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Abstract

This research develops a device capable of measuring the nonlinear dynamic mechani-
cal properties of human tissue in vivo. The enabling technology is the use of nonlinear
stochastic system identification techniques in conjunction with a high bandwidth ac-
tuator to perturb the tissue. The desktop and handheld instruments used for this
investigation were custom-built Lorentz force actuators which were able to measure
the dynamic compliance between the input force and the output displacement. The
actuators have a nominal stroke of 32 mm and were actuated with forces under 15 N.
The design includes custom electronics and user software which collects and analyses
the information.

This research also explores nonlinear stochastic system identification techniques
that would be applicable to biological tissues. Several system identification techniques
were used including linear, Wiener static nonlinear, Volterra kernel and partitioning
techniques. Real time system identification and real time input generation schemes
are also implemented. The mathematical formulation and implementation details
of these techniques are also discussed. It was found that a simple linear stochastic
system identification technique had a variance accounted for (VAF) of 70 to 75 %.
More complicated representations using Volterra kernels or partitioning techniques
had a VAF of 90 to 97 %. More complex nonlinear system identification techniques
can not only capture more of the nonlinear dynamics but also capture those dynamics
in an interpretable way.

Indentation, extension, and surface mechanics experiments were conducted to
investigate the nonlinear mechanical compliance of skin in vivo. The techniques and
devices used in this research can be applied directly to consumer product efficacy
analysis, medical diagnosis as well as research in biomechanical tissues.

Thesis Supervisor: lan W. Hunter
Title: Hatsopoulos Professor of Mechanical Engineering
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Chapter 1

Introduction

Measurement of the mechanical properties of human tissue provides valuable in-
formation for deriving mathematical models, creating injury repair techniques, devel-
oping tissue vascularization therapies, and diagnosing healthy from damaged tissues
in vivo [25]. In addition, clinical instrumentation, such as those demonstrated in
this thesis, can be used to standardize the qualitative measurements that physicians
currently use to diagnose tissue diseases. A device with the ability to diagnose tis-
sue diseases (e.g. Scleroderma, Myxoedema, connective tissue diseases [23, 28, 44]) or
identify the presence of dehydration [41] can have a large societal impact in healthcare
and large market impact in terms of tools that are available to clinicians.

The skin care market represents a $15.1 billion market with facial skin care at $3
billion alone in 2007 [85]. Trends in consumer skin care have shown the use of specific
molecules and proteins like tensin [75] that are well known to cause collagen growth
or increase skin suppleness in hydration and anti-aging products. Although there are
standard testing devices for skin, industry specialists have expressed dissatisfaction
with existing commercial products. A standardized measurement technique designed
to assess the effectiveness of these products would be invaluable to this field.

In a clinical setting, the mechanical properties of skin and underlying tissue are
assessed qualitatively through touch by dermatological specialists and cosmologists
[109]. This, however, presents a problem in terms of passing information between dif-

ferent individuals or comparing measurements from different clinical studies for the
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diagnosis of skin conditions. A device that is capable of making and standardizing the
measurement of mechanical properties of biological materials in an expedient fashion
is indispensable for this purpose. In addition, such a device is important for un-
derstanding mechanics for manufacturing artificial prosthetic tissue, for determining
mechanical properties in locations that are difficult to palpate (such as in the colon

during endoscopy), and determining parameters needed for needle-free injection [40].

Currently, there are a few commercial and research devices which try to address
this issue with limited success. Several techniques including suction, indentation, tor-
sion, extension, ballistometry, and wave propagation have been used to measure skin
mechanics in vivo [28]. Commercial devices with varying levels of success include the
Cutometer MKA580, DermaFlex, and Diastron dermal torque meter. For the most
part, these devices only provide information about limited aspects of skin behavior
which may not be enough to properly diagnose disease. Many of these devices also
focus on only linear properties such as skin elasticity because linear parameters play
the largest role in daily physiological stress levels [4]. A more complete picture can
begin to arise when dynamic properties such as damping are taken into account.
Although some of these properties only present themselves at nonphysiologic stress
levels, they can more fully characterize the properties of the tissue and can be used
as additional degrees of freedom in identification and diagnosis. Studies also show
that skin is strain hardening [15], which means that the relationship between stress
and strain is nonlinear. Although the properties of skin have been studied for many
years in material science and biology, no other work has used the innovations in non-
linear stochastic system identification and signal processing to identify the nonlinear

properties of biological tissues.

In order to identify these effects in a fast, robust, accurate, and low cost fashion,
a high bandwidth perturbation system was designed. The information was analyzed
using a series of nonlinear stochastic system identification techniques focused on short
test times, fast computational times, and interpretability. Nonlinear systems, as op-
posed to linear systems, come in many varieties and there are many possible methods

that can be used to describe them. A study on the relevant types of nonlinearities
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is essential to reducing the number of possibilities. In some fields of study, such as
optics, the form of the nonlinearity is restricted by photon combination and therefore
the study of nonlinear systems can be formulated in a clear fashion. In the mechanics
of tissue, however, the form of the dynamic nonlinearity is not currently well formu-
lated. This work focuses on developing a nonlinear system identification framework

that can be generalized for identifying dynamic tissue properties.

This work is organized in order to provide background and motivation, to describe
the device and procedures, and to discuss well-known and novel system identification
techniques. Background materials are described in Chapter one. Chapter two covers
the mechanical, electrical, and software design of the device. Chapter three describes
linear system identification theory, static nonlinear system identification methods
and results that motivate the use of more advanced nonlinear system identification
techniques that are described in Chapters four, five, and six. In addition to well-known
nonlinear techniques like Volterra kernels, a few new techniques are also described. To
motivate the use of more complex or tailored representations, each of these techniques
is accompanied by experimental results. Chapter seven details skin and underlying
tissue studies conducted on test subjects in vivo. Lastly, research conclusions are

detailed.

1.1 Tissue Structure

Biological tissues have several different possible structures that can greatly influence
their properties. Biological tissues in humans are difficult to model because of their
am.orphous bulk nature and their underlying anisotropic structure. There are several
different classifications for tissue including connective, epithelial, muscle, and ner-
vous. In addition to these classes, there are also adipose (fat) tissues, vascularization

passages, glands, and bone which all can contribute to the mechanical properties of

biological tissue.
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1.1.1 Cellular Level

In some areas of the body, including on the skin and in the digestive tract, the tissue
is composed of thin layers of different types of tissues with different functions. Figure

1.1 shows images of the layers in skin and the layers in the large intestines.

b

Surface epithelium

crypt of
Lieberkiihn

.

.. lamina p

ropria

stratum€orneum

-

stratum stratum
granulosum lucidum

stratumspinosum

stratum
g basale .

Figure 1.1: (a) Tissue layers of the skin and (b) tissue layers of the colon (compiled from
[16, 95]).

In the skin, each of these layers has a different function. The epidermal layers in
skin are responsible for the barrier function which keeps harmful bacteria out of the
body and maintains hydration in the underlying layers [84]. There are several layers
within the epidermis. The top layer is generally known as the stratum corneum
followed by the stratum lucidum, stratum granulosum, stratum spinosum and the
stratum basale. The bottom layer is the stratum basale which is made up of a single
layer of epithelial stem cells that are shaped like columns. As these cells divide, they
move upwards and differentiate, flattening out and eventually flaking off. Within this
layer, there are several types of specialized cells which produce pigment (melanocytes)

and defend against infection (Langerhans’ cells). The layers of the epidermis can vary
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from 50 um to about 2 mm [28].

Below the epidermis lies the dermis which includes different types of connective
tissue including collagen, elastic fibers, and reticular fibers. There are several special-
ized cells in this layer including hair follicles, sebaceous glands, eccrine gland, blood
vessels and nerve cells. The dermis can be divided into the papillary and reticular
components. In the papillary dermis, the collagen fibers are arranged randomly. In
the reticular dermis, the collagen fibers are thicker and are arranged in bundles ori-
ented in specific directions along the body. The orientation of collagen bundles are
what creates Langer’s lines in the skin. These features are important for surgical pur-
poses and important for determining the direction of anisotropy of skin [28]. Below is
the subcutaneous layer which includes additional connective tissue, fat, blood vessels
and nerves.

Several layers are also present in the colon and these layers are ordered in a
slightly different manner. The outermost layer, the mucosa, has several features like
the surface epithelium, goblet cells, and several other types of cells which help absorb
nutrients [12]. The surface is fairly smooth with glands which extend from the surface
through the thickness of the mucosa as shown in Figure 1.1b. This is followed by
submucosa (which is composed of connective tissue), muscularis and serosa [32, 95].
Other types of tissues may have fewer distinctive layers. For organs like the liver, the
reticular fibers create a supporting, crosslinked mesh which helps hold the other cells

together [8, 83].

1.1.2 Connective Tissue and Pathology

Collagen plays a large role in the measured mechanical properties of tissue. Therefore,
connective tissue diseases can be well characterized by mechanical testing. Type I
collagen comprises approximately 80 % of the dry weight of skin while type II collagen
comprises approximately 15 %. The different types of collagen and their functions

are:

e Type I collagen - responsible for tendons and is present in scar tissue.
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e Type II collagen - a basis for cartilage.

e Type III collagen - common in reticular fibers.

e Type IV collagen - occurs in the basement membrane of skin.
e Type V collagen - surrounds cells.

e Type VI collagen - involved in matrix assembly.

e Type VII collagen - holds fibrils together.

Collagen fibers are formed from three polypeptides which are twisted around each
other in a left-handed triple-helix. The constituents of the polypeptide chains can
come from several different genes. In type II collagen, the three molecules are encoded
by the same gene while in type I collagen, two of the strands come from one gene and

the third strand comes from another [28].

Elastin is assembled as a net of material in the skin and it plays a large rule in
maintaining the resilience of skin. When elastin begins to break down due to aging
or genetic disease, the skin begins to wrinkle. The basement membrane of the skin
makes up a thin sheet in the skin between the dermis and epidermis. This layer is
responsible for cell migration, cell metabolism and cell differentiation. Diseases in
this layer often manifest as blisters.

The diseases most commonly characterized by mechanical testing of the skin are
shown in Table 1.1. Scleroderma is one of the most common connective tissue diseases
which can be identified by mechanical testing devices [23]. Ehlers-Danlos syndrome is
a genetic and progressive disease that can affect the skin, joints, and organ walls [44].
It has been successfully characterized by several types of mechanical testing devices.
Additional studies that can quantify the effects of these diseases and others can help

improve diagnosis and treatment.

In addition to connective tissue diseases, correlations of skin mechanical properties
to age are also common [6, 15, 28, 29, 86]. As the skin ages, wrinkling will occur due to
the reduction of fibers in the dermis (decreased amounts of type IV and VII collagen
and an increase in type III), photo-damage and medication. Hydration effects can also

be studied in the skin using mechanical methods or electrical impedance methods [86].
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Table 1.1: Diseases of the skin related to collagen, elastin, and other skin components
summarized from [23, 28, 44]. These diseases often cause the mechanical properties

of skin to change.

Disease | Skin Layer l Effect Notes J
Scleroderma Collagen Thickening and stiff- | Autoimmune disease where the
ening of skin collagen accumulates
Scleredema Collagen Thickening and stiff- | Uncommon acquired disease
ening of skin which may be accompanied with
redness
Ehlers-Danlos Collagen Hyperextensibility, There are 9 subtypes of this ge-
Syndrome thinning, and | netic disease with several possi-
fragility of skin ble mutations in the genes that
produce collagen
Osteogenesis Collagen Thinning and | Caused by mutations of type I
imperfecta fragility of skin collagen
Diabetic thick | Collagen Thickening and taut- | Nonenzymatic glycosylation of
skin ness of skin collagen
Keloids Collagen Thickening of skin in | Deposits of collagen
pockets
Focal dermal | Collagen Thinning of dermis Unknown cause
hypoplasia
Steroid-induced Collagen Thinning of skin Reduction in type I and II
atrophy collagen
Cutis laxa Elastin Loose and sagging | Decrease in elastin
skin
Anetoderma Elastin Lesions Degregation of elastin in a local-
ized area
Pseudoxanthoma | Elastin Lax and wrinkled | Accumulation of abnormal
Elasticum skin elastin
Actinic Elastosis Elastin Thickening and wrin- | Accumulation of elastin in the
kling of skin dermis, decrease in collagen and
increase of elastin
Marfan Syndrome | Elastin Hyperextensibility Mutation in fibrillin gene
Epidermolysis Basement Blister formation Mutations in keratins, mutations
Bullosa Membrane in collagen
Erysipelas Dermis and | Thickening Streptococcal infection which
Subcuta- causes an inflammatory dermal
neous Cells edema
Psoriasis Vulgaris | Epidermal Erythematous scaly | Common and genetically inher-
Cells plaques ited, build up of dead cells on the

surface
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1.1.3 Mechanical Properties

In studying biological tissues, the solution is often for researchers to study a specific
layer, such as the epithelium. In order to do this without getting interactions from
other layers, researchers often conduct tests in vitro. This, however, does not take into
account the important interactions between living tissue layers. In vivo tests are more
difficult to conduct because of these same interactions. Studies conducted on small
displacements often state that they are focusing on the properties of a particular layer
[28] but in fact, other layers provide a ground plane which can greatly influence results.
The mechanical properties of these layers contribute differently to the perceived bulk
properties and the ability to look at those nonlinear properties can help us discover

information about their condition.

Studying the mechanical properties of the skin requires an understanding of how
different layers contribute to the bulk. Connective tissues help generate the heteroge-
neous, anisotropic material properties. During small displacements, the elastin and
reticular fiber matrix provides low resistance to movement thereby generating low
stiffness. In addition, creases in the skin help absorb linear forces for small displace-
ments [6, 84]. For larger displacements, the coiled collagen fibers begin to align and
contribute more heavily to the overall stiffness. This effect creates strain hardening
which can protect the tissue from damage [4]. The orientation of the Langer’s lines
will determine how displacement in different directions will contribute to the strain

hardening effects.

In addition to anisotropic elasticity concerns, there is more information to be
gained from dynamic testing. The skin has mass and damping (absorption of energy
through losses) effects. There are also hysteretic components relating to fluid inflow
and outflow and creep effects related to tissue damage. The range of forces and dis-
placements along with the frequency of mechanical testing can greatly affect the types
of information that can be collected. The construction of the testing device, dimen-
sions of the probe and how the probe is attached are also important. Furthermore,

living tissue will provide different values than excised tissue. Because tissues have
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inherent nonlinear properties, as different regions of the nonlinearities are explored,
different property values are recorded. All of these effects combined make it difficult
to quote a value for something as simple as skin elasticity.

Part of the problem is that the dynamics of the testing device are often not
characterized and are assumed to apply perfect forces to the tissue. The analogy
from system dynamics is that actuators are assumed to have perfect output impedance
such that the dynamics of the system being tested do not affect the dynamics of the
actuator. In many mechanical systems, this is not true and making the assumption
of perfect output impedance at the actuator can change the analysis and conclusions
drawn from the results. In addition, once a different geometry or testing scheme is
used, the measured results are not easily comparable. A single, well-characterized

device that can conduct tests in multiple orientations can help alleviate this problem.

1.2 Tissue Characterization

Different types of tests and devices can be used to identify the anisotropic properties
of skin. For in vivo testing, however, the contribution from directions outside the
testing plane will always affect the results. A device that is capable of testing multiple
directions at once [88], or is capable of testing in multiple directions separately, can

be useful in determining these anisotropic material properties.

1.2.1 Devices

The measurements in this area of study have produced vastly different values for
skin parameters which may differ by more than a factor of 3000 even when test
parameters are normalized [20]. Recent studies have indicated values for the Young’s
modulus of the epidermis between 0.1 and 1.1 MPa. This broad range may be due to
a simplification of the assumptions made in the arrangement of a specific instrument,
nonlinear influences, inherent creep or relaxation of biological materials, and/or the
arrangement of the Langer’s lines.

A few commercial devices which attempt to make standardized measurements in-
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Figure 1.2: (a) Commercial devices and (b) techniques. This figure was compiled from
[17, 18, 19, 51].

clude the Cutometer MKA 580, DermakFlex, and Diastron dermal torque meter (see
Figure 1.2). Devices like the Cutometer and the Dermalab operate using suction
where a pump applies a constant negative pressure at the probe head. The skin in
contact with the probe will be pulled up into the probe. Sensors inside the suction
probe will determine the maximum displacement of the skin. The focus of this de-
vice is to measure the elasticity of the epidermis since the turgor is a well-accepted
indicator of dehydration and skin elasticity [37]. This process is inherently nonlin-
ear in that a linear increase in pressure does not display a proportional increase in
the displacement of skin or measurement in elasticity. Additionally, the complexities
present in the geometry also contribute to the nonlinearities. In the suction systems,
the input y-axis of Figure 1.2b represents the input pressure and the output y-axis

represents the maximum vertical displacement of skin.

Qualitative tests conducted by health workers involve pinching the skin and then
watching how quickly it returns to its original position. The dermal torque meter
works similarly by applying a probe which spins and applies a torque to the skin.
In torque meters, the input y-axis represents the input torque and the output y-axis

represents the displaced angle in Figure 1.2b.
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The terminology used by most clinicians and researchers allows them to look at
different displacement parameters labeled U, U,, U,, and Uy which represent the
elastic, viscoelastic, relaxation, and total displacement respectively. These values
or ratios of these values are often quoted in the literature when studying different
positions on the body. As the pressure or torque of the device increases, the skin
will first displace elastically. There is almost no resistance in this region so it will
appear as almost instantaneous in some studies. The skin will then creep in the
viscoelastic region. Once the system becomes stationary, the device is usually timed
to release the pressure or torque of the system. The system then relaxes and creeps.
The application of the pressure or torque will normally cause the tissue to have some
long-term deformation which means that the skin does not go back to its original
position [28, 37].

The measured parameters are time-, probe size-, probe position-, preconditioning-,
and pump pressure- (or torque application-) dependent making comparisons of de-
vices, even those using the same actuation mechanism, difficult. Each measurement
may take as long as 60 seconds to reach the stationary state for each applied pressure
or torque which can make the tests conducted by these instruments extremely long
[28]. The results have also been shown to vary as the number of cycles increases due
to progressive creep [23]. These devices focus specifically on measuring skin elasticity
and are not tailored for measuring dynamic or nonlinear behaviors. In addition, the
mathematical system identification technique is not optimal. It relies on simple step
responses which can theoretically contain a lot of important information which could
be modeled using Burger, Maxwell or Kelvin-Voigt methods [28]. The simplifica-
tion of these important parameters into simple displacement parameters loses sight of
clinically important values and dynamic information in favor of expediency. Models,
which often do not contain all the necessary dynamics, are then fitted to experimen-
tal curves. A more advanced technique which immediately casts the information into

more relevant parameters like damping or energy storage/loss is needed.

The ballistometer class of instruments is slightly more advanced. Most ballistome-

ters incorporate a hammer which free-falls (due to gravity) multiple times onto the
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skin. The loss of energy (how quickly the ballistometer stops bouncing) is measured
and used to determine the viscoelasticity of the skin surface and characterize multiple
layers of tissue [28, 103]. Devices like this, however, are subject to patient movement
and would require multiple tests to determine parameters at different impact forces.
The results would be probe height dependent and one test could only provide bulk
tissue (and not depth dependent, tissue layer dependent, or anisotropic) information.
Research devices utilize slightly more advanced techniques for measuring skin pa-
rameters, but most of them are based on similar principles. This includes suction
[20, 43], torsion [29], extension [15, 62, 76, 79, 97], ballistometry [103], wave propaga-
tion [86] and indentometry [6, 8, 83, 100]. There are a class of advanced suction-based
devices with additional sensors to measure the changes in the thickness of different
layers of the skin. The additional instrumentation includes optical coherence tomog-
raphy [41, 42, 43] or ultrasound [7, 20, 22]. There are several devices which measure
skin friction by sliding probes across the surface [24, 28]. The classic literature in
the area uses different forms of extension measurements [11, 15, 62, 89] including
measurements with multi-axial extension [88]. High frequency acoustic pulses below
ultrasound frequencies can also be used to examine elastic properties [13].
Indentation has been used to identify soft tissues in vivo. One of the first instances
of the use of indentometry to measure edemas was in 1912 by Schade [109]. There
has been extensive work by several researchers to measure the elastic properties, the
creep properties, the fat thickness, muscle properties, and even the response of pres-
sure sores using this technique [28, 109)]. Indentorﬁeter systems can be constructed
with leadscrew systems, with voice coils, with pneumatic control, or with piezo actu-
ation. There are also several devices which play on the theme of indentation by using
non-contact perturbation (via pressurized air) and measurement (via infrared range

finding) [54, 58, 90].
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1.2.2 Characterization Techniques

Despite the dizzying array of methods used to measure skin mechanics, the character-
ization techniques have remained rather simple. Table 1.2 below shows the different

types of measurement techniques that are commonly used in research.

Table 1.2: Characterization techniques used in the research literature.

Input Types and Most Common
Analysis Methods Perturbation Techniques References
Static or pimpelt Extension Kawahara 2006, Bishchoff

i i 1999, Hendriks 2003 and
Increasmg *Suction . 2006, Scalari 2000, Dunn
Loads *Indentation 1985, Duchemin 2005,

«Torsion Daly 1979. Kaneko 2004.
s uare Waves + Input = Pederson 2006, Zheng
q P *Extension 1996, Grove 2006.
or Ramps Suction Reihsner 1998, Diridollou
i 1998 and 2000, Scilingo
: *Indentation 2000. Khatyr 2004,
Time | sTorsion Dobrev 1998, Henry 1996,
Frequency +Input Boyer 2009, Ottensmeyer
Sweep _ «Extension 2001, Haruhito 2001,
- : Osamu 2003, Potts 1984,
«Indentation gl
Time
—_—
Stochastic ’ ?Input Timanin 1999 and 2001.
. | . Oka 1997, Bjerring 1991,
Linear . *Indentation Kawazoe 1994, Osamu
1998, Takashi 2003.
Time

The most common methods focus on static or increasing loads while slightly more
advanced techniques focus on using square waves or ramps. In systems that measure
the hardness or elasticity, a simple spring is placed inside the device and the force of
the indenter can be applied by changing the position of the internal spring [38, 39,
50, 52]. These methods can be used by a large range of instruments and are easier to
implement and analyze. These techniques can be easily used to look at low frequency
nonlinearities. Slightly more advanced techniques that look at the frequency response
of tissue use frequency sweeps. These methods are limited to methods that are
more compatible with high bandwidth actuation. Nonlinear information can also

be obtained from frequency sweeps [55]. In the patent literature, there are several
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indentometer devices which use more advanced analytical techniques. Linear system
identification has been used to identify biological materials using indentation [47, 56,
59, 82], suction [5] and other combined probes [60].

Layered finite element models [4, 31, 43] and anisotropic tensor matricies [62, 102]
have been used to model skin tissue. Modeling based on first principles is one way
to approach system identification but this must be done carefully. Taking a black (or
gray) box model approach is another way to approach the problem. There has been
little [102] work done that looks at both the dynamics of tissue and the nonlinear
components. There has been no work that focuses on the nonparametric nonlinear
system identification of biological materials.

Many of the techniques and instruments presented in the literature are ill-suited
for the high bandwidths and the large displacements (20 mm or more) needed for
full nonlinear system identification. Indentometry has inherent benefits over methods
like suction or ballistometry for dynamic measurements of nonlinear systems. For
larger forces, the device in indentometry mode is capable of measuring the mechanical
properties of many layers from the epithelium to the underlying connective tissue. The
response from different tissue layers [15, 81] creates interesting and clinically relevant
nonlinear behavior. The work presented herein focuses on developing devices that
are capable of indentometry, where a probe tip is pushed normal to the skin surface.
Lessons learned from indentometry can then be applied to extension and surface

mechanics testing using different probes.

1.3 Nonlinear System Identification Techniques

Several devices have been used to measure the linear dynamic behavior of skin and
other organs [6, 83] but the measurement techniques tend to be slow because they
perturb frequencies one at a time. In vivo tissue measurements should be conducted
in an expedient and efficient manner and the analysis method should be relatively
immune to patient motion. Linear stochastic system identification techniques have

been developed specifically to satisfy these criteria. They also have many additional
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desirable features such as the ability to measure the multiple frequency components at
the same time and increase the instrument measurement sensitivity using statistical
techniques. These techniques have been used to describe many biological systems suc-
cessfully [33, 64, 78]. These methods, however, cannot accurately describe nonlinear
behavior that is inherent in many biological tissue systems including skin.

Linear techniques have been well documented and have been used to inform some
forms of nonlinear modeling. Nonlinear models can be categorized based on levels of
prior knowledge (white, grey, or black box), on regressor structure (using the input,
output, and/or error as regressors) [30, 74, 78, 94], or on model structure. Some of

the different model structures are provided below.

e Prediction/error methods or instrumental variable methods such as NFIR and
NARMAX [74].

e Subspace methods which utilize state space methodologies [57, 105, 108].

e Block or cascade structure techniques (e.g. Wiener cascades or Hammerstein
cascades) [65].

e Global basis functions such as Volterra or Wiener kernels [77].

e Localized basis functions such as wavelets, sigmoid neural networks and fuzzy

models [53, 94].

These models and techniques can be discrete or continuous [34, 104], parametric or
nonparametric. Parametric models have certain advantages in that they can describe
a system with fewer parameters and hence have more statistical power than nonpara-
metric models (requires fewer data samples to obtain a model). Timanin and Eremin
(1999) has proposed a few models for the nonlinear parameters of skin derived from
first principles [102]. Parametric models, however, require more prior knowledge and
can be more easily misused. They can make simplifying assumptions that ignore
critical unmodeled data or can cause noise to be fit to parameters. In addition, most
parametric models choose parameters that are not orthogonal. This means that if
one value is changed, it affects the fit of other parameters.

Nonparametric techniques tend to make fewer assumptions about the form of the
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system. They can be constructed to be orthogonal so that the fitting of one parame-
ter does not depend on the fit of any other parameter and are more more immune to
uncorrelated noise. In addition nonparametric techniques do not require prior infor-
mation on the physics of the system. For example, a nonparametric technique that
can be used to model the skin can also be moved directly to modeling the liver with-
out having to rederive the fundamental physics. Nonparametric techniques tend to
be more robust and can obviously be converted to parametric descriptions as needed.

Nonlinear system identification has evolved significantly since 1887 when Volterra
first proposed the Volterra series. Since that time, Norbert Wiener proposed orthogo-
nalization of the Volterra series to produce Wiener series and several efficient solution
techniques for both Wiener kernels [66] and Volterra kernels [68] have been produced.
These techniques have been used to identify several biological systems such as the
stretch reflex dynamics of the human foot [61] or the dynamics of the pupillary sys-
tem [98]. These kernel-based techniques are often computationally intensive, require
specific input properties (such as Gaussian white or Brownian process inputs) and
are restricted to time-invariant, finite memory systems. In addition, the results of
higher order kernels become difficult to physically interpret.

In many biological systems, block structures such as linear-nonlinear-linear (LNL)
cascades have provided simpler methods to modeling the nonlinearity. Black-box,
nonlinear stochastic system identification techniques, such as Wiener and Hammer-
stein static nonlinearity techniques [49, 64, 67], help with this problem by providing
broad frameworks of assumptions to model data and have been successfully used to
describe biological systems [10, 61]. Since then, other nonlinear techniques such as

wavelets, fuzzy-logic models, and neural networks have evolved [94].

1.4 Goals and Methodology

This work focuses on achieving the following goals:

e Create low cost device to identify dynamic compliance of tissue.

o Identify nonlinear dynamics of tissues using stochastic techniques.
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e Optimize the identification with input generation techniques.

e Use an identification and computational technique that is fast.

e Use a technique that is good at accounting for variances in the data.

e Use a technique that is readily interpretable.

e The techniques must be capable of producing results that are repeatable and
specific.

o The techniques should be able to distinguish the change in skin properties after

dehydration or after application of commercial products.

The ability to assess dynamic data is essential to obtaining a more complete picture
of tissue properties. In order to assess dynamic properties, a high bandwidth actuator
system is necessary. The skin property identification geometry that is most conducive
to high bandwidth actuation is indentation. However, a device that is capable of
other identification geometries can be more versatile. The design of the device should
focus on low cost elements in order to make the technology readily applicable to
commercialization.

The key aspects explored in this work are based on optimization of nonlinear
system identification techniques. This includes optimizing the input to the system,
optimizing the test time, and choosing a technique that is both fast and accurate.
In order to do this, simple static nonlinearities are first explored followed by more
complicated dynamic kernel based nonlinearitiés. Partitioned systems can have an
additional degree of freedom above static nonlinear systems which give them the
ability to fit the form of the dynamic nonlinearity in tissue. By exploring the pros
and cons of each method, different methods can then be chosen for different situations,

whether it be for commercial or research purposes.
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Chapter 2

Device Design

The mechanical, electrical, and software designs of custom devices for system
identification are discussed. The device is developed as a platform technology for
easy incorporation of multiple application heads (indentation, extension, surface me-
chanics) in order to measure multiple tissue parameters in several directions. Based
on this research, it was determined that the device should have a stroke of 32 mm
and the capability of driving at least 15 N of force at a high bandwidth in order to
measure the nonlinear properties of skin in different configurations. To achieve these
metrics, custom linear Lorentz force actuators are utilized. For clinical applications,
the device has a hand-held form factor that is under 30 mm in diameter and 100 mm
in length for the applicator body and includes integrated electronics. The focus of
the design is on the use of low cost materials and scalable designs that can easily lead
to mass production.

The device includes integrated power and sensor electronics with custom software
which can be used to calibrate the system and assess the biological properties of skin
and other biological tissues. The inclusion of additional sensors capable of measuring
non-mechanical properties of skin such as blood reflow (using a light source and
sensor), water content (using electrical contacts) and tissue layer thickness (using

ultrasound techniques) would serve to increase the capability of the platform.
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2.1 System Design

In most models found in the literature, skin and biological tissues in extension or
compression are modeled as Maxwell or Kelvin-Voigt systems which include only

springs and dampers [28]. Figure 2.1 shows these models.

~W—
Burger _M_.]_ E -
Kelvin-Voigt

Maxwell

Figure 2.1: Linear models of tissue dynamics include the Burger, Maxwell, and Kelvin-
Voigt subcomponents in different configurations.

Tissues have their own inherent mass but this is a second order effect when com-
pared to the spring constant and damping from material properties. With a Kelvin-
Voigt first order system in mind, the addition of an actuator with mass will change the
system to second order. For systems in friction or surface mechanics mode, there is
no spring and nonlinear damping related to friction. A system with this configuration
would be second order with a single pole at the origin. These systems would tend to
“walk” rather than stay at a constant mean position. Therefore, an additional spring
should be added to this type of system to maintain a constant mean position for an
input with a non-drifting mean force.

Using these linear components, a more nonlinear model can be conceptualized.
Figure 2.2 shows the different layers of the skin and how these layers can be visualized
as a system of springs and dampers during indentation. As the skin is compressed in
this model, the softest layer, and not necessarily the topmost layer, is compressed first.
As the maximum compression depth is reached for this layer, it will become stiffer
or stop acting like a linear spring. The mass of this layer can then be added to the
total mass of the system. The next-most compliant layer will then contribute more
to the overall compliance of the skin and so on as the system recruits more springs,

masses, and dampers. From this argument, it is expected that the stiffness of the
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system during indentation should increase monotonically with depth into the skin and
should be relatively continuous. In vivo, however, there are additional contributions
from the interconnection of the skin being compressed along with the skin being
extended on the sides. This adds additional compliance terms to the model. Each
layer of the tissue also has viscoelastic strain hardening contributions from collagen
alignment. Several researchers have attempted to model these effects using pressure
concentration or geometric arguments [102]. Several authors have also attempted to
model the change in impedance of layered tissues [81].

When the tissue is being pulled (when the probe is attached to the tissue with
liquid bandage for example), the picture changes. The slow, gradual increase of spring
stiffness would be replaced by a much faster increase in stiffness. This is because the
tissue in compression can exhibit fluid outflow from the region under compression
into other regions. When the tissue is being pulled, fluid must flow into the area
underneath the probe from other locations. In addition, the deformation must be
matched by the stiffest layer, which is the epithelial layer. Therefore, the stiffness of
probe pulling on the skill will be higher for the same displacement.

In extension, different effects occur. The underlying layers of the skin are in shear
while the topmost layer of the skin is in extension. With surface mechanics testing,
the picture becomes simpler since the probes are not permanently attached to the
skin and contributions to stiffness and damping come from interactions with only the
bulk tissue as a function of the probe normal force. The differences between these
configurations are discussed in Section 2.2.3.

Modeling the skin in this manner leads to the prediction that skin is linear for
small displacements and exhibits nonlinear behavior for larger displacements. This
nonlinearity, to first order, represents a static nonlinearity that should scale with the
depth (position) of the tissue surface with respect to a reference surface. However,
the evolution of stiffness, damping, and mass do not have to follow the same nonlinear

profile. These will be discussed in subsequent chapters.

With the above predictions, a system can be built to apply the appropriate inputs

and acquire the appropriate outputs. Figure 2.3 shows the schematic diagram of
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Figure 2.2: Layers of the skin under (a) indentation and (b) dynamic model representing
the different layers of the skin as a system of springs and dampers.

the system along with inputs and outputs. It is important to note that the system
includes the actuator and tissue dynamics. The actuator has an inherent mass and the
bearings and air resistance have inherent damping. There are two possible methods for
treating the nonparametric or parametric information derived from the identification
of this system. Either the system must be treated as a whole (e.g. the derived
mass is a system mass) or the system can be treated as a linear addition of actuator
parameters and tissue parameters (e.g. the derived mass is composed of the actuator
mass acquired from calibration plus the tissue mass). The results in this paper are
given as values of the system which includes both the actuator and tissue because the

actuator cannot be considered to have an isolated input impedance.

In the schematic, the input is a voltage V*(t) sent through a linear amplifier into
the force actuator that perturbs the skin. The applied force is F™ (t) and the position
is P*(t). Because of different sources of sensor error e1(t) and ez (t) (see noise floor on
Figure 3.2), the measured force is F(t) based on the current I* (t) and the measured
position is P(t). Note that the input generation component is separate from the data

acquisition software. Therefore, this system operates open loop. Closed loop input
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Figure 2.3: Schematic diagram of system signals based on the use of a Lorentz force linear
voice coil actuator. The input is a voltage V*(t), the applied force is F*(¢) and the position
is P*(t). Due to sources of sensor error e;(t) and ey (t), the measured force is F(t) and the
measured position is P(t).

generation can be implemented when the loop is closed between data collection and

input generation (see Section 6.3).

The force measurement is taken after the amplifier for many reasons. First, mea-
suring the current after the amplifier skips the amplifier dynamics and any output
timing lags of the software. No matter if the input is a voltage or current com-
mand, measuring the dynamics after the amplifier is desirable. Second, a force to
displacement measurement would create a causal impulse response of the mechani-
cal compliance, which can be analyzed with simpler system identification techniques.
Lastly, because the input to the system is directly related to the force output, as
opposed to a position-based actuator system, there is no internal feedback algorithm
needed. This creates a mathematically simpler system identification situation with
the capability to act at higher frequencies; a system with feedback is required to op-
erate at a significantly lower frequency than its controller/observer poles and zeros.
Because of the configuration of the system, real-time controller is not necessary for

operation but can still be implemented for real-time input generation schemes.
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2.2 Mechanical Design

The system dynamics were carefully considered when designing the mechanical sys-
tem. An actuator which is designed to apply a force directly (rather than through
force feedback) is desirable for high-bandwidth operation. In addition to speed, the
system has to have a large stroke in order to test the depth dependent nonlinearities
in skin. Several high bandwidth strategies are available, and an indentometer using
a Lorentz force voice coil was chosen for this device. The Lorentz force is a force
on a point charge caused by an electromagnetic field. The force on the particle is
proportional to the field strength B, and the current I* that is perpendicular to the
field multiplied by the number N, of conductors in series each with length L.. When
a current is applied to the coil, the charges interact with the magnetic field from the

~ permanent magnet and are accelerated with force,
F=I"L N, x B,. - (2.1)

There are two main types of voice coil configurations known as the overhung and
the underhung configurations. In the overhung configuration, the coil windings are
taller than the height of the magnetié field gap. This configuration has the advantage
of higher sensitivity but suffers from higher coil mass. The underhung configuration
is when the coil windings are shorter than the height of the magnetic field gap. This
configuration has the advantage of lower mass but creates a bigger control problem
if the coil leaves the gap. For the overhung configuration shown in Figure 2.4, the
magnetic field only interacts with the current-carrying wires at a single region near
the top plate where the field lines are perpendicular to the direction of the current.

If the current is coming out of the page at the top of the drawing and going into
the page at the bottom of the drawing, the force generated would cause the coil to
move to the left relative to the casing. If the current was reversed, then the direction
of the force would also be reversed. For a fixed geometry, the force constant can be
defined as L,N,.B. for an infinitely long coil. This indicates how much force the coil

can output for an increase in the current. Since real coils are of finite length, there
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Figure 2.4: Lorentz force linear actuator operating principles. The blue indicates the
direction of the magnetic field lines and the red indicates the direction of the current.

are small nonlinearities at either end of the stroke.

The power handling capabilities of a coil are limited by its heat generation (due to
ohmic heating) and its heat dissipation capabilities. The housing for many coils pro-
vides heat sinking abilities preventing the coil from heating too quickly. In addition,
a moving coil can provide convective cooling. The most commonly used forces and
test lengths for this device would not require advanced heat handling measures [40]
but a temperature sensor is added as a safety measure to monitor the temperature
for high force or extended length tests.

In addition to the relatively simple operating principles, the Lorentz force linear

actuators where chosen for the following reasons.

e Direct force control: The Lorentz force coil can be driven to produce a force as
commanded since current is proportional to force and voltage is proportional
to velocity. Forces under 15 N would require that the actuator used in the
experiments be driven at voltages lower than 48 V. Directly controlling force
open loop gives advantages for proving the identifiability of system parameters
when compared to servo-controlled stages.

e Incorporated force sensing: The force can be measured by looking at the current

flowing through the actuator. This would be the most low-cost method for
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measuring force. For some separate force sensors, there are additional dynamics
which are detrimental to the system identification process.

e High force limits: The coil can be driven to high forces which are limited by
the amplifier and the heat transfer properties of the actuator.

e Long stroke: The coil can be designed with a long stroke with relatively large
regions of linear operation. Other systems like those driven by piezo-electrics
[6, 73] do not have as high a stroke and do not generally operate at low voltages.

e High bandwidth: The bandwidth of a Lorentz force coil is limited by input
power, the mass of the system, and the stiffness of the tissue being tested.
Other strategies including lead screw systems have relatively low bandwidth in
comparison.

e Low cost: The actuator consists of a magnet, a steel cap, an iron core to guide
the magnetic fields, and a copper coil. The simplicity of the design helps reduce
cost.

e Few accessories necessary: In order to operate the coil, the only accessories
outside the actuator are an amplifier and power system. Other strategies such
as non-contact pressure systems require an additional high pressure pump and

valves.

The sensors for this system can also be chosen based on the design simplicity criteria.
Several different concepts exist in the literature for sensing position including non-
contact LVDTs and laser systems. To minimize the space necessary for the sensor
and the cost of the sensor, a linear potentiometer was used. Based on these design
decisions, several implementations of the mechanical design were constructed includ-
ing a prototype, a desktop research device, and a commercializable hand-held device.

Figure 2.5 shows an image of each version.

42



Figure 2.5: (a) The prototype, (b) desktop version, and (c) hand-held version of the device
used for nonlinear system identification.

2.2.1 Research Device

The design of the mechanical device consists of an easily controllable actuator and
force sensing system, a low-cost position sensor, a temperature sensor, an injection-
moldable external bearing system and swappable device probes. The original pro-
totype incorporated a linear position sensor on axis with the actuator with a force
sensor in line which made it rather long. This design was used to guide the construc-
tion of smaller designs. Figure 2.6 shows an enlargement of the design of the desktop
mechanism in Figure 2.5b.

The desktop research instrument is based on a Lorentz force linear actuator with
a bobbin mass of 60 g, a total length of 32 mm, and an inner diameter of 25.2 mm.
The design of the coil dynamics is important to the identification of the system. The
mass of the coil was designed to be low enough to not significantly overshadow the
inherent mass of the system to be identified. However, the mass of the coil must be
high enough such that the nominal natural frequency of the system \/W is within
a testable range for the actuator and signal processing system.

A BEI Kimco magnet structure was used with a neodymium magnet with a mag-
netic field strength of 0.53 T. A custom designed overhung bobbin was 3D printed
with multiple attachments for a temperature sensor, easily insertable electrical con-

nections, through holes to allow air flow, threaded holes for attachment of custom
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Figure 2.6: Detailed desktop version of the device including a voice coil actuator, bobbin,
linear potentiometer, and bearing structure.

probes, and a wire insertion slot. The custom wound coil has a resistance of 12 ,
inductance of 1.00 mH, a force constant of 3 N/A, and 6 layers of windings using
28 gage wire. This winding structure is chosen to balance the load on the amplifier.
A smaller gage wire would require higher input current. A custom circuit for high
current is generally more expensive to build than a circuit for high voltage operation.
There are significant advantages to working with systems that operate under 48 V
in terms of safety regulations ,which guided the design of this configuration. The
device includes a force sensing system via a current sense resistor. The coil design
also includes the integration of a small OMEGA F2020-100-B Flat Profile Thin Film
Platinum RTD into the side of the coil. This RTD monitors the temperature of the

coil to prevent actuator burn-out.

A low-cost linear potentiometer ALPS RDC10320RB was used to measure posi-
tion. When implemented with an amplifier and 16 bit DAQ the position resolution

is as low as 0.5 pm. An enclosure which fixtures the actuator, the position sensor, a
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position reference surface, internal wiring guides and a handle was also constructed.
The body of the device doubles as an encasement for the magnet structure and as
a bearing surface for the bobbin. Teflon bearing spray is used to reduce static fric-
tion and help create constant dynamic damping. Lastly, the lower end of the body
includes an attachment feature which allows it to be slid into MK automation alu-
minum framing, as in the desktop version of the device, or into a custom handle, as
in the handheld version of the device. For indentation, the desktop version of the
device can utilize gravity to provide an extra constant preload on the surface.

The MK framing with base allows the system to have a small and stiff structural
loop that enables the device to be more precise and helps eliminate system noise.
The more important structural loop, however, is the one between the rim of the
actuator, known as the reference surface, and the system being tested. This is because
forces and positions are being measured with respect to the reference surface thereby

allowing the instrument to characterize tissue compliance.

2.2.2 Handheld Version

The handheld version was designed with ease of use in mind. In order for a clinician
to test different locations on the body, the testing mechanism must be easily moved
and positioned. This, however, creates a few problems with the structural loop of
the system. Additional movement of the patient and clinician as the actuator vi-
brates may cause noise in the readings. Figure 2.7 shows the system dynamics of the
handheld system.

As long as the reference surface is placed in firm contact with the surface of the
patient’s skin, the system will successfully measure the compliance transfer function
of the skin and not of other components. To account for force changes when going
from measurements in the desktop system with respect to the handheld system, two
additional components were added to the system. A bracing band is included to
help maintain the lateral position of the actuator on skin. An accelerometer is also
added to account for the orientation of the device (compensate for the directional

loading differences from gravity). Figure 2.8 shows a solid model rendering and
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Figure 2.7: The dynamics of the handheld device show that as long as the reference surface
is held firmly against the patient, the only additional contribution to the dynamics would be
that of the varying direction of gravity. This can be accounted for by using an accelerometer.
Note that the skin dynamics is modeled here as a Kelvin-Voigt system but any other skin
dynamics can be included here.

implementation of the hand-held version of the device designed for commercialization.
The handheld system is smaller than the desktop system and therefore has a lower
force output. For smaller designs, more advanced Lorentz force coil designs may be
necessary to maintain force outputs. The stroke of the system is nominally 32 mm,
the bobbin resistance is 9.5 €2 and the magnetic field strength is 0.35 T. The mass of
the actuator is 39.5 g and the total mass of the handheld device is 256 g.

A commercializable device must also be low cost. With some cost optimization in
the design of the electronics, the total cost per device (not including labor, tooling,
and assembly), would be $239.63 for the mechanical device and the electronics. The
outline of prices is listed in Appendix A.1. The cost of the mechanical components is
about $45.04 which includes the voice coil, the bearing structure, sensors and probes.
The power supply alone costs $84.01. The next most expensive electronics include
the linear operational amplifiers and the instrumentation amplifiers. With labor,
tooling, and assembly, this price would still be less than the list price of the most
popular devices on the market for large quantities. The quoted price of the DermaLab
device is $8,100.00 without accessories. The quote for the device is also available in
Appendix A.2. Based on the evaluation of price, the device described in this work

would be competitive with other devices on the market.
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Figure 2.8: Detailed handheld commercializable version of the device with solid model and
implementation.

2.2.3 Device Configurations

The design of the instrument allows for several different in vivo system identification
modes including probe indentation, extension, and surface mechanics testing depend-
ing on the custom probe type used. Figure 2.9 shows the different configurations for
the device. For indentation, the typical tip used for contacting the skin is a 4.4 mm
steel disk with a normal thickness of 1 mm. Tips with different thickness, diameters,
and corner radii are also used. The attachment to the actuator is recessed to allow the
skin to freely conform without contacting other parts of the probe. All indentation
measurements are made with respect to the position reference surface that is signif-
icantly larger than the circle of influence from the probe. For indentation into the
skin, which is the main focus of this work, no taping or gluing is necessary. However,
to do experiments that require lifting the skin, using suction, liquid bandage or some
other type of mild glue is required.

For extension experiments, a separate probe and reference surface are used. The
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Figure 2.9: Configurations of the device including an indentation configuration, extension
configuration, and surface mechanics configuration.

extension probe is 5 mm by 16 mm with rounded edges that have a 2 mm radius. The
rounded edges are important for reducing stress concentrations [4]. The reference sur-
face is a flat face on the actuator side. It serves as the second probe surface. Coupling
to the skin can be provided by a normal preload and a mild layer of liquid bandage
or double-sided tape. The extension system can be oriented along the Langer’s lines
or in other orientations to.characterize anisotropic tissue properties.

Surface mechanics testing, or friction assessment, is configured in a manner similar
to extension experiments except that the probe is more rounded and allowed to slide
along the surface of the skin [28]. Since the surface mechanics system is second order
with a pole at the origin, an external spring is needed in the system to complete
linear stochastic system identification. Note that the measured compliance will be a
function of the depth of the compression of the probe into the skin depending on the

vertical preload.

2.3 Electrical Design

The electrical design consists of input drive circuits and data acquisition circuits.
Several designs for the electrical system were also implemented in an effort to reduce

the footprint of the device. The first electronics system was driven by a Kepco BOP
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50-8D amplifier with a total output limit of 50 V at 8 A. The force, position, and
temperature sensors were powered with an Agilent E3631A power supply, amplified
with AMP 02 instrumentation amplifiers, and filtered by an anti-aliasing filter with
a cutoff frequency of 2 kHz. Subsequent designs used smaller components. The
electronic schematics and implementation of electronics are shown in Figure 2.10.
The inputs to the electronics are in green, the outputs are shown in blue while sensor
and actuator components are in red.

In the schematic, the inputs to the system (outputs of the data acquisition) are in
green, the outputs of the system (inputs to the data acquisition) are in blue, and the
system actuators and sensors are in red. In order to assure good signal quality and
to reduce power supply noise from high current draw from the actuator, the signal
acquisition circuits and the coil amplifier are placed on a separate power supplies.
There are three separate power supplies in this design. One of the power supplies is
at 48 V and is powered by a Phihong P835A1 AC power adapter. It is capable of
2.5 A continuous operation and instantaneous current can be larger with the addition
of a 15 mF capacitor. This power supply is significantly smaller than the Kepco BOP
50-8D. Even smaller power supplies can be used if smaller forces are desired. The

signal conditioning amplifiers are driven at £9 V and the sensors are driven at 5 V.

Linear amplifiers are chosen to drive the coil as opposed to a class-D style binary
input because a linear amplifier system gives more flexibility in designing the input
values and input distribution. In the design shown in the figure, it is possible to drive
the coil forward and backward at up to 48 V. Each of the Burr-Brown OPA 549 linear
amplifiers is capable of operating up to 60 V and 10 A. The package has a fast slew
rate of 9 V/us. Bach amplifier circuit can source or sink current. In order to avoid
possible deadband near the lower power supply limit, the inputs Vin+ and Vin- are

offset.

The Lorentz force coil can be modeled with a resistor, inductor and additional
skin mechanics. The voltage across the coil can be monitored using an AMP 02
instrumentation amplifier system measuring across a voltage divider. The instrumen-

tation amplifier buffers the signal and an additional first order low-pass filter reduces
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Figure 2.10: Electronics design and schematic for the sensing and power systems. Inputs
are in green, outputs are in blue, and sensor and actuator components are in red.

any high frequency noise. The output is differential which takes advantage of the
resolution of the ADC.

The current across the coil is measured using a current sense resistor and amplified
using another circuit. The potentiometer and the RTD are also buffered using AMP 02
circuits. The RTD offset is reduced with a Wheatstone bridge circuit and the output

signal is also amplified. A button on the system is measured with an internal pull
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down resistor. The accelerometer, which is used in the handheld system, is an Analog
Devices ADXL-322 with two axes.

The data acquisition is completed with a National Instruments USB 6215 with a
16-bit ADC implemented on all input channels and a 16-bit DAC implemented for
the output. The system input and output information are stored in a firmware buffer
to eliminate communications lag time with the computer. The voltage is measured
rather than assumed as the same as the input across Vi, and V,_ because this skips
over the dynamics of the amplifiers. In addition, this bypasses the lag that occurs

between the output command and output realization times.

2.4 Software Design

User-friendly software, which interfaces with a conventional laptop computer, was de-
veloped to display test procedures, test results and other clinically relevant informa-
tion. The system identification software is implemented in MATLAB and interfaces
with the LabVIEW 8.5 for data acquisition and display. The software has the ca-
pability of completing an auto-calibration, completing force constant compensation,
driving an input, taking measurements, implementing the system identification, and
displaying the information to the user. For the purposes of display, a simpler ver-
sion of the system identification that runs at a faster speed can be used to initially

assess the validity of the data. More complex system identification schemes are later

implemented in MATLAB.

2.4.1 Calibration

There are two pieces of calibration software that help determine the performance of
the system. The user interfaces for the calibration systems are shown in Figure 2.11
and additional details for the LabVIEW program are shown in Appendix B. The
first piece of software is the static calibration system. The static input voltage can
be compared to the static force via an initial calibration. Then additional current

to force calibrations can be used to calibrate for variations in the power supply for
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the sensor system. In order to do this, voltage is first applied to the coil at different
constant values and the current is measured. This gives a linear calibration curve. The
accelerometer and temperature sensor are calibrated similarly. In the last step, the
calibration constants are saved to an external file and read by the system identification

software.
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Figure 2.11: Software used to auto-calibrate the system at startup. (a) The static cali-
bration system configures the force, position, and voltage readings while (b) the dynamic
calibration system configures the full second order linear dynamics of the coil at different
positions.

The dynamic calibration system is used to determine the performance of the coil
at different positions along the coil. Although the Lorentz force is theoretically linear

for an infinite coil, a finite coil will have slightly different performance parameters
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at different locations along the stroke. In order to perform this calibration, a weak
spring with a spring constant around 1000 N/m is positioned in the instrument. The
position of the spring is then varied incrementally and dynamic data is taken at each
of these points. Linear system identification is performed and the fitted values are
reported to determine the region of linearity in the coil. For more information on‘the
linear system identification techniques, see Section 3.1. Results from subsequent tests
are mapped against the calibration curve to assure that the information is taken in a
linear region of the actuator.

The calculated parametric values for different positions on the coil from one such
calibration are shown in Figure 2.12. The bode plot is also shown to the right where
the damping decreases as the position value increases. The lower position indicates
that the coil is further inside the bearing structure. The coil has a 32 mm stroke and a
region of about 20 to 25 mm that is relatively linear. The nonlinearity near a position
of zero is due mostly to the fact that the magnet has reached one end of the coil and
the top portion of the bobbin may be hitting against the magnet structure. For
positions near 32 mm, much of the coil has exited the controlled field of the magnet
structure. As less and less coil is available, the output force decreases and the system
identification software perceives that the resistance to movement has increased. This
is interpreted as an increase in the spring constant and effective mass (because the
calibration was completed with gravity pointing toward higher positions). In general,
calibrations are completed in the same orientation as the subsequent test in order to

match calibration curves with curves from measured data.

Table 2.1: Instrument calibration versus skin parameter values

Instrument Values Skin Values
VAF* 95 to 98% 70 to 95%
M 0.06 to 0.08 kg 0.06 to 0.10 kg
B 3 to 4 Ns/m 5 to 50 Ns/m
K 1000 to 1200 N/m 100 to 7000 N/m

*See definition of Variance Accounted For in Equation 3.13.

The nonlinearities in the coil are much smaller than the nonlinearities seen in

the properties of skin. Table 2.1 shows a comparison of the instrument versus the
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Figure 2.12: (a) Device calibration curves in parameter space showing the Variance Ac-

counted For (VAF), the mass, the damping, and the spring constant associated with different
positions along the coil. (b) The associated curves in frequency space are also shown. The
nonlinearities seen in skin samples during indentation testing. Note that the mass and
damping measurements reflect the contributions of the coil and skin while the spring
constant is represented either the calibration spring or the skin under indentation.

position reference increases as the coil is extended outwards (into the skin).



The variation on the calibration spring is about 1 to 1.2 times the actual value in the

linear test range.

2.4.2 System Identification Software

The system identification program is designed to give instructions to the user on how
to operate the instrument. When the system is started, the program will instruct
the user to place the probe on the tissue and to be sure to hold the reference surface
firmly in position. The system is then started with a button click. The input applied
consists of a initial preload followed by a stochastic signal. When the data is acquired,
the program sends the information from all the signals to a MATLAB node which
then computes the outputs. The output of the MATLAB node is then displayed on
the screen. If the user wishes to complete another test, the start button is pressed
and the process‘ begins again.

Figure 2.13 shows the interface used for system identification. Additional details
on the LabVIEW program are listed in Appendix B. The input is generated before the
test and stored in a file. The input signal can be augmented in magnitude and offset
in the program. The first plot on the left shows the input voltage, force and position.
Moving to the right, each of these signals is then broken down by chopping off the
preload section of the data. The power spectrum of all the signals are calculated
to check for high frequency noise. The mean squared coherence of the input force
versus the output position are calculated to identify portions of system linearity. In
the second row of figures, the impulse response is calculated along with the static
nonlinearity. Both of these are accompanied by a parametric fit. The parametric
and nonparametric models and the measured output data are then compared. A
bode plot can be created for the system and is displayed in the figure on the bottom
right. This series of plots is used to check the consistency of the data before being
processed by more advanced system identification schemes. Additional details on

system identification are discussed in subsequent chapters.
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Figure 2.13: LabVIEW user interface which takes measurements, completes system iden-

tification and displays information to the user.
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Chapter 3

Linear and Static Nonlinear

Techniques

To minimize patient discomfort in a clinical setting, skin measurements must
be done quickly but accurately. In addition, the results must be both repeatable
and unaffected by patient movement. Stochastic system identification techniques,
mathematical techniques capable of obtaining a large amount of data from a quick
test, are immune to influences uncorrelated to the input. This chapter develops
techniques that can be used to estimate a skin model in approximately two to four
seconds.

System identification is a powerful tool that has been well established for pure lin-
ear systems and some classes of static nonlinearities. Skin and the underlying tissue is
dynamically nonlinear but can be approximated, to first order, with a cascade model
composed of a linear component followed by a Wiener static nonlinearity. Several lin-
ear and static nonlinear system identification techniques exist that can identify global
monotonic or non-monotonic nonlinearities. Using the technique developed by Hunter
and Korenberg [49, 69, 67], the linear dynamic component and the static nonlinear
component of tissue can be identified using white, Gaussian inputs or non-white, non-
Gaussian inputs. Results from indentation tests on skin are shown to motivate the
use of more advanced tools for system identification. Additional experimental data

is displayed in Chapter 7.
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3.1 Linear Stochastic System Identification

A linear system is one that can be described by a linear combination (with gains
and lags that represent storage and absorption) of the inputs and outputs. Many
mechanical systems, such as motors, are well represented by linear time invariant
(LTI) assumptions. Many nonlinear systems can be simplified to a linear system

when the perturbations are small.

Linear systems have many desirable properties that allow them to be easily ma-
nipulated and identified. One of the important factors necessary for identifying a
linear system is its impulse response, which is a measure of how the system responds
to an instantaneous input pulse. The impulse response also fully characterizes the
dynamics of a linear system. It can be understood as how the energy of the input
delta function is stored in the system dynamics and released over time. Any input
profile can be broken up into a series of delta functions and the corresponding output
impulse responses can then be added together to produce the overall output. Mathe-
matically, this is represented by the convolution of the input with the system impulse
response. With linear systems theory, the problem of identifying a complex system

can be boiled down to looking for the system impulse response.

Real systems are continuous and can be converted into the frequency domain
using a Fourier or Laplace transform. On the other hand, when data are collected,
the representation of the real system is discrete. Discrete systems can be converted
to the frequency domain using discrete Fourier transforms or Z-transforms. There
are several different categories of discrete systems, two of which are the finite impulse
response systems (FIR) and infinite impulse response (IIR) systems. In FIR systems,
the output is only a representation of lagged input variables thereby resulting in
an impulse response that will approach zero as the lag approaches infinity. In IIR
systems, the impulse response depends on the input and the output and can therefore
have a finite value as the lag approaches infinity. IIR systems can drift from their
equilibrium value because the absolute position of the system output depends on the

entire history of the input. FIR systems are much simpler to model and have a finite
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memory length. Memory length can be thought of as the amount of time it takes the

system to release the energy it has stored from the input.

Since linear time invariant FIR systems can be represented by a finite length
impulse response, the problem of identifying the system can be reduced to identifying
the impulse response up to its memory length. How can this be done? The most
obvious solution is to apply a delta function input to the system and measure the
impulse response directly. This, however, is impossible to do since it is impossible
to produce a perfect delta function. Other simple inputs like step inputs can also
be used to identify system dynamics. However, there is uncorrelated noise which
would require the test to be completed multiple times. Yet another method is to use
sine waves of different frequencies to identify the amplitude and phase at different
frequencies. This also has additional drawbacks. In conducting a test with a sine
wave, the first few samples will always be plagued with transients from frequencies
unrelated to the input frequency of the sine wave. This means the first few samples
cannot be used when fitting the sine wave. It also takes a long time to complete tests

for multiple frequencies.

A more advanced statistical method of determining the impulse response would be
to use stochastic system identification to test all the frequencies at the same time. For
a linear system, different frequencies can respond independently from other frequen-
cies. A signal that contains information from all frequencies with equal probability is
a white signal. There are obvious benefits over step responses and sine waves. A step
response has a single input from which a single impulse response can be collected.
A single data set gives a poor estimate of the actual system dynamics. In order to
be relatively certain of the response of the true system, many samples need to be
collected. For the same amount of time it takes to obtain a single estimate from a
step response or from one frequency in a sine wave test, a stochastic input signal uses
many inputs which produce multiple estimates for the impulse response. This boosts

the sensitivity of the measurement.

Stochastic system identification has many other desirable properties. A white

input is inherently uncorrelated with itself thereby producing an autocorrelation of
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zero for all lags other than at the zero lag point. This means that the cross correlation
of the input to the output is a good representation of the impulse response. Therefore,
aspects of the output that are uncorrelated with the input will be statistically averaged
away by the correlation functions. This produces a robust identification technique
that can ignore uncorrelated noise.

Several parametric and nonparametric methods for linear stochastic system iden-
tification exist. Assuming that the system has a finite impulse response (FIR) for
the discrete transfer function, the impulse response can be calculated many ways

including, but not restricted to, the following methods:

1. Frequency domain techniques can be used. This involves dividing an appro-
priately windowed power spectral density of the input-output relation by the
power spectral density of the input. An impulse response can be obtained from

an inverse Fourier transform. These methods are exhibited in Section 3.1.2

2. Time domain techniques including least mean squares (LMS), recursive least
squares (RLS), and adaptive least squares (ALS) can also be used. The LMS
algorithm is used for off-line system identification (described in Section 3.1.3
and the RLS and ALS algorithms can be used for on-line real-time system

identification.

3. Orthogonalization of the input with different fitting functions can also be used
to look at linear systems. For orthogonalization, a Gram-Schmidt algorithm can
be used [66]. For some colored inputs, however, this method can create high
frequency noise in the solution. This would require a second filtering step before

obtaining the impulse response. These methods are explained in Section 4.1.

3.1.1 Input Generation
Distribution

Stochastic inputs can have a variety of distributions and colors. Gaussian white in-

puts or Brownian process inputs are the workhorses of classical system identification

60



methods. In fact, several linear and nonlinear system identification methods are de-
rived expressly for an input with given probability and autocorrelation characteristics
(74, 48]. When a Gaussian distribution is put into a linear system, the output is a
Gaussian distribution. When other distributions are put into a linear system, the
output distributions will change and will often approach a Gaussian. For nonlinear
systems, however, an input Gaussian may turn into another distribution as shown for

skin under indentation in Figure 3.1.
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Figure 3.1: Input and output distributions for skin under indentation testing.

Despite the benefits of Gaussian inputs, other inputs also have merits in other
situations. In linear systems, the range being tested does not change the system
dynamics so it is theoretically possible to test a small range of inputs to understand
the entire system. Therefore, it is optimal to use Gaussian inputs with low input
ranges which satisfy certain mathematical proofs like the Cramer-Rao lower bound
for the maximum variance of estimators [74]. When noise is added into the equation,
it then becomes important to increase the input range in order to obtain a better
sensitivity.

Real systems have physical limits; actuators may not be able to achieve certain
high bandwidth inputs, high bandwidth inputs may damage the system (or in the
case of tissue mechanics, be painful for the patient), or the measured input (e.g.

current) may not be the same as the programmed input (e.g. voltage). In order to
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measure the full range of the output, it is important that the dynamic range of the
sensors be larger than the dynamic range of the system. It is also important that the
input spectrum takes full advantage of the dynamic range. For the nonlinear tissue
mechanical system, it is especially important to obtain a large output distribution
because the manifestation of the static nonlinearity only happens when a large range
of positions is explored. Smaller displacements will only show linearized regions of
the overall nonlinearity.

One way to characterize an input is to use the crest factor. The crest factor is
defined as the peak to root mean square (RMS) average ratio of the input. Since it
is important that the RMS value of the input takes advantage of the full range of
the real system, the optimal value for the crest factor is one. This means that the
peak value is equal to the RMS value. Several signals satisfy this criteria including
a DC signal at the maximum input value. A DC signal, however, does not have any
frequency content.

Another input that satisfies this criteria and also has a large input bandwidth is a
stochastic binary signal. This is composed of an input which varies randomly between
the maximum and minimum possible input. The distribution for a stochastic binary
is bimodal. When working with biological tissues in vivo, additional factors need to
be taken into consideration when generating an input. Stochastic binary signals have
high frequency content with sharp transitions; which result in subjects experiencing
pain. Other types of input signal distributions, such as Gaussians and uniforms, can

be generated that test the full dynamics of the input painlessly.

Frequency Content

In addition to input range, it is possible to characterize a signal by its color or
frequency spectrum. There is no standard metric for determining the optimal input
bandwidth. Nevertheless, there are a balance of factors which can help determine the
best range of input bandwidths. In order to derive adequate information to describe
the system, a tailored input must be generated with a sufficiently wide bandwidth and

output distribution. For the purpose of understanding system dynamics, the input
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frequencies must extend well above the system’s highest frequency characteristic, such
as the natural frequency. The ability for the model to account for the information
(such as the variance accounted for or the residual sum of squares) is not a good
measure because using a lower bandwidth can increase the overall ability to predict
the output but represents a loss of the higher frequency information of the system
rather than a better understanding of the overall system dynamics. These mechanisms
tend to widen the bandwidth of the input signal.

In order to maintain a reasonable range without excessive input power (the input
power limit of the actuator, for example), the bandwidth must be decreased. In
addition, the sampling frequency limits of the data acquisition system also limit the
maximum input frequency. It is also undesirable to sample at a different frequency
than the input since this may cause aliasing. Therefore, the high frequency content
of the input should be heavily low pass filtered. These forces tend to decrease the
input bandwidth.

A range of inputs were attempted for this system and it was found that a Gaus-
sian white input with a cutoff frequency of 200 Hz (which is well above the natural
frequency of the system) implemented with an 8th-order Butterworth filter was ap-
propriate. Other distributions, such as a uniform distribution, were also generated by
the method described in Hunter and Kearney [48] with a cutoff frequency of 200 Hz.

Methods for generating these inputs are discussed in Chapter 6.

Test Length

In linear systems, the test length is dependent on the memory length (in seconds) of
the system. For natural frequencies near 30 Hz with reasonable amounts of damp-
ing, the memory length is shorter than 0.1 seconds. This indicates that as little as
0.1 seconds is needed to identify a linear system with dynamic content up to 200 Hz
and a damping parameter (or damping ratio) greater than 0.7. As a rule of thumb,
the test length (in number of samples) is at least a factor of three greater than the
number nonparametric values being fitted [68, 64] when no correction is necessary for

the initial conditions. When initial condition corrections must be made, longer test
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lengths are required. For linear systems, this means that the test length should be at
least three times longer than the memory length or around 0.3 seconds. The longer
the test length, the more statistical averaging occurs which means that the impulse
response will be closer to the real value.

In nonlinear systems, the test length may be dependent on other factors such as
the order of the nonlinearity that is being identified or input range restrictions. An
absolute minimum of 2 seconds is needed to fully explore the range of inputs using
Gaussian inputs. In order to predict a Wiener static nonlinearity, a final test length

of 4 seconds was used.

3.1.2 Frequency Domain Techniques

After generating the input, it is important to revisit the underlying assumptions for
high frequency system dynamics and for linearity. There are several frequency domain
techniques that can be used as an aid to this assessment. One of the techniques used
to look at the frequency content of a signal is the power spectral density (PSD).
When the PSD is calculated, Welch’s algorithm should be used with properly chosen
windowing functions to minimize noise in the frequency domain. The PSD can be used
to estimate the signal to noise ratio and to determine the noise floor of a particular
signal.

Plots of the signal power spectra from an indentation test into human skin are
shown in Figure 3.2a. This plot shows that the input goes up to 200 Hz before an
8th order low pass filter is implemented. The voltage signal level drops 8 orders
of magnitude before hitting the noise floor. The corresponding force output of the
linear voice coil shares the same cutoff frequency as the input voltage and drops about
4 orders of magnitude before hitting its noise floor. The position output of the tissue
and linear voice coil system has its own dynamics which begin to appear near 30 Hz.
The DC signal level and the high frequency noise floor differ by about 6 orders of

magnitude.

One of the the techniques used to look at the linear regions of a signal is the mean
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Figure 3.2: (a) Power spectral density of the input voltage, the measured force, and the
measured position of the instrument during a nonlinear stochastic measurement of the skin
during indentation on the left posterior forearm 40 mm from the wrist. (b) The mean
squared coherence of the input force to output position shows the frequency ranges that
can be explained by linear elements.

squared coherence (MSC) defined as,

|q)my(w)|2

Crl) = 1), @)

(3.1)

where ®,, is the power spectra of the inputs, ®,, is the power spectra of the outputs
and ®,, is the cross power spectra of the input and the output. Note that this
function cannot be implemented as written and should, rather, be implemented with
algorithms such as those developed by Welch using windows and overlapping signal

components. This is shown in Figure 3.2b.

The MSC of skin can help determine how much of the system can be explained
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with linear assumptions. In the region between DC and about 100 Hz, the coherence
between the input and output is about 0.8 which means that it is only partially
successfully explained using linear assumptions. From 100 to 200 Hz, the MSC is
almost unity which means that it is well modeled with linear assumptions. Since
there is only input power below 200 Hz, the behavior of the MSC above 200 Hz is
not relevant. From 200 Hz to 300 Hz, the MSC drops quickly due to the lack of
input power. Above 300 Hz, the low input power makes it difficult to determine
the linearity of the system and the MSC is effectively zero. This indicates that skin
during indentation may be well modeled to first order using a simple linear system.

As expected from arguments in 2.1, nonlinearity is a function of output range.

In the frequency domain, a linear system can be modeled with a Bode plot which
breaks down the complex response into a magnitude and a phase lag. The magnitude
and phase convention is used in system dynamics and controls and serves as a better
representation of systems where the actuator dynamics are included in the measure-
ment. Other conventions for frequency domain representations include breaking the
complex response into a real and an imaginary component. This is sometimes used

in material science to represent the real and complex storage of a material [101].

Figure 3.3 shows the Bode plot of the compliance (force to position transfer func-
tion) of the skin and instrument system. These plots were obtained using the same
windowing functions as the PSD and MSC plots. Note that since the input power
goes only up to 200 Hz, the information above 200 Hz is removed from the plot.

From the shape of the Bode plot, it is clear that the system is second order up
to 200 Hz. The indicators for this include the slope of -2 in the magnitude plot at
high frequencies and the corresponding phase approaching -180 degrees. The natural
frequency of the system is at 36 Hz (226 rad/s) and the damping parameter is between
0.5 and 1. Obtaining a more specific damping parameter or a damping constant from
a noisy Bode plot is generally more difficult. Since the mass of the actuator is known
to be 60 g and additional estimates show that the total effective mass is about 91.2 g,
a preliminary estimate of the average spring constant of skin can be obtained at

around 4.67 kN/m on average for a traversed depth of about 7 mm. Caution is
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Figure 3.3: Bode plot for force to position relationship for skin. The cutoff frequency is
near 36 Hz for this configuration of input mass and skin compliance.

needed to interpret these values. It is important to realize that because the system
is essentially nonlinear and depth dependent, the spring constant should vary with
depth and will tend to be larger for locations deeper into the skin than values quoted
for the surface of the skin. Note that even values for the stiffness of the skin surface
will vary by orders of magnitude. Boyer quotes the spring constant of skin at the

surface as 25 N/m [6] and this serves as a lower bound to results quoted in this work.

The estimate obtained above is rough and curve fitting in the frequency domain
is often impractical. In addition, the choice of windows make fitting subjective to
the choice of window length. Time domain techniques for identification, on the other
hand, have the benefit of being nonparametric and robust to uncorrelated noise. The
time domain techniques produce nonparametric impulse responses which are generally
easier to fit to parametric values. The one drawback of time domain techniques is
that details like the order of the system are more difficult to determine. Using both

system representations is generally helpful for initial identification.
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3.1.3 Least Mean Squares

A least mean squares method is essentially the optimal solution to fitting a linear
dynamic equation under the assumption that uncorrelated white noise exists on top
of the output signal. This method is completed once all the data has been obtained
and is therefore an off-line identification method. The derivation for LMS is covered
in some system dynamics textbooks [74] so the solution will be given here without
proof. The impulse response can be derived from taking a partial derivative of the

mean square error with respect to the coefficients of the impulse response.

The conceptual idea behind LMS is that stochastic input can be compared with the
output to look for correlated components. Taking the autocorrelation of the inputs
and the cross correlation of the outputs removes the uncorrelated noise from the
system dynamics via statistical averaging. The two sided auto and cross correlations
are shown in Figure 3.4. If the input is perfectly white, then the cross correlation is
essentially the impulse response of the system. Since no finite length input can have a
perfectly white spectrum, additional manipulation is necessary to obtain the impulse
response. Since the impulse response convolved with the system input produces the
output, one can obtain the output by an “inverse convolution” of the input with
the output. This “inverse convolution” is known as the Toeplitz matrix inversion.
The main diagonal of the Toeplitz matrix is the autocorrelation at zero lags and the
upper and lower triangular portions of the matrix are symmetric for a symmetric

autocorrelation function.

The optimal impulse response satisfies Equation 3.2 where Fy is the sampling
frequency. Equation 3.3 shows the biased autocorrelation function of the force input
(where z = F) while Equation 3.4 shows the biased cross correlation between force
input and position output (where y = P). Equation 3.5 shows a Toeplitz matrix of
the input autocorrelation function. The noise assumptions for this least mean squares

equation are that the output noise is white Gaussian and uncorrelated with the input.

h(m) = Fy [R™ gy (m)] form=1...M (3.2)
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Figure 3.4: The normalized autocorrelation of the inputs and the input output cross cor-
relation are shown. A perfectly white input will have an autocorrelation that is zero for all
lags except at zero lag.

where N
delis) = % > wlieoli n =1, (3.3)
t=1
1 N
Puy(n N;a? y(i+n—1), (3.4)
[ 6r(l)  6un(2) 6ec(3) ... Gua(M) |
R=| ¢:2(3)  ¢ua(2) $aa(l) .. (M —2) [ (3.5)
L ¢zw(M) qba::c(M - 1) qum(M - 2) cee ¢xac(1) J

Efficient inversion techniques, such as singular value decomposition, can be used
to produce impulse responses from Equation 3.2. Windowing and other associated
algorithms are available in Appendix C.1.1. For a data length of N, the maximum
lag M corresponds to the memory length of the system. As the data length N
increases, the effect of initial conditions dissipate such that it is beneficial to have
longer data lengths even if the memory length M is low. This is especially true for

static nonlinear systems because the correlations should include as much of the output
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range as possible. The resulting impulse response is shown in Figure 3.5.

One special point to note is that the derivation for the LMS equations requires
that the input and output both have zero means (or else the the autocorrelation
and cross correlation will look like decreasing ramps rather than centering around a
value of zero). In addition, the derivation assumes zero initial conditions (zero for
the input and all high order derivatives of the input at a time of zero). The effects
of nonzero initial conditions approach zero as the test length increases. In practice,
a holding period of a few milliseconds at the average input force before the start of

the stochastic signal is good for approximating zero initial conditions.

—— Experimenal Data
- Linear Model Fit

100

50

Magnitude

Figure 3.5: Impulse response with parametric fit.

In Figure 3.5, the impulse response dies down quickly indicating that the damping
parameter in the system is high but the fact that the impulse response becomes
negative also indicates that the damping parameter is not greater than one. The
nonparametric estimates, shown as blue dots, are grouped around the average value
of the impulse response. A longer test length or a slower sampling rate can reduce
the noise in the estimate.

The form of the fitted impulse response is second order based on the frequency
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domain analysis up to 200 Hz. From the inverse Laplace transform of the output of

the system, the form of a second order impulse response can be obtained,
h(t) = Aysin(Agt)e??, (3.6)

where lAz(t) is the impulse response, t is the lag in seconds, and A;, A; and Aj are the
fitted parameters. This form was chosen for fitting because each parameter appears
only once and convergence occurs more expediently. The physical second order system
can be parameterized as a mass M, (contributions from coil mass and effective inertia
of the skin), spring K. (contributions from average skin stiffness) and damper B,
(contributions from friction, eddy current damping, skin damping) system in Laplace

space as
P(s) 1
F(s) M.s?+ Bes+ K.

(3.7)

The relations that convert from Laplace space to the impulse response are shown

below for a damping parameter (, natural frequency w, and sampling frequency Fs.

A% 1/2
- (rm) )
A
Wp = \/—17—'-22C, (39)
1 Wn,
K. = A—l_\/T—T—FF_;, (310)
Me = Ke/wyzw (311)
B, = 2(waM.. (3.12)

In order to assess the goodness of the fit, we can define the Variance Accounted For

(VAF) as,
o

VAF =1-—

2
-‘%y , (3.13)

where o,_,- is the standard deviation between the measured and the predicted out-

puts and o, is the standard deviation of the measured signal. The VAF is normally
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quoted as a percentage where 100 % VAF shows a perfect match between the pre-
dicted model and the measured system. Typical values of the VAF that produce
reasonably good models are above 95 %. This gives little resolution between reason-
ably good models so additional metrics are used for models with good performance. A
method of measuring the negative impact of the entropy from additional parameters

in estimation is called the Akaike Information Criteria (AIC) [74],

AIC =2+ N [ln (m%ﬁ) n 1} : (3.14)
Ruw = Y (0li) - 7(0))% (3.15)
N

Where k is the number of parameters in the model, N is the number of observations,
Ry is the residual sum of squares, y is the measured output and 7 is the predicted
output. The equation above assumes that the variance of the model error is unknown
but equal, thereby setting the maximum likelihood function. When the number of
parameters is increased, the estimated fit improves. However, the AIC will also
penalize the addition of parameters and discourages over-fitting [74]. Therefore, the
best values of AIC are those with the lowest values. There are several corrections to
the AIC. One of them is for small sample sizes called the AICc which makes a second

order correction,
2k(k+1)

AICC:AIC+N_—]€———1

(3.16)

The AIC is not generally robust to different representations of continuous systems.
This means that one sampling rate with a certain memory length will obtain one set
of values for the AIC for different models while a different sampling rate may give a
completely different set of values, possibly with a different order. The AIC and the
VAF should not be used to test the validity of a single model (hypothesis testing) but

should be used to compare different models for relative efficiency.

With these equations, it is possible to parameterize the nonparametric estimate
of linear components of the system and assess the goodness of fit. The effective mass

was found to be 0.0912 kg (the measured probe and bobbin mass was 0.060 kg), the
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effective damping was found to be 22.77 Ns/m, and the effective spring constant was
found to be 4.67 kN/m. This corresponds to a damping parameter of 0.55 and a
natural frequency of 226 rad/s. By convolving the impulse response with the input,
it is possible to create a prediction of the output which can then be compared with the
actual output. This can then be used to obtain a VAF for the nonparametric model
of 75.79 % and for the parametric model of 75.64 %. The second order parametric
model is therefore a useful simple representation of the system dynamics.

The values obtained from such a fit are valid only for a certain output range and
represent the average parameter values within that range. In order to obtain more
general estimates of the system parameters that are valid for other input ranges, a

nonlinear system identification technique is required.

3.2 Static Nonlinearities

Nonlinearities can come in many different forms and different representations can
highlight different aspects of a nonlinear system. A dynamic nonlinearity can be
solved using different basis functions, different higher order expansions, or perturba-
tion expansions. A static nonlinearity, on the other hand, can be represented as a
system block in the time or frequency domain and can interact with linear dynamic
clements as a simple transformation of the dynamic input data in the time domain.
There are many different types of static nonlinearities and each of them requires a
slightly different analysis technique. Two of the most fundamental types are Wiener
and Hammerstein nonlinearities. Schematics of these are shown in Figure 3.6. Ham-
merstein nonlinearities occur when inputs to a linear system are transformed with a
nonlinear function in the time domain. Wiener nonlinearities occur when the outputs
of the linear system are transformed by a nonlinear function in the time domain.
Static nonlinearities and linear systems can be cascaded in different combinations
to obtain more complex nonlinearities [67]. Static nonlinearities can occur in many
different situations in nature. Examples include light intensity output as a function

of input current in a filament light bulb and action potential polling in knee-joint
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Figure 3.6: Wiener and Hammerstein static nonlinearities show how linear system dynamics
can be combined with nonlinear functions

dynamics [61]. If the force from the instrument can be considered to have linear dy-
namics, then it is predicted that the skin may act, to a reasonable approximation, like
a Wiener system where the nonlinearity in the system is a static nonlinearity at the
output of a linear system. Methods for identifying Wiener systems will be discussed
below while more advanced methods for looking at Wiener and Hammerstein systems

are discussed in Chapter 4.

Hunter and Korenberg [49] proposed that Wiener systems could be solved by sep-
arating the nonlinear and linear components of the signal. The procedure is shown
schematically in Figure 3.7. Other recursive techniques [9, 106], subspace [105, 108]
and orthogonalization techniques [68] can also be used. The real Wiener static non-
linearity is a nonlinear function g(e) of a dynamically linear output z(n). The true
static nonlinear output y(n) is shown in Equation 3.17 as a nonlinear transformation
on the convolution of an impulse response of true memory length I and the input

vector x(n) such that,

y(n) = g | S h@)e(i+n —1)| = glz(m)]. (3.17)

i=1
The algorithm to solve for 2(n), h(m) and g(e) can be outlined as follows.
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Figure 3.7: Recursive algorithm for solving monotonic Wiener systems which involves
estimating the system linear dynamics from input output data, estimating the input to
output nonlinearity, taking the inverse of the nonlinear function and making a new linear
estimate from the input data and the inverse function.

1. The linear system is identified using LMS techniques to obtain an estimated

impulse response E,
El(m) =F; [R_1¢my1(m)] ) (318)

where
1

Q

2. The predicted linear output 27 can be calculated by convolving the calculated

> z(D)y(i +n - 1). (3.19)

=1

¢wyl (n) =

.

impulse response with the input,

An) = TM hG)a(j+n—1)

_ (3.20)
= SRR R 2N 2@yl +n - 1)) 2( +n - 1).

3. By plotting the predicted linear output z7(n) against the measured output y(n),
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the residual of the unexplained data can be obtained. If the system has a
Wiener static nonlinearity, a high order polynomial or other functional form
célled g1(e) can be fit to this unexplained data to obtain the static nonlinearity.
A free constant can be moved between the dynamic linear component and the
static nonlinear estimate. If the dynamic linear component is divided by its
DC compliance, this effectively moves the value of the spring constant into the
static nonlinear estimate. This serves as the first iteration estimate of the linear
dynamic and static nonlinear system.

4. At this point, a joint estimate is made of the linear and static nonlinear compo-
nents. To estimate the linear component, the nonlinear output is fed through
the inverse function g;'(e) of the nonlinear fit to produce the new predicted

linear output in the backward direction,

Z(n) = g7 [y(n)]. y (3.21)

5. A new impulse response can be found between the measured input and the new

predicted linear output,

ho(m) = F, [R—1¢Iy2(m)] , (3.22)

where

¢xy2 Q Z Zlb i+n— ].) (323)

6. Convolving the new impulse response with the input, a third predicted linear

output is obtained,

M
Z z(j +n—1). (3.24)
7. This can then be used to obtain a new static nonlinearity,
Zn(n) = g3 ' [y(n)]. (3.25)
This process typically only takes a few iterations to obtain estimates of g(e) and
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h(m) for m = 1... M. Note that the nonlinearity predicted in Section 2.1 is mono-
tonic and luckily this method works well for monotonic and invertible static non-
linearities. This method, however, generates estimates of the solution that are not
guaranteed to converge on the actual value. Although the estimate bias is not known
for an arbitrary form of nonlinearity, it can be calculated for a simulated system with
a given g(e) and is shown to be negligible in the case of the well-behaved nonlinear-
ities that are being studied in this work. For noninvertable static nonlinearities, the
step requiring that the inverse be taken of the nonlinear fit can be replaced with a
feedback equation where the newer predicted linear output is a function of the older
predicted linear output plus the error between the measured and predicted outputs

[69].

3.3 Representative Results

With the recursive estimate algorithm, it is possible to obtain estimates of the static
nonlinearity separate from the linear dynamics. The static nonlinearity along with a
parameter fit are shown in Figure 3.8. The measured output, or the depth into the
skin is shown mapped against the predicted linear output in newtons. The position
shown on the y-axis is the absolute position on the actuator. This is used so that the
nonlinearity can be mapped against possible nonlinearities in the actuator to show
that the actuator nonlinearities are negligible. The surface of the skin is located at
10 mm on the actuator for this test. Positive values of the predicted linear output
indicate forces pressing into the skin and negative values indicate pulling off of the
skin. An additional contribution of 0.59 N was added during calibration to account
for the contribution of gravity.

There are several features to the Wiener static nonlinearity of interest. First,
the backbone of the function increases monotonically as expected. Stiffness can be
calculated as the inverse slope of the nonlinear plot. It is shaped like an exponential
with stiffness increasing as depth increases. The “noise” in the figure is not instrument

noise because other materials that are more linear, such as a spring, show much better
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estimates. It is clear from the calibration curves that the system is capable of 95 to
98 % VAF. This indicates that the “noise” in the static nonlinearity comes from other
nonlinearities in the tissue rather than from the instrument. One particular point of
interest is the looping at low input forces and low positions. This type of deviation
can be modeled by more advanced nonlinear techniques as will be described in the
following chapters and sections. A model that can reproduce the most salient features

of this nonlinearity is described in Section 3.4.
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Figure 3.8: Wiener static nonlinearity with parametric fit. The measured output increases
as the probe goes deeper into the skin (in mm). The surface of the skin is located at 10 mm
on the actuator for this test. An additional 0.59 N was added to account for the contribution
of gravity.

The fit to the static nonlinearity is,
y=g(z) = Ci(1 — e ). (3.26)

In this equation, z is the predicted linear output (after several iterations) in newtons
and g(z) is the nonlinear function in mm. The reason for the change in units is
because the nonlinear function was chosen to carry the significant units when the

linear dynamics are scaled by a set constant. In this form, the change in stiffness as
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a function of depth can be represented completely by g(z).

The data shown above is the output after six iterations. In order to determine
convergence of the nonparametric estimates, parametric values and VAFs are calcu-
lated at each iteration point. Figure 3.9 shows these values up to 6 iterations with
the scaling constant chosen to be 1000 N/m. The initial estimate for this type of
well-behaved nonlinearity is very close to the final values, so the estimates with no
iteration can be used as an assessment of tissue if the application has limitations on
computation time. The iterations converge quickly and at around 6 iterations, the
nonparametric model does not change significantly as exhibited by the parametric

values. Figure 3.9a shows how the different VAF’s vary as the iterations progress.
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Figure 3.9: (a) Variance accounted for, (b) scaled linear parameters, (c) and nonlinear
parameters as a function of the number of iterations.

For the first iteration, the linear estimate is between the input and the measure-

ment. The nonlinear function then serves as a correction to the linear estimate. In
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subsequent iterations, the linear system estimate is separated hence the significant
increase in the VAF. The nonlinear VAF of the nonlinear estimate decreases slightly
afterwards. This is because additional estimates are attempting to optimize two sep-
arate estimates at the same time rather than two estimates sequentially. The VAF
from the joint estimates are highlighted in black and the single estimates of the linear
component are highlighted in pink. The nonlinear VAF is calculated in conjunction

with the nonparametric linear model.

Figure 3.9b shows how the linear parameters, the scaled mass in units of [s?] and
the scaled damping in units of [s] vary with the number of iterations. Figure 3.9c
shows how the nonlinear parameters vary. The reason for the strange units is because

the scaling constant was chosen with units of N/m.

As the number of iterations increases, the initial change caused by the scaling
constant drives the majority of the shift. In additional iterations, the parameters
converge and the absolute error decreases. The scaled mass oscillates more than the
other parameters because it is being modified by changes in ¢ and w,, which both force
the scaled mass in the same direction such that the effective deviation increases in the
second iteration. In addition, since the Wiener nonlinearity is only an approximation
of the real system, the error in the parameter estimates may not initially evolve in a
monotonically decreasing fashion.

An illustration of how the nonlinear estimates compare to the output is shown in
Figure 3.10. The blue dots represent measured values while the red line represents the
model estimates after identification. Since the input to this system is Gaussian and
the output is not Gaussian, the system response is obviously nonlinear. The nonlinear
model seems to be unable to repeat the peaks and troughs of the real system exactly
but does well for estimates near the mean value.

The variance accounted for is 75.8 % for the linear model and 80.7 % with the
addition of the static nonlinearity. Note that the increase of about 5 % to 10 %
in the VAF is typical for the performance of the static nonlinearity for indentation
into the skin. The estimates generated by this procedure are repeatable and able to

distinguish between different locations on the body. The mean and standard deviation
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Figure 3.10: The identified system using a Wiener static nonlinearity (red) matches well
with the measured results (blue). The surface of the skin is located at 10 mm on the
actuator for this test.

of the VAF, linear parameter estimates and nonlinear parameter estimates for 10 tests
on each of three different regions of the skin for one test subject are shown in Table
3.1. The anterior forearm position, posterior forearm and distal forearm positions are
40 mm from the wrist of the left arm. From palpation, it is clear that the posterior
position is stiffest followed by the anterior position and the distal side. The distal

side has the least amount of tissue between the surface and the bone so it is expected

that the system will have a sharper transition in the nonlinearity.

The results in Table 3.1 demonstrate that the areas tested are readily distinguish-
able and demonstrate good repeatability. By looking the the nonparametric VAF
versus the nonlinear VAF, it is clear that the VAF increases once a static nonlinear
model is used. As expected, the posterior forearm gives the most linear response
among the three positions. The stiffest position is the posterior position followed
by the anterior position and the distal side. This can be assessed by looking at the
relative values of C;. During palpation, this difference in compressible depth can be

sensed qualitatively. The damping, on the other hand, is much harder to sense by
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Table 3.1: Device and identification method repeatability

Quantity Anterior Posterior Distal Side of
Forearm Forearm Forearm

Linear Nonparametric VAF (%) 78.06+£2.33 86.53+0.72 76.05+1.65
Linear Parametric VAF (%) 78.11+2.35 86.04+0.69 76.00£1.59
Nonlinear VAF (%) 82.60+1.96 89.14+0.58 81.33+1.62
Scaled Mass (s?) 0.019440.001  0.025940.0004 0.0235+0.0012
Scaled Damping (s) 4.84+0.166 5.22+0.0843  7.00+0.222
Nonlinear Constant C; (mm) 7.42+0.302 9.77+0.145 4.714+0.360
Nonlinear Constant Cy (1/N) 0.1914+0.0153  0.1544-0.0162  0.442+0.0327

palpation. From the data, the damping and mass can be calculated by multiplying
the scaled damping and scaled mass by the value of the stiffness calculated at any

given position from the derivative of Equation 3.26,

K.(z) = Clc e(C22), (3.27)
M,(2) = M,K,(z), (3.28)
Be(z) = B,K,(=). (3.29)

From this transformation, it is clear that the mass, damping, and spring constant
are constrained to vary with the same nonlinear profile when the Wiener static non-
linearity model is used. The estimates generated by these parameters are a mean
value for any given position. As is clear from the nonlinearity in Figure 3.8, the error
in location can be as much as 1 mm for a total displacement of 7 mm. This is not ideal
and a better model should be obtained for tissue dynamics. The static nonlinearity,

however does to a good job of predicting position based dynamics to first order.

For skin mechanics, it is imaginable that creep, hysteresis and directional (pushing
into the skin is different from pulling on the skin) effects also play a role. In addi-
tion, Wiener and Hammerstein static nonlinearities are a particular form of static
nonlinearity that transforms physical parameters (such as mass, damping and spring
constant) by the same nonlinear factor. It can be imagined that for a system with a

large actuator mass that the same nonlinear transformation does not happen to all
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the physical parameters in reality. These issues can be addressed with more advanced

nonlinear system identification structures.

3.4 Localized Linear Testing

The input range can play a large part in the identification of a nonlinear system.
Small input ranges can often be as useful as large input ranges. This concept is best
illustrated with a few time-domain mathematical models. For a linear system, the

equation of motion is,
Mcij(t) + Bey(t) + Key(t) = 2(2), (3.30)

where the input z(t) is a force and the output y(t) is a position. The Wiener static
nonlinearity can be written in the time-domain as a nonlinearity which does not affect

the dynamic equation,
M 3(t) + Bez(t) + K.2(t) = z(t), (3.31)

y(t) = g(2(1)), (3.32)

where z(t) is an inaccessible linear dynamic output variable and y(t) is the output po-
sition of the system. Only one set of dynamics occurs in this system and is completely
encapsulated by Equation 3.31.

Coupling can occur when a dynamic parameter nonlinearity (DPN) is used. This

type of model can be written as,

My (y(0)§(t) + By (y(t))(t) + Ky (y(8))y(8) = 2(2), (3.33)

where M,, B,, and K, are all different functions which vary with position y(t). In
this time-domain model, the nonlinearity is clearly a function of depth and cannot
be completely decoupled from the dynamics. This type of equation of motion cannot

be solved with conventional linear system identification methods since it can have
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arbitrarily many sets of dynamics which vary with the output variable y(t). In con-
trol theory, the system dynamics of a nonlinear system can often be simplified if the
perturbations to the system are small. This is known as linearization about a point.
The expansion about this point can be completed using a perturbation theory expan-
sion to first order around the location of interest y, for small variations in y(t). With

small perturbations about a mean input force, the coupling terms can be linearized,

M, (yo)i(t) + By (yo)y(t) + Ky (yo)y(t) = z(t). (3.34)

When this function is linearized for small inputs, the equation of motion looks like
Equation 3.30 and can therefore be solved with linear methods. When larger inputs
to this system are used, additional interactions occur between the nonlinearity and
the dynamics. This can be interpreted as additional dynamic cross coupling terms
added to the left hand side of Equation 3.34. This type of nonlinearity can produce 7
the looping behavior as observed in Figure 3.8. The time-domain models listed in
this section can be easily discretized and simulated (See Appendix C.1.4) as shown

in Figure 3.11.

For linear system, the dynamics do not change as a function of depth so the red
and black input ranges give the same information as shown in Figure 3.11a. For
a Wiener static nonlinearity, a smaller test range produces linear results while a
larger input range helps resolve the static nonlinearity more clearly. The results from
separate small input range tests are consistent with the large range input because
they both produce a one-to-one relationship for y and 2 in Figure 3.11a. Another
interesting point to note is that the Wiener static nonlinearity produces the same
position dependent effect on the mass, damping, and spring constant as shown in

Figure 3.11b.

The DPN model produces completely different results for different input ranges. If
a large input range (100 %) is used, simply removing the linear dynamics will produce
looping behavior and produce features that can be mistaken for large estimation

error. If smaller input ranges (5 %) is used, then a one-to-one relationship appears
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Figure 3.11: A linear dynamic, Wiener static nonlinearity, and a dynamic parameter non-
linearity (DPN) are simulated. (a) Large and small input ranges are tested and the static
nonlinearity plot is shown. (b) These graphs show how the parameter values for mass,
damping, and spring constant can vary with position when using different types of nonlin-
earities.

between parameter values and position. With this type of nonlinearity, it is possible
to specify completely different nonlinear functions for the mass, damping, and spring

constant. With this concept in mind, large range tests as well as small localized linear
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tests are conducted on skin during indentation to obtain more information about the
underlying dynamic parameter nonlinearities.

Results from these localized linear tests are shown in Figure 3.12. The shaded
region in the figure shows the region that was pushed into the skin and the white region
corresponds to pulling on the skin. As the probe goes through different positions on
the skin, the impulse response changes. The changes in the parameter values for
pushing into the skin happen slower than the changes in the parameter values for
pulling on the skin. As discussed earlier, pushing into the skin will generate a different
response than pulling due to geometric differences.

For a medium range of forces that vary by about 7 N, very little looping behavior
is observed in the static nonlinearity. For a larger range of forces around 11 N, the
looping behavior begins to appear. On the other end of the spectrum, if the inputs
are small with inputs that vary about 1 N each, the looping behavior diminishes
even more and each of the smaller inputs begins to align. Each of the 1 N variation
groups represents the estimation from a single test. Even with variation of 1 N, it is
possible to see nonlinear behavior. As the input force variation decreases to zero, the
individual tests will begin to align perfectly to follow a single line.

A separate series of tests was conducted on different locations on the forearm and
the impulse responses were fitted with parameter values as shown in Figure 3.13. Note
that the measured values for the skin are much more nonlinear than the calibration
curve. The two positions on the skin were the posterior forearm 40 mm from the
wrist and anterior forearm 40 mm from the elbow.

The spring constant increases quickly as the depth into the skin increases. The
increase in the spring constant as the probe is pulled off the skin is even greater. The
damping parameter also appears to increase as the probe goes deeper into the skin.
As expected the mass of the system does not change appreciably. The frequency plots
are also shown. Asthe probe moves through different positions, the natural frequency
and damping parameter change. The DC value also changes because the DC value

indicates the average stiffness for a certain position.

The VAF of each individual test is generally better than 90 %. While this may
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Figure 3.12: The evolution of system dynamics as a function of depth can be explained with
the static nonlinearity (a) when plotted as a function of absolute position. Note that the
impulse responses are scaled as a function of the underlying area. (b) The static nonlinearity
as a function of position for tests with input force variation of 11 N, 7 N and 1 N. Note
that the black dotted lines are to serve as a guide to the eye.

appear to be a good method for identifying skin properties, there are few drawbacks.
First, testing each of the positions take 4 seconds (which can be reduced to about
0.5 seconds) plus additional setup time. To obtain better linear information at each
depth would require even more tests with smaller force variations. That would reduce

the input variation which would unfortunately make the input closer to the noise floor.
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Figure 3.13: Localized linear tests for the posterior forearm 40 mm from the wrist and
anterior forearm 40 mm from the elbow mapped against a calibration curve. The Bode
plots and parameter values are shown.

Second, having to precisely position each step of the test would make it difficult
to reject level changes in the noise associated with patient motion. Lastly, testing
each position separately makes it impossible to looking at the nonlinear coupling
terms that occur when the probe moves between different positions. These nonlinear
coupling terms can be clinically important. For example, other types of nonlinearities
such as hysteresis associated with fluid movement and damping as a function of input
frequency and change in depth cannot be measured with this method. More advanced

methods that can address each of these points are discussed in the following chapters.
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Chapter 4

Volterra Kernel Techniques

One of the drawbacks of the Wiener and Hammerstein forms of static nonlinearity
is that they impose constraints on the form of the nonlinearity which do not com-
pletely match the expected form of the nonlinearity in tissue dynamics. A Wiener
static nonlinearity imposes the same nonlinear transform to all the parameters which
can be seen in Equations 3.27 to 3.29. A simple cascade representation can be gen-
eralized using kernel based system identification techniques. Conceptually, the linear
and nonlinear blocks in Figure 3.6 can be grouped into a single block with both lin-
ear and nonlinear characteristics. With this type of representation, of which Wiener
and Hammerstein nonlinearities are members, it is possible to look at some dynamic
nonlinearities. Note that cascade representations can be also grouped in parallel [67].
In this chapter, instead of using iterative techniques to identify these static nonlin-
earities, a comprehensive technique for determining the Volterra kernels themselves
is presented.

The Volterra series is a functional expansion of the general time-invariant nonlin-
ear dynamic system problem. The idea behind the functional expansion is that the
zeroth order kernel represents the system average. The first order kernel represents
the first order linear perturbation to the system where the output depends linearly
on lagged inputs. This kernel is exactly the linear impulse response function. The
second order kernel represents the second order perturbation to the system where the

“impulse response” function is not a function of one lag but a function of two lags.
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This means that the input at some time can interact with the input at another time
to produce an effect on the output. This concept can be expanded to higher orders
[68]. For a system with a finite memory length I, the discrete functional expansion

can be written,

I+1 I+1 I+1

v'() =ho+ Y h(i)z(n—i) + 30 3" halin,in)a(n —in)o(n —ia) + ... (41)
i=1 i1=114=1

As it stands, the Volterra expansion is difficult to solve; one of the reasons is

that the expansion contains many parameters in hy, hy, etc. which grow very quickly

with the memory length and kernel order. Secondly, the system is not orthogonal so

changing one value will change the optimal fit for other values in the series.

The Volterra kernel is, however, only one functional expansion among many for
nonlinear dynamic systems. A modification to the Volterra kernel developed by Nor-
bert Wiener attempts to make solving the system much simpler. The Wiener func-
tional expansion orthogonalizes the Volterra series for an assumed form on the input.
By using assumptions for Gaussian white inputs, Wiener was able to create a dif-
ferent expansion such that the first kernel can be solved independent of the second
kernel. This means that any noise remaining after solving the first order kernel must
either be noise or components of higher order kernels. It is important to note that
the Wiener and Volterra kernel solutions are not exactly the same. The zeroth order
Wiener kernels are the mean output for one type of Gaussian white input. The first

and second kernels, however are the same for the two systems as long as there are no

higher order kernels [64].

Several Wiener kernel solution techniques exist including cross-correlation meth-
ods [71}, repeated Toeplitz matrix inversion techniques, and use of functional expan-
sions. The drawback of the Wiener functional expansion is that only white inputs can
be used. Since real inputs can only become white asymptotically, there is inherent
uncertainty in the solutions for short test lengths. In addition, as detailed in Section
3.1.1, the input to a real system is rarely optimally Gaussian and white. It is possible

to create orthogonal expansions for different types of inputs but not every mathe-
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matical function has properties that would allow this to be readily accomplished. In
addition, it becomes cumbersome to do system identification if a new expansion needs
to be derived for every new input.

Is there, then, a functional expansion that is best to use for biological systems?
Based on the functional expansion alone, the Volterra kernel is the most easily inter-
pretable since most other expansions derive from it. The nonlinearity is in terms of
high order kernels which are taken with respect to lagged versions of the inputs. Other
expansions that orthogonalize the Volterra kernels are less physically interpretable al-
though arguments can be made that they are mathematically more general [64].

There are several different methods that can be used to solve Volterra kernels and

some of them are listed below.

e One method of solving for kernels is to use a series of impulses into the system
[91]. The first pulse generates the response to the impulse. A second pulse
lagged by some time generates another response but this time, additional terms
that interact with the first pulse appear (terms of the second Volterra kernel)
and can be mathematically separated from the first pulse. For even higher order
terms, more pulses can be used. Of the many drawbacks to this method [68],
the two most obvious are the restriction on the input type and the difficulty of
generating perfect impulses.

e Other techniques that use cross correlation, recursive least-squares or stochastic
approximation techniques also exist [36].

e Another method to produce fitting using fewer parameters than the memory
length is to use another functional expansion that is fit onto the kernels. La-
guerre expansions [77] and Meixner functions [3] can be used to do this. One
drawback is that using another expansion to shorten the number of parameters
needed imposes smoothing to the kernels which is not always desirable since the
real kernel may not be smooth. Other expansions with other expansions and
polynomials can be used and several methods of fitting can also be described
[68].

e It is also possible to orthogonalize the input itself. This technique developed
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by Korenberg and Hunter can be generalized to any input [68]. It imposes no
constraint on the input type (input does not need to be Gaussian and white to
be solved), length, or smoothing constraints used on the kernels. One possible
drawback is the computation time which does place a constraint on the sampling

frequency by discouraging oversampling of the data.

Because of the benefits of the Korenberg and Hunter method [68], it is used as the
basis for this chapter. The implications of this technique are discussed along with re-
sults for skin under indentation. Because this method requires a few modifications for
the input types used in this work, additional implications and methods for obtaining

interpretable kernel data are discussed.

4.1 Exact Orthonormalization Solver

The method by Korenberg and Hunter requires an exact orthonormalization step for
the input, a solution step in the orthonormalized space, and a reconstruction step
to take the solution back into the space of the Volterra kernel. A summary of the

solutions steps are shown below:

1. Construct: Sort the input data according to a set of rules.

2. Orthonormalization: Use a modified Gram-Schmidt solver to orthonormalize
the input data.

3. Solve: Obtain a orthonormalized solution.

4. Resolve: Use the inverse of the Gram-Schmidt process to put the solution back
into its original terms.

5. Reconstruct: Use the same partitioning rules to resolve the kernel responses.

Steps 2 through 4 for the orthonormalization technique are well known [99]. In fact,
Gram-Schmit orthogonalization is the exact step used by Wiener to orthogonalize the
Wiener kernels. Steps 1 and 5 are dependent on different partioning rules which need
to satisfy constraints from the modified Gram-Schmidt orthonormalization process.

Figure 4.1 shows a schematic of the algorithm used to solve Volterra kernels. A
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modified version of the technique used by Korenberg and Hunter was developed.
This process is optimized for computational speed in MATLAB and for numerical
stability.

I+1 I+1 I+1

y (n)=h, +Zh1(i)x(n—i) +>° 3 by (i, iy)x(n—i)x(n—i,) +...+ e(n)

i] =1 iz =1

Construct l IReconstruct

y(n) = Z A, P, (n)+e(n)

m=1

Modified Gram-Schmitt
Orthogonormalization

Orthonormalized P Resolve

Solve l

Solution in terms of
orthogonormalized variables

Figure 4.1: The algorithm used to solve for Volterra kernels involves constructing the
kernel, orthogonalization, solving, resolving, and reconstructing.

Many physically realizable, finite memory systems can be modeled from an input

output relation that is shown,

M
y(n) = D ApPn(n) +e(n). (4.2)
m=1

In the simplest linear case, y(n) is the output of the single input single output system,
A, is the impulse response of the system with memory M and P,,(n) (which is not
position in this case) is simply equal to the input z(n —m — 1). The measurement
contains some error e(n). From this form, one can easily obtain a linear input output
relation. In the more general case, m is a value which stores the dynamic memory of
the system which stores input lag information while n represents the value at a given
time. The Pn,(n), however stores information for a particular set of rules that apply

at a given m and n. This implies that A, is a series that is convolved with P,,(n) to
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produce the desired output where P, (n) is constructed based on some partitioning
rule. It is typically difficult to directly solve this equation and therefore needs to be

orthonormalized into a different form in terms of variables v,, and S,

M
y(n) = Z YmPBm(n) + e(n). (4.3)
m=1
4.1.1 Construction

To solve the Volterra kernel, the input and output data must first be constructed
into a usable form using the following relationship for the first two kernels plus the
level offset. Third Volterra kernel and higher order kernels can be derived using the
same methodology. The function listed below is the construction rule which can be
changed for different representations. For example, this function can be replaced with

a rule for a different basis function representation.

4

1 form=1landn=71+1...N
z(n —m+2) form=2...I+2andn=I+1...N
rn—i+la(n—j+1) form=I+2... 1+ +1)+{T+1)I+2)/2
Pr(n) =
n=I+1...N,
i=1...1+1,

and j=4...1+1
(4.4)

Immediately, one notices the size, or number of parameters needed to obtain a
second order Volterra kernel for a given memory length I. The value of M represents
the total number of parameters that need to be fit up to an arbitrary size kernel. The
following equation shows how M evolves with the fitting of the zeroth kernel (first

term), first kernel (second term) and second kernel (third term),

M=1+I+1)+I+1)I+2)/2+.. (4.5)
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The amount of time it takes to complete the algorithm is related to the value of M
and the test length N. Therefore, decreasing the number of parameters in the fit and
the test length will significantly decrease the time for the computation.

One of the important rules for partitioning the function above is that the values
stored in P,,(n) must be orthogonal (one row cannot be combined with another row to
produce the values of a third row) or basically non-repeating. This can be a problem
for the Volterra kernel which is symmetric for the second kernel. The solution to this
problem can be achieved by simply grouping the symmetric portions of the kernel
into a single value which can then be solved and later separated in the reconstruction
step. When separated again, half of the value can be given to one side of the second
order kernel and the other half to the other side of the second order kernel. This

method can be used to deal with any repeated values in basis functions.

4.1.2 Orthonormalization, Solution, and Resolution

The orthonormalization process produces S, (n) which is orthogonal for a section of
the data record from I 4+ 1 (where the physical memory length is I/F; seconds long
were Fj is the sampling frequency) to the end of the data record N. Values before I+1
do not need to be orthonormalized because at point I + 1, the system “remembers”
all the inputs from the beginning to point I + 1. Because the information before the
start of the data record is unknown, at point I, there is unaccounted for information.

The orthonormalization procedure is based on an iterative modified Gram-Schmidt
process which tends to be more numerically stable for discrete systems. The process
involves selecting one vector to be the first orthogonal vector PN (n). Part of the
vector along the m dimension that is orthogonal to this is removed to form the next
orthogonal vector P{?(n) which is now orthogonal to P{Y(n). This process is repeated
a total of R = M times to obtain R vectors that are all orthogonal to each other.
During orthonormalization, the values of 8,,(n) and 7, (n) are obtained. Initially the

first orthogonal vector is set,

P (m) = Pn(n). (4.6)



for r = 1 to R, Equations 4.7 through 4.10 are computed during each iteration,
Br(n) =P (n) forn=I+1...N. (4.7)

The value of a,, which is used to weight the orthonormalization process and map the

result back into the original terms after solving, can be obtained from the following,
N
Xr(n)= > B(n)+e (4.8)
m=I+1

and

Ay = P’S”:)_(%‘(n) — 711V=I+1 Pg)(n)ﬂ'f‘(n) form=r+1...M. (49)

B%(n) xr(n)

The overbar represents the average of the series but since the length of the series
on the bottom and the top are the same, computation time can be saved simply by
computing the sum. The term on the bottom x,(n) can be calculated and stored for
each iteration for additional computational speed. For numerical stability, a small
value € can be added if the value of 82 happens to be smaller than a certain value.

This is to prevent the value of a,,, from exploding.

In order to orthonormalize the next vector, Equation 4.10 is used following a

modified Gram-Schmidt process,

PS(0) = PY(n) — amp PO(n)  form=r... M. 410)

Up to this point, the equations have worked exclusively with the input with no
consideration given to the output. The most time consuming step is the orthogo-
nalization step and in order to save time for future computations, in cases where
the same input is used, the above values can be stored so they do not need to be
recalculated. Results obtained with this input can be directly solved using the rest of
the procedure thereby increasing the computational speed by 1-2 orders of magnitude

(see Figure 4.2). This is an additional benefit of this method.
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After the matrix has been orthonormalized, the system identification can be com-

pleted, or fit using least squares, simply with Equation 4.11,

Vo = Y(n)fm(n) = En=rs1 4(1)m () form=1...M. (4.11)

When these values have been determined, the next step is to convert this back

into the original terms with Equations 4.12 and 4.13. This is the resolution step,

form=1...M
1 fori=m
v; = (4.12)
— i iy fori=m+1...M
and
M
Ay = Z YiVi- (4.13)
i=m

These equations form a basic orthonormalization procedure which can be used to
perform a least squares fit to a single input single output system. Generalizations

can also be made for other multi-input multi-output systems using the same concepts.

4.1.3 Reconstruction

In the next step, the system needs to be reconstructed using the following relationship
valid for the level offset, the first kernel, and the second kernel. Other kernels can be

similarly derived,

ho = A(m) form=1
hi(i) = A(m) fori=1...I+1landm=1+1

hyo(j,k) = CLbA(m) forj=1...I+1landk=j...1+1

\ wherem=I+2+ (k—j+1)+ X ,(I+1-p).
(4.14)

The value of C, depends on its location in the kernel. If j = &, then C, = 1 and
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if j # k, then C, = % As mentioned earlier, the second Volterra kernel is defined
symmetrically. The orthogonalization process cannot handle redundant parameter
values. Therefore, the degenerate or redundant terms that occur when j # k hold

twice their actual value in orthonormal space.

4.1.4 Performance

This algorithm has several performance features. Unlike what is indicated in Ko-
renberg and Hunter, this implementation scales quadratically with the number of
parameters M and not with the memory length of the system. This may be due
to matrix memory allocation optimizations. Performance gains are most likely due
to the elimination of computations for matrix elements that are not used in future
calculations and the storage of repetitive calculations. This leads to performance
gains for larger numbers of parameters and larger memory lengths. The lower bound
computational cost on a Gram-Schmidt [99] process is asymptotically O(NM?) which
is approximately how this particular algorithm scales as shown in Figure 4.2.

The computational costs are mainly in the orthonormalization process while the
solution and reconstruction steps take one to two orders of magnitude less time. It
is important to note that for a given input, orthonormalization only needs to occur
once and the values for the matrices , # and x can be stored. It is also important
to note that once A,, is obtained using a certain set of partitioning rules, any new
input that is partitioned in a similar fashion can be convolved with A,, to produce a
simulated output. Figure 4.2 shows the performance of this algorithm as a function
of the number of parameters.

In addition to performance characteristics, there are also mathematical limitations
to this type of solver. This algorithm may produce oscillatory estimates for inputs
that have low power at high frequencies because low-pass filtered input data tends
to have consecutive values that are very similar to one another. This causes the
orthonormalization process to appear less stable or look as though it absorbs noise
(since there is no constraint on smoothness). This tends to cause minor problems

for partitioning schemes that are continuous (such as for identifying Volterra kernels)
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Figure 4.2: Computational times of orthonormalization procedure in MATLAB using a
2.4 GHz Intel Core 2 Duo CPU and 2 GB of RAM. The process scales as the square of the
size of the number of parameters M. Orthonormalization takes approximately one to two
orders of magnitude more time than the solution or reconstruction steps.

and has a smaller influence on noncontinuous partitions.

Because the total number of parameters in the fit M scales with the memory
length I as detailed in Equation 4.5, it is important to choose the proper sampling
time so that the memory length is short enough to compute the result in a reasonable
time but long enough that the information contained in the system is expressed.
This seems to put a constraint on the input but what this indicates in reality is that

superfluous sampling is not only unnecessary but detrimental.

4.2 Simulated Results

Before detailing experimental results, it is a good idea to look at the capabilities
of the Volterra kernels and attempt to interpret the trends. Volterra kernels can
be used to represent both Wiener and Hammerstein systems and can handle both
monotonic and non-monotonic nonlinearities. Each of these types of systems produce
different characteristic results. By looking at plots of the impulse response, residual

nonlinearity, first and second kernels, it is possible to identify these differences.
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The definition of the impulse response for a second order Volterra kernel is listed
in Equation 4.15. Note that for a second order Volterra kernel, the impulse response
does not have the same generality as it does for a linear system. It is simply the

response to an impulse input such that,

Ptotai(t) = ho + hi(t) + ha(t, t). (4.15)

In the above equation, the first term is the contribution from the zeroth kernel,
the second term is the contribution from the first kernel and the last term is the
contribution from the second Volterra kernel. Note that for the second kernel, the
contribution to the impulse response is the diagonal term. The full response of the

system is represented by all the kernels used in the fit.

Figure 4.3 shows the simulated Volterra kernels for a monotonic exponential non-
linearity in the (a) Wiener configuration and (b) Hammerstein configuration. The
impulse responses look very much like linear impulse responses. The true impulse
response used in the simulation is shown in blue. The contribution of the first kernel
is shown to be large and positive for an exponential (monotonic) input. For the con-
tribution of the second order kernel, the diagonal is negative so that the total impulse
response is shown in red. This has a pattern similar to a linear impulse response, but

is in fact an exponential function of the true impulse response.

This is more clear in the residual nonlinearity plot in Figure 4.3a. For each con-
tribution, the input is convolved with each contributing component. The estimate is
then plotted against the measured output. For the contribution of the first kernel the
residual looks like the original input nonlinearity. With the second order correction,
the residual looks even more like the exponential. This makes it exactly like a Wiener
static nonlinearity. As more of the off diagonal terms of the second order Volterra
kernel are added, the exponential function begins to disappear and the residual goes
to zero in the limit. A perfect fit would result in a residual of zero which is an al-
most linear curve. This means that the fitting function did a relatively good job of

accounting for the nonlinearity. Note that there is an offset of 20 to the right which
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Figure 4.3: Volterra kernels for a simulated system showing the impulse response, residual
nonlinearity, first order kernel and the second order kernel. (a) The functional form of the
Wiener static nonlinearity used in this function is the same as Equation 3.26. (b) This same
nonlinearity is used in the Hammerstein configuration.
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comes from the zeroth order kernel.

For high values of the estimate near 30, there is an additional lip. This indicates
that a better fit can be obtained with a slightly higher order kernel. The Volterra
kernel can be thought of as a dynamic polynomial fit. With a first order kernel, it
is possible only to fit linear functions so the only part of the residual that can be
removed is a linear component. With a second Volterra kernel, it is possible to fit up
to a second order nonlinearity (quadratic). With a third Volterra kernel, it is possible
to fit up to a third order nonlinearity (cubic) and so on. Since an exponential can be
only partially fit by a second order nonlinearity, some of the residual still remains.

The first kernel is similar to the impulse response in Figure 4.3. In the second
kernel, each small block represents a single sample which means that the kernel can
either be represented in terms of seconds or in terms of samples. The second Volterra
kernel is negative but otherwise has the same shape as the first kernel except swept
in two dimensions. The second Volterra kernel is symmetric because the input lag
of time t; versus ¢, is no different from ¢, versus ¢;. The shape itself is important; a
slightly different shape would imply a different type of nonlinearity.

The impulse responses in the Hammerstein static nonlinearity in Figure 4.3b look
the same as for the Wiener system. However, the residual nonlinearity is different as
the Hammerstein nonlinearity does a better job of reducing the unknown nonlinearity
so that the residuals look linear. With the addition of extra terms in the second
kernel, the fit becomes perfect so that there is no residual left. The Volterra kernels
do a better job of fitting the Hammerstein systems in general because Hammerstein
systems and Volterra representations both impose nonlinearities based on the input.

The first kernel looks as expected while the second order kernel only exiéts along
the diagonal; consistent with the nonlinearity existing only in the input side of the
dynamics so that there is no relationship between ¢, and t, other than when #; = t,.
When it is known that the system is a Hammerstein nonlinearity, the lags other than
the ones on the diagonal appear to be unnecessary. When looking at the residual
plot however, it is clear that even the off diagonal terms are necessary to reduce the

residual nonlinearity. From these arguments, it is clear that a second order Volterra
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kernel is able to fit both monotonic Wiener and Hammerstein nonlinearities.

Figure 4.4 shows the simulated Volterra kernels for a non-monotonic quadratic
nonlinearity in the Wiener configuration and Hammerstein configuration. By looking
first at the Wiener static nonlinearity simulation, it is clear that the impulse response
estimates from different contributions do not look like the true impulse response.
Rather, the contribution looks like a quadratic function of the true impulse response.
This becomes more clear by looking at the residual nonlinearity for the total impulse
response. The red line looks like the quadratic input function. With additional terms
from the second Volterra kernel, it is possible to reduce the residual nonlinearity
to zero. This fit, as opposed to the fit for the Wiener static nonlinearity with an
exponential function in Figure 4.3a, is perfect. This is because the second order
kernel is the perfect representation for a second order nonlinearity. If a fourth order

nonlinearity is used, the fit would not be as perfect.

The first kernel is basically zero and does not contribute much to the estimate.
The second order kernel is more organized, has a positive peak and contains all of the
dynamics. If the nonlinearity, rather than being centered near zero, was a quadratic
function slightly shifted to one side (by adding a constant), then there would be both
a linear component and the quadratic component. With this configuration, a first
kernel and a second kernel would exist and the residual nonlinearity from the impulse
response (red line on residual nonlinearity plot) would be much more asymmetric.

For the Hammerstein system with the same nonlinearity, the results are quite
different. The impulse response is a perfect match to the original input impulse
response; the residual nonlinearity has no pattern. However, when all the components
of the second order Volterra kernel are taken into account, the residual nonlinearity
becomes zero. The first order kernel does not contribute significantly while the second
order kernel sits mostly on the diagonal. This is consistent with the information

obtained for the monotonic nonlinearity.

Based on these trends, it is possible to characterize the results of Volterra kernels
on real systems. Note that these simulations are fairly idealized with nonlineari-

ties that are either Wiener or Hammerstein. When a DPN model with exponential
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Figure 4.4: Volterra kernels for a simulated system showing the impulse response, residual
nonlinearity, first order kernel and the second order kernel. (a) The functional form of the
Wiener static nonlinearity used in this function the square of the input. (b) This same
nonlinearity is used in the Hammerstein configuration.
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dynamic parameter nonlinearities in the spring constant and the damping is used,
different features can be produced. Figure 4.5 shows the second Volterra kernel for a
simulated DPN system. The center lobe of the second Volterra kernel is more narrow
than Wiener static nonlinearity representations and is flanked by two side lobes. The
residual nonlinearity is large but the VAF is 95.8 % indicating that a second order

Volterra kernel is still a good representation of the DPN model.
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Figure 4.5: A simulated DPN model is used with the algorithm and the impulse response,
residual nonlinearity, first order kernel and the second order kernel are shown. This simu-
lation is very similar to experimental Volterra kernels and reproduces many of the salient
features. Exponential nonlinearities were used for the spring constant and damping and no
nonlinearity was used for the mass.

There are many possibilities for Volterra kernel representations of other types
of nonlinearities. One possibility that is not a good fit, however, is a NLN system

which is a linear system sandwiched by two static nonlinearities. Similarly, a Volterra
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system does not do a good job of fitting a LNL system. These types of nonlinearities

can be identified with other cascade methods.

4.3 Experimental Results and Post-Processing

Using the techniques outlined, Volterra kernels were used to analyze experimental
data from skin subjected to indentation. The input is sampled at 2 kHz and the
cutoff for the input is an 8th order butterworth at 200 Hz. Several distributions and
inputs were tested. The distribution used for most of the data shown in this chapter
was a uniform and was generated with the strategies listed in Chapter 6. A uniform
input was used because it does a better job of exploring the range of the nonlinearity
than a Gaussian input.

The input memory length has been shown to be around 250 samples for this
sampling rate. Since this would result in an extremely long computational time, the
information was initially downsampled by 3 to reduce the number of parameters and
the computation time. Figure 4.6 shows the results of the first and second Volterra
kernels. The first kernel looks very much like the expected impulse response. The
relative size of the first order kernel compared to the second order kernel is also shown
in the figure. Most of the data can be explained by the first kernel and the first kernel
has a much larger impulse response magnitude than the second kernel contribution.

The second kernel appears to have no discernible pattern. In fact, the oscillations
are so violent that there are nodes of noise that go in equal magnitude towards positive
values and negative values. This leaves the second kernel completely uninterpretable.
It is possible to determine the estimated output by reconstructing the values of A,,
and P, as shown in Figure 4.7. This result shows that the VAF is very high at a
value of 96 % or better with a corresponding AIC of 1171.

With the second order kernel uninterpretable, it is possible that the kernel is
actually fitting noise rather than any physiological phenomenon. Since the memory
length is 40, there are 903 parameters in the fit. The total number of samples in the
downsampled system is about 2700. This matches the factor of three rule of thumb
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Figure 4.6: Volterra kernels for a skin measurements showing the (a) first order kernel and
(b) the second order kernel. Data sampled at 2 kHz with an input cutoff at 200 Hz and
downsampled by 3 before processing. Note that the Volterra kernel can be represented in
terms of either samples or seconds.

so having too little data is not the likely culprit. In fact, for longer data samples, the
same phenomenon occurs.

After exploring the phenomenon of the noisy second Volterra kernel, it was dis-
covered that the source of the noise was the form of the input. In Gram-Schmit
orthonormalization, each data point is orthogonalized one at a time. If two data
points sitting next to each other are very similar, as with a signal that is heavily low
pass filtered, then it becomes difficult to distinguish the information that belongs to
one value of the lag versus the information that belongs to the value of the adjacent
lag. In reality, this means that the input data itself is not sufficiently orthogonalizable.

Since there are no smoothness guarantees using this method of looking for the
Volterra kernels, there should be no expectation that the algorithm will make the
second Volterra kernel smooth. Although the algorithm can handle any type of input
series, the results from some input types will appear to be noisy. There are several
methods which can be used to produce smoothing in the kernel so that it is more

easily interpretable.

One method is to use a cross correlation method or a functional expansion in

the algorithm to impose smoothing. Since the second order kernel has already been
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Figure 4.7: Output of the measured system compared to the estimate obtained by using
Equation 4.2.

obtained, however, there are other methods which can be used to impose smooth-
ing constraints in post-processing. With these processes, it is possible to look at
the kernel before smoothing to determine if smoothing is necessary and then choose
the appropriate smoothing technique afterwards. It is also possible to compare the

goodness of fit before and after smoothing.

4.3.1 Downsampling

The first method for removing the kernel noise is downsampling. This will remove
all the high frequency low-pass filtered information as shown in Figure 4.8. In order
to get the data into a usable memory length, it is already necessary to downsample
by a factor of 3. The power spectral density for a downsampling of 3 shows that
at high frequencies, there still remains a lot of low pass filtered input data. For a
downsampling of 5, however, the input no longer appears low pass filtered although
the output is still dropping at high frequencies due to system dynamics.

The differences between these two systems is clear in the figures to the right which

108



show the second Volterra kernels. The kernel for the system that is downsampled by
3 is still uninterpretable and dominated by noise. The system that is downsampled
by 5, however begins to show a pattern in the second Volterra kernel. It shows the
negative peak that is seen in the monotonic (exponential nonlinearity) Wiener model

or DPN model from the simulated systems.
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Figure 4.8: Downsampled Volterra kernels can be used to reduce the kernel noise. (a)
Downsampling is done at a factor of 3 and (b) a factor of 5. The VAF increases after
downsampling due to the fact that the data series is shorter after downsampling and not
Just because the estimate has become better. Downsampling increases the interpretability
of the information. Note that the Volterra kernel can be represented in terms of either
samples or seconds.

With the additional downsampling, the VAF increased from 94.8 % to 96.4 %.
This increase is not simply due to the fact that the fit is better but is also due to the
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fact that the data length had changed between downsampling by 3 and downsampling
by 5. The shorter data length translates into a significant drop in memory length in
terms of samples and the VAF increases (since there are fewer parameters to fit).
Although downsampling, until the input spectrum is essentially white, fixes the
problem of producing interpretable second Volterra kernels, it does not do so in an
optimal fashion. First, the data length is reduced so information is essentially lost.
Second, it is no longer possible to use any desirable input signal. Lastly, the kernel
estimates for the second kernel includes a lot of noise which is not present for non-
downsampled white inputs. This is because the downsampling process inherently

introduces errors because data points are being skipped.

4.3.2 Filtering

Another method that can be used to obtain the kernel information is to use a two-
dimensional filter to directly filter the second Volterra kernel. In Figure 4.9, the
unfiltered second Volterra kernel and the frequency domain content of this second
Volterra kernel are also displayed. At high frequencies, near the edges of the plot,
there are large features in the magnitude of the plot indicating that there is a lot of
high spacial frequency content.

In order to reduce these large features in the second Volterra kernel, a two di-
mensional filter can be used to implement smoothing. This two dimensional filter
has a Gaussian profile with a spread of 15 samples in all directions and is designed
to remove the high frequency content while leaving the low frequency content intact.
Simply setting the high frequency data to zero will not accomplish this task because
in order to get a real output after the filtering process, both a real input and a real
filter must be used. Simply removing frequency content will introduce imaginary
terms which would cause the output, after the filtering operation, to be imaginary as
well.

Filtering rather than downsamping results in a more readily interpretable second
Volterra kernel. The features, however similar to the Wiener static nonlinearity data,

are in actuality very different from the Wiener static nonlinearity. The kernel has
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a high peak at the center that is flanked immediately by positive lobes. The peak
is also narrower and there appears to be a small series of peaks along the diagonal.
In the Wiener static nonlinearity, the peak is rounded and pushed into the corner.
The side lobes are clearly at a different radial distance from the corner than the main
peak and there are no features along the diagonal. Therefore, it can be concluded
that the second Volterra kernel for skin under indentation is a hybrid nonlinearity
that is very similar to a Wiener static nonlinearity but also contains other distinct
features. If instead, it is compared with the DPN model in Figure 4.5, it is clear that
the negative magnitude, the narrow peak, and the side peaks are reproduced. The

DPN representation is therefore a better explanation of the experimental data.

While any type of input can now be used with this method, a two-dimensional
filter inherently ignores some information and alters the shape of the second Volterra
kernel slightly. In order to assess the effects of the smoothing filter, the VAF were
compared; for a system that initially has a VAF of 94.7 %, the system after filtering
has a VAF of 90.4 %. Although this is a about a 5 % drop in VAF, the data is
much more interpretable. A less aggressive filter can also be used to produce more
interpretable kernels with fewer changes to the ability of the second Volterra kernel

to explain the data.

One way to assess the effect of the filter on the second Volterra kernel is to look at
the residual in the nonlinearity as shown in Figure 4.10. Prior to smoothing, there is
ample noise in the second order kernel such that the contribution of the second kernel
impulse response produces the noise as indicated by the green line. Since the first
kernel is essentially the same as the linear impulse response (the cyan line), which
looks somewhat like the plot of the Wiener nonlinearity in Figure 3.8, it is clear that
the first Volterra kernel was unable to remove the residual in the data by itself. With
the addition of a second Volterra kernel, the residual is mostly reduced to a straight

line indicated in dark blue.

When smoothing is added to the kernel, the magnitude of the second Volterra
kernel is completely reduced so that the contribution from the first kernel is almost

no different than the total impulse response contribution. When all of the off diagonal
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Figure 4.9: Filtered Volterra kernels can be used to reduce the kernel noise. Filtering with
a Gaussian or other type of two dimensional filter will reduce the VAF but increase the
interpretability of the information. This basically removes the high frequency components
in the two-dimensional Fourier transform as shown in the figure on the right. The total
data length was 2721 samples and the number of parameters was M = 903.

terms of the second Volterra kernel are added, the residual is reduced and looks very
similar to the nonlinear residual before smoothing. There are a few slight differences
between the two residual nonlinearities but the main result is that the residuals have
been successfully reduced by both versions of the second Volterra kernel. This indi-

cates that the smoothing filter is redistributing the information within the original
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Figure 4.10: (a) The residual nonlinearity (all units in mm) of the initially obtained Volterra
kernels and (b) the Volterra kernels after a smoothing filter operation.

second Volterra kernel such that the kernel is more interpretable without heavy losses
in fitting ability.

One additional factor to note is that the looping behavior still occurs at the bottom
of the residual plots. This could be due to the low number of data points at the lower
values causing fits to be inaccurate. It could also be due to the fact that the Volterra
kernels are global descriptions of a system. A better description of the system could

come from localized representations.

The final output of the system can be compared with the experimental output
of the system. Both the filtered and unfiltered estimates are shown in Figure 4.11.
The VAF from the unfiltered system is around 96 % and for the filtered system
around 93.7 %. Because the unfiltered system has a higher VAF, the corresponding

AIC would be lower since both the filtered and unfiltered kernels contain the same
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number of parameters. The unfiltered estimate does a good job of fitting the higher
values (deeper depression into the skin) which seems to indicate that some of the
noise in the second Volterra kernel comes from unsuccessful attempts (due to the

constraint of the global representation) to fit data at deeper, stiffer locations.
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Figure 4.11: Filtered and unfiltered time domain results compared with the measured data.

With this technique, it is possible to begin comparing data between different
locations on the skin. Data was obtained at four positions on the left arm: the
posterior distal, posterior proximal, anterior distal and anterior proximal locations.
The proximal locations were 40 mm from the elbow and the distal locations were
40 mm from the wrist. The data is shown in Figure 4.12. The positions are ordered
in decreasing stiffness and damping. The effect becomes clear in the first kernel and
in the second kernel. As the stiffness and damping decreased, the peak of the first
kernel impulse response begins to rise and oscillations begin to appear. In the second
kernel, the peak (blue center) begins to grow and oscillations (red) begin to appear.

This indicates the nature of Volterra kernels for stiffness and damping in a skin
system under indentation. The shape of the overall second kernel does not change but

changes in stiffness and damping increase the magnitude of peaks and troughs. This
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the posterior proximal and anterior proximal positions 40 mm from the elbow.
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means that systems with different stiffness and damping can be compared, to first
order, by comparing the the relative values of different peaks in the first and second
Volterra kernels. It is worth mentioning that this is a very qualitative comparison
and that it is difficult for clinicians to compare these values graphically. It is therefore
desirable to be able to do a quantitative comparison with fewer parameters or using

different representations.

4.3.3 White Input Signals

A white input signal at 500 Hz with no downsampling is used as an input to the
system and this is compared to a low pass filtered signal. This is shown in Figure
4.13. When a downsampled kernel is used, the data is uninterpretable. Filtering
the kernel sampled at 667 Hz makes the output much clearer. The VAF can be
calculated for different configurations with the same input and output data. Using a
linear system identification technique, it is possible to obtain a VAF of 74.3 % with
about a 5 % gain when a Wiener static nonlinearity is used. When the first order
Volterra kernel is used alone, the VAF increases to 85.5 %. When the second kernel
is added, the VAF jumps to 94.6 %. If the second kernel is filtered, the VAF drops
about 4 to 5 % but the kernel itself is much more interpretable.

With a new white input, the second Volterra kernel is immediately visible without
filtering. Additional filtering removes some of the striations in the data. When
comparing the VAF of several different techniques on the data, it is clear that the
initial VAF for the linear case is higher at 79.6 %. When a Wiener static nonlinearity
is used, the VAF increases by about 3 %. The use of just the first Volterra kernel
decreased the VAF to 76 % but the addition of a second kernel boosted the VAF to
94.5 %. This second kernel is not only interpretable but has a higher VAF. Filtering
the kernel to add more smoothing causes the VAF to drop to 92.6 % which is less
than the drop for the low pass filtered signal. This drop, however, indicates that
information was lost at the filtering step since the shape of the second Volterra kernel
was already interpretable.

It is interesting to note that downsampling and filtering produce a few small dis-
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Figure 4.13: Comparison of (a) filtering method with (b) white input signal method. When
a white input signal is used as an input to the system, the kernel becomes immediately visible
without filtering. The effective sampling rate on (a) is 667 Hz and the effective sampling
rate on (b) is 500 Hz.

tortions in the second order kernel. The kernels obtained from white signals exhibit
more rounded peaks wheras the kernels obtained by downsampling and filtering ex-

hibit sharp features in the peaks around the edges of the second kernel.

Data from different positions on the skin can also be compared using a white input
technique as shown in Figure 4.14. The plots are also placed in order of decreasing
stiffness and damping. In these plots, however, the pattern between different values

in stiffness becomes less clear. There is an overall pattern as the peak of the first
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and second kernels increase. The posterior proximal position and the anterior distal
position, however, appear to switch rankings with respect to the measurements taken
earlier in Figure 4.12.

Since the cutoff on the earlier figure (Figure 4.12) was at 200 Hz, a white signal
up to 500 Hz will explore less of the input range thereby producing results with fewer
distinctive nonlinear features and less specificity. This is the opposite of what one
would expect from linear system theory. In linear systems, one would expect that
as the input frequency increases, more frequency data is obtained which means there
should be more specificity. With a nonlinear system, however, there is data which can
be obtained from the input range and not just the input frequency. A lower frequency
input will have a larger resulting output range than a higher frequency input with
the same input distribution.

Taken together, this means that a higher input frequency results in a lower range
of outputs and therefore a lower range of measured nonlinearity. This will give a lower
overall perceived stiffness. A white input with a cutoff at 200 Hz could produce this
output range but would be subject to other signal processing problems. Therefore,
for nonlinear system identification, using a low pass filtered input is desirable because

the low pass filter can be used to control the input range.
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Figure 4.14: Comparison of kernels derived from white inputs for four different positions
on the left arm including the posterior distal and anterior distal positions 40 mm from the
wrist as well as the posterior proximal and anterior proximal 40 mm from the elbow.
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4.4 Summary

Volterra kernels can be used to identify several different types of nonlinearities in-
cluding Wiener and Hammerstein static nonlinearities. In addition, the order of
the kernel used represents the maximum polynomial order of the nonlinearity that
the technique is able to fit. This means that a second order Volterra kernel can fit
non-monotonic nonlinearities, such as quadratic functions, perfectly. A technique for
identifying Volterra kernels based on Korenberg and Hunter method is presented and
representative data from several different simulated systems is discussed. Data from
indentation studies are shown and several post processing techniques are presented.

A summary of these post-processing techniques is shown in Figure 4.15.
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Figure 4.15: The three basic strategies for reducing the noise in Volterra kernels are shown.

Post-processing techniques include downsampling, using a two dimensional smooth-
ing filter, or using a white input signal. All of these techniques help make the second
Volterra kernel more interpretable by smoothing the kernel. Downsampling is un-

desirable because one must downsample until the input is essentially a white input.
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With this technique, a lot of high frequency data is lost. A white input signal is
also undesirable because it imposes a fixed structure on the input signal. A two-
dimensional filtering technique is generalizable to any set of inputs and any choice
of downsampling; the major disadvantage being the loss of the fitting ability of the
second order kernel. For an original VAF of 94.8 %, an input filter can reduce the
VAF to 90.4 %, downsampling can increase the VAF to 96.4 % (but this is due to the
fact that downsampling reduces the number of data points), and using a white signal
maintains a high VAF comparable to the original.

By choosing post-processing techniques to look at the second Volterra kernels, it
is possible to compare the original kernel with the post-processed kernel and make an
informed decision about the shape of the nonlinearity. Although there are practical
restrictions to the input signal for the algorithm presented, additional post-processing
has helped overcome some of them. The heart of the algorithm is based on a Gram-
Schmidt orthonormalization technique which can be used to solve not only Volterra
kernels but any other type of basis function as long as certain conditions are met.
There are several applications of this algorithm including different basis functions and

partitioning systems which will be explained in the following chapter.
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Chapter 5

Partitioned Techniques

This chapter presents a few nonlinear system identification techniques based on the
Gram-Schmidt orthonormalization solver [63, 68] henceforth known as the partitioned
techniques. These techniques have interpretability comparable to linear models and
yet are able to model higher order static nonlinearities. With modifications to the
kernel structure, they are also capable of modeling directional nonlinearities (where
the dynamics of going in one direction is different from the dynamics of going in the
opposite direction) and non-monotonic static nonlinearities.

The motivation for using a partitioning technique for stochastic system identifi-
cation follows from a few desirable characteristics: short testing length, physical in-
terpretability (easily quantitatively comparable) and flexible model structures. The
concept behind the technique is to break up the input signal into groups based on
a set of rules such as the output level, the direction of the signal (whether it is go-
ing in a positive or negative direction), or some fuzzy logic-based input and output
rules. Then, by using direct orthonormalization as a solver, the “impulse” responses
or kernels for each of these rules can be obtained.

The use of stochastic inputs is desirable because the technique queries multiple
frequencies at once. When using stochastic inputs with nonlinear systems, there are
several ways to approach the initial identification. First, the user can use a small
perturbation range since most physical systems can be linearlized for small regions.

This localized linear technique, however, will require multiple separate tests or will
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require the user to add a ramp or sine function to the stochastic signal during the
test. After the test, the user will have to do linear system identification on small
chunks of locally linear data. This process can be slow and it is desirable to use a
faster technique that can obtain linear and nonlinear information at the same time.

System identification can be used to control the output of a system or can be
used to identify unknown characteristics. For the purposes of control, it is usually
not important to be able to physically interpret the form of the system (unless it is to
analyze failure modes etc.). Interpretability is critical for identifying and understand-
ing characteristics. Some parametric and nonparametric mapping structures suffer
from lack of interpretability. The physical meaning behind the weights in neural nets
or wavelets obviously presents difficulties [53, 94]. Even Volterra kernel structures
can be difficult to interpret in physical terms especially when higher order kernels are
used. The proposed identification technique, however, produces waveforms similar to
impulse responses which can be mapped to transfer functions and therefore mapped
to physical parameters like masses, dampers, and spring constants. The nonparamet-
ric nature of the technique, however, makes sure that the model is fitted according to
very general assumptions. Being interpretable also tends to confirm that the model
is not fitting to noise in the system.

Lastly, the solution technique presented shows flexibility in the model struc-
ture. Simple monotonic static nonlinearities, non-monotonic static nonlinearities and
direction-dependent systems, global and localized basis functions can be modeled de-
pending on the partitioning rules imposed. Volterra kernels can be thought of as a
particular partitioning rule where the rules are global across the entire input and out-
put range. Simple linear analysis can also be thought of as a particular partitioning
rule that is also global. The partitioned techniques presented have basis functions

that are localized over sections of the input and output ranges.
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5.1 Depth Dependent Partitions

The formulation for depth dependent partitions assumes a monotonic static nonlin-
earity and is not applicable for non-monotonic nonlinear functions. The basic idea
behind this representation is that the dynamics of a system change as a function of
depth into the skin and that the dynamics do not have a particular pattern that must
be matched by all the constituents. For example, this means that M., B, and K, do
not have to evolve with the same underlying static nonlinearity. Data from different
depths is loosely grouped together and an overall “impulse” response or kernel for
that group is given. This is similar to the idea of completing localized linear system

identifications with inputs of smaller ranges.

The key difference between this technique and simply completing localized linear
system identification is that this technique imposes the separation of the different
depths after the data over the entire output range is collected. This means that it
can be used to artificially group non-contiguous sections of data that are collected at

the same depth in order to make an estimate of the dynamics.

It is expected that the “impulse” responses from these partitioned kernels would
not produce results that look exactly like the results obtained from localized linear
tests. The main reason is because the localized linear techniques contain little or no
data for cross dynamic terms between different depths. The depth dependent parti-
tioning, however, does contain cross dynamic terms which will cause some averaging
to occur across the kernels. In the case where there are no cross dynamic terms, how-
ever, the localized linear and depth dependent partitioning techniques would produce
exactly the same results. Other more advanced types of partitioning schemes can be

used to separate the cross dynamic terms.

The method used to solve for the partitioning technique involves using the Gram-
Schmidt Orthonormalization technique that was presented in Section 4.1. The con-
struction and reconstruction steps, however, are replaced by the equations listed

below. The construction equation for the depth dependent partitions listed below
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would replace Equation 4.4 in the solution process,

4

1 form=1landn=I+1...N
z(n—j+1) form=2...Kpe(I+1),
n=I+1...N,
and j=1...1+1

when L(k) <y(n—j+1) < L(k+1)

fork=1... Kz,

\

where Kpq, is the total number of partitions, k is the partition counting variable
and L(k) is the partition breakpoint. The most important criteria necessary for
generating a partition scheme is that the construction equation must be orthogonal.
This means that there cannot be overlapping segments or repetition of any segments.
For stability and noise rejection, the output y used for the construction of the kernels

can be low-pass filtered while the y used for the solution steps are not altered.

The following equation would then be used to replace Equation 4.14 in the so-
lution process for reconstruction. This equation contains information for different
partitioned kernels, each of which is similar to a “impulse” response. The total num-

ber of these kernels is equal to the number of partitions K,qq,

ho(i,7) = A(m)  fori=1...Kmpandj=1...1+1 52)
where m = j + (i — 1)(I + 1). .

The number of partitions can be chosen to be any value up to the fitting limit.
This means that the total number of parameters (which is equal to the number of

partitions multiplied by I + 1) must be at most one third of the total test length.

The partitioning breakpoints can be set based on several different criteria. The
first obvious criteria would be equal partitions where each partition covers the same
distance. Realistically, this means that each partition would have a different number

of data points which would then cause some partitions to have too few data points
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for proper fitting.

Another possible partitioning breakpoint algorithm would involve choosing break-
points such that each partition has the same number of data points within it. This
avoids the problem of having too few data points in any partition but causes some
averaging effect to occur. This is the type of breakpoint that is used in most of the
following analysis. The algorithm used to generate these breakpoints involves putting
the entire output data series in order from the lowest value to the highest value. The
break points can then be chosen to split the number of data points evenly. The depth
value that would correspond to this even split can then be directly chosen from the
ordered series.

In the ideal case, it is best to have partitions that are equally spaced where each
partition has an equal number of data points. This would mean that the ideal output
distribution would have to be uniform over the test range. This type of constraint can
then be used as a criteria for optimizing the selected input. Methods for accomplishing
this are discussed in Section 6.3.

It is important to point out that the depth dependent partitioning scheme is
directly dependent on the output of the system whereas the Volterra kernels were
dependent on only the input. Therefore, any computational savings in the solution
method for the Volterra kernel, where the input orthogonalization is pre-calculated,
cannot be used. The output partitioned kernels, however, generally have fewer pa-

rameters than the Volterra kernels which means that the computation time is lower.
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5.2 Performance

Before going on to examine real data, the performance of the depth dependent kernel
algorithm is shown. A Wiener static nonlinearity is generated using the nonlinearity
in Equation 3.26. This simulated nonlinearity has no cross terms in the dynamics
since it is a pure static nonlinearity. Therefore, it is expected that the localized
linear solution should be a perfect match with the results from the depth dependent

partitioning technique.

Two types of inputs were generated to interrogate the simulated static nonlinear-
ity. The first input was a stepping function with random noise superimposed on top
of it shown in red in Figure 5.1. The dotted lines shown in the output indicate the
breakpoints between different segments. This is essentially the type of dataset that
would be used for localized linear testing where each section is at least as long as
the memory length of the system. The second input was a Gaussian stochastic input
signal, shown in blue in Figure 5.1. Each of the data segments is not guaranteed to
be as long as the memory length of the system. The data was broken up into the cor-
responding effective mass, damping, and spring constants. It is clear that these three
components of the static nonlinearity all evolve with the same nonlinear function as

the depth changes.

The identified nonlinearity from the two inputs match the trend of the nonlinearity
well with some deviation near the limits. Since the data is grouped in order to
maintain a certain number of data points in each partition, the additional averaging
brings down the estimate for the higher values of stiffness, damping and mass while
increasing the estimate for the lower values of stiffness, damping and mass. This
effect gives a slight error to the estimate that is a function of the total number of

data points and the continuos data length.

Simulation data for this is shown in Figure 5.2. In these simulations, the system
memory length is 60 samples and 5 partitions were chosen. The number of repetitions
represent the number of times a chunk of data of a specific input offset value was put

into the system. With more repetitions, the total dataset length increases and fewer
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Figure 5.1: Depth dependent partition validation with a Wiener static nonlinearity shows
that mixed signals can be partitioned and solved to obtain the original Wiener static nonlin-
earity. The black line indicates the original theoretical nonlinearity which can be obtained
using a localized linear technique and the red and blue points are from depth dependent
partitioning technique identification of the same nonlinearity using different inputs.

continuous data sets are necessary to make a low error estimate. The shorter the
continuous data length (for the same number of repetitions), the higher the error
associated with the estimate. When the data length increases, the percent error in
parameter estimates tends to decrease. In order to obtain an estimate error of 5 %
or less, at least 500 data points are needed (multiplying number of repetitions by the
continuous data length and the number of partitions). Note that the total number of
parameters is 300 which indicates that having at least 2 to 3 times more data than
the number of parameters will produce lower error estimates. As more and more data

points are used, the estimate improves until the value approaches the original model.
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Figure 5.2: Depth dependent partition validation as a function of continuous data length
for simulated data. As the data length increases in log space, the percent error decreases.
As the number of repetitions increase, the average error also decreases. The lines serve as
a guide to the eye for the trends associated with the maximum and minimum repetitions.

With a DPN model, the fit is also close and will approach the real value as more
parameters are used. Figure 5.3 shows how the depth dependent partition technique
works for a DPN model. The nonlinearity is different for all three parameters with
exponential forms for the spring constant and damping and a constant for the mass.
This method can be used as a nonparametric technique for identifying many different

types of depth dependent parameter nonlinearities.

5.3 Experimental Results

Based on these performance data, results can be examined for experimental data.
Since the partitioning technique is less sensitive to the memory length of the system,
it is possible to use the full 2 kHz of data without downsampling. Some downsampling

however, is useful for faster computation. Figure 5.4 shows the breakpoints for the
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Figure 5.3: Depth dependent partition validation with a DPN model shows that mixed
signals can be partitioned and solved to obtain the original DPN model. The black line
indicates the original theoretical nonlinearity. The red and blue points are from the depth
dependent partitioning technique identification of the same nonlinearity using different in-

puts.

partitioning along with the kernels obtained from the estimate. The breakpoints
were chosen by data density so they are clustered heavily at the deeper values. One
large partition exists at the very deepest values and one large partition exists at the
shallowest values.

The resulting kernels look like “impulse” responses as a function of depth. The
deepest depth at 22.9 mm has a very heavily damped “impulse” response while the
most shallow depth at 16.9 mm is not heavily damped and shows more of the negative
oscillatory peak. One interesting feature is the large negative value estimate of the
zero lag in the most shallow kernel. This phenomenon was investigated and it was
found that this point represents the large offset of the kernel from the location of the

average value. Since the average value is still being estimated in the partitioned kernel,

131



Position (mm)
Magnitude

Figure 5.4: (a) Depth partitioned results for skin showing the partitioning of the
output record (b) chosen by data density and calculated kernels at different depths.

there is some coupling of all the kernels with the average value. If each individual
kernel was given its own estimate of the average value, the estimate obtained is

generally less accurate.

5.3.1 Comparison with the Wiener Static Nonlinearity

To assess the goodness of fit, the VAF and AIC are calculated and the residual
nonlinearity is plotted as shown in Figure 5.5. In this data set, there are 15 partitions
and the data was downsampled by 4. rJ_‘he estimated memory length was 40 samples.
The VAF of this system is fairly good at 92.2 %. This is on par with results obtained
using Volterra kernels except with fewer parameters (600 parameters total for the
partitioned technique versus 903 parameters for a second order Volterra with the
same memory length).

The plot to the right shows the residual nonlinearity. This residual has significant
noise grouped around each position in depth. The dependency, however, is fairly
linear except for the lower values of the nonlinearity. This is probably due to the low
number of data points obtained at lower values and the large size of the partition. The
noise in the residual nonlinearity is most likely due to other dynamics like hysteresis
or direction-based tissue dynamics associated with fluid outflow.

The two panels on the bottom of Figure 5.5 show the evolution of the kernels as a
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Figure 5.5: The depth dependent results with 15 partitions. The panels are (a) the
output estimate, (b) the residual nonlinearity, (c) the impulse response from a three
dimensional view and (d) the impulse response from a top view.

function of depth. As the position becomes deeper, the peak (shown in red) decreases
in width. At shallow depths, the peaks become broader but stay at about the same

height. The maximum in the peak moves slightly as a function of depth.

In order to fully assess how this differs from a Wiener static nonlinearity and a
DPN model, simulated systems are directly compared with a experimental system
as shown in Figures 5.6, 5.7 and 5.8. All three figures have 6 partitions and are
downsampled by 4 from a 2 kHz dataset. In Figure 5.6, which is the Wiener static
nonlinearity simulated system, the VAF of the fit is very high (near 96 % with 240 pa-
rameters in this fit). The residual nonlinearity is fairly linear with small deviations
at the lower depths due to the size of the partition. In the simulated system, the

peak value increases as the depth decreases and the lag on the peak value does not
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Figure 5.6: The depth dependent simulated results with 6 partitions. The panels are
(a) the output estimate, (b) the residual nonlinearity, (c) the impulse response from
a three dimensional view and (d) the impulse response from a top view.

change as a function of depth (see black box). The experimental system show in
Figure 5.8 has a VAF of 90.3 %. The nonlinear residual shows the same trends as
in the simulated Wiener static nonlinearity system. The kernel plots, however, look
slightly different. The peak value of the kernels does not increase significantly and
the location of the peak shifts backwards towards zero for deeper kernels (see black

box).

If a DPN nonlinearity is used, however, the results in Figure 5.7 look very much
like the experimental results. Once again, it is apparent that the Wiener static
nonlinearity is a good first order approximation to the data but additional dynamics

show that skin under indentation is more complex and very similar to a DPN model.
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Figure 5.7: The depth dependent simulated DPN model with 6 partitions. The panels
are (a) the output estimate, (b) the residual nonlinearity, (c) the impulse response
from a three dimensional view and (d) the impulse response from a top view.

5.3.2 Comparison with the Localized Linear Technique

When cross terms become significant, the depth dependent partitions begin to deviate
from localized linear solutions. This is shown for two positions on the left arm; the
posterior position 40 mm from the wrist and the anterior position 40 mm from the
elbow (Figure 5.9). It is important to note that the depth dependent kernels are
not exactly the “impulse” responses at different depths although they can begin to
approach them for some limit as indicated by Figure 5.1.

In Figure 5.9, the solid points are results from localized linear tests while the hollow
points are results from a single four second data set analyzed using depth dependent
partitioning. These are plotted on top of a calibration curve that helps indicate the

linear regions of the Lorentz force coil. The localized linear tests were conducted both
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Figure 5.8: The depth dependent experimental results with 6 partitions. The panels
are (a) the output estimate, (b) the residual nonlinearity, (c) the impulse response
from a three dimensional view and (d) the impulse response from a top view.

pushing into and pulling off the skin while the depth dependent partitioning was only
conducted on data from pushing into the skin. The effective mass estimates are very
similar while the effective damping and effective spring constant estimates show some

more significant differences.

First of all, these two positions on the skin react differently to the forces applied.
In general, the posterior position is stiffer for every depth. The results from the depth
dependent partition are generally less stiff at the specified depth but show exactly the
same trend. The damping, however, is more similar between the localized linear tests
and the depth dependent partitions. It is important to note that the trends on the
spring, mass, and damping do not follow the same nonlinear pattern as they would

for a Wiener static nonlinearity (see Figure 5.1).

The deviation between the localized linear results and the depth dependent par-
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Figure 5.9: The depth dependent results are compared with localized linear results
and a calibration reference. The solid lines serve as a guide to the eye.

tition results could have several sources but can be summarized as the difference
between a system that has no cross dynamic terms and a system that has significant
cross dynamic terms. Note that there is the additional difference that the depth
dependent dynamics contains coupling across the zeroth order kernel which tends to
produce a small averaging effect across all the kernels.

With this technique, it is possible to create trends that would not only begin to
approach the effectiveness of localized linear tests but would do so for a single test
with the additional benefit of statistical averaging. There is also an additional benefit
in that the depth dependent kernels capture some frequency dependent data from the

dynamic cross terms in the nonlinearity.
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5.3.3 Frequency Dependence

Since there are indications that dynamic cross terms exist in tests with large ranges,
one can expect to find some frequency dependence in the estimates for depth de-
pendent kernels. Figure 5.10 shows data where two different sampling frequencies
were used with input cutoff frequencies that are exactly one tenth of the sampling
frequency. As indicated before, the mass does not significantly change as one moves
between different frequency limit tests. The damping does not seem to change much
either since the end of one estimate matches up perfectly with the beginning of an-
other estimate at a different frequency. The solid blue dots, for example, line up with

the hollow blue dots and so on.
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Figure 5.10: As the input frequency is changed, the damping stays the same and the
mass stays about invariant. The spring constant, however, decreases as frequency
is increased. The sampling frequencies are 500 Hz and 2 kHz and the input cutoff
frequencies are 50 Hz and 200 Hz respectively.

The more interesting fact is that the spring constant does not match up in this

fashion. In fact, the spring constant appears to shift up as the input frequency is
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decreased. This begins to indicate that cross term is a function of input frequency
and exhibits itself most heavily in the spring constant estimation. This is in line with
results obtained in Figure 5.9. With localized linear testing, there are no cross term
dynamics because perturbation about an offset linearizes all the terms. For an input
cutoff at 50 Hz, there are fewer cross term dynamics so the spring constant estimate
approaches the values of the localized linear testing. For an input cutoff at 200 Hz,

the cross terms become more significant and the spring constant decreases.

In general, the depth dependent partitions do a good job of representing the data
and do so in an intuitive manner. These depth dependent kernels can be split into
representative spring, mass, and damping terms that are a function of depth. The
slopes and mean values of these estimates can be compared and be used to distinguish
between different locations on the skin. In order to tease out the effect of cross terms

and direction dependent terms, other partitioning schemes are necessary.

5.4 Direction Dependent Partitions

A slightly more advanced technique is the direction dependent partitioning method.
The idea is that as the probe moves into the skin, it will produce different dynamics
than when moving out of the skin. At low displacements near the surface of the skin,
one does not expect to see this effect. At deeper positions into the skin where the
compression is heavy, one expects to see a difference between the dynamics of pushing

and pulling.

Linear system identification and most other nonlinear identification techniques
including Volterra kernels assumes no directional dependencies. There are a class of
system identification techniques based on characterizing hysteresis [1, 2, 70, 96] that
are capable of looking at direction dependent and history dependent dynamics. By
partitioning the output, it is also possible to begin looking at the direction dependent

dynamics as a function of depth. The construction equation listed below is very
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similar to construction equation for the depth dependent case,

4

1 form=1landn=I+4+1...N
zn—j+1) form=2... Kpe([+1),
n=I+1..Nandj=1...1+1
when L(k) <y(n—j+1) < L(k+1)
and sign(y(n — j + 1) — y(n— 7)) = D
fork=1...Kne,

\

where D is positive for one direction and negative for the other direction. As with
before, the output y that is used to construct the partitions can be low pass filtered to
reduce noise. The reconstruction equation is also very similar to the depth dependent

case except the number of kernels is twice as many as before since it covers both cases

for D,

ho(i,§) = A(m)  fori=1... 2K andj=1...1+1 (5.4)
where m = j + (i —1)(I + 1). '

With these two equations, it is possible to identify direction dependent dynam-

ics. The results of this compared to depth dependent solutions is shown in Figure

5.11. The depth dependent dynamics are first collected with 10 partitions and the

resulting mass, damping and spring constants are shown. The VAF for this estimate

is relatively good at 91.9 %.

Next, the direction dependent dynamic equations are used. The dynamics for one
direction are shown in a different color from the dynamics in the opposite direction.
There are also 10 total partitions but 5 of those partitions assess the dynamics going
into the skin and the other 5 partitions assess the dynamics coming out of the skin.
The VAF of this system drops slightly to 91.2 % but does not change significantly.
The mass as a function of depth does not change at all between pushing into the skin
and pulling off the skin at the same depth. The estimate for the damping and the

spring constant, however, diverge as the probe goes deeper into the skin. This is in
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Figure 5.11: Comparison of (a) depth with (b) direction dependent partitions in terms
of mass, damping, and spring constant.

line with expectations since it is expected that the skin would have more damping
resistance going into the skin than pulling off the skin. It is also expected that pushing
into the skin produces higher stiffness estimates than pulling off the skin at the same
depth.

With the results from these two different types of partitioned kernels, one is able
to tease apart some components of the dynamics using data from a single test. These
methods tend to have a fewer number of parameters and high VAF. In addition, they
are more interpretable and easier to compare than Volterra kernels. Conceptually,
they are capable of measuring more dynamic features than simple static nonlinearities.
Therefore, these partitioning techniques lie between the capabilities of the Volterra
kernel and the static nonlinearities. Other partitioning schemes can be used to group

data in other configurations to obtain more general nonlinear dynamic estimates.
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Chapter 6

Input Generation and Real Time

System ID

The work presented in earlier chapters focused on off-line system identification
techniques where the input generation, the system perturbation, and the system
identification are three separate events completed in series. This chapter focuses on
the background for input generation and for real-time system identification (where the
system perturbation and system identification steps are completed together). This
chapter then concludes by combining input generation with system perturbation and

system identification with a single real-time algorithm.

6.1 Input Generation

Input generation is the key to stochastic system identification. For some techniques,
such as for Wiener kernels, only certain input types will work. An input can be
classified by its distribution (Gaussian, uniform, Rayleigh, etc.) and by its spectral
content (white or colored). Input signals can be generated with several different
methods optimized for different situations. The first type of input generation includes
techniques which try to create inputs with a pre-specified distribution and spectrum
(or autocorrelation).

Another avenue in input generation focuses on producing the desired spectral

143



content one frequency at a time. These techniques, known as multi-sine techniques
[14], combine sine waves at desired frequencies to produce the desired output. With
this method, it is possible to completely skip some frequencies that would cause
resonances or produce sharp notches and sharp cutoff frequencies without the use of

filters.

Another class of techniques use algorithms that attempt to find the perfect input
that would satisfy some condition of the output. One of these techniques uses a
genetic algorithm to combine different possible inputs using building blocks called
“genes”. If one input type is successful, its “genes” live on in the next iteration of
inputs. This process continues until a perfect input is found [26]. A genetic algorithm
has benefits when there are many possible local minima for the selection of the perfect
input. When the input to output relationship is more straight-forward, a simple cost

function and minimization technique can also be used to find the optimal input.

When dealing with linear systems, the selection of the optimal input is simple
and either Gaussian white inputs (or colored Gaussians) or stochastic binary signals
are used. The reasons for choosing these types of inputs are discussed in Section
3.1.1. For nonlinear functions, however, it is much more difficult to make a general
assessment of the optimal type of input. For the types of nonlinearities found in
biological tissues, where the nonlinearity is a function of the depth into the tissue, a
good guess for an optimal input is an input that can generate a uniform output. A
uniform output would explore the entire range of positions in the nonlinearity and
provide an equal number of values for all depths. In order to generate this optimal
input, however, the system nonlinearity must be known. It is possible to generate one
input, assess the output, and then iteratively generate new inputs until the desired
output is found. In order to do this, one must first be able to specify the input

distribution and the input spectrum (or autocorrelation).

Producing an input of a certain distribution or probability density function (PDF)
is a well-known problem that can be solved several ways. One method is to create the
desired distribution with closely spaced bins of data and then randomly scrambling

the data to produce the desired distribution with a white spectrum. This method
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cannot be done in real time. A second method is to generate a uniform input and
construct a cumulative distribution function (CDF) of the desired input distribution.
By mapping each value of the uniform input to the equivalent value in the desired
distribution using the CDF, it is possible to continuously generate values of a certain
distribution in real time.

Generating the desired spectrum is also fairly simple. The most common methods
for generating inputs are created for Gaussian white functions since these are the most
commonly used inputs. These Gaussian white inputs can be manipulated to produce
the desired spectral content simply by using low pass filters or band pass filters. If
the filters are causal, low pass and linear, then the output of the filter will remain
Gaussian and the filter itself will not influence the distribution. If the input to the
filter is a uniform distribution, however, the output of the filter will be some other
distribution. This is because fast changes of the input, say from one limit of the
uniform to the other limit of the uniform, will be filtered out so that the resulting
value will be some average output value. It is therefore difficult to jointly specify the
PDF and the spectral content. Hunter and Kearney 1983 [48] attempted to address
this limitation by developing a stochastic minimization technique to generate inputs
of jointly specified PDF and ACF (autocorrelation function).

The idea is to generate the desired input distribution and then assess the auto-
correlation after the values have been scrambled. Then two values in this series can
be switched and the autocorrelation can be assessed again. If the autocorrelation is
closer to the desired autocorrelation, then the change is kept. If not, then another
two input data points are selected and the process is repeated.

This algorithm was implemented and the results are shown in Figure 6.1. The
first panel on the top left shows two distributions, a uniform distribution (which is
the desired distribution) and a Gaussian distribution generated with a common input
generation technique used in MATLAB known as “idinput” which simply applies an
8th order butterworth filter to a Gaussian input. The panel to the right shows the
power spectral density produced by idinput (black), and the power spectral density
achieved by the algorithm (red). The desired cutoff is at 200 Hz.
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Figure 6.1: Generation of an input with an arbitrary PDF and autocorrelation. The
PSD and time domain representation are also shown.

The autocorrelation, which shows the same information as the PSD is shown in
the bottom left panel. The desired autocorrelation with the 200 Hz cutoff is shown in
blue. The output time series of the signal is shown in the final panel. It is clear that
although the idinput algorithm has the desired cutoff frequency, it does not have the
desired distribution. The result produced by the algorithm for a uniform distribution
has a very unique time domain signal which is completely contained between the

limits of the desired distribution.

The generation of this algorithm, however comes at high costs. The swapping
technique is fairly inefficient and the time required grows with the length of the input
desired. For an input that is 10,000 samples long, over one million swaps are necessary
to generate the desired autocorrelation. The most time consuming step is calculating
the autocorrelation itself. In order to reduce the computational time, Hunter and
Kearney 1983 produced an autocorrelation assessment algorithm that only assesses

the autocorrelation for a single swap. This algorithm significantly increases the speed
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of the algorithm and is available in Appendix C.4.

The speed of different autocorrelation algorithms is shown in Figure 6.2. A blind
autocorrelation which uses the well-known autocorrelation formula takes the longest
time to complete as the vector size increases. In fact, this algorithm calculation time
goes at about the vector size squared with order O(n?). The MATLAB “xcorr” oper-
ation is more efficient and has an order O(n%"). The swap autocorrelation has a lower
overhead than the MATLAB function but has an order O(n!) which means that it is
at a disadvantage at very large vector sizes. However, with this particular problem,
it is not necessary to compute the entire autocorrelation. In fact, the autocorrelation
can be limited to only the first few values. By fixing the length, the time required for
each calculation does not increase with the size of the vector and remains constant.
This has clear benefits over other algorithms in terms of overhead and in terms of
growth as a function of vector size. With this improvement, it takes 1800 seconds to
generate a single input with the desired qualities using a 2.4 GHz Intel Core 2 Duo
processor with 2 GB Ram.

a. Autocorrelation Computation Methods b. Convergence to desired Autocorrelation
100

10 -

+ Blind Autocomelation
+ Matlab XCor
+ Swap Autocorrelation
Swap with Fixed Length = 100

-

o6
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Vector Size Successful Interchanges ~ x 10°

Figure 6.2: (a) Computational speeds of different autocorrelation methods and (b)
the leveling of the sum of squares (convergence to a minimum) of the output.

Although this swapping behavior can be used to achieve any autocorrelation,
there is a limit to how good the swapping procedure can be. If the bins of the PDF
are infinitely small, it should be able to achieve an autocorrelation to finer detail
than if the bins of the PDF are very large. Therefore, for any finite size bin on the

PDF, the benefits of additional swaps will eventually disappear. This is shown in
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Figure 6.2b. As the number of successful interchanges increases, the error measured
by the sum of squares decreases until it reaches some limit. At this point, it is no
longer beneficial to make additional swaps since the incremental benefit of each swap
decreases significantly.

Using this algorithm, a series of uniform inputs were generated for nonlinear sys-
tem identification in the open loop configuration. If closed loop input generation is
desired, a different paradigm is necessary since this method is time consuming and

cannot be done in real time.

6.2 Real Time System Identification

Adaptive and recursive algorithms can identify a system in real time. Each addi-
tional data point obtained can be be used to modify the system impulse response
immediately. These techniques are valuable in situations where the system changes
or degrades over time [72]. With recursive least squares, the additional data point
is used to optimally improve the overall estimate and information from all the data
points is kept in the estimate. With adaptive least squares, some of the prior in-
formation is forgotten and the impulse response better reflects the most recent in-
formation. Adaptive and recursive least squares algorithms are commonly used and
multiple derivations exist and are optimized for different situations [74]

The equations used to calculate the RLS algorithm are as follows, for all the data
points collected from n = 1 to N. First, a matrix T is defined with a vector length

equal to the memory length M. The input to the system at any time is z(n),
T=[z(n) 00 ... 0] (6.1)

Next, the error and Kalman gain are calculated with the variable V,, that is initialized
as an M by M identity matrix with a diagonal value that is at least two orders
of magnitude larger than the variance of the input. This helps with convergence.

The discrete impulse response ﬁ(m) is initialized as a vector of zeros of length M. If
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initialized with values that more closely correspond to the expected impulse response,
the algorithm converges faster. Since the output of the system is y(n), the error is
calculated as the difference between the output and the expected output. Then, the

Kalman gain can be calculated,

en = y(n) — T hy(m) form=1...M, (6.2)

VT

K,=————.
AN+TTV, T

(6.3)

The variable )\, is the forgetting factor that allows the system to “forget” older inputs.
If A\, is set to 1, then the calculation never forgets any of the input information. It
was found that a value for A\, of 0.95 to 1 was necessary to achieve good estimations.
The next step is to update the V,, using the following relation,

Vo — K, TV,

N (6.4)

Vn+1 =

In this algorithm, the impulse response is constantly being updated using the Kalman
gain and the estimate error information gained from each additional data point such
that,

~

Aps1(m) = hp(m) + Kpen form=1...M. (6.5)
It is obvious from the algorithm that each data point contributes new information to

the construction of the impulse response in real time.

The equations that are used to calculate the ALS algorithms, while very similar,

exhibit a few differences. The transformation matrix T stays the same,
T=I[z(n) 0 0 ... O (6.6)

However, the error is calculated using a single error parameter representing the error

in the entire impulse response,

M ~
en =y(n) — > hn(m)T(m). (6.7)

m=1
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The update step occurs for each different position in the impulse response. Note that
the parameter )\, represents the change factor (how quickly the impulse response is
allowed to adjust) and not the forgetting factor. The larger the factor, the faster
the impulse response will alter in the presence of a changing system. The value of
Aq should be tuned with respect to the sampling rate and the input spectrum in
order to cover the appropriate dynamics without adjusting to noise instead. After

optimization, a value of 107 or smaller was used for A,

~ —~

hps1(m) = hp(m) + Aee, T(m) form=1... M. (6.8)

The RLS algorithm is fairly similar to the LMS algorithm except that it asymptot-
ically approaches the same solution as the LMS algorithm for LTI systems as more
data is obtained. The RLS algorithm can also be compared with LMS systems since it
has a similar representation structure where the number of parameters in the memory
length is the number of parameters necessary to represent the system. As the test
length increases, the number of parameters representing the system does not increase

but the ability to reject noise gets better.

The ALS algorithm, however, does not have the same mathematical guarantees
and uses many more parameters to represent the system. Each new data point that is
obtained can be used to update the entire impulse response such that the number of
parameters representing the system grows linearly with test length. The advantages
include the fact that the system is adaptable and can be used to identify nonlinear
systems. The disadvantages are that the system is more susceptible to noise, the
algorithm can go unstable if ), is too large and the algorithm has no assurance for

optimality.

These two real-time identification methods can be compared with LMS for mak-
ing nonparametric estimates of skin dynamics under indentation. Figure 6.3 shows
the linear impulse response and static nonlinearities using LMS, RLS, and ALS al-
gorithms. In this figure, the estimates for the ALS dynamic impulse response are

shown as an average of all the estimates over time. Because the dynamics of the ALS
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model are changing with time, it is able to account for the changes in the dynamics
of the skin as the probe moves in and out of the skin and the looping in the residual
nonlinearity plot begins to disappear. Since the looping occurs over longer periods,
the dynamic fitting of the ALS algorithm was able to adapt. For smaller changes in
the system dynamics, the ALS algorithm was unable to adapt fast enough so there is

still looping or noise in the center of the residual nonlinearity plot.
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Figure 6.3: Recursive Least Squares and Adaptive Least Squares algorithms applied to
obtain (a) the linear impulse response and (b) the residual nonlinearity. Note that the
impulse response is mapped in mm vs. mm such that the nonlinearity carries no units and
the transfer function carries the units of mm/N. The surface of the skin is located at 10 mm
on the actuator for this test.

The calculation time on a 2.4 GHz Intel Core 2 Duo CPU is also displayed on
the top corner. The experimental test length was approximately 4 seconds. As the
calculation time indicates, the LMS algorithm for this configuration with a memory
length of 250 samples has a calculation time that is comparable to the experimental
time and is a reasonable time for the clinician to wait for results. The RLS algorithm,
on the other hand, takes too long to calculate to be used for real-time system identi-
fication [93]. The VAF of the LMS system is 73.8 % while the RLS system has a VAF
of 72.0 %. The ALS algorithm is much faster and the calculation time is viable for
real-time system identification. The VAF also increases to 86.7 % for the ALS algo-
rithm. The caveat to the ALS algorithm is that it uses many more parameters so the

AIC value is two orders of magnitude higher. The AIC for Figure 6.3 are 6.78 x 10
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for the LMS algorithm, 6.79 x 10* for the RLS algorithm, and 4.15 x 10° for the ALS
algorithm. Additional comparisons for AIC are shown in Figure 8.1. Despite the
higher entropy, the ALS algorithm has an additional benefit in that it can describe
more of the hidden information within the nonlinearity. Figure 6.4 shows how the

impulse response changes as the input and output vary.
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Figure 6.4: ALS system impulse response following changes in the system as a function of
depth. (a) The output of the system is shown along with the impulse response as calculated
with the ALS algorithm as a function of time. The surface of the skin is located at the
10 mm mark for this test. (b) The impulse response can be reordered to show how it changes
as a function of depth. The impulse responses here are unscaled.
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As the input varies stochastically, the output also appears to be varying stochas-
tically. At certain points of the output, however, there is a drastic change such that
negative peaks are observed. These peaks correspond to peaks in the impulse re-
sponse from the ALS algorithm. An increase of the peak in the impulse response
generally indicates a change in the damping and spring constant. This indicates the
the impulse response tends to change dynamically with position.

In order to see these changes more clearly, the impulse responses calculated using
the ALS algorithm can be reordered to reflect the change as a function of output
position. The reordered plot indicates a pattern in the impulse response as a function
of depth. The deeper the probe, the stiffer the spring constant and the higher the
damping. Since the system dynamics are changing, the impulse response averaging
done in the plot is not entirely accurate. The averaging tends to group all the impulses

at the same depth together.

6.3 Input Generation with System Feedback

To properly identify the features of a nonlinear system where the nonlinearity is
dependent on the output parameter, it is important that sufficient information is
gathered across the output range. There are several ways to achieve the optimal

output that can be used to identify the system including (but not limited to):

e Multistep process: Use a reasonable guess for the input, obtain the measured
output, and identify the system. Create a new, more optimal input based on
the model of the identified system and use this input to obtain a more complete
picture. - This procedure may take several iterations. Generating an input
that would produce the optimal output for system identification can be time
consuming and would need to be supervised by someone trained in the task.

e Real time input generation (RTIG) with output PDF feedback: Measure the
output of the system in real time and adjust the offset of the input to meet
the desired output PDF. - The optimal system output would be one in which

the output PDF is uniformly distributed across a desired range for an input
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frequency of a sufficiently high cutoff. In order to achieve this, it is possible to
add a properly filtered input range to an offset which can be controlled to achieve
the proper output range. In this strategy, it is not important to identify features
of the system other than the output PDF. This procedure is described in Section
6.5.1.

e Real time input generation (RTIG) with output PDF feedback and system
identification: Measure and identify the system in real time and adjust the
offset of the input to meet the desired output PDF. - In this procedure, the
system 1mpulse response is identified and the control system for determining the
input offset is modulated using a self tuning requlator with gain scheduling. This

1s described in Section 6.3.2

6.3.1 Owutput PDF Feedback

One of the most basic configurations for obtaining the desired output PDF in real time
is shown in Figure 6.5. First, a Gaussian or uniform white input can be generated and
filtered with a controllable high order discrete Butterworth filter to the desired input
cutoff. This can then be added to a lower frequency control input that is commanded
via a feedback loop. Information about the output distribution can be used to increase
or decrease the mean offset of the input in order to explore different locations of the
nonlinearity in the output. For the PDF shifting algorithm, it is necessary to know
three things about the system: the desire input range, the desired output range, and
the minimum system memory length. The desired input and output ranges are used
to bound the input and output to ensure that the system does not go beyond physical
limits.

The minimum system memory length is used as the feedback rate. Since the input
of the system is a stochastic signal with an offset, the output of the system will have
a mean value that is directly related to the input offset if the rate over which the
the mean is being taken is longer than the minimum system memory length. If the
feedback rate is faster than the minimum system memory length, the relationship

between the input offset and the output mean begins to break down and the RTIG
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Figure 6.5: Real time input generation (RTIG) scheme with output PDF feedback.

system can become unstable. In addition, to reduce the computational load for real-
time input generation, a slower feedback rate is better. On the other hand, it is
desirable to keep the test length short so a reasonably high feedback rate is required.
The 5 % impulse response settling time as a function of the spring constant and
damping for a second order system with a mass of 0.06 kg is shown in Figure 6.6. The
settling time is short for intermediate values of damping. As the damping increases
for low stiffnesses, the impulse response tends to tail off slowly thereby increasing the
settling time. For very low damping, the system tends to oscillate thereby increasing
the settling time. The 5 % settling time memory length in seconds for regions in dark
blue is about 0.06 seconds (or 120 samples for a sampling rate of 2 kHz). In practice,
a minimum memory length of 0.025 seconds (or 50 samples for a sampling rate of
2 kHz) can be used for feedback control in the dark blue regions.

The control system for the PDF shifting algorithm requires a few steps during

each feedback loop (once every 50 samples for a sampling rate of 2 kHz):

1. First, split the output range into a number of bins. Output positions that
have already been explored can be placed in these bins. The desired output
distribution function is a uniform so in order to explore all the bins evenly,
the desired output for the next cycle would be the one which coincides with
the bin with the least number of entries. This desired location can be called
y*. This idea can also be extended to other probability distributions by simply

subtracting the entries from bins already filled with the desired distribution and
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Figure 6.6: The 5 % impulse response settling time as a function of stiffness and

damping.

finding the bin with the largest number of entries.

2. Next, determine the current output mean in terms of the number of bins y.

3. Modulate the other input parameters:

(a)

(b)

Determine the overall gain to the system: This parameter G, can deter-
mined from a general idea of the system stiffness or memory length.
Determine the edge modulation: Uniform distributions have sharp edges
which requires that the gain be decreased as the output approaches these
edges. Depending on the location of desired output location y* and the
current output location ¥, it is possible to increase or decrease the overall
feedback gain using the edge modulation parameter Ey,

Determine the stochastic input S(t): For a desired PDF with sharp edge
contrast like a uniform distribution, it is generally a better idea to use
a uniform stochastic input. Otherwise, a Gaussian distribution will also
work.

Determine filter F(e) and gain G, for the stochastic input: Larger gains

will obtain more information about the system but can also cause instabil-
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ity. The gain G, can be scaled up to about 20 to 30 % of the total input
range and remain stable. The input filter is not necessary for algorithm

functionality but can be implemented to clean up the signals.

4. Combine the input with the following formula where z(¢) is the new input.
z(t) = 2o + GoEn(y* —y) + GsF(S(1)) (6.9)

The first term z, is the old input offset while the second term is the offset
change. The last term is the stochastic input. This configuration with the
old input offset included in the output works well when the system input and
output are not zero mean. Additional derivative or integral terms can be added
to speed up the response of the system although additional speed could cause

instability if the output mean can no longer be mapped to the input offset.

By looking at this algorithm, it is clear that it can be improved with an iden-
tification step where the the gain G, is changed depending on the system stiffness.
However, to obtain an output with the desired PDF, it is not necessary to identify the
system as long as the nonlinearity in the stiffness does not vary heavily. In addition,
by not identifying the system, it is possible to obtain computational savings. Figure
6.7 shows the input and output time series simulation results. The output range was
constrained to vary between 0 and 6 mm and the input range was allowed to vary
from -5 to 25 N.

In the first 0.2 to 0.5 seconds, the algorithﬁl goes outside the described bounds, but
soon it centers on a predictable pattern. It sweeps through the output range by going
up and down in force. When the input nears the top or bottom edge of the designated
output range, the rate of input change plateaus due to the edge modulation algorithm.
The input to the system tends to oscillate between the maximum and minimum value
in a predictable fashion. The linear system, which has a stiffness of 1000 N/m, has
the fastest cycling of about 0.5 seconds per cycle. The Wiener static nonlinearity,
which has an average stiffness of about 1200 N/m has a lower cycling rate of about

0.7 seconds. The DPN system with an average stiffness around 2500 N/m has an
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Figure 6.7: Real time input generation with PDF feedback time series results for the
input (blue)and output (red). Three different systems, a linear system, a Wiener
static nonlinear system, and a DPN system are shown.

even slower cycling rate up to about a second.

The algorithm is controlled by the output PDF which is shown in Figure 6.8 along

with the input PDF, the identified average impulse response, and the identified static
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nonlinearity. The linear system, shows the ideal output PDF that is very close to a
uniform shape between 0 and 6 mm with sharp edge features. The Wiener and DPN
systems, however, have shifted probability distribution functions. The main reason
for this is that the underlying nonlinearities in these two models have a variation in
stiffness for deeper positions. If the bin with the least number of entries is near the
stiffer regions, more and more input force is necessary to reach that depth. Since the
stiffness is unknown, the algorithm does not adapt to increase gain for these stiffer
locations and therefore takes a longer time to reach those regions. Therefore, more
entries occur in stiffer regions. Although the resulting distribution is not ideal, it is
still possible to control the input and output ranges with this algorithm.

The real time input generation scheme used here has one additional interesting
feature. Since the cyclic behavior is slow, the resulting predictions from the static
nonlinearity are not as accurate. The static nonlinearity for the Wiener system is
scattered and noisy. The static nonlinearity plot for the DPN system, on the other
hand, is very narrow and does not exhibit the effects of the cross dynamic terms since
the output did not travel across large ranges fast enough.

Despite these drawbacks, the real time input generation without system identifica-
tion works well for linear systems and systems with small variations in stiffness. The
algorithms are also relatively fast and can be completed in 1.3 seconds for a 5 second
test making it a viable candidate for real time input generation. Additional details

and code can be found in Appendix C.4.2.
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Figure 6.8: Real time input generation with PDF feedback distribution results for
the input and output, the identified impulse response, and the identified static non-
linearity. Three different systems, a linear system, a Wiener static nonlinear system,
and a DPN system are shown.
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6.3.2 Output PDF Feedback with System Identification

When the identification is done in real time, as with the RLS and ALS techniques,
the identified system can only approach the optimal solution [93]. If the goal is to
identify the system, then an ALS algorithm can be used with some modification in
conjunction with a real-time input generation scheme. This idea is shown in Figure
6.9 where the data acquisition and identification steps are connected directly to the
input generation step. This methodology is distinct from the idea of using an observer
since the observer poles must be faster than the system poles. With this method, the

feedback poles must be much slower than the system poles.

Figure 6.9: Real time input generation (RTIG) scheme with output PDF feedback
and system ID.

This scheme is similar to Section 6.3.1 except for the additional system identifi-
cation step using an ALS algorithm. This algorithm utilizes information about the
identified system to determine the optimal input gains. The ALS system ID block

functions as follows once every feedback cycle:

1. Add new input and output sequences to the ALS algorithm as described in
Section 6.2 using a change factor A, of 107°. Note that including the ALS
algorithm may cause the RTIG system to go unstable if the ALS algorithm
itself is unstable due to the choice of the identification memory length (which

does not have to be the same size as the feedback memory length), impulse
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response fitting functions or the change factor. The ALS system will adapt as
the system goes to different regions of the output nonlinearity.

2. Fit the most current impulse response to determine the stiffness, damping,
and mass and associate these values with the average local bin position. This
step can be the most computationally intensive and time consuming and will
increases the total computation time to 7.5 seconds for a 5 second test. This,
however, can be easily shortened by decreasing the number of parameters over
which the fit is conducted or trading of fitting accuracy for speed.

3. Scale the gain G, and other input parameters with the identified system pa-
rameters at the average local bin position. The simplest version of this can be
done by scaling the input gain directly with the identified local stiffness. More
complex methods like pole placement can also be used. This database of input
parameters that depend on the local bin position can be passed on to the PDF

shifting algorithm.

The results based on this algorithm are shown in Figure 6.10. These data show an
immediate improvement in the cycling time which can be as low os 0.2 seconds for all
the systems marking an improvement in the time necessary to identify the nonlinear
system. The plateau periods are also shorter and less pronounced. Improvements
also appear in the output PDF as shown in Figure 6.11.

When system identification is not used, it was only possible to achieve a uniform
PDF for the linear system. With the addition of depth dependent system identifi-
cation via the ALS algorithm, it was possible to achieve near uniform PDFs for the
same Wiener static nonlinearity and DPN systems. In addition, since the cycling
speed increased, cross dynamic terms start to become visible in the static nonlinear-
ity plot of the DPN system. The static nonlinearity plot of the Wiener system also
becomes better defined.

The values from the ALS can also be used to identify the depth dependent pa-
rameters of the system. Figure 6.12 shows how the parameters of the three simulated
systems changes with position. The linear system shows no variation in the three pa-

rameters as a function of depth. The Wiener system shows how the three parameters
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Figure 6.10: Real time input generation with PDF feedback and system ID time series
results for the input (blue)and output (red). Three different systems, a linear system,
a Wiener static nonlinear system, and a DPN system are shown.

of mass, damping, and spring constant all change with depth in the same fashion.
The DPN model shows how the three different parameters can vary differently with
depth.
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Figure 6.11: Real time input generation with PDF feedback and system ID dis-
tribution results for the input and output, the identified impulse response, and the
identified static nonlinearity. Three different systems, a linear system, a Wiener static
nonlinear system, and a DPN system are shown.

There are two general caveats to using the ALS algorithm for system identifica-
tion in this case. First, since the stochastic input range is large, a lot of averaging

across depths can occur which skews the parameter estimates by averaging across
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Figure 6.12: Identified parameters from real time input generation with PDF feed-
back and ALS algorithm. Three different systems, a linear system, a Wiener static
nonlinear system, and a DPN system are shown.

depths. The ALS algorithm itself will additionally skew estimates across time. Bet-
ter estimates can be obtained from the input and output data if an offline system
identification technique is used after the data has been gathered. Additional details

and code can be found in Appendix C.4.2.
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Chapter 7

Skin Studies

In previous chapters, it was shown that the Wiener static nonlinear system identi-
fication technique was able to differentiate between different positions on the skin with
better specificity than possible with palpation. Since this device can be designed to
be more sensitive than human assessments of tissue mechanics, it is therefore possible
to use this device to identify key differences in a population. In addition, results from
different configurations of the device can be tested and the effectiveness of commercial

products can be assessed.

7.1 Indentation Population Studies

The nonlinear system identification techniques covered in previous chapters can be
used to characterize skin properties in a population. The procedures and goals of
the test are first outlined. Indentation studies on several participants were conducted
and repeatability assessed. Then, multivariate statistical techniques were used to
look at trends in the data. Analysis of variance (ANOVA) techniques were used
to look for statistically significant differences within the data. Subgroups, based on
demographic similarities, of the data were also analyzed. These procedures helped
identify key parameters that provide indicators for the body mass index (BMI) and

help identify similarities across the population.
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7.1.1 Test Procedures

The general experimental procedure for any given test involves first checking the area
of the skin or tissue for any markings or signs of wear. The device can then be
lowered onto the surface of the skin and held in place. When the program is started,
it gives a predefined preload (of approximately the mean load of the following test)
to the skin for 0.5 seconds to acclimate the tissue. This typically reduces the creep or
tissue relaxation during the test. The input signal is then implemented. This signal
is constructed such that the tip of the device never leaves the surface of the skin and
that the maximum force is less than 10 to 12 N and corresponding displacements on

the order of 10 mm or less.

A\ Positions on the Arm

\ \——jilzorearm

\. e
’K Posterior

Forearm

Figure 7.1: Anterior and posterior arm locations for population studies.

In this study, the procedure involved testing four different positions on the fore-
arms of the subjects. Two spots were 40 mm from the wrist on the posterior left
and right forearms. The other two spots were on the anterior forearm at a distance
of 40 mm from the elbow as shown in Figure 7.1. These spots were chosen because
they are easily accessible, flat regions. Demographic information is first obtained and
then each spot is marked and a picture is taken of the surrounding area to control
for follicle density and skin surface structure. The posterior and anterior positions on
the right arm are tested first followed by the left arm. Once the probe on the desktop
version of the device is lowered onto the skin, five consecutive tests are conducted

using the custom software.
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7.1.2 Population Statistics

Sixteen individuals of both sexes and multiple races participated in this study. In
order to look at variations in the estimates of skin parameters, the analyzed data
is plotted in Figure 7.2. Note the scaled parameter estimates differ from the effec-
tive parameter estimates because the scaled parameters are achieved by dividing the
impulse response by the DC compliance. This fixes the normalized spring constant
at 1000 N/m. The parameters listed are from the Wiener static nonlinearity model.
The damping parameter and natural frequency are one possible parameterized rep-
resentation of the system dynamics while the scaled mass and scaled damping are
another possible representation. These measurements are redundant and represent
the same information so they should not be considered separate parameters. The
depth dependent stiffness in the skin where C is the total compressible stiffness and

C, is the rate of change in stiffness with depth are also shown.

These data show the mean values and the standard deviations for all estimates
for every subject. From this figure, it is clear that the results are fairly repeatable.
For most of the subjects, the means of the values estimated from different positions

on the skin are statistically very different.

There are a few clear patterns in the individual data. First, the anterior values
on both the left and right arms prodube different values for the scaled mass, for the
natural frequency, and for both of the nonlinear constants. The damping parameter,
on the other hand, shows no statistical difference between different positions across the
population. The anterior forearm has more scaled damping, a lower natural frequency,
as well as a larger compressible depth which are all characteristic of thicker and more

compliant tissue.

A better way to look at the data is to look at the averages and standard devia-
tions across all of the subjects. This is shown in Figure 7.3. In this figure, it becomes
clear that the anterior positions are statistically different from the posterior positions
across five of the six metrics. When comparing the anterior position to the poste-

rior positions, it is expected that the stiffness will be lower which would drive both
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Figure 7.2: Individual subject data showing the damping parameter, the natural

frequency, the scaled mass, the scaled damping, and the two nonlinear constants for
the four different positions tested.
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Table 7.1: Individual coefficients of variation

Position ¢ W, Scaled M  Scaled B (] Cy

Left Posterior 0.040 0.012 0.024 0.039 0.031 0.083
Left Anterior 0.052 0.014 0.028 0.052 0.034 0.092
Right Posterior 0.039 0.014 0.028 0.038 0.030 0.092
Right Anterior 0.043 0.010 0.020 0.048 0.027 0.105
Average 0.044 0.013 0.025 0.044 0.031 0.093

Table 7.2: Population coefficients of variation

Position ¢ Wy, Scaled M Scaled B 4 Cy

Left Posterior 0.132 0.075 0.156 0.123 0.114 0.154
Left Anterior 0.230 0.095 0.170 0.221 0.153 0.242
Right Posterior 0.117 0.079 0.169 0.124 0.159 0.197
Right Anterior 0.301 0.061 0.117 0.290 0.135 0.313
Average 0.195 0.077 0.153 0.189 0.140 0.226

the scaled mass and scaled damping upwards. It is also expected that the natural
frequency will be lower. Since the anterior position has thicker tissue, it is expected
that the total compressible thickness will be larger which creates a larger value in the
nonlinear constants C; and Cy. Not only can this device distinguish between different
positions on the skin for a single patient but it can be used to distinguish differences
between positions on the skin within a population.

There is no significant difference between the left and right positions. The dif-
ference between the right and left hands is expected to be minor although some
differences in the musculature is expected for the dominant hand. Since this iden-
tification procedure looks at shallower tissue, however, the effect of handedness is
expected to be small.

Table 7.1 shows the average coefficient of variation (CV), which is defined as the
standard deviation divided by the mean, for individual subjects for each position while
Table 7.2 shows the population CV. The CV is a measure of the dispersion of a prob-

ability distribution. A lower coefficient of variation indicates a tighter distribution.

From these data, it is clear that the individual CVs are much smaller than the

population CVs which indicates that the system makes repeatable measurements
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Figure 7.3: Parameter means of the population for Wiener static nonlinearity model
showing the damping parameter, the natural frequency, the scaled mass, the scaled
damping, and the two nonlinear constants.

which can distinguish individuals from within a population. The CVs obtained for
measurements using this device are comparable to those obtained using a Cutometer
conducted on a larger population (3 tests each for 450 subjects) [45]. The CVs for the

Cutometer study varied from 0.042 to 0.114 for the arm. For similar locations on the
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body, the instrument used in this research has comparable (or better) performance
when compared with commercial devices.

Despite taking data averages and standard deviations, it is clear that the data
collected does not present itself in a random fashion but has some sequential depen-
dency. Since five data sets were obtained for each position, it is also possible to look
at how the initial data set differs from the other four data sets. The values of the
initial data set were subtracted from the averages of the other four data sets and the
results are shown in Figure 7.4. For each of these initial difference plots, the mean
offset and the standard deviation for the offset are shown.

The damping parameter, the scaled damping and the nonlinear constant C) have
statistically significant differences from zero. This means that the first test affects
the results of other tests. The change in the nonlinear constant C; is especially
important because it indicates a change in the compressible depth of the skin. After
the skin is tested once, it retains a slight compression (< 1 mm) thereby reducing the
compressible depth for future tests. Other tests done with different devices also show
this trend which speaks to the malleable nature of skin.

The next factor is to determine if the skin parameters are different across differ-
ent demographics. To evaluate the effect of demographics on skin parameters, data
was collected on age, weight, height, gender, handedness, ethnicity and known skin
conditions. Across all of these demographics, there is very little correlation between
the measurement of any property and differences in demographics. There is, however
a small difference between genders as shown in Figure 7.5. In this figure, the data
is plotted as population means for each demographic with standard deviations and
data point distributions.

The males in the population tend to have a slightly higher scaled mass for the
anterior positions than females as indicated by the circled plot. This may be due to
the fact that females in the study are generally smaller than males in the study. In
order to calculate the effect of a person’s size on their skin properties, it is possible to
calculate the body mass index (BMI) which can be calculated by the weight divided
by the height squared. A map of the relevant parameters versus the BMI of the
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subjects is shown in Figure 7.6. This plot includes points for each study participant

and lines which are linear fits to the data of each position on the skin.

In these plots, there is generally no trend in the slope of the linear fits indicating
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damping parameter, the natural frequency, the scaled mass, the scaled damping,
and the two nonlinear constants.

no trend as a function of BMI. However, there is an upward trend in the scaled mass

and a downward trend in the natural frequency as a function of the BMI for anterior
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Figure 7.6: Effect of BMI for Wiener static nonlinearity model showing the damping
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nonlinear constants.

positions. The anterior positions carry more fat and tissue which would normally
decrease the springiness of tissue. Therefore, the scaled mass would increase as a

function of BMI for this position on the skin. Correspondingly, a decrease in the
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spring constant would decrease the natural frequency of the system. Therefore, this
test is actually sensitive enough to sense a difference in the BMI from an indentation

test into the skin.

Although plots can be used to assess the instrument and method, it is better to
use analysis of variance (ANOVA) methods to determine if any of the differences
are statistically significant. Minitab, a software package for analyzing statistics, was
used. One-way ANOVA and Generalized Linear Analysis of Variance were conducted
on several parameters and the p-values are reported. The lower the p-value, the
better the certainty that there is a statistically significant difference between different
categories. This is shown in Table 7.3a. In these tables, p-values that are less than
10 % are highlighted. The parameters tested include gender, ethnicity (split into four
groups with Caucasians, Asians, African Americans, and Hispanics) and age grouped
by people under 25 and people over 25 (the oldest participant in the study was 36
and the youngest was 18).

From the one-way ANOVAs, it is clear that the left anterior position and the right
anterior position show statistically significant differences for the gender category that
are better than 1 % (which indicates a 99 % level of certainty). There also seems
to be a statistically significant difference between ethnicities for the left anterior
position but not the right anterior position. For age, there appears to be a statistically
significant difference between older and younger individuals for only the right anterior
position. The General Linear Analysis of Variance shows a similar trend where the
difference in gender is statistically significant for the left anterior position.

The p-values from single independent variable linear regressions are shown in
Table 7.3b. In this table, each regressor is used with a constant and p-values under
10 % are highlighted. A statistically significant constant indicates that there is an
offset. From the data, there is no statistically measurable difference with age. For
the values of height, weight, weight divided by height and BMI, however, there is a
statistically measurable difference in the left and right anterior positions in the scaled
mass and the natural frequency. This shows the same information as Figure 7.6 but

includes a quantitative assessment of the significance of the data. Weight alone seems
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to be a strongly significant estimator of the natural frequency and damping while the
height is not as strong an indicator. More test subjects would needed in order to
conduct higher order regressions with multiple independent variables. Sinée a lot
of information can already be obtained from single independent variable regressions,
there is not much to gain from increasing the number of participants for this particular

type of study.

In order to determine the number of test subjects necessary to obtain statistically
significant results, a test of the power level at 80 % and 90 % was conducted using
an a of 0.05 (corresponding to a p-value of 5 %). In Table 7.3c, the difference
between the means of the categories of gender, age, and ethnicity are shown. The
minimum difference between the means and the maximum standard deviations are
used to calculate the power and the number of participants required to create the
desired power level are listed. In this table, participant numbers under 50 per level
are highlighted. In order to discern the gender difference for the left anterior position,
between 8 and 16 participants are needed per level. For the right anterior position,
17 to 40 participants per level are needed for the gender and age metric. In order
to distinguish between ethnicities, a much larger population is needed. In order
to get statistically significant results for some metrics, hundreds or thousands of
participants are needed. Based on this table, it is clear that additional studies with

larger populations would yield very little additional information.

In addition to the least squares assessments, a partial least squares was also con-
ducted for the categories of age, weight, height, BMI and gender. In partial least
squares, combinations of the damping parameter, natural frequency, scaled mass,
scaled damping, and both nonlinear constants are used. Since it is possible that these
choices of output parameters are not the best ones, a partial least squares can be used
to indicate if other combinations of these parameters yield statistically significant dif-
ferences. This is shown in Table 7.4. In this table, there is a slight dependence that
appears in the left posterior and right posterior positions. The strongest levels with
p-values under 10 % appear in measures of the left anterior position for weight, BMI

and gender. This is consistent with earlier data and serves to confirm other estimates.
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P values for Partial Least Squares of Skin Parameters on Demographics
Left Posterior Left Anterior Right Posterior Right Anterior

Age 0612 0919 0.168 0.998
Height 0.366 0.198 0.633 0.188
Weight 0.086 0.032 0.788 0.26
BMI 0.197 0.09 0.602 0.296
Gender 0424 0.09 0.94 0.023

Table 7.4: Partial least squares for Wiener static nonlinearity model.

7.1.3 Subgroup Statistics

The population is diverse and many of the trends could be masked by demographic
differences. A subgroup of the test participants, right-handed males between the ages
of 18 and 28, were evaluated separately. A plot of the means and standard deviations
for two different positions on the left arm are shown in Figure 7.7. This figure
shows much smaller standard deviation bars than earlier and statistically significant

differences across all four metrics.

Table 7.5: Linear and nonlinear parameters and p-values of the left anterior and
posterior forearms of male, right-handed subjects

Quantity Anterior Posterior P-value
Forearm Forearm

Scaled Mass (s?) 0.0256+0.0042  0.0532£0.0048  <0.0005

Scaled Damping (s) 5.02+0.57 7.35+1.49 0.002

Nonlinear Constant C; (mm) 8.66+1.03 11.994+0.79 <0.0005

Nonlinear Constant Cy (1/N) 0.17040.023 0.287+0.069 0.001

Five measurements were taken at each location using the same stochastic input.
Variation between individuals is more than ten times the variation between measure-
ments for the same individual. In Figure 7.7, the anterior position generally has a
lower spring constant which boosts the scaled mass and the scaled damping. In addi-
tion, the anterior position has a larger compressible depth which boosts estimates of
C: and (5. The means, standard deviations and the p-value from an ANOVA study
are shown in Table 7.5.

The p-values show that the linear and nonlinear constants are significantly dif-
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Figure 7.7: Parameter means of the left anterior and posterior forearms of male,
right-handed subjects for Wiener static nonlinearity model.

ferent for the two positions demonstrating that the device can easily differentiate
between the tissue properties at one site from those at another. In this table, all the
metrics are statistically significant with p-values that are much less than 5 %. Sub-
group statistics can therefore be used to provide clearer differences between different

parameters and can be used to distinguish between changes in tissue properties.

7.1.4 Partitioned Kernel Statistics

A different analysis method can also be used to look at subgroup statistics. In the
earlier studies, the Wiener static nonlinearity method was used to assess the data.
In this section, the depth dependent partitioning technique is used. The parameters
from the depth dependent partitioning were split into a mean value and a slope for

the trend which gives exactly 4 different parameters. Higher order fits can be used
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to obtain more data metrics. The spring constant and damping were used while the
mass was not used due to its inherently low variation.

Figure 7.8 shows how the parameters change for the posterior and anterior po-
sitions on the right arm for the same male patients as in the earlier study. In this
figure, the difference is statistically significant for the average spring constant and the
nonlinearity in the spring constant and the nonlinearity in the damping. The average

difference in the damping is not quite as significant but there is a difference in the

means.
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Figure 7.8: Parameter means for male, right-handed subjects for partitioned kernel
model.

The spring constant on the anterior position is generally lower and the slope of
this spring constant is also lower. This is consistent with conclusions using the other
nonlinear system identification method. The conclusion that is new from this method
is that the damping parameter is lower and the change in slope of the damping

parameter is lower for the anterior position. It was not possible to see this trend
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from the earlier analysis because the effect of the nonlinear spring constant bled
into the measurement of both the scaled mass and the scaled damping making those
parameters not entirely independent.

Based on these studies, it can be concluded that the instrument is capable of
measuring differences in demographics and in body mass index through a simple
indentation test on different positions of the skin. Not only are the results repeatable
but they can be used to distinguish between individuals and have the potential to
distinguish differences between skin conditions or to assess the efficacy of commercial

products.

7.2 Indentation Comparison

Many synthetic materials are used to simulate human skin; one such material that
is used in needle free injection is Acrylamide [92]. In order to assess the similarity
of synthetic materials with human skin, indentation tests were conducted on several
locations of the skin as indicated in Figure 7.9. For injections into the skin, two of the
most common positions are the upper arm 40 mm from the elbow and the anterior
proximal lower arm about 40 mm from the elbow. Since these two locations have
similar mechanical properties, a stiffer location on the arm, the posterior distal loca-

tion 40 mm from the wrist, was also chosen to illustrate the range of skin properties.

The acrylamide used in this study consists of 10 %, 20 %, and 30 % concentra-
tion by volume in distilled water. Ammonium persulfate (0.075 % by volume) and
Tetramethylethylenediamine (2.7 % by volume) were added to catalyze the polymer-
ization of the acrylamide. The acrylamide gels were tested in 6.8 x 8.5 X 3.5 cm
containers. In addition, Buna (also known as Buna-N or Nitrile) sheet with a thick-
ness of 2.7 mm and latex sheet with a thickness of 87 pum were stretched across a
fixture with a 13 mm diameter hole to be tested with indentation techniques. The
results of stochastic linear tests below 1 N are show in Figure 7.10 using the 4.3 mm

diameter, 0.4 mm corner radius indentation probe. Skin tests are highlighted in blue
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Figure 7.9: Arm locations for indentation comparison studies.

and acrylamide tests are highlighted in red. Each material was tested 10 times with

error bars representing standard deviations.

Due to the small force range, the results were relatively linear with high VAFs.
As the percentage of acrylamide increased, the stiffness of the material increased
with very little change in the mass or damping. When comparing acrylamide with
skin, 10 % acrylamide is most similar in stiffness and in damping. Since there is high
variation in the stiffness of skin, acrylamide concentrations as high as 30 % can be used
to simulate skin stiffness (see stiffness plot in Figure 7.12). If the damping parameter
and natural frequency are used to compare the materials, 10 % acrylamide is also
the most similar in terms of natural frequency and energy absorption. Nevertheless,
acrylamide tends to have very low energy absorption when compared to skin and tends
to fracture under larger loads. This quality becomes especially important for needle
free injection since the level of local energy absorption determines if the acrylamide
will fracture during injection. Therefore 10 % acrylamide is most similar to tissue.
The other two materials used in this comparison are more similar to skin in terms
terms of energy absorption. The Buna material has a high stiffness and a high level
of internal damping. The latex material is most similar to skin at the surface due to

its relatively high absorption qualities and low stiffness.

Differences in probe geometry can greatly affect the comparison of materials. As
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Figure 7.10: Linear parameter comparison of skin and synthetic materials during
indentation. Three spots on the arm were tested at the anterior proximal (AP),
posterior distal (PD), and upper arm (U) locations. Acrylamide at 10 %, 20 %, and
30 % by volume, 2.7 mm thick buna sheet, and 87 um thick latex was also tested.

the probe diameter increases, the relative amount of material that undergoes compres-
sion increases and the relative amount of vmaterial that undergoes extension around
the edges decreases. As the corner radius of the probe increases, stress concentra-
tions decrease. In order to illustrate these effects, a more complete localized linear
comparison of the materials was also conducted for the smaller 4.3 mm diameter,
0.4 mm corner radius probe (Figure 7.11) and the larger 5 mm diameter, 1.3 mm

corner radius probe (Figure 7.12).

In Figures 7.11 and 7.12, the curves obtained for skin is shaped exponentially
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Figure 7.11: Localized linear comparison using the small 4.3 mm diameter 0.4 mm
corner radius indentation probe. Due to the small corner radius of the smaller probe,
it was not possible to test 10 % acrylamide with localized linear techniques without
fracturing the material.

while the curves obtained for the synthetic materials has a more sigmoidal shape. The
sigmoidal shape comes mostly from the influence of the material under compression.
Materials such as acrylamide and latex have a large region of relative linearity in
stiffness and damping. Although synthetic materials can be made to match biological
materials in terms of linear properties, it is more difficult to match other nonlinear
properties. The synthetic materials in this study tend to be more linear than the
biological materials as indicated by the small ranges in the observed stiffness and
damping. This is especially clear in Figure 7.11 where the stiffness of the synthetic

materials does not change significantly over several millimeters of displacement.

The other techniques described in this work were also used to assess the nonlin-

ear characteristics of biological materials with respect to synthetic materials. Figure

186



100 3000
e o TR %0 & °
ee o Q oo do = o
° e,
s0 | 'o. ® 2500
L 2
o, | °®
80 . 2000
_ . o
E3 ° _E :
5 70 - . = 150 o
= ® Calibration x L
- * Posterior Distal Lower Arm - ® Y
OAcrylamide 10 % 1000 - ‘ao L 00
® Acrylamide 20 % ”d o
® Acrylamide 30 % | ] 5P
50
®Buna 0 & o oo *°
P eeo o o0 08 8 A0O
40 X o
0 12 14 16 18 20 22 24 26 28 30 0 12 4 1 18 20 2 24 2% 8 0
Position (mm) Position (mm)
0.14 7 20
18
012 |
16
01 14
| - 12
B 008 | E
— | ; 10 4
Z o0 | qo o ® = ‘
| 8 ¥
oo o o0 o waﬁc‘n & ;
el . e
0.04 e 6 e, L
. P & °
0.02 | e e® %
2{®2® 0 g0 -*ﬂa‘o&.mem »

4 20 22 4 30
. d2 M 1w I oo 2 0 12 14 1 18 20 2 24 2 28 30

Position (mm) Position (mm)

Figure 7.12: Localized linear comparison using the large 5.0 mm diameter 1.3 mm
corner radius indentation probe.

7.13 shows the Wiener static nonlinear analysis for the posterior distal forearm, 20 %
acrylamide, 30 % acrylamide, and Buna. Skin is significantly nonlinear and can be
well-modeled by the static nonlinearity, the Buna is fairly linear and the acrylamides
are show evidence of nonlinearity that cannot be modeled by a Wiener static nonlin-
earity. Since the acrylamide has very little energy absorption, heavy oscillations are
observed which decreases the VAF when the memory length is restricted to 250 sam-
ples at 2 kHz.

Identification via Volterra kernels is shown in Figure 7.14. The nonlinearity in
skin and Buna is well modeled by Volterra kernels while the heavy oscillations in the
acrylamide are more difficult to capture for reasonably sized Volterra kernels. This
also leads to differences in the shape of the second kernel for acrylamide. The use

of Volterra kernels does significantly increases the VAF to 90 % or better for all the
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Figure 7.13: Wiener static nonlinearity comparison

using large indentation probe.

materials.

When depth-dependent partitions are used as in Figure 7.15, the VAF increases
even though the number of parameters in the fit decreases. This shows that the depth-
dependent partitioning is an effective representation for this type of nonlinearity. The
skin shows more variation in the peaks of the depth-dependent kernels while the depth

dependent kernels for the other materials are relatively invariant. This indicates that
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Figure 7.14: Volterra kernel comparison of skin and synthetic materials using large

indentation probe.

the skin exhibits more nonlinear characteristics than the other synthetic materials in

this study. Indentation is an effective method for interrogating and comparing layered

biological materials and synthetic materials.
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7.3 Extension

Conventional extension is done in vitro but can also be conducted in vivo. Two po-
sitions on the skin were tested including the anterior proximal position and posterior
proximal position 40 mm from the elbow as shown in Figure 7.16. The vertical and
horizontal directions were tested and the localized linear results are shown. For lower
forces, there does not appear to be a preferential alignment of the stiffness of skin
in a particular orientation. As the forces increase however, preferential alignment or
increased stiffness begins to appear in the orientation of the Langer’s lines in those
regions. For the anterior proximal location, the vertical orientation is stiffer than the
horizontal orientation at larger forces. For the posterior proximal location, the hor-
izontal orientation is stiffer. These results are in line with expectations with higher
stiffness or tension in the direction parallel to the Langer’s lines [21, 87].

Positions on the Arm 20000 T
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@ Anterior Proximal Horizontal

\ \D 16000 || ® posterior Proximal Vertical L
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Figure 7.16: Vertical and horizontal extension testing on skin to determine the ori-
entation of Langer’s lines (green). The initial length of the area being tested was
consistent for all four configurations.

Skin in extension can also be compared with other materials like 87 um thick
latex sheet and 416 pm thick Lycra Powernet as shown in Figure 7.17. The skin in
extension is generally stiffer than during indentation. The latex is significantly less
stiff than the skin or the Lycra material even though it had similar characteristics to

skin under indentation.
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Figure 7.17: Frequency domain comparison of skin and synthetic materials during
extension. Four positions on the skin are compared including the anterior proximal
vertical, posterior proximal vertical, anterior proximal horizontal and posterior prox-
imal horizontal positions. Lycra Powernet with a thickness of 416 pm and latex with
a thickness of 87 um were also tested.

When these materials are analyzed using the Wiener static nonlinearity technique,
as shown in Figure 7.18, it is clear that skin, Lycra and latex all exhibit some nonlinear
behavior. In the case of skin, there is looping at the bottom of the plot of the static
nonlinearity that is not exhibited by the latex or Lycra. This is an indication that
the behavior of the parameters (spring constant, damping, and mass) as a function
of depth for skin in extension is similar to skin in indentation but different from the
synthetic materials in this study. Effectively, this is the same as stating that the DPN
parameter variations is similar for skin in indentation and extension but different from

synthetic materials.

The extension data can also be analyzed using Volterra kernels as shown in Figure
7.19. The second Volterra kernels for skin in extension are very similar to those seen
from indentation studies but the shape of the second Volterra kernels for synthetic
materials is very different. The main valley in the second Volterra kernel in synthetic

materials has a different shape that for skin again indicating that the DPN parameter
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Figure 7.18: Wiener static nonlinearity comparison of skin and synthetic materials
using extension probe.

variation is different.

Depth-dependent partitions are used to analyze the data in Figure 7.20. There
is some variation in all off the depth-dependent kernels across the materials which
means that the materials are significantly nonlinear across the tested ranges. The
VAF increases slightly for the Volterra kernel representations of the skin but increases

significantly for the synthetic materials. This indicates that the depth dependent
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Figure 7.19: Volterra kernel comparison of skin and synthetic materials using exten-
sion probe.

partitions are a good representation of the synthetic material system and an efficient
representation for biological materials. Depth dependent partitioning is an effective
representation for the identification of biological materials under indentation and

extension.
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Figure 7.20: Depth-dependent partitioning technique comparison of skin and syn-
thetic materials using extension probe.
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7.4 Surface Mechanics

The frictional properties of skin have been studied by several research groups [27,
35, 46, 80, 107] using custom and commercial instruments (such as the Measurement
Technologies Skin Friction Meter by Aca-Derm Inc.). On the other hand, the surface
mechanics of skin includes several properties including skin texture, suppleness, and
friction [107]. When a probe is placed on the skin, the skin can deform contributing
to changes in the measured damping (from skin energy absorption, skin friction and
other factors) as well as the spring constant (from skin suppleness, skin stiffness and
other factors). In order to test this hypothesis, it is possible to measure the change
in the spring constant of the skin as well as the damping using the surface mechanics

probe.

Commercial products such as hydrating lotions claim that they help hold moisture
in the skin. Two different products with two different hydrating strategies were tested.
The Chanel Hydramax + Active is a non-greasy hydrating lotion which creates a
protective layer on the skin. The Vaseline Total Moisture cream is a more viscous
mixture. First, indentation studies were conducted with the localized linear method
at different depths into the skin. A baseline was first collected and an hour later one
of the lotions was applied and the skin was tested again. Once a lotion was applied,
the skin was allowed to rest for more than one day before any further testing. The

results of the indentation tests are shown in Figure 7.21.

There is a very small difference between the use of different lotions and the control
baseline. There is no significant difference in the mass or the damping but there is
a spread in the spring constant. With the Chanel product, the spring constant of
the skin actually increased slightly so that the skin became firmer. For the Vaseline
product, the skin became softer and the spring constant was lower for every depth

tested.

In terms of assessing the Chanel product, however, an indentation test is not the
most ideal. The major effect of the product is to generate a hydrated layer in the skin

which is best characterized by a change in smoothness or in the surface mechanics.
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Figure 7.21: Skin surfaces were tested using indentation with and without lotions
applied to the surface. The indentation tests show that the lotions have a minor
effect on skin properties under an indentation test.

Therefore, a surface mechanics test was conducted after applying the product on the
skin. The results of this test are shown in Figure 7.22. Each test was conducted ten
times and the means and standard deviations are shown.

The spring constant of the mechanical spring used in the system was subtracted
from the measurement of the compliance. Therefore, the remaining compliance is only
the contribution of the skin in a surface mechanics geometry. From these results, it
is clear that there is a difference between the compliance of the skin before and after
the product was applied. The Chanel product made the skin more compliant in the
sliding direction which means that the skin surface would appear to be smoother
and more supple. In addition, the Chanel product reduced the damping of the skin
which indicates that it significantly reduced the roughness or friction of the skin at
the surface.

Additional long term testing with other products is necessary to fully assess the

effect of different lotions and creams immediately after application and a few minutes
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Figure 7.22: Skin surfaces were tested in a surface mechanics configuration with and
without lotion. These tests show that the Chanel Hydromax + Active lotion has a
larger effect in on the surface mechanics of skin after application. (a) The impulse
responses and (b) fitted parameter data are shown. The normal preload is 1 N. The
probe dimensions are 5 mm by 16 mm with an edge radius of 1.5 mm.

or hours after application. Nevertheless, these results indicate that the instrument
designed in this research is consistent and sensitive enough to measure differences
that can be felt by touch or palpation. In addition, it makes a clear quantitative

assessment that can be compared directly.
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Chapter 8

Conclusions and Recommendations

The dynamic properties of biological tissues can be characterized using nonlinear
stochastic system identification techniques. Devices, electronics, and data acquisition
software were created. Several different linear and static nonlinear system identifi-
cation techniques have been discussed. In addition Volterra kernels and partitioned
techniques were outlined.

As a final overview, a comparison of the different system identification techniques
discussed in this work is shown in Figure 8.1. For a real system (skin under inden-
tation) with a memory length on the order of 40 to 60 samples, the VAF generally
increases for the identification techniques discussed in this work. The lowest values
of VAF are for the LMS method followed by the Wiener static nonlinearity method,
which generally increases the VAF by about 5 %. The increase in the VAF is rapid
until about 30 samples after which the VAF levels off. Since the true memory length
is on the order of 40 to 60 samples, this result is reasonable. For memory lengths
shorter than 30 samples, the LMS technique has trouble generating an impulse re-
sponse that can adequately fit the data since dynamics from longer lags are lost due
to the structure of the algorithm.

The first Volterra kernel is essentially the impulse response obtained through an
orthonormalization process. Unlike the LMS algorithm, the algorithm used to obtain
the first Volterra kernel prevents the system from losing the information at longer

lags. Rather, the Gram-Schmidt algorithm attempts to do its best at fitting the
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Figure 8.1: A comparison of nonlinear system identification techniques in terms of
VAF and AICc as a function of memory length.

data within the given constraint. This causes the first Volterra kernel to have a VAF
that is higher at shorter memory lengths than for the LMS algorithm. When the
second Volterra kernel is added, the VAF increases significantly such that at memory
length of 60, the fit is almost perfect. This effect, however, is misleading. The second
Volterra kernel has many more parameters than any of the other models and therefore

could simply be fitting noise.

In order to assess this effect, the AICc is used. As the memory length increases,
the AICc decreases for the LMS, Wiener static nonlinearity, and first Volterra kernel.
This is in line with expectations from the VAF. The second order kernel, however,
has an AICc that increases after 20 to 30 samples. This fast increase is due to
the fast growth in the number of parameters as the memory length increases. At a

memory length of 40, the second Volterra kernel becomes less optimal than the other
techniques.

The depth dependent partitions with seven partitions, however, follow a different
trend. For depth dependent partitions, the value of the VAF remains high while the
value of the AICc remains low and becomes more optimal than all other techniques
after 30 samples. This indicates that the depth dependent partitions produce one of

the best estimates in terms of goodness of fit and low entropy.

Table 8.1 shows a comparison of the different techniques in terms of VAF, inter-

pretability (ability to compare results from different tests quantitatively) and com-
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putation time. The stochastic linear or LMS technique has a low VAF but good
interpretability and very short computational times. With the addition of Wiener
static nonlinearity, the VAF increases and the computation time increases as well.
The Volterra kernel produces a high VAF but has poor interpretability and extremely
long computation times. The depth partitioning has good performance in all three
criteria. It has a high VAF, good interpretability, and a reasonable computation time.

The Wiener static nonlinearity and depth partitioning both have good characteristics

Table 8.1: Performance of nonlinear system ID methods

VAF Interpretability = Computation
Time
Stochastic Linear (LMS) 70 to 75 % good 02to1.0s
Wiener Static Nonlinearity 75 to 80 % good 2.0 to 5.0 s
Volterra Kernel 90 to 97 % poor 80 to 100 s
Depth Partitioning 90 to 95 % good 50to 7.0 s

that can be used to assess data for clinicians. The Wiener static nonlinearity is eas-
ily interpretable and can be reduced to four parameters (or three parameters and a
nonlinear function). The reduction of the depth partitioning values to fewer param-
eters causes the information to be slightly less interpretable (mean and slope of the
spring constant, damping, and mass) and loses some of the important information.
For a clinical instrument, a Wiener static nonlinearity could be a valid technique to
use. For a research instrument, the depth dependent partition or the Volterra kernels
capture the most information about biological tissues.

The original goals of this work along with the methods used to achieve them are

listed below.

e Create low cost device to identify dynamic compliance of tissue - The device
created in this work has a high bandwidth and is relatively simple. It incorpo-
rates a Lorentz force linear actuator for applying forces and a potentiometer for
measuring position. The low cost of the device is outlined in Appendix A.1.

e Identify nonlinear dynamics of tissues using stochastic techniques - The nonlin-

ear properties of tissue were assessed with a Wiener static nonlinearity, localized
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linear testing, Volterra kernels, and partitioning techniques.

Optimize the identification with input generation techniques - Inputs with dif-
ferent distributions and frequency spectra were generated. Real time input
generation schemes optimize for the nonlinearities present in biological tissues
were implemented and discussed.

Use a fast identification and computational technique - Several fast techniques
were used including the Wiener static nonlinearity and the depth dependent
partitions. The computation times for these methods are on the order of 2 to
7 seconds.

Use a technique that is good at accounting for variances in the data - The
methods that have the highest VAF are the Volterra kernel techniques and
the depth dependent partitioning techniques. VAF’s in excess of 95 % were
achieved.

Use a technique that is readily interpretable - The Wiener static nonlinearity
and the depth dependent partitioning are both readily interpretable and were
used to assess the skin properties in a population study.

The techniques must be capable of producing results that are repeatable and
specific - The data obtained with these techniques is specific and very repeatable
across multiple tests of the same tissue sample for a single individual.

The techniques should be able to distinguish the change in skin properties after
dehydration or after application of commercial products - Studies conducted
on skin after the application of hydrating lotions showed a significant difference
between the compliance properties before and after application. Other products

can be assessed using these instruments and methods.

Future work for this research includes looking at other nonlinear system identifica-

tion techniques including wavelets, subspace methods, and fuzzy logic models. These

other models could produce better interpretability and higher VAF for a few num-

ber of parameters. Additional studies on different configurations of the partitioned

techniques is also desirable in order to further assess their capabilities. The effective-

ness of these techniques will also be assessed for looking at the different diseases that
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are listed in Table 1.1. More population studies with clinical applications would be
the last step necessary for taking this concept from research to implementation as a

medical instrument.
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Appendix A

Device Cost

A.1 Commercializable Device

In order to be commercializable, the device must be fundamentally low cost. There-
fore, the cost of the components for the device was assessed and compared with a
quote for another device in the market. Component prices are listed below in Table
A.1. Tt was found that the total cost per unit is about $239.68. Note that labor,
tooling and assembly is not included and prices are for volumes up to 2000 units from
suppliers. Prices can be lower for higher volumes.

The pricing is broken up into costs for the mechanical structure and costs for the
electronics. Without electronics, the materials cost is $45.04. This includes the voice
coil, the bearing structure, sensors and probes. The electronics, on the other hand,
cost much more mostly due to the requirements of the power supply. The power
supply alone costs $84.01 while other electronic components cost $110.63. The most
expensive electronics include the linear operational amplifiers and the instrumentation

amplifiers.
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Table A.1: Cost for commercializable device.

Item Supplier Part Number Cost | Qty Cost
per
unit

| Mechanical Structure | | | I | |
Iron Core McMaster 8909K 783 $1.27 |1 $1.27
Magnet - NdFeB K J Magnetics | DX0X0-N52 $11.40 | 1 $11.40
Steel McMaster 8920K23 $1.45 1 $1.45
Bobbin - Acetal, Turcite | McMaster 7521T16 $2.60 |1 $2.60
for Bearing Applications
Copper Coil - 28 Gage McMaster 7588K53 $1.39 |1 $1.39
Bearing  Structure - | Protomold Custom* $3.36 |1 $3.36
Injection Molded Acetal
Handle - Injection Molded | Protomold Custom™® $3.36 | 2 $6.72
Acetal
Hardware (Screws - M3) | McMaster 91420A116 $0.02 | 12 $0.29
Hardware (Screws - M1.6) | McMaster 92005A001 $0.16 | 11 $1.71
Button Digikey PN12SHNAO3QE $0.85 1 $0.85
Accelerometer Digikey ADXL345BCCZ-RL7 $3.8 |1 $3.85
Potentiometer Mouser 688-RDC10320RB $1.95 |1 $1.95
Temperature Sensor Omega F2020-100-B $1.00 |1 $1.00
Indentation Probe Protomold Custom* $2.40 |1 $2.40
Extension Probe Protomold Custom* $2.40 1 $2.40
Surface Mechanics Probe | Protomold Custom™ $2.40 1 $2.40

[ Electronics ] ] | 1 | |
Microcontroller - Arm | Digikey STM32F103ZET6 $16.92 | 1 $16.92
Cortex M3, 32 bit, 72
MHz, 512 Kb Flash, 12
bit A/D (21), 12 bit D/A
(2), USB
Voltage Regulator - 3.3 V | Digikey NDLT1963AEST-3.3 $2.50 1 $2.50
PCB - 2 Layer with | PCB Express | Express E2** 38.88 |1 $8.88
Soldermask, 58 cm?
Linear Operational | Mouser OPA549T $15.30 | 2 $30.60
Amplifier
Instrumentation Amplifier | Digikey AMPO2FS $7.19 | 4 $28.76
Current Sense Resistor - 4 | Mouser 13FPRO40E $3.15 1 $3.15
Wire, 0.04 Q
Resistors and Capacitors | Digikey Multiple $0.10 | 24 $2.40
Power Supply - 48 V, 2 A | Digikey DT100PW480C $84.01 | 1 $84.01
USB Mini-B Connector Mouser 897-43-005-00-100001 $0.56 1 $0.56
USB Cable Mouser UX40-MB-5PP-500-1002 | $16.86 | 1 $16.86

[ Total Cost Per Unit | | | ] | $239.68 |

* The tooling cost is approximately $3,000 per plastic part.
** The PCB cost is for a quantity of 100 and may include tooling costs from the supplier.
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A.2 Quote for Cortex Technology DermaLab

The following quote is for the Cortex Technology DermaLab elasticity testing device.

275 New Darlington Road \‘WN\

Media, PA 19063

19 January 2009

Attn: Ellen Yi Chen
Department of Mechanical Engineering
Massachusetts Institute of Technology

Price Quotation
Part # | Quantity Description Price
103 1 Cortex Technology Dermalab Elasticity Module includes Probe- $7,775
Includes 1 roll of 500 suction cup adhesives
214 1 Power Supply for Application Module $275
220 1 Weee Fee (electrical waste Disposal ) - $50.00 Each $50
B Total B $8,100
Accessories
203 1 Additional Probe $3,850
| 206 500 Suction Cup Adhesives $300

Terms of delivery: These prices include all customs and insurance and UPS ground delivery to a
USA address. It does not include local and/or state taxes if applicable. Delivery

would be in 4-6 weeks of receiving a Purchase Order.

Terms of sale: We warrant all products to be free from defects in material and workmanship. Our
obligation is to repair or replace any of the products that prove to be defective within
one year of shipment. No other warranty is expressed or implied. This warranty is

void for products that are handled carelessly or modified by the user,

Terms of payment: Net 30 days.

Validity: These prices will remain in effect for 90 days and the order can be placed at above

address. General Terms and Conditions of Sale apply.

Fax: 610-325-0881 e-mail: cyberderm@comcast.net web page: www.cyberderm-inc.com

Table A.2: Quote for DermaLab elasticity device.
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Appendix B

LabView

The detailed LabVIEW software for this work is described in this chapter. In order
to maintain a clean code structure, abstraction through extensive usage of variable
names and external processing with MATLAB was utilized. In addition, inputs were
pre-generated and saved in separate files. Lastly, buffer functions within the data

acquisition boards was used to optimize data output and collection.

B.1 Calibration Software

The LabVIEW software used for calibration is shown below in Figure B.1. There
are two pieces of software for static calibration and dynamic calibration. For static
calibration, the program applies different forces to the coil to move it back and forth
to determine the total range as well as the input voltage to output force conversion.
The LabVIEW code shows how the specialized input is split into two signals which
go to the linear actuator. It also shows how data is collected, scaled, and plotted.
Additional pieces of software create calibration constants and this information is saved
into a readable file. This is shown in Figure B.2. Figure B.3 shows the dynamic
calibration program which grabs the data that is saved from the static calibration
and supplies it to the scaling constants used in the system. This program also uses a
pre-specified input that is sent to the coil for calibration. The data is also collected,

plotted and saved in a file.
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Figure B.1: Software used to calibrate the system at startup. (a) The static calibration
system configures the force, position, and voltage readings while (b) the dynamic calibration
system configures the full second order linear dynamics of the coil at different positions.
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Figure B.2: Static calibration LabVIEW program.
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Figure B.3: Dynamic calibration LabVIEW program.
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B.2 System Identification Software

The system identification software is responsible for completing a Wiener static non-
linear system identification process on the incoming data. It is made to be user
friendly and gives a quick overview of all relevant parameters. This is shown in Fig-
ure 2.13. The first step in the process is a simple set of instructions and a start
button as shown in Figure B.5. The next step is to load a pre-generated stochastic
input, translate the input for the two linear operational amplifiers, and then read in
the data from the potentiometer. The data is scaled with calibration constants after
the information has been collected. This shown in Figure B.6. The last step is to
send the information to a MATLAB node which processes it and sends it back to the
LabVIEW program to be plotted. This is shown in Figure B.7.
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Figure B.4: LabVIEW user interface which takes measurements, completes system identi-
fication and displays information to the user.

Figure B.5: System identification LabVIEW program start panel.
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Figure B.6: System identification LabVIEW program data acquisition panel.
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Figure B.7: System identification LabVIEW program analysis panel. The code for the

MATLAB program is available in Appendix C.2.3.
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Appendix C

MATLAB

Selected MATLAB code is shown in this appendix. The code that is displayed
includes code for linear system identification, Wiener static nonlinearity identification,

Volterra kernel identification, partitioning identification, and input generation.

C.1 Linear System Identification Routines

C.1.1 Myimp.m and MyLMS.m

This piece of code implements linear system identification algorithms.

function [B, SeriesB, stdevs, Lags, condition] = myimp(input, output, window, noverlap, nfft, type)

param = 1e7;
if nargin<5

type = ’normal’; %Normal Algorithm
end

if strcmpi(type,’one’) %Initial impulse response
counta = 1;
shift = [0];

elseif strcmpi(type,’cond’) YNonmoverlapping sections
counta = floor((size(input,1)-noverlap)/nfft);
shift = [0];

elseif strcmpi(type,’condmulti’) YOverlapping sections
counta = floor((size(input,1)-noverlap)/nfft);
shift = [0 nfft/2];

end
if strcmpi(type,’normal’) YNormal Algorithm
[B, Lags, condition] = myLMS(input-mean(input),output-mean(output),nfft,’SVD’);
B =B’;
SeriesB = 0;
stdevs = 0;
else
ii = 0;

for k = 1:length(shift)

analyseinput = input(i+shift(k):end);

analyseoutput = output(1+shift(k):end);

for i = O:counta-1
ii = ii+1;
startpoint = i*nfft-noverlap;
if startpoint<i

startpoint = 1;

end
myinput = analyseinput(startpoint:startpoint+nfft-1).*window;
myoutput = analyseoutput(startpoint:startpoint+nfft-1).*window;
[OutB(:,ii) , Lags, condition(:, ii)] = myLMS(myinput-mean(myinput) ,myoutput-mean(myoutput) ,nfft,’SVD’);
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end
end
SeriesB = QutB;
if strcmpi(type,’one’)

B = QutB’;
stdevs = zeros(1, size(OutB,1));

elseif strcmpi(type,’cond’) |! strcmpi(type,’condmulti’)
j=20;

for i = 1:size(QutB,2)
if condition(i)<param
J =%,
B2(:,j) = OutB(:,i);
end
end
B = sum(B2’)/j;
stdevs = std(B2’);
elseif strcmpi(type,’normal’)
B = sum(OutB’)/size(0utB,2);
stdevs = std(OutB’);
end
end

function [B, Lags, condition] = myLMS(f,d,M,solver)
N = length(f);

[phiff, lagsf] = xcorr(f, ’biased’);

phifd = xcorr(d,f, ’biased’);

rff = phiff (N:N+M-1);
R = toeplitz(rff);
P = phifd(N:N+M-1);

if strempi(solver,’fast’)
B = R\P;

elseif strcmpi(solver,’SVD’)
B = pinv(R)*P;

end

Lags = lagsf(N:N+M-1);
condition = cond(R);

C.1.2 MyALS.m
This piece of code implements the Adaptive Least Squares (ALS) algorithm.

function [b,lags,yhat] = myALS(input,output, parameters, type)
close all

%Adaptive least squares/Moving least squares
lambda=parameters.L;

M=parameters.M;

Fs=parameters.Fs;

mylength = length(input);

f_history = zeros(1,M);
b = zeros(1,M);
b(1) = 0;
y=0;
yhat = zeros(mylength,1);
e = zeros(mylength,1);
b = zeros(mylength, M);
f_delay = zeros(1,1);
for J = 1:mylength
_delay(1:-1:2) = f_delay([1:-1:2]-1);
_delay(1) = input(J);
_history(M:-1:2) = f_history([M:-1:2]-1);
_history(1) = f_delay(1);
=0;
y=sum(b(1:M)*f_history(1:M));
e = d-y;
b(1:M)
b(J,:)
" end
lags = 0:length(M)/Fs;

J
f
£
f
£
y

b(1:M) + lambda*e*f_history(1:M);
b1;

end
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C.1.3 MyRLS.m

This piece of code implements the Recursive Least Squares (RLS) algorithm.

function [b,lags,yhat] = myRLS(input,output, parameters, type)
lambda =parameters.lambda;

Fs = parameters.Fs;

M = parameters.m;

mylength = length(input);
delta = 2%100*var(input); %greater than 100*var(input)
mydelay = 0;

e = zeros( mylength,1);
f_delay = zeros(mydelay+1,1);
yhat = zeros(mylength,1);

‘hintialize

F = zeros(M,1);
Rinv = deltaxeye(M);
B = zeros(M,1);

for J = 1l:mylength

f_delay(2:end) = f_delay(l:end-1); %shift f_delay backwards

£_delay(1)=input(J);
F(2:end) = F(l:end-1);
F(1) = f_delay(mydelay+1);

%add £(J) to first spot
%Shift F backwards
%add f to first spot

yhat(J) = F’#B;
error = output(J)-yhat(J);

K = Rinv#F/(lambda+F’*Rinv*F);
Rinvn = (Rinv-K*F’#*Rinv)/lambda;

%calculate Kalman gain

B = B+K*error;

b = B;

Rinv = Rinvn;

e(J) = output(J)-yhat(J);
end

lags = 0:length(M)/Fs;

end

C.1.4 BioModel.m

This piece of code implements discrete models of biological tissues including linear
models, Wiener static nonlinearities, Hammerstein static nonlinearities, and dynamic

parameter nonlinearities (DPN).

function output = BioModel(input)
if nargin == 0
close all
clear all
end

%Define Parameters
Struct.M = 0.06;

Struct.B = 20;
Struct.K = 1000;
Struct.C1 = 7;
Struct.C2 = 0.2;
Struct.C3 = 0;
Struct.Al = 0;
Struct.A2 = 0.3;
Struct.A3 = 0.3;
Struct.D1 = 0;
Struct.D2 = 0;
Struct.D3 = 0.5;

Struct.Fscale = 1000;

Struct.x = 0;

Struct.xdot = 0;

Struct.xout =0;

Struct.type = ’DPN’; %’Linear’, ’'Wiener’, ’Hammer’, ’DPN’
Struct.inputtype = ’FS’; % ’FS’, ’test01’, ’unifdrm’
Struct.offset = -0.1;

Struct.gain = 1;

if nargin ==
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end

%Define Input
[Struct, input, timestep, Fs]=defineinput(Struct);
%Compute Result with Model
[input, output, Fs] = DynamicSim(Struct, input, timestep, Fs);
startcut = Struct.startcut;
input = input(startcut:end);
output = output(startcut:end);
else
startcut = 1;
Fs = 500; timestep = 1/Fs;
%Compute Result with Model
[input, output, Fs] = DynamicSim(Struct, input, timestep, Fs);
[Models.LMS, CalcQOut, Pout.LMS] = myLMS(Struct, input, output, Fs, ’plot’);
output = output’;
end

function [Struct, input, timestep, Fs}=defineinput(Struct)

%Input Parameters

if strcmp(Struct.inputtype, ’FS’) Y%Full Spectrum
Fs = 500; timestep = 1/Fs;
maxtime = 16;
timespan = [ O : timestep : maxtime ];
randn(’state’, 1);
input = Struct.gain*randn(1, length(timespan))+Struct.offset; %Random
Struct.startcut = 100;
elseif strcmp(Struct.inputtype, ’test01’) %Shaped Inputs
ShapedInput_test0l; input = Struct.gain*shapedinput+Struct.offset; timestep = sampling;
Struct.startcut = 919%2; YCut off beginning of signal
elseif strcmp(Struct.inputtype, ’uniform’)
ShapedInput_uniform; input = Struct.gain*shapedinput+Struct.offset; timestep = sampling;
Struct.startcut = 919#2; %Cut off beginning of signal
end

function [myforce, mypos, Fs]=DynamicSim(Struct, input, timestep, Fs)

end

timespan = [1:1:length(input)]*timestep;
split = 1;
timestepc = timestep/split;

k=1;
for j = 1:length(timespan) #System ID loop
for jj = 1:split YContinuous Domain Loop
realforce(k) = input(j);
Struct = SetVoltage(Struct, timestepc, realforce(k));
realpos(k) = Struct.xout;
timespanc(k) = k*timestepc;
k=k+1;
end
myforce(j) = realforce(k-split);
mypos(j) = realpos(k-split);
end

function Struct = SetVoltage( Struct, timestep, input)

end

x = Struct.x;
xdot = Struct.xdot;

if strcmp(Struct.type, ’Linear’) %Linear Model
Struct.x = x + (xdot)*timestep ;
Struct.xdot = xdot + (-Struct.Bsxdot-Struct.K*x+input*Struct.Fscale)/Struct.Mstimestep;
Struct.xout = Struct.x;
elseif strcmp(Struct.type, ’Wiener’) Y%Wiener Static Model
Struct.x = x + (xdot)*timestep ;
Struct.xdot = xdot + (-Struct.Bxxdot-Struct.K+x+input*Struct.Fscale)/Struct.Mstimestep;
Struct.xout = Struct.Cl*(1-exp(-Struct.C2#(x + (xdot)+*timestep)+Struct.C3));
elseif strcmp(Struct.type, ’Hammer’) %Hammerstein Static Model
y = Struct.Cl*(l-exp(-Struct.C2*input+Struct.C3));
Struct.x = x + (xdot)*timestep ;
Struct.xdot = xdot + (-Struct.B*xdot-Struct.K*x+y*Struct.Fscale)/Struct.M*timestep;
Struct.xout = Struct.x;
elseif strcmp(Struct.type, ’DPN’) YDPN Model
Struct.x = x + (xdot)#*timestep ;
Struct.xdot = xdot + (-((exp(Struct.A2+x)+Struct.D2)*Struct.B)#*xdot...
-((exp(Struct.A3#x)+Struct.D3)*Struct .K) *x+input+Struct .Fscale).. .
/((exp(Struct.A1xx)+Struct.D1)*Struct .M)*timestep;
Struct.xout = Struct.x;
end
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C.2 Wiener Static Nonlinearity Routines
C.2.1 Loaddataiterate.m

This piece of code loads the data and iterates a solution through the Sequence.m

program.

close all

clear all

graphoverwrite = 1; %1 turns off all graphs
fileoverwrite = 1;

modelactual = 0; %0O=acutal, 1=model

iterategraph = 0; %LoadData graphs
iterategraph2 = 0; %Sequence graphs

if modelactual ==
iteratefile = ’Development\09_11_05\LPf_uniformi.lvm’;
LoadData;
else
ShapedInput_test0l
LoadModel
end
iteration = 0;

loops = 6;
for i = 1:loops
Sequence;

Output(i,:) = [iteration VAFB VAFBfit VAFN zeta wn M C K C1 C2 C3];

if (i == 1) %Initial Plots
figure(’Color’,’w’,’Name’, ’Impulse Response’);
plot(Lags/Fs,B*Fs/abs(sum(Bfit)), ’.-’); grid on; hold on
plot(Lags/Fs,Bfit#Fs/abs(sum(Bfit)), ’r’);
xlabel(’Time’); ylabel(’Magnitude’); title(’Impulse Response’)
legend(’Non Parametric’, ’Second QOrder TF’)
prettyfigure;

figure(’Color’,’w’,’Name’, ’Nonlinearity’);
plot(CalcOut2, myoriginaloutput(end-length(CalcOut2)+i:end), ’.’); hold on
plot(CalcOut2, outest, ’.r’, ’Markersize’, 6)
xlabel(’Predicted Linear Output’); ylabel(’Acutal Output’)
title(’Static Nonlinearity’); legend(’Predicted Linear’, ’Nonlinear Fit’)
prettyfigure;
end
end

%turns off the overwrite

graphoverwrite = O;
fileoverwrite = 0;

C.2.2 Sequence.m

This piece of code calculates the Wiener static nonlinearity and makes other linear

estimates.

showpower = 1;

staticnonlin = 1;
iteron = 1;
plotpriority

2; %0=mo plots, 1=monlinear/dynamic plots only, 2=all plots

if graphoverwrite ==
plotpriority = iterategraph2; %no graphs
end

if plotpriority>=1
close all
end

if iteron ==1 &% iteration ==
myoriginaloutput = myoutput; %uses original output first time
myoriginalinput = myinput;

elseif iteron "= 1
myoriginaloutput = myoutput; ‘%always use provided output
myoriginalinput = myinput;

end
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if plotpriority>0

figure(’Color’,’w’, ’Name’, ’Input/Output’)
subplot(2,1,1); plot(time,myinput,’r’)

ylabel(’Input’); grid on

subplot(2,1,2); plot(time,myoutput, ’b’,’MarkerSize’,1)
ylabel(’Qutput’); grid on

end

noverlap0 = 120;
nfft = 2+noverlap(;
mywindow = ones(nfft,1);
[B, SeriesB, StdB, Lags, condition] = myimp(myinput-mean(myinput),myoutput-mean(myoutput), mywindow, noverlapO, nfft, ’normal’);
atry = [0.8; 100; -40];
try
[Bfit, ahat]=myfit(Lags/Fs, B, atry);
end

%Plot impulse

if plotpriority>0

figure(’Color’,’w’,’Name’, ’Impulse Response’); hold on
plot(Lags/Fs,B+Fs/abs(sun(Bfit)), ’.-’); grid on; hold on
plot(Lags/Fs,Bfit*Fs/abs(sumn(Bfit)), ’r’);

xlabel(’Time’); ylabel(’Magnitude’);

legend(’Non Parametric’, ’Second Order TF’)

prettyfigure;

end

%Convolve input with filter B

nhat =100;

Bhat = Bhat2(1,1:nhat);

CalcOut = convn(myinput-mean(myinput), B’, ’valid’)+mean(myinput);
CalcOutHat = convn(myinput-mean(myinput), Bhat’, ’valid’)+mean(myinput);
FitOut = convn(myinput-mean(myinput),Bfit’, ’valid’)+mean(myinput);

if plotpriority>1

figure(’Color’,’w’, ’Name’, ’Time Series Matching’)

plot(time(1:size(myoutput,1)), myoutput-mean(myoutput), ’b’);

hold on

plot(time(size(B,2):end), CalcOut-mean(CalcOut), ’r’);

plot(time(size(Bhat,2):end), CalcDutHat-mean(CalcQutHat), ’m’);

plot(time(size(Bfit,2):end), FitOut-mean(FitQOut), ’g’);

grid on

xlabel(’Time (s)’); ylabel(’Cutput’);

legend(’Actual Measurement’, ’Predicted Measurement (Non Parametric)’,’Predicted Measurement 2 (Non Parametric)’,...
’Predicted Measurement (Parametric)’)

prettyfigure

end

YMeasure Error

VAF1 = VAF(myoutput(size(B,2):end)-mean(myoutput(size(B,2):end)), CalcOut-mean(CalcOut));

VAF2 = VAF (myoutput (size(Bhat,2) :end)-mean(myoutput (size(Bhat,2):end)), CalcOutHat-mean(CalcOutHat));
VAF3 = VAF(myoutput(size(Bfit,2):end)-mean(myoutput(size(Bfit,2):end)), FitOut-mean(FitOut));

AIC1= AIC(myoutput(size(B,2):end)-mean(myoutput(size(B,2):end)), CalcOut-mean(CalcQut), B);

if iteron ==1 &% iteration "=0
CalcOut0 = convn(myoriginalinput-mean(myoriginalinput), B’, ’valid’)+mean(myoriginalinput);
FitOut0 = convn(myoriginalinput-mean(myoriginalinput),Bfit’, ’valid’)+mean(myoriginalinput);

VAF10 = VAF(myoriginaloutput(end-length(CalcOut0)+1:end)-mean(myoriginaloutput(end-length(CalcOut0)+1:end)), CalcOutO-mean(CalcQutD));
VAF30 = VAF(myoriginaloutput (end-length(FitQut()+1:end)-mean(myoriginaloutput(end-length(FitOut0)+1:end)), FitOutO-mean(FitOut0));
end

if staticmonlin == 1
Bused = B;
%Estimation of static nonlinearity
uinput = mean(myinput);
CalcOut2 = uinput+ 1/Fs*convn(myinput-uinput, Bused’*Fs/abs(sum(Bused)), ’valid’);
if sum(Bused)<0
Flag = ’Area under impulse response is negative’
end

%#Static Nonlinearity
offsetzero = min(offsetzero, min(myoriginaloutput));

predicted = @(c,xdat) c(1).*(i-exp(~c(2)*(xdat+c(3))))+offsetzero;
c0 =[3,0.3,1];

options = optimset(’MaxFunEvals’, 1000, ’TolFun’, 1#10~(-7), ’LargeScale’, ’omn’);
[chat, resnorm, residual, exitflag, output, lambda, jacobian]=...

lsqcurvefit(predicted, <0, CalcOut2, myoriginaloutput(end-length(CalcOut2)+1:end), [1, [1, options);
outest = chat(1)*(1-exp(-chat(2)*(CalcOut2+chat(3))))+offsetzero;

if plotpriority>0

figure(’Color’,’w’,’Name’, ’Nonlinearity’);

plot(CalcOut2, myoriginaloutput(end-length(CalcOut2)+1:end), ’.’); hold on
plot(CalcOut2, outest, ’.r’, ’Markersize’, 6)

xlabel(’Predicted Linear Qutput (N)’); ylabel(’Measured Output (mm)’)
legend(’Predicted Linear’, ’Nonlinear Fit’, ’Location’, ’SouthEast’)
prettyfigure

end
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VAF4 = VAF(myoriginaloutput(end-length(CalcOut2)+1:end)-mean(nyoriginaloutput(end-length(CalcOut2)+1:end)), outest-mean(outest));
AIC4 = AIC(myoriginaloutput(end-length(CalcOut2)+1:end)-mean(myoriginaloutput(end-length(CalcOut2)+1:end)), outest-mean{outest), [B 0 01);
if iteron ==1 && iteration ~=0 .
CalcOutOriginal = mean(myoriginalinput)+ 1/Fs*convn(myoriginalinput-mean(myoriginalinput), Bused’*Fs/abs(sum(Bused)), ’valid’);
outestoriginal = chat(1)#*(1-exp(-chat(2)*(CalcOutOriginal+chat(3))))+offsetzero;
VAF40 = VAF(myoriginaloutput(end-length(outestoriginal)+i:end)...
-mean(myoriginaloutput (end-length(outestoriginal)+1:end)), outestoriginal-mean(outestoriginal));
end
end

if showpower == 1
noverlap = 1000;
nfft = 2*noverlap;
mywindow =hanning(nfft);

%Coherence Plot

[Cxy,Fc] = mscohere(myinput-mean(myinput), myoutput-mean(myoutput),mywindow,noverlap,nfft,Fs);
%Power Plot

[Pxx,Fpx] = pwelch(myvolt-mean(myvolt), mywindow,noverlap,nfft,Fs);

[Pxx2,Fpx2] = pwelch(myinput-mean{(myinput), mywindow,noverlap,nfft,Fs);

[Pxx3,Fpx3] = pwelch(myoutput-mean(myoutput), mywindow,noverlap,nfft,Fs);

if plotpriority>1

figure(*Color’,’w’, ’Name’, ’Coherence and Input Power’); subplot(2,1,1);
semilogx(Fc, Cxy, ’LineWidth’, 2); grid onm

xlabel(’frequency (Hz)’); ylabel(’Mean Squared Coherence’);

subplot(2,1,2);

loglog(Fpx, Pxx, ’LineWidth’, 2); hold on;

loglog(Fpx2, Pxx2, ’r’, ’LineWidth’, 2);

loglog(Fpx3, Pxx3, ’k’, ’LineWidth’, 2); grid on
legend(’Voltage Measured’, ’Imput’, ’Output’)
xlabel(’Frequency (Hz) ’); ylabel(’Power Spectral Density’);
end

[txy, Ft] = tfestimate(myinput-mean(myinput), myoutput-mean(myoutput),mywindow,noverlap,nfft,Fs);
if plotpriority>1
figure(*Color’,’w’, ’Name’, ’TF Estimate’)
subplot(2,1,1);loglog(Ft, abs(txy), ’LineWidth’, 2); grid on
xlabel(’Frequency (Hz)’); ylabel(’Magnitude’);
subplot(2,1,2) ;semilogx(Ft, unwrap(angle(txy))*180/pi, ’LineWidth’, 2); grid on
xlabel (*Frequency (Hz)’); ylabel(’Phase’); ylim([-270 901)
end
end

zeta = sqrt(ahat(3)"2/(ahat(3)"2+ahat(2)°2));
wn = ahat(2)/sqrt(1-zeta~2);
Zeta_wn = [zeta wn]

VAFB = VAF1;

VAFBfit = VAF3;

VAFN = VAF4;

AICN = AIC4;

Current_VAF = [VAFB VAFBfit VAFN]

if iteron ==1 && iteration "=0

VAFBO = VAF10;

VAFBfit0 = VAF30;

VAFNO = VAF40;

Original VAF = [VAFBO VAFBfitO VAFNO]
end

Fit_Parameters = ahat’

K = 1000/ahat(1)*wn/sqrt(1-zeta"2)/(Fs/abs(sum(Bfit)));
M = K/wn"2;

C = 2+zeta*wn*M;

Linear_Parameters_Scaled = [K M C]

K2 = 1000/ahat (1)#*wn/sqrt(1-zeta~2)/Fs;
M2 = K2/wn"2;

C2 = 2*zeta*wn*M2;

Linear_Parameters = [K2 M2 C2]

Cl1 = chat(1);
C2 = chat(2);
Nonlin_Parameters = [C1 C2]

C2actual = chat(2);

if iteron == 1;
iteration = iteration+i;
myoutputest = -1/C2actual*log(1-(myoriginaloutput-offsetzero)/chat(1))-C3actual;
myoutput = myoutputest;
time = time(end-length(myoutput)+1:end);
myinput = myinput(end-length(myoutput)+1:end);
end

LocalizedLinearOutput = [noverlap0 atry(3) min(pos(startcut:end)) max(pos(startcut:end)) range(pos(startcut:end)) param Current_VAF ...
Fit_Parameters Zeta_wn Linear_Parameters Linear Parameters_Scaled]
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C.2.3 RunLabview.m

This piece of code is used by the LabVIEW program to complete fast Wiener static

system identification.

function [time, myvolt, myinput, myoutput, Lagsout, Bout, Bfout, Calculated, ActualNlin, ...
FitNlin, timematch, CalcOutput, FitOutput, Fx, Pxx, Pxx2, Pxx3, Cxy, Magtxy, Phasetxy, OutputC] = RunLabview(getname)

PAAAN YA NN AN YA NN A NN AN A SN AN A TN A NN NN Y SN YA AN AN YA YA A YA AA
k T T BT T Tt T T AT T BT T T T AL Tt ot

file = getname;

u = importdata(file, ’\t’, 24);
[y,indexer] =max(isnan(u.data(:, 6)));
if y ==0, indexer = size(u.data,1); end
timein = u.data(l:indexer-1, 1);

pos = u.data(l:indexer-1, 4);
force = u.data(l:indexer-1, 6);
input = u.data(1l:indexer-1, 2);

sampling = timein(2)-timein(1); %Seconds
Fs = 1/sampling;
offsetzero = pos(1000);

T RRBIDRIBIITA DAL DL RDAL LN e Tt
'/.Implement filters AAAAAAAAAALY WA AIA DAL IDA LT,
startcut = 2000; Y%Cut off beginning of signal

graph = 0; %no

drifttype = ’nome’; %linear,

AN YA AN YY AN VYA

AImpement drift filter
[posout, param] = driftfilter(pos,input,drifttype, startcut, graph, Fs);

%Implement input frequency filter

band = [10 20];

freqtype = ’nomne’;

mymean = 1; %subtract off the mean

postprocess = 1; Jtruncate series to valid section

[myinput] = myfilter(force(startcut:end), Fs, band, mymean, freqtype, graph, postprocess); J%-force
[myoutput] = myfilter(posout(startcut:end), Fs, band, mymean, freqtype, graph, postprocess); %posout

time = timein(end-size(myinput)+1:end);
myvolt = input(end-size(myinput)+1:end);
offsetzero = pos(500);

YN AN AN AN AN YA A SN N AN Y AN Y AN A A N A Y¥A YAANAA

YLinear System Idennflcatxon/'//'/'/////.7///,A’//77/'/Z/-7/-//.77/7/.//7// YANAYYA YA

noverlap = 120;

nfft = 2*noverlap;

mywindow = omes(nfft,1);

[B, SeriesB, StdB, Lags, condition] = myimp(myinput-mean(myinput),myoutput-mean(myoutput), mywindow, noverlap, nfft, ’normal’); %
[Bfit, ahat]=myfit(Lags/Fs, B, [0.8; 100; -2001);

CalcOut = convn(myinput-mean(myinput), B’, ’valid’)+mean(myoutput);
FitOut = convn(myinput-mean(myinput),Bfit’, ’valid’)+mean(myoutput);

Lagsout = Lags/Fs;

Bout = B#Fs/abs(sum(Bfit));
Bfout = Bfit#Fs/abs(sum(Bfit));
CalcOutput = CalcOut’;
FitQutput = FitOut’;

et et et v et e Lot U ettt R Y ST YA L S S L
“Nonlinearity UNAAUANAAAALAALIAA AL AI A LD I DA I DI DAL DA LA LD AL NI ALL
Bused = Bfit; %B or Bfit
CalcOut2 = mean(myinput)+ 1/Fs*convn(myinput-mean(myinput), Bused’+*Fs/abs(sum(Bused)), ’valid’);
if sum(Bused)<0
Flag = ’Area under impulse response is negative’
end
offset2 = min(myoutput(size(Bused, 2):end));
predicted = @(c,xdat) c(1).*(1-exp(-c(2)*(xdat+c(3))))+offsetzero;
c0 =[1,1,1];
options = optimset(’MaxFunEvals’, 1000, ’TolFun’, 1*10°(-7), ’LargeScale’, ’on’);
[chat, resnmorm, residual, exitflag, output, lambda, jacobian]=...
1sqcurvefit(predicted, cO, CalcOut2, myoutput(size(Bused,2):end), [J, [l, options);
outest = chat(1)*(1-exp(-chat(2)*(CalcOut2+chat(3))))+offsetzero;

Calculated = CalcOut2’;

ActualNlin = myoutput(size(Bused,2):end)’;
FitNlin = outest’;

timematch = time(size(Bused,2):end)’;

VIR AN YA AN YA YA YA
%Frequency Domain’
noverlap = 1000;

nfft = 2*noverlap;
mywindow =hanning(nfft);
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%Coherence Plot
[Cxy,Fx] = mscohere(myinput-mean(myinput), myoutput-mean(myoutput),mywindow,noverlap,nfft,1/sampling);

%Power Plot

[Pxx,Fx] = pwelch(myvolt-mean(myvolt), mywindow,noverlap,nfft,1/sampling);
[Pxx2,Fx] = pwelch(myinput-mean(myinput), mywindow,noverlap,nfft,1/sampling);
{Pxx3,Fx] = pwelch(myoutput-mean(myoutput), mywindow,noverlap,nfft,1/sampling);

YFrequency Domain

[txy, Fx] = tfestimate(myinput-mean(myinput), myoutput-mean(myoutput),mywindow,noverlap,nfft,1/sampling);
Magtxy = abs(txy)’;

Phasetxy = unwrap(angle(txy))’#180/pi;

Fx = Fx’;

Pxx = Pxx’;
Pxx2 Pxx2’;
Pxx3 = Pxx3’;
Cxy = Cxy’;

WRNRIAINLLINY,
%0utputs %%%!

VAFB = VAF(myoutput(size(B,2):end)-mean(myoutput(size(B,2):end)), CalcOut-mean(CalcOut));
VAFBfit = VAF(myoutput(size(Bfit,2):end)-mean(myoutput(size(Bfit,2):end)), FitOut-mean(FitOut));
VAFN = VAF(myoutput(size(Bused,2) :end) -mean(myoutput(size(Bused,2):end)), outest-mean(outest));

amp = 5;

Gain = 1000;

R = 3.288;

Bl = 1.4083;

zeta = sqrt(ahat(3)~2/(ahat(3)"2+ahat(2)"2));
wn = ahat(2)/sqrt(i-zeta~2);

k0 = wn/sqrt(1-zeta~2)+*Bl*amp*Gain/(ahat(1)*Fs/sun(Bfit)*R);
m0 = k0/(vn~2);

b0 = (2+zetaswn*m0*R-B1-2)/R;

Al = ahat(1);

A2 = ahat(2);

A3 = ahat(3);

C1 = chat(1);

C2 = chat(2)/(Bl*amp*Gain/(kO*R));
C3 = chat(3);

ml = C3/9.8;

k1 = wn~2*mi;

OutputC = [VAFB, VAFBfit, VAFN, A1, A2, A3, C1, C2, C3]1;

C.3 Volterra Kernel and Partitioning Routines

C.3.1 MyVolterra.m

This piece of code implements Volterra and partitioning system identification with

measured and modeled data.

function myVoltera
close all

I = 40; Ymemory length

type = ’h2’; %hl, h2, hp, or hpd
parameters.num = 7; Ynumber of sections
parameters.break = ’sort’;

[x,y,Fs, Bl=LoadInfo(’actual’);

[P, OutStructure, timel]l=CreateBase(type,x,y,I,Fs, parameters);
[Alpha, Beta, Gamma, A, timeout]=OrthogSolve(P, y, I, type);
time2 = timeout(1); time3 = timeout(2); timed4 = timeout(3);
[b_struct, timeS5]=ResolveKernel(type, A, I);

time = [0 timel time2 time3 timed timeS];

PlotInfo(type, h_struct, OutStructure, A, P, x, y, Fs, I, B, time)
end

function [x,y,Fs,Bl=LoadInfo(type)
%create modelWAUIAIANNANANRLANIAL AN RL LA RN DRI AR AL DN DAL DAL ARAL LD ADRADN N
if strcmp(type,’model’)
Fs = 500;
mylength = 3000;
impLength = 60;

s = t£(’s?);
wn = 150
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zeta = 0.5;

a= b5;
H = a*wn~2/(s"2+2*zeta*wn*s+wn"2);
B = impulse(H, (0:impLength-1)/Fs)/Fs;

%Declare Functions

c=1;

none = @(c,x) c*x;

square = Q(c,x) c*(x)."2;

cube = Q@(c,x) c.*(0.1*x.73- x."2 + x);

quad = @(c,x) c.*x."4;

exponent = @(c,x) c*(10.257*(1-exp(-0.2112.%*x)));
exponentb = @(c,x) c*(7*(exp(1.5.*x)));

myfunctionH = none;
myfunctionW = square;

%Implement Nonlinearities
randn(’state’, 1); %Seed randomization

x = 1.2*myidinput(mylength,’rgs’,{0 0.95],[-1 11, [],8)+0+randn(mylength,1);

nonlinearinput = myfunctionH(c, x);
linearQutput = convn(nonlinearinput, B, ’full’);
linearQutput = linearCutput(1:mylength);
nonlinearQutput = myfunctionW(c, linearOutput);
y = nonlinearQutput+20;

elseif strcmp(type,’actual’)
B =0;

%actual linear data

file .= ’Development\09_11_05\LAf2_uniformi.lvm’;’Test01\s05_LA_04.lvm’;
Fs = 2000;

u = importdata(file, ’\t’, 24);

[y,indexer]=max(isnan(u.data(:, 6)));

if y ==0, indexer = size(u.data,1); end

myoutput = u.data(l:indexer-1, 4); %output position

myinput = u.data(l:indexer-1, 6); ‘%input force

myvolt = u.data(l:indexer-1, 2); %input voltage

“Impement drift filter

startcut = 919*2;%Cut off beginning of signal
myinput = myinput(startcut:end);

myoutput = myoutput(startcut:end);

myvolt = myvolt(startcut:end);

downrate = 3;

Fs = Fs/downrate;

x = downsample(myinput,downrate);
y = downsample(myoutput,downrate);

length(y)
end
figure(’Color’, ’w’);
noverlap = 500;
nfft = 2*noverlap;
mywindow =hanning(nfft);
[Pxx,Fpx] = pwelch(x-mean(x), mywindow,noverlap,nfft,Fs);
[Pxx2,Fpx2] = pwelch(y-mean(y), mywindow,noverlap,nfft,Fs);
loglog(Fpx, Pxx, ’LineWidth’, 2); hold on;
loglog(Fpx2, Pxx2, ’r’, ’LineWidth’, 2);
legend(’Input’, ’Output’)
xlabel(’Frequency (Hz) ’); ylabel(’Power Spectral Density’);
end

function [P, OutStructure, timel]=CreateBase(type,x,y,I,Fs,parameters)
%use input and output infoUUAUALAANAAALNALIAILIAAIALIALIDUIA DDA IIAIA AL D LTS
tic
N = length(x);% %4record length

if stremp(type, ’h1’)
M = 1+(I+1);
P = zeros(M,N);

P(1,I+1:N) = ones(1,N-I); Yzeroth order P, size 1

for n = I+1:N
for m = 2:I+2 %first order P, size I+1
P(m,n) = x(n-m+2);
end
end
OutStructure.myrange =0;
elseif strcmp(type, ’h2’)
M = 1+(I+1)+(I+1) *(I+2)/2;
P = zeros(M,N);

P(1,I+1:N) = ones(1,N-I); Y%zeroth order P, size 1

for n = I+1:N
for m = 2:1+2 Y%first order P, size I+1
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P(m,n) = x(n-m+2);
end
end

m = I+2; %second order P, size (I+1)*(I+2)/2
for il = 1:I+1;
for i2= i1:I+1;
m=m+1;
for n = I+1:N
P{m,n)=x(n-i1+1)*x (n-i2+1);
end
end
end
OutStructure.myrange =0;
elseif strcmp(type, ’hp’)

myy = zeros(size(y));

average = 0;

for ii = 1:length(y)-average
myy(ii+average)= mean(y(ii:ii+average));

end

for ii = 1:average
myy(ii) = mean(y(1:ii));

end

sections = parameters.num;
breaktype = parameters.break;
if strcmp(breaktype, ’sort’)
sdelta = floor(length(myy(I+1:end))/sections);
ssorted = sort(myy(I+l:end));
if sections >1
myrange = [min(myy(I+l:end)), ssorted(sdelta.*(1:(sections-1)))’, max(myy(I+l:end))];
elseif sections ==
myrange = [min(myy(I+i:end)), max(myy(I+1:end))];
end
for i = O:sections-1
mymedian(i+1) = mean(ssorted(i*sdelta+1:(i+1)*sdelta));
end
OutStructure.mymedian = mymedian;
elseif strcmp(breaktype, ’even’)
myrange = min{myy(I+1:end)):range(myy(I+1:end))/sections:max(myy(I+1:end));
OutStructure.mymedian = (myrange(2:end)+myrange(1:end-1))/2;
end
OutStructure.myrange = myrange;

M = 1+sections*(I+1);
P = zeros(M,N);

P(1,I+1:N) = ones(1,N-I); Y%zeroth order P, size 1

m=1; %second order P, size (I+1)*(I+2)/2
for i2= 1:sectioms;
for il = 1:1+1;
mem+l;
for n = I+1:N
if (myy(n-il+1)>=myrange(i2)) && (myy(n-ii+l1)<=myrange(i2+1))
P(m,n)=x(n-i1+1);
end
end
end
end

figure(’Color’,’w’);

runtime = (1:length(y))/Fs;

plot(runtime, y); hold on

plot(runtime, myy, ’r’);

plot([zeros(1,sections+1); length(y)/Fs*ones(1,sections+1)], [myrange; myrangel, ’:k’);
ylabel(’Position (mm)’); xlabel(’Time (s)’)

elseif strcmp(type, ’hpd’)

myy = zeros(size(y));

average = 0;

for ii = 1:length(y)-average
nyy(ii+average)= mean(y(ii:ii+average));

end

for ii = 1:average
myy(ii) = mean(y(1:ii));

end

diffmyy = [0; diff(myy)];

sections = parameters.num;
breaktype = parameters.break;
if strcmp(breaktype, ’sort’)
sdelta = floor(length(myy(I+1:end))/sections);
ssorted = sort(myy(I+l:end));
if sections >1
myrange = [min(myy(I+l:end)), ssorted(sdelta.*(1:(sections-1)))’, max(myy(I+i:end))];
elseif sections ==
myrange = [min(myy(I+i:end)), max(myy(I+i:end))];
end
for i = Q:sections-1
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mymedian(i+1) = mean(ssorted(i*sdelta+1l:(i+1)*sdelta));
end
OutStructure.mymedian = [mymedian mymedian];
elseif strcmp(breaktype, ’even’)
myrange = min(myy(I+1:end)):range(myy(I+1:end))/sections:max(myy(I+1:end));
mymedian= (myrange(2:end)+myrange(1:end-1))/2;
OutStructure.mymedian = [mymedian mymedian];
end
OutStructure.myrange = myrange;

M = 1+sections#(I+1);
P = zeros(M,N);

P(1,I+1:N) = ones(1,N-I); Y%zeroth order P, size 1

m=1; %second order P, size (I+1)*(I+2)/2
for d = [-1 1]
for i2= 1:sections;
for i1 = 1:I+1;
m=m+1;
for n = I+1:N
if (myy(n-il+1)>=myrange(i2)) &k (myy(n-il+1)<=myrange(i2+1) && sign(diffmyy(n-il+1))==d)
P(m,n)=x(n-i1+1);
end
end
end
end
end

figure(’Color’,’w’);

runtime = (1:length(y))/Fs;

plot(runtime, y); hold on

plot(runtime, myy, ’r’);

plot([zeros(1,sections+1); length(y)/Fs*ones(1,sections+1)], [myrange; myrangel, ’:k’);
ylabel(’Position (mm)’); xlabel(’Time (s)’)

figure(’Color’,’w’);
mesh(P);
end
timel = toc;
end

function [Alpha, Beta, Gamma, A, timeout]=OrthogSolve(P
%0rthogonalize (Find P, Beta,Alpha) AUAUuAAAhi%An%Y
M = size(P,1);
N = size(P,2);
R=M;
Alpha = zeros(M,R);
Beta = zeros(R,N);
BetaSquare = zeros(R);
Gamma = zeros(M,1);
V = zeros(M,1);
A = zeros(M,1);
P_orthogonal= P; %PO(m,n) = P(m,n) for m = 1:M
Epsilon = 1le-10; Y%use for stability

y, I, type)
YYAANN NN NN AN A TN NS AT H AN

for r = 1:R
Beta(r, (I+1):N) = P_orthogonal(r, (I+1):N);
BetaSquare(r) = sum(Beta(r,(I+1):N)."2);
if BetaSquare(r)<Epsilon
BetaSquare(r) = BetaSquare(r)+Epsilon;
end
for m = r+1:M
Alpha(m,r) = sum(P_orthogonal(m,(I+1):N).*Beta(r,(I+1):N))/BetaSquare(r);
end
P_orthogonal (r:M, (I+1) :N)=P_orthogonal (r:M, (I+1) :N)-Alpha(r:M,r)*P_orthogonal(r, (I+1):N);
end
time2 = toc;
“Determine GammaX’AALAAALAALY
for m = 1:M
Gamma(m) = sum(y((I+1):N).*Beta(m,(I+1):N)’)/BetaSquare(m);

YYAANA YYAYAS

YYAYAYA

end
time3 = toc;
WDetexrmine A and VAl hde o d st ettt ettt e U L Lot AL AL LY L%
for m = 1:M

YCreate V

Vim) = 1;

for i = m+1:M

V(i) = -sum(Alpha(i,m:i).*V(m:i)’);
end
%Create A
A(m) = sum(Gamma(m:M).*V(m:M));

end
time4 = toc;

timeout = [time2 time3 timed];
end

function [h_struct, time5]=ResolveKernel(type, A, I)
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%Determine b sUAUAAUAAARIIA LI I A I ST LRI AN LR A LI DL R ATAA N DARDLA RN DT N
if stremp(type, ’hi’)

10 = A(1);

hi= A(2:1+2);

h2 = zeros(I+1,I+1);
h_struct.h0 = hO;
h_struct.hl = hi;

h_struct.h2 = h2;
elseif strcmp(type, ’h2’)
h2 = zeros(I+1,I+1);

hi= A(2:1I+2);

m = I+2;
for il = 1:I+1
for i2 = i1:I+1;
m = m+l;
h2(i1,i2)=A(m);
if i1 "= i2
h2(il1,i2)=0.5+%h2(i1,i2);
end
end
end

h_struct.h0 = hO;
h_struct.hl hi;
h_struct.h2 = h2;

"

elseif strcmp(type, ’hp’)
hO = A(1);

sections = (length(A)-1)/(I+1);
hp = zeros(sections, I+1);

for il = 1l:sections
for i2 = 1:I+1;
m = m+l;
hp(i1,i2)=A(m);
end
end

h_struct.hO = hO;
bh_struct.hp = hp;

elseif strcmp(type, ’hpd’)
B0 = A(1);

doublesections = (length(A)-1)/(I+1);
hp = zeros{(doublesections, I+1);
m=1;
for il = 1l:doublesections
for i2 = 1:I+1;
mn = m+l;
hp(il,i2)=A(m);
end
end

h_struct.h0 = hO;
h_struct.hp = hp;
elseif strcmp(type, ’hpm’)

sections = (length(A))/(I+1+1);
h0 = A(1:sections);
hp = zeros(sections, I+1);
m = sections;
for il = 1l:sections
for i2 = 1:1+1;
m = m+l;
hp(it,i2)=A(m);
end
end

h_struct.h0 = hO;
h_struct.bp = hp;
end

time5 = toc;
end

function PlotInfo(type, h_struct, OutStructure, A, P, x, y, Fs, I, B, time)
M = size(P,1);
N = size(P,2);

%Algorithm Time

figure(’Color’, ’w’);

mydiff= diff(time);grid onm;

bar(mydiff); colormap summer

ylabel(’Time (s)’)

text(4,0.8+time(6), [’Total Time ’ num2str(time(6)) °’ s’]);
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set(gca, 'XTickLabel’,{’Create Basis’, ’Orthogonalize’, ’Identify Gamma’, ’Reconstruct’, ’Derive Kermel’})

prettyfigure;
Y%Calculating VAF
yest = zeros(N,1);
for n = 1:N
yest(n) = sum(A(1:M).*P(1:M,n));
end
VAF_est = VAF(y(I+1:N), yest(I+1:N));
AIC_est = AIC(y(I+1:N), yest(I+1:N), A);
% Type hp or hpd AAAUAAKAIALILARAAIA UL DAL DD TAIA LI NIDI A DI DNDA LA A LDLDT DT DN
if (strcmp(type, ’hp’)) || (strcmp(type, ’hpd’)) )
hQ = h_struct.hO;
hp = h_struct.hp;
myrange = OutStructure.myrange;
xmesh = myrange(2:end) ’*ones(1,size(kp,2));
ymesh = ones(size(hp,1),1)*(0:I)/Fs;
Lags = (0:I)/Fs;
%Mesh Plot
if size(hp,1) >1 && ( strcmp(type, ’hp’))

figure(’Color’, ’w’); grid om;

mesh(xmesh, ymesh, hp);

xlabel(’Position (mm)’); ylabel(’Lags (s)’); zlabel(’Magnitude’)
prettyfigure;

end

YFi

t MBK to the impulse response

atry = [100; 0.8; -200];
for i = 1:size(hp,1)

hpplot(i,:) = hp(i,:);
[Bfit(i,:), ahat(:,i)]=myfit(Lags, hpplot(i,:), atry);

end

zet,
wn

a = sqrt(ahat(3,:).72./(ahat(3,:). 2+ahat(2,:)."2));
= ahat(2,:)./sqrt(1-zeta."2);

K = 1000./ahat(1,:).*wn./sqrt(1-zeta. 2)/Fs;

Mas:

s = K./wn."2;

C = 2#zeta.*wn.*Mass;

Gai
ave:

mymedian

if

els:

n = 1000./Mass./wn."2;
range = (myrange(2:end)+myrange(1:end-1))/2;
= QutStructure.mymedian;

strcmp(type, ’hp’)

figure(’Color’, ’w’);

subplot(1,3,1); plot(mymedian, Mass, ’.’, ’MarkerSize’, 15);xlabel(’Position (mm)’); ylabel(’M (kg)’); grid on;
subplot(1,3,2); plot(mymedian, C, ’.’, ’MarkerSize’, 15);xlabel(’Position (mm)’); ylabel(’B (Ns/m)’); grid on;
subplot(1,3,3); plot(mymedian, K, ’.’, ’MarkerSize’, 15);xlabel(’Position (mm)’); ylabel(’K (N/m)’); grid onm;

eif strcmp(type, ’hpd’)

sections = (length(A)-1)/(I+1)/2;

figure(’Color’, ’w’);

subplot(1,3,1);

plot([mymedian(1:sections); mymedian(sections+1l:end)]’, [Mass(l:sections); Mass(sections+l:emnd)]’, ’.’, ’MarkerSize’,
xlabel(’Position (mm)’); ylabel(’M (kg)’); grid on;

legend(’Lift off Skin’, ’Go Into Skin’);

subplot(1,3,2);

plot([mymedian(1:sections); mymedian(sections+i:end)]’, [C(1:sections); C(sections+l:end)]’, ’.’, ’MarkerSize’, 15);
xlabel(’Position (mm)’); ylabel(’B (Ns/m)’); grid om;

subplot(1,3,3);

plot([mymedian(i:sections); mymedian(sections+l:end)]’, [K(1:sections); K(sections+l:emnd)]’, ’.’, ’MarkerSize’, 15);
xlabel(’Position (mm)’); ylabel(’K (N/m)’); grid on;

end

APL

ot unexplained nonlinearity

figure(’Color’, ’w’); grid on; hold on;

plo

t(yest(I+1:N),y(I+1:N), ’b’);

plot([min(y) max(y)],[min(y) max(y)], ’k’, ’LineWidth’, 2);
xlabel(’Estimate’); ylabel(’Measured Output (mm)’);
prettyfigure;

%Plot Output Relation

figure(’Color’, ’w’); grid om; hold on;
time = (1:N)/Fs;
plot(time, y, ’b’);

plo

t(time, yest, ’r’);

xlabel(’Time (s)’); ylabel(’Output’);
legend(’Qutput’, ’AP Estimate’);
text( 0.5, 0.1*max(y), {[’VAF = ’ num2str(VAF_est) ’

pre

%Type hi and h2UANAANANAAANARALLALLA!

elseif
k0
hi
h2

#%Ge
B_K
B_h:
for

ttyfigure;

YYNN YA YA YA
strcmp(type,’h1’) || strcmp(type,’h2’)
= h_struct.h0;
= h_struct.hi;
= h_struct.h2;

YYANANNY YA YA YA

YYANAIAAA

t original impulse response
ernel=zeros(I+1,1);
2=zeros(I+1,1);

t = 1:1+1

B_Kernel(t) = hO+h1(t)+h2(t,t);
B_h2(t) = h2(t,t);
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end

%Plot Wiener nonlinearity .
figure(’Color’, ’w’); grid on; hold on;
yh1 = convn(x, hi,’full’);

yhi = yh1(1:N);

yh2 = convn(x, B_h2,’full’);

yh2 = yh2(1:N);

yh2b = convn(x, h2(2, 1:end-1)’, ’full’);
yh2b = yh2b(1:N);

plot (yhi(I+1:N),y(I+1:N), ’c’);

plot (yh2(I+1:N),y(I+1:N), ’g’);

plot (yh1(I+1:N)+yh2(I+1:N),y(I+1:N), ’r’);

plot(yest(I+1:N),y(I+1:N), ’b’);

xlabel (’Estimate’); ylabel(’Measured Output’);

legend(’hl Estimate’, ’h2 Estimate’, ’h1+h2 Estimate’, ’Total Estimate’)

%Plot impulse responses
figure(’Color’, ’w’); grid on;hold on;
Lags = (0:I)/Fs;

LagsB = (0:length(B)-1)/Fs;
plot(LagsB,B,’b’);

plot(Lags,hl,’c’);
plot(Lags,B_h2,’g’);
plot(Lags,h1+B_h2,’r’);

xlabel(’Lags (s)’); ylabel(’Magnitude’);
x1im([0 0.11)

legend(’True h’, ’hi’,’h2’,’hi+h2’);

%Plot Kernels

Lags = (0:I)/Fs;

figu.re(’Color’, W) grid on; hold on;
plot(Lags, h1, *.’°);

xlabel(’Lags (s)’); ylabel(’Magnitude’)

atry = [0.8; 100; -100];

[Bfit, ahat]=myfit(Lags, hi’, atry);

zeta = sqrt(ahat(3).2./(ahat(3)."2+ahat(2).72));
wn = ahat(2)./sqrt(1-zeta."2);

K = 1000./ahat(1) .*wn./sqrt(1-zeta. 2)/Fs;

Mass = K./wm."2;

C = 2+zeta.*wn.*Mass;

h2full = h2+h2’;

for j = 1:length(h2full);
h2£ull(j,j) = 0.5+h2full(j,j);

end

figure(’Color’, ’w’); grid on; hold onm;
surf(Lags, Lags, h2full); xlabel(’Lags (s)’); ylabel(’Lags (s)’)

%Low pass filter

£fth2 = fftshift(£££2(h2full));

figure(’Color’, ’w’); surf(Lags, Lags,abs(ffth2)); xlabel(’Lags (s)’); ylabel(’Lags (s)’)
linearfilter = fspecial(’gaussian’, 15, 1);

h2out=filter2(linearfilter,h2full);

figure(’Color’, ’w’); surf(Lags, Lags,h2out); xlabel(’Lags (s)’); ylabel(’Lags (s)’)

fh2 = h2out;

myA = zeros(size(A));
myA(1) = hO;
myA(2:I+2)=h1;
if stremp(type,’h2’)
m = I+2;
for i1 = 1:I+1
for i2 = i1:I+1;
m = mt+i;
myA(m)=fh2(i1,i2);
if i1 "= i2
myA (m)=2+myA(m) ;
end
end
end
end

h2filtered = zeros(I+1,I+1);
hOfiltered = myA(1);
hifiltered= myA(2:I+2);
m = I+2;
for i1 = 1:I+1
for i2 = i1:I+1;
m = m+l;
h2filtered(il,i2)=myA(m);
if i1 "= i2
h2filtered(il,i2)=0.5+h2filtered(il,i2);
end
end
end
yestfiltered = zeros(N,1);
for n = 1:N
yestfiltered(n) = sum(myA(1:M).*P(1:M,n));
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end

VAF_estfiltered = VAF(y(I+1:N), yestfiltered(I+1:N));
AIC_estfiltered = AIC(y(I+1:N), yestfiltered(I+1:N), myA);

%Plot Output Relation

figure(’Color’, ’w’); grid om; hold on;

time = (1:N)/Fs;

plot(time, y, ’b’);

plot(time, yest, ’r’);

plot(time, yestfiltered, ’g’);

xlabel(’Time (s)’); ylabel(’Output’);

legend(’Output’, ’AP Estimate’, ’Filtered AP’);

text( 0.5, 0.1*max(y), {[’VAF = ’ num2str(VAF_est) °’
[’AIC = > num2str(AIC_est) ]; [’AIC filtered = ’ num2str(AIC_estfiltered) 1})

prettyfigure;

%Plot Unexplained Nonlinearity

figure(’Color’, ’w’); grid on; hold on;
plot(yest(I+1:N),y(I+1:N), ’b’);

plot([min(y) max(y)], [min(y) max(y)], ’k’, ’LineWidth’, 2);
xlabel (’Estimate’); ylabel(’Measured Output (mm)’);
prettyfigure;

end

C.4 Input Generation Routines

C.4.1 MyCustomInput.m

This piece of code creates the custom input with a jointly specified PDF and auto-

correlation.

function myCustomInput
close all
tic

PDFtype = ’uniform’;
ACFtype = ’power’;

dLength = 10000;

dLengthfinal = dLength;

ssLength = 500;

Fs = 500;

cutoff = 200;

plottype = 2; %l=summary, 2=separate, 3 = nome,
savefile = 1; Y%save output

gui_active(1);
h = progressbar( (],0,’Program Progress’ );

%4Initialize Data
x = le-5:1/(dLength) :1-1e-5;

%desired PDF and spits out CDF

if stremp(PDFtype,’gaussian’)
myQut = sqrt(2)*erfinv(z*2-1);
myOut = myOut-mean(myQut);

elseif strcmp(PDFtype, ’uniform’)
myQut = x*3.4641;
myOut = myOut-mean(myQut);

elseif strcmp(PDFtype, ’binary’)
myOut = [zeros(1, dLength/2) 2*ones(1, dLength/2)];
myQut = myOut-mean(myQut);

elseif strcmp(PDFtype, ’exponential’)
beta = 1.01;
myQut = -beta*log(1i-x);
myQut = myOut-mean(myQut);

end

%desired ACF and spits it out
if strcmp(ACFtype, ’white’)
desAcorr = [1 zeros(1, dLength-1)];
elseif strcmp(ACFtype, ’exponential’)
alpha = 100;
desAcorr = exp(-alpha*x);
elseif strcmp(ACFtype, ’order2’)
wn = 100;
zeta = 0.3;
desAcorr = exp(-wn*zeta*x).*cos(wn*sqrt(l-zeta~2)*x);
elseif strcmp(ACFtype, ’SI’)
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SI=idinput(dLength,’rgs’, [0 2*cuttoff/Fs],[]1, [1)’;
desAcorr = myAutoCorr(SI-mean(SI));
elseif strcmp(ACFtype, ’power’)
fp = cutoff+2*dLengthfinal/Fs;
mag = 1.24e-3*Fs/dLengthfinal;
for sig = 1:dLength

if sig<=fp
myy(sig)= mag;
else
myy(sig) = mag/(4*(sig-fp+1/4));
end
end

myy2 = real(fft([myy(1,1:1:end-1) myy(1,end:-1:1)1));
desAcorr = myy2(1:ceil(length(myy2)/2));

end

myQutPlot = myQOut;

%scramble (double stochastic interchange)

myOut = swapsweep(myOut);

countss = 1;

myAcorr = myAutoCorr (myQut);

myAcorr = myAcorr(i:ssLength);

myAcorr3 = myAcorr;

SS(countss) = sum((myAcorr(1:ssLength)-desAcorr(1:ssLength)).2);
iterations = 1000000;

nunSwaps = ones(1,iterations);

countss = 2;

for kk = 1:iterations
[myQut2, jout] = swap(myOut);
D = zeros(1, ssLength);
for k = 2:ssLength
if jout(1)+(k-1)<=dLength && jout(1)+(k-1) ~=jout(2)
D(k) = D(k)-myOut(jout (1))+myQut (jout (1)+(k-1))+myOut (jout(2))*myOut(jout(1)+(k-1));
end
if jout(1)-(k-1)>=1 && jout(1)-(k-1) ~=jout(2)
D(x) = D(k)-myOut (jout (1))*myOut(jout (1)-(k-1))+myOut(jout(2))*myOut(jout(1)-(k-1));
end
if jout(2)+(k-1)<=dLength && jout(2)+(k-1) ~=jout(1)
D(k) = D(k)-myOut (jout (2))*myOut (jout (2)+(k-1))+myCOut (jout (1) )*myOut (jout (2)+(k-1));
end
if jout(2)-(k-1)>=1 && jout(2)-(k-1) ~“=jout(l)
D(k) = D(k)-myOut (jout(2))*myOut(jout(2)-(k-1))+myQut(jout(1))*myOut(jout(2)-(k-1));
end
end

myAcorr = myAcorr3 + D/dLength;

SS(countss) = sum((myAcorr(1:ssLength)-desAcorr(1:ssLength)).~2);
if SS(countss)<=SS(countss-1) %if error decreases
myQut = myQut2;
myAcorr3 = myAcorr;
countss = countss+l;
else %if error does not decrease
ps ( ) = Swaps (countss)+1;

end
if rem(kk,100) == 0;

h = progressbar( h,100/(iterations*1.2) );
end

end

4Fit to SS

predicted = @(c,xdat) c(1).*(exp(-c(2)*(xdat)))+c(3);

c0 =[max(SS)-min(SS),0.001,min(SS)]1;

options = optimset(’MaxFunEvals’, 1000, ’'TolFun’, 1*10~(-7), ’LargeScale’, ’omn’);

[chat, resnorm, residual, exitflag, output, lambda, jacobian]=...
lsqcurvefit(predicted, cO, 1:countss-1, SS(1:countss-1), [J, [], optioms);

Ssfit = @(c,xdat) chat(1).*(exp(-chat(2)*(1:countss-1)))+chat(3);

Compare to shaped input
SI=idinput(dLength,’rgs’,[0 0.21,[1, [1)’;
siAcorr=myAutoCorr (SI-mean(SI));

%Power
noverlap = 500;
nfft = 2#noverlap;
mywindow =hanning(nfft);
[Pxx,Fpx] = pwelch(myOut-mean(myQut), mywindow,noverlap,nfft,Fs);
[siPxx,siFpx] = pwelch(SI-mean(SI), mywindow,noverlap,nfft,Fs);
if strcmp(ACFtype, ’power’)
desPxx = myy(4:end);
desFpx = (4:length(myy))/2+*Fs/dLengthfinal;
else
desPxx0 = real(ifft(desAcorr));
desPxx = desPxx0(1:dLength/2);
desFpx = 1:length(desPxx);
end

%Histogram

[histSI,sSI]1 = histogram(SI, 50);
[histOutPlot,sOutPlot] = histogram(myQutPlot, 50);
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Yplot PDF, CDF, ACF
if plottype ~=3

if plottype == 1; figure(’Color’, ’w’,’Name’, ’Summary Plot’); end

if plottype ==1; subplot(4,2,1); elseif plottype==2; figure(’Color’, ’w’,’Name’, ’PDF’) ; end
plot(sOutPlot, histOutPlot, ’r’); hold on
plot(sSI, histSI, ’k’);
xlabel(’x’), ylabel(’PDF’); legend(’Actual’, ’idInput’)

if plottype ==1; subplot(4,2,3); elseif plottype==2; figure(’Color’, ’w’,’Name’, ’inverse CDF’); end
plot(x, myOutPlot, ’b’);
xlabel(’F(x)’); ylabel(’inverse CDF’);

if plottype ==1; subplot(2,2,2); elseif plottype==2; figure(’Color’, ’w’,’Name’, ’AutoCorrelation’) ; end
plot(myAcorr, ’r’,’LineWidth’, 2); hold on
plot(desAcorr, ’b’, ’LineWidth’, 2); grid on
plot(siAcorr, ’k’);
plot([ssLength ssLength], [-0.4 1.2], ’:m’,’LineWidth’, 2);
xlabel(’lags’); ylabel(’AutoCorrelation’);
legend(’Actual Output’, ’Desired’, ’idInput’)

if plottype ==1; subplot(4,2,5); elseif plottype==2; figure(’Color’, ’w’,’Name’ s 'Sum of Squares’); end
[AX,H1,H2] = plotyy(1:countss-1,SS(1:countss-1)/max(SS)*100,1:countss-1, numSwaps(1,1:countss-1));
hold on
set(H1,’LineWidth’,2); set(H1,’Color’, ’c’)
set(H2,’Color’, ’g’)
plot(l:countss-1,S8fit(1:countss-1)/max(SS)*100, ’k’, ’LineWidth’ , 2);
set(get(AX(1),’Ylabel’), ’String’,’
set(get(AX(2),’Ylabel’),’String’,’Iterations before Swap’)
xlabel(’Sucessful Interchanges’);
legend(’Iterations before Swap’, *
text(floor (length(SS)/3),100-0.50+(100-min(SS/max(SS)*100)), {[’SS=C_1\ite~{C_2x}+C_3’] , [’C_1=’, num2str(chat(1))],...

[’C_2=>, num2str(chat(2))1,[ ’C_3=’, num2str(chat(3))]})
if plottype subplot(4,2,7); elseif plottype==2; figure(’Color’, ’w’,’Name’, ’Log-Linear Sum of Squares’); end
semilogy(1:countss-1,5S(1:countss-1), ’c’,’LineWidth’, 2); hold on

semilogy(1:countss-1,SSfit(1:countss-1), ’k’,’LineWidth’, 2);
xlabel(’Sucessful Interchanges’); ylabel(’Sum of Squares’);
legend(’Sum of Squares’, ’Fit to SS’)
if plottype ==1; subplot(4,2,6); elseif plottype==2; figure(’Color’, ’w’,’Name’, ’Series’); end
plot(myQut, ’r’); hold on;
plot(SI, ’k’);
xlabel(’Time’); ylabel(’Output’); legend(’Actual Output’, ’idInput’)
if plottype ==1; subplot(4,2,8); elseif plottype==2; figure(’Color’, ’w’,’Name’, ’Power’); end
loglog(Fpx, Pxx, ’r’, ’LineWidth’, 2); hold on;
loglog(desFpx, desPxx, ’b’,’LineWidth’, 2);
loglog(siFpx, siPxx, ’k’, ’LineWidth’, 2); ylim([le-7 1e-1])
xlabel(’Frequency (Hz) ’); ylabel(’Power’); legend(’Actual Output’, ’Desired’, ’idInput’, ’Location’, ’SouthWest’)
end

if savefile == %Else we don’t overwrite the file
s = xlswrite(’myCustomInput.xls’, [(1:length(myQut))’ myOut’]);
save ’myCustomInput.mat’ myOut SS chat;

end

progressbar( h,-1 );

toc

end

function [myOut jout] = swap(myIn)
N = length(myIn);
i = ceil(rand(1)#N);
j = ceil(rand(1)*N);
swap = myIn(i);
nyIn(i) = myIn(j);
myIn(j) = swap;
jout = [i jl;
myCut = myIn;
end

function myQut = swapsweep(myIn)
N = length(myIn);
for count = 1:N
i = ceil(rand(1)*N);
swap = myIn(count);
myIn(count) = myIn(i);
myIn(i) = swap;
end
myQut = mylIn;
end

function [out,series] = histogram(in,groups)
mymin = min(in);
mymax = max(in);
delta = (mymax-mymin)/groups;
out = zeros(groups+2,1);
series = mymin-delta:delta:mymax;
for i = 2:groups+l
for j = 1:length(in)
if (in(j)>=min(in)+(i-1)*delta) && (in(j)<=min(in)+i*delta)
out(i) = out(i)+1;
end
end
end
out = out/(delta*length(in));
end
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function [Output] = myAutoCorr(Input)
%Single sided autocorrelation
N = length(Inmput);
AACF = zeros(1,N);
for k = 1:N
for j = 1:N-k+1
AACF(k) = AACF(k)+Input(j)*Input(j+k-1);
end
end
Qutput = 1/N*AACF;
end

C.4.2 RealTimelnput.m

This piece of code simulates real time input generation (RTIG) and incorporates a

real time ALS algorithm.

function RealTimeInput
close all; clear all;
%Parameters UAAALUALY
system.Fs = 2000; Iz

system.maxtime = 5; %seconds
system.ipdfmin = -2; %System input limits
system.ipdfmax = 25; %System input limits
system.opdfmin = 0; %System output limits
system.opdfmax = 6; #System output limits

Struct = StructureConstructor; %Define Model

%Input Generation Algorithms

system.plot = ’yes’; %Use dynamic plotting
system.id = ’yes’; %Use or not use ALS system ID
system.wait = 50; YFeedback cycle time

system.delta = (system.opdfmax-system.opdfmin)/30;

system.mout = 0;

system.bin = zeros((system.opdfmax-system.opdfmin)/system.delta+1,1); %manages output range
system.bincount = zeros((system.opdfmax-system.opdfmin)/system.delta+1,1);

system.binK = 1000*ones((system.opdfmax-system.opdfmin)/system.delta+1,1);%keeps parameter values
system.binB = 10*ones((system.opdfmax-system.opdfmin)/system.delta+1,1);%keeps parameter values
system.binM = 0.05*ones((system.opdfmax-system.opdfmin)/system.delta+1,1);%keeps parameter values
system.num = 0;

system.numold = 0;

system.kk = 0;

system.ii = 0;

system.change = 0;

ALoop UUANKAULAANARAAAAARRAAARANALLANLY
for k = 1:1:system.maxtime*system.Fs
%Get input from algorithm

if k==1

[input(k), system] = GenInput(0, O, system, Struct, ’initial’); tic
else

[input(k), system] = GenInput(input,output, system, Struct, ’normal’);
end

%Send to system
Struct = SetVoltage( Struct, 1/system.Fs, input(k));
#Process output
output(k) = Struct.xout;
%Execute real-time system ID
end
toc

%Implement Offline System ID %AUAAAANA%AY
[y_LMS, CalcOut, Pout] = LMSWiemer(Struct, system, input, output, system.Fs, ’plot’);
end

function Struct = StructureConstructor
%Define Model Parameters %AUALY

0.08;

8;
1000;

Struct.M
Struct.B
Struct.X
Struct.
Struct.
Struct.
Struct.
Struct.
Struct.
Struct. =
Struct.D2 =

Struct. =

Struct.Fscale
Struct.x = 0;

non
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Struct.xdot
Struct.xout H
Struct.type = ’Wiemer’; %’Linear’, ’Wiemer’, ’Hammer’, *DPN’
Struct.inputtype = ’FS’;

Struct.offset = 3;

Struct.gain = 7;

end

0;

|

function [input, system] = GenInmput(input, output, system, Struct, condition)
if strcmp(condition, ’initial’)
rand(’state’, 1);
randn(’state’, 1);
system.oldinput= 10;
system.numold = 1;
system.num = 1;
ALScalc(zeros(system.wait, 1), zeros(system.wait, 1), system, ’initial’);
if strcmp(system.plot, ’yes’)
figure(’Color’, ’w’)
end
end
%Check the output every feedback cycle
if system.kk == system.wait+1
binin=zeros(system.wait,1);
for j = 1l:system.wait
binin(j) = round((output(end-j))/system.delta+(-systen.opdfmin) /system.delta)+1;
if binin(j)<1, binin(j)=1; system.penaltyb = system.penaltyb+l; end
if binin(j)>length(system.bin), binin(j) = length(system.bin); system.pemaltyt = system.penaltyt+1; end
system.bin(binin(j)) = system.bin(binin(j))+1;

end
system.oldinput = mean(input(end-system.wait:end));
system.numold = system.num; %dump old desired location

[system.num]=min(system.bin) ;
system.bincount(system.num) = system.bincount(system.num)+1;
system.mout = mean(binin);
system.kk = 0;
if strcmp(system.id, ’yes’)
[M,B,K] = ALScalc(input(end-system.wait:end), output(end-system.wait:end), system, ’normal’);
system.binM(round(system.mout)) = M;
system.binB(round(system.mout)) = B;
system.binK(round(system.mout)) = K;
system.change = K/1000;
else
system.change =1—min(abs(systen.mout—systemvnum)/(system.opd.fma.x-system.opd.fmin), 0.1); %Scale change with speed
end

if strcmp(system.plot,’yes’) && strcmp(system.id, ’yes’)
figure(1)
subplot(3,1,1);plot(output, ’r’)
subplot(3,1,2);plot(system.bin, ’r’)

subplot(3,3,7) ;plot(system.binM, ’.r’); xlabel(’Position (mm)’); ylabel(*M (kg)’); grid on; prettyfigure; YL = ylim; ylim([0, YL(2)])
subplot(3,3,8) ;plot(system.binB, ’.r’); xlabel(’Position (mm)’); ylabel(’B (Ns/m)’); grid on; prettyfigure; YL = ylim; ylim([0, YL(2)1)
subplot(3,3,9) ;plot(system.bink, ’.r’); xlabel(’Position (mm)’); ylabel(’K (N/m)’); grid on; prettyfigure; YL = ylim; ylim([0, YL(2)])

elseif strcmp(system.plot,’yes’)
figure(1)
subplot(2,1,1);plot(output, ’r’)
subplot(2,1,2) ;plot(system.bin, ’r’)
end
end

%Combine for imput
if (system.binK(round(system.num))<mean(system.binK)+200 || system.binK(round(system.num))<1200) || strcmp(system.id, ’no’)
modulator = min(max(system.bincount(system.num)-system.bin(system.num),0.5),3);
else modulator = 1;
end
if strcmp(system.id, ’yes’)
addrand = (rand(1)-0.5);
input = systsm.oldinput+1*(-0.2*system.changetmodulator*(system.mout-system‘num)+4taddrand);
else
addrand = (rand(1)-0.5);
input = system.oldinput+1#*(-0.2+system.change*modulator* (system.mout-system.num)+4*system.rands*addrand) ;
end

system.kk =system.kk+1;
“manages imput range
if input<system.ipdfmin, input = system.ipdfmin; end

if input>system.ipdfmax, input = system.ipdfmax; end
end

function [Me, Be, Ke]l = ALScalc(input, output, system, condition)
persistent ilength M L Fs mylength yhat e b f_delay lags

if strcmp(condition, ’initial’)

iLength = 60;
M = ilength;
L = 0.00001;

Fs = system.Fs;

mylength = length(input);
lags = 0:length(M)/Fs;

x = LSadapt(’initial’, L, M);

242



yhat = zeros(mylength,1);

e =
b=

zeros(mylength,1);
zeros (mylength, M);

£_delay = zeros(1,1);

else

for

end

J = 1:mylength

f_delay(1:-1:2) = f_delay([1:-1:2]-1);
f_delay(1) = input(J);

[yhat(J) ,B_ALS]=LSadapt (f_delay(1),output(J));

lags = (0:iLength-1)/Fs;

atry = [0.8; 100; -100];

[B_fit, ahat]l=myfit(lags, B_ALS, atry);

zeta = sqrt(abat(3,:)."2./(ahat(3,:)."2+ahat(2,:).72));
wn = ahat(2,:)./sqrt(1-zeta."2);

Ke = 1000./ahat(1,:).*wn./sqrt(1-zeta."~2)/Fs;

Me = Ke./wn."2;

Be = 2%zota.*wn.*Me;

function [y, bout]=LSadapt(f,d,FIR_M)
persistent f_history b lambda M

if stremp(f, ’initial’)

lambda = d;

end
end

y =
y=sum(b(1:M)*£f_history(1:M));
e = d-y
b(1:M)
bout =

M = FIRM;

f_history = zeros(1,M);

b = zeros(1i,M);
b(1) = 0;
y=0;
else
f_history(M:-1:2) = f_history([M:-1:2]-1);
f_history(1) = f_delay(1);

0;

H
= b(1:M) + lambda*e*f_history(1:M);
b;
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