carlo experiments. In addition, I identified the link between the latent-variable

and control-function methods in the correction for endogeneity in spatial choice models,

and discussed the potential benefits that this link may allow.

Regarding the problem of sampling of alternatives, the main contributions of this

doctoral dissertation are in the development and demonstration of a method for achieving

consistency, relative efficiency, and asymptotic normality when the underlying model is

MEV. This novel method is the first significant extension of McFadden's work on

sampling of alternatives for Logit models in 30 years. It will make feasible the

implementation of more realistic error structures in future applications on microscopic

modeling and render the development of better tools for policy analysis.

1.7 Structure of the Thesis

This introductory chapter is followed by the four methodological chapters described

before. Chapter 2 is concerned with endogeneity in spatial choice models and the

application of a two-stage version of the control-function method to correct for

endogeneity in residential location choice. Chapter 3 studies the link between the latent-

variable and the control-function methods in the quest for efficiency and tractability in

the correction for endogeneity. Chapter 4 is concerned with the development of tests for

the validity of instruments in discrete choice models and their application to residential

location choice models. In Chapter 5, I develop and assess a novel method to address the

problem of sampling of alternatives in MEV models. Chapter 6 presents a summary of

the methodological findings resulting from this thesis, analyses their impacts and

limitations, derives modeling recommendations, and suggests further directions of

research in this area. This is finally followed by the list of bibliographic references used

in this study.



Chapter 2

Endogeneity in Spatial Choice Models

2.1 Overview

An econometric model is said to suffer from endogeneity when the systematic part of the

utility is correlated with the error term. This problem is common in spatial choice models

in general and in residential location choice models in particular. Endogeneity is a critical

modeling failure that leads to the inconsistent estimation of model parameters.

Intuitively, if a variable is endogenous, changes in the error term will be misinterpreted as

resulting from changes of the endogenous variable, making impossible the consistent

estimation of the model parameters.

In this chapter, I discuss the correction for endogeneity in residential location choice

models using a two-stage version of the control-function method, the most suitable tool to

address endogeneity in this framework. This chapter is divided into three parts. The first

section presents a critical review of the theoretical aspects involved in the correction for

endogeneity in residential location choice models. Then, I use Monte Carlo

experimentation to study the properties of the different procedures deployed in the first

section. Finally, I develop a comprehensive application of the formulation, estimation and

correction for endogeneity in a discrete choice model of residential location for the city of

Lisbon, Portugal.



2.2 Theoretical Considerations

2.2.1 Causes of Endogeneity in Spatial Choice Models

There are generally three causes of endogeneity. One cause is errors in variables. If a

variable is measured wrong, that error will be propagated to the model's unobserved part,

which will then be correlated with the wrongly measured variable, causing endogeneity.

Errors in variables are unavoidable in models of residential location choice, just as they

are inevitable in any econometric model. This source of endogeneity needs to be

controlled by measuring the variables of the model as precisely as possible.

A second situation that may lead to endogeneity is known as simultaneous

determination. This type of endogeneity can be observed, for example, in the joint

determination of location and modal choices. People who are transit-oriented would more

likely choose to live in dwellings that have better accessibility to transit and will

consequently have relatively better travel times, compared to other people in the city.

Since being transit-oriented means also having a relatively more positive error term in the

mode choice model, this implies that travel time by transit will be correlated with the

modal error, causing endogeneity.

In the case of residential location choice, endogeneity from simultaneous

determination may be expected at an aggregated level because the aggregated demand for

dwellings depends on their price and, their price depends on the demand for them.

However, if the demand and supply are treated at a microscopic scale, this source of

endogeneity might not be significant because the price of each dwelling is not likely to be

determined by the choice made by any particular household. Moreover, the effect of all

agents on dwelling price would become apparent only in the medium term, mitigating

any potential endogeneity effect from this source in residential location choice models.

A third cause of endogeneity is the omission of variables that are relevant in the

model and are correlated with some observed attributes. This source of endogeneity is

unavoidable and significant in microscopic models of residential location choice.

Therefore, it is the main motivation for this chapter. The large number and variety of the

attributes that are relevant in location choice decisions makes it difficult to model this



phenomenon since it becomes impossible to measure or even to fully identify all of them.

This omission becomes a problem when those attributes, which become part of the error,

are correlated with the observed model variables.

Consider, for example, the case of two seemingly equal houses that differ only in that

one has been recently renovated and consequently has a higher price. If the data on the

renovation of the house is not available, the observation of the choice of the house with

the higher price will lead to the erroneous conclusion that the sensitivity to price is

smaller than it really is.

Numerous empirical applications in residential location choice modeling have shown

estimated coefficients of dwelling price that are non-significant or even positive when

endogeneity is not taken into account (Guevara and Ben-Akiva, 2006; Guevara, 2005;

Bhat and Guo, 2004; Sermonss and Koppelman, 2001; Levine, 1998; Waddell, 1992;

Quigley, 1976). This reinforces the idea that endogeneity is a prevalent problem in the

field.

2.2.2 Methods to Correct for Endogeneity in Discrete Choice
Models

Two main methods have been proposed to correct for endogeneity in discrete choice

models when the endogenous variable is continuous. When endogeneity occurs at the

level of a market or a group compounded by a sufficiently large set of observations, the

problem can be solved by applying the BLP method proposed by Berry et al. (1995). This

method consists of the estimation of an Alternative Specific Constant (ASC) for each

market in order to account for the endogeneity problem.

Berry et al. (1995) apply their method in the choice of automobile models, a case

where the price is expected to be endogenous by market. The problem is solved by

calculating ASCs by markets that are geographically defined. Given the large number of

ASCs required by this method, the estimation is performed iteratively using a contraction.

In the second stage, the ASCs are regressed as a linear function of model variables.

If endogeneity is expected in the second stage of the BLP method, it can be addressed

using the two-stage least-squares (2SLS) method for linear models (see, e.g., Greene,

2003). The first stage of the 2SLS method corresponds to an auxiliary regression of the



endogenous variable on instrumental variables. The instruments are variables that have to

be correlated with the endogenous variable, but uncorrelated with the error term of the

model. Then, the original model is estimated replacing the endogenous variable by the

fitted values obtained from the auxiliary regression. The 2SLS method is described with

further detail in Section 4.2.1.

The BLP method cannot be applied to correct for endogeneity in residential location

choice models because endogeneity is expected to occur at the level of each alternative,

caused by the omission of attributes that are specific to each dwelling. Therefore, the

BLP method would entail, in residential location choice modeling, the estimation of

ASCs for each alternative in the choice-set. This is generally impossible or, at least,

would lead to over-fitting or incidental-parameter problems (Wooldridge, 2002). This

seems to be a methodological problem in the work of Bayer et al. (2004), the only

application of the BLP method in residential location choice, to the best of my

knowledge.

Examples of applications of the BLP approach in transportation are Train and

Winston (2007), who used the method to address price endogeneity at the consumer-level

in vehicle choice modeling, and Walker et al. (2010), who used the method to address

endogeneity in a model of peer group behavior.

The second method to treat for endogeneity in discrete choice models when the

endogenous variable is continuous is known as the control-function method. This method

is similar to the 2SLS method in that it relies on an auxiliary regression of the

endogenous variable onto instruments. However, in the control-function method, instead

of substituting the endogenous variable with the fitted counterpart obtained from the

auxiliary regression, the endogenous variable is maintained in the model and the residuals

of the auxiliary regression are used as additional variables. This method can handle

endogeneity at the level of each alternative, and is then suitable for the problem of

residential location choice modeling. Examples of previous applications of the control-

function method in residential location choice are Guevara (2005), Guevara and Ben-

Akiva (2006), and Ferreira (2010).

Other methods to correct for endogeneity in discrete choice models when the

endogenous variable is continuous are the two-stage instrumental-variables (2SIV)



method, which is discussed in Section 2.2.6; the latent-variable method, which is

presented in Section 3.2; and a method developed by Amemiya (1978), which is

discussed in Section 4.2.2. All of these alternative methods are either outperformed by or

grounded in the control-function method, which is described in detail in the next section.

Finally, it should be remarked that the methods studied in this thesis to address

endogeneity are concerned with discrete choice models where the endogenous variables

are continuous. When the endogenous variables are discrete, literature indicates

(Wooldridge, 2002; Evans and Schwab, 1995) that the problem can only be solved by

using maximum-likelihood methods, an approach that might become impractical in

spatial choice models and is left for future research.

2.2.3 The Control-Function Method

The original idea of the control-function method comes from Hausman (1978) and

Heckman (1978). In order to define the method and show how and why it effectively

corrects for endogeneity, consider the behavioral model described in Eq. (2-1), where a

group of N households (n) face the selection of a dwelling i among the J dwellings in the

choice-set C,.

Ui, = /pPin+,xi,+Ein =fi0pi,±,,+4i, ,,+ei,, n=l,--.,N;ie Cn

Pin = azzi+g (2-1)

Yi = Uin = maxjEC,,}]

Household n perceives a certain utility Uin from dwelling i. The utility depends

linearly on price pin, an attribute xin, and a zero mean error term ein, which can be

decomposed into two parts (in and ein that also have zero mean. Uin is a latent variable.

The researcher observes variables Xin, zin, pin and the choice yin, which takes value 1 if the

alternative i has the largest utility among the alternatives in choice-set Cn, and zero

otherwise. The price pin is determined as a linear function of variable zin and a zero mean

error 6in, expression that is termed the price equation. For notational purposes, it will be

considered from this point that U, p, x, e, 4, e, z, 5 and y correspond to vectors

compounded by the respective variables stacked by alternatives i and households n. This

notation is maintained in the rest of the thesis.



Variables x and z are exogenous, meaning that they are uncorrelated with all error

terms E, , e, and 3 of the model. Variable x is said to be a control because it appears in

the specification of the utility function. Variable z is said to be an instrument for price,

because it does not appear in the utility function and is correlated with price. The error

term e is uncorrelated with the observed variables p, x and z, and with the error term 3.

Endogeneity problems arise when 3 is correlated with 4. In this case, p will be

correlated with and the standard estimation methods will fail to retrieve consistent

estimators of model parameters. This problem may occur, for example, if contains

relevant dwelling attributes that are correlated with p, but cannot be measured by the

researcher.

The control-function method consists of the construction of an auxiliary variable,

which when added to the systematic part of the utility function, the remaining error of the

model will no longer be correlated with observed variables. To construct this auxiliary

variable, note first that it is always possible to write as the sum of its conditional

expectation, given 3, and an error term v, such that

= I J+v,

Then, the error term v will be orthogonal to 3 by construction and therefore uncorrelated

with it. Assuming then that and 3 are jointly Normal, we have

4in= ps5 , +v,

where v will be independent of 3 and will follow a Normal distribution with zero mean

and a fixed variance or (Wooldridge, 2002).

The next step is to show that z is uncorrelated with v. To show why, note first that

since z is a valid instrument, it must be uncorrelated with 3 and . Then, since 3 and

have zero mean, the fact that they are uncorrelated with z implies that E( 'z) = E(3'z)=0.

Replacing these conditions into += S6v , it follows that

4= #85+v
E(z'4) = /,E(z'9)+ E(z'v)= 0 + E(z'v)= 0

where, given that v has zero mean, this implies that z is uncorrelated with v.



The final step is to show that v is uncorrelated with p. This can be achieved by noting

that

p = ac z+S

E(v'p)= az E(v' z)+ E(v') = 0+0 =0

Therefore, the endogeneity problem can be solved if this decomposed 85= $ + v is

replaced in the utility function. Indeed, assuming (for the moment) that 6 is observed, the

remaining error v + e in Eq. (2-2) will not be correlated with the observed attributes of the

model: p, x and 6.

Ui, = /3pPi, + /xXi, + ei, = + Pi X +,xi, +/o5(,, + Vi, + ei,

Pin = azZn + 5, (2-2)

Yin =1 [Ui, = max jEC. fUj 11

The practical problem that 6 is not observed can be addressed in different ways.

Chapter 3 analyzes the implementation of the model described in Eq. (2-2) under the

maximum-likelihood and the latent-variable frameworks. Alternatively, this problem can

be addressed by recalling that, since 6 and z are uncorrelated, 6 can be consistently

estimated by using an ordinary-least-squares (OLS) regression of p on z. Therefore, if the

consistent estimator of ( is inserted into the choice model, the consistency of the

estimators of the model parameters would be guaranteed by the Slutsky theorem (Ben-

Akiva and Lerman, 1985).

Formally, the following procedure, which is termed in this thesis the two-stage

control-function (2SCF) method, can be devised to solve the endogeneity problem in the

discrete choice model described in Eq. (2-1):

Stage 1: Estimate 8 by ordinary-least-squares (OLS).

Stage 2: Estimate the choice model using 5 as an additional variable.

Uin = ,pPin +,xi+$Min +v + ein
in

If it is additionally assumed that i+ e from Stage 2 follows, or can be approximated

using an Extreme Value distribution, the model becomes a Logit, making the 2SCF easy



to estimate with commercial software using maximum-likelihood methods. This

assumption might seem difficult to sustain at first. If e is distributed Extreme Value, there

is no parametric distribution of ! that would result in that vY + e is distributed Extreme

Value. However if the sample is large enough, it is first possible to claim the Law of

Large Numbers to say that vY + e will be normally distributed. The argument is completed

using the results from Lee (1982) and Ruud (1983), which state that the approximation of

a Normal by an Extreme Value distribution causes only negligible discrepancies.

The application of the 2SCF method to some cases that are not covered by Eq. (2-1)

implies small variations. First, when the model has various continuous endogenous

variables, the only difference is that an auxiliary variable 6k has to be estimated for each

endogenous variable k in Stage 1. Then, in Stage 2, each 6 k has to be added to the

systematic part of the utility. Instrumental variables can be shared among endogenous

variables in the first stage of the method. However, to obtain identification, it is

indispensable to have at least as many different instrumental variables as there are

endogenous variables in the model. Second, when the exogenous variable x forms part

also of the price equation, x should be included in the right hand side of the first stage of

the 2SCF method. Otherwise, the residual 9 would be correlated with x in the second

stage of the 2SCF, affecting the estimation of its coefficient. Finally, when the error term

5 does not have mean zero, the method can be applied by including an intercept in the

first stage of the 2SCF method.

2.2.4 Change of Scale with the Control-function Method

The correction for endogeneity using the control-function method produces consistent

estimators of the model parameters but only up to a certain scale. That is, the ratios

between the estimators are consistent estimators of the ratios of the parameters of the true

model, but the actual estimators of the model parameters are inconsistent. This is also

true, in general, for BLP, 2SIV and Amemiya's methods to correct for endogeneity in

discrete choice models.

The change of scale in the control-function method results from the fact that the error

term with the control-function correction in Eq. (2-2) is v + e, whereas the error term of



the original model shown in Eq. (2-1) was only e. Therefore, if the variance of v is not

null, the control-function correction will trigger a change of scale in the estimated

parameters. This effect is analogous to that of the omission of an orthogonal attribute in

discrete choice models. An orthogonal attribute is one that truly and importantly belongs

to the systematic part of the utility, but is uncorrelated with other observed attributes. The

problem of the change of scale due to the omission of an orthogonal variable was

originally studied by Yatchew and Griliches (1985) for the Probit model. Cramer (2007)

extended this analysis to the binary Logit model. Here, I use their framework to

determine the change of scale caused by the application of the 2SCF method in correcting

for endogeneity in Logit models.

Consider the true model shown in Eq. (2-1) where is observed, and assume that the

error e is distributed Extreme Value (0, fle). As with any Logit model, the scale is not

identifiable and normalization is required. The usual normalization is to set le = 1. This

is equivalent to normalizing the variance of the differences of e across alternatives to be

equal to c = )2/3.

Consider now the model corrected for endogeneity using the control-function method

described in Eq. (2-2). The usual normalization p,e =1 would imply that e = Z 2 /3.

However this normalization is incompatible with that assumed for the model in Eq. (2-1).

To determine the correct normalization, consider first the ratio between the scales of the

two models. Since v and e are uncorrelated by construction, this ratio will depend only on

the variances of v and e as follows:

Jp_+e Ue _ U _ , _ 1

2 2 (V 2+U22
le oV+e o +Ca +2cov(v,e) 2 1+vv eV e +2

Then, if the normalization of the model in Eq. (2-1) 2 = )r2/3 is to be maintained, the

compatible scale of the model shown in Eq. (2-2) should be

pv+e =i 1+3 /z2 . (2-3)

This change of scale is unknown to the researcher in a practical application because

the variance of v is not identifiable. This raises the natural question of what is the cost of



the omission of v in the estimation of the control-function method. It turns out that the

cost of this omission is negligible. First, it is usually the ratio between the coefficients

what is relevant, not their actual values, and the ratios are indeed obtained consistently

with the change of scale that results from the application of the 2SCF method. Second,

beyond the ratios, the other thing that is important is the effect in forecasting.

The first insight into the issue of forecasting comes from Wooldrige (2002). He

proved, for binary Probit, that the omission of an attribute that is uncorrelated with other

observed variables will not change the expected value of the derivative of the choice

probability. There is no equivalent analytical result for Logit, but Cramer (2007), for

binary Logit, and Daly (2008), for multinomial Logit, used Monte Carlo experimentation

to show that the sample average of the derivative of the choice probability, which they

termed the Average Sample Effect (ASE), differs insignificantly between the full model

and a model that omits a variable that is uncorrelated with other observed variables.

Cramer's and Daly's results can be directly extended to the case of the change of

scale caused by the application of the 2SCF method because the error term v acts as an

omitted orthogonal attribute in Eq. (2-2). Assume that e and e+v are distributed (or can

be approximated) using an Extreme Value distribution. Term:

the choice probability of alternative i calculated using estimators $ from the

model shown in Eq. (2-1), including the variable ( in the utility, and

-2 the choice probability calculated using estimators $ of the model shown in Eq.

(2-2), omitting variable v.

Then, the extension of Cramer's and Daly's results to the analysis of the impact of the

application of the 2SCF method in the ASE of price, for alternative i, in a Logit model,

can be summarized as follows:

1 N -pi 1 NN
ASE,(i)=- -= - 1  ))-)

N n=1 apin N n=1 N n=1

In summary, the application of the 2SCF differs from the true model in the omission

of the error term v shown in Eq. (2-2). This omission causes a change in the scale of the

estimators obtained using the 2SCF. However, all the meaningful properties of the model



remain the same as those of the true model. In Section 2.3 I use Monte Carlo

experimentation to provide empirical evidence of the validity of this assertion.

2.2.5 Simulation and Forecasting with the 2SCF Method

Simulation and forecasting requires the calculation of the fitted probabilities outside the

sample used for estimation. Using a weak Law of Large Numbers, Wooldridge (2002)

shows that the expected value of the simulated choice probability of Probit can be

consistently estimated using the residuals S (from the first stage of the 2SCF) as

additional variables. That result can be extended to Logit or other MEV models using the

same Law of Large Numbers and accepting that a Normal distribution can be

approximated using an Extreme Value distribution. Eq. (2-4) shows the expression of the

simulated probabilities that would have to be used in the case of the Logit model, where

the $6's are the estimators obtained by the application of the 2SCF method and the

superscript 1 is used to highlight the attributes that vary in the forecasting phase.

1 N N OpPen+xAnOSPin
SN(i)=- '(i) - i i (2-4)
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This estimator of the choice probabilities may be impractical in some cases because

the data used to estimate the model might not be available for simulation, making the use

of the residuals in simulating phase impossible. This occurs, for example, in microscopic

integrated models of the urban system such as UrbanSim (Waddell et al., 2008), where

the choice models are estimated using real data on households n and dwellings i, but are

applied to synthetic populations iH and i

Wooldridge (2002) proposed a different estimator of the choice probabilities that

seems to overcome the limitations that arise in forecasting with synthetic populations.

The idea is to avoid the need for calculating S for the synthetic populations, addressing

the change of scale caused by its omission. Wooldridge presents the correction required

for the case of Probit. The equivalent correction for Logit can be applied, following the

same derivation used before to arrive at Eq. (2-3), by dividing the estimators with the

factor



1+ 3ff& 2/Z, 2

where 02 is the sample variance of the residuals of the first stage of the 2SCF. This

estimator of the choice probabilities is shown in Eq. (2-5).

NZe FI+ 3 /X72T J1+37A81& 2/

jE C

However, this estimator of the choice probabilities is inconsistent. The problem is that

Eq. (2-5) neglects the fact that 6 is correlated with p when the model suffers from

endogeneity. Then, even after the correction of the scale, the aggregate price elasticities

of Eq. (2-5) will be different from those of the true model. I will explore the effect of this

problem later in Section 2.3 using Monte Carlo experimentation.

Instead of using Eq. (2-5) for the case of synthetic populations, one alternative is to

construct a control-function for each synthetic dwelling i and household h using the

following expression:

where the superscript zero indicates that the synthetic data used in the calculation of 3

should come from the base year.

If the dwellings available for estimation in the first stage of the 2SCF are a random

sample from the population, this expression can be calculated using the estimators de of

the first stage of the 2SCF. Otherwise, the coefficients az could be calculated by re-

estimating the first stage of the 2SCF using the attributes of synthetic dwellings i and

the characteristics of synthetic households h . In both cases, S7 has to be included then

as an auxiliary variable in the utility, as shown in Eq. (2-6).

'C (2-6)

jECii



The application of this simulator may still be cumbersome because it requires the

criteria used to build the instruments with the real data to be valid for the synthetic

population. If the synthetic prices are reliable but the validity of the criteria used to build

the instruments is uncertain or difficult to implement for the synthetic data, it would still

be possible to generate a consistent estimator of the simulated probabilities by using the

Logit Mixture model shown in Eq. (2-7), where f(6lp) is the conditional distribution of 6

given p.

.. f.. (9 1 ( p)dS5 (2-7)
N _j= Z n efjP+f J+l6

jeC

In a practical application, the multifold integral shown in Eq. (2-7) can be calculated

using Monte Carlo integration, where f(51p) can be inferred from the sample (provided it

is random) by estimating the auxiliary regression

gin = Y0 + yrp An+All,

where the superscript 0 indicates that this model is estimated using data from the base

year.

Then, for each synthetic dwelling i and household i , several draws r of 3 should be

obtained using the expression

in ,=0+fpin+Ehr'

where po, is the price of the synthetic dwelling in the estimation year, f are the

estimators of the auxiliary regression for 6, and e,. is a random draw distributed

Normal (0, &,2), where d. is the sample variance of the residual A of the auxiliary

regression. Then, the choice probability for each household is obtained by averaging

across draws. Finally, the probability of each synthetic dwelling shown in Eq. (2-7) is

obtained by averaging across synthetic households.

2.2.6 Comparison between 2SCF and 2SIV Methods

The great similarity between the 2SCF and the 2SLS method used in linear models raises

the question of why (instead of replacing the residuals as additional variables) it would be

incorrect to substitute the endogenous price with the fitted price and then re-estimate the



model. I will term this alternative method as the two-stage instrumental-variables (2SIV)

method.

Formally, if the price p is replaced by P in the utility function,

Uin= 6, pin +/xin + n +ein

the remaining error of the model V will be compounded by v, e and 6. Note that all the

terms in y/ are uncorrelated, by construction, to the observed variables of this auxiliary

model: ^ and x. This fact implies that 2SIV will result in consistent estimators of the

model coefficients.

The fact that 2SIV is consistent has been rarely stated in the literature and caused

some confusion among practitioners. Newey (1985a) gives a formal demonstration of this

finding for a case equivalent to the one studied in this thesis. Finally, it should be noted

that, as with the 2SCF, consistency is attained only up to a scale since the variance of y is

different from the variance of + e, what causes a change of scale that is unknown to the

researcher.

Making assumptions about the distribution of V/ is complicated, but not more than

with the 2SCF. If e follows an Extreme Value distribution, there is no parametric

distribution of v or 5 that would make V/ follow any known distribution. However, if the

sample is large enough, which is where the consistency results are relevant, those

assumptions become plausible because the Law of Large Numbers can be claimed to

affirm that y follows a Normal distribution.

However, there is an important difference between the 2SIV and 2SCF that finally

tips the balance in favor of the latter in the correction for endogeneity in discrete choice

models. The problem is that it is not clear how to forecast using the 2SIV method. An

intuitive way to forecast would be to replace the new values of p into a model with the

2SIV estimators 8, as shown in Eq. (2-8). However, such a procedure would leave a term

that depends on 5 in the unobserved part of the model. Since 5 is correlated with p, the

estimators of the simulated probabilities will be inconsistent, for the same reason that the

estimators of the simulated probabilities of the model shown in Eq. (2-5) were



inconsistent. The Monte Carlo experiments performed later in Section 2.3 give some

empirical evidence to support this claim.

N ApPin$2nXii
PNi= E - (2-8)
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2.2.7 Efficiency and Calculation of Standard Errors with the 2SCF
Method

The estimation of the 2SCF in two stages has two negative consequences. The first is that

the estimators of this model are, in general, inefficient. Chapter 3 analyses the conditions

required to achieve efficiency in this case. The second consequence of using two stages is

that the standard errors cannot be calculated from the inverse of the Fisher-information-

matrix. This prevents the direct application of hypothesis testing. The need for correcting

the standard errors comes from the fact that the second stage of the method treats the

residuals of the first stage as if they were error free, which they are not. This correction is

not trivial and may easily overcome the simplicity attained from the estimation in two

stages.

There are at least three alternatives for addressing this problem. Karaca-Mandic and

Train (2003) derived a correction by calculating the asymptotic variance-covariance

matrix of the 2SCF using the delta-method (Wooldridge, 2002) to account for the effect

of both stages in the likelihood function. Another way to address this correction is to use

non-parametric methods. The best alternative, in this case, is to bootstrap the

observations of the first stage. According to Karaca-Mandic and Train (2003), the

empirical results of their method are equivalent to those attained with bootstrapping. The

third alternative is to estimate the model using maximum-likelihood, while

simultaneously taking into account both stages of the 2SCF. In Chapter 3 I develop a

maximum-likelihood estimator that is tractable (under mild conditions) and efficient in

the correction for endogeneity in problems of residential location choice. This estimator

also allows for the calculation of the standard errors directly from the inverse of the

Fisher-information-matrix.



2.2.8 Testing for Endogeneity

Rivers and Vuong (1988) and Wooldridge (2002) noted that the 2SCF provides a

practical way to test for the presence of endogeneity. Under the null hypothesis, where

the model does not suffer from endogeneity, the coefficient of the residuals included in

the second stage of the 2SCF is equal to zero, and the standard errors calculated from the

inverse of the Fisher-information-matrix are correct. This implies that it is possible to test

for endogeneity directly from the output of the 2SCF using a Quasi-t test, a Likelihood-

ratio test or a LaGrange-multiplier test for the null hypothesis that the residuals are

exogenous.

Formally, the Quasi-t test version of a test for endogeneity of price in the example

examined throughout the chapter can be implemented in the following four stages:

Stage 1: Estimate t by ordinary-least-squares (OLS).

OLIS - =
Pin = azzi +i OLS __gin = Pin~- Pin = Pin- -zzin

Stage 2: Estimate the choice model by maximum-likelihood (ML) using S as an

additional variable.

Uin = $,pin +fAxin +$l88in +in +ein ML

Stage 3: Estimate the variance-covariance matrix using the inverse of the Fisher-

information-matrix.

alnJP( )E = E ---a'lI > 0-fl

Stage 4: Calculate the Quasi-t test, which follows a Student distribution with N-1

degrees of freedom.

t = - ~tN-1

When testing for the endogeneity of diverse variables the procedure is equivalent.

The only difference is that the final stages are replaced by those required for the

calculation of a Likelihood-ratio or a LaGrange-multiplier test.



2.3 Monte Carlo Experiment

2.3.1 Model Setting

In this section I develop a Monte Carlo experiment to analyze the impact of endogeneity

in discrete choice models and to assess the effectiveness of 2SCF and 2SIV in estimation

and forecasting. The true model considered in this experiment is a binary Logit with a

latent utility that depends linearly on four attributes x1, X2, p and , and an error term e

independent and identically distributed (iid) Extreme Value (0,1). The coefficients of

each attribute are shown in Eq. (2-9).

Uin = -2pi +lXin +lX 2in +14 , + ei (2-9)

Variable p (price) is defined as a function of 4, an instrument z, and an error term S

iid Uniform (-1,1), with the coefficients shown in Eq. (2-10). Variables x1, x2, 4 and z

were generated as id Uniform (-3,3). The synthetic database consists of 2,000

observations and was generated 100 times.

p,, = 5 + 0.5j +0.5zin +6i (2-10)

Note that by virtue of Eq. (2-10) variables p and are correlated. Therefore, if 4 is
omitted in the specification of the utility function, the choice model will suffer from

endogeneity. In turn, since xi and x2 are not correlated with other variables, the model

will not suffer from endogeneity if x1 or x2 are omitted. Note also that z is, by

construction, a valid instrument. From Eq. (2-10) z is correlated with p and independent

of e.

2.3.2 Estimation with 2SCF and 2SIV Methods

To assess the impact of endogeneity in the estimation of the model parameters and to

evaluate the performance of the 2SCF and 2SIV methods studied to address it, five

models were estimated for each repetition of the Monte Carlo experiment: the true model,

a model where xi is omitted, a model where is omitted, and two models where is

omitted but the problem is addressed using the 2SCF and the 2SIV methods.

For each model, the average, bias, mean squared error (MSE) and the t-test against

the true values of the estimators of the model parameters are reported in Table 2-1. The



use of repetitions avoids the risk of dealing with a singular case that may bias the analysis

and avoids the need for correcting the standard errors required in the application two-

stage procedures.

Table 2-1 Monte Carlo Experiment: Model Estimation with 2SCF and 2SIV

Metric , , A,, N6 8 p N ;, A/A,
Average -1.990 0.9960 0.9949 0.9957 -1.980

0 Bias 0.009561 -0.004032 -0.005127 -0.004288 0.02022

MSE 0.008985 0.003247 0.002755 0.002990 0.2148

t-test true 0.1014 -0.07094 -0.09814 -0.07867 0.04366

Average -1.122 0.5627 0.5641 -1.998

Bias 0.8778 -0.4373 -0.4359 0.002259

MSE 0.7742 0.1923 0.1913 0.2550

t-test true 14.53 -13.61 -12.03 0.004473

Average -0.7994 0.6675 0.6689 -1.212

Bias 1.201 -0.3325 -0.3311 0.7881

MSE 1.443 0.1119 0.1108 0.7276

t-test true 26.80 -8.873 -9.359 2.415

Average -1.563 0.7813 0.7825 1.078 -1.992

Bias 0.4372 -0.2187 -0.2175 0.008215

MSE 0.1983 0.04955 0.04884 0.2581

t-test true(*) 5.161 -5.277 -5.531 13.09(*) 0.01617

Average 0.7208 0.7192 -1.440 -1.980

Bias -0.2792 -0.2808 0.5598 0.01956

MSE 0.07924 0.08017 0.3189 0.2872

t-test true -7.788 -7.713 7.512 0.03652

100 Repetitions. N=2,000. J=2. (*) t-test against zero for f

The first row below the labels in Table 2-1 shows the estimators obtained from the

true model. In this case all estimators of the model parameters are statistically equal (with

95% confidence) to their true values. The second row shows the estimators of the model

that omits variable x1. This model does not suffer from endogeneity because x1 is not

correlated with other variables. The estimators in this case are consistent, but only up to a

scale. It should be noted that the ratio between the coefficients of p and X2 is statistically

equal (with 95% confidence) to its true value (-2). In turn, each coefficient is significantly

different from its respective true value. This is explained by the change of scale caused

by the addition of the variance of xi to the error of the model. The change of scale



observed in Table 2-1 is of approximately 0.56, a value that can be approximately

calculated by substituting, in Eq. (2-3), the variance of xi by of . Finally, the omission of

variable xi reduced the efficiency of the estimators. This can be noted in the increase of

the MSE of the estimator of the ratio between the coefficients of p and x2 for this model,

when compared to the respective MSE of the true model.

The third row in Table 2-1 shows the estimators that are obtained when is omitted.

This model suffers from endogeneity because is correlated with p. In this case the

estimators are different from those of the true model, but not only up to a scale. The

ratios between coefficients are also affected. Since p and ( are positively correlated, the

omission of causes a positive bias in the coefficient of p. Consequently, the ratio

between the coefficients of p and x2 is approximately -1.2 instead of -2, as it was in the

true model. Intuitively, the problem is that positive shocks of ( on the utility are

confounded as the results of shocks of p, causing a positive bias in the estimator of the

coefficient of p.

Consider now the case of the model that omits , but is corrected using the 2SCF

method. Note first that the estimator of the auxiliary variable is statistically different

(with 95% confidence) from zero. This correctly confirms that endogeneity was present

in the model without the correction. Second, although the model coefficients are not

numerically equal to those of the true model, the ratios between them are the same.

Particularly, the ratio between the coefficient of p and x2 is again statistically equal (with

95% confidence) to -2. The change of scale between the estimators in this case is

approximately 0.78, shift that can be calculated by considering the variance of v in Eq.

(2-3). Lastly, similarly to what occurred with the omission of xj, although the correction

for endogeneity resulted in consistent estimators up to a scale, the fact that the term v was

omitted caused a reduction in efficiency. This can be noted in the increase of the MSE of

the estimator of the ratio between the coefficients of p and X2 for this model, when

compared to the respective MSE of the true model.

Finally, consider the model that corrects for endogeneity using the 2SIV procedure,

which is shown in the last row of Table 2-1. Equal to what occurred with 2SCF, although

the scale of the model is different to that of the true model, the ratios between the

coefficients are statistically equal (with 95% confidence) to that of the true model. This



confirms that 2SIV succeeds in correcting for endogeneity, as it was originally shown by

Newey (1985a). Additionally, it can also be noted that the MSE of this model is larger

than that of the true model, which results from the fact that this model is less efficient.

2.3.3 Forecasting with 2SCF and 2SIV Methods

The next step in the analysis of this Monte Carlo experiment is to show how the different

models behave in the forecasting or simulation phase. To do so, I first use the estimators

of the different models to calculate the ASE of price and the Aggregated Direct Elasticity

(ADE) of price (Ben-Akiva and Lerman, 1985). The expressions for ASE and ADE of

price, for a given alternative i, are the following:

I N

ASE,(i)= (1- Pn (i))P(i)p

pN (2-11)
ADE,(i= N L( n (')n Win

YP W) "=1

n=1

The experiment was repeated 100 times. Table 2-2 reports the average and standard

errors of the ASE and ADE for i=1 across the repetitions. Additionally, I simulated the

effect of increasing the price of alternative 1 by 50% for all n's and calculated the

average probability of choosing alternative 1 across the 2,000 observations, before

(P4(i)) and after (P 1(i)) the price shift.

The true model works as the benchmark. Table 2-2 shows that, in this case, the 50%

increase in the price of alternative 1 resulted in a reduction of its choice probability from

approximately 50% to 19%, a 31% reduction. Additionally, the ASE is approximately -

0.16% and the ADE is approximately -1.6% in this case.

The results of the model where variable xi is omitted are concordant with the

conclusions attained by Cramer (2007) and Daly (2008) about omitted orthogonal

attributes in Logit models. Although this model resulted in an important change of scale,

as it was noted in Table 2-1, the forecasting probabilities of the model, as well as the

ASE and the ADE, are statistically equal (with 95% confidence) to those of the true

model.



Instead, the results are very different when variable is omitted. In this case there is

an underestimation of approximately 10% of the change in the probability of choosing

alternative 1 when its price is raised by 50%. The ASE and ADE are also significantly

affected.

Table 2-2 Monte Carlo Experiment: Forecasting with Endogeneity Correction

Model ASE,(1) ADE,(1) Pf(1)

-0.1610 -1.608 0.5009 0.1850
True Model

(0.00470) (0.05922) (0.00896) (0.008616)

-0.1603 -1.600 0.5013 0.1871
Omitting x] (0.00496) (0.05868) (0.007275) (0.008294)

-0.09632 -0.962 0.5010 0.2865
Omitting ( (0.004146) (0.04520) (0.007406) (0.01007)

-0.1610 -1.608 0.5013 0.1852
2SCF Adding 1 (0.006719) (0.07726) (0.008182) (0.01076)

-0.1363 -1.362 0.5012 0.2260
2SCF Scale Adjustment (0.004187) (0.05051) (0.008292) (0.009275)

-0.1612 -1.613 0.5013 0.1844
2SCF Logit Mixture (0.004393) (0.07539) (0.007791) (0.01058)

-0.1384 -1.382 0.5013 0.2232
2SIV

(0.004731) (0.05562) (0.008451) (0.009781)

Standard errors in parenthesis. 100 Repetitions. N=2,000. J=2.

Consider now the models corrected for endogeneity caused by the omission of 4. In

the case of 2SCF, three alternatives to doing forecasting were analyzed. Table 2-2 shows

that when the S used for estimation is also included as auxiliary variable during

forecasting (Eq. 2-4), the results of the simulation of the 2SCF are indistinguishable from

those of the true model. In turn, when S is not included in forecasting, but the scale is

adjusted (Eq. 2-5), as it was suggested by Wooldridge (2002), there is a significant bias in

the forecast. In this case the effect of the price shift in the choice probabilities is

underestimated by approximately 4% and the elasticity is consequently underestimated

by approximately 0.2%. Instead, when the Logit Mixture method described in Eq. (2-7) is

used for forecasting, the results for the simulated probabilities are again statistically equal

(with 95% confidence) to those obtained with the true model. The same occurs with the

ASE and the ADE.



Finally, consider the results from the application of the 2SIV method in correcting for

endogeneity (Eq. 2-8), which are shown in the last row of Table 2-2. It can be seen that

the simulated probabilities, the ASE, and ADE are significantly different from those of

the true model. For this example the bias results in a significant underestimation of the

shift in the choice probability due to the change in prices. This means that, even though

both 2SIV and 2SCF achieve the consistent estimation of the model coefficients up to a

scale, their performance in the forecasting phase shows the latter to be more effective for

use in models of discrete choice.

In summary, this Monte Carlo experiment showed first that the omission of an

orthogonal attribute causes a change of scale in the estimated coefficients but it does not

impact the ratio between the coefficients or the forecasting properties of the model. This

same result also holds for the application of the 2SCF method in correcting for

endogeneity. It was also shown that the 2SIV method results in the consistent estimation

of the model coefficients up to a scale, but that the forecasting properties of the model are

significantly worse. Finally it was shown that the best alternative for forecasting with the

2SCF method is to include the residuals estimated in the first stage into the utility. In

cases where the residuals are unavailable, they can be calculated from respective

instruments using the estimators of the first stage of the 2SCF, or simulated using the

expression shown in Eq. (2-7). Instead, the alternative of simply adjusting the scale when

the residuals are omitted in forecasting was shown to have poor simulation properties.

2.4 Application to Real Data

2.4.1 Overview

In this section, I use a case study based on real data to investigate and demonstrate the

properties of the 2SCF method in correcting for endogeneity in discrete choice models of

residential location. I begin by describing the construction of the database used for

estimation. Then I describe the logic used in the construction of the instrumental

variables and show and analyze the results of the application of the 2SCF and its effects

in forecasting.



The case study is situated in the Portuguese municipalities of Lisbon, Odivelas and

Amadora, which are located at the center of the Lisbon Metropolitan Area (LMA). The

LMA is an urban system that includes the Portuguese capital city (municipality) of

Lisbon and 17 surrounding municipalities. LMA covers approximately 3,000 km2 and has

2,5 million inhabitants, of which approximately 20% live in Lisbon's municipality.

A comprehensive representation of household's location choice behavior might

involve modeling their long-term plans regarding lifestyle, career and ownership choices,

and account for the interactions among all household's members. The scope used in this

research is simpler since the main purpose is to account particularly for endogeneity. It is

assumed that the decision-maker is a household with certain characteristics and that it

chooses among a set of available dwellings with certain attributes. It is also assumed that

the underlying choice model is Logit. In Chapter 5 I analyze the impact of relaxing the

Logit assumption in this context.

2.4.2 Construction of the Database for Estimation

The data to estimate the model was constructed using the combination of two sources.

The first source was a small convenience online survey (SOTUR) conducted in 2009 by

Martinez et al. (2010). This survey collected information on residential location, choice

preferences, attitudes and household characteristics from 750 households across the entire

LMA. Of the 750 observations from the SOTUR survey, only 342 are potentially useful

for the estimation of the residential location choice model. Almost 50% of the

observations were eliminated because they did not include information on household

income or dwelling price. The rest were excluded because they corresponded to

dwellings that were not traded in the open market, including cases where the dwellings

were inherited, provided by an institution, or borrowed and/or rented under special

conditions through friends or relatives.

Household's characteristics collected using the SOTUR survey include household

size, level of education, monthly income (by ranges), and work location of the head-of-

the-household. Dwelling attributes in the survey include age and price (both by ranges),

area, number of bedrooms and location.



Figure 2-1 shows the LMA with zonal divisions at the level of the Freguesia, which

are aggregations of census blocks. Each black square in Figure 2-1 represents the location

of one of the 750 households interviewed using the SOTUR survey. The frame in the

center corresponds approximately to the municipalities of Lisbon, Odivelas and

Amadora, and is shown with more detail later in Figure 2-2.
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Figure 2-1 SOTUR Observations in Lisbon Metropolitan Area (LMA)

Zoning by Freguesia

The information from the SOTUR survey can be used as the source for the

characteristics of the households and their reveled choice but not as the source for the

non-chosen alternatives. The reason is that the survey is not a random sample of the

available dwellings in the market. Instead, the survey can be seen as a probability sample

that was developed using a sampling protocol based on the choice probability. If the

choice probabilities were known, it would be possible to draw non-chosen alternatives

from the same survey and achieve consistent estimation of the model parameters by

applying the sampling correction method proposed by McFadden (1978), which is

described, in another context, in Section 5.2. However, the choice probabilities are

unknown beforehand; thus eliminating this method as a viable option.



One way to avoid this limitation is to gather the attributes of the non-chosen

alternatives from an independent source. The source used in this application is a snapshot

of the dwellings that were advertised for sale in February 2007 within the municipalities

of Lisbon, Odivelas and Amadora. The data was collected by Imokapa

(www.imokapa.com) and is reported in detail by Martinez and Viegas (2009). The data

contains attributes from 12,358 dwellings, including type, area, age, location and

respective asking price. Over 70% of the observations belong to the Lisbon municipality.

Figure 2-2 corresponds approximately to the frame shown in the center of Figure 2-1.

It shows the contrast between the observations from the SOTUR survey (black squares)

and the data from Imokapa (grey stars) within the LMA sector covered by Imokapa.

Tej o

River

Figure 2-2 SOTUR (m) and Imokapa (*) Observations in Lisbon, Odivelas and Amadora

Although the combined use of the two sources of data overcomes the problem of the

unknown probabilities in the sampling protocol, it causes a different problem at the same

time. Given that the two databases are from different years, cover different areas of the

city and have different stratifications of dwelling attributes, their combination requires

matching the observations of the SOTUR survey onto those of the Imokapa database.



The problem of multivariate matching has been extensively studied in diverse

literature. Although various methods have been proposed, there is no consensus on which

one is the most appropriate to address the matching problem since each procedure

depends importantly on a set of usually unverifiable assumptions (Sekhon, 2010).

In this application, I address the matching problem using the nearest-neighbor

approach (see, e.g., Duda et al., 2001), which can be stated as follows. First, ranges of

acceptable discrepancies between the two databases are defined for each variable. This is

needed because a perfect match between the two databases is almost impossible given

that each dwelling is a quasi-unique combination of diverse attributes. Then, for each

observation in the SOTUR survey and its respective range of variables, all dwellings

from the Imokapa database falling into that range are identified. If no dwellings from

Imokapa fall into the respective range of variables of the SOTUR observation, that record

from the SOTUR survey has to be discarded. If several dwellings from Imokapa fall into

the range, the match is defined for the nearest-neighbor, using some measure of distance.

The variables used in the matching process were four: the price, the age, the location,

and the area of the dwelling. The discrepancies used for the first two matching variables

(dwelling price and age) were defined as the ranges of those variables in the SOTUR

survey, with the respective adjustments for inflation and for the year the data was

collected.

The discrepancies allowed for dwelling location and dwelling area were determined

by trading off the number of observations discarded and the stability of the estimators of

the model coefficients obtained using the resulting database. In the case of dwelling

location, the matching was enforced only at the level of the Freguesia, and in the case of

dwelling area, discrepancies of up to 25 square meters were allowed.

Finally, for cases where one SOTUR dwelling was assigned to more than one

Imokapa dwelling, the approach used was to assign the match to the Imokapa dwelling

that was geographically closer to the SOTUR observation under analysis.

The sole application of the matching criteria by geographic area reduced the number

of observations from 342 to 178. The application of the other matching criterion resulted

in a subset of only 66 valid observations from the SOTUR survey being matched into the

Imokapa database.



The geographical component of this matching process is summarized in Figure 2-3.

The black squares correspond to the SOTUR dwellings, and the grey stars correspond to

the Imokapa dwellings that were matched. It can be noted that for some observations the

geographical matching was almost perfect, whereas in other cases, the fact that location

was only enforced at the level of the Freguesia, resulted in some non-negligible

differences.
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Figure 2-3 Matching of Dwellings from SOTUR (m) into IMOKAPA (*)

The application of the criteria to construct valid instrumental variables, which is

described later in Section 2.4.3, further reduced the database available for estimation of

the residential location choice models. The final database is compounded of 11,501

alternatives, from which only 63 correspond to chosen dwellings. The main descriptive

statistics of the database are shown in Table 2-3.

Regarding dwelling attributes, Table 2-3 shows that dwellings from the Lisbon

municipality tend to be more expensive and older than those from Odivelas and

Amadora, although the differences are not statistically significant (with 95% confidence).

Also, the dwellings from both regions have approximately equal area. Finally, dwellings

from Lisbon are significantly closer, in average, to the workplace of the head-of-the-



households of the sample. Table 2-3 also shows the distribution of household location,

classified by income. It should be noted that 51 out of 63 households reside in Lisbon

municipality and that the larger share of households in the sample have an income that is

between 2,000 and 5,000 Euros per month (C/M).

Table 2-3 Summary of Lisbon's Residential Location Choice Database for Estimation

Average Dwelling Attributes Household Location
(Standard Deviation) Total

Municipality Price Distance to Area Age Dwellings Income Income Income

100,000 Workplace Area [Ye Available <2,000 2,000- >5,000 Tot.

[f] [Km] [m2 [YMears [M

2.356 4.508 99.30 39.93
Lisbon (1.354) (2.389) (41.77) (36.21) 8,018 16 28 7 51

Odivelas 1.680 10.581 98.44 32.17
and (3,483 5 7 0 12

Amadora (0.8365) (1.253) (32.59) (31.68)

2.151 6.347 99.01 37.58
Total (1.260) (3.499) (39.22) (35.08) 11,501 21 35 7 63

C/M: Euros per month

A final remark on the limitation of this database has to be acknowledged. First of all,

although the number of alternatives in the choice set is very large and is a good

representation of the housing market in the modeling area, it is not a cadastre and it does

not correspond to the alternatives really faced by the households in the sample. Second,

the number of observations available for estimation is small, and they were collected in a

convenience online survey. These facts make the models that can be estimated from this

database, susceptible to important biases.

In consequence, the models estimated using this database should be seen as

preliminary in nature, as a proof of concept of the methodologies addressed in this

research in addition to the empirical evidence gathered from Monte Carlo

experimentation. Nevertheless, even with the small sample size and other limitations of

the database, it worth noting that the models estimated using this database did provide

significant evidence for most of the issues studied in this research, and shed important

light about the practical issues associated with them.



2.4.3 Instrumental Variables

The quasi-uniqueness of dwelling-units and the limited capacity of the researcher in

accounting for all the dwelling attributes shall cause price endogeneity in residential

location choice modeling. To test and correct for endogeneity it is necessary to gather

instruments, auxiliary variables that have to be relevant (correlated with dwelling price)

and valid (uncorrelated with the omitted attributes). The instrumental variables proposed

for this case study were constructed from the prices of other dwellings with similar

observed attributes (other than price) and locating within certain vicinity. I begin by

stating the logic used to sustain that such instrumental variables are valid and relevant,

and then deploy the practical implementation of this logic for Lisbon's case study.

The first assumption required to sustain the validity of prices of other dwellings as

instrumental variables rests in considering that endogeneity, caused by the simultaneous

determination of dwelling price and household choice, is not a significant issue in

microscopic modeling. As stated before in Section 2.2.1, this statement is supported by

the fact that the behavior of a single household does not impact the price of any specific

dwelling, contrasting with the impact that aggregated demand has on aggregated supply

in the housing market. Under this assumption, the error term ein of alternative i will not be

correlated (because of simultaneous determination) with the price pn of alternativej. This

implies that the price of a dwelling j located nearby dwelling i can be used to construct

valid instruments for the price of i.

The relevance of prices of other dwellings as instrumental variables is sustained by

the existence of spatial autocorrelation, or what is known as the "first law of geography:

everything is related to everything else, but near things are more related than distant

things" (Tobler, 1970). To formalize the argument, consider that the set V(i) contains all

dwellings j that are typologically and geographically near i. Then, if the price of the

dwelling i is correlated with the price of the dwellings in V(i), the following hedonic price

equation can be formulated:

=0 j iw



where v, is an independent error term and ( represents the omitted attributes that cause

endogeneity in the model shown in Eq. (2-1). The coefficient p, needs to be

significantly different from zero to guarantee the relevance of the instruments. This need

implies that the elements in V(i) should be typologically and geographically near enough

to dwelling i. Otherwise, the model may suffer from the weak instruments problem (see,

e.g., Hahn and Hausman, 2002, and Stock et al., 2002). This issue is discussed further in

Section 2.4.4.

It is worth noting what occurs when spatial autocorrelation impacts not only the

prices of dwelling-units but also the error terms of the model. The reason is that it can be

hypothesized that, when using prices of other dwellings as instrumental variables, the

effects of spatial autocorrelation and endogeneity may be confounded.

Consider first that the independent error term e of the choice model shown in Eq. (2-

1) is also spatially autocorrelated, such that

(# 0Oje V(i)
ein = pejn +Ve Pe ,"=0 o/w

where ve is an independent error term. In this case, spatial autocorrelation of e needs to

be addressed, for example, using a Logit Mixture model, but this effect will not be

confounded or affected by the endogeneity problem. The prices of nearby dwellings can

still be used as instruments because pn will still be independent of 4in + V .

In turn, if the error term , which represents the omitted attributes that cause

endogeneity, is spatially autocorrelated, such that

+ (# 0 jer VWi
n =pg,+v {p 2 =0 oW '

the prices of nearby dwellings could not be used as instruments. The orthogonality

between pn and (in would be broken and then the estimators of the first stage of the 2SCF

would be inconsistent. This problem can be shown by noting that

Pin =Pp Pjn +P,vjn+V +VP

The model fails because pjn and (;n are correlated in Eq. (2-1).



The problem that arises when is spatially auto-correlated, falls into what Manski

(1993) termed "reflection bias". In practice, if two dwellings are too near, they can share

some attributes that are omitted by the researcher, such as being close to a gas station or

another firm that causes some type of externality. In that case the price of one dwelling

cannot be used as an instrument for the price of the other since both prices might be

correlated with the same omitted attribute and, therefore, with the same error term. One

way of avoiding the reflection bias in spatial choice models of residential location is then

to exclude from the set of potential instruments the dwellings that are too close to the

dwelling for which instruments are sought.

The application of the 2SCF method under the effect of the reflection bias might be

misleading for the researcher. Although the estimators obtained from that procedure will

be inconsistent, the coefficient of the auxiliary variable S in the second stage of the

2SCF is likely to be statistically significant (with 95% confidence) because it will capture

part of the spatial autocorrelation of the model. The significance of S may mislead the

researcher, who may interpret the significance of the residuals as resulting from a

successful correction for endogeneity. In that sense, the tests for the validity of

instruments, studied in Chapter 4, become a critical tool to assess correctly the overall

validity of the model.

In summary, a suitable logic to construct valid and relevant instruments for dwelling

price is to use the prices of dwellings that are typologically and geographically near to the

dwelling for which instruments are sought (to avoid the weak instruments problem), but

are, at the same time, beyond certain threshold (to avoid the reflection bias problem).

Formally, defining V(i) as the set of all the dwellings that are geographically and

typologically near enough to dwelling i, and terming v(i) the subset of V(i) containing the

dwellings that are geographically closer to i, instruments z; can be selected as the prices

of any dwelling j in the set V(i)\v(i)

zi= p je V(i)\v(i).

The practical implementation of the logic to gather instruments for the residential

location choice model for Lisbon has diverse components. First, to avoid the reflection

bias, the instruments were gathered from the prices of dwellings located beyond 500



meters from the dwelling for which instruments are sought. Provided enough data were

available, the suitability of this 500 meters threshold could be formally validated using

the techniques deployed in Chapter 4 to test for the validity of instruments. In this

application, decreasing the threshold reduced only slightly the significance of the null

hypothesis that the instruments were valid. Even though, I decided to maintain the 500

meters limit because 5 blocks appears as a conservative and qualitatively reasonable limit

beyond which unobservable local effects may become insignificant.

To guarantee the relevance of the instruments; that is, to guarantee their correlation

with price, dwellings located beyond 5,000 meters from the dwelling for which

instruments are sought, were excluded from V(i). The 5,000 meters external limit was

determined by trading off the number of alternatives left in the model and the adjustment

of the first stage of the control-function method. The trade-off arises in this case because,

on the one hand, the tighter the external limit becomes, the more likely it may be

necessary to discard some alternatives because it may not be possible to find appropriate

instruments complying with the defined limit. On the other hand, the more relaxed the

external limit becomes, the lower the correlation between the instruments and the

endogenous variable may become, leading potentially to a weak instruments problem.

Besides the need for having instrumental variables that are correlated with the

endogenous variable and uncorrelated with the error term, in Chapter 4 is shown that

testing for the validity of instruments becomes possible only when there are more

instruments than endogenous variables, and when those instruments are not highly

correlated among them. Therefore, two instruments (zi and z2) were built for each

observation in the Imokapa database. The first instrument zi was constructed as the

average price of dwellings located within 500 and 2,500 meters from the dwelling for

which instruments are sought, and which area and age differed less than 10% from it.

Equivalently, the second instrument Z2 was constructed as the average price of dwellings

located within 2,500 and 5,000 meters from the dwelling for which instruments are

sought, and which area and age differed more than 10% but less than 40% from it. This

setting for the instruments was determined by trading off a high correlation of zJ and z2

with the endogenous price, and a low correlation among the instruments.



Table 2-4 shows the variance-covariance matrix of dwelling price and their respective

instruments Zi and Z2. Complementing Table 2-4, Figure 2-4 shows a plot of dwelling

price against their respective instruments. It can first be noted that both instruments are

relevant; that is, both are significantly correlated with the endogenous variable. Whether

or not this correlation is large enough to avoid the weak instruments problem is an issue

that will be discussed later in Section 2.4.4. Additionally, Table 2-4 shows that the

correlation between zi and Z2 is approximately 82%. Although this is a relatively high

correlation, it is still in a range where the power of the tests for the validity of instruments

were not severely impacted, as it is later shown in the Monte Carlo experiments deployed

in Chapter 4.

Table 2-4 Correlation Matrix of Dwelling Price and Instrumental Variables

Corr Price zI Z2

Price 1.000 0.8127 0.7443

z, 0.8127 1.000 0.8238

z2  0.7443 0.8238 1.000

Table 2-4 also shows that the fact the zi was built from dwellings that were

typologically and geographically closer to the dwelling for which instruments are sought,

makes z1 more correlated with the endogenous variable, compared to Z2. This

consequently results in a larger slope in the plots of dwelling price against zi, than against

Z2, as shown in Figure 2-4.

S 500000 1000000 1500000 2000000 2500000 0 500000 1000000 1500000 2000000 2500000

Dwelling Price [C] Dwelling Price [f]

Figure 2-4 Dwelling Price and Instrumental Variables



Finally, it should be remarked that the thresholds defined to construct the

instrumental variables are not hard constraints. A slight modification of the thresholds

will qualitatively not impact the estimates of the model parameters, which are therefore

robust to marginal changes in the implementation of the criterion proposed to construct

the instrumental variables.

2.4.4 Estimation Using the 2SCF Method

In this section I present the estimation results for the residential location choice model of

Lisbon. The specification considered is a Logit model where the systematic utility is

linear for the following variables: dwelling price in 100,000 Euros (C), the distance from

the dwelling to the workplace of the head-of-the-household in kilometers (Km), the log of

dwelling area in square meters (in 2 ), and the log of dwelling age in years (+1). Dwelling

price was interacted with household income, which was stratified in three levels defined

by the thresholds of 2,000 and 5,000 f/Month. The data consists of 63 observations, each

one with the same choice set of 11,501 available dwellings. The estimators of the models,

with and without the correction for endogeneity using the 2SCF method, are shown in

Table 2-6.

The first stage in the application of the 2SCF method corresponds to the regression of

the endogenous variable (price) on the instruments (zi and z2). The results of this auxiliary

regression are shown in Table 2-5.

Table 2-5 Lisbon's Logit Model: First Stage of 2SCF

Variables s.e

Intercept -3.023E+04 2450

zI 0.6995 0.01052

Z2 0.483 0.01935

R 2 0.6779

Adjusted R2  0.6778

Sample Size N 11,501

F 1.210E+04

The adjustment of the regression of the first stage of the 2SCF is highly relevant. If

the instruments are exogenous but are not correlated enough with the endogenous



variable, the correction for endogeneity may worsen the model. This is known as the

weak instruments problem, an issue that has been intensively studied for linear models.

Hahn and Hausman (2002) showed that, for linear models, the strength of the instruments

should be assured if the R2 of the auxiliary regression is larger than 0.4. Also for linear

models, Stock et al. (2002) suggested a threshold defined by an F test of more than 20 for

each endogenous variable, to assure the strength of the instruments.

To the best of my knowledge, there is no systematic study of the weak instruments

problems in a discrete choice framework. However, all Monte Carlo experiments

estimated in this research confirmed that the thresholds established by Hahn and

Hausman (2002) and Stock et al. (2002) were also appropriate for Logit models. Given

that Table 2-5 shows that both the F and the R2 criteria are surpassed in this case, we can

affirm that there is evidence that the Lisbon's model does not suffer from the weak

instruments problem.

The second stage of the 2SCF correction corresponds to the estimation of a residential

location choice model that includes the residuals S as additional variables in the

systematic utility. The results of this estimation are shown in the third column of Table 2-

6 as a benchmark. The results of the model without the correction for endogeneity are

shown in the second column of Table 2-6.

First of all, it should be noted that in Table 2-6, the signs of the coefficients of the

model with and without the correction for endogeneity are as expected. The coefficient of

dwelling area (,) is positive, meaning that households prefer larger dwellings. The

contrary occurs with dwelling price (,), age ($6), and distance to workplace of the

head-of-the-household ($4), which are perceived negatively. Also, the impact of

dwelling price decreases with household income since $2,$3 > 0.

For the model without the correction for endogeneity, reported in the second column

of Table 2-6, the coefficient of price for the wealthiest households (income over 5,000

C/month) is negative (, +,#2 +,#3=-0.4270) but small and with low statistical

significance (t-test = -1.063). Arguably, this results from the omission of attributes that

are correlated with dwelling price, causing endogeneity.



Table 2-6 Lisbon's Logit Model: With and without Correction for Endogeneity

Without With

Endogeneity Endogeneity
Variables Correction Correction

/3 s.e / s.e

1. Dwelling price (in 100,000 f) -2.008 0.5150 -2.811 0.6344

2. Dwelling price * 1[Income > 2,000 f/M] 0.8136 0.5340 0.8542 0.5485

3. Dwelling price * 1[Income > 5,000 f/M] 0.7674 0.4668 0.8089 0.4779

4. Distance to Workplace (in Km) -0.2203 0.05064 -0.2565 0.05335

5. Log [Dwelling Area (in m2)] 1.019 0.4982 2.232 0.7326

6. Log [Dwelling Age (in years) +11 -0.3508 0.1076 -0.4607 0.1192

7. S Control-function Auxiliary Variable 1.054 0.4600

Log likelihood at Convergence L(O) -563.00 -560.05

Log likelihood at Zero L(0) -589.06 -589.06

Adjusted p 2  0.05443 0.06113

Sample Size N 63 63

Choice-set Size J 11,501 11,501

Logit Model combining Imokapa database and SOTUR survey for Lisbon, Odivelas and Amadora

Model estimated using the 2SCF method. Standard errors calculated by bootstrapping. f/M: Euros per month

Consider the model with the correction for endogeneity reported in the third column

of Table 2-6. First of all, it should be noted that the coefficient of the auxiliary variable 3

is statistically significant (t-test=2.291). This confirms that endogeneity was present in

the model before the correction. Additionally, the correction for endogeneity significantly

changed the estimated coefficients. The coefficient of price for the wealthiest households

is now more negative (A +f2+3=-1.148) and statistically different from zero (t-test=-

2.172). Other model coefficients were also affected by the correction of price

endogeneity, particularly the coefficient of dwelling area. This is because dwelling area

and price are highly correlated (correlation = 0.7013) compared to other attributes, and

then the impact of price endogeneity is significantly transferred to the coefficient of

dwelling area. In general, the correction for price endogeneity resulted in a model that is

more sensitive, not only to changes in price, but also to changes in area, age, and distance

to workplace.



2.4.5 Correction of Standard Errors

The standard errors of the 2SCF method reported in Table 2-6 have already been

corrected for the use of residuals from the first stage as if they were error free. The

correction was performed by bootstrapping.

Bootstrapping in this case corresponds to the following four step procedure: 1)

Estimate the 2SCF. 2) Collect 100 samples, with replacement, of the data used in the first

stage of the 2SCF. Each sample should have the same size as that of the original data and

is used to repeatedly estimate the coefficients of the first stage of the 2SCF. 3) Use the set

of coefficients estimated in Step 2 to calculate a respective set of residuals for each

observation of the choice model and use them to repeatedly estimate the second stage of

the 2SCF. 4) Calculate the sample variance of the set of estimators for the choice model

estimated in Step 3 and add it to the variance of each estimator obtained in Step 1.

Table 2-7 Lisbon's Logit Model: Correction of 2SCF's Standard Errors by Bootstrapping

With

Variables Endogeneity Correction

s.e s.e

Bootstrap Uncorrected

1. Dwelling price (in 100,000 E) -2.81 1 0.6344 0.6339

2. Dwelling price * 1[Income > 2,000 C/M] 0.8542 0.5485 0.5485

3. Dwelling price * 1[Income > 5,000 C/M] 0.8089 0.4779 0.4779

4. Distance to Workplace (in Km) -0.2565 0.05335 0.05335

5. Log [Dwelling Area (in m2)} 2.232 0.7326 0.7322

6. Log [Dwelling Age (in years) +1] -0.4607 0.1192 0.1191

7. ' Control-function Auxiliary Variable 1.054 0.4600 0.4594

Log likelihood at Convergence LOd) -560.05

Log likelihood at Zero L(0) -589.06

Adjusted p 2  0.06113

Sample Size N 63

Choice-set Size J 11,501

Logit Model combining Imokapa database and SOTUR survey for Lisbon, Odivelas and Amadora

Model estimated using the 2SCF method. f/M: Euros per month.

The impact of this correction is reported in Table 2-7. The variance added to the

estimators using this procedure was minimal. It was always below the forth decimal point

for all coefficients. The standard errors that were mostly affected were those of the



coefficients of price and of the residuals of the first stage of the 2SCF. This minimal

effect arguably results from the large sample size (11,501) of the first stage in this

application.

2.4.6 Forecasting

The impact and importance of the correction for endogeneity in this experiment is not

fully measured until its effects on forecasting are accounted for. This can be done by

calculating the ASE and the ADE with and without the correction for endogeneity using

the expression shown before in Eq. (2-11). Table 2-8 shows these statistics for all the

variables of the model. The dwelling used as reference for these calculations corresponds

to the dwelling chosen by the first household in the sample. In all cases, the calculations

were made by including 5 in the utility.

Table 2-8 shows that, when looking at either ASE or ADE, the sensitivity of the

model was significantly increased by the correction for price endogeneity. In addition, the

correction also affected the sensitivity of other dwelling attributes. This demonstrates the

importance of correcting for endogeneity on policy analysis. It shows that the

misspecified model will significantly underestimate the impact, not only of a pricing

policy, but also the impact of policies that may affect other attributes of dwelling-units.

Table 2-8 Lisbon's Logit Model: Forecasting with and without Endogeneity Correction

Without With

Measure Endogeneity Endogeneity

Correction Correction

Price (in 100,000 C) -2.500E-04 -4.292E-04

Distance to Workplace (in Km) -2.743E-05 -3.915E-05

Log[Area (in m2)] 1.269E-04 3.407E-04

Log[Age (in years)+1] -4.368E-05 -7.033E-05

Price (in 100,000 E) -3.813 -5.340

Distance to Workplace (in Km) -0.6944 -0.8083

Log[Area (in m2)] 4.475 9.803

Log[Age (in years)+1] -0.3853 -0.5059



2.5 Conclusion

In this chapter, I critically reviewed recent advances in correcting for endogeneity in

discrete choice models using a two-stage version of the control-function method,

analyzed some issues using Monte Carlo experimentation, and applied these results to a

residential location choice model for the city of Lisbon.

The first issue analyzed is related with the change of scale derived from the

application of the control-function method. Extending a result from Cramer (2007) and

Daly (2008), I used Monte Carlo experimentation to show that the change of scale

produced with the control-function method is harmless since it does neither affect the

forecasting probabilities nor the ratio of the estimators.

Second, I studied the use of the control-function method in the forecasting or

simulation phase, showing that just correcting the scale, as it was suggested by

Wooldridge (2002), may lead to a significant bias. I also proposed an alternative method

to do forecasting that may be useful in the microscopic simulation of urban systems.

Third, following a result from Newey (1985a), I showed that both the control-

function method and the 2SIV method result in consistent estimates up to a scale, but the

latter results in a bias when used in the forecasting phase. This fact tips the balance

toward the use of the control-function method in the correction for endogeneity in

discrete choice models.

Finally, the application to real data from the city of Lisbon gives further empirical

evidence that the endogeneity problem is unavoidable in residential location choice

modeling. This application also serves as a detailed account of the methodological steps

that have to be followed in order to correct for endogeneity in this framework,

particularly regarding the construction of valid instrumental variables.



Chapter 3

Efficiency and Tractability in the Correction

for Endogeneity Using Latent-variable and

Control-function Methods

3.1 Overview

The control-function method is the most suitable tool to address endogeneity in spatial

choice models, when this misspecification occurs at the level of each alternative. Chapter

2 examined a two-stage version of the method (2SCF), which achieves consistency but

not, necessarily, efficiency and also requires a complicated correction of the standard

errors for statistical testing. The goal of this chapter is to develop an estimator that can

overcome these limitations without compromising practicality in spatial choice models.

Throughout the chapter, I use residential location choice as an example, but the results

are generally extendable to a much broader range of spatial and discrete choice models.

I begin by exploring the properties of the latent-variable method, a procedure that can

also be used to address endogeneity and is typically estimated efficiently using the

maximum-likelihood method. Afterwards, I analyze the control-function method within



the maximum-likelihood framework and then establish its formal link with the latent-

variable method. I use this common framework to propose an estimator that achieves

consistency and efficiency. This estimator also avoids, under mild conditions, the need

for integration over alternatives (a problem that becomes impractical in spatial choice

models, where the choice-sets are huge). I finish by illustrating the properties of the

estimator using Monte Carlo experimentation and real data.

3.2 The Latent-variable Method in the Correction
for Endogeneity

The latent-variable method is a technique used to account for latent variables or

unobserved constructs in econometric models (Walker and Ben-Akiva, 2002). The basic

idea of the method is to explicitly include the latent variable in the model specification,

and to integrate it out in the calculation of the likelihood of each observation. This

integration requires knowledge of the distribution of the latent variable, which is

obviously unknown. The problem is solved by inferring the distribution from structural

and measurement equations. In a structural equation, the latent variable is written as a

function of other observed or latent variables. In turn, in a measurement equation, there is

some indicator or measured variable that can be written as a function of latent and

observed variables.

The random utility model is an example of the latent-variable concept. In this

framework, a decision-maker (the household) chooses among a set of alternatives (the

dwellings) by comparing the utility attained from them. The researcher, who wants to

model the behavior of the household, cannot observe these utilities. She can only observe

the choice and a fraction of the utility, known as its systematic part, which is a function

of observed attributes. In this case the random utility is the latent variable. The choice is

an indicator determined by the choice behavior, which then corresponds to the

measurement equation. Finally, the specification of the systematic and random parts of

the utility corresponds to the structural equation of the random utility model in the latent-

variable framework.



The latent-variable method has been widely used in discrete choice models applied to

transportation, and have experienced increasing popularity after the work of Walker

(2001). The main application of the latent-variable approach in the transportation

framework is in modeling the problem of latent classes. Examples of this type of

applications are Kamakura and Russell (1989), Chintagunta et al. (1991), Gopinath

(1995), Greene and Hensher (2003), Lee et al. (2003) and Walker and Lee (2007).

In this section, I study how the latent-variable method can be used to correct for

endogeneity in models of residential location choice. The objective is to show later, in

section 3.4, how this framework is linked to the control-function method and the role of

this connection in the efficient estimation of models to correct for endogeneity in discrete

choice modeling.

Consider the problem represented by Eq. (3-1), where a household n chooses among a

set of dwellings i that belong to the choice-set Cn. The choice corresponds to variable yin,

which takes value 1 if alternative i has the largest random utility Uin among the elements

in the choice-set, and zero otherwise. The systematic part of the utility depends linearly

on dwelling price p, and on other attributes represented by x and q. The random utility is

completed by an unobserved part represented by the error term e, which has a

multivariate probability density function fe (.) that depends on a set of parameters De .

Un= q, pi+ xi+qqi+e (3-1)

Yin = l[Ui = max jEC, {Ujn 
(-

Dwelling attributes x and q are generally correlated with dwelling price. Therefore, if,

for example, q cannot be measured by the researcher, endogeneity will arise. Under the

latent-variable framework, this problem can be addressed by explicitly considering q as a

latent variable.

The distribution of q can be inferred using structural and measurement equations. A

structural equation in residential location choice modeling requires finding an observable

variable h such that q can be written as a function of h, as shown in Eq. (3-2)

qin = Ahh,+win (3-2)

where the relationship is assumed to be linear, Xh is a coefficient, and o is an error term

distributed f,( ,).



As with any system of equations, Eq. (3-1) and Eq. (3-2) have to fulfill a series of

conditions to be consistently estimatable. To avoid endogeneity in the utility function, e

has to be uncorrelated with p, x, and q. Equivalently, a has to be uncorrelated with h; but

it also has to be uncorrelated with e in order to avoid the simultaneous determination

between Eq. (3-1) and Eq. (3-2).

Finding a suitable variable to play the role of h in Eq. (3-2) in residential location

choice modeling may be difficult in practice. One possibility would be to use a

representative attribute, such as the number of months since the last time the dwelling

was painted or the pipes were replaced. However, even if it were possible to collect such

specific information, it is not clear why it would account for the whole set of omitted

attributes in such a way that co would be uncorrelated with h and with e. The problem is

that omitted dwelling attributes are likely to be correlated among themselves since they

probably share common causes, such as a careful/careless landlord. Therefore, if only a

representative attribute is included in h, other omitted attributes will become part of (o,

potentially causing endogeneity. In Section 3.4, I show how the difficultly of finding a

suitable variable h, from generally available data, can be addressed using the control-

function approach.

A measurement equation in the residential location choice problem can be written if

some measure or indicator that depends on the omitted attribute q is available. Consider,

for example, that the researcher has information on dwelling's rotation rate (r): the

average number of households that occupied each dwelling per year. It can be

hypothesized that dwellings with better q might have smaller rotation rates. This would

allow us to write the measurement equation shown in Eq. (3-3), where the relationship is

assumed to be linear with coefficients 0, and an error term 7 - f, ( ). The inclusion in

Eq. (3-3) of x and p, in addition to q, accounts for the fact that those factors may also play

a role in the determination of the rotation rate (r).

rn = pPi +xx, + 9 qqn +q7i (3-3)

Equivalent to what occurred with the structural equation, the consistent estimation of

Eq. (3-3) requires r to be uncorrelated with co, q, x, and p. However, it is not necessary in

this case to assume that rq is uncorrelated with e in order to avoid simultaneous



determination between Eq. (3-3) and Eq. (3-1). That is, the error term of the choice model

may also explain the realization of the indicators without compromising the consistency

of the whole model. This type of correlation will not generate endogeneity due to

simultaneous determination because in the structural equation (the utility function) and in

the measurement equation (Eq. (3-3)), the latent variable q is on the right-hand side.

The parameters p,0,KK,, of the model defined by Eq. (3-1), (3-2) and (3-3) can

be consistently and efficiently estimated by maximizing its likelihood. To write this

likelihood it is necessary to make some assumptions about the distribution of the error

terms. Assuming first that the observations are independent, it is possible to write the

likelihood of each observation (n) separately. Then, if it is assumed for simplicity that e is

Hid Extreme Value (0, ,e =1) and that q and e are independent, the likelihood of

observation (n) can be written as shown in Eq. (3-4).

LIey (*fln++qqn) = --- fT(r I p,x,q;0,Q,)fq(q I h; A,i,)dq (3-4)

The estimation of this model also requires assuming a particular distribution for r/ and

o, the error terms of the structural and measurement equations, respectively. Consider,

for example, that rq and co are id Normal with mean zero and variances o and o,,

respectively. Note that this is equivalent to saying that the errors are homoscedastic and

non-autocorrelated. Making the appropriate change of variables between q and co, the

likelihood in Eq. (3-4) becomes what is shown in Eq. (3-5).

e~ p, (,Pp ,x.+6 ,A+w)

A Ec (3-5)

-r -- OP expO~j-0 (hi+ o exp der

The application of this model to residential location choice is still impractical because

the likelihood requires the calculation of a multifold integral in the number of

alternatives, which is usually huge. In this sense, it is important to note what occurs when

the measurement equation is not available or when it is just ignored. In such cases, the

likelihood reduces to Eq. (3-6).



+_ + e(6ipj.,i.+X,6/(hhi +(Dj ) I1 , -Oj (3-6)

= je C, (/ 7,,,e

Under this setting the error term co is not identifiable because it is confounded with

the error e. Note however that this happen only when the structural equation shown in Eq.

(3-2) is linear. One possibility for the estimation of this model would be to normalize the

variance ou =1 and maximize Eq. (3-6). However, this assumption does not improve the

properties of the model when compared with a more practical option where the whole

error co+e is assumed to be distributed Extreme Value (0, p1,). In the latter case the

model reduces to a Logit, obviating the need for integration across alternatives, as shown

in Eq. (3-7).

. e.-(''"'__ '"____'") (3-7)

jeC,

Assuming that o+e is distributed Extreme Value (0, p0e ) may seem problematic

since the sum of a normally distributed a) and variable e, which is Extreme Value, has an

unknown distribution. However, it can be argued that if the sample is large enough, any

Law of Large Numbers would make it possible to claim that co+e follows a Normal

distribution. Then, using the results by Lee (1982) and Ruud (1983), showing that the

approximation of a Normal by an Extreme Value distribution causes negligible

discrepancies, the resulting model becomes a Logit, as shown in Eq. (3-7).

The estimation of the model shown in Eq. (3-7) has some peculiarities compared to

the model shown in Eq. (3-5). First, the omission of co in this Logit model affects the

scale pIle of the estimators, which is then different from the scale of the original model

p = 1. Additionally, the omission of the measurement equation (Eq. (3-3)) results in that

only the product h = fAh would be identifiable in this case (not pq or Ah separately) and

that the efficiency of the estimators will be reduced.

In summary, the latent-variable approach can be used to address endogeneity due to

the omission of attributes in residential location choice models. For this purpose it is

necessary to obtain a variable h to construct appropriate structural equations. If the



measurement equation is ignored, the model reduces to a Logit under some mild

conditions. If the measurement equation is also available, the efficiency of the estimators

would be increased, more parameters of the model would be identified, but the solution

of the problem would require integration over all the alternatives, a problem that may

prove impractical in models of residential location choice.

3.3 The Control-function Method in a Maximum-
likelihood Framework

The efficient estimation of the control-function method can be achieved by estimating it

using the maximum-likelihood method, because the estimators will attain the Cramer-

Rao lower bound (Ben-Akiva and Lerman, 1985). The first step toward this goal is to

write the likelihood of the model described in Eq. (2-2) from Chapter 2.

Uin= fpi, +,flXi,5+bi +Vin +ein

Pin = az~i z 5i,

Yi, =1 [U,,= max j , U jn 1

Assuming independence between observations n, the likelihood for each observation

can be written separately. Given that 3 and v are independent, if it is assumed that

8~ f. (n,), v ~ f, (Q), and that e is distributed id Extreme Value (0, pe = 1), the

likelihood of observation n can be written as the Logit Mixture model shown in Eq. (3-8).

L = f+(8 )- ) - f,(v I £,)dv (3-8)

jeC

Note that in this case the likelihood of v and the likelihood of 6 need to be considered

across all alternatives in choice-set C, but the latter does not need to be inside the

integral because it is independent of v and e, and is fully determined by p and z, which are

observed. This formulation is equivalent to that used by Villas-Boas and Winner (1999)

and Park and Gupta (2009) to perform a simultaneous estimation of the control-function

method, and to what Train (2009) terms maximum-likelihood methods.



It is interesting to compare the 2SCF method described in Chapter 2 with its

maximum-likelihood counterpart presented here. The 2SCF method can be seen as a

limited-information maximum-likelihood (LIML) version of the full-Information

maximum-likelihood (FIML) model represented by Eq. (3-8). This has both advantages

and disadvantages. Beyond the simplification of the estimation procedures, the 2SCF

method has the advantage of being more robust for misspecifications of the error

structure. This is because the conditional distribution of the error of the second stage,

given the residuals of the first stage, is compatible with various joint distributions of

and 5 (Wooldridge, 2002). On the other hand, the 2SCF procedure has the disadvantages

of not being necessarily efficient, and that the standard errors cannot be calculated from

the inverse of the Fisher-information-matrix.

The need for integration over v across alternatives in the choice-set in Eq. (3-8) may

be problematic in models of residential location choice because the choice-set can be

huge. Following the same argumentation used for the latent-variable models, if v has the

same variance of across alternatives, v will not be identifiable from e. Then, if the

sample is large enough, it can be assumed that v+e is distributed Normal. The normality

assumption can equivalently result from assuming that e is distributed Normal. This is

because v was already Normal, and the sum of two normally distributed random variables

is also normally distributed. Finally, based on the results by Lee (1982) and Ruud (1983),

the distribution of v+e can be safely approximated by an Extreme Value (0, pst )

distribution, avoiding the need for integration in this problem.

The formulation that results by assuming that v+e are distributed, or can be

approximated by, a Logit model is shown in Eq. (3-9). This formulation is termed the

tractable maximum-likelihood estimator of the control-function method.

L,= f (10, e) (3-9)

jeCn

The estimation of the model parameters by maximizing the likelihood shown in Eq.

(3-9) requires making specific assumptions about the distribution of . For example, if it



is assumed that 6 is iid Normal with variance q,, the likelihood can be rewritten as

shown in Eq. (3-10).

e'Ue(fl Pi" +fl5+I3(Pin aZJn) e (pin - azZn(-0L*n =xp - 2(-10
= AP+e (ipPi. +IxXin+I3(Pi_aZi) TCC, 42 ex [2 J (-0

It is interesting to note what occurs when taking the log of Eq. (3-10), a monotonic

transformation of the objective function of the maximum-likelihood problem that does

not affect optimization results. In this case, the objective function to be maximized

corresponds almost exactly to the sum of the objective functions of the first and second

stages of the 2SCF procedure. The only changes are that the first component is weighted

by a term that depends on the inverse of twice the variance of 6 and that there is an

additive constant term that also depends on the variance of 6.

Finally, regarding the efficiency of the 2SCF procedure as compared to the tractable

maximum-likelihood estimator, the latter attains the Cramer-Rao lower bound and is

therefore efficient. However, this does not necessarily mean that the 2SCF method is

inefficient. If the error terms 6 and are ild (homoscedastic and non-autocorrelated)

2SCF will be efficient. This result was noted by Rivers and Vuong (1988) and is

equivalent to what occurs in linear models between 2SLS and 3SLS methods (see, e.g.,

Greene, 2003). There is however one important difference between 2SCF and the

maximum-likelihood approach. Although the estimated coefficients of the 2SCF will be

consistent and efficient if the errors are homoscedastic and non-autocorrelated, the

estimators of the standard errors (calculated using the inverse of the Fisher-information-

matrix) will be inconsistent, precluding the direct application of hypothesis testing, unless

they are corrected. This correction can be done using, for example, non-parametric

methods such as bootstrapping.

3.4 The Link between Latent-variable and
Control-function Methods

The latent-variable and the control-function methods are conceived from fairly different

perspectives. The latent-variable method has a broad range of applications and is based



on accounting for the causality among observed and latent variables resulting from the

behavior of the agents involved in the phenomena under study. In contrast, the control-

function method is intended specifically for the correction for endogeneity and is mainly

based on the statistical properties of the variables. Despite of the different origins and

objectives, Guevara and Ben-Akiva (2010) noted that there is a link between the two

approaches. In this section I analyze the connection between both methods and highlight

the impact of the identification of this link on the efficient correction for endogeneity in

residential location choice models.

The main issue in linking the latent-variable and the control-function methods is to

identify the roles played by the different components of each method on its counterpart.

This link becomes immediately apparent by comparing the likelihood functions shown in

Eq. (3-7) and Eq. (3-9). It should be noted that the residuals of the first stage of the

control-function method 1 = p -az can play the role of variable h, the independent

variable required in the specification the structural equation in the latent-variable

approach shown in Eq. (3-2). Note that since 5 is not deterministic, the likelihood of the

model has to be multiplied by the likelihood of 5 in Eq. (3-9). Therefore, it can be

affirmed that the control-function framework allows for the construction, from valid

instrumental variables, of variables that can play the role of h for the implementation of

the structural equation in the latent-variable framework.

An alternative way to identify the link between the control-function and the latent-

variable approaches is to note that the implementation of the former conveys the

decomposition of the error term e of the model into an endogenous part and an

exogenous part e. As it is shown in Eq. (2-2), is then decomposed in two parts, where

the first depends on 5 and the second is an exogenous error v. Then, interpreting as q, it

follows directly that the expression

= p8+ v

constitutes a structural equation for where 5 plays the role of h in Eq. (3-2).

The link and synergy between the control-function and latent-variable approaches in

modeling residential location choice is clear. If the researcher has information about an

indicator such as the rotation rate of the dwellings, it would be possible to use the



control-function approach to build suitable structural equations, and apply the latent-

variable framework to use the information from the indicator by means of a measurement

equation. This will increase the efficiency of the estimators and allow for the

identification of more model parameters. This subsequently achieves a more realistic

representation of the behavior of the agents in the system. The cost, however, is that the

model needs then to be integrated across alternatives, a calculation that may become

impractical with large choice-sets.

The full assessment of the value of the identification of the link between the control-

function and latent-variable approaches shall be addressed by the estimations of models

with real data. This task is left for future research.

3.5 Assumptions to Achieve Efficiency and
Tractability

The likelihoods used in the estimation of the control-function or the latent-variable

methods will result in consistent and efficient estimators of the model parameters if Eq.

(3-9) and Eq. (3-7) represent the true likelihood of the model, or are acceptable

approximations of it in the sense established by White (1982). Therefore, it is important

to study the mildness of the assumptions involved in the derivation of Eq. (3-9) (which

are extendable to those of Eq. (3-7)), the impact of their failure, and possible strategies to

address it.

First, the assumption on the homoscedasticy and non-autocorrelation for v results

from the joint normality assumption between and 6 used in the derivation of the control-

function method as it was described in Chapter 2. A failure would occur if the variance of

the omitted attributes ( depends on the instruments z or on the alternatives j. There is no a

priori ground to suggest that this failure might occur, but if it did, it could be resolved

using the Logit Mixture model described in Eq. (3-11). The cost is that the model would

need to be integrated across alternatives, which would make this approach generally

intractable in spatial choice modeling, unless some simplifying assumptions were

considered for the structure of Ov. Feasible alternatives might include block

homoscedasticy and/or autoregressive processes of degree 1 (see, e.g., Greene, 2003).
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There is also no a priory ground to expect the failure of the assumption on the

homoscedasticy and non-autocorrelation for 5 required to arrive at Eq. (3-10). This

failure might occur if the variance of 5 is different across alternatives and observations

depending, for example, on the instruments or on the alternatives. However, if a failure

does occur, the cost of addressing it would not compromise the tractability of the model

because it would not involve integration over the alternatives in the choice-set. This

problem can be handled using any Feasible Generalized Least Squares (FGLS) procedure

(see, e.g., Greene, 2003) in the specification of f5 in Eq. (3-9). One alternative would be

to obtain a consistent estimator KI, of the variance K2 and then use it in the

specification of Eq. (3-9). Alternatively, if the specification of 92,, is simple enough, it

would be possible to estimate it within the same maximum-likelihood problem. I will use

the second approach for the estimation with real data, later in this chapter.

As discussed before, to reach the Logit closed form shown in Eq. (3-9) it was

necessary to assume that v+e followed an Extreme Value distribution. This assumption

ultimately depends on the assumption that a Normal distribution can be acceptably

approximated using an Extreme Value distribution. Concordant with the results by Lee

(1982) and Ruud (1983), the Monte Carlo experiments shown in the next section

demonstrate that this approximation is reasonably robust.

As a final point on efficiency, it should be noted that Newey (1987) studied a method

developed by Amemiya (1978) to correct for endogeneity in discrete choice models. I

describe this estimator later in Section 4.2.2. Newey (1987) showed that Amemiya's

estimator is at least as efficient as the 2SCF, and globally efficient under some

circumstances. This estimator is much more complicated to calculate than the 2SCF

because it involves the estimation of various auxiliary models, including a minimum chi-

squared procedure devised specially by Amemiya (1978).

In summary, when 6 and v are homoscedastic and non-autocorrelated, the tractable

maximum-likelihood method deployed in Eq. (3-10) would be preferred because it will



be easier to estimate, globally efficient and would allow for the direct calculation of the

standard errors. In cases where there are suspicions that 5 and v have non-spherical

structures (and writing the log-likelihood is impractical), Amemiya's method would be

preferred because it is practical and will be at least as efficient as the 2SCF method.

However, equivalent to what occurred with the 2SIV method, it is not clear how to

forecast with the estimators obtained with Amemiya's method. Therefore if the model

will be used for simulation (and writing the likelihood is impractical) the 2SCF should

still be preferred.

3.6 Monte Carlo Experiment

In this section I revisit the binary choice Monte Carlo experiment developed in Chapter 2,

defined by Eq. (2-9) and Eq. (2-10). The models studied in this case are the true model;

the model that suffers from endogeneity resulting from the omission of (; the model that

corrects for endogeneity using the 2SCF method; and the tractable maximum-likelihood

method deployed in Eq. (3-9). The last method considers that 6 and v are homoscedastic

and non-autocorrelated, so that Eq. (3-10) is valid. A total of 100 repetitions of the data

were generated. Table 3-1 shows the average, the bias, the mean squared error (MSE) and

the t-test against the true value of ratio of the estimators of the coefficients of p and xi.

The results are classified by sample sizes N and by the diverse models estimated.

Table 3-1 shows that the ratio between the estimators of the coefficients of p and xi in

the true model is almost identical and statistically equal (with 95% confidence) to its true

value: -2. In turn, when is omitted, endogeneity causes a significant positive bias of the

estimator for this ratio, as in Chapter 2. The most relevant result reported in Table 3-1

corresponds to the comparison between 2SCF and the tractable maximum-likelihood

estimator. Interestingly, the MSE for both methods are virtually identical. This is because

the true model is iid across observations and alternatives. Therefore, Eq. (3-10) is valid,

and the model falls under the case where both the 2SCF and the tractable maximum-

likelihood estimators are efficient.

Another difference between the 2SCF and the maximum-likelihood methods resides

in the calculation of the standard errors. The former requires bootstrapping and the latter



can be achieved by inverting the Fisher-information-matrix. It was found for these

experiments that the impact of the correction required for the 2SCF depended on the

sample size of each problem, ranging from changes in the third decimal of the standard

error for N=150, to changes in the fifth decimal for N=2,000. It can be affirmed that, for

computational time, when the maximum-likelihood method is compared with the 2SCF

(with bootstrap), the former method outperforms the latter because bootstrapping requires

the repetitive estimation of several models.

Table 3-1 Monte Carlo Experiment: 2SCF and Maximum-likelihood Methods

fP / )6, Metric N=150 N=500 N=1,000 N=2,000

Average -2.011 -2.002 -2.012 -2.003

Bias -0.01073 -0.001686 -0.01247 -0.002897
True Model

MSE 0.1253 0.02829 0.01261 0.006819

t-test true -0.03031 -0.01002 -0.1118 -0.03510

Average -1.211 -1.208 -1.212 -1.197

Bias 0.7890 0.7919 0.7882 0.8035
Omitting {

MSE 0.7071 0.6488 0.6282 0.6495

t-test true 2.713 5.380 9.408 12.75

Average -2.042 -1.994 -2.006 -1.999

Bias -0.04193 0.006188 -0.006141 0.0006357
2SCF

MSE 0.1884 0.04251 0.01882 0.01053

t-test true -0.09706 0.03003 -0.04481 0.006195

Average -2.042 -1.994 -2.006 -1.999

Maximum-likelihood Bias -0.04200 0.006181 -0.006175 0.0006229

Homoscedastic non-Autoc. MSE 0.1885 0.04252 0.01882 0.01054

t-test true -0.09721 0.02999 -0.04506 0.006068

100 Repetitions. J=2

In summary, these experiments show that when 6 and v are ild, the 2SCF method is as

efficient as the tractable maximum-likelihood estimator described in Eq. (3-10). The

latter however, besides achieving consistency and efficiency, also allows direct

hypothesis testing using the standard errors calculated from the inverse of the Fisher-

information-matrix. This final fact implies that the tractable maximum-likelihood

estimator also outperforms the 2SCF in terms of computational cost.



3.7 Application to Real Data

The final section of this chapter focuses on the application of the tractable maximum-

likelihood method, which is described in Eq. (3-9), in the residential location choice

model for Lisbon. Three models are shown in Table 3-2. The first corresponds to the

2SCF method estimated in Chapter 2. The second corresponds to the maximum-

likelihood estimator described in Eq. (3-10), where it is assumed that both 6 and v are

homoscedastic and non-autocorrelated. The last model corresponds to the maximum-

likelihood method described in Eq. (3-9) where 6 and v are assumed to be non-

autocorrelated, but only v is assumed to be homoscedastic. The heteroscedasticity of 3 in

the third model reported in Table 3-2 was addressed by estimating two variances, ai for

the dwellings in the Lisbon municipality, and a for the dwellings located in the

municipalities of Odivelas and Amadora. For both maximum-likelihood models, the

variances were estimated in one stage within the optimization procedure.

Table 3-2 shows that the estimators of the choice model coefficients are statistically

equal (with 95% confidence) among the three models. To make this comparison

appropriate, the standard errors of the 2SCF method include the correction calculated by

bootstrapping. It should be noted that, besides the standard deviations (a, a. and a 2 ),

the only notable differences among the estimated models occur with the coefficient of the

intercept of the price equation and with the value of the likelihoods. In the former, the

difference comes from a change of units. In the first stage of the 2SCF estimated in

Chapter 2, the prices were considered in Euros and in the maximum-likelihood

estimation, all prices were considered in hundreds of thousands of Euros. After adjusting

for this change of units, the intercept is also similar for the three methods, and almost

identical for the first two. Equivalently, the difference among the likelihoods of the 2SCF

and the maximum-likelihood models, results from the likelihood reported for the 2SCF

method is only that of the choice model and, in the maximum-likelihood models, the

likelihood reported is the joint likelihood of the price equation and the choice model.



Table 3-2 Lisbon's Logit Model: 2SCF and Maximum-likelihood Methods

MaxLik MaxLik

Variables 2SCF Homoscedastic 6 Heteroscedastic

non-Autoc. non-Autoc.

-2.811 -2.812 -2.818
1. Dwelling price (in 100,000 C) (0.6344) (0.6340) (0.6356)

0.8542 0.8543 0.8533
2. Dwelling price * 1[Income > 2,000 C/M(

(0.5485) (0.5485) (0.5485)

0.8089 0.8087 0.8085
3. Dwelling price * 1[Income > 5,000 C/M0

(0.4779) (0.4780) (0.4782)

-0.2565 -0.2565 -0.2565
4.Distance to work (in Km)

(0.0534) (0.05336) (0.05335)

2222.232 2.233
5. Log [Dwelling Area (in m 2)] 2.232

(0.7326) (0.7323) (0.7325)

-0.4607 -0.4607 -0.4609
6. Log [Dwelling Age (in years) +1] (0.1192) (0.1191) (0.1191)

1.054 1.055 1.062
7. 5

(0.4600) (0.4595) (0.4625)

-3.023.E+04 -0.3024 -0.3159
ao Intercept Price Equation (2450) (0.02448) (0.02391)

0.6995 0.6994 0.6937
aa Instrument z1 (0.01052) (0.01051) (0.01035)

0.4830 0.4827 0.4818
az2 Instrument z2 (0.01935) (0.01933) (0.01873)

0.7150
Us

(0.004714)

Lisbon 0.7700

(0.006132)

Odivelas and Amadora 0.5707

(0.006970)

Adjusted R2  0.6779

Log likelihood at Convergence LO^) -563.00 -13,020.67 -12,830.26

Log likelihood at Zero L($= 0; =1) -589.06 -46,892.31 -46,892.31

Adjusted p 2  0.05443 0.7226 0.7266

Sample Size Choice Model N 63 63 63

Choice-Set Size J /Sample Size First Stage 11,501 11,501 11,501

Standard errors in parenthesis. f/M: Euros per month.

Finally, the virtual equality among the estimators of the 2SCF and both maximum-

likelihood estimators is a sign that the specification of the model is correct. Formally,

comparing the first 7 coefficients of the two maximum-likelihood models using a



Hausman's (1978) test, the null hypothesis that the three sets of estimators are

statistically equal (with 95% confidence) is not rejected. This implies that both models

satisfactorily corrected for endogeneity and resulted in consistent estimators of the model

parameters. The differences among the estimators are due only to the increase in

efficiency attained with consideration of a more general variance-covariance matrix.

Note also that the log-likelihood of the third model is substantially more positive than

the likelihood of the model where only one standard deviation term is considered.

Evaluated through a Likelihood-ratio test, this loosely rejects the null hypothesis that the

standard deviation of Lisbon and Odivelas-Amadora are the same. This implies that the

third model produced a significant increase in efficiency and should then be preferred.

3.8 Conclusion

In this chapter, I explored the possibility of addressing endogeneity in residential location

choice models by combining the control-function and the latent-variable frameworks. I

showed that the control-function method allows for the construction of structural

equations that can be used to implement the latent-variable method. The full value of the

identification of this link remains to be identified in future research using appropriate real

data.

I also showed that when there are no measurement equations, the latent-variable and

the control-function methods become the same maximum-likelihood model. Also, under

mild conditions, the estimation of the common maximum-likelihood model avoids the

calculation of a multifold integral, a problem that becomes impractical in residential

location choice models.

Additionally, I pointed out, following Rivers and Vuong (1988), that 2SCF will

achieve efficiency if the error terms of the model are homoscedastic and non-

autocorrelated. However, even in that case, the standard errors of the estimators cannot be

calculated directly from the inverse of the Fisher-information-matrix, as they do when the

maximum-likelihood approach is used.

I also showed that if the error of the first stage of the 2SCF is heteroscedastic and

autocorrelated, the problem can be solved under the maximum-likelihood framework



through the estimation of a simile of the Feasible Generalized Least Squares method in

linear models. This method can be implemented in two stages or simultaneously,

depending on the complexity of the structure of the variance-covariance matrix.



Chapter 4

Testing for the Validity of Instrumental

Variables in Discrete Choice Models

4.1 Overview

The crucial assumption required for the correction for endogeneity using the control-

function or any other method, is the availability of suitable instrumental variables.

Instruments have to be relevant (correlated with the endogenous variable) and also valid

(uncorrelated with the error term of the model). The second requirement is particularly

difficult to test because the error term is not observed.

For linear models, Sargan (1958) noted that if the model is over-identified (if there

are more instruments than endogenous variables) the residuals of the instrumental-

variables (IV) regression can be used to test for instruments exogeneity. For discrete

choice models, Lee (1992) noted that an estimator developed by Amemiya (1978), and

studied by Newey (1987), can play the role of the Sargan test in the validation of

instruments in this context.

In this chapter I present the details of the Sargan test for linear models and then those

of the Amemiya-Lee-Newey test for discrete choice models. Next, I develop a novel

Regression-based test for the validity of instruments in Logit models using the concept of



generalized residuals developed by Cox and Snell (1968), and the asymptotic results from

an omitted-attributes test developed by McFadden (1987). Additionally I propose a Direct

test for the validity of instruments that is applicable to various types of discrete choice

models and has some practical advantages. Finally, I analyze the performance of the

proposed tests using Monte Carlo experimentation and real data on residential location

choice from Lisbon, Portugal.

4.2 Validation of Instruments Using Over-
identifying Restrictions

4.2.1 The Sargan Test in Linear Models

Verifying that the instruments are not correlated with the error term of the model is

cumbersome, and may seem impossible, because the error term is unobserved. However,

Sargan (1958), and later Basman (1960), noted that testing in linear models is feasible

when the model is over-identified.

To describe the Sargan test, reconsider the problem formulated in previous chapters

but transformed (only for this section) into a linear model where variable y is continuous,

as follows:

y, = po +, fp +Qfx, + , + e i =1,---,N

y, = Q8 +Q, p, +Q x, + e,

p, = a. + az z + 3,

where z is a valid instrument and corr(S,()# 0.

As before, 5 is correlated with , so p is correlated with and therefore, the omission

of will cause endogeneity. Variables x, e and z are independent among them and

independent of all other variables and error terms in the model. Under this setting z is a

good instrument because it is correlated with p and independent of e and .

Since this model is linear, endogeneity can be solved either using the control-function

or the two-stage least-squares (2SLS) methods. Consider the 2SLS procedure. The first

stage of 2SLS corresponds to the OLS regression of the endogenous variable p on the



instrument z. The estimators of this model d are then used to calculate the fitted values

p = do +azz and the residuals 9 = p -(do + dz). The fitted values and the residuals are

orthogonal by construction (see, e.g., Greene, 2003). Also, note that P is linear in z. That

is, P is in the plane that is spanned by z and therefore, like z, P is also uncorrelated with

Sand e.

The second stage of the 2SLS procedure corresponds to the replacement of p (in the

model where is omitted) with the fitted value ^ . As shown in Eq. (4-1), the error term

of this auxiliary regression E = $,$+ + e will not be correlated with the observed

variables - and x. Therefore the estimators of this 2SLS regression will be consistent.

yi ='8 pol +Q(P + 5J +'6.xi + Ei
OLS (4-1)

Since 80, 8, and j,3 are consistent estimators of 8%, P and $,, a consistent

estimator of the error e can be obtained by replacing #0,,,, in the model where is

omitted to obtain C = y - (o +,P + x). If the instrument z is valid, then z should be

uncorrelated with e and also with its consistent estimator e. Since e is observed, it is

tempting to just calculate the correlation between E and z to test for the validity of z.

However, in this case e is orthogonal to z by construction and testing is therefore

impossible because, even if z is invalid, it will be uncorrelated with E-.

To show that e is orthogonal to z by construction note first that

i=y - 00 jo+ ,p+,,x)= y - 00+ fp + ,x+ P,$)=3) -8^ 4,3.

Then, since 5 is orthogonal to z because it is the residual from the regression of p on z,

E will be orthogonal to z if E is orthogonal to z. Note then that k is orthogonal to P

because it is the residual of the 2SLS regression shown in Eq. (4-1). Then, decomposing

p into P=de+ dz,note that

'=o i + &!E'z = d,$'z = 0,
i=1 ,az a



N

where =0
i=1

because the model has an intercept. This means that 8 is always orthogonal to z, no

matter how correlated e and z might be in reality. Testing for the validity of z is therefore

impossible.

To apply the Sargan test it is necessary to make a small shift to the model described

above in order to avoid the problem of having E be orthogonal to z by construction.

Consider now that the price is a linear function of two instruments, z1 and Z2-

p = a0 + az, z + a, z2i +3

In this case, the model is said to be over-identified since it has more instruments than

endogenous variables. Under this setting, p will be a particular linear combination of zi

and Z2,

p = do +dlzl +ad2 z 2

and e will be orthogonal, by construction, to p, but neither (necessarily) to zi, nor to Z2.

To show why, note that the orthogonality between 6 and p implies that

.'p' d +$ +d,$'z' + d 2$'z2 = 0 'z, +dz, '2=

i=1

but neither that a, 'z, = 0 nor that d^ Z'z 2 = 0.

This result implies that, z1 and Z2 would only be uncorrelated with E by chance, only

if they are indeed good instruments. Then, it is possible to use E to test the validity of

instruments zi and Z2 because, if zi and Z2 are good instruments, 6^ will be a consistent

estimator of c and, at the same time, E will not be orthogonal to z1 and Z2 by construction.

Figure 4-1 shows this result graphically. The figure represents a case where only three

observations are available, which makes it possible to draw the vectors in a 3-

dimensional space. Vectors zi and Z2 are in the plane Z. ^ , the OLS estimator of the

regression of p on zi and Z2, is also in the plane Z. Variable x is in a plane that is not

orthogonal to the plane Z. E, the residual of the second stage of the 2SLS method, is

orthogonal, by construction, to ^ and x. However, note that the angles between z and



zi, and between E and Z2, are far from being a right angle. The only cases where 6 and

zJ or Z2 would be orthogonal are when the model is just identified (zi = z2) or when the

instruments are valid. In this 3-dimensional example, the latter option can occur only

when x is in the plane spanned by zi and Z2.

z
Z2

X

Figure 4-1 Over-identification Allows Testing for the Validity of Instruments

The statistic of the Sargan test is constructed by estimating an OLS regression of the

residual 6 of the 2SLS procedure on all the exogenous variables of the model, which for

this example are zi, Z2 and x.

C, = 00 +9,x +QZ, Zli + 6 z, Z2i +i (4-2)

The Sargan test is calculated as a LaGrange-multiplier test, where the null hypothesis

is that all 6's in Eq. (4-2), except for the intercept, are equal to zero. This corresponds to

the S statistic shown in Eq. (4-3), where R2 is the unadjusted coefficient of determination

of the regression shown in Eq. (4-2), and N is the number of observations. The S statistic

is distributed 2 with a number of degrees of freedom (df) equal to the degree of over-

identification of the problem (the number of additional instruments available), which is

equal to 1 in this example.

S = NR2 ~4 (4-3)

If the test is rejected (S is larger than the critical value for a certain level of

significance) this is evidence that the specification of the model is incorrect and/or that at



least one of the instruments is invalid. The test gives no information on which one might

be the invalid instrument. If the test is accepted (S is small) it is evidence that both

instruments are suitable and that there are no other model specification issues. However,

as with any statistical test, it could also be that the instruments are really not valid and the

test just has low power.

Regarding the power of the Sargan test, Newey (1985b) shows that over-

identification tests are inconsistent. These tests are blind to certain alternate hypothesis,

meaning that, in certain cases, the power of the tests is never equal to one, even when the

sample size goes to infinity. To account for this fact, over-identification tests are

sometime stated under the assumption that, at least, a subset of the instruments are

exogenous (Stock, 2001), a condition that cannot be tested. This consideration seems to

discourage the use of methods based on instrumental variables because they are grounded

in an unverifiable assumption. However, De Blander (2008) shows that the alternate

hypotheses for which over-identification tests are blind is very peculiar. If and only if the

instruments appear in in the same linear combination that they appear in the price

equation, over-identification tests will not be able to detect the endogeneity of the

instruments. The assumption that this particular event does not occur seems easier to

defend than to attack. This fact gives a reasonable sustain for the usage of tests for over-

identifying restrictions for the validity of instruments.

4.2.2 The Amemiya-Lee-Newey Test in Discrete Choice models

Amemiya (1978) proposed a two-stage minimum-chi squared estimator for the

simultaneous equations Probit model that Newey (1987) proved to be efficient compared

to other two-stage procedures. Later, Lee (1992) noted that Amemiya's estimator can also

be used to test for the validity of instruments. The test can be extended to other discrete

choice models.

To describe Amemiya's estimator under the setting used in this thesis, reconsider the

discrete choice problem stated in previous chapters where household n chooses an

alternative i among those in the choice-set Cn. Households make their choices based on a

latent utility Uin that depends on the price p, a control x and an error e. The price p



depends on two instruments zi and Z2, and the error term 6. The model suffers from

endogeneity because 6 is correlated with e.

U,, = + Pin + Crxn+

Pin = az1 ,+a, z2in + in

Y= u1 ,, = maxj,-c {Un 1j

The first step in the calculation of Amemiya's estimator is to replace the equation of

price, into the structural equation of the utility function. By this, the following equation

for the utility is obtained:

Ui = #p (az zu , + a 2 z2,, + (5,, )#+ Ax,, + ,

U,, = /Jpc zrn+Jp az 2 2in+Xin +,, ±+fip+,

This equation is termed a reduced-form equation for the utility, where the right hand side

is compounded only by exogenous variables: instruments (zi and z2) and controls (x).

Note that the price equation is then also a reduced-form equation.

By means of this transformation, the model no longer suffers from endogeneity since

neither z1, Z2 nor x are correlated with e or J. Then the estimation of this model would

result in consistent estimators i of 7r1, 7r2 and 73. Note that consistency is only up to a

scale because the variance of i,, is different from the variance of ein in the true model.

The researcher is however interested in gathering consistent estimators of the

parameters of the structural equation of the utility, which in this example correspond to p,
and fx. fpx can be retrieved directly from the estimator of 7r3. In turn, a consistent estimator

for p can be obtained by means of a two-stage procedure.

Note first that it is possible to obtain consistent estimators a of a, and a 2 , by

regressing p on zi and Z2. Then, using the estimators A and a, the following set of

equations can be constructed:

z, = pad,

These two equations can be seen as observations from the following auxiliary model

; = flpa±y



where y is an error term, and p3, is the only coefficient to be estimated. Note that the

auxiliary model for this example has one estimatable coefficient and only two

observations because there is only one endogenous variable and two instruments. Each

additional endogenous variable would result in an additional estimatable coefficient, and

each additional instrument would result in an additional observation.

To estimate this auxiliary model, Amemiya (1978) proposed the following minimum

chi-squared estimator

min, (fl -,d)'N-(fk-,d)

Amemiya (1978) proved that this estimator is consistent. Newey (1987) proved that if J#

is a consistent estimator of the variance-covariance matrix of (#-ipi&), Amemiya's

estimator will also be, at least, as efficient any two-stage estimator, such as 2SCF or

2SIV.

The calculation of W is cumbersome for three reasons. First, the matrix needs to be

invertible. If it is not invertible, it would be possible to use the pseudo-inverse (Rao and

Mitra, 1971). Second, the calculation requires a consistent estimator of flp. This estimator

can be obtained from a preliminary estimation using W =I, or from the two-stage

methods used to address endogeneity described in previous chapters. Third, to achieve

efficiency, the calculation of W^ requires a consistent estimator of the joint asymptotic

variance-covariance matrix of * and &. One possible simplifying assumption for this last

requirement would be to consider the result from Hausman (1978) in order to state that

Vark -fl, ~ Var(*)-32Var(&)

where the variance-covariance matrices of A and & can be retrieved from the estimators

of the previous stages of Amemiya's method, and j, is a consistent estimator of p. I use

this transformation in the Monte Carlo experiments and in the application with real data,

later in this chapter.

The utilization of Amemiya's procedure as an estimation method to correct for

endogeneity in discrete choice models seems less attractive than those analyzed in

previous chapters. Indeed, it is difficult to obtain an appropriate estimator W such that

the method would be efficient, particularly when few instruments are available.



Additionally, the estimation of the method cannot be performed with commercial

software, the calculation of the correct standard errors is complex, and it is unclear how

to do forecasting with Amemiya's method.

However, there is an important byproduct from Amemiya's procedure. Lee (1992)

noted that the objective function of Amemiya's estimator can be used to construct a test

of over-identifying restrictions. This test can be used to test for the validity of

instrumental variables in discrete choice models. Intuitively, if the instruments are valid,

the model will be consistent. How far the objective function is from zero will depend

solely on the degree of over-identification of the model, the number of extra instruments

available. In turn, if the instruments are invalid, the estimators will be inconsistent. How

far the objective function of Amemiya's estimator is from zero will be affected by the

inconsistency caused by the use of invalid instruments. Lee (1992) showed that Eq. (4-4),

known as the Amemiya-Lee-Newey statistic, follows a chi-squared distribution with

degrees of freedom (df) equal to the degrees of over-identification of the model, which is

equal to 1 in this example.

ALN = N k--fl )' W-1(k ,)~2 X2 (4-4)

4.3 Two Novel Tests for Discrete Choice Models

4.3.1 A Regression-based Test for Logit Models

In this section I develop a novel test for the validity of instruments that is applicable to

Logit models and was originally sketched by Guevara and Ben-Akiva (2008). The test is

an extension of the Sargan test that is grounded in an application of the concept of

generalized residuals (Cox and Snell, 1968) applied to Logit Models by McFadden

(1987).

The crucial step in the adaptation of the Sargan test for the Logit model lies in the

identification of a Logit analogous for the residuals of the 2SLS regression in linear

models. Cox and Snell (1968) were the first to define the residuals in a nonlinear

framework. McFadden (1987) developed a series of Regression-based tests for Logit

where he used the concept of generalized residuals and derived the transformations



required to mimic the asymptotic distribution of the Logit errors with linear regressions.

These tests were constructed based on a LaGrange-multiplier test for omitted attributes in

Logit models with linear utilities.

To describe McFadden's omitted attributes test, consider a problem where N

households face the choice among J alternatives in a choice-set C. Each household n

retrieves a random utility Uin from each alternative in their choice-set. The utilities

depend linearly on the attributes x and z, and an error term e that is distributed iid

Extreme Value and is also uncorrelated with z and x.

Ui = Bxin +,z i+ Ein

yi, =I u, = maxj.C.Ujn}]

The researcher wonders if the attribute z is exogenous to the model; that is, if #i. = 0.

If the dimension of z is one, the null hypothesis HO :/$z = 0 can be tested using a Quasi-t,

a Likelihood-ratio test or a LaGrange-multiplier test. If the dimension of z is larger that

one, only the last two tests are suitable.

McFadden (1987) used the following LaGrange-multiplier test for this problem,

where p is the vector of model parameters, L is the log-likelihood of the model, I(#) is the

Fisher-information-matrix, and the degrees of freedom (df ) are equal to the dimension of

z.

Extending a result obtained by Engle (1984) for binary Logit, McFadden (1987)

showed that if the underlying model is Logit with linear utilities, this LaGrange-

multiplier test would be asymptotically equivalent to a two-stage Regression-based test.

To show this result, consider that the null hypothesis is true, $, =0. Then, the log-

likelihood of the model can be written as

Ln = I yjj,xj -In I ex p(p,xj )
jeC jEC,

Taking the derivatives of the log-likelihood with respect to $, results in



x j y x p , expexxpn jx

JC,IjL C. E exp(ixjn) ;*c"

a~n jn jn, In jXjn (jn jn - n (jn,
X jEC jeC" jEC,

where

P (j) ep in) is the choice probability of alternative j.
Zexp(#xx.)

ke C,,

Note that

jEC,( kECn kEC jeC,, jEC,

XrL lyx-P,(j)xjn-yj IP(k)xkf+P.l(j)EP(k)xJ
x jEC, kEC,, keC,,

=/ j yjx-n P(k)x3 -P(( -ZP,(k)xkn

x jEc" kEC, kieC,

-- ?1y,-Pj)A x,-EP(k)xkn.

Note that this transformation of the derivative of the log-likelihood resulted in a

condition that is equivalent to the orthogonality property of OLS estimates that

establishes that the residuals of an OLS regression are orthogonal to the independent

variables of the model (see, e.g., Greene, 2003). In this case, the term (y, -P)

corresponds to the crude residuals (termed by Cox and Snell, 1968), and the columns of

the matrix of independent variables correspond to the following transformation of

variable x:

xj - E P, (k)xf.
kEC,,

The derivative of the log-likelihood remains unchanged if it is multiplied and divided

by the square root of the probability of choosing each alternative. McFadden (1987)

shows that this transformation assures that the generalized residuals defined later will



have the same asymptotic properties as those of the Logit model. Under this

transformation, the derivative of the log-likelihood becomes:

(Yin - Pn (A)I~Xl~l~)kl -nI3L,_ y, -P,(j, P, (k 3xk VPj = JEJ i .(4-5)
aflx jacC NrP jM ke C, jE C,

Ej X

The intuition of McFadden's test of omitted attributes is the following. If the model is

estimated omitting z, the expression in Eq. (4-5) will be equal to zero for the estimated

values of the model parameters. Term l' (i) the fitted probabilities resulting from this

model. Then, under the null hypothesis that 8, =0, the expression shown in Eq. (4-6)

should also be similar to zero.

(j)n - -~ (
__;"_"z_, - l(k)zflP 12(=) (4-6)

j C., jPf' ( j) kEc ,, j C.,

In other words, Eq. (4-6) indicates that i should be almost orthogonal to 2 if flz=O.

Then, intuitively, the R2 of a regression of t onto T and 7 should be very small.

McFadden (1987) formally proved that a test based on the R2 of an OLS regression of 7

onto x and z is asymptotically equal to the LaGrange-multiplier test for the omission of

z. McFaddden's test of omitted attributes can be stated as follows:

Stage 1) Estimate a Logit model considering only x and use the estimators of this

model to calculate the fitted probabilities In (i) and the following auxiliary variables:

jac. () jFc.y - Z) l' A(i))

J',(i)

Stage 2) Estimate an OLS regression 7 = + 0xm +2. . The statistic of the test is

M = R2 ~2X4

where T corresponds to the number of cases. If the number of alternatives J is the same

for all households, R = N(J -1). McFadden (1987) showed that statistic M is distributed



4j , where the degrees of freedom df are equal to the number of omitted attributes being

tested. df is equal to 1 in this example.

The usefulness of McFadden's omitted attribute test, in the quest for testing the

validity of instruments in Logit models, is in that it formally establishes an expression for

the generalized residuals of a Logit model and in that it makes the appropriate

normalization that allows testing the properties of the model from those residuals.

Using McFadden's derivations it is possible to propose an analogy for the Sargan test

that is applicable in Logit models. Consider that the true model can be defined as follows

Un= ,p +,xn +E = pPi + /xx, + +,, +e

p = aZ, zi + a,z2 Z2in + in

Yn =1Ui = max1 ec {U }n
where and 6 are correlated causing endogeneity, and where zi and Z2 are valid

instruments.

Under this setting, the following Regression-based test for the validity of instruments

in Logit models can be proposed. This test was originally sketched by Guevara and Ben-

Akiva (2008).

Stage 1) Estimate the price equation, using OLS to obtain the residuals S

Pin = ao + a ziZ1 + cxz2,, + 3f l> gi.

Stage 2) Estimate the choice model, including 3 as an additional variable

U, =Dp,+,x, $$, +i ML

These first two stages correspond to the application of the 2SCF method defined in

Chapter 2. The estimators of this model can be used to calculate the fitted

probabilities ,, (i), which are then used to proceed to Stage 3.

Stage 3) Calculate the following auxiliary variables

Xin _ E j-- (Y.n - Pn(i)
=

lin = x- P 0) Z, = '" Z 2 jnn) n0)
jEc. E I .



Now that we have a simile for the residuals of the control-function regression, Stage 4

mimics the final stage of the Sargan test.

Stage 4) Regress the generalized residuals Win by OLS on the transformed instruments

Eg, and 2j and the control .2, .

i9 0+96,x1,+ in +6ZEf (4-7)

Finally, calculate the unadjusted multiple correlation coefficient R2 of this regression

and calculate the statistic

S =FR2 ~ ,
RB f

where N = N(J - 1) is the number of cases, and the degrees of freedom (df) corresponds

to the degree of over-identification, which in this example is equal to 1.

The outcome of this test can be interpreted in the same way as the outcome for the

Sargan test. If the null hypothesis is rejected, this means that at least one of the

instruments is correlated with the error (is invalid) or that there is another model mis-

specification. If the null hypothesis is accepted, this is evidence that both instruments are

valid.

4.3.2 A Direct test for Discrete Choice Models

The application of the Amemiya-Lee-Newey test and the Regression-based test may be

cumbersome and vulnerable to data-processing errors because they involve the

calculation of auxiliary variables and/or fitted probabilities, as well as the estimation of

several auxiliary regressions. For this reason, I present an alternative test for the validity

of instruments that only involves the estimation of discrete choice models with

commercial computational packages. I term this the Direct test for the validity of

instruments in discrete choice models.

To describe Direct the test, consider that there is a set of K instrumental variables to

correct for price endogeneity in the choice model used as an example throughout the

chapter. If all K instrumental variables are valid, the model estimated using the control-

function correction will be consistent. Then, the subsequent inclusion of any instrument

as an additional variable into the corrected model should produce a non-significant



increase in the log-likelihood. In turn, if the instruments are invalid, they will be

correlated with the error term of the model, and the inclusion of any instrument as

additional variables into the model corrected for endogeneity, should result in a

significant increase in the log-likelihood. This suggests an alternative test for the validity

of instruments.

Note that only K-1 out of all K instruments used in the construction of the residuals 6

can be included at the same time as additional variables into the model corrected for

endogeneity. The problem is that 3 was constructed as a linear function of the

endogenous variable (p) and all K instruments. Then, a model including p, 3 and all K

instruments will be perfectly collinear, making the model non-estimatable. For the

example used in this chapter, considering that z, and Z2 are used to construct 3, the

Direct test would just correspond to the test for exogeneity of zi (or Z2).

The Direct test proposed in this section is, in some sense, similar to the Refutability

test used by Card (1995). In the Refutability test, the validity of an instrument is tested by

including it in a model that was corrected for endogeneity using an alternative instrument.

In that case, the validity of one instrument is conditional on the validity of the other

instrument. Instead, for the Direct proposed in this section, all instruments are used to

correct for endogeneity and then, the alternate hypothesis is that, at least, one of the

instruments is invalid. Also, equivalently to what pointed out by De Blander (2008) for

linear models, the Direct test will have no power if the instrumental variables appear in

the same linear combination in the price equation and in the utility function.

Two issues have to be remarked about the Direct test. The first is that the test will be

valid only asymptotically. This is because the fact that 1 was built using zi will reduce

the size of the test in finite samples. The second issue is that although the 2SCF results in

consistent estimators of the model parameters, all statistical tests derived from it are

invalid. This problem can be avoided by using the tractable maximum-likelihood

estimator studied in Chapter 3. However, in practice, the impact of using the 2SCF in

hypothesis testing is minimal, and its usage simplifies enormously the calculation of the

statistics.



If the degrees of over-identification are only 1, the Direct test can be calculated as a

Quasi-t test, as Lagrange-multiplier test or as a Likelihood-ratio test. In a general case,

only the two last options are suitable. Interestingly, the LaGrange-multiplier and

Likelihood-ratio versions of the Direct test consider a statistic that is distributed x2, with

degrees of freedom equal to the degrees of over-identification of the problem, the same

distribution of the statistics of the Amemiya-Lee-Newey test and of the Regression-based

test.

The LaGrange-multiplier version of the Direct test can be applied to any discrete

choice model. In the particular case of Logit, the test can be calculated using the R2 of the

following auxiliary regression:

in = 0 + xX +pPin +1 in 'in + z1 lin

The LaGrange-multiplier version of the Direct test can be alternatively implemented

considering, instead of a linear regression, the estimation of a modified choice model in

the final stage. This variation comes from an alternative implementation of McFadden's

(1987) test for omitted attributes, used by Train et al. (1989) to test for non-IIA error

structures. First, it is necessary to calculate a slightly different version of the auxiliary

variable for the instrument

Z1in = Zlin -Zlj W -f

Then, the choice model is re-estimated considering the following specification of the

utility function:

Vn = lp Pin + /xi, + /3n +#An zin.

Finally, the test is implemented as a Quasi-t test for the null hypothesis that =0.

The Likelihood-ratio version of the Direct test can be applied to any discrete choice

model and has the important advantage of requiring only an auxiliary estimation of the

choice model and no need for additional transformations. Under these considerations, the

following two-stage Direct test for the validity of instruments can be proposed:

Stage 1) Estimate the price equation using OLS to obtain the residuals 6



Pin = ao + az zl, + az,+ 51i OSin in

Stage 2) Estimate the 2SCF model and retrieve the log-likelihood L2SCF.

Ui = lp Pin+Qxi, +A5Si + 1 ML2SCF

Stage 3) Estimate the choice model including 8 and one of the instruments (for

example z1) as additional variables and retrieve the log-likelihood LD.

Ui = /lp, Pin+ /3x~i +/3$5i + Azin+ 8
1  MLzD

The evaluation of the null hypothesis Ho : $z = 0 can be done using a Likelihood-

ratio test comparing the likelihood of the model estimated in Stage 3 with that estimated

in Stage 2 as follows

SDIRECT ~X2

where the degrees of freedom (df) in this case is equal to 1.

The Direct test is equivalent to the Amemiya-Lee-Newey and the Regression-based

test for the validity of instruments for Logit models in that they require over-

identification to be performed. Their outcomes can also be equivalently interpreted. If the

null hypothesis Ho : i =0 is rejected, then at least one of the instruments is not valid,

although we cannot tell which one. If the null hypothesis is accepted, this is evidence that

the instruments are appropriate.

In summary, three tests for the validity of instruments in discrete choice models have

been identified: The Amemiya-Lee-Newey test, the Regression-based test, and the Direct

test. Both the Amemiya-Lee-Newey and the Direct test can be applied to any discrete

choice model. The Regression-based test can be applied only for Logit. On the other

hand, Amemiya-Lee-Newey and the Regression-based test require the estimation of

auxiliary regressions and the calculation of auxiliary variables, whereas the Direct test

can be implemented with a single re-estimation of the choice model. This simplicity

makes the Direct test extremely attractive for practitioners. In the next section I use

Monte Carlo experimentation to compare the size and power properties of the three tests

for the validity of instruments investigated in this chapter.



4.4 Monte Carlo Experiment

In this section, I perform a series of Monte Carlo experiments to demonstrate and to

investigate the behavior of the tests for the validity of instruments in discrete choice

models. For experimentation purposes, the true or underlying model used to develop the

experiments is a binary Logit model where the utility of each alternative depends on its

price p, a control x, and an error term E, which is divided into two components, f and e.

represents an omitted attribute that is correlated with p, and e is an id error distributed

Extreme Value (0,1). The value of the model coefficients in the true model are shown in

Eq. (4-8).

Un = -1Pin +1Xi, + j + ein (4-8)

The price p was constructed as a function of and two exogenous variables zi and z2,

as shown in Eq. (4-9), where 3 is an error id Normal (0,1). Variables x, Zi, Z2, and

were constructed Uniform (-3,3). Under this setting, if c is omitted in the specification of

the utility, the price will be correlated with the error term g causing endogeneity. On the

other hand zi and Z2 are valid instruments for p because they are correlated with it, and

uncorrelated with E.

Pin = 0.5j, + 0.5z + O.5z 2 + 3, (4-9)

Dahlberg et al. (2008), De Blander (2008), Newey (1985b), and others have shown

that the Sargan test has low power properties in linear models. To analyze the power

properties of the tests for the validity of instruments in discrete choice models, I build

two invalid instruments: b, and b2 and investigated the success of the test in detecting that

the instruments are invalid.

Variables b] and b2 are invalid instruments because they are correlated with 4 and

therefore, with the error term e of the model. Following the motivation shown in Figure

4-1, it can be expected that the power properties of the test can be reduced when the

invalid instruments become highly correlated, or equivalently, as the angle between b,

and b2 shrinks. In this case, the residuals E would become almost orthogonal to the

instruments, by construction, yielding to false acceptances of the null hypothesis. To



evaluate this hypothesis, the invalid instruments were constructed as shown in Eq. (4-10),

where c e (0,1) and V/,, and Q, were generated Hid Normal (0,1).

blin = 1in + 'Pin + Vinl (4-10)
b2in = c bin +(1-C)P,,+V/,

Under this setting the correlation between by and b2 will increase with c. b, and b2

will be correlated with and p for all values of c, which will make them invalid

instruments but also relevant in the price equation. This allows differentiating the

problem that the instruments are correlated with the error term, from the problem that the

instruments are weak.

The tests analyzed in these experiments were the Amemiya-Lee-Newey test, the

Regression-based test and the Direct test. A total of 100 realizations of the data and

different sample sizes N were used in the analysis. The performance of the tests was

evaluated considering three situations: 1) two valid instruments (zi and Z2) are used to

correct for endogeneity using the 2SCF method; 2) one valid (zi) and one invalid (b])

instrument are used in the correction for endogeneity; 3) two invalid instruments (b, and

b2) are used in the application of the 2SCF method. In the third experiment, the

correlation among the invalid instruments was changed by varying the values of variable

C.

Table 4-1 shows the number of times each test resulted in an acceptance at 5%

significance, and the corresponding bias, mean squared error (MSE) and the t-test against

the true value of the ratio between the estimators of the coefficient of p and of the

coefficient of x, which is -1 in this experiment. As discussed in Chapter 2, to check the

consistency of the estimators, it is necessary to look at the ratio of the coefficients and not

at the coefficients themselves, because the estimators obtained with the control-function

correction are only consistent up to a scale.

Consider the case where two valid instruments are used to correct for endogeneity.

These results are reported in the first four rows (below the headings) of Table 4-1, for

sample sizes N of 100, 500, 1,000 and 2,000, respectively. In this case the bias, the MSE

and the value of the t-test of the ratio , /$, against its true value, are small for all the

sample sizes analyzed. This means that when the two valid instruments are used, the



2SCF method satisfactorily addressed the endogeneity problem caused by the omission of

attribute . It would therefore be desirable to have the tests for the validity of instruments

accept the null hypothesis that the instruments are not correlated with the model error.

Table 4-1 shows that all tests have similar size. The empirical confidence is equally near

to the nominal confidence (95%) for all sample sizes and for all the tests.

Table 4-1 Monte Carlo Experiment: Performance of Tests for the Validity of Instruments

Acceptances out of 100 Bias MSE t-test true
5% significance

N Amemiya- Regression- Direct f /fLee-Newey based

2 Valid Instruments

100 92 91 91 0.1014 0.1185 0.3083

500 91 92 92 0.002114 0.02153 0.01441

1,000 92 93 94 -0.002516 0.008195 -0.02780

2,000 95 95 96 0.00009412 0.003647 0.001558

1 Valid and 1 Invalid Instrument

100 18 12 11 -0.7572 0.6070 -4.130

500 0 0 0 -0.7761 0.6105 -8.565

2 Invalid Instruments c=0.1 Correlation bl, b2= 0.7718

100 6 2 2 -0.6464 0.4544 -3.382

500 0 0 0 -0.6703 0.4573 -7.471

2 Invalid Instruments c=0.5 Correlation bl, b2 = 0.9012

100 39 30 27 -0.7918 0.6605 -4.320

500 0 0 0 -0.8055 0.6563 -9.255

2 Invalid Instruments c=0.9 Correlation b], b2 = 0.9489

100 95 91 91 -0.9280 0.8907 -5.409

500 79 56 57 -0.9389 0.8883 -11.37

1,000 68 46 49 -0.9392 0.8848 -17.92

2,000 43 14 15 -0.9406 0.8866 -22.34

5,000 4 0 0 -0.9449 0.8935 -36.79

100 Repetitions. J=2

Consider the case where one valid and one invalid instrument are used. In this

experiment, the bias, the MSE and the value of the t-test of the ratio 8, /, against its

true value, are large for all the sample sizes N analyzed. This means that, because one of

the instruments was invalid, the 2SCF method did not solve the endogeneity problem

caused by the omission of the attribute 4. It would then be desirable to have the tests for

the validity of instruments reject the null hypothesis. The results in Table 4-1 show that



for a sample size of 100 observations, the Amemiya-Lee-Newey test resulted in 18 false

acceptances, the Regression-based resulted in 12 and the Direct test resulted in only 11.

These results show that both the Regression-based and the Direct test have better power

properties than the Amemiya-Lee-Newey test. For sample sizes of 500 and larger (not

reported in Table 4-1), the number of false acceptances became zero for all three tests.

Consider the case where both instruments are invalid, that is, when both are

correlated with the omitted attribute that causes endogeneity. Table 4-1 shows that for all

the values of c analyzed, the bias, MSE, and the t-test of the ratio $, / against its true

value, are significantly large. In this case it would be desirable to have the tests reject the

null hypothesis. Table 4-1 shows that when the correlation between the invalid

instruments is 0.7718 and the sample size is 100, there are only 2 out of 100 false

acceptances for the Regression-based and for the Direct tests. For the Amemiya-Lee-

Newey test, the number of Type II errors increases up to 6, which further shows that this

test has lower power. Again, for sample sizes of 500 and larger (not reported in Table 4-

1), the number of false acceptances is zero for all three tests. Something similar occurs

when the correlation between the invalid instruments increases to 0.9012. In this case,

there are Type II errors only when the sample size is 100. The false acceptances are 27

for the Direct test, 30 for the Regression-based test and 39 for the Amemiya-Lee-Newey

test. The picture is very different when the correlation jumps to 0.9489. In this case, there

are false acceptances even when the sample size is as large as 5,000 observations.

Interestingly, for all cases the power properties of the Amemiya-Lee-Newey test were

always below those of the Regression-based and the Direct tests.

In summary, the Monte Carlo experiments showed that, for this setting, the

Regression-based and Direct tests have similar size and power properties and that their

power is superior to that of the Amemiya-Lee-Newey test. The Direct test showed to be a

reliable tool for testing the validity of instruments in this framework. This is attractive for

practitioners since the Direct test is easily calculable with commercial packages because

it only involves the re-estimation of the choice model with an additional variable.

Additionally, it became evident that the correlation between the instruments can severely

affect the power of the tests, even for large sample sizes. To the best of my knowledge,

this has not been noted before and raises a warning for the usual practice (see, e.g.,



Nichols, 2007) of attaining over-identification, to be able to test for the validity of

instruments, by generating additional instruments as non-linear transformations of

available instruments.

4.5 Application to Real Data

In this section I re-visit the residential location choice model of Lisbon estimated in

Chapter 2. Although the process behind the construction of the instruments used for the

correction for endogeneity and their effect on the estimates were theoretically sound, it is

necessary to perform formal tests to verify their validity.

The tests for the validity of instruments rely on the over-identification of the model.

The model estimated in Chapter 2 considered two instruments (the averages of two

different sets of dwellings) to correct for one continuous endogenous variable (dwelling

price). As it was noted in the Monte Carlo experiments, if the instruments are highly

correlated, the power of the tests may be severely affected. In the case of this residential

location choice model, the correlation between the instruments equaled to 0.8238, as

shown in Table 2-4. This is below the empirical threshold of -0.95 found in the Monte

Carlo experiments and therefore gives some confidence in the power of the tests for the

validity of instruments calculated for Lisbon's model.

I begin by calculating the Amemiya-Lee-Newey test. For this test, it is necessary to

estimate two models: 1) the regression of the price on the instruments, and 2) the

estimation of a choice model where the price is substituted by the instrumental variables.

The former corresponds to the same model reported in Table 2-5. The implementation of

the latter has one small shift compared to the models estimated in the Monte Carlo

experiment. In the application with real data, the endogenous attribute (price) was

interacted with a household characteristic (Income). Under this consideration, the

specification of the price part of the utility of the auxiliary (reduced-form) choice model

needs to be adjusted as shown in the following expression:

Uin = (z + r z2 X1 + 72 0ool[Income > 2,000]+z 50001[Income > 5,000])+---+

The estimators of this model are shown in Table 4-2.



Amemiya's estimator is obtained by solving the following problem using the method

described in Section 4.2.2

a- + 2

where A correspond to the estimators of the instrumental variables in the auxiliary choice

model reported in Table 4-2. a are the estimators of the coefficients of the instrumental

variables obtained in the first stage of the 2SCF method, which are reported in Table 2-5.

Table 4-2 Lisbon's Logit Model: Auxiliary Choice Model for Amemiya-Lee-Newey Test

Reduced-Form Model
Variables

fr s.e

1. z, -1.759 0.5261

2. Z2 -0.9197 0.7184

3. 1[Income > 2,000 £/M] 0.7300 0.1918

4. 1[Income > 5,000 C/M] 0.3496 0.2226

4. Distance to Workplace (in Km) -0.2418 0.05279

5. Log [Dwelling Area (in m2
)] 1.902 0.7263

6. Log [Dwelling Age (in years) +1] -0.4291 0.1181

Log likelihood at Convergence L(O) -566.66.

Log likelihood at Zero L(0) -589.06

Adjusted p 2  0.04992

Sample Size N 63

Choice-Set Size J 11,501

Logit Model combining Imokapa database and SOTUR survey
for Lisbon, Odivelas and Amadora. /M: Euros per month.

The statistic of the Amemiya-Lee-Newey test was calculated using the expression

shown in Eq. (4-4). The value of the statistic is sown in Eq. (4-11), where it should be

noted that it is far below the threshold to reject the null hypothesis that the instruments

are valid.

ALN = 0.1162< 2
5 = 3.842 (4-11)

The second test performed is the Regression-based test described in Section 4.3.1.

First, using the estimates of the model corrected for endogeneity reported in Table 2-6, I



calculated the fitted probabilities P, (i). Then, I calculated the auxiliary variables as

shown below

xin = xin - Gx() A(i)

jE C,

Zin = zi,- A u$()5(i)
Ec, )

Wi = (yi, -AP(i))/ (i)

Z2 in = z 2 , XZ 2jnp, (i) W A,(i),
jEC,

where x corresponds to the explanatory variables of the residential location choice model

estimated in Chapter 2, including the distance to workplace, the log of the area, and the

log of the age (+1) of each dwelling.

The next step corresponds to the estimation of an OLS regression of the generalized

residuals ',i as a function of the other auxiliary variables i and . The results of this

OLS regression are shown in Table 4-3. Note that the R2 of this model is very small and

that all variables are statistically equal to zero with 95% confidence. This is a first

indication that the instruments are valid and therefore, that the correction for endogeneity

was successful. The formal Regression-based test statistic is calculated using the R2 from

Table 4-3, as shown in Eq. (4-12). Note that the statistic is far below the critical value

with 95% confidence for the chi-square distribution with one degree of freedom. This

result confirms again that the instruments are valid.

Table 4-3 Lisbon's Logit Model: Auxiliary Regression for Regression-based Test

Variables a s.e

1. Intercept 1.363E-05 0.001252

2. Z 0.03436 0.3830

3. 2 -0.07846 0.5454

4.-.i , 0.00017220 0.05555

5- 0.02352 0.7491

6- -0.004543 0.1247

R 2 3.295e-08

Adjusted R2 -6.868e-06

Sample Size N*J 724,563

Logit Model combining Imokapa database and SOTUR
survey for Lisbon, Odivelas and Amadora.
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SRB =N(J -1)R 2 =0.2387< X2 = 3.842

The final test performed corresponds to the Direct test for the validity of instruments

proposed in Section 4.3.2. This test is constructed from the estimation of a Logit model

where the utility function includes not only residuals of the first stage of the 2SCF, but

also one of the instrumental variables. The results of the estimation of this model are

shown in Table 4-4. It should be noted that the coefficient of zi in Table 4-4 is not

statistically significant (with 95% confidence), as evaluated by a Quasi-t test. This means

that the null hypothesis that both instruments are valid is accepted. Equally, Eq. (4-13)

shows the statistic of the Direct test calculated as a Likelihood-ratio test, where it can be

noted that the outcome is the same, the null hypothesis that both instruments are valid is

accepted.

Table 4-4 Lisbon's Logit Model: Auxiliary Choice Model for Direct Test

Direct test

Variables Z)

s.e

1. Dwelling price (in 100,000 C) -2.976 1.227

2. Dwelling price * 1[Income > 2,000 C/M] 0.8533 0.5482

3. Dwelling price * 1[Income > 5,000 C/M] 0.8093 0.4787

4. Distance to workplace (in Km) -0.2562 0.05336

5. Log [Dwelling Area (in M2
)] 2.255 0.7461

6. Log [Dwelling Age (in years) +1] -0.4650 0.1219

7. 1.215 1.122

8. z1 0.1498 0.9566

Log likelihood at Convergence L(O) -560.04

Log likelihood at Zero L(0) -589.06

Adjusted p 2  0.06285

Sample Size N 63

Choice-Set Size J 11,501

Logit Model combining Imokapa database and SOTUR survey for

Lisbon, Odivelas and Amadora. f/M: Euros per month

SDIRECT =0.02450 <<,95% =3842
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4.6 Conclusion

In this chapter, I summarized the state-of-the-art in testing for the validity of instruments

in discrete choice models. Then I developed two novel tests for the validity of

instruments in this framework. The first test was termed the Regression-based and is

applicable only to Logit models. This test is an adaptation of the Sargan test for linear

models that uses the asymptotic results derived by McFadden (1987) to construct a simile

for the residuals in Logit models. The second test developed was termed the Direct test.

This test is applicable to diverse choice models and can be easily applied using the

outputs from commercial software.

Using Monte Carlo experimentation, I showed that the tests behave as expected and

proved, for the binary Logit experiments analyzed, that the Regression-based and Direct

tests have better power properties compared to the available Amemiya-Lee-Newey test. I

also showed that, when the instruments are highly correlated, the power of the tests may

be severely affected. Finally, the application to real data confirmed that the price of

similar dwellings, within a certain vicinity, make appropriate instrumental variables for

endogeneity in residential location choice modeling. In addition, this application showed

that the tests under study were applicable, and performed adequately.
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Chapter 5

Sampling of Alternatives in Multivariate

Extreme Value Models

5.1 Overview

The computational burden and the impossibility of identifying or measuring the attributes

of a huge number of alternatives in spatial choice models, makes it necessary to only

consider a subset of the choice-set in practical applications. McFadden (1978)

demonstrated that if the model underlying the choice process is Logit, the problem of

sampling of alternatives and estimation can be addressed by adding a corrective constant

to the systematic utility of each alternative.

The Logit model requires the assumption that the error terms of the random utilities

are uncorrelated among alternatives. This assumption may be invalid for some spatial

choice models. In residential location, the error terms may be correlated among dwellings

located nearby. Equivalently, in route choice modeling, routes that share sets of common

links may be perceived as more similar than other routes that are complete substitutes,

breaking from the Logit assumption.

Building on an idea originated by Ben-Akiva (2009), in this chapter, I extend

McFadden's results to the Multivariate Extreme Value (MEV) models, a class of closed-
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form discrete choice models that allows for different degrees of correlation among

alternatives. The chapter is structured as follows. The next section describes McFadden's

results on sampling of alternatives in Logit models. Next, the proposed extension to MEV

models is presented. The following sections describe the formulation of the proposed

methodology to the Nested and the Cross-Nested Logit models, the main members of the

MEV family. Then, the effects of the proposed methodology are analyzed using a Monte

Carlo experiment and real data on residential location choice from Lisbon, Portugal. The

final section summarizes the main conclusions, implications, and potential extensions of

this research.

5.2 Estimation and Sampling of Alternatives in
Logit Models

Consider the random utility Ui, that a household n retrieves from alternative i, which can

be written as the sum of a systematic part V and a random error term c, as shown in Eq.

(5-1)

Uin = V,, + -0i = V (x. #*+ -0i, (5-1)

where the systematic utility depends on variables x and parameters p*.
Then, if s is distributed Hid Extreme Value (0,pt), the probability that n will choose

alternative i will correspond to the Logit model shown in Eq. (5-2), where C, is the

choice-set of Jn elements from which household n chooses an alternative. The scale u in

Eq. (5-2) is not identifiable and usually normalized to equal 1.

p1n

Pi)= e Uj (5-2)

jeC,

Consider that, of the true choice-set C,, only a subset D, with J, elements is sampled

by the researcher. For estimation purposes, D, must include (and therefore depends on)

the chosen alternative i. Otherwise, the quasi-log-likelihood of the model may become

unbounded, making the estimation of the model parameters impossible. To understand

why, consider the case of a utility function that is linear in at least one variable x, which

can take positive and negative values. If for at least one of the N observations x takes a
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positive value for the chosen alternative and, for all alternatives in Dn (which by chance

does not include the chosen) x takes negative values, then the quasi-log-likelihood of the

model will always increase with the coefficient of x. In other words, the problem will be

unbounded.

The joint probability that household n will chose alternative i and that the researcher

will construct the set Dn corresponds to r(i,Dn). Using the Bayes theorem, this joint

probability can be rewritten as shown in Eq. (5-3). z(D, I i) is the conditional probability

of constructing the set D,, given that alternative i was chosen. z(i I D) is the conditional

probability of choosing alternative i, given that the set D, was constructed.

(i, Dn)= Z(D, I i)P,(i) = z(i I Dn)z(Dn) (5-3)

Since the events of choosing each one of the alternatives in C are mutually exclusive

and totally exhaustive, it is possible to use the Total Probability theorem (see, e.g.,

Bertsekas and Tsitsiklis, 2002) to write the probability ,r(Dn) of constructing the set Dn

as shown in Eq. (5-4), where the second equality holds because Z(Dn I j)= 0 Vj Dn .

ff(Dn)= Zz(Dn I j)P,(j)= Z (D, ij)P,(j) (5-4)
jeC, jeD,

Substituting Eq. (5-4) and the Logit choice probability P,(i) shown in Eq. (5-2) into

Eq. (5-3), Eq. (5-5) is obtained by canceling and re-arranging terms.

7t(i I D)= v+n e (Dj) (5-5)

eD
jE Dn

The expression In z(Dn I j) is termed the sampling correction.

Eq. (5-5) indicates that the conditional probability of choosing alternative i, given that

a particular choice-set Dn was constructed, depends only on the alternatives in Dn. This

results from the cancellation of the denominators when dividing the probabilities of two

alternatives in the Logit model, which is known as the Independence of Irrelevant

Alternatives (IIA) property. Note that although IIA is a convenient mathematical

property, it results from the assumption that the error structure is iid, a statement that may

be unrealistic in spatial choice models.
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McFadden (1978) demonstrated that if z(D, I j)> 0 and known for all j in Dn, and if

the true model is Logit with choice-set Cn, it is possible to obtain consistent estimators of

the model parameters # * by maximizing the following quasi-log-likelihood function:

NV (xj,,#)l1n z(D,,i,xj

QLLIgit,.D Ln V(xj,#lnz(Dnlj,x.) . (5-6)
n=1 le

jED,

To demonstrate McFadden's (1978) consistency result, assume that sets C and D do

not vary across the sample. This assumption is not essential and can be easily

generalized, but helps to reduce the notation considerably.

Then, note that maximizing Eq. (5-6) is the same as maximizing Eq. (5-6) times 1/N,

which is in turn a sample analog for the expected value E( ) of the log-likelihood of Eq.

(5-5) over the population.

1 N eV (xi.,#)+1nE(Di,xn V(x,#i)+ln (Di,x)

-Z n Vn(x V(x,#)+(n x(Dij,x)

Nn=1 I e
jE=D je=D

The expected value depends on the true parameters #*, the sampling protocol used to

draw D, and the density function of dataf(x) as follows:

E( )=n ev (xflln(Dx) f (i, D, x)di dD dx
I (xI, ) (Dij,x)

je= D

E( )=fZln e P(i I C,*, x)z(D I i, x)f(x)dx.
iEC DcC I eV (xj,,# jen x(DIj,x )

\ jeD

In re-arranging terms, recall that z(D I j, x)= 0 Vj i D. Then, it is possible to obtain

E = Z jGD +1n~rD x) Zln~ eV(xi,$)+1n r(Dlix) V(xi,$8*)+1n r(Di,x)

Df iE V C,6)V(xj,,#)]lnr(D~j,x)' V~y#)1 x(Dx) dx

L jEC jED jED J
Note that the only part of E( ) depending on variables p (the arguments of the quasi-

likelihood maximization problem) have the form of
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Z C(fl)In#(fi), where #(fl)=1.
ie D iE D

This expression has a maximum at 8= ,8* because

(f*)n#(#)] = Z#0(# *) 1 IB)

a[Z (fp*)ln #($)] = Z p,f = 0
a18 .iE D - p=p* i

where the last equality holds because

Z#($l)=1.
iED

Under normal regularity conditions, this maximum is unique and the maximum of Eq.

(5-6) converges in probability to the maximum of the true likelihood. Therefore it yields

consistent estimators of the model parameters (Newey and McFadden, 1986).

Eq. (5-6) can be simplified if the sampling protocol is such that the sampling

correction ln r(D, I i) is the same for all alternatives. Then, the correction term will

cancel out in Eq. (5-6) and can be ignored. The effects of using other sampling protocols

are studied by Manski and McFadden (1981), Ben-Akiva and Lerman (1985),

Watanatada and Ben-Akiva (1979) and Frejinger et al. (2009).

Diverse applications of McFadden's results on sampling of alternatives for Logit

models can be found in the literature. Some examples are Parsons and Kealy (1992) and

Sermons and Koppelman (2001). In turn, the extension of McFadden's results to non-

Logit models is a problem for which few little progress have been made in the last 30

years. Some advances have been done for choice-based samples; cases where the full

choice-set is available to the researcher, but the observations are instead sampled

depending on the choices. First, Manski and Lerman (1977) proposed a consistent but

inefficient estimator for non-Logit models. This estimator was also used by Cosslett

(1981) and by Imbens and Lancaster (1994). Later, Garrow et al. (2005) proposed an

efficient estimator for a particular case of the Nested Logit model. Lastly, Bierlaire et al.

(2008) proposed an alternative estimator that is applicable to MEV models with choice

based samples and does not require knowledge of the sampling protocol.
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Additionally, some analyses have been done regarding the impact of sampling of

alternatives in Logit Mixture models. For example, McConnel and Tseng (2000), and

Nerella and Bhat (2004), used Monte Carlo experimentation to study the problem of

sampling of alternatives in random coefficients Logit models and found that sampling

causes only small changes to parameter estimates. In turn, Chen et al. (2005) used Monte

Carlo experimentation to show that, for Logit Mixture models that capture correlation

among alternatives, the effects of sampling might be severe. Finally, Domanski (2009),

citing an unpublished paper attributed to Haefen and Jacobsen, claims that the use of the

expectation-maximization algorithm (Train, 2009) might result in the consistent

estimation of model parameters while sampling of alternatives in random coefficients

Logit Mixture model.

Regarding the problem of sampling of alternatives for the Nested Logit, several

authors have directly applied McFadden's results for Logit without any modification.

Examples of these type of applications include Berkovec and Rust (1985), Train et al.

(1987), Hansen (1987), and Rivera and Tiglao (2005). As it will be shown later, this

approach may significantly impact the estimators of the model parameters. Finally, to the

best of my knowledge, the only attempt to deal with the problem of sampling of

alternatives in the Nested Logit model corresponds to the work of Lee and Wadell

(2010). These authors use a method based on an idea originally suggested by Ben-Akiva

(2009), which I further develop in the next section.

5.3 A Novel Method for MEV Models

In this section, I present a novel methodology to address the problem of sampling of

alternatives and estimation for Multivariate Extreme Value (MEV) models, based on an

idea originated by Ben-Akiva (2009).

The genesis of MEV models goes back to 1973, when Ben-Akiva proposed the

Nested Logit model. Afterwards, McFadden (1978) showed that the Logit, the Nested

Logit and other models belonged to a more general class of closed-form choice models

that can handle diverse correlation structures among alternatives in the choice-set.

McFadden originally denominated this class of models as Generalized Extreme Value
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(GEV) models. Since the error terms for this class of models follow a MEV distribution,

the models themselves are termed here as MEV.

The joint distribution of the error terms of the utilities in MEV models has the form

F(E,,..., Eg,) = e G(e~1n.,e Jn ;y), (5-7)

where G is a generating function that is specific to each member of the MEV family, and

y is a set of distribution parameters. McFadden (1978) shows that if the generating

function G complies with certain requirements the choice model implied by Eq. (5-7) will

be consistent with the random utility maximization theory. Later, Ben-Akiva and Lerman

(1985) show that the MEV choice probability can be written in a Logit form as shown in

Eq. (5-8)

V (, ,p)Nn G, evIn,, (5-8)

V(x,,p~nG((ev")E y)Ze

where G ((eV,"n r) G(e "n ,...,eV = G,

Given the Logit form of the MEV model, it might look as if the problem of sampling

of alternatives can be easily extended to MEV by following the same process of analysis

deployed before for Logit, as shown in Eq. (5-3)-(5-5). That procedure results in the

following expression for the conditional probability of choosing alternative i, given that

set D, was constructed:

)r~i I D JV (x.,O,)On G , (ev V'nX.C, ;y +n z(D.1i)

eV ( ,GDe" e , ;K +1n r(D.\j)

jeD,

Then, the same demonstration used by McFadden (1978) can be used to show that the

maximization of the following quasi-log-likelihood function

V (z,,,p)+-1n G, ev, tec.,;y+1n x(DnVl)
N N e(~'~l)~l;~IzD~

QLMEV,D,C = Inz(i I D)= ZIn ( ,,"6Y1nj evil,),, ; c(g1 j) (5-9)
n=1 n=1 Z eV G cn

j(eD,
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leads to consistent estimators of the model parameters. However, it can be immediately

noted that Eq. (5-9) is not practical. Even though the denominator of the choice

probability depends only on Dn, the argument of the term in G, still depends on the full

choice-set Cn. Ben-Akiva (2009) suggests that this problem might be solved if Gi, is

replaced by an estimator that depends only on the subset Dn.

In this chapter, I formalize the idea proposed by Ben-Akiva (2009), analyze the

conditions required for its success, study the asymptotic properties of the estimators

resulting from it, determine the correct expansion factors required in some relevant

examples, and study the properties of the estimators using Monte Carlo experimentation

and real data.

The results on consistency, asymptotic normality and efficiency can be summarized

in the following theorem:

Theorem: Given N observations, a choice-set C, of cardinality J, and a subset D, of

cardinality J,. if

a) r(D, I j)> 0 VjeD,, and r(D, I j)= 0 Vj e D,,

3V G(ev,. v..j r)
b) the choice model is MEV and G1,, = a'

c) G,, = f(B (Cn)) where f is continuous and twice-differentiable,

d) 5 (Dn ) is a consistent (in J,) and unbiased estimator of Bi (C,,), and

e) Var($,,, ) = K, /Y, with K, scalar;

then, the maximization of the quasi-log-likelihood function

N N v(x.,f$)+1n f ($5(D) I-n z(DIi)

QLMEV, D = n(iID,)= ln V (xi.,p4n f( 1 (D.))in ,. (DIj) (5-10)
n=1 n=1 e

je D.

yields, under general regularity conditions, consistent estimators (in N) of the model

parameters p*, as , increases with N at any rate. If J,, grows faster than VI, the

estimators of the model parameters will be consistent, asymptotically normal, and as

efficient as the estimators obtained from the maximization of a quasi-log-likelihood
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shown in Eq. (5-9). Finally, if J, is finite and the protocol is sampling without

replacement, J, needs to increase only up to J = J, in order to achieve consistency and

relative efficiency.

Proof. Given that Bin is a consistent estimator of Bin , as J, grows, the Slutsky theorem

guarantees that ln f (i (D,)) will also be a consistent estimator of In Gin, because the log

and f are continuous. Equivalently, since (i I Dn) is continuous in In Gin, the Slutsky

theorem guarantees that (i I Dn) will be a consistent estimator of z(i I Dn). Finally,

McFadden's consistency results for Logit, shown in Eq. (5-6), guarantees that the

maximization of the quasi-log-likelihood shown in Eq. (5-10) will result in the consistent

estimation of the model parameters as N grows.

Note that the claim of McFadden's consistency result is established as N grows, but

the consistency of Bn, ln f($,(Dn)) and ?c(i I Dn) is established as J, grows. To rely

legitimately on the Slutsky theorem, it is indispensable to determine a concordance

between J, and N. This concordance can be established by analyzing the asymptotic

properties of the estimators.

The asymptotic distribution of the estimators of the model parameters that result from

the maximization of the quasi-log-likelihood shown in Eq (5-10) can be derived using the

two-stage approach employed by Train (2009, section 10.5) to analyze the asymptotic

properties of simulation-based estimators. In a first stage, I will analyze the asymptotic

distribution of the sample average of the score, the gradient of the quasi-log-likelihood

shown in Eq. (5-10). In a second stage I will use those results to derive the asymptotic

distribution of the estimators of the model parameters.

Consider that the choice-sets C and D, of cardinalities J and J respectively, do not

vary across observations, and that there is a single term InGn that needs to be

approximated for each observation n. Then, instead of Bin, the term considered in this

case should be Bn. These assumptions are not essential, and can be easily generalized, but
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help in substantially reducing the notational burden. With the same purpose, I will refer

to the whole set of model parameters p and p, just as p.

Under this setting, I will term ^(#) the sample average of the gradient of the quasi-

log-likelihood evaluated using the estimator B, as follows:

i N N nRN V (X;,,)+n f (5.__+_n__(Di,$)

Nn.4 N n_1 af6 n=1 a#6 le V(xj,,6hln f(h.)anx.(Dlj,,6)

je D

To study the asymptotic distribution of g($8) in the vicinity of the true values p*,
consider the following re-arrangement of terms

g~p) g ($*)+[E(9(*) g ($*)+ [ ($*) E(9(*)]
A2  A3

The first term A, = g($8*) is the statistic that is being approximated by 9($*), where

1 N aln n(f6) 1 N aV (xi,$)+n G,(C)+In r,(li,#)

g #)-= In ,,pInG.(C)+lnr,(Dij,$)Nn=1 n=1 afl E x'
jED

The second term A2 = E(g(f$*))- g($j*) corresponds to the bias of the estimator of

g($*). The third term A3 corresponds to the noise of the approximation, which is the

difference between a particular realization of g ($8*), and its expected value.

Consider the noise term A3, which can be rewritten as follows:

A3 = 9(*) E(9(*)

A3 = Id,
Nn

where each dn is the deviation of g($8 *) from its expectation for observation n. Note that

each dn depends on a particular draw of alternatives to construct the set D. This means

that there is a distribution of values of dn depending on all possible draws of alternatives

in D. The distribution of dn has zero mean because the expectation is subtracted in the

creation of dn. Also, note that the variance of d, should decrease with the cardinality of D

because g($B*) should become closer to its expected value as Y increases. To account
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for this effect, the variance of d, can be expressed as Sn/j, where S, is the variance

when J = 1. Then, relying on the generalized version of the central limit theorem (Train,

2009), the noise A3 will have the following limiting distribution:

-IA 3  d > Normal(O,S/J),

where S is the population mean of S,. Consequently, the asymptotic distribution of the

noise A3 will be

A3 Normal(0, S/JN).

It is interesting to note what occurs with the noise A3 when N increases but J is

fixed. In this case, -JIA3 will have a limiting distribution, but will not vanish as N

increases. In turn, the asymptotic variance of the noise A3 will decrease as N increases,

even if J is fixed. Note also that when the protocol is sampling without replacement and

J is finite, J needs to increase only up to J, since from that point

g($)E(9())g()

Consider the bias term A2. This bias exists because the method described in Eq. (5-10)

considers an unbiased estimator Bn of B, but the calculation of g($8) involves a series

of nonlinear transformations of Bn. The bias can be studied by taking a second order

Taylor's approximation of g($) around Bn = Bn. Noting that gn($,B,) = g($l), it

follows that

gn (#)= g ($)+$ 5, [.($)-B B($6)1+ " E' $) B2$ +oin .
aB, 2 DB"nn

Then, taking expectations (over possible realizations of the set D), recalling that Bn is an

unbiased estimator of B , and considering that the discrepancy on has zero mean, this

Taylor's approximation can be rewritten as

E(8($))2- gn(8)= V 5$
2 B
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Note that the Var(Bn (8)) should decrease as J increases because then B will

become progressively closer to B,. Assuming that this relationship can be captured by

the expression Var(E,(pf))= K /j, where Kn is a scalar, the bias A2 can be rewritten as

A2 = E(9()) g() ZE(g ($) gn(#Nn

1 1 2 n($l) Kn
A2 2 TN n 2 3,

Z

K A
where Z is the sample average of -- "2 .

2 aB2

The bias A2 will vanish as N increases, if and only if J increases also with N.

Otherwise, gc(fi) will be an inconsistent estimator of g($8). Instead, an even stronger

assumption is required to achieve asymptotic normality. To understand why, consider the

bias A2 normalized for sample size N

7A2 Z .

This term will vanish as N increases, if and only if j increases faster than - IK.
Otherwise, the estimator g(fi) will have neither a limiting nor an asymptotic distribution.

Equivalent to what occurred with the noise A3, note that when the protocol is

sampling without replacement and J is finite, J needs to increase only up to J, since

from that point E( ($8)) = g($8) because any resorting of the alternatives in the choice-set

C will have no impact on the choice probabilities.

In summary, it was shown that if J increases with N at any speed, f$) - > g($)

and when j increases faster than -I, ^(#8) will be asymptotically Normal. Given that

g(#) > g($8), the limiting and asymptotic distributions of g($8) will be the same as

those of g().
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To study the asymptotic properties of g($5), label W the population variance of

g6,*). Then, assuming that g($) equals zero in the population, by the central limit

theorem, the limiting distribution of g(f$) corresponds to

_ _(g($*)-0) d > Normal(0, W),

and the asymptotic distribution corresponds to

g($5*)~a- Normal(0, W/N).

It is then possible to combine the results for the components of g(8) in order to study

the asymptotic distribution of the estimators $ of the model parameters p. This can be

achieved by taking a first-order Taylor's expansion of g(f) around the true values 8*

9Mf= g($8*)+N -$8* +o,,

where R = ag/afl and the discrepancy o, disappears asymptotically. Then, note that the

estimators / of the model parameters plare defined by the condition g(0)= 0, because

dividing Eq. (5-10) by N does not impact the solution of the problem. It follows that the

limiting distribution of the estimators is

fl*)= (N-1)R($l*)= -( R-1N A + A2 + A3 ). (5-11)

As established before if J increases faster than V the terms A2 and A3 will vanish.

Under this condition, the term A, in Eq. (5-11) becomes asymptotically equal to g($

which has a limiting distribution of .V(g($5*)-0) 4 Normal(0,W). Note that

R P > R , where R = E(h). This implies that the limiting distribution of the estimators

of the model parameters becomes

-$* d > Normal(0, R-1WR-1), (5-12)

and their asymptotic distribution will be

a/

Normal(#*, R 'WR 1/N)= Normal($*, fl/N), (5-13)

where A=R-'WR-', W=VarD (/5 1D) and R= E 1
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Q is usually defined as the "robust" or "sandwich" variance-covariance matrix of the

estimators of the model parameters (Train, 2009). Berndt et al. (1974) proposed an

estimator of f that is known as the BHHH matrix and is used, for example, by the

discrete-choice estimation software Biogeme (Bierlaire, 2003). To deploy the BHHH

matrix for this case, note that R is the Hessian of the model shown in Eq. (5-9). A

consistent estimator of R is its sample analog, which can be constructed from the Hessian

of the quasi-log-likelihood shown in Eq. (5-10). Equivalently, the variance-covariance

matrix of the score of the model shown in Eq. (5-10), evaluated at the estimated values

0), is a consistent estimator of W. Given that 0, w~l) can be calculated as

the outer product of the scores of the model shown in Eq. (5-10). In summary, the BHHH

estimator for the variance-covariance matrix of the estimators of the model parameters

resulting from the maximization of the quasi-log-likelihood function shown in Eq. (5-10),

corresponds to the following expression:

A 21nkt I D) alnfr I D)alnk, 0 D) I2nA I D)

These results imply that the estimators obtained by the maximization of Eq. (5-10)

will have the same variance-covariance matrix as the estimators that would be obtained

by using Eq. (5-9); that is, if the full choice-set C is available for the calculation of the

expansion of the term InG,. Then, it can be affirmed that estimators obtained by

maximizing Eq. (5-10) are efficient among all possible approximations of the model

described in Eq. (5-9). Q.E.D.

It is interesting to note that the estimators obtained by maximizing Eq. (5-9) are not

globally efficient because Eq. (5-9) is not the true log-likelihood and therefore the

Crammer-Rao lower bound is not attained. This also implies that the estimators obtained

by using McFadden's (1978) method for Logit are also inefficient. McFadden (1978) did

not study the asymptotic distribution of his estimators. However, following the same line

of analysis deployed in this section, it can be shown that the asymptotic distribution of

McFadden's (1978) estimators will be equal to Eq. (5-13), using instead Eq. (5-6) to

calculate the terms R and W.
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Additionally, the fact that the estimators obtained with the method deployed in Eq.

(5-10) will not be consistent unless J increases with N, implies that, in practice, we

should test the stability of the estimators of the model parameters as a function of J. If

the estimators for different values of J are statistically equal, we can be sure that the

finite sample (of alternatives) bias is negligible. Otherwise, J should be increased until

attaining stability. This is equivalent to the need for testing the stability of Logit

Mixture's estimators as a function of the number of draws, in the simulated maximum-

likelihood framework (Walker, 2001).

The practical implementation of the method to achieve consistency and asymptotic

normality under sampling of alternatives in MEV models depends on the specific MEV

model and the sampling protocol being considered. In the next two sections, I analyze

this implementation in detail for the Nested and the Cross-Nested Logit models,

respectively. Then, for illustrative purposes, in Section 5.6, I develop a Monte Carlo

experiment where the performance of the method is analyzed under different

circumstances. Finally, in Section 5.7, the methodology is applied to a Nested Logit of

residential location choice that was estimated using real data from Lisbon, Portugal.

5.4 Formulation of the Method for Nested Logit

The Nested Logit model is a closed-form discrete choice model that allows for the

correlation among random components of the utilities of alternatives that belong to

mutually exclusive and totally exhaustive subsets (or nests) of the full choice-set. In this

model, the marginal choice probabilities are written as the product of the conditional

probability of choosing each alternative (given that the nest is chosen) and the marginal

probability of choosing the nest. The utility of a nest is defined as the inclusive value or

the expected maximum utility of choosing the alternatives that belong to that nest (Ben-

Akiva and Lerman, 1985).

McFadden (1978) showed that the Nested Logit model can be alternatively

formulated as a member of the MEV family. The generating function G for a Nested

Logit model with M nests is
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p

G(eVin ) Z 4,.vm ," (5-14)
m=1 iC, ( ),

where m(i) is the nest to which i belongs, y is the set of scales Pm of the nests, and Cm(i)n

is the set of alternatives that belong to the nest m(i). In this case, In Gin corresponds to the

expression shown in Eq. (5-15).

InGi = J/ - I In Eeu'(")vj" +1npl+ (pm - 1)Vn (5-15)

Then, if a sample Dm(i)n, is drawn from the true choice-set Crn(ijn, the only term that

would be affected (and therefore needs to be approximated) is the sum of the

exponentials of the systematic utilities, the argument of the logsum. The sum of the

exponentials will be denoted as

B, = Z e'"(i)v

One way of approximating Bin is by constructing an expanded sum of the

exponentials of the utilities of the alternatives in Dm(i)n. Then, the challenge would be to

determine the expansion factors wn required to obtain an unbiased and consistent

estimator of the sum of the exponentials.

To obtain an unbiased estimator, the expansion factors have to comply with the

conditions shown in Eq. (5-16), where the first expectation is taken over all values of x,

and the second expectation is taken over x and all potential sets Dm(i)n.

E(B,)- E(h)=0 = Er Ze"')vj" JExD wjnel''"()v)" (5-16)
jECm()n jeDm(i)n

Note that each ep'"ivj" can be seen as a random variable with mean ,m(i)nI the mean of

the empirical distribution of e'('v)". In this case the first component of Eq. (5-16)

becomes

E(Bn)=E e'Jvn()m(i)n*

jECm(i)n
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The expansion factors w1 , required to obtain an unbiased estimator of Bin shall depend

on the sampling protocol. For analytical purposes I will consider first that the protocol is

sampling without replacement and then that it is sampling with replacement. Finally, I

will show that the expansion factors w1n required in both cases can be summarized in a

single expression.

Consider first that the protocol is sampling without replacement by nest. Then, using

the following indicator function

1jED.( = 1 if j c Dm(),

1 = 0 O/w

it is possible to rewrite E(B1j in Eq. (5-16) as follows:

E(B j)= E Zwje#"(')vJ" = E ZljEDm(i)n wjne"n

Then, by the Law of Total Expectations (also known as the Law of Iterated

Expectations), which is equivalent to the total probability theorem used in Eq. (5-4),

E(B 1n = E E ZljD wje'' I ED(),
jEC.n(i)n,

E (E E 1 w ,E(e")vfv I IjEDm(),j = E ZjeDm(i)n Wjn m(i)n

EBin = E(1jED() )jnqm(i)n
jECm(i).

where E(em(''iv I 11 jE ) = rm(i)n results from the fact that the distribution of e'""'v "

determines the sampling of Dm(i)n, but the causality does not go in the other direction.

Given this result, one way for Eq. (5-16) to equal zero is by having

wj =1/E(1JED,(;))

where E(1jD(. ) is the probability of drawing alternative j, because the protocol in this

case is sampling without replacement.

Consider now that the protocol is sampling with replacement by nest. Then it is

necessary to define the set Dm(i)n and the indicator function in . The former is a set that
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includes all the repetitions of the alternatives sampled, and the latter corresponds to the

number of times alternative j is repeated in the set D,(i)n. Then Bin can be rewritten as

follows

Bin = ( = Zhe^"V ) ep,"'Yj" , and therefore
jE D.g ), jE C,,g).

E($in)= (wjnq,(,)fE(ilj.) and then w= l/E(ijn).
jECm(i)n

Finally, since

Bin = Zine()Vi~ = Zhjvjne ('v, =- :Wi ef i

jeD,(i)n jeD,(i), jEDn(i)n

the expansion factors required to obtain an unbiased estimation of the sum of the

exponentials, for the case of sampling with replacement, are equal to

wn = hn/ E(ijn ).

The expansion factors required when the protocol is with or without replacement can

be summarized in a single expression by noting that, when the protocol is sampling

without replacement, hin = 1 if j is in Dm(i)n, and E(1bD) is also the expected number of

times alternative j would be drawn to form the set Dm(i)n. Then, the general expression for

the expansion factors required to obtain an unbiased estimator of Bin can be denoted as

shown in Eq. (5-17).

n.
Win = "jn (5-17)

jE(n)

The next step is to prove that the expansion factors shown in Eq. (5-17) will lead to

consistent estimators of Bin as Jm(i)n increases. This results directly from any weak Law

of Large Numbers. Actually, consistency would be granted even if no expansion factors

were considered at all. As Jm(i)n grows, even an estimator of Bin that only considers the

simple sum of the exponentials of the alternatives in Dm(i)n will eventually be as near to

Bin as desired, as Jm(i)n increases. The difference with the expansion factors shown in Eq.

(5-17) is that the speed of convergence will be much faster, leading to better finite sample
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properties. In addition, having an unbiased estimator is what allows for the derivation of

the results on efficiency and asymptotic normality.

5.5 Formulation of the Method for Cross-Nested
Logit

The Cross-Nested Logit model is a closed-form discrete choice model that allows for

correlation among the random components of the utilities of all alternatives in the choice-

set. Similar to the Nested Logit, the Cross-Nested Logit considers a set of nests m.

However, in the Cross-Nested Logit model the nests are totally exhaustive but not

mutually exclusive in the coverage of the alternatives in the choice-set. The correlation

structure is defined by a non-negative weight ajm representing the degree of belonging of

alternative j to the nest m. Examples of applications of the Cross-Nested Logit model and

variations of it are the works of Small (1987), Vovsha (1997), Vovsha and Bekhor

(1998), Bierlaire (2001), and Papola (2004).

The Cross-Nested Logit model can be formulated as a member of the MEV family. In

general, with M nests, the generating function G that results in the Cross-Nested Logit

model is

G((ev' ; y= ZXa,,eu'"v

"m=1 ie C,

where m are the nests, y corresponds to the set of scales pm of the nests, and the weights

aj, 0. Then, ln G,, corresponds to the following expression:

In G1i = ln paI'- aje'i

m=1 je C.

Just as it occurred with the Nested Logit, if a sample Dn is drawn from the true

choice-set C, the only term affected will be the sum of the exponentials, which is now

weighed by the terms ajm. Then, consistency, relative efficiency, and asymptotic

normality can be achieved for the Cross-Nested Logit while sampling of alternatives,

using the following estimator:
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Bin= wjaje'~i = Bin ajm e v
jeDn je C

The same derivation used in Eq. (5-16)-(5-17) can be used to show that the expansion

factors w.n required in this case are also those shown in Eq. (5-17).

5.6 Monte Carlo Experiment

5.6.1 Model Setting

The following Monte Carlo experiment was performed to analyze and illustrate the

properties of the proposed method in achieving consistency in the case of sampling of

alternatives in MEV models. The setting of this experiment is summarized in Figure 5-1.

The true or underlying model is a Nested Logit with 1,005 alternatives, among which the

first 5 belong to one nest (JI = 5) and the other 1,000 to a second nest ( J 2 =1,000). The

systematic utilities Vin depends upon two variables, x1 and x2, which were constructed iid

Uniform (-1,1) for the N=2,000 observations. The true coefficients of the model are

p =1, p, =2,pu2 = = $, =1.

P=I

p, =2 2 =3

1.. .1,004

V (x, 9,$)= I xi, + lx 2

Figure 5-1 Monte Carlo Experiment: Nesting Structure. 1,005 Alternatives

N=2,000 J1 =5 J =5; J2 =1,000 J 2 = 5 and500
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The methodology used to implement the Nested Logit model shown in Figure 5-1 for

Monte Carlo experimentation differs from that used in the experiments deployed before.

Previously, the chosen alternative for each observation was generated as that with the

largest random utility. That methodology required the generation of the Extreme Value

error term for each alternative and observation, a task that is easy to perform for the

binary Logit. In turn, the generation of error terms from a 1,005-dimensional non-iid

Multivariate Extreme Value distribution using Eq. (5-7) is much more complicated in

terms of computational time and precision. Therefore, the approach used in this case is

the following. First the choice probability was calculated replacing the true values of the

parameters in Eq. (5-8); then, these choice probabilities were used to build a discrete

cumulative density function by alternative; then, a random number Uniform (0,1) was

generated for each observation; and finally, the chosen alternative was determined, from

the random number, using the inverse of the cumulative density function.

The sampling protocol used to draw alternatives from the choice-set in this

experiment was stratified importance sampling without replacement by nest. First, the

chosen alternative for each observation was included. Then non-chosen alternatives were

randomly sampled, without replacement by nest, to make a total of J, =5 for the first

nest, and J 2 = 5 and J 2 = 500 for the second nest.

Given this sampling protocol, the conditional probability of constructing a particular

set D, for observation n, given that alternative i was chosen, corresponds to

( i -l-1 ( M# i)-1
c(D Ii) = "- ) ,

" J,,() -1, Jin.,m(O)

where m'#m(i) is the nest to which i does not belong and the expression on parenthesis

correspond to the binomial coefficient.

It can be shown that

J (i) -~ _ (JMn(i) -1)! _ J m(i)rJm(i))
Jm(i -1j (J,~i -1)!(Jn 1-J,,)-) J,) ' I ,

and therefore, the conditional probability of constructing the set Dn, given that alternative

i was chosen, corresponds to
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(D I i)= 1(2TT (5-18)
"J,,(i) J1 J2 -

Given that the second term in Eq. (5-18) does not vary across alternatives, it will

cancel out when taking the log to calculate the sampling correction In z(D, I i). Then, the

estimator of the conditional probability of choosing alternative i, given that the set D,

was constructed, will correspond to Eq. (5-19)

V (. ,,/)Hn f(h.(D))ln "

fr(i I Dj )= j , (5-19)
" (xj,,,6Ysaf(hjjj n.(o)n

jE D,

where In f(h,, (D,))= -1 In Zw,,e'(')vJj" +lnu +(m(,) -)V,.

pJM (i) jED,.gi).

The final step corresponds to the specification of the expansion factors wjn. This task

is substantially different when the same set D, used for the sampling correction is or is

not used for the expansion of the sum of the exponentials.

Consider first that the set D, is used also for the expansion of the sum of the

exponentials. Then, given that the sampling protocol is without replacement, the

numerator in Eq. (5-17) will equal 1. E(hin), the expected number of times alternative j

might be sampled to construct the set D,, remains to be calculated. Given that the

protocol is without replacement, E(K..) corresponds to the probability of sampling

alterative j.

E(hi) can be calculated using the Law of Total Expectations. The idea is to divide

the space into mutually exclusive and totally exhaustive events with known probabilities

of occurrence, and for which the conditional expectation of hj, is also known. Consider

the following events:

A1 : The chosen alternative is j

A2: The chosen alternative is notj, but it is within those in the nest m(j)

A3: The chosen alternative does not belong to the nest m(j).
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The events A1, A2 and A3 are totally exhaustive and mutually exclusive because only

one alternative is chosen and the nests in the Nested Logit model are mutually exclusive

and totally exhaustive. The probabilities of these three events depend on the choice

probabilities:

P(AI)= P(j) : The probability of choosing alternativej.

: The probability of choosing other alternatives in m(j), which

is equal to the sum of their choice probabilities.

P(A3 ) = - J~ ) : The probability of choosing an alternative outside m(j),

Ecm(j which is equal to 1 minus the probability of the nest m(j).

The conditional expectations of n- given the events A1, A2 and A3 are also known:

E(ii, I A1) =1 : Because the chosen alternative is always sampled.

: Because if j is not chosen, but the chosen alternative is in

E ( I A2 )=- m(j), only J,(j) -1 out of JmW) -1 alternatives remain to be
Jmj) -1 sampled from the nest m(j).

( m(j) : Because if the chosen alternative is in not in m(j), Jn(j) out

j of JW alternatives remain to be sampled from the nest m(j).

Then, by the Law of Total Expectations, the expected number of times alternative j
might be drawn will correspond to

E(hjn)= E(hjn I A)P(Ai)+ E(hjn I A2)P(A2)+ E(hjn I A3)P(A3).

By replacing terms, Eq. (5-20) is finally obtained.

E ~)- PW O( P(j) + 1- 2P () (5-20)
J, W -1 ,Cm JW e,-.j

ltj

The expression shown in Eq. (5-20) for the denominators of the expansion factors

depends on the choice probabilities, which are unknown beforehand in an application

with real data. In section 5.6.2, I analyze alternatives to achieve this goal in practice.

Consider now the case when a set Dn is used for the sampling correction Infr(D, I i),

and a different set D is drawn for the expansion of the sum of the exponentials. I term

this alternative procedure re-sampling. In this case, the conditional probability of
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choosing alternative i, given that the sets D and D, were drawn, will correspond to Eq.

(5-21).

(iDD)= (5-21)
"~ v D(xj.,pl~ln f (h,.(E),,) In J-M

jED,,

As stated before, to formulate Eq. (5-3), the set D, must include the chosen

alternative. Otherwise, the quasi-log-likelihood of the model may become unbounded,

making impossible the estimation of the model parameters. In turn, the set A, used for

the expansion of the sum of the exponentials in Eq. (5-21) does not need to include the

chosen alternative, as long as Dn does it. This small difference is relevant because, if the

sampling protocol used to build the set b, does not require drawing the chosen

alternative forcedly, there is no need for knowing the choice probabilities beforehand to

calculate the expansion factors wjn.

Then, the implementation of the expansion method in practice becomes considerably

simpler. Consider for example that the sampling protocol used to build the set 15, was

importance sampling without replacement by nest. Under this setting, the denominators

of the expansion factors, the equivalent to Eq. (5-20), would simply be the ratio shown in

Eq. (5-22), where J,,, corresponds to the cardinality of 5.

E ___'" (5-22)

5.6.2 Assessment of the Methods with and without Re-sampling

Given this Monte Carlo experiment, the sampling protocol described and the expansion

proposed, five models were estimated and the results are shown in Table 5-1. The first

(No Sampling in Table 5-1) corresponds to the true model, where no sampling was

applied. This model is estimated as a benchmark for the best possible estimators that

could be expected for this particular experiment.

The second model (Full In Gi, in Table 5-1) corresponds to the application of

sampling of alternatives and the corresponding sampling correction, but using the full
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choice-set to evaluate the term In G,, as shown in Eq. (5-9). Even though this model is

impractical because it requires knowledge of the full choice-set, it was estimated to show

that Eq. (5-9) is correct, and to quantify and to differentiate the effects of sampling of

alternatives, when having a reduced choice-set, from its effects in the approximation of

inGin.

Table 5-1 Monte Carlo Experiment: Sampling in MEV with and without Re-Sampling

Expanded Expanded
No Sampling Full in Gn Unexpanded True E-Sampin

Experiments True Prob. Re-Sampling

est. s.e est. s.e est. s.e est. s.e est. s.e

1.009 0.04681 0.9906 0.06112 2.570 0.1612 0.9102 0.06020 0.9301 0.06705

1.062 0.04933 1.027 0.06253 2.630 0.1649 0.9276 0.06124 0.9558 0.06818

p 2.055 0.2076 2.111 0.2289 0.2655 0.006477 2.211 0.2688 1.976 0.2913

~ _ p2 2.824 0.1125 2.881 0.1291 1.130 0.07562 3.313 0.1786 2.853 0.1567

LO) -10,312.09 -1,942.70 -2,036.24 -1,968.59 -2,030.30

L(0) -13,825.49 -4,605.17 -4,605.17 -4,605.17 -4,605.17

-2 0.2544 0.5790 0.5587 0.5734 0.5583

1.009 0.04681 1.005 0.04678 0.7534 0.04708 1.005 0.04679 1.004 0.04679

1.062 0.04933 1.055 0.04915 0.7913 0.04950 1.056 0.04918 1.055 0.04917

A 2.055 0.2076 2.065 0.2088 2.730 0.3086 2.063 0.2088 2.065 0.2091

j2 = 500 #2 2.824 0.1125 2.832 0.1130 3.785 0.2186 2.831 0.1131 2.834 0.1133

LO) -10,312.09 -9,115.24 -9,117.40 -9,115.91 -9,115.37

L(0) -13,825.49 -12,449.12 -12,449.12 -12,449.12 -12,449.12

2 0.2544 0.2681 0.2679 0.2681 0.2675

N=2,000. J1 =5,j, =.Y, =5; J 2 =1,0002 =2 = 5 and 500

The third model estimated (Unexpanded in Table 5-1) considers that a set Dn was

sampled from the full choice-set Cn, that the corresponding sampling correction was

applied, and that the same set Dn was used to construct the term InG,, without any

expansion term. This model acts as a benchmark because it corresponds to what has been

used to date by the researchers to estimate Nested Logit models under sampling of

alternatives (see, e.g., Berkovec and Rust, 1985; Train et al.,1987; Hansen, 1987; and

Rivera and Tiglao, 2005).
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The fourth model estimated (Expanded True Prob. in Table 5-1) corresponds to the

method proposed for cases where the same set Dn is used for the sampling correction and

for the expansion of InG n using Eq. (5-20). The calculation of Eq. (5-20) involves

knowledge of the choice probabilities, which are unknown beforehand in a real

application. However, in this Monte Carlo experiment the true choice probabilities are

available beforehand and are therefore used to show the performance of the method

proposed for the expansion of the sum of the exponentials.

The last model estimated (Expanded Re-sampling in Table 5-1) corresponds to the

method proposed for cases where a set Dn is used for the sampling correction, and a

different set D, generated independently from the chosen alternative, is used for the

expansion of ln Gi using Eq. (5-22). For fair comparison with other models, the number

of alternatives considered in the set D is the same as that used for the set Dn; that is,

in = Jn.

The first result that should be noted in Table 5-1 is that, as expected, all estimated

coefficients for the No Sampling and Full In Gi models are statistically equal (with 95%

confidence) to the true values. Regarding Full In G1,, note that, as the sample size

increases, the standard error of the estimators is reduced as a result of the increment in

the number of cases N(J - 1). In other words, efficiency increased as more information

became available.

Regarding the model Unexpanded, note that for J2 =5, the model estimates are very

far from the true values. Remarkably, one of the scale coefficients is even below one,

which makes this result inconsistent with utility maximization (Ben-Akiva and Lerman,

1985). The bias in this model is reduced substantially for J 2 = 500. This occurs because

the Unexpanded formulation collapses to the true model as the sample size increases.

However, even for the large J 2 , the estimators are still statistically different (with 95%

confidence) from the true values.

In the case of the Expanded True Prob. method, all estimates in Table 5-1 are

remarkably better than those of the Unexpanded model and statistically equal (with 95%
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confidence) to the true ones with 95% confidence, even for J2 = 5. For the bias, note that

it is not negligible for J2 = 5 , but for J2 = 500, it is significantly reduced.

Figure 5-2 shows the evolution of the estimators as J2 is increased for the model

Expanded True Prob. As J 2 approaches J2 , the estimators of the model collapse to those

of the No Sampling model. Remarkably, the estimators quickly stabilize for J2 below

100 and are never far from the true values. As shown in Table 5-1, even for a sample size

as small as Y2 =5, all the estimators are statistically equal (with 95% confidence) to the

true values.

1.05 - - 1.10-

.4 -1.009 ,0 -1.062

0.95-U A 2 1.00

0.90- 0.95-

0.85 0.90

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

J 2  J 2
2.50- 3.30

2.45- 3.25-

2.40 --- 3.20

2.35 --- 315--

2.30 --- r- - - - 310 - - - -

1 2.25-- - - - - - 9 2 3'05--- - --

2.20-- -- 3.00

2.15-0 - - 2.95-

210 - - - - 2.90 -- - - -

2.0.5 T2.055 2.85 -- 284
2.00 2.80

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

J2 J2

Figure 5-2 Monte Carlo Experiment: Estimators as J 2 Increases. Expanded True Prob.

Figure 5-2 is also useful for analyzing the small sample bias. First, note that the

coefficient that has the poorer convergence behavior (larger variance and slope) is $2,

the scale of the second nest. It can be hypothesized that this occurs because sampling is

performed only from the second nest. Figure 5-2 also shows that both scales A and A2

are biased upward and the model coefficients $9 are biased downward. The experiments

analyzed did not allow proposing hypotheses to explain this result. Further analysis of the
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finite sample properties of this estimator, and potential ways to improve them, are left for

future research.

Finally, the last column in Table 5-1 shows that the results for the Expanded Re-

Sampling method are qualitatively equal to those of the Expanded True Prob method.

This indicates that if re-sampling to perform the expansion is possible, it should be

preferred because it avoids approximating the choice probabilities in order to perform the

expansion. In the next section, I analyze the performance of different procedures that can

be used in practice when re-sampling is not possible.

5.6.3 Expansion in Practice when Re-sampling is not Possible

When re-sampling is not possible the results of the method for sampling of alternatives in

MEV shown in Table 5-1, require knowledge of the choice probabilities, which are not

available in an application with real data. To avoid this problem, three methods used to

approximate the choice probabilities are examined and the results are summarized in

Table 5-2.

One alternative is to approximate the probability of the chosen alternative to equal 1,

and the probability of the non-chosen alternatives to equal zero. This model is termed

Expanded All or Nothing in Table 5-2. Replacing these assumptions in Eq. (5-20), the

expansion factors used in this case will correspond to the following:

win =1 if j is the chosen alternative

J,,j-1= ~M if j is not chosen, but another alternative in m(j) is chosen
J -1

wj= ~'" if j is not chosen, and no other alternative in m(j) is chosen.
~m(j)

The expansion factors that result in this case are equivalent to those used by Frejinger

et al. (2009) to approximate the denominator of a Logit model with sampling of

alternatives, and to those used by Lee and Waddell (2010) to expand a Nested Logit

model under sampling of alternatives. That is, although it is not mentioned by those

authors, they implicitly approximated the probability of the chosen alternative to 1, and

the probability of the non-chosen alternatives to 0.
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Table 5-2 Monte Carlo Experiment: Different Estimators of Choice Probabilities

Expanded Expanded Expanded Expanded

Experiments True Prob. All or Nothing Population Shares Iterative Prob.

est. s.e est. s.e est. s.e est. s.e

# 0.9102 0.06020 0.7440 0.05335 1.133 0.06906 0.9444 0.06528

# 0.9276 0.06124 0.7565 0.05417 1.158 0.07020 0.9630 0.06641

p 2.211 0.2688 2.787 0.3327 1.685 0.2151 2.031 0.2734
Ji =5
j = J /U2 3.313 0.1786 4.328 0.2817 2.714 0.1251 3.210 0.1808

LO) -1,968.59 -1,864.44 -1,982.65 -1,991.85

L(0) -4,605.17 -4,605.17 -4,605.17 -4,605.17

2 0.5734 0.5960 0.5703 0.568

1.005 0.04679 1.005 0.04673 1.007 0.04681 1.005 0.04679

# 1.056 0.04918 1.055 0.04912 1.058 0.04920 1.056 0.04918

p 2.063 0.2088 2.066 0.2088 2.059 0.2083 2.063 0.2088
J, =5

~ =500 p2 2.831 0.1131 2.833 0.1131 2.825 0.1125 2.831 0.1130

LO) -9,115.91 -9,114.88 -9,115.92 -9,115.92

L(0) -12,449.12 -12,449.12 -12,449.12 -12,449.12

p2 0.2681 0.2682 0.2681 0.2681

N=2,000. J= 5, , = 5 ;12 =1,000 J 2 = 5 and 500

A second possibility to approximate the choice probabilities needed for the

calculation of the expansion factors is to use the population shares of each alternative.

Although the true population shares are not available in a real application, good

approximations of them are clearly plausible from different sources (Census data for

spatial choice models or flow counts in route choice modeling). This method is termed

Expanded Population Shares in Table 5-2. Replacing the population shares in Eq. (5-20),

the expansion factors implied by this procedure are the following:

Wj = population share of alternative j

Vn=1,- -,N;Vj e C,.

W, + '"W - W + '" I- 1W,
J m - l IEC( J,(j) IEC.(j).

1
;tj
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Finally, an iterative method can be proposed. This method starts with an estimation of

the population shares of each alternative, and then estimates the choice probabilities for

each observation, iteratively, until convergence. This method is termed Expanded

Iterative Prob. in Table 5-2 and can be summarized as follows.

Step 0:

k=O

W = population share of alternative j

Wk 1 Vn =1,- ,N; j e C,

W + 'm() - W + 1- EW '"
mWj~ -Ec-n(j)n leC.(j;)n mWj

1#j

Step 1:

(xj, ,A)+n f(, (wk))

Estimate the model using w to get # and j3k( e

le D,

Step 2:

k+1

P J 1(

( J -l W m(j) lEDm(j)n
ltj

Step 3:

k=k+1

Go to step 1 until convergence.

Convergence can be stated in terms of the estimated parameters of the model, the

expansion factors, or the choice probabilities. For the applications of the iterative

procedure in this thesis, the following stopping criterion was used:

max 5k(j)- k+1(j 1/(l0J).

The three methods proposed to approximate the choice probability when re-sampling

is not possible were used in the estimation of the problem of sampling of alternatives for

the Nested Logit model described in Figure 5-1. Table 5-2 shows the results of the three

methodologies, compared to the results obtained with the Expanded True Prob. method.
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Consider the case of the Expanded All or Nothing and the Expanded Population

Shares procedures. Table 5-2 shows that for J 2 =5, the estimators of both methods are

statistically different (with 95% confidence) to the true ones. Although, comparing these

results with those of the Unexpanded method reported in Table 5-1, it should be noted

that the new estimators have a smaller bias. For J2 = 500, the Expanded All or Nothing

and the Expanded Population Shares estimators are statistically equal (with 95%

confidence) to those obtained by using the Expanded True Prob. method, and also

statistically equal (with 95% confidence) to the true values.

Finally, for the Expanded Iterative Prob. method, Table 5-2 shows that for J2 =5

and J2 =500 the estimates are statistically equal (with 95% confidence) to those

obtained using the Expanded True Prob. method, and also statistically equal (with 95%

confidence) to the true values.

In conclusion, the Monte Carlo experiments showed that the sampling of alternatives

causes a significant bias in the estimators of the model parameters when the choice model

is Nested Logit. In addition, the proposed method for expanding the sum of the

exponentials performed well, even for small sample sizes. In cases where it is possible to

obtain an additional sample to expand the sum of the exponentials, the method proposed

is easily applicable. When it is not possible to re-sample, the method requires knowledge

of the choice probabilities in order to build the expansion factors. In this final case, an

iterative procedure showed satisfactory results.

5.6.4 Additional Experiments

In this section, I present four additional experiments to illustrate the performance of the

proposed method for addressing sampling of alternatives in MEV models, under different

circumstances.

The first three experiments explore the effect of the distribution of the data. These

experiments consider the same structure described in Figure 5-1. The only difference is

that the distributions of attributes xi and x2 vary across observations. Under this setting,

the estimators of the model parameters were obtained for 30 repetitions using the

Expanded True Prob. method and for different values of J2 . Table 5-3 reports the bias,
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mean squared error (MSE) and t-test against the true value of the scale of the second nest

2 for each experiment.

The first experiment is termed Uniform Mixture. For the first 1,000 observations, xi

was drawn from an iid Uniform (-1,1) distribution and x 2 from an iid Uniform (-1.5,1.5)

distribution. For the second half of the observations, xi was drawn from an iid Uniform

(0,2) distribution and X2 from an iid Uniform (-3,1) distribution. Table 5-3 shows that the

sample size required to obtain an estimator of #^2 statistically equal (with 95%

confidence) to its true value is larger than 50 alternatives in this case. This value is larger

than that obtained for the experiment reported in Table 5-1 and shows that the threshold

required for attaining valid estimates of the model parameters depends on the data.

Table 5-3 Monte Carlo Experiment: Additional Experiments on Sampling in MEV

,4 Uniform Mixture Varying J2  Normal Uniform

12 Bias MSE t-test Bias MSE t-test Bias MSE t-test
I2 BisrSEBise true true

10 0.6251 0.4341 3.004 0.5293 0.3146 2.850 1.305 1.831 3.660

25 0.5137 0.2932 3.005 0.3355 0.1378 2.113 0.9991 1.068 3.772

50 0.3031 0.1127 2.100 0.2141 0.06596 1.509 0.7401 0.5873 3.719

100 0.1709 0.04645 1.302 0.1355 0.03640 1.008 0.5010 0.2813 2.874

250 0.09168 0.02408 0.7324 0.07410 0.02166 0.5828 0.2557 0.08757 1.716

500 0.03459 0.01532 0.2911 0.05311 0.01906 0.4167 0.1092 0.02940 0.8265

N=2,000. ji = 5, J2 = 1,000 j, = 5; Average and variance from 30 repetitions. Expanded True Prob.

The second experiment is termed Varying J2 . This experiment considers the same

structure and distribution of the data used in the Uniform Mixture experiment. The only

difference is that the number of drawn alternatives varies across individuals following a

Discrete Uniform distribution with limits

[L2/2J, [22
Then, for example, for J 2 =10 in Table 5-3, the number of alternatives considered for

each of the 2,000 observations can be any integer between 5 and 20, with equal

probability. The results of this experiment are shown in the second column of Table 5-3.

Although this experiment is not directly comparable with the Uniform Mixture setting, it

can be affirmed that the fact that, in both cases, sample sizes around 50 were large
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enough to obtain an estimator of the scale of the second nest that was statistically equal

(with 95% confidence) to its true value, is evidence that varying the sample size across

observations causes only minor impacts in the estimation procedure.

The third experiment is termed Normal Uniform. In this case x, is iid Normal (0,1) for

the first 1,000 observations and Normal (1,2) for the rest. In turn x 2 iid Uniform (1,3) for

the first 1,000 observations and Uniform (0,4) for the rest. The results of this experiment

are shown in the third column of Table 5-3. This experiment shows that the sample size

required to attain estimators that are statistically equal (with 95% confidence) to the true

values is now between 100 and 250. This result is further evidence that the performance

of the method can be significantly affected by the distribution of the data.

P] =2 2 =3

15 6 ,000,005
-'- -1,000,004

V i ,,) = 1xi, + 1x2in

Figure 5-3 Monte Carlo Experiment: Nesting Structure. 1,00,005 Alternatives

The fourth experiment sheds light on whether or not the sample size required to attain

a desirable bias can be stated as a percentage of the cardinality of the true choice-set. The

experiment described in Figure 5-1 was modified only regarding the number of

alternatives in the second nest, which is 1,000,000 in this case. The distribution of xj and

x 2 are again iid Uniform (-1,1) for the N=2,000 observations. The model is described in

Figure 5-3 and the results are reported in Table 5-4.
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Table 5-4 Monte Carlo Experiment: Sampling in MEV. 1,000,005 Alternatives

Expanded
True Unexpanded True

Experiments Values True Prob.

Est. s.e est. s.e

#, 1 2.947 0.3594 0.9403 0.07193

1 2.820 0.3412 0.9118 0.06894

p 2 0.1427 0.003651 1.877 0.5237
J=5

S p 2  3 1.073 0.1322 3.372 0.2203
J2 =52

L(O) -1,348.82 -1,341.87

L(0) -3,670.51 -3,670.51

P2 0.6336 0.6355

1 1.887 0.4404 1.014 0.05930

4, 1 1.784 0.4162 0.9629 0.05586

p, 2 0.1896 0.02426 1.836 0.455
J,=

j2 =500 /#2 3 1.645 0.3837 3.054 0.162

L(J) -9,253.96 -9,241.78

L(0) -12,710.46 -12,710.46

2 0.2723 0.2732

N=2,000. j =5, , = 5 ;J2 =1,000000 , = 5 and 500

In this case the true model is not estimatable with commercial software because the

computational costs are too high. In turn, it is possible to simulate the choices by each

observation, and then to sample a small number of alternatives from the true choice-set

for subsequent estimation. Using this sampling procedure, samples of 5 and 500

alternatives were drawn from the second nest.

Table 5-4 contrasts the estimators that are obtained using the Unexpanded and

Expanded True Prob. methods. Similar to what occurred in the experiments reported in

Table 5-1, the estimators of the Expanded True Prob. method are also statistically equal

(with 95% confidence) to their true values, even for a sample size as small as 5.

However, comparing Table 5-1 with Table 5-4, it can be noted that the confidence is

smaller in the case where the true choice-set has 1,000,005 alternatives.

Given that the quality of the estimators obtained with samples of 5 and 500 are

qualitatively equal when the cardinality of the true choice-set is 1,005 or 1,000,005, it can
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be affirmed that there is evidence that the sample size required to obtain acceptable

estimators is independent of the true cardinality of the choice-set.

In summary, these additional experiments gave evidence that the sample size required

to obtain good estimators while sampling alternatives in MEV models depends on the

distribution of the data available and cannot be expressed as a percentage of the

cardinality of the true choice-set. In general, an appropriate strategy to determine if the

size of the sample of alternatives is large enough might be to test the stability of the

estimators with different number of alternatives sampled.

5.7 Application to Real Data

The final step corresponds to the demonstration of the method proposed for sampling of

alternatives and estimation in MEV models using real data. I revisited the residential

location choice model for Lisbon, which was estimated in previous chapters as a Logit

model. In this case, I considered a Nested Logit model, allowing for correlation between

alternatives on a geographic base. The structure used is shown in Figure 5-4. I considered

one nest for the 3,483 alternatives that belong to the Municipalities of Odivelas and

Amadora, and the other 8,018 alternatives from the Municipality of Lisbon, were

considered to belong to the root of this Nested Logit model.

The nesting structure used is simple principally because of the small number of

observations available. More interesting structures, such as multilevel nests by Freguesia

and municipalities, were impossible to estimate. However, the nesting structure

considered does serve well its main purpose of demonstrating the methodology for

sampling of alternatives and estimation developed in this chapter. Despite its simplicity,

the nesting structure is concordant with what is observed in the city. The municipalities

of Odivelas and Amadora are approximately what Rayle (2008) defined (using a factor-

analysis approach) as the "Inner Periphery" of the central LMA, a sector that has marked

differences with the Lisbon's Municipality.
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p=1

Odivelas-Amadora Lisbon Municipality

Jo-A= 3 ,4 8 3  JL=8,018

Figure 5-4 Lisbon's Nested Logit Model: Nesting Structure

Under this setting, a Nested Logit was estimated with the assumption that the 11,501

alternatives corresponded to the true choice-set. This model considered the correction for

endogeneity caused by the omission of attributes using the 2SCF function method. The

results of this model are reported in the second column of Table 5-5 and are repeated in

Table 5-6. Note that the estimators of the parameters of this Nested Logit model have the

same sign and tend to be upward scaled, when compared with those obtained for the

Logit model reported in Table 2-6. The main difference is in the estimator of the scale of

the nest, which is statistically different (with 95% confidence) from 1 and therefore

causes an important change in the elasticities of the model.

To demonstrate the method studied in this chapter, I performed two experiments

where I sampled a set of alternatives in the choice-set and then re-estimated the model

with and without the expansion of the sum of the exponentials proposed in this chapter.

The sampling protocol used in the first experiment was the following. First, the chosen

alternative was included. Then, alternatives were randomly drawn from the Odivelas-

Amadora nest and from the root (Lisbon) up to make a total of 5 alternatives for each

case.

The results of the model estimated using this sampling protocol, are shown in Table

5-5. In the third column are reported the estimators of the Unexpanded model where the
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sampling correction was applied but the sum of the exponentials of the Odivelas-

Amadora nest was calculated using only the 5 alternatives sampled. Note that several

estimators are statistically different (with 95% confidence) from those of the original

model. Remarkably, the estimator of the scale of the Odivelas-Amadora nest is highly

positively biased. This means that the use of the Unexpanded model for simulation will

cause an important overestimation of the substitution among dwellings in the Odivelas-

Amadora nest. The fourth column of Table 5-5 reports the estimators of the model

estimated using the Expanded Iterative Prob. method, where the sampling correction is

applied and the sum of the exponentials is expanded using the iterative procedure

described in Section 5.6.3. Equivalent to what occurred in the Monte Carlo experiments,

the estimators are remarkably similar to those of the model without sampling and

statistically equal (with 95% confidence) to them.

Table 5-5 Lisbon's Nested Logit Model: Sampling 5 +5 Alternatives

Expanded
No Sampling Unexpanded Eae

Variables IterativeProb.

f6 s.e j s.e )6 s.e

1. Dwelling price (in 100,000 C) -4.393 0.7058 -3.095 0.6498 -5.374 0.8947

2. Dwelling price * 1[Income > 2,000 C/M] 1.213 0.5769 1.291 0.4756 1.834 0.7048

3. Dwelling price * 1[Income > 5,000 E/M] 0.9463 0.5284 0.5298 0.5364 0.7604 0.6779

4. Distance to Workplace (in Km) -0.1774 0.0538 -0.1617 0.0528 -0.1732 0.0639

5. Log [Dwelling Area (in m2
)] 4.217 0.7854 2.220 0.5530 4.454 1.0324

6. Log [Dwelling Age (in years) +1] -0.6381 0.1158 -0.4850 0.1180 -0.7252 0.1604

7. S Control-function Aux. Var. 1.987 0.4711 0.6193 0.3864 2.145 0.5763

8. po.A Odivela-Amadora Nest 1.329 0.09414 5.480 3.053 1.392 0.1266

Log likelihood at Convergence L(J,JA) -547.89 -94.96 -93.53

Log likelihood at Zero LO= 0,f =1) -589.06 -134.13 -134.13

Adjusted p2 0.08518 0.3666 0.3623

Sample Size N 63 63 63

Choice-set Size J 11,501 10 10

Estimation Time [seconds] 363.0 1.080 10.65

Nest Amadora and Odivelas. Root Lisbon municipality. Models include sampling correction. Models corrected for endogeneity

with 2SCF. Sample 5 alts. from Odivelas-Amadora nest and 5 from Lisbon municipality. f/M: Euros per month.

The second experiment corresponded to the application of the same sampling

protocol as before, but with alternatives that were sampled up to make a total of 500 for
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the Odivelas-Amadora nest and 500 for the root (Lisbon). The results of the models

estimated using this sampling protocol are shown in Table 5-6. Equivalent to what

occurred with the Monte Carlo experiments, the estimators of the Unexpanded and of the

Expanded Iterative Prob. models are similar to those of the model without sampling

when J is large. All estimators are statistically equal (with 95% confidence) in both

cases. The only significant difference is that the bias of the estimator of the scale of the

Odivelas-Amadora's nest is smaller for the Expanded Iterative Prob. model.

Table 5-6 Lisbon's Nested Logit Model: Sampling 500 + 500 Alternatives

Expanded
No Sampling Unexpanded Iterative Prob.

Variables ItrtiePrb

/ s.e / s.e 6 s.e

1. Dwelling price (in 100,000 E) -4.393 0.7058 -4.349 0.6780 -4.347 0.7054

2. Dwelling price * 1[Income > 2,000 f/M] 1.213 0.5769 1.242 0.5649 1.184 0.5776

3. Dwelling price * 1[Income > 5,000 f/M] 0.9463 0.5284 0.9566 0.5290 0.9923 0.5333

4. Distance to Workplace (in Km) -0.1774 0.0538 -0.1766 0.05288 -0.1811 0.05380

5. Log [Dwelling Area (in m2 )] 4.217 0.7854 4.177 0.7450 4.223 0.7902

6. Log [Dwelling Age (in years) +1] -0.6381 0.1158 -0.6362 0.1123 -0.6321 0.1161

7. S Control-function Aux. Var. 1.987 0.4711 1.908 0.4460 1.937 0.4683

8.pyo-A Odivela-Amadora Nest 1.329 0.09414 1.510 0.1618 1.326 0.09340

Log likelihood at Convergence L(f,) -547.89 -382.38 382.95

Log likelihood at Zero LO =0,pA = -589.06 -424.25 424.25

Adjusted p2 0.08518 0.1223 0.1162

Sample Size N 63 63 63

Choice-set Size J 11,501 1,000 1,000

Estimation Time [seconds] 363.0 55.27 220.8

Nest Amadora and Odivelas. Root Lisbon municipality. Models include sampling correction. Models corrected for endogeneity

with 2SCF. Sample 500 alts. from Odivelas-Amadora nest and 500 from Lisbon municipality. f/M: Euros per month.

Finally, Table 5-5 and Table 5-6 report also the computational time used in the

estimation of the different models. In the case where only 10 alternatives were sampled,

the differences in computational costs were huge. The true model that considers the full

choice-set of 11,501 alternatives took approximately 350 times more seconds to be

estimated than the Unexpanded model, and approximately 35 times more than the

Expanded Iterative Prob. method. The differences are reduced to 7 and 1.7 times

respectively, when 1,000 alternatives are sampled. These differences in estimation time,
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together with the evidence gathered from the Monte Carlo experiment with one million

alternatives, reflect the significant gains that can be obtained with sampling. The

methodological developments of this chapter will allow taking benefit of these gains in

the implementation of spatial choice models with more realistic error structures.

5.8 Conclusion

Sampling of alternatives for non-Logit models is a problem that has been open for over

30 years, and that have hindered the development of suitable spatial choice models. This

chapter proposes a novel method to address this issue for MEV models and illustrates its

properties by means of a Monte Carlo experiment applied to the Nested Logit model, and

a case study based on real data on residential location choice from Lisbon, Portugal.

The first interesting result is that the estimation in MEV models, under sampling of

alternatives when the full InGin is considered, recovers true parameters, even if only a

small number of alternatives is sampled. Second, the experiments show that when InG,

is approximated by the proposed methodology, the results are always better than those

obtained when ignoring the fact that only a subset of the true choice-set is available, and

that the latter method performs poorly for small sample sizes.

When it is not possible to re-sample alternatives independently from the chosen one,

in order to approximate the term In Gi, the proposed method involves knowledge of the

choice probabilities. To avoid this inconvenience, three procedures where analyzed,

among which the iterative procedure performed the best, and work reasonably well, even

for small samples.

Finally, it should be noted that the proposed method is biased for a fixed sample size,

and that the bias could be significant for a small J. This problem can be addressed by

testing the stability of the estimators to different values of J . Future investigation

regarding the small sample of alternatives bias shall involve the development methods to

control or to quantify this bias.
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Chapter 6

Conclusion

6.1 Summary

The purpose of this doctoral dissertation was to address endogeneity and sampling of

alternatives in non-Logit models, two critical model estimation weaknesses that have

been neglected in spatial choice models and have a significant impact in the development

of suitable models of urban systems.

For endogeneity, I investigated diverse estimation and forecasting drawbacks that

were debated or neglected in previous literature. First, I showed that the change of scale

resulting from the use of the control-function method to correct for endogeneity does not

impact the relevant properties of the model. Second, I studied the approach required for

forecasting with models corrected for endogeneity, and devised a novel procedure to

forecast with synthetic populations. Third, I studied the link between the latent-variable

approach and the control-function method to correct for endogeneity, and developed a

tractable maximum-likelihood estimator that achieves consistency, efficiency, and

asymptotic normality, and allows for the direct calculation of the standard errors of the

estimators of the model parameters. Finally, I identified a criterion to build instrumental

variables to address price endogeneity in models of residential location choice, and tested

its validity using two novel tests of over-identifying restrictions for discrete choice
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models. These novel tests showed better power properties than the existing Amemiya-

Lee-Newey test in a set of binary Logit Monte Carlo experiments.

For sampling of alternatives in non-Logit models, I studied the problem of obtaining

consistent estimators when the underlying model belongs to the Multivariate Extreme

Value class, a family of models that includes the Logit and other models that allow for

more realistic substitution patterns among alternatives, such as the Nested Logit and the

Cross-Nested Logit. For this problem, I implemented a method to achieve consistency,

relative efficiency and asymptotic normality, building on an idea originated by Ben-

Akiva (2009). I studied the performance of the method using both Monte Carlo

experimentation and real data, and showed that it functioned remarkably well, even for

small sample sizes.

6.2 Overall Conclusion

The main conclusion of this research is that the estimation and simulation of spatial

choice models are significantly affected by the inevitable omission of attributes and by

the need for sampling of alternatives. These issues can and should be addressed using the

methods surveyed and developed in this research. Empirical evidence from Monte Carlo

experimentation and real data was provided to show the impact of these drawbacks in

models estimators, and to demonstrate how they may influence policy analysis. Empirical

evidence also showed that the proposed methods for addressing these modeling

drawbacks were successful and feasible with commercial software and generally

available data.

6.3 Methodological Recommendations

Diverse methodological recommendations for future modeling efforts are derived from

this research.

For endogeneity, the first recommendation is to test for it using any test for omitted

attributes applied to the auxiliary variable used in the second stage of the 2SCF method.

The second recommendation is a criterion for the construction of instruments to correct

for endogeneity in residential location choice models. It was shown that prices of similar
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dwellings within a certain vicinity made valid instruments in this framework. It is

recommended that the dwellings used to construct the instruments should be selected

among those outside a certain threshold (for example, 500 mts.) in order to avoid

reflection bias, and within a certain boundary (for example, 5,000 mts. and differing less

than 40% in area and age) to ensure their relevance.

The third recommendation regarding endogeneity is that, given its relative simplicity,

the use of the Likelihood-ratio version of the Direct test for the validity of instruments is

recommended. In addition, it was shown that the power of the tests for the validity of

instruments might be severely affected if the instruments are highly correlated (above

0.95). This highlights the importance of avoiding the practice of generating instruments

as nonlinear transformations of existing instruments in order to achieve over-

identification.

The fourth recommendation regarding endogeneity is to use, when possible, the

tractable maximum-likelihood estimator derived in Chapter 3. This estimator achieves

consistency, efficiency and asymptotic normality in the correction for endogeneity, and

permits the direct calculation of the standard errors of the model from the inverse of the

Fisher-information-matrix. Otherwise, the two-stage estimator can be used to achieve

efficiency (under some mild assumptions), but the calculation of the standard errors

should be addressed using bootstrap or the delta-method.

The fifth recommendation regarding endogeneity is that, in cases where there is

endogeneity and some indicator that theoretically depends on the omitted attributes is

available, the use of the joint framework derived in Chapter 3 is recommended for

modeling the latent-variable and control-function methods. This combined method would

result in an increase of efficiency of the estimates, and in a more realistic representation

of the behavior of the agents. The cost is that it might be necessary to evaluate a multifold

integral in the number of alternatives, a procedure that may be impractical in spatial

choice models.

For sampling of alternatives in MEV models it is recommended the use of the method

that involves re-sampling (independent of the chosen alternative) in the generation of the

expansion required to address this modeling drawback. When re-sampling is not possible,

the iterative procedure described in Chapter 5 is preferred, as it shows substantially better
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performance compared to other alternatives. Lastly, small sample bias should be

addressed by testing the stability of the estimates attained with this method, as a function

of the cardinality of the set used for the expansion.

6.4 Extensions

The developments and the analysis performed in this thesis have diverse limitations that

future research shall address in different ways.

Regarding the methodologies developed to address endogeneity, it would be

interesting to evaluate how the market clearing process in the housing market may affect

the assumptions used in the implementation of the control-function method. It would also

be interesting to explore the power properties of the tests for the validity of instruments

under other circumstances, including diverse choice models, and real databases. The

empirical study of the link between the control-function and the latent-variable methods

should be useful in the assessment of the practical value of this joint approach. Another

line of research in this area corresponds to the analysis of problems where the

endogenous variable is discrete and not continuous as it was considered throughout this

thesis. Finally, it would also be interesting to develop a systematic investigation of the

problem of weak instruments in discrete choice models, extending existing research for

linear models.

Regarding the method developed to address sampling of alternatives in MEV models,

it would be interesting to explore the feasibility of controlling for the bias that is

inevitably present in finite samples. Another interesting line of research is the extension

of the approach used for solving the problem of sampling of alternatives in MEV models,

into other non-Logit models, such as the Logit Mixture.

Additionally, it would be interesting to investigate the feasibility of applying the

methods surveyed and developed in this thesis into larger databases and other spatial

choice models, such as job and firm location, route choice or activity scheduling.

Finally, it would be interesting to assess the full impact of the methodological

advances of this research in policy analysis. This might be achieved by applying these

advancements in the framework of an operational microscopic integrated urban model
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such as UrbanSim (Waddell et al., 2008). In particular, it would be interesting to

investigate whether the integrated nature of the system will amplify or mitigate the effect

of the corrections for endogeneity and sampling of alternatives in MEV models.
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