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Abstract

We study strategic and operational measures of improving airline system performance and
reducing delays for aircraft, crew and passengers. As a strategic approach, we study robust op-
timization models, which capture possible future operational uncertainties at the planning stage,
in order to generate solutions that when implemented, are less likely to be disrupted, or incur
lower costs of recovery when disrupted. We complement strategic measures with operational
measures of managing delays and disruptions by integrating two areas of airline operations thus
far separate - disruption management and flight planning.

We study different classes of models to generate robust airline scheduling solutions. In par-
ticular, we study, two general classes of robust models: (i) extreme-value robust-optimization
based and (ii) chance-constrained probability-based; and one tailored model, which uses do-
main knowledge to guide the solution process. We focus on the aircraft routing problem, a
step of the airline scheduling process. We first show how the general models can be applied to
the aircraft routing problem by incorporating domain knowledge. To overcome limitations of
solution tractability and solution performance, we present budget-based extensions to the gen-
eral model classes, called the Delta model and the Extended Chance-Constrained programming
model. Our models enhance tractability by reducing the need to iterate and re-solve the models,
and generate solutions that are consistently robust (compared to the basic models) according to
our performance metrics. In addition, tailored approaches to robustness can be expressed as spe-
cial cases of these generalizable models. The extended models, and insights gleaned, apply not
only to the aircraft routing model but also to the broad class of large-scale, network-based, re-
source allocation. We show how our results generalize to resource allocation problems in other
domains, by applying these models to pharmaceutical supply chain and corporate portfolio ap-
plications in collaboration with IBM's Zurich Research Laboratory. Through empirical studies,
we show that the effectiveness of a robust approach for an application is dependent on the inter-
action between (i) the robust approach, (ii) the data instance and (iii) the decision-maker's and
stakeholders' metrics. We characterize the effectiveness of the extreme-value models and prob-
abilistic models based on the underlying data distributions and performance metrics. We also
show how knowledge of the underlying data distributions can indicate ways of tailoring model
parameters to generate more robust solutions according to the specified performance metrics.



As an operational approach towards managing airline delays, we integrate flight planning
with disruption management. We focus on two aspects of flight planning: (i) flight speed
changes; and (ii) intentional flight departure holds, or delays, with the goal of optimizing the
trade-off between fuel costs and passenger delay costs. We provide an overview of the state
of the practice via dialogue with multiple airlines and show how greater flexibility in disrup-
tion management is possible through integration. We present models for aircraft and passenger
recovery combined with flight planning, and models for approximate aircraft and passenger re-
covery combined with flight planning. Our computational experiments on data provided by a
European airline show that decrease in passenger disruptions on the order of 47.2%-53.3% can
be obtained using our approaches. We also discuss the relative benefits of the two mechanisms
studied - that of flight speed changes, and that of intentionally holding flight departures, and
show significant synergies in applying these mechanisms. We also show that as more informa-
tion about delays and disruptions in the system is captured in our models, further cost savings
and reductions in passenger delays are obtained.
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Chapter 1

Introduction

In this thesis, we study strategic and operational techniques to improve airline system per-

formance and reduce delays for aircraft, crew and passengers. As part of strategic measures,

we study robust optimization techniques, by which possible future operational uncertainties are

modeled at the planning stage in order to generate solutions that when implemented, are more

likely to be executed or easier to repair when disrupted. We complement strategic measures us-

ing operational measures of managing delays and disruptions by integrating two areas of airline

operations hitherto separate - disruption management andflight planning.

1.1 Motivation

Aviation is an integral part of the international economy, with steady growth in developed

countries and explosive growth in developing countries. In 2008, there were 26,245 aircraft

departures and 4,282,870 million revenue passenger kilometers worldwide, with revenues of

$563,640 million [Air]. In the United States, aviation generates $1.2 trillion in economic out-

put, and is 5.2% of the US Gross Domestic Product [Fed09].

Air travel has increased tremendously in the past decade. 4,282 billion passenger revenue

kilometers were traveled across the world in 2008 compared to 2,797 billion passenger revenue

kilometers in 1999, a growth of 53% [Air]. While the revenue passenger kilometers traveled in

North America rose 22% from 1999 to 2008, an even higher growth of 71% was observed in

Europe and the Asia-Pacific regions [IntlOb]. Though this growth slowed somewhat towards



the end of 2008 and in 2009 due to the recent economic crisis, it is expected that there will be a

recovery in traffic to pre-recession levels [TP09]. With these high growth rates, the percent of

US aircraft arriving late (as defined by the 15-minute on-time performance metric) has increased

from 17.01% in 2003 to 25.96% in 2008 [Bur09a]. These delays are highly detrimental in an

industry where the profit margins are typically less than 2%, with delay costs forming a major

component of operating costs [Int08]. As a case in point, the total costs of U.S. domestic

air traffic delays crossed the $40 billion mark [JEC08]. Of these delay costs, $19.1 billion

represents incremental operating costs for the airlines (including additional fuel costs due to

delays of $1.6 billion, releasing 7.1 million metric tons of carbon dioxide into the atmosphere),

$12 billion represents the estimated passenger costs due to low productivity and lost business,

and $10 billion represents losses to other industries that rely on air traffic [JEC08]. It is evident

that if delays can be reduced, society and the airline industry would benefit tremendously.

The airline system operates as a highly interconnected network, with aircraft, crew and pas-

sengers interacting closely. Planning an airline's operations involves capturing the complex in-

teractions between airports, gates, airport slots, aircraft fleet types and associated maintenance

restrictions, crew restrictions and passenger demands. For large airlines which daily operate

thousands of flights, with thousands of aircraft and crew, this this can be a considerable com-

putational challenge. Due to this reason, the process of designing an airline's operations, called

airline schedule planning, is usually decomposed into four (usually) sequential sub-problems:

(1) schedule design, (2) fleet assignment, (3) aircraft maintenance routing and (4) crew schedul-

ing. We briefly describe these sub-problems here. Given a set of markets desired to be served,

schedule design is the process of determining the set of flight legs (as described by origin, des-

tination and departure and arrival times) to be operated by an airline so that its profitability is

maximized. Following schedule design, the fleet assignment problem is to assign to each flight

leg a type of aircraft so that passenger travel demands can be met. The operating cost of each

flight leg is the cost of flying a particular aircraft type on that leg, plus a spill cost equal to

the lost revenue of passengers who could not book the flight leg due to insufficient numbers

of available seats. The fleet assignment cannot use more aircraft of each type than available in

the airline's fleet, and the assignment must assure flow balance of each fleet type. Once fleet

assignment is completed, each individual aircraft is assigned a routing, or path in the network,



by solving the aircraft maintenance routing problem. The crucial objective of the maintenance

routing problem is to ensure that each aircraft receive periodic maintenance checks at a mainte-

nance station, as required by the Federal Aviation Administration (FAA). Given the fleeting and

routing decisions made in the previous steps, the crew scheduling problem is to generate cost-

minimizing activity schedules for the cockpit and cabin crew so that each flight leg is assigned

the appropriate crew members. The crew schedule should follow numerous restrictions that

are a result of government-mandated work rules, as well as bargaining agreements between the

airline and its employees. For a detailed description of the airline schedule planning process,

we refer the interested reader to Barnhart [Bar09a].

Because each flight leg can be successfully operated when its resources - the aircraft, crew,

airport gates, runways, etc. - are all available at the scheduled time, there is a close interaction

of all these resources in the system. Each of the complex interactions described can be sub-

jected to uncertainty and delay in the system. Inherent uncertainty in operations, manifesting

as weather, airport and airspace congestion, crew sickness, aircraft maintenance, security, etc.,

can be reasons for any one of the resources required to operate a flight to not be available on

time, with resulting delays or disruptions. Due to this uncertainty, planned schedules are rarely,

if ever, executed. In addition, the close interconnections of these resources results in strong

network effects - that is, a delay occurring in one part of the network or to one of the resources

can propagate downstream to multiple other resources and other parts of the network. These

effects are referred to as propagated [LCB06] or reactionary delays [CT09]. For example, a

flight arriving late can cause both its aircraft and crew to be delayed in downstream operations.

According to the Bureau of Transportation Statistics [Bur10], a distribution of delays by cause,

for the period of May 2005 - May 2010 is as shown in Figure 1-1.

When delays or disruptions occur in the network, airlines undertake disruption management.

Disruption management is usually under the purview of the Airline Operations Control Center

(AOCC). The goal of disruption management is schedule recovery, that is, to bring the plan back

on schedule as quickly and cost-effectively as possible, and minimize the additional operating

costs incurred due to the disruptive events. The scope of the recovery problem spans flight

schedules, aircraft routes, crew assignments and passenger routes. Due to its complexity, again,

the recovery problem is solved in stages, with typically aircraft recovered first, followed by
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Figure 1-1: US National Airlines' On-Time Arrival Performance (May, 2005 - May, 2010)

crew (which are both resources required for the system to operate); and finally, passengers. For

a detailed description of the recovery process, we refer the reader to Barnhart [Bar09b].

To minimize the additional operational costs resulting from these disruptions, different ap-

proaches may be used, including:

1. Strategic approaches: These approaches focus on robust schedule design, by which a

schedule that is less sensitive to operational uncertainty is designed at the planning stage,

before the day of operation. Understanding that delays and disruptions in the system

are inevitable, robust airline scheduling pro-actively considers possible delays and dis-

ruptions as schedules and plans are developed; with the objective of building plans that

are less susceptible to disturbances or, are easier to repair once disrupted. This might be

achieved by building plans that require fewer recovery (disruption management) actions,

or that decrease the complexity or cost of recovery. Robust airline scheduling, then, is a

proactive planning technique aimed at reducing total realized costs, including both plan

and recovery costs. This is in contrast to early practices, in which responses to disruptive

events were reactive, that is, actions to manage delays are taken only after an event occurs,

resulting in schedule recovery actions which can be costly and complex to implement.

2. Operational approaches: Operational approaches are undertaken by the airline on the

day of operations, either in anticipation of or after a delay or disruption of the schedule,

after information about the disruption or delay is revealed. These measures come under

the category of disruption management. Operational approaches are dynamic in their

................................. ... .... .. ............



implementation, and their goal is often to bring the plan back on schedule as quickly as

possible, while incurring minimal costs, and disrupt as few resources or passengers of

the system. Measures such as flight cancelations, flight re-timing, aircraft swaps, use of

reserve crews, etc. can be used.

Strategic measures and operational measures complement each other. Ideally, strategic and

operational approaches should be synergistic, and work together in order to minimize the real-

ized costs of the system. In this thesis, we focus on both strategic and operational measures of

disruption management.

1.2 Thesis Contributions and Structure

In this section, we present the context for our approaches of robust schedule design and en-

hanced disruption management. We describe the contributions of our work and structure of this

thesis.

1.2.1 Chapter 2: Robust aircraft routing

Deterministic models of airline schedule planning that are commonly used in practice do not

capture information about potential future uncertainty, and therefore, render the system vulner-

able to delays and disruptions. During the past decade, there has been considerable interest in

exploring the benefits of robust approaches which pro-actively make the system less vulnerable

to uncertainty on the day of operations.

Several types of approaches have been studied in the broader literature for modeling un-

certainty and building more robust solutions. These approaches can be categorized as (i) prob-

ability distribution-free models, (ii) probability distribution-based models, and (iii) problem-

specific models. The first two categories are general approaches that can be applied to any

mathematical program. In Chapter 2, we ask the question if more general robust approaches

belonging to the probability distribution-free and probability distribution-based categories can

be applied successfully to airline schedule planning.



We focus on the aircraft routing problem, a step of the airline scheduling process. In par-

ticular, we study two general classes of robust models and one tailored approach that uses

domain knowledge to guide the solution process. The first class of models is a distribution-free,

extreme-value based approach, proposed by Bertsimas and Sim [BS04]. The second class of

models is a probability-based chance-constrained approach, proposed by Charnes and Cooper

[CC59].

In order to meaningfully apply the general paradigms of capturing uncertainty to aircraft

routing, we show that domain knowledge about the problem should be captured. Through

experiments conducted on data from a major US hub-and-spoke carrier, we discover that ex-

isting models face limitations in modeling the performance metrics and in solution tractabil-

ity. To overcome these limitations, we present new models in both the extreme-value and the

probabilistic paradigms, which we call the Delta model and the Extended Chance-Constrained

Programming model (ECCP) respectively. Our extended models avoid the need to repeatedly

re-solve to gain robust solutions, which was an issue for the basic models. Also, the run times

of our extended models are comparable to a single iteration of the models. Both these features

enhance solution tractability. Our extended models re-define robustness as maximizing a robust

parameter within a budget, and consequently also generate consistently more robust solutions

than the basic models according to our performance metrics.

We show that the tailored model for robust aircraft routing is a special case of the chance-

constrained programming model. The solutions of the ECCP model, reflecting the focus of

the model on high-probability delay events, are robust with respect to our metrics of inter-

est. Extreme-value based models, on the other hand, due to a focus on worst-case delays, can

generate solutions with good worst-case performance, and a high degree of variability in our

performance metrics. This is due to the underlying data distributions for the hub-and-spoke US

carrier under consideration, where bi-modal delays are seen with delay either at the lower end

of the scale (with a probability of 85-90%) or at the higher end of the range (with a probability

of 10-15%).

Our work thus underscores the importance of choosing an approach that aligns well with

both the data distributions for the aircraft routing problem, as well as the the metrics of interest

to the Department of Transportation (DoT), the airline and passengers. The extended models



and insights gleaned in this work apply not only to the aircraft routing model but also to the

broad class of large-scale, network-based, resource allocation problems.

1.2.2 Chapter 3: Robust optimization - other applications

The goal of using general methods such as the Bertsimas and Sim and Chance-Constrained

Programming method in Chapter 2 is to be able to apply them to various applications, within

the airline scheduling context as well to other domains. In this chapter, we study and com-

pare the application of various generally applicable robust approaches to multiple problems,

namely, strategic supply chain design for a Top-50 pharmaceutical manufacturer, portfolio op-

timization for a global corporation, and aircraft routing for a US carrier (studied in Chapter 2).

The pharmaceutical supply chain problem and the corporate portfolio problem arose in collab-

oration with IBM Research's Zurich Research laboratory. We consider various approaches of

robustness and develop insights that can help in applying these methods to a broad variety of

problems.

From empirical studies conducted on real-world data available for the three applications,

we observe that the effectiveness of solutions generated is affected by the robust modeling

approach, the underlying data and the performance metrics of interest. Extreme-value-based

models are seen to be best applied when the underlying data distribution is known with less cer-

tainty - that is, the type of distribution, or the spread of data cannot be well-estimated. As more

information about the system is available with some certainty (even in the form of quantiles

rather than complete distributions), probabilistic models that can capture partial/full distribu-

tion information produce more effective results. Because extreme-value based models focus on

the worst-case, they produce conservative solutions geared towards worst-case metrics, whereas

probabilistic models produce less conservative solutions geared towards average-case metrics.

We also show how knowledge of the underlying data distribution, even if partial, or empirically

derived, can indicate ways of modifying input parameters of extreme-value and probabilistic

models to produce more robust solutions, according to the specified performance metrics.



1.2.3 Chapter 4: Integrated Disruption Management and Flight Planning

In this chapter, our focus is on operational approaches for airline operations. Disruption man-

agement procedures are in place at airlines to bring operations back on track when disruptive

events occur, and to reduce recovery costs (which contribute to operating costs).

We include flight planning in an enhanced disruption management tool, by providing opti-

mization models that combine flight planning with traditional disruption management models

during operations. In particular, we focus on two aspects of flight planning: (i) flight speed

changes; and (ii) intentional flight departure holds, or delays, with the goal of optimizing the

trade-off of fuel costs and passenger delay costs. Our approach represents an integration of

two aspects of airline operations before studied separately, namely, disruption management and

flight planning.

Through dialogue with multiple airlines, we provide an update of the current state-of-the-

practice with regards to flight planning approaches. We also discuss the current practice in

the disruption management area. We identify opportunities for enabling greater flexibility in

disruption management using flight planning, possible by integrating these elements, and show

the need for optimization-based decision support.

We present models for aircraft and passenger recovery combined with flight planning, and

models for approximate aircraft and passenger recovery with flight planning. With these mod-

els, we provide a means for optimizing trade-offs between delayed passenger costs and fuel

costs, with the goal of minimizing total realized costs.

Our experiments involve the hub operations of an international carrier. In comparison with

conventional disruption management, we demonstrate that our enhanced disruption manage-

ment strategy helps decrease passenger-related operating costs for the airline by reducing pas-

senger misconnections by 47.2% - 57.3%. We demonstrate the dynamic nature of the trade-off

frontier between passenger costs and fuel burn costs and discuss in detail the interactions in-

volved in this trade-off under different disruption scenarios. We also discuss the relative benefits

of the two types of mechanisms studied - that of flight speed changes, and that of intentionally

holding flight departures - and show significant synergies in applying the two mechanisms si-

multaneously.



We conclude the thesis in Chapter 5 by summarizing the contributions and findings of this

research and providing directions for future research.
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Chapter 2

Robust Aircraft Routing

2.1 Introduction

Robust airline scheduling is a way of pro-actively considering delays and disruptions and cre-

ating schedules with the objective of building plans that are less susceptible to disturbances or

easier to repair once disrupted. This is in contrast to prior practice, where responses to delays

were reactive, that is, after an event occurred, schedule recovery actions which can be costly

and complex to implement, were taken. Robust airline scheduling, then, is a proactive planning

technique aimed at reducing total realized costs, including both plan and recovery costs.

To evaluate the robustness of solutions obtained, we use simulation, as the objective function

values of the planning optimization models do not indicate the realized costs or robustness of

the solution. Through simulation, we measure solution performance with respect to a host of

relevant robustness metrics.

2.1.1 Robust Airline Scheduling

Several approaches to build robust airline scheduling solutions, tailored to the airline industry,

have been developed.

Ehrgott and Ryan [ER02] provide a bicriteria optimization framework to develop pareto

optimal solutions for the crew scheduling problem. The two criteria of interest are cost and

robustness. Robustness into crew schedules in built by incorporating sufficient ground times



if crews have to change aircraft, or keeping the crew with the aircraft in case of tight ground

times. They define a linear non-robustness penalty function based on the expected delay of

each flight in the schedule, and if the crew are required to change aircraft for a tight ground

time. However, they do not provide details on the calculation of expected delay. Ehrgott and

Ryan's formulation trades off the cost function and the penalty function for non-robustness.

Within allowable budgets of deviation from the minimum cost solution, they find the most robust

solution. Further, they show that this can be solved effectively by modeling the constraints as

'elastic' constraints, which generate solutions that are part of the pareto optimal frontier. Their

results clearly demonstrate the trade-off between cost and robustness. However, the authors do

not evaluate the pareto optimal frontiers and their true performance through simulation.

Ageeva [AgeO0] creates robust airline schedules by focusing on the aircraft routing part of

the airline scheduling process. Aircraft routings are considered to be more robust if they contain

more opportunities to 'swap'. Two aircraft meet if their routes contain the same location within

a specific time-window. The aircraft may be swapped if they meet twice along their routes,

allowing for a switch in routes at the first meeting point and swapped back to the original routes

at a later meeting point. Such swaps increase flexibility of aircraft availability in disruptive

scenarios. Ageeva examines multiple optimal solutions to the aircraft routing problem and

ranks them by their robustness, as measured by the number of swaps. The results indicate

that robustness of the resulting aircraft routing, as measured by the number of swaps, can be

increased as much as 35% compared to the original routing. However, this work stops short of

evaluating the resulting robust solutions through simulation.

Rosenberger, Johnson and Nemhauser [RJNO4] develop a robust model for fleet assignment

and aircraft routing that allows for many 'short cycles'. A cycle is a sequence of flights that

begins and ends at the same airport. When flights are canceled in disruptive scenarios, airlines

cancel not just one flight, but a cycle containing that flight, in order to reposition the aircraft

correctly. By increasing the number of short cycles containing fewer flights, the number of

flights canceled when one flight is canceled is decreased. In addition, the goal of such short

cycles is also to decrease hub connectivity. Hub connectivity indicates the number of aircraft

rotations that include more than one hub. Higher hub connectivity means that disruptions can

spread from hub to hub in the network. Evaluating the solutions via simulation, the authors



show that the incorporating robustness in the form of short cycles produces fleet assignment

solutions that decrease planned operating costs and passenger spill.

Schaefer, Johnson, Kleywegt and Nemhauser [SJKN05] introduce a measure to evaluate

crew schedules in practice. Their measure approximates both the planning cost as well as

the operational cost of a crew schedule. They propose two methods based on (i) expected

operating cost, which is calculated using SimAir, a MonteCarlo simulation of airline operations,

and (ii) penalizing pairing properties that may result in poor performance. Using simulation,

they illustrate that solutions generated using these approaches perform better under uncertain

conditions compared to deterministic approaches that do not take uncertainty into account.

Yen and Birge [YB06] build robust crew schedules by modeling crew scheduling as a two-

stage stochastic program. The first stage of the model solves the standard crew scheduling

model that minimizes expected costs. The second stage recourse model minimizes the expected

costs of crews being swapped between planes. They introduce a novel branching scheme to

solve the stochastic program. The results exhibit the trade-off between planned crew costs and

recourse costs.

To address the issue of demand uncertainty, Jiang [Jia06] introduces fleet re-timing as a dy-

namic scheduling mechanism and supplements re-fleeting with re-timing. Re-timing the sched-

ule and re-fleeting of aircraft increase or decrease the number of connecting itineraries available

to passengers (compared to the original schedule) and increase or decrease the number of seats

available in the affected markets. Jiang shows that this can help to reduce passenger spill by

better matching capacity. The dynamic scheduling approach modifies the existing flight sched-

ule and fleet assignments, keeping existing bookings still feasible (though possibly re-timed),

so that realized demand can be accommodated as much as possible. Jiang [Jia06] shows that

through the dynamic mechanisms of flight re-timing and re-fleeting, even 'optimized' schedules

can be improved by re-designing the schedule at regular intervals.

Shebalov and Klabjan [SK06] propose robust approaches tailored to specific instances of

crew scheduling problems by exploiting the specialized structure of the problem. The authors

introduce the concept of move-up crews and improve costs by swapping crews, and show the

resulting benefits.

Lan, Clarke and Barnhart [LCB06] propose an 'intelligent routing model' for aircraft routing



to reduce delay propagation along the downstream flight legs. They show that aircraft routings

can be made significantly more robust by re-arranging the slack in the schedule to place it

where it is needed to a greater extent. Thus robustness can be improved without changing

the total slack and adding to planning costs. In addition, they introduce a new approach to

minimize the number of passenger mis-connections by re-timing the departure times of flight

legs within a small time window. Their approach helps to improve passenger connection times

without significantly increasing costs. Their approach is very relevant to this work, and will be

discussed in greater detail in later sections. AhmadBeygi, Cohn and Lapp [ACLlO] expand on

this notion of propagated delay and model propagation of delay using the concept of propagation

trees. They measure delay propagation to aircraft, passengers and crew, and measure the extent

that each delay propagated down a tree. Using simulation, they show that airline schedules

that consider delay propagation can significantly decrease operational delays without increasing

planning costs.

2.1.2 Motivation

In this chapter, our focus is on the aircraft routing step of the airline scheduling process. The

aircraft routing problem is to find a feasible sequence of flight legs, called aircraft routings or

rotations, to be operated by each aircraft so that maintenance restrictions on aircraft are satisfied.

Each flight is required to be assigned to (or covered by) exactly one aircraft, using no more than

the available number of available aircraft. and meeting all maintenance requirements. Though

robust planning is required at every step of the airline scheduling process, we choose aircraft

routing because of its high impact on schedule reliability and relatively low impact on crew

costs, flight costs and passenger revenues [LCB06].

We demonstrate how aircraft routings differ and what we mean by robust aircraft routings,

with an example. In Table 2.1, we report performance for 7 aircraft routings as measured by

the percent of flights in the routing that arrive within 15 minutes, 30 minutes, 60 minutes, 120

minutes and 180 minutes of their respective scheduled arrival times. Note that these percent-

ages were calculated over 22 days of operations of a major U.S. airline. For the instances under

consideration in this paper, all of which are drawn from actual airline operations, we compare



metrics of interest, as detailed in @2.4.1. The reported variability in flight delays is signifi-

cant, as even small differences in the range of 1% can improve/deteriorate the airline's ranking

with respect to the DoT's 15-minute on-time performance metric [Bur09c]. Because airlines

do not typically explicitly consider delays in selecting aircraft routings, the airline effectively

might choose at random any of these routings, and thus, can incur high delays. To illustrate,

for this instance, the aircraft routing operated by the airline is Routing 5, with DoT on-time

performance ranking third from the bottom. Moreover, in addition to aircraft delay disparities,

different routings can lead to different levels of passenger disruptions and delays. A passenger

is considered to be disrupted if one or more flight legs on his itinerary are canceled, or if delays

cause insufficient connection time to the next flight leg in his/her itinerary. The percentage of

passenger disruptions decreased relative to the airline's routing (% D-pax reduced)are shown in

Table 2.1. Routings 1 and 2 can vastly improve upon the airline's routing without any additional

resources, while Routing 7 can deteriorate the airline's performance greatly.

Flight Delays Pax Disruptions
Routing <15 min <30 min <60 min <120 min <180 min #D-pax %D-pax reduced

Routing 1 79.1 86.7 93.4 98.0 99.1 988 10.14
Routing 2 78.8 86.8 93.2 98.2 99.2 986 10.30
Routing 3 78.3 86.2 92.9 98.1 99.0 1028 6.50
Routing 4 78.3 86.0 92.9 97.5 98.6 1047 4.80
Routing 5 77.7 85.8 92.8 97.7 98.9 1100 0.00
Routing 6 77.6 85.7 92.4 97.4 98.6 1057 3.90
Routing 7 76.5 84.7 92.0 97.2 98.5 1223 -11.20

Table 2.1: Flight Delay Percentages and Passenger Disruptions of Feasible Routings, N 2

The relationship between aircraft routings and delays and disruptions can be explained by

the phenomenon of propagated delays. In network structures, flight delays can be divided into

two components [LCB06]: independent delays that originate at the flight's origin or during the

flight, and propagated delays resulting from delays in upstream flights that are not absorbed by

slack time between flight legs. Delay propagation is illustrated in Fig. 2-1. The solid arrows

show the planned schedule for flights fi and f2; and the dotted arrows the operated schedule.

PDT, ADT, PAT and AAT are the planned departure time, actual departure time, planned

arrival time and actual arrival time respectively, of flight f2. In Figure 2-1, flight fi is delayed,

and its delay causes the remaining slack time between flight fi's arrival and f2's scheduled



departure to be less than the minimum connection time required for the same aircraft to fly both

flight legs. This causes propagated delay PD for flight leg f2. In addition, independent delay

is incurred by f2, both at its departure (IDD) and its arrival (IAD), resulting in total departure

delay (TDD) and total arrival delay (TAD). However, by changing the sequence of flights

operated by each aircraft, propagated delay can be reduced (Figure 2-2). This involves changes

in the routings of aircraft, but because no new aircraft are being added and the flight schedule

remains unchanged, the total slack in the system is not altered, instead only the positioning of

the slack is changed.
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Figure 2-1: Delay Propagation along an Aircraft Route
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Figure 2-2: Robust Routing with Optimal Slack Allocation

For the airline we study, propagated delay typically represents 20% to 30% of total flight

delay [LCB06]. Because total independent delay is a constant for the flight schedule, reducing

delay propagation by choosing Routing 1 instead of, for example, Routing 7 has the effect of



reducing total delay. The differences in propagated delays for Routings 1-7 are shown in Fig

2-3. Different aircraft routings are not very different on 'good' days like Day 10, but differences

become apparent on 'bad' days like Day 5.
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Figure 2-3: Propagated Delays of Feasible Aircraft Routings, N2

2.1.2.1 Discussion of Metrics

Ideally, good solutions to airline scheduling problems ensure low levels of delay for flights, and

good travel experience with low passenger delays and disruptions. Metrics, then, such as total

flight delay minutes, total cost of delay, 15-minute on-time performance, 30-min on-time per-

formance, and 60-minute on-time performance, are all examples of measures that reflect airline

schedule reliability and robustness. A difficulty, however, is that these metrics are not always

aligned with each other. For example, the 15-minute on-time performance metric does not re-

flect delays greater than 15 minutes, and therefore maximizing 15-minute on-time performance

is not the same as minimizing total delay minutes. Similarly, minimizing aircraft delay minutes

is different from minimizing passenger delay minutes or passenger disruptions because fewer

passengers can be disrupted by holding flights to allow passengers to make their connections,

thus increasing total aircraft and passenger delays.
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2.1.3 Contributions

In this chapter, we study three different approaches to robustness in aircraft routing, and hence,

airline scheduling - two that are generally applicable, the extreme-value based approach and

a probabilistic chance-constrained programming approach; and one that is a tailored approach

proposed by Lan, Clarke and Barnhart [LCB06]. The extreme-value approach considered is

the robust optimization approach of Bertsimas and Sim [BSO4], [BSO3] and the probabilistic

approach is the Chance-Constrained Programming approach of Charnes and Cooper [CC59],

[CC63]. We begin by showing how to model the robust aircraft routing problem using these

three approaches, and identify their respective limitations; suggesting extensions and enhance-

ments to the models to address these limitations. We then evaluate the similarities and differ-

ences in models and solutions generated by these different approaches, using a simulation-based

evaluator. The findings and extensions from this work are generally applicable to the broad class

of network-based resource allocation problems.

2.1.4 Outline

In §2.2 we discuss Charnes and Cooper's Chance-Constrained Programming and Bertsimas and

Sim's extreme-value approach. In §2.3, we present the three classes of robust models for aircraft

routing. For this application, we present Charnes and Cooper's Chance-Constrained Program-

ming formulation, the robust optimization formulation of Bertsimas and Sim, and Lan, Clarke

and Barnhart's robust aircraft routing formulation. In addition, we propose extensions and en-

hancements to the general classes of models in §2.3. We present the experimental set-up for our

computations, and details of the simulator built to evaluate the performances of the models in

§2.4. In §2.5, we compare the models and solutions generated by the different approaches in

terms of complexity and run times (@2.5.1), model parameters (@2.5.2) and modeling paradigms

(@2.5.3), and show how robust solutions may be generated by all classes of models. In §2.6, we

summarize our findings.



2.2 Robust Models of Bertsimas and Sim, and Charnes and

Cooper

2.2.1 Robust Formulation of Bertsimas and Sim

Consider a standard linear program, that is:

max cTx (2.1)

s.t. a>3 zj < b (2.2)

1< x u. (2.3)

Soyster [Soy73] considers column-wise uncertainty, where each column Aj of the constraint

matrix belongs to a convex set Kj. He shows that the above problem is equivalent to the fol-

lowing robust formulation:

max cTx (2.4)

s.t. di K zj < b (2.5)
jEJ

I < x K u. (2.6)

where di - suPAj EK (aij). This means that extreme (or worst-case) values of coefficients

that effectively maximize the amount of slack for the nominal problem are used in the 'robust'

model. The use of worst-case values results in solutions that are far from optimal for many

realizations of the constraint matrix coefficients.

Bertsimas and Sim [BSO4] argue that worst-case approaches such as that of Soyster, are too

conservative, and hence, expensive. Instead, they suggest an approach aimed at avoiding the

overly conservative tendencies of Soyster's approach by providing a mechanism to control the

'degree of conservatism'.

In the approach of Bertsimas and Sim, all uncertainty is assumed to be located in the coeffi-

cients of the A matrix. By performing some simple transformations and rewriting A, uncertainty



in c and b can also be captured. By changing the objective function to maximize z and adding

the constraint z - cTx < 0, the objective function can be moved into the A matrix, thus en-

abling uncertainty in the objective function coefficients to be captured. Similarly, if we have

uncertainty in the right-hand-side b-vector, the b-vector values can be subtracted from the left-

hand side and the right-hand side can be replaced by zero. The assumption of uncertainty in the

A-matrix therefore incurs no loss of generality.

Each entry of of the left-hand side of the constraint matrix, A, is assumed to be a random

variable with di being the symmetric, unbounded variable corresponding to the (i, j)th entry

of A. No actual probability distribution of the random variable is assumed, only an interval of

values that dij can assume. Specifically, a 2 denotes the nominal value of dij, which is used in

the deterministic formulation, and dij is the half-interval of dij. Hence, dij can take on values

in the interval [ai2 - igj, ai2 + ij ] and the nominal value aij is the mean value of the symmetric

distribution. The extreme values that di can take are aij - dij and aij + dij.

Let J be the set of coefficients for constraint i that are subject to parameter uncertainty, that

is, dij, j E Ji takes values from a symmetric distribution as described above. For each constraint

i, there is a parameter Fi which can take a (possibly continuous) value in the interval [0, IJil].

Because it is unlikely that all |JiI coefficients will assume their worst-case (or extreme) values,

Fi is used as a means of adjusting the 'level of protection'. The Bertsimas-Sim formulation

protects against the case when up to yi of the |Ji coefficients are allowed to assume their

extreme values, for all constraints i.

The corresponding robust non-linear model according to the Bertsimas-Sim model can then

be written as:

max cTx (2.7)

s.t. aijxj

+ max dijyj + (Fi - [FiJ)d i t yt} < bi V i (2.8)
{siu{t2}Is?;J2,Sil=tFJ,ticJ, g s E}

- Yj < Xj < Y3  Vj (2.9)

I< x < u (2.10)

Y > 0 (2.11)



Because F. can take on continuous values, up to [i] of the coefficients dij in constraint i

are allowed to take on their worst-case values, and one coefficient ait changes by (F, - [Fij)dit.

In the above formulation, Si represents the set of uncertain parameters in constraint i that take

on their extreme values, such that ISil = [j], Si C J. {ti} indicates the coefficient ait , for

constraint i, that changes by (Fi - [Fij)diti.

For the ith constraint, the term max { diiyjY + (FT [Fij )&t yt}
{Siufti}|SicJi,|siI=[Tij,tiE~liv Si} jESi

is a protection function that protects against the worst-case realizations of all dig, j E Ji. The

parameterized protection function thus uses Fj to offer various levels of protection. [Fij indi-

cates the minimum number of coefficients in constraint i that can assume their worst case values

without destroying feasibility of the solution. Fj = 0 represents the deterministic or nominal

case, whereas Fi JiI reduces this formulation to the Soyster formulation.

Bertsimas and Sim [BSO4] prove that the above non-linear formulation (2.7) - (2.11) can be

cast as a deterministic linear program, as follows:

max cTx (2.12)

s.t. Y aijx + zF 1 + pij < bi Vi E I (2.13)
jEJ jCJi

Zi + Pij > ijyj Vi C I, VjE Ji (2.14)

- Y3 < x < y3  Vj E J (2.15)

< X < u (2.16)

pij > 0 Vi E I, VjE Ji (2.17)

yj > 0 (2.18)

zi > 0 (2.19)

The detailed proof of the equivalence of (2.12)-(2.19) with (2.7)-(2.11) is in [BSO4].

Thus, the Bertsimas-Sim robust optimization approach ensures that the form of the math

program remains linear, and hence more tractable than formulations with non-linearities. Bert-

simas and Sim [BSO4] also provide probabilistic guarantees on the feasibility of constraints

when more than Fj coefficients take on their worst-case values. Moreover, they show how this



formulation can be applied to portfolio optimization, knapsack problems, supply chain manage-

ment [BT03], and network flows [BSO3] in order to obtain robust solutions.

The advantages of the Bertsimas-Sim model are:

" It is generally applicable to linear programs and integer programs.

" Linear integer programs remain linear integer programs, but contain more variables, de-

grading tractability minimally.

" Probability distributions for the uncertain data are not required to be known. Uncertainty

can be captured knowing the symmetric bounds of variation alone.

" Adjustments to the 'level of robustness' can be made using the F parameter, thereby

providing measures of the price of robustness, that is, the changes in planned objective

function value with changes in protection level. Robustness involves backing off from

optimality to gain solutions less vulnerable to uncertainty, implying that there is a price

associated with achieving each level of robustness.

" This model, with minor alterations, can capture simple correlations between uncertain

data in a constraint [BSO4]. However, it cannot capture correlations among uncertain

data across constraints.

The approach, however, also has some limitations:

" To determine the change in planned costs (or profits) as a function of the level of 'protec-

tion', the problem has to be re-solved multiple times, once for each different value of Fi,

for all i. Because the bounds are also not tight, there are very few guidelines to the choice

of Fi. This poses computational challenges for large-scale problems.

* It assumes symmetric and bounded distributions of uncertainty of parameters about their

nominal values.

" It does not incorporate knowledge of probability distributions, if known. This can result

in lack of inclusion of problem knowledge in the model.



" Probability bounds of constraint violation are derived for each constraint, and cannot be

easily extended to an overall protection level for the system.

" This approach is not particularly well-designed for the solution of very large-scale re-

source allocation problems [Mar07].

2.2.2 Delta Model

The Delta model is designed to address the basic practical issue encountered in the Bertsimas

and Sim approach; that of selecting an appropriate protection parameter Fi for each constraint i.

This is a potentially cumbersome task for large-scale problems. Given this, it might be necessary

to solve the Bertsimas-Sim robust optimization model repeatedly for varying values of the Fi

parameters before a satisfactory solution is identified. In the case of large-scale network-based

resource allocation problems, solving the model even once can be computationally challenging;

and therefore the requirement to solve it multiple times is likely to be impractical for large

problems. Network-based resource allocation problems are often formulated as binary integer

programs, and our Delta model is particularly designed for such formulations.

The standard binary integer program that is required to be made robust is:

max c xj (2.20)
JEJ

s.t. aj < bi V i CI (2.21)
jcJ

x E {O, 1} V jJ (2.22)

In (2.20)-(2.22), we use the following notation. I is the set of constraints, and J the set

of variables, cj is the profit coefficient for variable j and bi is the right-hand side value for ith

constraint, V i E I. aig for all i E I, j E J is the coefficient of variable j in constraint i. aij for

all i E I, j E Ji, is subject to uncertainty, with dij its realized value. aij is the nominal value

of di,, and also the mean value of its symmetric range of variation. dij is the half-interval of the

symmetric range of variation of dij, for all i E Ij E J. &ig = 0 for j C J\Ji. xg for all j E J,

is a binary decision variable that equals 1 if variable is present in the solution and 0 otherwise.

To avoid the need to specify F values, we modify the Bertsimas-Sim formulation to include



a constraint requiring the total profit of the robust solution to be within a difference of 6 from

the nominal optimal value. Additionally we change the objective to one of minimizing the

maximum number of variables that must assume their nominal, rather than extreme, values to

satisfy all constraints. We define variable A, equal to the maximum number of variables x in

the solution with x = 1 whose coefficient values are subject to uncertainty and must assume

their nominal values for constraint i to remain feasible. We sort, for each constraint i, its

associated columns j E Ji, in increasing order of their dij values (ties are broken arbitrarily).

After ordering, the rank of the jth column in the ith constraint is denoted by l(i, j). Also, the

original index (j) of the variable that takes the lth position in the sorted &ij values for constraint

i is denoted by j(i, 1). For example, the variable j in constraint i with the smallest dij value has

1 (i, j) = 1. The variable with the largest &ij value has 1 (i, J) = N, with N equal to the number

of binary variables in J.

Let yj be the optimal value of variable j for all j c J for the nominal problem (2.20)-(2.22).

Then 6 is the user-specified incremental cost that is acceptable for increased robustness, that is,

the profit of a robust solution from the Delta formulation is at least cyj -6. Let variables vij
jEJ

equal 1 if the uncertain coefficient dij is not allowed to take on its extreme value, and takes on its

nominal value in the solution of the Delta model. Variables wil equal 1 for all / > | J - +1

in constraint i for which there exists a k > 1 with Vik= 1, for I = |JI - |Jil + 1, ..., N + 1. wits

for 1 = |JI - |JJI + 1, ... , N + 1 in each constraint i follow a step function.

This leads to the following Delta formulation:

min ZAi (2.23)
iel

s.t. Zclx < cyy +6 (2.24)
jEJ cJ

S(aj + &ij) xj - Zdijvij bi V iI (2.25)
jEJ jEJ

IJI

A~ 3 [(1 - |JI + |Ji)(wil - w, 1+1 ) + vi,j(i,l) - wd V i E I (2.26)
l=IJH Jil+1

Ai2 > Zv V i E I (2.27)
jEJ



viu < X Vj E J,Vi C I (2.28)

vi,j(i,l) _ w, V l E J (2.29)

Vig > X + W,l(i,J) -1 V jEJ,ViEI (2.30)

wi,1 1 < wi,1  V1 E JI - Ji l + 1, ... , JVi I (2.31)

WiIJHIIi+1 < 1 Vi E I (2.32)

W,[JI+1 = 0 Vi E I (2.33)

wil =0 V1 E 1, ..., I -i |Jikl, G I (.4

j E {0, 1} Vj E J (2.35)

vig C [0, 11 Vj E 1, ... JlVi I (2.36)

wil E {0, l} V l E 1, ..., |J| + 1,VI i E (2.37)

The formulation is described as follows: The objective (2.23) is to minimize the sum of the

maximum number of coefficients in each constraint that must assume their nominal values to

satisfy all constraints. This serves the purpose of trying to maximize the number of coefficients

that can take their extreme values and still maintain feasibility. Constraints (2.24) require that

the profit from the 'robust' solution not differ from the profit of the deterministic solution by

more than a 'robustness budget' of 6. Feasibility is assured by constraints (2.25). We set vij

equal to 1 in constraint i, for all coefficients j that must be set to their nominal values. Inequali-

ties (2.28) prevent a coefficient from not taking on its extreme value unless the variable is present

in the solution, that is, sig to zero if xj is zero in the solution. Constraints (2.26) and (2.27) pro-

vide different mechanisms to count the maximum number of variables whose coefficients in

constraint i E I subject to uncertainty and must take on nominal values. The explanation for

this constraint lies in the realization that when the columns are sorted in increasing order of dij

values for each row i, the maximum number of coefficients that must assume nominal values to

maintain feasibility is determined by forcing the smallest &ij values (dij # 0) in the solution to

have their associated vij values set to 1, if x3 is in the solution. Though constraints (2.26) and

(2.27) are essentially the same, we retain both in order to provide better bounds on the solution.

(2.29) requires the w variable to be at least as large as the corresponding v variable for that j

and i. Also, (2.30) forces v to be 1 if both the corresponding x and w are 1. Constraints (2.31),



(2.32) and (2.33) require the w., variables corresponding to uncertain coefficients in each i to

form a step function. The wil variables corresponding to coefficients that are not subject to

uncertainty are zero (2.34). The x and w variables are binary, as required by (2.35) and (2.37)

respectively. They thus force the v variables to take on binary values as well. Alternatively, one

can think of this model as maximizing the minimum number of coefficients, summed over all

constraints, that can take on their worst-case values, under budget limitations.

Alternative objective functions to this model include 1) minimizing a weighted sum of coef-

ficients not allowed to realize their extreme values (I widi with weight i assigned to con-

straint i E I; or 2) minimizing the maximum number of uncertain coefficients in any constraint

that must assume nominal values rather than their extreme values, to satisfy the constraints; that

is min v, with additional constraints v > Ai, for all i E I.

2.2.3 Chance-Constrained Programming

The standard linear program that is required to be made robust is:

max cTx (2.38)

s.t. aij j < bi V i E I (2.39)
jEJ

x > 0, (2.40)

where the notation used is the same as for (2.20)-(2.22). Its general chance-constrained

formulation is as follows:

max f (c, x) (2.41)

s.t. P(Z aijxj < bi) ;> a, V i E I (2.42)
jEJ

x E X, (2.43)

where 'P' means 'probability', and X is the feasible set for (2.38)-(2.40). ai (0 < a < 1)

for all i, is a user-specified protection level for constraint i, and (1 - ai) specifies the maximum

degree of violation of constraint i.



Charnes and Cooper translate (2.41)-(2.43) into different models, for varied types of objec-

tive functions and correspondingly different constraints. They present models for three types of

objective functions, further details of which are available in [CC63], [CK67]. In each of these

models, b and c are assumed to be uncertain. We retain these assumptions in our model.

Ben-Israel [BI62] shows that the chance-constraint (2.42) can be linearized as follows:

N N

P(Z axj < bi) > a, > aigxo < Fb (1 -a), (2.44)
j=1 j=1

with y = F(1 - ai) equal to the quantile value in the cumulative distribution function

(CDF), Fbi, of bi such that the probability that bi takes on values less than or equal to y is (1-

a). That is, if f (b ) is the probability distribution function of bi, f_0 f(bi)db= 1 - ai.

Further, from the distributions of the elements in c, we can determine a vector of stipulations

# such that P(c < Ac) ;> # for some A. Ben-Israel shows that we can also write the above linear

program as

max(F.-1(#3))Tx (2.45)

s.t.Ax < Fg (1 - a) (2.46)

x > 0, (2.47)

with F-1(0) is defined similarly to F1(1 - a) above.

We capture uncertainty in the cost function using the expected values of the c vector, or by

using quantiles of c that we want to protect against, and uncertainty in the RHS can be captured

by using the relevant quantiles of the b-vector.

Thus, given the CDF of the right-hand-side (RHS) vectors, (or even certain quantile values

of the distribution), we convert the stochastic problem into a deterministic linear programming

problem of the same size as measured by the number of variables and constraints. Quantiles

of the probability distribution for uncertain parameters can be obtained by analyzing historical

data and incorporating additional knowledge of the system behavior.



The CCP model assumes the RHS (= b) and c alone to be uncertain, and adjusts the values

of these uncertain parameters to create a solution with more constraint slack than the nominal

problem. Unfortunately, chance-constrained programming encounters serious computational

issues as we try to capture uncertainty in multiple coefficients per constraint. For most of their

models, Charnes and Cooper limited uncertainty to one random variable per constraint (the b-

matrix value or RHS value). To incorporate uncertainty in the A-matrix (left-hand-side), we

must calculate a joint probability distribution for all uncertain coefficients in the constraint,

making the deterministic program cumbersome to solve. Miller and Wagner [MW65] discuss

chance-constrained methods for the case of multiple random variables (per constraint) generated

by a multinomial distribution. However, most chance-constrained programming has been lim-

ited to uncertainty in the constraints only in the right-hand-side due to the difficulties associated

with multiple random variables.

Modifying the right-hand side b vector in (2.44) is sufficient, however, to provide the entire

constraint a protection of oi. Therefore, though capturing uncertainty explicitly in the A matrix

is cumbersome, constraint (2.44) is implicitly protecting, to some extent, against changes in the

left-hand-side matrix.

The following are some of the advantages of this model:

" The structure of the CCP model is generalizable to all linear/integer programs.

" The model of capturing uncertainty has intuitive appeal. The deterministic formulation is
also easy to understand and interpret.

" The CCP model does not require complete knowledge of the distribution that the uncertain

data follows. In fact, knowledge of the quantile value of the distribution, corresponding
to the required protection level for the constraint, is sufficient. In general, knowledge

of a few discrete quantiles of the uncertain data for each constraint allows the user to

approximate the distribution without requiring too much data about the distribution. Such

information is also usually available through statistical analysis of the historical data of

the system.

" Finer knowledge of the behavior of the system, as compared to simply the bounds of

variation, can be captured through this model. Distributions other than the uniform dis-

tribution can be easily incorporated without an increase in complexity.

However, this model also has some limitations, as mentioned below:



" Uncertainty in the left-hand side A matrix, including correlations among uncertain data,

is difficult to model explicitly.

* Approximate probability distributions or some quantiles of the distribution of the RHS

have to be known. If unknown, the extreme-value bounds, as used in the Bertsimas-Sim

model, can be considered as the bounds of a uniform distribution.

2.2.4 Extended Chance-Constrained Programming

The Chance-Constrained Programming or CCP approach faces the problem of specifying a

probability of satisfaction for each constraint. In order to find the appropriate constraint pro-

tection parameters that result in overall solution protection (or robustness), we might need to

solve the problem repeatedly. This is potentially a limitation of the approach when applying

to large problems. The Extended Chance-Constrained Programming (ECCP) approach avoids

the need to specify the protection level for each constraint explicitly.

In our extended model, to avoid the need to specify the protection level for each constraint

explicitly, we include a constraint on the overall expected profit of the robust solution and

change the objective to one of maximizing the sum total of protection level provided for all

constraints. The ECCP formulation of (2.38) - (2.40) is as follows:

max ai (2.48)
iEI

s.t.P(Ax < b) > a (2.49)

E(cTx) > cy* - (2.50)

x > 0 (2.51)

a > 0, (2.52)

where cTy* is the expected profit of the nominal optimal solution y* to (2.38)-(2.40). Alter-

native objective functions may include 1) maximizing the minimum protection level amin with

an added constraint amin < ai for all i E I; or 2) maximizing a weighted sum of the constraint

protection levels (S w'yJ), wi being the non-negative weight assigned to constraint i E I.
iEI



To linearize (2.48) - (2.52), we require the knowledge of some quantiles and their associated

values of the probability distribution of the right-hand-side bi, for each constraint i, and the

expected values of the profit function. Let bi be the nominal value for the right-hand-side of

the ith constraint, and cj the expected profit coefficient corresponding to the jth variable, for all

j E J;. Let Ki represent the set of discretized protection levels known for bi. We now set the

protection levels a, for each constraint i as variables, representing the quantile that is chosen

from among the Ki available quantiles. Let bk be the kth quantile value of the RHS parameter

of the ith constraint, for all k c Ki, i e I; and zj be the optimal solution to (2.38) - (2.40)

found using nominal values of the b and c parameters, for all j E J. pk is the protection level

probability associated with quantile k E K for constraint i E I. The objective function value,

denoted amin, equals the minimum protection level achieved over all constraints i C I. To

capture the trade-off of robustness with profits, we assume that the planner is willing to forego

a (user-specified) profit of 6 to instead gain a robust plan.

Decision variables yk are binary variables that equal 1 if the protection level (expressed as

a probability pi, with 0 < pi K 1) represented by the kth quantile (k E K) is attained in

constraint i E I; and 0 otherwise. This means that if the kth quantile value is protected against,

the (k + 1)st quantile is also automatically protected against. This follows from the fact that

constraints (2.55) are 'less than' inequalities. The yk values for any constraint i, follow a step

function. Variables ai represent the protection level attained for the ith constraint, for all i c I.

The extended chance-constrained model (ECCP) is as follows:

max 7 (2.53)
2EI

s.t. c Xj;> c z - A (2.54)
jEJ jEJ

K

aijxj < b -(y - 1 ) V i E I (2.55)
jEJ k=1



yk > y k- V k = 1),,. Ki, i E I, (2.56)

- 0Vi E I (2.57)

K VZi E I (2.58)
Ki

_Yi < Z p(yk -yk-) Vi E I (2.59)
k=1

x > 0 Vj E J (2.60)

ky E {0, 1} V k E 1, ... Ki, i E 1 (2.61)

0 < Y < 1 V i E I (2.62)

The objective function (2.53) maximizes the total probability that each constraint i E I is

feasible. It can also be re-written to maximize the minimum value of 'yj over all constraints.

(2.54) ensures that the solution's expected profit is within A units of the expected profit associ-

ated with the nominal optimal solution (found by solving the problem using nominal values of

the b vector). For all constraints i E I, (2.55) forces the left-hand-side (LHS) to be less than or

equal to bk if yk equals 1, thereby ensuring constraint satisfaction with at least the probability

associated with quantile k. For the smallest quantile k* that can be satisfied, the y * value is

1, and quantiles k < k* have yk = 0. Thus, the RHS value of this constraint is selected as

the smallest one that can be satisfied by the solution. (2.56) ensures that the yks are monoton-

ically increasing and follow a step function, such that if a smaller quantile (higher protection)

is achieved, the larger quantile (lower protection) is automatically achieved. (2.57) and (2.58)

set the boundary values of the yk step functions. Constraints (2.59) set -yi to be no greater than

the highest protection level provided to constraint i by the solution. xj is non-negative for each

j E J; yk is binary for each j c J and each k E K for all i c I; and -y is non-negative for all

i E I as required by (2.60), (2.61) and (2.62) respectively.



2.3 Robust Models Applied to Aircraft Routing

2.3.1 The Standard Deterministic Aircraft Routing Model

Following is the standard deterministic aircraft maintenance routing formulation, denoted AR,

which we attempt to make robust in later sections.

AR:

min 0 (2.63)

s.t. E aix -1 ViE F (2.64)
sS

XS -YidY + y = 0 Vi E F+ (2.65)

-- E Xs -Yia + Ya = 0 V i E F- (2.66)
sCS

Ersxs + Epygy < N (2.67)
sGS geG

y9 > 0 V g c G (2.68)

xS E {0, 1} V s E S (2.69)

The decision variables in this formulation correspond to strings (sequences of flight legs) with

each string starting and ending at a maintenance station and obeying FAA and other regulatory

rules regarding maximum time between maintenance. Strings capture multiple decisions si-

multaneously, and thus are composite variables [ABWO2]. These are typically used when they

yield strong formulations, and/or when they remove the need to include complex, difficult to

model, constraints, as in the case of aircraft routing.

Let F be the set of daily flights, F+ be the set of flight legs originating at a maintenance

station, F- be the set of flight legs ending at a maintenance station, and S be the resulting set of

possible strings. The set of ground arcs (including wraparound arcs, beginning in one day and

ending in another day at the same location) is denoted by G, the set of flight legs ending with

flight leg i is S, and the set of flight legs beginning with flight leg i is S-. Ground variable

y;-d represents the number of aircraft on the ground before flight leg i departs and yj+ is the



number of aircraft on the ground after flight leg i departs, for all flight legs i. Similarly y?- is

the number of aircraft on the ground before flight leg i arrives and y' is the number of aircraft

on the ground after flight leg i arrives, for all flight legs i. aj, is 1 if flight leg i E F is contained

in string s E S and 0 otherwise. r, is the number of times string s E S crosses the count line, pg

is the number of times ground arc g E G crosses the count line, and N is the number of aircraft

available.

Constraints (2.64) are the cover constraints that require each flight leg to be covered exactly

once. Constraints (2.65) and (2.66) balance the number of aircraft at each location and con-

straints (2.67) count the number of aircraft. x, takes on value 1 if string s c S is selected to be

operated by an aircraft, and 0 otherwise. yg is the number of aircraft on ground arc g E G.

2.3.2 Modeling

The first challenges associated with achieving robust solutions are deciding what constitutes

robustness and how to capture these in the optimization model. In the following sections, we

illustrate how different modeling paradigms will force different modeling approaches, resulting

in different solutions and different computational challenges.

Using schedule data and details of operated aircraft routings (typically available from the

ASQP database [Bur09b]), Lan, Clarke and Barnhart compute the independent and propagated

delay for each flight leg. Because independent delays are, by definition, independent of aircraft

routings, independent delays can be applied to any sequence of flights forming a string to esti-

mate propagated delay (PDj), total departure delay (TDD(i)) and total arrival delay (TAD)

for each flight leg i along that string, or along any possible string, even those not operated by

the airline. With this, it is also possible to compute the probability of a flight leg being delayed

to a certain extent, or the probability of a string experiencing a specified level of propagated

delay, or the range of delays experienced by a flight leg or a string. These characterizations of

uncertainty are employed in the following sections.



2.3.3 Tailored Approach

Lan, Clarke and Barnhart [LCB06] attempt to make an aircraft routing robust by driving AR

using the metric of total expected propagated delay. Recall from §2.1.2, that total propagated

delay differs from total aircraft delay by a constant value. Thus, minimizing expected propa-

gated delay is equivalent to minimizing expected total aircraft delay.

Let pd' be the propagated delay from flight leg i to flight leg j when i immediately precedes

j in string s. Using the notation introduced in 2.3.1, and assuming that the different strings in

the network are independent of each other, the expected propagated delay in the network is:

E [ ( pd. x, = (x, x ( E[pds31] = ( dexs (2.70)
sES (ij)Es sES / (ij)E sES

where ds E [pdig].
(ij)E s

In terms of problem structure and complexity, the Lan, Clarke and Barnhart tailored model

(LCB) is the same as AR, except that the feasibility objective is replaced with the objective of

minimizing total expected propagated delay, specifically:

LCB:

min dsx8  (2.71)
sES

s.t. Cover, Balance, Count, and Integrality (2.64) - (2.69) (2.72)

2.3.4 Probabilistic Chance-Constrained Programming Approach

In Chance-Constrained Programming, the chance or probability that a constraint of the model

is satisfied is required to exceed some specified threshold level. The chance-constrained formu-

lation of aircraft routing is as follows:



max 0 (2.73)

s.t. P(Z aisx = 1) > aj Vi c F (2.74)
sES

Balance, Count, and Integrality (2.65) - (2.69), (2.75)

where P denotes probability, and ao is a user-defined 'protection' parameter indicating the min-

imum probability that the aircraft routing solution will satisfy constraint i. Charnes and Cooper

[CC59] describe how to model the non-linear constraints of (2.74) as linear constraints.

We model uncertainty in the flight cover constraints (2.64) by defining pis as the probability

obtained from historical data, that flight leg i in string s is covered, that is, is delayed by fewer

than t minutes when string s is operated. We let t = 90 minutes to indicate the threshold beyond

which flight cancelations, and hence flight non-coverage, can occur. Because each flight leg is

present only in a single string in the solution, the probability of flight i being delayed less than

t minutes is pi = pi8 x,. Using this, we re-write (2.73) - (2.75) as:
sES

CCP:

max 0 (2.76)

s.t. a 8xs= 1 Vi E F (2.77)
seS

PisXs ;> a V i E F (2.78)
sCS

Balance, Count, and Integrality (2.65) - (2.69)

Constraints (2.78) are the 'robustness constraints' that limit to ai the probability that flight

leg i is delayed more than t minutes in the operation of string s.

In structure and complexity, CCP is similar to AR, though it adds constraints (2.78), one

for each flight leg, and requires specification of the value of ai for each constraint i E F. As

discussed in §2.2.4, this model faces challenges associated with the specification of a values.

Too high values can lead to infeasibilities and too low can lead to lead to inadequate levels of



robustness or protection. As a result, CCP might have to be solved repeatedly to find appropri-

ate a-values. Repeated solution of CCP, however, might be both impractical and ineffective in

identifying the best a-values. The a - CCP model (2.79) - (2.82), which is a special case of the

general ECCP model (2.53) - (2.62), overcomes these limitations. In the a - CCP model, the

protection levels a for constraints (2.78) need not be specified apriori and instead are decision

variables in the model. The objective of a - CCP (2.79) is to maximize the sum of protection

levels of all the constraints.

a-CCP:

max ai (2.79)
iEF

s.t. a ,x= 1 ViE F (2.80)
sGS

ai < piSXS ViE F (2.81)
sGS

Balance, Count, and Integrality (2.65) - (2.69) (2.82)

Alternative objective functions include: 1) maximizing a weighted sum of flight probabili-

ties aiwi with weight wi assigned to flight i; or 2) maximizing the minimum probability

a (max amjn) with additional constraints amin < pisx, for all i C F.
seS

2.3.5 Extreme-Value Robust Optimization Approach

We adapt the extreme-value robust optimization approach of Bertsimas and Sim to the aircraft

routing problem by letting ti, = -1 if flight i E F in string s E S has extreme value of delay

exceeding t minutes, based on historical data. Because the Bertsimas and Sim approach con-

siders realizations of the uncertain parameters at their extreme (or worst-case) values ([BSO4],

[BSO3]), if a flight i in string s has extreme delay exceeding t minutes using historical data, the

extreme value ai, = -1 results in ai, + is&= 1 -- 1 = 0, reflecting the extreme occurrence that

flight i is canceled, and hence, uncovered.



In the cover constraint for flight i E F, let Si be the set of strings s E S whose coefficients

ais are subject to uncertainty. For each flight i, the Bertsimas and Sim robust optimization

approach defines a 'robustness' or 'protection' parameter Fi taking on (possibly continuous)

values in [0, 1S ], representing the number of coefficients in the solution in constraint i that can

assume worst-case or extreme values and still satisfy feasibility of the constraint. The model

ensures constraint feasibility in the case when up to [Fij coefficients take on extreme values,

and one coefficient ait changes by (Fi - [Fj )4t. For our purposes, integer values of Fi are the

most meaningful because of the uncertainty definition. Fi represents the number of strings, for

each flight i E F, in which flight i cannot experience delays greater than or equal to t minutes in

the extreme case. The resulting extreme value formulation from the Bertsimas and Sim model

is:
min 0 (2.83)

s.t. agx
sES

+ max disws + (F- [F iJ)&t wt} 1 V i E F (2.84)
{S utilS" ;Si,lS' |=[Fij 1tiEZSi\S 1 EJ

xS < wS V s S (2.85)

w > 0 V s E S (2.86)

Balance, Count, and Integrality (2.65) - (2.69). (2.87)

If Fi = 0 then the cover constraint for flight i reduces to Eaisxs = 1, with robustness
seS

concerns effectively ignored. If Fi > 1, the constraint ensures that each flight i c F is covered

by at least one string s that both contains flight i and has extreme value of delay less than t for i.

EV ensures that each flight is covered, in the worst-case, by placing it in more than one string

if needed, thus over-covering flights. Because the values of dtis are either 0 or -1, (2.83)-(2.87)

simplifies to:

EV:

min 0 (2.88)

s.t. Eaiss + max &isxs, -Fi } 1 (2.89)
sES s E S)

Balance, Count, and Integrality (2.65) - (2.69), (2.90)



with the second term in (2.89) representing the protection level, and can be linearized easily.

Note that the level of robustness can be varied by selecting different values of the extreme

delay parameter t. Reducing the value of t will have the effect of generating more conservative

solutions, those that permit little delay, while increasing the value of t will have the opposite

effect. This change in t produces a similar effect in the CCP and a - CCP as well.

As in the CCP model, the EV model requires the specification of a parameter value (in

this case, Fi) for each cover constraint (2.89). To avoid the need to repeatedly solve EV to

determine the best F-values, likely an impractical exercise, we propose an alternate model,

denoted A - EV, in which F parameters are modeled as decision variables. This model is a

special case of our general Delta model presented in §2.2.2, tailored to aircraft routing. The

goal of this formulation is to minimize, for each constraint i, the number of variables in the

solution whose coefficients are not allowed to realize their extreme values (denoted by Ai), in

order to ensure feasibility of the constraint. (Note that A2 is the converse of Fi.) We minimize

sum of Ai for all flight legs i, thus maximizing the protection level. Due to the special structure,

the A - EV model can be formulated without any A variables, as follows:

A - EV :

max asss (2.91)
icF sGS

s.t. a ax, > 1 V i E F (2.92)
sES

Balance, Count, and Integrality (2.65) - (2.69) (2.93)

The objective (2.91) effectively maximizes Y3 Fi or minimizes Ai by maximizing the total
icF iCF

value of the protection function in (2.89) summed for all flights i E F.

2.3.5.1 Capturing Uncertainty in the Objective

Because the extreme value robust optimization framework also allows uncertainty to be modeled

in the objective function, an alternative to EV and A - EV is to capture uncertainty in a

manner similar to that of the Lan, Clarke and Barnhart tailored LCB model, but within the



extreme value framework. This can be translated into minimizing the total propagated delay

when a user-defined number of strings F in the formulation realize their worst-case values of

propagated delay. The detailed formulation is presented below.

The protection parameter F is defined in the interval [0, |S]. Let ds be the worst-case (max-

imum or 100th percentile) value of propagated delay of string s observed in the historical data.

(Note that this is not the worst possible realization of propagated delay, but only that in the

selected period of historical data.)

The formulation allocates slack such that it minimizes the effect of the maximal delay caused

by any set of F strings in the solution realizing their worst-case values, and the other strings at-

taining their nominal values of propagated delay (equal to zero). That is, it minimizes the

propagated delay caused by the maximal subset of F strings in the solution realizing their ex-

treme propagated delay values, as shown in (2.94). Variable w, for string s E S takes on value

1 if string s is present in the solution, and the model plans for its extreme value being realized.

The extreme-value formulation, according to Bertsimas and Sim [BSO3], is as follows.

Obj - EV:

min { xs + s/ max { dsws + (F - LFJ)dtwt} (2.94)
ss u{s'u{tlIs'css'l=FJ,tEs\s'l I S

s.t. Cover, Balance, Count, and Integrality (2.64) - (2.69) (2.95)

x, < w, V s e S (2.96)

wS > 0 V s S (2.97)

Obj - EV can be linearized, and cast as a mixed integer program, as follows:

Obj - EV:

min zF + ps (2.98)
sES

s.t. z + p> dsws V s E S (2.99)

Cover, Balance, Count, and Integrality (2.64) - (2.69) (2.100)



x8 < w, V s S (2.101)

wS > 0 V s S (2.102)

z > 0. (2.103)

These mixed integer programs have a very different structure from AR [Mar07], and face

computational challenges in solving (@2.5.1).

The difficulty with this model, again, is specifying the 'best' value of F. Because a value

of F does not indicate the overall robustness of the solution, it is difficult to specify apriori.

We therefore present the A - Obj - EV model for which we find a solution such that the

maximum propagated delay D exceeds the sum of the extreme delay values of any subset of

F strings, with F maximal. The A - Obj - EV solution, therefore, is an aircraft routing that

allows the largest number of strings to realize their worst-case propagated delay values without

exceeding the maximum allowable system propagated delay D. This model, like the A - EV,

is a special case of our general Delta model, presented in §2.2.2.

D is a threshold on total propagated delay, obtained by analyzing the historical occurrences

of propagated delays. A possible value of D could be 50% of the average total propagated

delay on a bad day. We set to zero the nominal propagated delay value for any string s, and

let d. represent the expected extreme or worst-case value of propagated delay for string s, as

computed using historical data. Let S be the set of strings s E S with realizations of non-zero

propagated delays in the historical data, that is, with non-zero d. We set v, 1 if string s E S

has to take on its nominal propagated delay value of 0 and not its worst-case (historical) value

for the solution to be feasible. To maximize the size of the minimal subset of strings that can

realize their worst-case values and ensure feasibility, we sort the strings in increasing order of

their d. values such that di < d2 < ... K dIsi. A is the maximum number of strings with

propagated delays subject to uncertainty that must assume nominal, not worst-case, values to

be feasible.



A - Obj - EV:

min A

s.t. E SXS - EsVs < D
sES sES

sES

vs K x,

vs ws

vs > xs + ws - 1

ws 2 wsl+1

WISIl+1 < 1

WISi > 0

Cover, Balance, Count, Integrality

(2.64) - (2.69)

(2.104)

(2.105)

Vs E S (2.106)

V s E S (2.107)

Vs E S (2.108)

V s E S (2.109)

Vs E SI - 1S|+1, ..., ISI - 1 (2.110)

VZiC EI (2.111)

V i E 1 (2.112)

vs E [0, 1]

wS E {0, 1}

V s E S

V s E S

(2.113)

(2.114)

(2.115)

Constraints (2.105) require that the total worst-case propagated delay be limited by D when

any 1S1 - A strings take on worst-case propagated delay values. vs - 1 for all strings 5 E S

in the solution whose delay value must be set to 0 to achieve feasibility. w, = 1 for all strings

s E S for which there exists a k > s such that Vk - 1. Inequalities (2.107) force o, = 0

unless string s is present in the solution. Inequalities (2.108) allow v, to be 1 only if w, is 1.

(2.109) allow v, to be 1 only if both w = 1 and xs - 1. Constraints (2.106), in combination

with the objective (2.104) count the maximum number of strings s E S whose coefficients must

take on the nominal propagated delay value of 0. The explanation for this constraint lies in the

realization that when the strings in S are sorted in increasing order of d5 values, the maximum

number of coefficients that must assume nominal values to maintain feasibility is determined



by forcing the strings with the smallest d, values, for s E S, to have their associated v, values

set to 1 if x, is in the solution. Constraints (2.110), (2.111) and (2.112) require w, for s E S

to form a step function, so that the maximal set of w, can be set to 1. Constraints (2.114) and

(2.115) restrict w and v variables to take on values of 0 or 1 only.

2.4 Evaluation

2.4.1 Experimental Set-up

We conduct our experiments using data representing the flight network of a major US airline

that operates a hub-and-spoke network. We identify the sub-networks for two different aircraft

types, with each representing a different aircraft routing problem, denoted N1 and N2. The

schedules of both networks are daily schedules, that is, the same set of flight legs is operated

every day by each aircraft type. The characteristics of N1 and N2 are shown in Table 2.2.

Historical flight leg delay and cancelation data are obtained from the Airline Service Quality

Performance (ASQP) database [Bur09b] for two of the busiest months of the year. Both the

months have similar schedules, load factors, and levels of delay. Delay data consisting of 19

days in the first month (referred to as historical data) is used to derive delay information (dis-

tributions and expected values) of flights. These data are used as inputs to the aircraft routing

models. The solutions are then evaluated using delay data for 22 days of the following month

(referred to as future data). Our models are implemented in C++ and OPL Studio v6.0 on a Dell

PC with 1 GB RAM.

In evaluating robust routings, we assume that flight delays are allowed to propagate along

the string, without any recovery interventions such as cancelations or swaps. This allows us to

estimate the levels of delay propagation and robustness of the strings that may occur without

intervention. Because cancelation and swapping strategies are different for different airlines,

assuming particular swapping and cancelation strategies could lead to bias.

2.4.2 Metrics and Simulator

We assess the robustness of an aircraft routing solution by the following metrics:



Fleet Type Daily Flights Locations
N1  38 10
N 2  50 16

Table 2.2: Fleet Network Characteristics

1. Expected on-time performance for all legs in the flight schedule for 15 minutes, 60 min-

utes, 120 minutes, and 180 minutes;

2. Total expected number of passenger disruptions; and

3. Total expected daily flight delay.

These metrics reflect DoT performance and passenger-centric metrics. Because total flight

delay is equal to propagated delay plus independent delay (which is constant), comparison

results related to propagated delay also apply to total delay.

For our simulator, we use Lan, Clarke and Barnhart's algorithm to compute from the air-

line's solution, for each day in the 'future' month of data, the propagated delay (PD(i)) and

independent delay (ID(i)) from the total departure and arrival delays TDD(i) and TAD(i)

for each flight i. Following that, we also compute metrics such as total flight delay for each

day, 15 minute on-time performance, 30 minute on-time performance, and the total number

of passengers disrupted for the airline's routing. To compute passenger disruptions, we enu-

merate all pairs of flights fi, f2 between which passengers connect. Let C(fi, f2) be the

scheduled time available for the passenger to make the connection and let nfh f2 represent

the minimum time needed for a passenger to connect between flights fi and f2. Then, if

C(fi, f2) - TAD(fi) + TDD(f 2) < mfnfj, the actual connection time between fi and f2

is too short and passengers scheduled to make this connection are disrupted. Then, given inde-

pendent delay for each day in the 'future' data for each flight leg i, we re-employ Lan, Clarke

and Barnhart's algorithm (in the reverse order of steps) to compute the same delay and disrup-

tion metrics for each of the solutions we generate using our models. Note that the models use

historical data to generate the solution, and then the 'future data' is used to evaluate them.



2.5 Results

In this section, we present the results of our experiments, studying similarities and differences

in the solutions obtained in terms of complexity, run time and robustness as measured by our

metrics.

2.5.1 Typical Computation Times

Table 2.3 reports average computation times for the airline instances solved in this work.

Model Parameters Iterations Run time per iteration
AR None 1 5 sec
LCB None 1 10 see
CCP az V i 53 7 sec
a - CCP None 1 7 sec
EV ]7 V i 50 35 sec
Obj - EV F 15 45 sec-10 hrs (sometimes out of memory)
A - EV None 1 28 sec
A-Obj-EV D 5 3hrs

Table 2.3: Complexity and Run Times

For the CCP and EV models, multiple iterations are required to determine the appropriate

a and F values, respectively. Because there is no prior indication if a particular protection

a, or Fj (for flight i) renders the model infeasible, experimentation with different values is

necessary. We found, for example, that for N2, CCP was infeasible with a values of 99% and

95%. Also, some flights can be protected to a greater extent than others. To obtain the 'right'

protection levels, the model had to be solved multiple times. We overcame this limitation using

our a - CCP, A - EV and A - Obj - EV models. Although they each had to be solved only

once, the computation time of a - CCP, A - EV and A - Obj - EV models are comparable

to the time required to solve a single iteration of CCP, EV and Obj - EV respectively.

2.5.2 Correlations between protection levels and robustness metrics

The protection parameters a and F in the CCP, EV and Obj - EV models are designed to

represent the extent of robustness desired, with larger values of a and F representing higher



% Flight Delays (min) Pax Disruptions
< 15 < 60 < 90 < 120 < 180 Num. D-pax %D-pax reduced

aj = 90Vi 78.54 93.10 95.63 97.82 98.91 1025 6.77
ai = 92 V i 77.54 92.54 95.00 97.36 98.54 1209 -9.90
ai = 94Vi 79.54 93.73 96.00 98.18 99.18 987 10.20
Airline's Routing 77.72 92.82 95.30 97.73 98.91 1100 0.00

Table 2.4: Robustness metrics for N2 do not improve with increasing protection parameters in

the CCP model (t = 90)

levels of solution robustness and improved robustness metrics values. Notice, from Table 2.4,

that for individual flight protection levels ai for flight i for a delay threshold t = 90, we get

a network on-time performance for t = 90 minutes, of at least a = ai for all i. We observe,

however, that the values of the robustness metrics do not necessarily increase for solutions to

the EV, Obj - EV and CCP models using increased values of protection parameters.

Table 2.4 and Figure 2-4 show that with increases in a, the solutions to CCP can worsen

with respect to flight on-time performance, passenger disruptions and total aircraft delay min-

utes. There are several explanations for this. First, optimal solutions to the CCP with ai = 90

for all i E F can include solutions that satisfy ai = 90 or ai = 94 or ai = 96 for all i E F.

All of these solutions are considered optimal although, intuitively, the solution with the high-

est a value has the most slack and should therefore be the most 'robust'. As a result, non-

monotonicity of robustness metrics occurs, as shown in Table 2.4. In the case of ai = 90 for all

i E F, 95.63% of the flights are delayed less than t=90 minutes and for ai = 92 for all i E F,

95% of the flights are delayed less than t=90 minutes.

Another reason that the robustness metric values do not always increase with increasing

values of a is that the CCP model focuses on selecting routings that limit the likelihood of oc-

currence of 'long' flight delays as a proxy for robustness, and is not (and cannot) be formulated

such that its solution will optimize simultaneously the three different (and sometimes opposing)

robustness metrics that we evaluate.

Similarly, as illustrated in Figure 2-5 and Table 2.5, higher values of F in EV do not always

produce better solutions. The explanations for this occurrence are similar to that for CCP.

Multiple optimal solutions to EV and Obj - EV for given F-values satisfy protection values

F, even though the solutions might have very different levels of slack and hence, exhibit very
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Figure 2-4: CCP model solutions for network N2 do not show improved total delay minutes
with increased protection (t = 90)

% Flight Delays (min) Pax Disruptions
< 15 < 60 < 120 < 180 #D-pax %D-pax reduced

ri =Vi 78.63 93.00 97.36 98.54 1222 -11.0
2i 2Vi 79.54 93.54 98.09 99.18 987 10.3

Fi =3Vi 74.18 91.00 96.54 97.90 1353 -23.0
Airline's Routing 77.72 92.82 97.73 98.91 1100 0.0

Table 2.5: Non-monotonicity in robustness metrics for N2 with increase in F in EV (t = 90)

different performance with respect to our robustness metrics. In fact, some of the optimal EV

solutions are less robust with respect to our robustness metrics than the airline's routing, as

is the case with F = 3 in Figure 2-5 and Table 2.5. The second explanation for why higher

levels of F in EV and Obj - EV models can lead to less robust solutions is the same as that

for CCP. EV, like CCP, does not capture all the robustness metrics precisely, but rather

builds robustness into the solution by over-covering flight legs with multiple aircraft if some

have associated delays that can be long in the extreme-case. Similar is the case with Obj - EV.

We, however, see slightly less variability in the alternate optima because the Obj - EV model

is based on extreme propagated delay minutes for each string and accounts for every minute of

delay, instead of thresholds of t minutes.

The issue of choosing solutions with the maximum a and F values among multiple optimal

.... ...................... - ....... .. ... .... ...... ........ ....... ..... ... ..... .....
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Figure 2-5: Bertsimas-Sim model solutions for N2 show non-monotonic relationship of propa-
gated delay with I' (t = 90)

solutions is addressed by the a - CCP, A - EV and A - Obj - EV respectively, with their

objective functions to maximize the protection levels. Table 2.6 in comparison with Tables 2.5

and 2.4 show that these models can select, among different optimal solutions to the CCP and

EV models, those with the highest levels of protection parameters, and it turns out, the greatest

values of our robustness metrics.

2.5.3 Solution Differences due to Modeling Paradigms

In this section, we compare the three modeling paradigms: extreme-value based, probabilistic

chance-constrained-based and the tailored approach studied in this paper. To avoid issues with

specification of robustness parameters and to focus on the modeling paradigms, we compare the

LCB, a - CCP, A - EV and A - Obj - EV models.

Table 2.6 compares the airline's routing with solutions obtained from the A - EV, A -Obj -

EV, a -CCP and LCB models. First, both the A - EV and a -CCP model solutions improve

upon the airline's routing, overcoming the drawback with some of the solutions generated by the

EV and CCP models. In fact, A - EV, A - Obj - EV, a - CCP and LCB perform similarly

with respect to our metrics. The improvements in the 15 minute on-time performance results, for

this data, result in the airline's ranking improving to place second among US carriers. The delay

.. .. .. .. ........ .......... .. .......... .........



% Flight Delays (min) Pax Disruptions
< 15 <_60 < 120 < 180 #D-pax %D-pax reduced

A - EV 79.54 93.54 98.09 99.18 987 10.3
A - EV (alt) 78.20 93.10 97.73 98.82 1056 4.03
A - Obj - EV 79.27 93.54 98.10 99.10 988 10.14
A - Obj - EV (alt) 78.36 93.10 97.90 99.00 1012 7.93
a - CCP 79.54 93.73 98.18 99.18 987 10.2
LCB 79.54 93.73 98.20 99.18 986 10.3
Airline's Routing 77.72 92.82 97.73 98.91 1100 0

Table 2.6: A - EV, A - Obj - EV and a - CCP identify robustness parameters to improve
upon the airline's routing for N2 (t = 90)

minutes saved for this fleet result in a savings of $120,000 for the 22 days, when the per-minute

costs are according to the Air Transport Association [AirO8]. Second, the A - EV model,

like EV, can still have multiple optimal solutions with significant differences in performance.

Although alternative optimal solutions have the same A-value, they differ significantly in the

associated values of the robustness metrics.

Consider A - EV and A - Obj - EV solutions in Table 2.6. We see that the A - EV

and A - Obj - EV solutions perform similar to the LCB and a - CCP model solutions;

however their alternate optima A - EV (alternate) and A - Obj - EV(alternate) perform

significantly differently. In fact, A - EV and A - EV(alternate) both ensure that of 44 of 50

flights in N2 are covered (have delays less than t) in the extreme case, but have very different

probabilities of flight delay less than t = 90, of 91 % and 87% respectively. This results in a total

delay difference of 2091 minutes over 22 days between the two solutions. A similar difference

is observed between A - Obj - EV and A - Obj - EV(alternate). These differences are

much lower, however, in the case of worst-case delay metrics (such as delays more than 180

minutes), because these models are driven by the extreme value delays. Because the A - EV

and A - Obj - EV models are formulated to avoid low probability values of worst-case delay

or non-coverage, optimal solutions can have very differing values of average performance as

measured by on-time performance and number of disrupted passengers averaged over several

days. To illustrate, consider Figure 2-6 in which realization probabilities of two flight-string

combinations i1si and i2s 2 are shown. A - EV and EV do not distinguish between both these

realizations, because both i1si and i2S2 have non-zero historical probability of realizing a value
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of 0. Also consider Figure 2-7(b) in which the distributions of propagated delays for strings in

N1 are shown. The propagated delay distribution is seen to be approximately bi-modal, with

a large (-88%-95%) probability of the propagated string delay being on the lower end of the

scale, and a small (~5%-l2%) probability of the propagated delay being close to its worst-

case value. The probability of interim values occurring is very small. Strings in which the

worst-case propagated delay value is very large are correlated with the aircraft flying through

multiple (usually) congested airports and the string containing a large number of flights (which

can mean tightness in turn times). Because the probability of occurrences of such extreme

propagated delays is small, the emphasis on extreme values of delays does not necessarily drive

the extreme-value models towards good values of the average-case robustness metrics.

Because the a - CCP model captures the probabilistic nature of events, its emphasis on

high-probability events results in optimal solutions which correlate on average to improved

values of the metrics under consideration (Table 2.6). Alternative optima to a - CCP exist, but

there is little difference in their performance with respect to the values of robustness metrics.

The LCB model uses average values of string propagated delay, shown in Fig. 2-7(b).

Because the average is at about the 85th or 90th percentile of string propagated delay, LCB

ignores the extreme value occurrences forming the remaining 5-10% of the distribution, and its

objective of minimizing total average propagated delay seems to correlate well with our robust-

ness metrics, with the LCB solutions performing well for all metrics (Table 2.6). Although
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the LCB model does not capture the probability distribution of delays, by using average delay

values, it is similar to a string-based a - CCP model when its protection level is set, for these

problems, to the 90th percentile level. The advantage of LCB over a - OCP is that it is able

to capture uncertainty in a simpler way, resulting in a highly tractable model.

We can apply the insights gained in solving the aircraft routing problem with LCB and

a - CCP models to improve the extreme value-based robust optimization models. Specifically,

by adjusting the 'extreme' values in the Obj 'EV and A-Obj-EV models to, say, the average

values of string propagated delay, we can generate solutions using these models that perform

more like those of the LCB and a - CCP models. This, of course, underscores the difficulty of

setting these extreme values a priori, and the sensitivity of the solutions to these model inputs.

2.6 Conclusions

In this chapter, we study the application of three types of models - extreme-value based, prob-

abilistic and tailored approaches, to the problem of aircraft routing. These three robustness

mechanisms lead to different models with different solutions which have different robustness

performances with respect to various metrics of interest.

The extreme-value models (EV and Obj - EV) were based on the Bertsimas and Sim ro-

bust optimization approach, the probabilistic model (CCP) on Charnes and Cooper's chance-
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constrained programming approach and the tailored model (LCB) was Lan, Clarke and Barn-

hart's robust aircraft routing approach. Increased complexity and solution times are associated

with the extreme value and probabilistic models, when compared to a deterministic model,

because the models have to be solved several times for different values of the robustness param-

eters F and a. To avoid iterative re-solving, we developed extensions to these models: A - EV,

A - Obj - EV for the extreme-value approach, and a - CCP for the probabilistic approaches

respectively. Our extended models can be solved in a single iteration, with runtimes equivalent

or lower than a single iteration of the basic models. We evaluated solutions to the different

models through simulation, and measure performance via total aircraft delay, on-time perfor-

mance metrics, and passenger disruption metrics. The extended extreme value and probabilistic

models can consistently lead to the generation of more robust solutions (compared to the basic

models, and the solution currently operated by the airline), as defined by the metrics of interest.

These models are also generally applicable, as described in 52.2.2 and @2.2.4.

Our findings show that extreme-value based models EV, Obj - EV, and A - EV and

A - Obj - EV have optimal alternative solutions that exhibit very different performances

according to our robustness metrics; varying from good improvement compared to the airline's

routing, to no significant improvement or even deterioration. This behavior is because the

robustness mechanism (F or A) is driven by extreme values of delay. This dependence on

extreme delay values, ignoring probabilistic information, leads in some cases to a large disparity

in the performance of the alternative optimal solutions. In such cases, extra care should be taken

in evaluating alternative optimal solutions to these approaches. From this, we conclude that it

is not effective to drive the solution process with extreme values that are rare.

The tailored approach LCB and the probabilistic CCP robustness approaches are very sim-

ilar, in that expected values of string propagated delay, used to drive the LCB, are at about the

85th to 90th percentile of the string propagated delay distribution; and cause the formulation

to focus on higher-probability events. Similarly, probabilistic approaches also focus on higher-

probability delay events, and produce improved routings according to our metrics. These ap-

proaches thus capture more information about the system and focus on more likely delay events,

and thus are more in line with our metrics of interest. Though the tailored approach in itself

does not explicitly capture knowledge of probability distributions, by simplistically incorpo-



rating the 'right' delay quantile in its objective, it can achieve improved results through a less

complex model. The probabilistic approaches (CCP, a - CCP) allow more fine-tuning of

robustness using the a and t parameters, but at a cost of a larger, more complex formulation (al-

beit very tractable for this application) and the implementation cost that additional distribution

knowledge is needed for the a - CCP compared to LCB.

In conclusion, the efficacy of any given robust approach is determined not by the approach

or model alone, but by the interaction between the model, data and evaluation metrics. Our

work underscores the importance of choosing an approach that aligns itself well with the data

distributions for the aircraft routing problem and metrics of interest to the DoT, industry and

passengers. When applying general robust approaches to more specific problems, care should

be taken to understand the nature of uncertainty and in choosing robustness parameters, in

relation to the metrics, especially when metrics involving multiple stakeholders are involved.



Chapter 3

Robust Optimization Insights from Three

Applications

A variety of robust approaches exist in the literature, but there has been limited work into (i)

articulating useful guidelines to their application; and (ii) developing validation criteria for ef-

fectiveness across a variety of application domains. This work takes a step in that direction,

by studying the application of three types of robust approaches to resource allocation problems

drawn from the application areas of corporate portfolio optimization, pharmaceutical supply

chain design and aircraft routing. Using a computational approach, we model, solve, and eval-

uate solutions from the robust optimization approaches. While the aircraft routing problem has

been discussed in detail in Chapter 2, the corporate portfolio optimization and pharmaceutical

supply chain problems arose in collaboration with IBM Research's Zurich Research Laboratory

[MPRSO9]. We present modeling perspectives for the three problems, comment on the impor-

tance of data and provide general insights into the application of the models considered. We

expect that these insights can provide value in the case of other robust approaches as well.

We do not present a comprehensive analysis of each problem here. They can be obtained in

Masters theses of Gallay [Gal05] and Epiney [Epi07]. Neither is the goal to present a 'recipe'

for robust optimization. Instead, by combining observations from the three domains, we try to

provide insights into the nature and application of different robust optimization approaches.



3.1 Robust Optimization

3.1.1 Defining Robust Optimization

Robustness in the airline context has been discussed in Chapter 2. In this section, we briefly

discuss the notion of robustness in a more general context. Robust optimization may be concep-

tualized in two ways - (i) decreasing the susceptibility of a system to volatility; and (ii) creating

flexibility when the decision making process is sequential, that is, in the recourse or repair ac-

tions that become available when uncertainty is encountered and results in disruptions to the

plan.

Robust optimization problems are multi-criteria optimization problems. Fundamentally, the

concept of robustness refers to the ability of a system to be less vulnerable to uncertainty and

thus, more reliable. Because the different metrics of interest - cost, robustness, etc. - might not

necessarily be positively correlated with each other, we expect that there will exist a trade-off

between the different metrics of interest. In different systems, the concept of 'less vulnerable'

is defined by different, sometimes conflicting, metrics of robustness. Ideally, we would like

to obtain a pareto-optimal trade-off curve among the different robustness and cost metrics of

interest to the stakeholders and decision-maker. Therefore, the goal in building robust solutions

is to identify a trade-off frontier or a pareto-optimal frontier between these metrics. However,

because robust approaches are at best approximations of the actual robustness metrics, the trade-

off curves that are generated by the robust approaches are different from the trade-off curves we

are trying to generate. We would like to be able to use approaches that most closely approximate

the 'true' trade-off between the metrics, however, again, that is difficult to determine apriori.

3.1.2 Challenges in Building Robust Solutions

In building robust models and solutions, we encounter the following questions and challenges:

1. What does robustness mean? How can we model it in different contexts?

2. How can a problem be formulated using different robust optimization techniques?

3. What is the knowledge of uncertainty (data requirements) that allows a particular model
to be applied?



4. What are the major factors that distinguish solutions generated from different modeling

techniques?

5. Does more information/data about a system help generate better models and find more

robust solutions?

6. In general, it is difficult to estimate realized costs or realized reliability during the opti-

mization stage. How do we evaluate 'robustness'?

Building robust solutions first requires identifying the sources and nature of uncertainty

- noise, ambiguity, measurement or statistical error, or unknown future events. In addition,

as Greenberg [Gre07] points out, it is important to identify the time horizon of the decision,

the price of constraint violation and undesirable outcomes, and if recourse action is possible.

Approaches to model uncertainty are chosen based on a number of criteria, such as tractability

and data availability, as we will discuss in the following sections. To evaluate the solutions

obtained from different approaches, we should identify the metrics of robustness and costs of

interest to the stakeholders and the decision-maker. These metrics may be ones that reflect

volatility (e.g.: variance) or other metrics of importance to the different stakeholders (e.g.:

passenger delays, passenger disruptions, aircraft delay).

Simulation is used to evaluate how well the trade-off made by the robust approach approx-

imates the true trade-off between the robustness metrics for the problem. This is because we

cannot always capture the true robustness metrics in the formulation due to modeling con-

straints, or the need to use proxies to capture features of robustness. Moreover, even if the true

metrics are captured in the formulation, we are interested in capturing the realized values of the

different robustness metrics instead of the deterministic value of the robustness metric from the

optimization model.

3.1.3 Literature on Robust Optimization Approaches

Notable in collecting and classifying approaches under the umbrella of robust optimization

is Greenberg and Morrison's summary of robust optimization approaches [GM08]. Stochas-

tic optimization, chance-constrained programming, the Bertsimas and Sim approach, Ben-Tal

and Nemirovski's approach and recourse-based optimization are brought under the umbrella of

robust optimization. Robust approaches aim to build in resistance to uncertainty by defining



different measures of robustness. Robust measures are mathematically tractable representations

of risk, (or conversely, reliability), which aim to approximate risk or reliability metrics of in-

terest in real-world scenarios. A robust measure is typically modeled using parameters called

protection levels, where increased values of the protection level parameters indicates higher

robustness.

Deterministic models capture uncertainty by assuming that all uncertain parameters realize

their average, or nominal values. This does not necessarily result in optimizing the objective

function returns because uncertain parameters can be correlated, and the objective functions

may not be linear. Several studies, including Mulvey et al. [MVZ81] and Ben-Tal and Ne-

mirovski [BTN99] show that in the presence of uncertainty, in practice, such solutions can

exhibit sub-optimal performance, and often are even infeasible.

Markowitz [Mar52] proposed the first mathematical programming model of uncertainty:

the mean-risk model. For the portfolio selection problem, Markowitz suggested that investors

not only wish to maximize expected returns but also minimize risk. Because these objectives

conflict with each other, he suggested a model that trades off mean expected return and risk,

using a bi-objective optimization approach. Risk is described as the variance of the portfolio, or

using other metrics of variability. This allows the decision-maker to choose the most acceptable

point on the expected return - risk curve based on the risk tolerance.

Stochastic optimization with recourse was proposed by Dantzig [Dan55]. This method pro-

vides a way of modeling not only the uncertainty, but also recourse actions in future scenarios

of uncertainty through a two-stage optimization model. The decision variables of this model

are of two kinds - one set is specified before the realizations of uncertain parameters are known,

and the others after the uncertain parameters are realized. Typically this model is solved by

enumerating the number of possible realizations (scenarios) and creating a decision vector for

each scenario. This modeling approach can also extend similarly to the n-stage recourse model.

This approach has been used in investment portfolio optimization to model investments over

time. However, its application has been limited in the case of large-scale problems because it

can rapidly enlarge as the number of scenarios and time stages increase. This is made easier

due to advances in computation. In addition, these models do not capture ideas of tolerance to

risk (risk-aversion) [MVZ8 1].



Charnes, Cooper and Symonds [CCT64] propose the chance-constrained programming ap-

proach, which regulates the probability of violation for each constraint under uncertain realiza-

tions, as described earlier in Chapter 2. From the above three classical models of capturing un-

certainty (mean-risk, stochastic programming, chance-constrained programming), several other

modeling paradigms emerged [GM08].

Mulvey et al. [MVZ8 1] present a paradigm of robust optimization that 'integrates goal

programming with scenario descriptions of uncertain data' and generates solutions that protect

against realizations of uncertain data from an uncertainty set. This framework integrates ideas

from stochastic programming and multi-objective programming. Using ideas from robust statis-

tics, Mulvey et al. propose a method by which higher moments of uncertainty distribution can

be captured, and risk-aversion of users can be captured. This model thus results in solutions

that are qualitatively different and have different operating strategies from those from stochastic

programming.

Savage [FJ48] describes the decision-making process as one that is actuated by regret. He

describes the utility analysis of choices involving risks. He postulates that among the choices

of action available, the decision-maker picks the one that will minimize his regret of not having

chosen another course of action under different possible scenarios of realization. Savage uses

the criterion of minimax regret, that is, he hypothesizes that the decision-maker chooses the

course of action that will minimize the maximum regret possible under different scenarios of

real-world realizations [Sav51] [Sav54].

Gupta and Rosenhead [GR68] describe robustness as allowing flexibility in the kinds of

recourse actions that are subsequently available. These models do not require complete infor-

mation regarding the probability distributions of uncertain data or the exact cost structure of the

model. Using qualitative information, the course of action is selected based on the flexibility it

allows after the uncertain parameters are realized.

Several of these approaches assume that uncertainty is well-known, and can be expressed in

the form of a probability distribution (by means of its mean and variance). There are other ap-

proaches to robust optimization that do not assume probability distributions for the uncertainty

data. Instead, uncertainty is defined by uncertainty sets, ranges of values that each uncertain pa-

rameter can take. Notable among these are Sosyter [Soy73], Ben-Tal and Nemirovski [BTN99],



Bertsimas and Sim [BSO4] and other work. Because the methods of Charnes and Cooper, Bert-

simas and Sim and CVaR are of special interest, we discuss them in the following section.

Bertsimas and Thiele [BT06] describe the approach of Bertsimas and Sim in detail, while

providing details on its application in practical applications, and in defining uncertainty in real

data. Thiele, Terry and Epelman [TTE09] provide a model by which the robust optimization

method of Bertsimas and Sim can be used to capture recourse decisions. They provide results

for applications where uncertainty is focused on the right-hand-side of the uncertain constraints.

Fischetti and Monaci [FM09] propose an approach of capturing uncertainty that they re-

fer to as light robustness, which combines the ease of modeling of the robust optimization

approaches of Ben-Tal and Nemirovski [BTN99] and Bertsimas and Sim [BSO4] with the abil-

ity of stochastic programming to model second-stage (recourse) actions using slack variables.

They first formulate the nominal problem using the robust optimization approach, and add a

budget constraint on the objective function of the nominal problem to create an optimization

model with no objective function. Because this might be subject to infeasibility, the authors

introduce slack (second-stage) variables that can account for local violations of the robustness

requirements and add an auxiliary objective function corresponding to minimizing the slacks.

3.1.4 Approaches of Particular Interest

Of particular interest for the applications in this chapter are the approaches of using uncertainty

sets as proposed by Bertsimas and Sim [BSO4] [BSO3], probabilistic constraints in Chance-

Constrained Programming (CCP) proposed by Charnes and Cooper [CC59] [CC63] [CCS58],

their extensions in @2.2.2 and @2.2.4, and Conditional Value-at-Risk (CVaR) proposed by Urya-

sev et. al. [RUOO], [KPU02]. These approaches are chosen primarily due to modeling and

tractability considerations. They satisfy the requirements of capturing uncertainty, and creating

formulation structures that aid tractability.

We briefly revisit the approach of Bertsimas and Sim and Charnes and Cooper described in

Chapter 2, and describe the CVaR measure of robustness in some detail.

The robust optimization approach of Bertsimas and Sim defines a robustness measure based

on uncertainty sets [BSO3], [BSO4]. Within a defined uncertainty set, this model protects a



selected F number of uncertain parameters from realizing their extreme values at the bound

of the range of values specified by the uncertainty sets. Specifically, this model assumes each

uncertain parameter in the model to assume values within a symmetric, bounded interval. It

does not assume any specific probability distribution for the uncertain parameters. Among the

parameters thus subject to uncertainty, the model protects against the case when any number of

coefficients, defined by the protection parameter F, assume worst-case values in their defined

uncertainty sets. Bertsimas and Sim also relate their measure of robustness, which is defined

in terms of uncertainty sets, to the measure of 'probability of constraint violation' by deriving

bounds of constraint violation in terms of their protection level parameters F.

The Chance-Constrained Programming (CCP) approach of Charnes and Cooper defines a

robust measure based on the probability of constraint violation. Charnes and Cooper allow

random data variations and permit constraints to be violated up to specified probability limits.

The level of protection afforded to a constraint subject to uncertainty is defined by a user-

specified probability of constraint violation o. Unlike the approach proposed by Bertsimas

and Sim, there is no single way of converting the chance-constraint into deterministic form.

Multiple methods have been proposed in the literature to create a deterministic formulation, un-

der several scenarios of uncertainty occurrences and probability distributions [CC59] [MW65]

[NS06a] [Kuc09]. Perhaps the easiest case is when uncertainty occurs only in the right-hand-

side of each chance-constraint, and this uncertainty can be captured by using the appropriate

quantile of the right-hand-side parameter [CC59], [Mar07]. Chance-Constrained Programming

encounters computational issues as we try to capture multiple uncertain coefficients per con-

straint, primarily because joint probability distributions need to be known [MW65]. Scenario

generation under partial knowledge of joint probability distributions, or assumptions on joint

probability distributions of the uncertain parameters are used to create deterministic equivalents

under specific assumptions [NS06b]. Another, more complex model of CCP, is joint chance-

constraints [MW65] [Baw73] [JR73] [Jag74]. Here an allowable probability of violation is

specified for a joint set of multiple constraints. This case is the most complex to model and

often can prove intractable.

Conditional Value at Risk or CVaR is a measure of risk that focuses on the more costly

(extreme) outcomes of the probability distribution of the function of interest. (If the objective is



to maximize return, it focuses on the cases with low return, and if the objective is to minimize

losses, it focuses on cases with high loss. Here we present the discussion for the loss function.)

CvaR is based upon VaR, a measure of uncertainty that is defined as follows:

VaR(a, x) = min{#@ : P (f (x, () > #) < a}, (3.1)

where f (x, () is the probability distribution of the return function with input parameters (,

and a a chosen probability. While VaR measures worst loss with a certain probability, it does

not address how large the losses can be when the 'bad' events we want to protect against occur.

VaR though easier to model, lacks some properties such as coherence and convexity. CVaR

therefore measures the expected loss given the loss exceeds the VaR. CVaR is defined as:

CVaR(a, x) - E (f (x, ()|f (x, () > Var(a, x)) (3.2)

Therefore, CVaR measures the expected return in the worst a percent of cases of the proba-

bility distribution of return, for a chosen a. Uryasev et al. [RUOO] [KPUO2] show that it offers

stronger mathematical properties, compared to measures such as probability of violation used

by the CCP. Uryasev et. al. also provide methods to approximate the CVaR function when

it cannot be directly written in closed form, using discretization by scenario generation. This

involves the ability to sample from the uncertainty distribution of the uncertain parameters, or

the full knowledge of the joint probability distribution.

By applying these models to problems involving corporate portfolio optimization, phar-

maceutical supply chain design, and aircraft routing (studied in Chapter 2), which encompass

different domains, problem sizes and uncertainty types, we attempt to evaluate the efficacy of

robust models and gain insights into performance of different robust approaches.



3.2 Problems of Interest

This section presents the three resource allocation problems, each from a different domain, we

use as test-beds for developing our understanding of robustness and robust models. The prob-

lems under consideration belong to the areas of corporate portfolio optimization, pharmaceuti-

cal supply chain design and aircraft routing. The aircraft routing problem has been described in

detail in Chapter 2. In this section, we will describe the other two problems.

These application domains span a broad range of resource allocation problems in operations

research. These problems are of different scales - the corporate portfolio problem is a small-

scale problem, the pharmaceutical supply chain problem a medium-sized one and the aircraft

routing problem is larger-sized. Uncertainty in these problems also arises from different factors

- the underlying model, data sensitivity and network structure, respectively. The metrics associ-

ated with measuring uncertainty in these problems are also different, as we will describe in the

following subsections.

3.2.1 Corporate Portfolio Optimization

The objective of this problem is to allocate optimally a sales and marketing budget among

twenty-six business units of a major corporation. For each unit, we are given sixteen quarters

of past historical investments and corresponding quarterly revenues. In addition, for each busi-

ness unit we have a minimum and a maximum feasible investment amount based on historical

investments and business constraints.

To model an investment-return relationship, we make the assumption that the more money

we invest in a business unit, the more we expect to make in revenue. The causal relationship

between sales and marketing investment and the corresponding revenue has been studied ex-

tensively in business investment theory, and is typically assumed to follow an S-curve [LS82]

[HPSO3] [LR02]. In the data available to us, the manager's observations, existence of limited

data and modeling considerations all dictate that we assume the investment-return relation-

ship to lie in the linear portion of the S-curve [Epi07]. That is, the revenue ri is described by

ri = ai + bizx where ai and bi are parameters that describe the return for an investment of

xi. We estimate the parameters ai and bi using simple linear (least squares) regression, and the



corresponding estimates are di and bi with covariance matrix Ci. We also estimate the stan-

dard deviation of the residuals in the regression. Under these assumptions, the problem can be

formulated as a linear program.

We define the following notation:

* I: set of business units among which budget is allocated

" B: budget available for sales and marketing

" ai, bi: parameters describing the rate of return on investment for unit i E I

" a, bi: parameters describing the average rate of return on investment for unit i E I

" ri: average rate of return on investment per unit for i E I, equal to di + bixi

" C: covariance matrix for a and b estimated using least squares regression

* xi: budget allotted to business unit i E I

" Ii: lower bound on investment in unit i E I

* ui: upper bound on investment in unit i E I

The nominal problem, which does not explicitly model uncertainty, is as follows:

max E = (ai + bizi) (3.3)
iEI iCI

s.t. Exi < B (3.4)
ic

1<x <u V i E I (3.5)

xi > 0 V i E I (3.6)

The objective (3.3) of the nominal formulation (3.3) - (3.6) is to maximize the return on in-

vestment subject to a budget B on the total investment (3.4). (3.5) ensures that the investment xi

does not change 'too much' from previous investments, where the allowable change described

by the limits Ii and ui. (3.6) ensures non-zero investments in each business unit.

Uncertainty in the return on investment in this situation, which we plan to capture using

robust models, arises from two sources: (i) possible mis-estimation of the linear model param-

eters due to limited historical data availability, and (ii) noise around the assumed linear trend.

We capture these sources of uncertainty by modeling ai and bi as random variables via robust



models. For this problem, we define a good solution as one with high average return and low

variance. We evaluate the cost-robustness trade-off through the mean-variance-trade-offs of the

solutions generated, and generate these trade-off curves using Monte-Carlo simulation.

3.2.1.1 Robust Models

Bertsimas and Sim Model

The Bertsimas and Sim model assumes that the uncertain parameters a and b realize values in an

interval that is symmetrically distributed around the nominal values , and b. In this formulation,

we define the interval of uncertainty to be one standard deviation away from the nominal values

a and I, as described by (3.8). The formulation protects against the scenario when ai and bi

realize values di and bi. y' and y' are variables that determine if the uncertain parameters realize

values at the extremes of their ranges of uncertainty. The number of parameters thus realizing

extreme values is summed by the variables zi and is limited by a user-defined parameter F. F is

the parameter that measures the robustness measure of this approach, which controls the degree

of conservatism of the solutions.

The robust formulation of (3.3) - (3.6) using the Bertsimas and Sim methodology is:

max min di + bI (3.7)
X (d, b)iE

s. = + G (3.8)

Ejx <B (3.9)

1i <i < u Vi E I (3.10)

0 < y I z< Z 1 V jC {1, 2}, V i E I (3.11)

Zi <F (3.12)

Xi2  0 Vi E I (3.13)

yj 0 V j{,2},Vi E I, (3.14)

where G is the standard deviation matrix and GG' C (the covariance matrix), and F is the



number of uncertain parameters that are protected against the realizations of their worst-case,

in the defined uncertainty range. This can be linearized by dualizing as described in [BSO4].

We do not describe it here for the sake of brevity. This model, thus, protects against a specified

uncertainty set, described by the range of uncertainty - here, the standard deviation G, and the

protection parameter I'.

Chance-Constrained Programming (CCP) Model

The CCP formulation enhances the nominal formulation of this problem by adding a constraint

that requires the return to be greater than a specified critical value (c.v.CCp) with probability a

(a > 0.5). That is,

P (ai + bixi) > c.v.ccp > a
iEI

(3.15)

As described in [LinO3], the above constraint can be expressed in closed form under the

assumption of a bivariate normal distribution for the ai and bi. Under the normality assumption,

(3.15) is converted into (3.17), which is a second order conic constraint. The chance-constrained

formulation for (3.3) - (3.6) is as follows:

nax (i + bixi)

iEI

s.t. E (a + bixi) + <b-(1 - a)

iEI

zxi < B
iEI

1x <Xi < U.

x > 0

(3.16)

(3.17)(1,x)TCi (1, x) > c.v.CCP
iGI

where c.v.CCP is the critical value (obtained from statistical data) that

portfolio should exceed, with probability a. <4b in (3.17) indicates the

(3.18)

ViEI (3.19)

Vi E I, (3.20)

the return from the

inverse cumulative



standard normal function. Note that a = 0.5 is equivalent to the nominal problem, and for an

a > 0.5, we obtain a second-order convex formulation. If the size of the problem is large, this

formulation might face issues of tractability. In this case, because the size of the problem is

small, the second-order program proves tractable.

Conditional Value-at-Risk (CVaR) Model

CVaR maximizes the expected return of the investment subject to the CVaR constraint, which

states that under those scenarios when the return is less than the VaR, we get an expected return

at least as much as C.V.CVaR. That is, the average value of return among those a percent of cases

with the worst return, is at least c.V.CVaR. C.V.CVaR is a specified critical value, determined by

statistical methods. The CVaR constraint is as follows:

E [Return|Return < VaRa] C.V-CVaR, (3.21)

where a is a user-specified tail probability of the return function.

Krokhmal, Palmquist and Uryasev [KPUO2] show that (3.21) can be approximated linearly

through the generation of a large number (M) of scenarios of uncertain parameter realizations.

Each scenario is introduced into the formulation as a constraint. In order to generate such

scenarios, we require the ability to sample from the joint probability distribution of the uncertain

parameters. Note that we do not actually require to know the true distributions, an ability to

sample is sufficient.

(3.22) - (3.28) is the CVaR formulation of the nominal formulation (3.3) - (3.6). Here, d&j

and bi3 represent the realizations of the uncertain parameters as observed in scenario j of the M

sampled scenarios. (3.26) together with (3.25) approximate the true CVaR equation (3.21). zj

is a dummy variable that helps in the approximation [KPU02]. # is the approximation of the

VaR value when CVaR is constrained as shown in this formulation. The remaining constraints

are from the nominal formulation.



max (i + bizi) (3.22)
x~zy,# iEI

s.t. Zxi < B (3.23)
iEI

1i < i < u. V i C I (3.24)

z > #- Y (dij + bijzi) V j E 1, ..., M (3.25)
jEl

1 Al
+ z cvcya (3.26)

(1 - c)M Cj=1

zj > 0 Vj E 1, ..., M (3.27)

Xi > 0 Vi E I. (3.28)

Clearly, to be able to approximate well the uncertainty and the true value of CVaR, we

would like to generate a large number of scenarios. However, this formulation may run into

tractability issues as more and more scenarios are sampled. Unlike CCP formulations [NS06a],

there are no guidelines on the number of scenarios to generate for accurate representation of

the constraints. This may be an issue as the computation time grows exponentially with the

number of scenarios, as shown in Figure 3-1. Thus, we face a trade-off between accuracy and

tractability for the CVaR formulation.

This trade-off is seen to be more pronounced in larger problems such as the pharmaceutical

supply chain design problem and the aircraft routing problem. In the case of portfolio optimiza-

tion, because the number of uncertain parameters is small, we do not experience tractability

issues before obtaining a convergence in the value of the expected return and CVaR.

For this problem, the Delta model and the Extended Chance-Constrained Programming

model (ECCP) [MB09] are inapplicable, as these models were developed for cases when the

Bertsimas and Sim model and CCP model are binary integer programs and linear programs

respectively.
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Figure 3-1: Accuracy - Tractability Trade-off for CVaR

3.2.2 Pharmaceutical Supply Chain Design

This is a strategic supply chain planning problem for a pharmaceutical company. The client

manufactures 17 broad classes of products using different technologies at different manufac-

turing plants. The goal is to arrive at an optimal configuration for the supply chain for the

following 5-10 years. Allowed changes to the existing network include closing or opening a

plant, improving the technology used at the plant, moving a product from one plant to another,

or in some cases, adding or discontinuing a product. Because the FDA introduced strict regula-

tions in 2002, there is a hazard rate of failed inspections associated with a particular action of

production, that is, with producing a particular product at a site using a technology. The formu-

lation maximizes profit, while limiting the risk level to be borne due to the hazard of inspection.

Constraining the design of the supply chain are the following: (i) limit on the amount of hazard

(risk) to which the network is subject, (ii) the production technologies that can be adopted or

introduced at a particular site, (iii) exit of a technology from a site/re-introduction of a technol-

ogy at a site, and (iv) stopping production of a product at a particular site. We do not present the

complete formulation with details of these constraints for the sake of brevity. Instead, we focus

on the constraints that contain uncertain parameters to explain the robustness requirements.

...... ... ... "- --...-,-, - ...... ................. .... ... ............. ...



Because the values of the hazard rates are determined by statistical methods, they are them-

selves subject to uncertainty. The goal of robust models, therefore, is to obtain solutions that

are less sensitive to changes in the hazard rates. The solutions obtained are evaluated using

Monte-Carlo simulation, a reasonable approximation in this case study. Metrics of interest in

measuring robustness are the mean, variance, 5th and 95th quantiles of the profit. In particular,

we study the trade-off curve between the mean profit and its variance as generated by different

solutions.

We define the following notation for the problem, based on [Ga105]:

e P: set of products to be produced

" S: set of sites (locations) available for production

" T: set of technologies to be used for producing p E P

e E: set of discrete time periods into which time horizon is divided

* X: set of feasible supply chain configurations, derived from the constraints (i) - (iv)
described above

* x(p, t, s, e): decision variables that take on value 1 if product p is produced using tech-
nology t at site s during period e

" H(t, s, e): hazard rate, which is subject to uncertainty, and equal to the probability that
an inspection of technology t at site s during period e results in a failure

" H(t, s, e): is the expected value of H(t, s, e), the mean hazard rate of failed inspections

" Rev (p, e): revenue generated by producing product p during period e

" c.v.: critical value of the revenue at risk, estimated by statistical methods

The nominal problem for the production supply chain, without considering uncertainty in

the hazard rates, is as follows. The formulation in this case is a mixed binary integer program.

max Rev(p, e)x(p, t, s, e) - 1 Costs(x) (3.29)
zxG

p,t,s,e

s.t. I3 H(t, s, e)Rev(p, e)x(p, t, s, e) < c.v. (3.30)
p,t,s,e

x(p, t, s, e) 1 Vp, e (3.31)
t ,s

x(p, t, s, e) E {0, l} VP' t' ,e (3.32)



In the above formulation, (3.29) maximizes the expected profit, subject to the expected rev-

enue that is at risk being limited by a critical threshold c.v. (3.30); all products being produced

(3.31); and all variables being binary (3.32). Let us denote the profit obtained from the solving

the nominal problem as Profit*. We will use this notation in the Delta and ECCP models

described in the following section.

The motivation for building robust models for this problem is as follows. H(t, s, e) values

are estimated from historical data using statistical methods and the true realizations are inher-

ently subject to uncertainty. Especially, in this data, it is found that with small changes in the

values H(t, s, e), the configuration of the supply chain that is optimal as obtained by solving the

nominal problem (3.29) - (3.32) changes drastically. To illustrate, the supply chain configura-

tion obtained by solving the nominal problem generated an expected profit of $61000 (numbers

have been scaled), but is extremely sensitive to these values of hazard rates. If the values of

the hazard rates are perturbed a little from their statistical averages H(t, s, e), we find that the

configuration of the supply chain changes drastically. In fact, if the hazard rates increase by 2%

(from their original values), the profits drop by 40% and the number of product types produced

drops from 17 to 14. To avoid the volatility exhibited by the nominal problem solution, we build

the following robust models.

3.2.2.1 Robust Models

We formulate this problem according to the Bertsimas and Sim model, the Delta model, the

Chance-Constrained Programming model and the Extended Chance-Constrained Programming

model. The CVaR formulation of this problem runs into tractability issues because of its size,

and the number of scenarios required to reasonably capture the uncertainty.

Bertsimas and Sim Model Formulation

According to this model, the parameters H(t, s, e) are assumed to realize values in a range of

uncertainty H(t, s, e) around the mean hazard rates H(t, s, e). That is, the hazard rates take

values in the interval [R(t, s, e)-H(t, s, e),H(t, s, e)+H(t, s, e)]. The uncertainty set in this

model is defined as the case when F of the hazard rates realize values at the worst-case bounds

of their uncertainty ranges. The formulation, according to [BSO4] and [BSO3] is as follows:



max Rev(p, e)x(p, t, s, e) - E Costs(x)

s.t. H(t, s, e)Rev(p, e)x(s, e) < c.v.

H(t, s, e)Rev(p, e)x(s, e) + zF + v(t, s, e) < c.v.
p,t,s,e t,s,e

z + v(t, s, e) > y(t, s, e)

- y(t , e) < x(p, t, s, e)Rev(p,

x(p, t, s, e)Rev(p, e) H(t, s, e)

x(p, t, s, e) < 1
t's

x(p, t, s, e) E {0, 1}

v(t, s, e) > 0

y(t, s, e) > 0

e)) H(t, s, e)

< y(t, s, e)

(3.33)

(3.34)

(3.35)

V t, s,e (3.36)

Vt,s,e (3.37)

V t, s, e (3.38)

V p, e (3.39)

Vp, t, s, e

Vt, s, e

V t, s, e

(3.40)

(3.41)

(3.42)

Delta Model

This model is based on similar assumptions of uncertainty and uncertainty sets as the Bertsimas

and Sim model. However, it drives the trade-off between optimality and robustness based on

a budget (6) for the profit. Additionally we change the objective to one of minimizing the

maximum number of coefficients that must assume their nominal, rather than extreme, values

to satisfy all constraints.

For this model, we order the ranges of the uncertain coefficients H(t, s, e)Rev(p, e) in in-

creasing order. After ordering, the rank of the (p, t, s, e)th coefficient is denoted by k; p, t, s, e.

Also, the original index (p, t, s, e) of the variable that takes the kth position in the sorted

H(t, s, e)Rev(p, e) values is denoted by p, t, s, e; k. Thus, the value K of the index in the

last position in the sorted list is described by K = |P| + |TI + ISI + |El. We define variable

A equal to the maximum number of variables x(p, t, s, e) in the solution with x = 1 whose



coefficient values must assume their nominal values for the solution to remain feasible.

Let Prof it* be the optimal profit of the nominal problem (3.29) - (3.32). Then 3 is the

user-specified incremental cost that is acceptable for increased robustness, that is, the profit of

a robust solution from the Delta formulation is at least Prof it* - 6. Let variables v(p, t, s, e)

equal 1 if the uncertain coefficient H(t, s, e)Rev(p, e) is not allowed to take on its extreme

value, and takes on its nominal value in the solution of the Delta model. Variables w(k) equal

1 for all k for which there exists a I > k with v(p, t, s, e; 1) = 1. w(k) variables in the sorted

order of H(t, s, e)Rev(p, e) values follow a step function. This leads to the Delta formulation

as follows:

min A

s.t. E Rev(p, e)x(p, t, s, e) - E Costs(x) > Profit* - 6
p't's'e

E (H(t, s, e) + H(t, s, e))Rev(p, e)x(p, t, s, e)
p,t,s,e

- S H(t, s, e)Rev(p, e)v(p, t, s, e) < c.v.
p,t,s,e

A > E v(p't SIC)

v(p, t, 8, C) < x(p, t, 5, C)

v(p, t, s, e; k) < w(k)

v(p, t, s, e) > x(p, t,s, e) + w(k;p, t, 8,e) -1

w(k + 1) < w(k)

w(0) = 1

w(K + 1) = 0

S(p, t, s, e) < 1
t,s

X(p, t, S, e) E { 0, 1}

v(p, t, S, e) E [0, 1

w(k) E {0, 1}

(3.43)

(3.44)

(3.45)

(3.46)

V p, t, s, e (3.47)

Vk = 1, ..., K (3.48)

Vp,t,se (3.49)

V k = 1, ..,K (3.50)

(3.51)

(3.52)

Vp, e (3.53)

V p,t, s, e (3.54)

V p, t, s, e (3.55)

V k = 0, .. , K (3.56)



The constraints in this formulation are of the exact form as (2.23) - (2.37), and so we do not

describe them in detail.

Chance-Constrained Programming (CCP) Model

We would like to capture the chance-constraint:

P (H(t, s, e)Rev(p, e)x(s, e) < c.v.) > a. (3.57)

CCP encounters issues when trying to capture multiple uncertain parameters per constraint.

Therefore, we adopt a different way to constrain the uncertainty. As in the case of the corporate

portfolio problem, we add an additional constraint (3.60). Here the risk is described by the

left-hand-side of the constraint(s) (3.60), which assume that some #th quantile realizations of

the uncertain parameters H(t, s, e), denoted by Fjg) (/), occur. Thus, using the left-hand-

side, the type of realizations (scenarios) we want to protect against can be captured. This is

appropriate for this problem, as sensitivity was found for such scenarios. The right-hand-side

represents the quantile a of the critical value c.v. against which we want to protect.

max Rev(p, e)x(p, t, s, c) - E Costs(x) (3.58)
p,t s e All Costs

s.t. H(t , e)Rev(p, e)x(s, e) < c.v. (3.59)
p t s e

F;ttsC) (#)Rev(p, e)x(s, e) < FeJg0 ,(a) (3.60)
p, t s,e

x(p, t, s, e) < 1 Vp, e (3.61)
t s

x(p, t, s, e) {0, 1} Vp, t, s, e (3.62)

Extended Chance-Constrained Programming (ECCP) Model

The extended chance-constrained model builds on the chance-constrained formulation (3.58)

- (3.62), as described in (2.53) - (2.62). We assume that some quantiles ak, k = 1, .., K of the

critical value c.v.CCp are known, from analysis of historical data. Instead of choosing one par-



ticular value of ak, we try to attain the highest protection level possible, within a budget 6 on the

profit. yk are binary variables that equal 1 if the protection level aek is attained by the solution.

The objective (3.63) maximizes the protection level realized by the solution, which is described

by (3.71) and (3.66). The protection level variables Yk take the form of a step function.

max a (3.63)

s.t. Rev(p, e) x(p, t, s, e) - Costs(x) > Profit* + 6 (3.64)
ptse

E H (t, s, e)Rev(p, e)x(s, e) < c.v. (3.65)

F ()Rev(p, e) X(s, e)

K

F, 0 0 ,(ax)( yk - yk1) (3.66)
k=1

x(p, t,is, e) < 1 Vp, e (3.67)

Yk > Yk-1 V k 1, .. , K (3.68)

Yo = 0 (3.69)

YK 1  (3.70)
K

a <Y ak(yk - Yk-1) (3.71)
k=1

x(p, t, s, e) E {0, 1} V p, t, s,e (3.72)

yk E {0, 1} V k = 1,.., K (3.73)

The constraints in this formulation are of the exact form as (2.53) - (2.62) and so we do not

describe them in detail.

Conditional Value-at-Risk (CVaR) Model The CVaR constraint for the nominal problem is

given by:

CVaR(a, x) =

E 1: 11(t, s, e)Rev(p, e)x(p, t, s, e)| [: fl(t, s, e)Rev(p, e)x(p, t, s, e) 2 VaR(a, x)
\p,t,s,e p,t,s,e

(3.74)



The CVaR model minimizes the expected revenue at risk, when the realized revenue at risk

is greater than the VaR corresponding to the cth level of protection. The constraints for the

pharmaceutical supply chain problem are along the lines of (3.22)-(3.28), as below. We do not

describe the constraints in detail because they are almost the same as those for the corporate

portfolio problem ((3.22) - (3.28)).

max E Rev(p, e)x(p, t, s, e) - E Costs(x) (3.75)
zex

p,t,s,e

s.t. z1 > -> + 3 Hj (t, s, e)Rev(p, e)x(p, t, s, e) Vj C J (3.76)
p,t,s,e

/3+ E zy < C.V.cy{n (3.77)
j=1

X(p, t, s, e) <1 Vp, e (3.78)
tas

x(p, t, s, e) E {0, 1} Vp, t, s, e (3.79)

z ;> 0 Vj = 1, .. , M (3.80)

This formulation proves to be intractable when the number of scenarios is more than 400.

In order to approximate the uncertainty accurately, a number of scenarios, at least in the tens

of thousands, is necessary. We do not report the solutions for the smaller number of scenarios

because they might be flawed and misrepresentative of the true realizations.

Aircraft Routing

Robust models for the aircraft routing problem are presented in detail in Chapter 2. We solve

this problem using the Bertsimas and Sim model, the Delta model, the CCP model and the

ECCP model. CVaR is difficult to model for the aircraft routing problem because we need

to generate millions of scenarios to comprehensively capture the possible scenarios. Because

of the size of the problem as well as the network structure, generating real scenarios proves

difficult. In addition, even if we could generate the scenarios, the CVaR model for aircraft

routing is expected to be intractable (similar to the pharmaceutical supply chain problem), due



to its size.

Table 3.1 summarizes the methods applied and solved for the three applications.

Models Corporate Portfolio Pharma Supply Chain Aircraft Routing
Bertsimas and Sim x x x

Delta Inapplicable x x
CCP x x x

ECCP Inapplicable x x
CVaR x Intractable Intractable

Table 3.1: Summary of Robust Approaches and Applications

3.3 Results

As discussed in the previous sections, robust approaches generate solutions that trade off be-

tween different metrics of interest, such as cost and robustness. In doing so, they aim to ap-

proximate the 'true' trade-off frontier between different metrics of interest. In this section, we

present some observations and insights from the application of the various robust approaches

to the three applications. We show computationally that the generation of truly robust solutions

for a problem instance is dependent on the interaction between the robust approach, the data

distributions and the stakeholders' metrics for robustness.

3.3.1 Role of Robust Approach

3.3.1.1 Comparison of the Trade-off Curves from Different Approaches

Because the robustness measures used by the robust approaches are different, and moreover,

the relationships of these measures to the decision-maker's robustness metrics are different, the

trade-off curves generated by the approaches vary. Figure 3-2 compares solutions to the phar-

maceutical supply chain problem obtained using the measures of 'number of uncertain coeffi-

cients at worst-case' (Bertsimas and Sim and Delta approaches) and 'probability of constraint

violation' (CCP and ECCP approaches), and measures their trade-off curves according to two

criteria - mean profit (cost metric) and standard deviation of profit (robustness metric).
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Figure 3-2: Mean-variance trade-off curves of extreme-value and chance-constrained models

The measure of 'number of uncertain coefficients at worst-case' used by the Bertsimas and

Sim and Delta approaches is consistently seen to have a less smooth trade-off than the 'prob-

ability of violation' metric used by CCP and ECCP, because the latter methods measure the

actual constraint violation probability, whereas the former methods exhibit step-like behavior

in the protection levels (described by Bertsimas and Sim as phase transitions [BSO4]) because

they are based on the number of uncertain coefficients protected. Due to this reason, the trade-

off curves generated by these approaches intersect, resulting in different methods being more

effective over different ranges. Similar behavior is observed when risk adjusted profit is plotted

against the standard deviation.

For different requirements of robustness (in this case, defined by the standard deviation of

the profit), solutions generated by different approaches might become more valuable in terms

of other criteria such as profit. For the data instance solved in Figure 3-2, the Delta approach is

more valuable if the decision maker requires the standard deviation of the profit to be lower than

$275, and the CCP and ECCP are more profitable on average if a higher variance is acceptable.

It is difficult, however, to apriori predict where the trade-off curves produced by these models

can intersect, and which method is better in a particular range.

- n ...:, , . -- - I .. . .... ..... ...... ... ...... .



Similarly, in the aircraft routing problem, as discussed in Section 2.5.3, we see that the ro-

bustness metrics - flight delays and passenger delays - are different for the different approaches.

Remember, that the aircraft routing problem is a feasibility problem. Thus the trade-off is such

that the cost (feasibility) does not change, but we are able to find solutions with different values

of robustness metrics from the different modeling paradigms.

Thus, a wise choice of models and solutions requires simulation of the different methods to

choose the more robust models according to the metrics of interest.

3.3.1.2 Conservatism of the Bertsimas and Sim and Delta Approaches

The measure of 'number of uncertain parameters at worst-case boundaries' (F and A), has been

observed to exhibit a high degree of conservatism.

In [BS04], Bertsimas and Sim derive a relationship between the parameter F and the prob-

ability of constraint violation, which is a helpful starting point to choose a good value of F.

However, it is important to note that this relationship is sensitive to the type of uncertainty

distribution, because it assumes a symmetric probability distribution. Most importantly, this

relationship is an upper bound and is not guaranteed to be tight. It was found not to be tight

for the pharmaceutical supply chain problem [Gal05], as well as in the UAV routing problem of

Sakamoto [Sak06]. This was true even in the case of discrete distributions, where the bound is

expected to be tight. The probability of actual violation from experiments was much lower than

that predicted by the bound in [BS04], rendering this approach conservative. Gallay [Ga105]

shows that for integer/mixed integer programs in particular, the bound can be tightened to some

extent by guiding the choice of protection level F using the possible number of non-zero vari-

ables in the solution N', instead of N (the total number of variables) in the formula given in

[BS04]. N' can be reasonably estimated using the rank of the matrix and the expected number

of basic variables in the solution. Repeated re-solving with several different values for F is pos-

sible for problems that are small and tractable in terms of solution and simulation times. This

was possible for the corporate portfolio problem and the pharmaceutical supply chain problem.

For problems that are of larger size, such as the aircraft routing problem, repeated re-solving

is cumbersome, if not intractable. When limiting solution conservatism is a priority, the Delta

model that drives the trade-off between cost and robustness through the budget constraint can
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Figure 3-3: Sensitivity to uncertainty range

prove useful [MB09].

The degree of conservatism observed in the Bertsimas and Sim approach leads it to be most

effective and to produce solutions with good trade-offs when we have very little confidence in

the distribution of the uncertain parameters, and the uncertainty arises from a distribution with

more variance than expected. This is illustrated by Figure 3-3. The solutions shown all arise

from assuming a deviation of one standard deviation (G) from the nominal value. However,

these solutions are less conservatively robust when the realized uncertainty is much larger, that

is, 2 standard deviations away from the normal (2G) or 3 standard deviations away from the

normal (3G) as shown.

From our experiments we see that the solutions to the Bertsimas and Sim and Delta models

are sensitive to the choice of the ranges of uncertainty. For the pharmaceutical supply chain

problem, Table 3.2 shows the performance of solutions to Bertsimas and Sim's model when the

underlying uncertainty distribution is normal and input ranges of uncertainty in the hazard rates

are 0.04 and 0.02, for the same values of IF. Solutions are evaluated for the true uncertainty

range of 0.04. We observe that the degree of conservatism with respect to the mean values



Bertsimas and Sim, range = 0.04 Bertsimas and Sim, range = 0.02
Mean Standard Deviation Mean Standard Deviation

F = 0 61447.40 314.6154 61447.40 312.7749
F = 8.18 59467.25 311.6346 61447.40 312.7749
F = 20 55374.25 292.0533 59465.35 310.7554
F = 31.78 53832.47 272.7504 58547.33 310.1444
F = 51 52544.58 271.2527 57662.30 300.3998
F = 80 52449.74 270.8838 57068.12 300.1223
F = 120 52253.36 270.2679 57059.65 300.1865

Table 3.2: Solutions to the Bertsimas and Sim model and sensitivity to uncertainty range

can be changed by changing the uncertainty range used in the optimization, though the general

trend in the trade-off curve remains of the same shape (Figure 3-4). Fig 3-5 shows the same

for solutions to the Delta model, for the same values of 6. Similar behavior is observed when

simulated with uniform and discrete distributions.

We see that the solutions trace different trade-off curves between the mean and variance

of profit, for the same values of 1 and 6, when different ranges of uncertainty are input to

the models. Thus changing the range of uncertainty for the model can prove to be a way of

controlling the conservatism or trade-offs made by the approach.

3.3.1.3 Degree of Conservatism in Chance-Constrained Programming

Solutions to the three problems produced by the CCP approach, unlike the extreme-value based

approaches (Bertsimas and Sim and Delta approaches), typically encounter degrees of con-

straint violation when simulated that are similar to those specified in the optimization model,

as discussed in Section 2.5.2 for aircraft routing. However, this comes at the cost of the need

for more distribution information, or the ability to sample from the true realizations. When

limited distribution/quantile information is available, this method can still be applied, but may

result in conservatism if too little information is available. In addition, capturing multiple un-

certain coefficients also can require assumptions on distributions and inaccurate capture of the

uncertainty. CCP, however, allows the protection of uncertain coefficients to some quantile of

uncertainty, as in the case of (3.58) - (3.62), thus controlling the degree of conservatism to a

greater extent than that of the Bertsimas and Sim approach.
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3.3.2 Relationship between Robust Approach and Metrics

3.3.2.1 Optimizing model's robustness metric differs from optimizing decision maker's

robustness metric

Key to understanding the behavior of the solutions generated using various robust approaches is

understanding the relationship between robustness as defined by the approach, versus robustness

as defined by the stakeholders' metrics. When we optimize with respect to a robust measure

that approximates (sometimes not very closely) the metrics of the decision-maker, we may

encounter unexpected behavior.

For example, when solving the problem of robust aircraft routing using the Bertsimas and

Sim and Chance-Constrained Programming approaches, we find (as described in Chapter 2)

that as the respective robust measures increase, the solutions do not necessarily increase in ro-

bustness with respect to flight delays and passenger disruptions (the decision-maker's metrics).

This appears as a non-monotonicity in solution performance, with respect to our metrics of in-

terest. Sakamoto [Sak06] and Bryant [Bry06] observe similar phenomena in problems of UAV

scheduling and routing under uncertainty. Underlying this behavior are two reasons. First, the

measure of robustness that is being optimized by the robust model is not the same as the de-

cision maker's metrics. In fact, capturing explicitly the decision maker's metrics in the robust

formulation proves difficult. Because the Bertsimas and Sim and CCP classes of models each

have their own robustness measures, different degrees of non-monotonicity are observed. Sec-

ond, for an 'optimized value' of the robust measure (protection level) set by the approach, there

might be multiple (optimal) solutions with different values of the decision-maker's robustness

metric, as was seen in the case of the aircraft routing problem in 52.5.3. Existence of multiple

optimal solutions is very commonly observed in the case of problems involving network design

or flows, because these problems tend to have a very large number of multiple paths or routes

available, resulting in the availability of multiple optimal solutions.

The existence of such non-monotonic behavior does not mean that solutions generated using

these methods are not robust. In fact, several of the solutions produced in the aircraft routing

problem are more 'robust' than the airline's routing. Rather, this indicates that care should be

taken in ranking the solutions as 'more' or 'less' robust simply based on the model's robustness



parameters or measures, such as F or a. This observation again points to the importance of

simulation, and evaluation based on multiple criteria, in choosing robust solutions.

3.3.3 Importance of data

3.3.3.1 Using the nature of data distributions to guide the approach

For the application of any robust approach, it is important to know the nature of the data dis-

tributions. Implementing the robust model itself may not require exact knowledge of the data

distributions, however, in order that the approach be effective, input parameters to the model

must be modified to reflect the nature of the distribution.

For instance, the Bertsimas and Sim and Delta models use an extreme-value based approach

that assume symmetric and bounded distribution of uncertainty around the mean. Bertsimas

and Sim's robust optimization model is suitable when the decision-maker is risk-averse [KT09]

and is found to be most effective for heavy-tailed distributions where the worst-case values

have a significant probability of occurrence. For example, in the pharmaceutical supply chain

problem, we see that as the true distribution of uncertainty becomes more heavy-tailed in the

model's range of values, the solutions might be in better accordance (though still not tight) with

the probability of constraint violation predicted by Bertsimas and Sim [Gal05].

So, if the true realization of uncertainty is described best by thin-tailed distributions (the

worst-case values have low probabilities of occurrence), we re-solve the model after 'shrinking'

the range of uncertainty, to obtain less conservative solutions with respect to the extreme-values.

For instance, in the corporate portfolio problem, we see that the Bertsimas and Sim approach

produces solutions with better trade-offs between expected profit (cost) and standard deviation

of profit (robustness metric) when uncertainty (thin-tailed distribution) input into the model is

for a smaller range than actually realized (Figure 3-3).

This underscores the difficulty of setting apriori a set of 'extreme values', 'uncertainty

ranges' or probability distributions as inputs into a robust approach. It must be kept in mind,

however, that this can be done when the extreme values are both low probability as well as low

cost. If the cost associated with the realization of the worst-case is very high, or the decision-

maker (or stakeholders) are highly risk-averse, then it might be more valuable to incorporate



them into the model and err on the side of conservatism.

3.3.3.2 Knowledge of empirical data distributions

Knowledge of empirical data distributions can add value. In the aircraft routing problem, we use

historical data to generate empirical data distributions that are used as inputs into approaches

for generating robust solutions. In particular, for the aircraft routing problem, this was useful

in understanding the bi-modal nature of the probability distribution. In this case, delays were

observed to be small or moderate for 85-90% of the time, and very large about 10-15% of

the time. This information helps the decision-maker to understand which kind of delays to

target, set model parameters accordingly, and interpret performance of solutions generated from

various robust approaches [MB09].

3.4 Conclusions

From the results discussed above, we see that some approaches such as the approach of Bert-

simas and Sim and the Delta model are particularly applicable if we know very little about the

underlying uncertainty distribution, and we are likely to encounter more uncertainty than ex-

pected. In such cases, it may be be worth taking the risk of conservatism using this approach.

Other approaches such as CCP and CVaR require the ability to sample the uncertainty distri-

bution, via historical data. If sufficient historical data (and estimates of future uncertainty to

validate these data distributions) are available, these approaches might be valuable, especially

when the decision maker's metrics may not be completely risk-averse.

Finally, in choosing a solution among the multiple trade-off frontiers generated, the multi-

criteria nature of robustness comes into play. The decision-maker compares the simulated

performances of the nominal solution, and the solutions obtained from multiple robust ap-

proaches, and examines the trade-offs made by the different solutions between cost and the

various robustness metrics. Using the nominal solution as a reference point, the decision-maker

chooses among the different solutions based on acceptable levels of conservatism of the ob-

jective function. Sometimes the solutions from a particular robust approach, for some data in-
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Figure 3-6: Multi-criteria nature of robustness

stances, may offer a less favorable trade-off than the solution to the nominal problem. Figure 3-6

illustrates how in case (a), the robust solution produces solutions with a slightly smaller mean

profit, but far lower variance in profit than the nominal problem solution. Thus the decision-

maker would lose little profit by choosing the solution from the robust approach. In contrast,

the robust solution in Figure 3-6 (b) also reduces the mean profit as well as the variance of the

profit compared to the nominal problem; however, the decrease in the mean profit is signifi-

cantly higher than the decrease in variance, causing the solution to not gain much reliability. If

case (b) is observed, the decision-maker may decide that the solution from the robust approach

is too expensive and decide against implementing it in practice.

However, this does not mean that the robust models using the various approaches were of no

value in case (b). Indeed, the value provided is in evaluating and validating the efficacy of the

solutions available, identifying a trade-off frontier between the multiple objectives confronting

the decision-maker and stakeholders, and choosing a solution that provides the 'best' balance

among the multiple criteria.
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Chapter 4

Integrated Disruption Management and

Flight Planning

4.1 Introduction

In this chapter, we discuss the integration of disruption management and flight planning. Our

goal is to reduce flight delays and disruptions using mechanisms facilitated by flight planning.

To our knowledge, this is the first work that integrates these aspects of airline operations.

Inherent uncertainty in airline operations makes delays and disruptions inevitable. Because

the airline system operates as a closely interconnected network, it is subject to 'network effects',

that is, a disruption in one place can quickly propagate to multiple other parts of the network,

as discussed in Chapter 1. Therefore, managing these delays as they arise is crucial. Disruption

management is the process by which, on the day of operation, when a disruption occurs, airlines

try to bring the plan back on schedule as quickly as possible, while incurring minimal costs and

disrupting as few resources and passengers in the system as possible. Measures such as flight

cancelations, flight re-timing, aircraft swaps, crew duty swaps and use of reserve crew are used

as part of the disruption management process.

Flight planning is the process of determining, at the pre-departure stage of each flight, its

three-dimensional travel route, speed and fuel burn as the aircraft flies from its origin to desti-

nation. Because the ability to make speed changes directly impacts the actual block time of a

flight, and thus, its actual arrival time, which in turn can impact network connectivity of aircraft,
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crew and passengers from the flight, flight planning can be used as a mechanism to change the

lengths of the block and ground times of a flight. Flight plans, thus trade-off the costs associated

with the flight arrival time (network connectivity costs associated with delays and disruptions),

and the fuel burn (fuel costs). For this reason, flight plans are identified by a measure called

the Cost Index (CI), described in detail in 54.3. CI is an indicator of the trade-off between fuel

and network connectivity costs made by changing aircraft speed. The use of CI is now standard

practice in the industry, and is used as a rule-of-thumb.

In this chapter, we will see how mechanisms of (i) flight speed changes and (ii) intentional

flight departure holds, enabled by flight planning, can enhance the process of disruption man-

agement.

We study flight speed changes as a way to trade off fuel cost of a flight and its network con-

nectivity costs; by adjusting the flying time of the flight and its passenger connectivity during

a delayed or disrupted scenario. Our objective is to discuss the potential for using operational

flight speed changes (flight planning) as a tool for dynamic scheduling and disruption man-

agement and thus present an enhanced disruption management approach using flight planning.

For example, a flight experiencing departure delay at its origin can dynamically exploit the

additional flexibility of operating at increased speeds (and increased fuel burn), in addition to

conventional techniques such as aircraft swaps and cancelations, in order to absorb delays at

the flight destination, and decrease costs associated with passenger delays and mis-connections.

Further, if connectivity is unaffected, flights may be slowed down to decrease fuel bum, the

associated fuel costs and emissions. Our goal is thus, to identify the operational trade-offs be-

tween (i) aircraft and passenger delay costs and (ii) fuel burn costs, via flight planning; in order

to further decrease costs incurred during airline operations.

4.1.1 The Problem

We briefly describe the problem setting in this section.

We consider scenarios where a flight is delayed at its origin due to a disruption in the net-

work. Our decision time is about a half-hour prior to flight departure, when we are in a position

to make operational decisions regarding the choice of flight plans. We consider disruption man-
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agement techniques that combine aircraft swaps, flight cancelations and passenger recovery,

with flight planning. Through this process, we trade-off network connectivity costs and de-

lay costs associated with flight arrival times, with the fuel costs associated with flight speed

changes. In particular, we re-allocate slack in block and ground times in the network, using the

following mechanisms:

" by changing aircraft speeds to preserve connections. A disrupted flight may be sped up (or

not) to preserve passenger connections if needed, thus decreasing passenger-related costs

to the airline but consuming more fuel; or, a flight may be slowed down further to save on

fuel if fuel dominates passenger-related costs. Thus slack is generated or absorbed; and

" by changing aircraft speeds, combined with delaying downstream passenger connections.

The ability to hold flights adds slack to 'tight' connections if needed, and may not require

flights to necessarily be sped up to generate slack.

We discuss this in further detail in §4.1.2.

4.1.2 Opportunities for Integrating Flight Planning and Disruption Man-

agement

In this section, we illustrate through an example, the trade-off frontier between fuel burn costs

and time-related passenger costs. Then, we present information about the state-of-the-practice

in airline operations, obtained from discussions with multiple airlines. We show how the state-

of-the-practice falls short in an operational context, and incurs higher costs than the 'optimal'

course of action.

4.1.2.1 Flight speed changes

Consider the example from §4.3 of flight a from airport A into hub H. We consider a disrupted

schedule in which a is delayed by A when departing from A. If the aircraft flies at the same

speed that was planned for in the schedule, the flight will also reach the hub A units of time later

than scheduled. Due to this, passengers are delayed in reaching H and if the connecting time

available is less than the minimum connecting time MinCT, they can misconnect to subsequent
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flights in their itineraries. By changing the speed at which the flight is operated, the block time

can be decreased and ground time increased or, the block time can be increased and the ground

time decreased. Figure 4-1 shows how using alternate flight plans which operate at different

speeds can create different amounts of slack in the schedule, which can be exploited to make

passenger connections from a to flights b, c, d, and e; which would not have been possible if

alternate flight plans were not used.

A

a

.a

Hub H

MinCT

Original flight plan for flight a

A Alternative flight plans

a

Hub H
b c e

MinCT

Alternative flight plans for flight a

Figure 4-1: Flexibility provided in disruption management by choosing alternate flight plans

Table 4.1 shows the changes in fuel costs of flight a and its corresponding realized passen-

ger costs by operating flight a at different speeds, when A is a departure delay of one hour.

The flight speeds here are expressed in terms of their cost index (CI) values, which can be

briefly defined as the amount of additional fuel worth burning (relative to the minimum fuel

bum to operate the flight) to save one unit of time. Cost index will be discussed in detail in
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§4.3. The fuel consumption of the flight and corresponding fuel costs are obtained from the

flight plan information, as described in §4.3. Passenger costs are obtained using an airline dis-

ruption management simulator [DCT] [Vaa], part of the Integrated Operational Control System

developed by Jeppesen[Jepa], and capture the realized costs of passenger delays due to delayed

flight arrivals as well as delay costs due to passenger mis-connections and re-accommodation

on alternative itineraries. Thus for each value of cost-index, the flying time associated, the cor-

responding fuel burn and the simulated passenger delay cost are shown. These are summarized

in Figure 4-2, which shows the trade-off curves between the flying time and total cost.

As the speed is increased by generating flight plans from cost-index 20 to 1500, the fuel

burn increases non-linearly. However, observe that in comparison with the passenger costs,

however, the fuel burn curve is quite flat, due to the large number of passengers affected by the

disruption.

Cost Index (CI) Flight Time Fuel burn ($) Passenger delay cost ($) Total Cost ($)
20 455 53772.8 103396.5 157179.3
40 454 53776.1 103337.1 157113.2
60 454 53777.0 103337.1 157114.1
80 454 53838.8 103337.1 157175.9

100 455 53799.8 103396.5 157196.3
300 442 55962.1 102010.0 157972.1
500 431 58401.0 42715.3 101116.4
700 427 60013.0 41308.6 101321.6
900 426 60551.6 41249.2 101800.8
1100 424 61651.3 38361.6 100012.9
1500 423 62942.7 38302.2 101244.9

Table 4.1: Flight time - cost trade-offs associated with different flight plans

Note that if the aircraft operates with the originally planned flight plan, which is at CI 40,

many more passengers will be disrupted and need to be re-accommodated, compared to the case

of flying at CI 500. At this point, there is a sharp dip in the passenger cost function as several

passengers are prevented from misconnecting. Far more fuel is also burned, and this gives rise

to a trade-off between these elements of airline operations. Similarly, from CI 900 to CI 1100

again, there is a (much smaller) dip in the passenger delay cost function as some more passenger

misconnections are prevented. It turns out that the sum of passenger delay and fuel burn costs
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Figure 4-2: Trade-off between flight time and associated costs

is minimized at CI 1100.

This example indicates two important points. First, we observe that it is possible to decrease

total costs by flight speed increases, relative to the 'static' flight plan (CI 40) where the airline

operates with its planned cost-index. Not only it is possible to speed up flights in case passenger

connections become the driver of total costs, but also it is possible to slow down to save on fuel

when fuel bum drives the total cost function. This is indicative of the potential of using flight

planning as a tool for absorbing delays and complementing traditional disruption management

approaches. Second, the actual benefit of flight speed changes as a tool for disruption man-

agement depends on the network connectivity of the passenger itineraries from flight a. For

a different value of the initial disruption A, the trade off between fuel costs and time-related

passenger costs can be very different. Both these observations indicate that the choice of CI for

each flight is to be made pre-departure, once departure delay is known, taking into account the

current state of the system and its network effects relative to the fuel costs.

Traditional disruption management practice does not capture elements of speed changes as

a means to add slack during operations. Flight planners also do not capture the network impacts

of the schedule during operations [Alta]. Combining these elements, as we have seen, leads to

improvement in total cost. In §4.3.2, we discuss the state-of-the-practice of using flight planning

during operations at various airlines.
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4.1.2.2 Flight departure re-timing

Additional flexibility in the schedule can be exploited by re-timing flights. Figure 4-3 illustrates

that instead of speeding up flight a to CI 1100 as shown in the example, it may be more cost

efficient to speed up a to a lesser extent, while holding flights b, c, d (to which there are possible

misconnections from a). The trade-off we make here is between the fuel cost saved in not

speeding up a to CI 1100, preventing passenger misconnections between a - b, a - c, a - d, and

the arrival delay cost of passengers on flights b, c, and d.

Aa

Hub H
b c:e

MinCT

Original flight plan for flight a

A Alternative flight plans

Delaying outbound flights

Hub H

, b _

MinCT

Alternative flight plans for flights a, b, c, d

Figure 4-3: Flexibility provided in disruption management by choosing alternate flight plans

4.1.3 Contributions

The contributions of our research are as follows:

107



" We introduce flight planning as a enhanced disruption management tool, and provide

optimization models that combine flight planning with traditional disruption management

models during operations. In particular, we focus on two aspects of flight planning (i)

speed changes; and (ii) flight departure delay, in order to trade off fuel costs and passenger

delay costs. Our approach represents an integration of two aspects of airline operations

hitherto studied separately, namely, disruption management and flight planning.

" Through dialogue with multiple airlines, we provide an update of the current state-of-the-

practice with regards to flight planning approaches. We also discuss the current practice of

dynamic scheduling and disruption management. We identify opportunities for improving

disruption management and dynamic scheduling using flight planning by integrating both

these aspects, and show the need for optimization-based decision support.

" We present models for aircraft and passenger recovery combined with flight planning.

Our experiments focus on hub operations and opportunities for improved trade-offs be-

tween passenger costs and fuel costs, with the goal of minimizing total realized costs.

" In comparison with conventional disruption management, we demonstrate that our en-

hanced disruption management strategy helps decrease passenger misconnections by 47.2%-

53.3%, and the passenger-related operating costs associated with misconnections, for the

airline under consideration. We demonstrate the dynamic nature of the trade-off frontier

between passenger costs and fuel burn costs and discuss in detail the interactions involved

in this trade-off in different disruption scenarios. We also discuss the relative benefits of

the two types of mechanisms studied - that of flight speed changes, and that of delay-

ing flight departures - and show significant synergies in applying the two mechanisms

simultaneously.

4.1.4 Organization of the chapter

This chapter is organized as follows. In §4.1.2 we illustrated using an example, opportunities for

integrating flight planning and disruption management to minimize costs. We show how sys-

tem performance can be improved using alternate flight plans with different operating speeds
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and different departure times. In §4.2, we present an overview of disruption management prac-

tice and mathematical models commonly used. In §4.3, we provide an overview of the flight

planning process, provide some background and introduce some terms relevant to this work.

We also provide information about the current state-of-the practice of operational flight speed

changes in §4.3.2, obtained through discussions with airlines and from published material, and

show that they vary considerably from optimal cost practices, indicating a knowledge gap that

can be filled using decision-support. In §4.4, we present our modeling architecture to integrate

flight planning with dynamic scheduling and disruption management, which we refer to as our

enhanced disruption management approach. Our models provide a way to trade off passenger

delay costs and fuel burn costs. We provide models that capture passenger connectivity exactly,

and approximations that are faster to solve and improve passenger connectivity. We describe our

experimental setup in §4.5. In §4.6, we present our results and compare them with the current

state-of the practice to estimate cost savings to airlines.

4.2 Disruption Management

Airline Operations Control Centers (AOCC) manage airline operations on a day-to-day basis,

including (i) management of aircraft, passenger and crew operations, (ii) maintaining opera-

tional safety considerations and (iii) interfacing with the FAA and other airlines to exchange

critical information including during air traffic flow management initiatives [Bra03].

During operations, operational procedures of dynamic scheduling, routing and disruption

management vary among carriers. The first priority in a disrupted situation is to bring operations

back on track as soon as possible. For this, the operations controllers re-assign the resources

of the airline in order to minimize the costs associated with the disruption. Three types of

decisions are made: (i) whether or not a flight is canceled, (ii) departure times of flights that are

to be operated, and (iii) which aircraft and crew is assigned to each operated flight. Following

aircraft and crew recovery, passenger recovery and re-accommodation is performed typically.

Though the aircraft and crew recovery actions significantly affect passenger costs, these

may not be explicitly considered apriori because (i) higher importance is given to on-time per-

formance of flights, (ii) ensuring quick operational recovery can prevent additional passengers
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from being disrupted, (iii) passenger delays in themselves do not contribute to loss of oper-

ations, as passengers are not system resources, and (iv) an assumption that quick operational

recovery may also mean quick passenger recovery.

However, Bratu and Barnhart [BB05] show that flight delays and passenger delays in the

system can vary significantly - primarily due to delays incurred by passengers whose flights are

canceled and whose itineraries are disrupted. Bratu and Barnhart [BB06] also propose models

that apriori consider passenger delays in addition to system operating costs, and can provide

solutions that not only have low operating costs but also reduce passenger delays significantly.

Due to the difficulty of implementing passenger-centric recovery optimization models, and in-

herent stochasticity in passenger re-accommodation, airlines typically rely on conventional air-

craft and crew recovery models. At AOCCs with more sophisticated systems, large groups of

passengers or valuable passengers may be considered apriori in recovery models to facilitate

their connectivity. However, passenger-centric recovery models are still a rarity rather than the

norm in most resource recovery decisions.

4.2.1 Mathematical Formulation

In this section, we present the recovery models typically adopted at AOCCs.

Given a disrupted schedule, an airline defines a recovery time-window of duration T start-

ing from the current time, beyond which normal operations should be resumed. In current

disruption management practice, aircraft swaps, flight delays and flight cancelations are used to

recover from the disruption and restore the original schedule.

The recovery model is based on a time-space network representation of the airline's sched-

ule. The nodes in a time-space network are associated with both time and location, and an arc

between two nodes indicates a possible movement between the two locations (or same location)

and times. Given the state of the system at time t, we create time-space networks within the

time-window T whose arcs are based on (i) expected departure and arrival times of disrupted

(or enroute) flights in the system, and (ii) scheduled departure and arrival times of non-disrupted

flights. For the two stages of disruption management, we create two different time-space net-

works: (i) aircraft flow networks for aircraft recovery; and (ii) a passenger flow network for
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passenger recovery, as described below.

The aircraft flow network N, for aircraft a tracks its movement over the flight schedule.

Each node in the aircraft flow network represents either a possible departure time of the flight

f or a possible arrival time of the flight plus the minimum turn time of the aircraft type that is

assigned to flight f. Given the airline system state, the nodes and arcs are created to represent

the expected departure and arrival times of disrupted and enroute flights, and the scheduled

departure and arrival times of non-disrupted flights. The aircraft flow network need only contain

those flights in the schedule to which an aircraft of the same fleet type as a is assigned, because

aircraft a can only operate those flights to which the same aircraft type is assigned. We refer

to the arcs that represent scheduled flights and their copies as flight arcs. For each aircraft in

the recovery time window, we create copies of each flight f every r minutes (with the same

block time as f) until a maximum departure delay of R minutes that represent possible flight

departure. Ground arcs connecting successive nodes (in time) at the same location are added to

this network to represent the aircraft remaining at the same place over time.

Let F be the set of flight legs f operated by the airline and A the set of aircraft a available.

Cf is the set of copies of flight f, where the copies are generated by alternative possible de-

parture times of flight f. In the aircraft flow network, each flight leg copy k E Cf connects a

possible departure time of flight f to a possible arrival time (corresponding to a specific flight

plan) plus the minimum turn time of aircraft a. Ga is defined as the set of ground arcs in the air-

craft flow network for individual aircraft a and Na the set of nodes in the aircraft flow network

for aircraft a. sn is the supply of aircraft a at node n in the aircraft flow network (a demand

is specified as a negative supply). For each individual aircraft, a supply s' = 1 is associated

with the node where the aircraft is known to start at the beginning of the time window T, and

a demand of s"' -1 where it finishes the last flight of the time window. Ground arcs at each

location connect the successive nodes, which allows feasible aircraft paths to be defined.

Let x be a binary variable that takes on value 1 if copy k of flight leg f is present in the

solution and 0 otherwise, yg be a binary variable that is 1 if ground arc g is present in the solution

and 0 otherwise and zf be a binary variable that is is 1 if flight f is canceled in the solution and

0 otherwise.

The two elements of cost typically captured in aircraft recovery are the delay costs and the

111



cancelation costs. With each flight copy k c Cf for each flight f is associated a cost cf. cf
is obtained by multiplying the passenger-related cost incurred by the airline per passenger per

minute, the number of passengers booked on flight f, and the number of minutes that copy

k E Cf is delayed beyond the scheduled departure time of f. A cost cf is associated with the

cancelation of flight f.

Aircraft flow balance constraints:

In the aircraft flow network N, for aircraft a, a supply s' = 1 is associated with the node where

the aircraft is known to start at the beginning of the time window T, and a demand of s' = -1

where it finishes the last flight of the time window. s is derived from our knowledge of the

airline system state. n- is the set of incoming arcs to node n E Na and n+ is the set of outgoing

arcs to node n C N . The aircraft flow balance constraints are then:

yg + z k+s,"yn+ - xk VncN',Va cA (4.1)
gEn- (f,k)En- gEn+ (f,k)En+

Flight coverage constraints:

A flight is either operated using one of the copies created or canceled. The flight coverage

constraints are thus:

x + zj=1 Vf EF (4.2)

We briefly mention the ability to model scheduled aircraft maintenance. Aircraft mainte-

nance is modeled by creating an artificial 'flight leg' beginning at the start of maintenance at

the maintenance station and ending at the end of the scheduled maintenance at the same sta-

tion. If maintenance can be delayed, we capture it by creating copies of this arc. By modeling

'flight cover' of the maintenance leg using the constraint shown above, with the corresponding

z variable set to 0 to disallow cancelation of maintenance, we ensure that compulsory mainte-

nance is carried out. If maintenance is not compulsory within the recovery time window, these

constraints are omitted. The aircraft recovery model is thus the following.
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min CkX k + Cf Zf (4.3)
EE f~C fF
f EF kEC5 f EF

s.t. X +zf=1 Vf EF (4.4)
kECf

S g + 5a g + X f Vn EN,Va cA (4.5)
gEn- (f,k)En- gEn+ (f,k)En+

X E {o, 1} VkECf,Vf EF (4.6)

y9 > 0 V g E Ga (4.7)

After solving the aircraft recovery model (4.3) - (4.7), we construct passengerflow networks

Np for each itinerary p to facilitate passenger recovery. The flight legs in the passenger flow

network are those which are present in the optimal solution to (4.3) - (4.7), that is, with x 1.

For each flight f, the flight leg in N, represents the scheduled departure of flight f and the

arrival of flight f plus the minimum connecting time for a passenger on itinerary p. Connection

arcs at each location connect successive flight legs in a passenger itinerary. Note that some of

these arcs can actually be reverse arcs, with the time of arrival earlier than that of departure.

This arc, if present in the solution, indicates that the passenger is disrupted and cannot make the

connection. For simplicity, we will assume that all connecting passenger itineraries consist of

two legs. It is straightforward to extend the model to the case with multiple flight legs.

Let P be the set of passenger itineraries p that are operated on the network and n, the number

of passengers on itinerary p, N the set of nodes in passenger flow network for itinerary p, and

G, the set of ground arcs in the passenger flow network for itinerary p. Passenger recovery

constraints may be modeled as in Bratu and Barnhart's PDM1 model [BB06]. First, we generate

candidate itineraries R(p) for each passenger type p. If passenger itinerary p is not disrupted

at time t, R(p) consists only of the originally scheduled itinerary. If passenger itinerary p is

disrupted at time t, R(p) is a list of candidate itineraries or paths on the passenger flow network

from the itinerary origin to its destination, with each starting after the original itinerary for p.

R(p) also includes a virtual itinerary to indicate re-accommodation to another airline's network,

or, cancelation of the passenger trip at its origin. Decision variables p indicate the number of
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passengers originally on itinerary p who are re-accommodated on itinerary r and d; represents

the arrival delay of these passengers. pP is the number of passengers on the non-disrupted

itinerary p. Parameters Capj is the number of seats on flight f and parameter o' is 1 if flight f
is on itinerary r and zero otherwise. Passenger-related costs cp denote the cost of using itinerary

r to accommodate passenger p. This is based on the actual arrival time of itinerary r E R(p) at

the destination, and includes delay costs, goodwill costs, and hotel and meal costs if relevant.

The following constraint ensures that all passengers are flown to their destinations.

p = np

r ER(p)

Vp E P (4.8)

To ensure that no passengers are assigned to a canceled flight leg, and to restrict the num-

ber of passengers assigned to a flight leg if the flight is not canceled, we add the following

constraint:

Sr p; < Cap (1-z )
pEP rGR(p)

The passenger recovery model is as follows:

min Ec p p
peP

s.t. S p=n

S op Capf (1 -z)
pEP rER(p)

p E Z +

Vp c P

Vf c F

Vr C R(p),Vp E P
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4.3 Flight Planning

A flight plan is a document prepared by the operator (usually an airline) that indicates the

movement of the concerned aircraft in time and space, from its origin to its destination. The

flight plan specifies the route (ground track) of the aircraft, its profile (altitudes along the route),

its speed (which varies along the route) and the fuel burned in operating the flight plan. An

example of a flight plan is shown in Figure 4-4 (Source: Altus [Altb]).

0/3 /C3.-C32 T 20/ What speed to fly (possibly
varying along the route)

....... How much fuel they will burn ("trip fuel")

6 _No Total departure fuel, and how it is allocated - fuel to
X T oo IO ~ alternate, contingency fuel, and other allocations

T 6I that vary between airlines and regulatory rules
EDDiF BI F B Z NAPS I U SP73 SP U1602 P UPR UPIG

ESW UI.602~ '0W UN590 SUPFT 0E5R ERAKA&.. 6120N8..630..44QN, -60N ,

36 .. MA.. FEDY SAI~ YRL .. HL J30'/ DPF ,BFF LANDRS KDEN

WIN X'MS6INX H /M L*

FL 340/660 360/TERNo 3 What route (ground track) to fly

What profile (altitudes along the route) to fly Sz-:s e fm

Figure 4-4: Sample flight plan

The goal of a flight plan is to minimize a weighted sum of fuel cost, time-based costs, over-

flight costs (in countries other than the US) and passenger spill costs subject to constraints of

aircraft performance, weather, allowed route and altitude structure, schedule and operations; by

varying the route, profile, speed and departure fuel. The generation of flight plans is a com-

plex non-linear optimization problem, due to the following considerations: (i) fuel burn and

cruise fuel flow rate are nonlinear functions of the aircraft weight, which varies dramatically

during the course of a flight, (ii) weather uncertainty, (iii) 'allowed' ground tracks and altitudes

should be used (static and dynamic airway structures exist, and Route Availability Document

[EUR06] has to be followed), (iv) optimal paths vary significantly due to current wind condi-

tions, (v) Computational tractability issues lead to decomposition and other heuristics solve the

flight plan optimization problem [Altb], (vi) Computational performance trade-offs, such as that

between plan robustness and solution time.

Flight planning algorithms also include some fuel and time buffer for expected enroute con-

115



gestion, using weather/wind forecasts and historical sector-based air traffic delay information.

Based on this calculation, a flight plan also includes buffer for emergency fuel (specified by

the FAA or by EUROCONTROL), contingency fuel specified by the airline that accounts for

enroute congestion along the flight path, and discretionary fuel.

Flight plans are created typically on a flight-by-flight basis by the airline, and must be filed

with Air Traffic Control (ATC) before departure. Typically this may be up to 30 minutes before

the flight departs from its origin airport. As we discuss in §4.3.2, flight planning models today

do not specifically compute flight plans that account for network connectivity of aircraft and

passengers on the day-of-operations.

The relationship between fuel burn and flight time (and consequently, block time) is highly

non-linear. Figure 4-5 illustrates the relationship between flying time and fuel burn for flight a

from airport A to the hub H. For this flight, the duration of the flying time can be varied between

455 min to 420 min by varying the speed. (Further slowing down beyond 455 minutes begins

to again increase fuel burn, and therefore airlines typically vary speeds within the range shown

in Figure 4-5.) Flight a is a long-haul flight, with duration greater than 6 hours. Long-haul

flights are flights that involve long distances, typically more than six hours in length, and are

usually operated by wide-body aircraft [Tho09] [AirlO]. For such flights, the flexibility in time

provided by changing flying speeds is high in comparison with flights that are short-haul. Short-

haul flights are typically those that are less than 3 hours in length [Tho09]. For short-haul flights,

changing flight speed results in a smaller range of variation in the flying time. Consequently,

the difference in fuel burn produced due to operating different flight plans at different speeds

is far less, though the shape of the fuel burn curve remains similar. For short haul flights, the

change in block times resulting from speed changes is seen to be almost negligible.

Each point in the plot represents a flight plan, with an associated fuel burn and flight time.

Fuel burn gives rise to fuel-related costs, while flight time relates to block time of the flight

and time-related costs. Typically, a flight plan is selected from this curve by specifying one of

the following two metrics: (i) static aircraft cruise speed, or (ii) a more sophisticated measure

called the Cost Index. Compared to the simplistic measure of specifying the aircraft speed, the

cost-index measure takes into consideration the time-value of speeding up or slowing down the

aircraft, as described in §4.3.1.
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Figure 4-5: Relationship between flight time and fuel burn

4.3.1 Cost Index-based flight planning

Cost Index (CI) is an assumed ratio of the time-related (or delay-related) costs of a flight divided

by the fuel cost; that is, it is the ratio of cost per unit time divided by the cost per mass unit

fuel. Time-related costs are defined as those that are related to (i) the duration of the flight,

such as aircraft maintenance costs and crew duty costs; and (ii) the arrival time of the flight,

such as aircraft connectivity, crew connectivity and elapsed time, and passenger connection and

delay costs. CI is expressed in units of 100lb/hr (Boeing) or kg/min(Airbus). This measure has

two physical meanings: (i) CI is the amount of additional fuel worth burning (relative to the

minimum fuel burn to operate the flight) to save one unit of time, or (ii) CI is a way to express

time units using the same metric as fuel flow units, allowing us to optimize for a sum of fuel

and time-based costs.

Typically, the 'right' CI value to operate at is determined by the airline from its historical

data. The airline computes the delay costs to passengers, crew and aircraft, as well as fuel costs

incurred, from historical data. These delay costs and fuel burn costs are aggregated over the

network or over each fleet type or each market type, and divided, to generate the corresponding

cost index values. A CI value of zero means that relative to fuel costs, time-related costs are

zero; or the additional fuel worth burning to save one unit of time relative to the minimum fuel

burn speed is zero. Then the aircraft is operated at its most fuel-efficient cruise speed, called

the maximum range cruise speed. When operating at a high CI, time is more costly compared

to fuel, and the aircraft is sped up even though more fuel is burnt, in order to incur lower time-
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related delay costs. This is with an objective of minimizing the sum total of fuel and time-related

costs.

Airlines typically associate their flights with the historically derived cost index and schedule

their flights under the assumption of operating under that CI and speed. This CI is called

the 'normal CI'. To the estimated flying time, additional buffer for taxi times, transit times,

delay buffer, etc. are added to find the schedule for the flight. Compared to flying by simply

determining a speed, this is a better and more systematic measure that accounts for time-related

costs.

A key observation with regard to the usage of cost-index is the following. When operating

at a specified cost-index, the underlying assumption is that of linear increase of time-related

costs. That is, if the flight were to be delayed by one minute, this measure assumes that a cost

of CI*fuel cost per minute would be incurred. However, it has been well-studied that time-

related costs in airline networks are highly non-linear. In reality, time-related costs are related

to aircraft, passenger and crew connectivity, and thus cannot be simplistically expressed as a

linear function of the CI values. In the following sections, we present and solve models that

capture the relationships between fuel costs and time-related costs in a more accurate manner.

4.3.2 Flight planning: state-of-the-practice

In this section, we discuss the current state-of-the-practice involving operational flight planning

at various airlines. This information was obtained from six international carriers. To obfuscate

the specific information of each carrier, we simply refer to them as carrier 1, 2, 3, 4, 5 and 6.

It is well-understood in the airline industry that associated with flight speed changes are

both fuel impacts as well as network connectivity impacts. For this reason, the cost index (CI)

measure, described in §4.3, which is an indicator of this trade-off, has become standard practice

in the industry, and is used as a rule-of-thumb.

Each carrier determines its operational CI value by analyzing its historical operations, and

aggregating the total realized cost of fuel and the realized cost of time-related effects (delays,

connectivity, etc.). This may be done at a network, fleet or market level, resulting in network

CI, or fleet CI, or market CI. Calculations of the CI value from historical data are typically done
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at great cost, using dedicated software [Alta]. Using this static CI value, a rule-of-thumb for the

cost of delays is used by dispatchers when calculating the flight plans and by pilots when flying

the aircraft to determine the speed at which to fly in order to optimize the time and fuel costs

trade-off.

In addition to the static CI value, which indicates normal operation of the flight according

to the schedule, airlines also specify a range of CI values that an aircraft can be operated at

when speeding up or slowing down may be required. This range of CI serves as a guideline to

dispatchers and pilots. The pilot is allowed to speed up or slow down within this range at his

or her discretion. (The max CI in the range does not mean that further speed up is not possible,

only that this range specifies an allowable limit that can be operated at the pilot's discretion.)

The lower limit of the CI range is 0. The higher limit of the CI range is typically determined

based on a percentage cap on excess fuel burnt beyond the 'normal' CI, which can differ from

carrier to carrier. One reason for the specification of the higher limit is due to the fuel tankering

policies of the airline, which would allow speed up to a certain extent with the discretionary fuel

carried. (Flying even faster may result in burning emergency fuel, which should be done only

in emergency situations.) The increasing marginal cost of fuel burn per minute of time saved in

flying is another. Yet another reason for this rule-of-thumb may also be that airlines would like

to prevent pilots from 'flying too fast' to reach their destination earlier, and result in high fuel

consumption.

Airlines also provide limited guidelines on operating at different CI values than the 'normal'

CI value. They indicate that if tailwinds are encountered or if the aircraft has an early start, the

pilot may slow down to a lower CI value, and in case of headwind or late start, he or she may

speed up to the higher CI value. These guidelines also caution pilots that speeding up the flight

will consume excess fuel, and the pilot should assess whether the excess fuel burn is outweighed

by the benefits of making up the corresponding time.

To understand further the practice of flight planning, we held discussions with multiple in-

ternational carriers. The information gleaned from these discussions, as well as from published

material by airlines, is summarized as follows.

Airline 1 is an international airline that operates across three continents. This airline op-

erates a hub-and-spoke network centered around a single large hub. It operates a significant
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number of long-haul flights that represent 10% of departures, and also several short-haul flights

that are operated as short cycles around the hub. The normal CI for its schedule is CI 30. In

case of delay, or headwind, the pilot may speed up to CI 300 to make up for lost time. However,

the 'correct' CI to operate at is not chosen considering system state at the time of filing the

flight plan. Airline A recognizes that the CI guidelines may not be sufficient, and is incorpo-

rating network connectivity concerns of passengers and crews at a preliminary level (without

decision-support models).

Airline 2 is also an international airline that operates a large number of long-haul flights

across continents. This airline has been exploring aspects of flight speed changes into opera-

tions, primarily slowing down of aircraft, to save on fuel. At this point, Airline B is interested

in conducting studies to explore the integration of flight planning and disruption management

in its network. These measures are not however, being tested out on the network.

Airline 3 operates a large hub-and-spoke network with multiple hubs. It operates a number

of intercontinental and intra-continental long-haul flights. The CI range for this airline is 0-

500. The airline issues directives to pilots to slow down to save fuel if extra buffer is present

in the schedule and has cautioned against speeding up unless significant benefits of the time are

observed.

Airlines 4 and 5 also are hub-and-spoke carriers, each with a single hub. Almost all of the

flights operated by these carriers are short-haul, with an extremely small percentage of long-

haul flights. Airline 4 operates its flight based on fleet-type-based CI values. The normal CI

values for different fleet types used are 60, 80 and 90. Due to the low flexibility in time provided

by short-haul operations, these airlines do not consider CI changes in their operations.

Airline 6 has recognized that a static CI for the entire network does not capture the time-

related costs effectively, and hence, has been studying the use of market-based CI [SMW]. A

market-based CI specification better captures the network structure related to the market and

hence, better approximates the associated time-value compared to a network-wide or fleet-wide

measure. However, this value is again pre-determined for the market and not during operations.

Another recent trend has been observed in the industry during the recent fuel price spike

in 2007. Operational speed changes were highlighted during this fuel crisis, as a number of

airlines began to exploit the slack in their schedule to save on fuel. Associated Press articles
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[AssO8a] and [AssO8b] report that airlines slowed down flights, resulting in longer flying times

but lower fuel burn. Airlines reported about $20 million savings in a year by practicing this

policy.

Our work has implications for fuel tankering policies. When flight plans with higher CI are

indicated by the optimization model (as in the cas of the example discussed in 54.1.2), the fuel

to be carried by the aircraft can be significantly higher than that specified by the standard fuel

tankering policy of the airline.

4.3.3 Flight Planning Engine

Flight plans used in this work are generated using JetPlan [Jepb], a flight planning tool devel-

oped by Jeppesen Commercial and Military Aviation [Jepa]. Jeppesen's flight planning engine

uses information about the flight, weather patterns, allowable fleet type(s) for the flight, payload

during the day of interest and generates flight plans at different CI and departure times for each

fleet type. The flight plan generator takes into account the fuel burn due to the payload consist-

ing of cargo, passengers, luggage hold, and fuel weight. Included in fuel are contingency and

discrepancy fuel.

The actual fuel cost incurred depends on the airport at which the plane is re-fueled. In our

computations, we assume standard costs throughout the network based on information from the

airline. In practice, an airline will compute the trade-offs between fuel burn costs and delay

costs using their actual fuel prices. Fuel hedging is another aspect that could change the fuel

costs incorporated in the model if data were available.

4.3.4 Concerns related to state-of-the-practice

While flight planning using static CI values and existing industry guidelines captures the un-

derstanding that there is a trade-off between fuel burn and time-related costs, our analysis in

§4.1.2 indicates that capturing dynamically changing network connectivity effects is crucial to

minimize true costs of fuel bum and (time-related) delay costs. In the example discussed, Fig-

ure 4-2 shows that the choice of the minimum cost is at CI 1100. However, Airline 1 (from

whose network this is extracted) typically operates at CI 30 and allows its dispatchers and pilots
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to speed up to a maximum of CI 300. It is clear from the figure that neither of these CI values

truly minimizes costs. While speeding up the flight from CI 30 to CI 300 may be viewed by

the pilot as 'making up time', in fact it simply burns excess fuel and increases total cost. Most

airlines do not have systematic guidelines or decision-support systems for choosing the right CI

dynamically for a given scenario. There has been growing understanding of the shortcomings of

current practice, as discussed in Burrows [BBT+01] and Altus [Alta], but models to overcome

these limitations have not been built.

We present in the following section a framework that allows us to optimize operating fuel

costs and performance costs as measured by passenger service reliability, and minimize total

costs incurred.

4.4 Integrated Disruption Management and Flight Planning

In our disruption management approach that incorporates flight planning, schedule and flight

plan optimization is performed prior to each flight, at the time that the flight plan is filed for the

flight. This provides the ability to produce different flight planning solutions during operations,

that are designed to the capture the features of aircraft and passenger connectivity for that flight

given current schedules, and further network effects that propagate down the network. In our

model, we will focus on aircraft and passenger disruption management. With suitable modifi-

cations, this can be extended to crew disruption management as described in Bratu [BB06].

Given a disrupted schedule, an airline defines a recovery time-window of duration T start-

ing from the current time, beyond which normal operations should be resumed. In current

disruption management practice, aircraft swaps, flight delays and flight cancelations are used to

recover from the disruption and restore the original schedule. In addition, in this recovery time

window, at the time of filing the flight plan for each flight, we incorporate the ability to include

flight planning as a recovery mechanism to improve passenger service reliability and aircraft

recoverability.

At a given time t of the day of operations, we assume that we have a snapshot of the airline's

schedule and resource allocations at that point in time. That is, we assume knowledge of (i)

where aircraft are located, (ii) passenger itineraries (and therefore disrupted itineraries). We
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refer to this information as the airline system state at time t.

The flights within the recovery time-window can be divided, in a temporal fashion, into 3

types:

1. flights that are already in the air/arrived at destination at this time,

2. flight(s) departing in the next 30 minutes to half-hour, whose flight plans have to be filed,

and

3. flights departing more than 30 minutes from the current time.

Knowing the airline system state, we first determine aircraft ready times for all aircraft,

and based on this, we create the time-space network representations for aircraft and passenger

movements. Second, we determine the set of flights to which the disruption may propagate via

aircraft or passengers. This we call the propagation boundary. Third, we generate flight copies

for flights in T. Flight copies represent re-scheduling of existing flights as well as creation of

speed change opportunities for the flight. Fourth, we solve the combined aircraft and passenger

recovery model, which provides a schedule that minimizes the sum of passenger delay and fuel

burn costs.

The above sequence of steps presents a brief description of our enhanced disruption man-

agement process. Our model includes simplifications including not capturing aircraft mainte-

nance and crew connectivity. Bratu and Barnhart [BB06] present a comprehensive model that

incorporates these aspects but does not include flight planning opportunities. Our model can be

expanded to capture these additional aspects as described in Bratu and Barnhart; however, this

is not within the scope of this thesis.

4.4.1 Network representation

Our model is based on a time-space network representation of the airline's schedule. The nodes

in a time-space network are associated with both time and location, and an arc between two

nodes indicates a possible movement between the two locations (or same location) and times.

Given the state of the system at time t, we create time-space networks within the time-window

T whose arcs are based on (i) expected departure and arrival times of disrupted (or enroute)
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flights in the system, and (ii) scheduled departure and arrival times of non-disrupted flights. In

fact, we create two different types of time-space networks: (i) an aircraft flow network for each

aircraft and (ii) a passenger flow network for the passengers, as described below.

The aircraft flow network N for aircraft a tracks its movement over the flight schedule.

Each node in the aircraft flow network represents either a possible departure time of the flight

f, or a possible arrival time of the flight plus the minimum turn time of the aircraft type that is

assigned to flight f. Given the airline system state, the nodes and arcs are created to represent

the possible departure and arrival times of disrupted and enroute flights, and the scheduled

departure and arrival times of non-disrupted flights. Because we allow for aircraft swaps within

a fleet type, the aircraft flow network Na need only contain those flights in the schedule to which

an aircraft of the same fleet type as a is assigned. We refer to the arcs that represent scheduled

flights and their copies as flight arcs. The passenger flow network is similarly constructed.

Each node in the passenger flow network represents either a (scheduled or possible) departure

of flight f or an arrival of flight f plus the minimum connecting time for a passenger on that

itinerary. Connection arcs at each location connect successive flight legs in a passenger itinerary.

Note that some of these arcs can actually be reverse arcs, with the time of arrival earlier than

that of departure. This arc, if present in the solution, indicates that the passenger is disrupted

and cannot make the connection. For simplicity, we will assume that all connecting passenger

itineraries consist of two legs. It is straightforward to extend the model to the case with multiple

flight legs.

4.4.2 Flight copy creation

Flight copy creation in our model is of three kinds: (i) to represent alternative departure and

arrival times of the flight without speed changes compared to the original, (ii) to represent flight

plans that involve speed changes, and therefore, block time changes compared to the original

flight without changing its departure time, and (iii) a combination of (i) and (ii). These copies

are created in both the aircraft flow networks and the passenger flow network. In order to create

flight copies, we first define the propagation boundary.
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4.4.2.1 Copies in the propagation boundary

Because determining optimal flight plans can be done only for those (yet to depart) flights

whose departure times are known with a high degree of certainty, we build multiple flight plans

for a subset of flights called the propagation boundary, within the recovery time window. The

propagation boundary includes the flights which might experience time-related delay costs as a

result of the initial disruption. For a flight f experiencing a disruption that causes it to be delayed

at departure by t minutes, and for which we want to determine an optimal flight plan, we define

its propagation boundary. The propagation boundary of f is the subset of flights to which

the disruption propagates to aircraft and passengers; when allowed to propagate downstream

without any recovery measures.

We illustrate this concept using an example. Consider Figure 4-6, where long-haul flights

fi and f2 are operated by one aircraft and short-haul flights f3 and f4 by another. Passengers

connect from flight fi to flight f3. In the scenario shown, fi is delayed to fl. This disruption,

if unchecked, can propagate via insufficient passenger connection time to flight f3. Because the

slack between f and f2 is greater than the minimum aircraft turn time, the disruption does not

propagate to f2. However, because the disruption propagates to f3, and due to short turn time

between f3 and f4, any action taken towards re-scheduling f3 will propagate to f4. Thus, the

propagation boundary consists of f , f3 and f4.

HUB

OPTIMIZA'rION - Planned aircraft connections
INT O --- Planned passenger connections

Figure 4-6: Propagation Boundary
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Once the propagation boundary is defined, we create alternate flight plans for each flight f
within the boundary using the following steps:

1. If disruption propagates to f via aircraft connections:

" Create copies of flight f every r minutes until a maximum departure delay of R

minutes. These are copies of type (i) described above.

" If f is long-haul, as defined in 4.3, create copies also representing change in block

times. These are copies of types (ii) and (iii).

2. If disruption propagates to f via passenger connections, that is, some passengers cannot

connect to f due to disruptions upstream, we do the following. First, we define 0 (in

minutes) as the maximum extent to which downstream flight departures are allowed to

be held or delayed in order to facilitate passenger connections. That is, downstream

connections f are allowed to arrive at most 0 minutes late at their destination. If 0 = 0,

it means that we do not allow for downstream flights to incur departure delays due to

upstream passengers, and the copy generation algorithm is complete. If 8 > 0, we

follow these steps. The goal of the following is to create flight copies that allow for a

flight to depart later, but to arrive no later than 0 minutes at its destination.

" If f is a long-haul flight, we will capture possible speed changes as well as delaying

departure times for this flight. Let the maximum decrease in block time possible due

to speeding up f be 6. Create possible departure nodes of flight f every 5 minutes

until a maximum departure delay of 0 + 3. Now create corresponding flight copies

of types (ii) and (iii) associated with these departure times, such that the arrival

time of the copy at its destination always entails an arrival delay of no more then E

minutes.

* If f is a short-haul flight, as defined in @4.3, we do not capture the possibility of

speed changes because of the limited impact of changing the speed of the flight. We

simply make copies of the flight with its scheduled block time and departure arcs at

at 5 minute intervals until a maximum departure delay (and a corresponding arrival

delay) of 0.
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In our experiments, we choose values of E to be 0, 10 and 15 minutes. We impose a limit

of 15 minutes on E so that arrival delay of a downstream flight f due to delay propagated to it

from an upstream flight via passenger connections is limited to 15 minutes. This is so that the

on-time performance of the system is not deteriorated. As discussed in @4.2, it is not a common

practice for airlines to hold their downstream flights and risk poor on-time performance.

4.4.2.2 Copies beyond the propagation boundary

In addition, for each flight f in time-window T that is operated by an aircraft of the same fleet

type as one of the disrupted flights, we generate copies of the flight every m minutes until a

specified number of minutes after its departure time. This allows for aircraft swaps within the

same fleet type in order to recover the schedule. These copies belong to type (i) specified above,

and represent later departure times of flights. Note that we do not create copies that allow a flight

to depart before its scheduled departure time.

Airline scheduling recovery models employ extensively the approach of generating flight

copies of type (i) to find good recovered schedules. Thengvall et. al [TYBOO], Andersson and

Varbrand [AV04], and Yan and Young [YY96] generate flight copies every m minutes for each

flight f. We adopt this method in our model. We observe that some of these copies might not be

useful, for example, in the case of a flight whose aircraft is ready to depart and passengers have

not been disrupted. For this reason, Bratu and Barnhart[BB06] provide a flight copy generation

algorithm that limits the number of flight copies by considering resource availability apriori.

Though we do not employ this algorithm in the model described in this work for reasons of

simplicity, we can adopt an alternative method of generating flight copies without changing the

structure of our model.

4.4.3 Definitions

In this section we describe additional details of aircraft and passenger network construction and

define additional notation for our models.

Let F be the set of flight legs f operated by the airline and A the set of aircraft a available.

Cf is the set of copies of flight f, where the copies are generated from alternate flight plans with
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the same departure time, or by alternative departure times or both. This set of flight plans can

also contain alternate flight plans using new equipment types if such swaps are allowed. Let ckf
denote the fuel cost of operating copy k of flight f. G, is defined as the set of ground arcs in

the aircraft flow network for individual aircraft a and N, the set of nodes in the aircraft flow

network for aircraft a. s" is the supply of aircraft a at node n in the aircraft flow network (a

demand is specified as a negative supply).

For each flight leg f, we denote the set of flight copies as Cf. In the aircraft flow network,

each flight leg copy k E Cf connects a possible departure time of flight f to a possible arrival

time (corresponding to a specific flight plan) plus the minimum turn time of aircraft a. For each

individual aircraft, a supply s' = 1 is associated with the node where the aircraft is known to

start at the beginning of the time window T, and a demand of s' -1 where it finishes the last

flight of the time window. Ground arcs at each location connect the successive nodes, which

allows feasible aircraft paths to be defined.

Let P be the set of passenger itineraries p that are operated on the network and n, the

number of passengers on itinerary p, N, the set of nodes in passenger flow network for itinerary

p, and G, the set of ground arcs in the passenger flow network for itinerary p.

4.4.4 Assumptions

The following assumptions are considered when building our models:

1. A flight cannot be cleared for departure prior to its scheduled departure time;

2. The decrease in payload (and hence the decrease in fuel burn) due to passengers missing

the flight is negligible;

3. If a flight plan with a significantly different arrival time at the destination airport is used,

there is a landing slot available at that time.

4.4.5 Aircraft and Passenger Recovery Model

We propose models to minimize the sum of operating costs and disrupted passenger costs. Let

x be a binary variable that takes on value 1 if copy k of flight leg f is present in the solution
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and 0 otherwise, y9 be a binary variable that is 1 if ground arc g.is present in the solution and

0 otherwise and zf be a binary variable that is is 1 if flight f is canceled in the solution and 0

otherwise.

4.4.5.1 Resource Allocation Constraints

Aircraft flow balance constraints:

In the aircraft flow network N for aircraft a, a supply s= 1 is associated with the node where

the aircraft is known to start at the beginning of the time window T, and a demand of s' = -1

where it finishes the last flight of the time window. s' is derived from our knowledge of the

airline system state. n-- is the set of incoming arcs to node n E Na and n+ is the set of outgoing

arcs to node n E N . The aircraft flow balance constraints are then:

Yg+ X+s"= yg+ E X VnGN',Va cA (4.14)
gEn- (f,k)En- gEn+ (f,k)En+

Flight coverage constraints:

A flight is either operated using one of the copies created or canceled. The flight coverage

constraints are thus:

xk + z = 1 Vf EF (4.15)
k ECf

Scheduled aircraft maintenance may also be modeled as described in @4.2.

4.4.5.2 Passenger Constraints

These constraints are modeled similar to Bratu and Barnhart's PDM1 model [BB06]. First,

we generate candidate itineraries R(p) for each passenger type p. If passenger itinerary p is

not disrupted at time t, R(p) consists only of the originally scheduled itinerary. If passenger

itinerary p is disrupted at time t, R(p) is a list of candidate itineraries or paths on the passenger

flow network from the itinerary origin to its destination, with each starting after the original

itinerary for p. R(p) also includes a virtual itinerary to indicate re-accommodation to another
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airline's network, or perhaps, cancelation of the passenger trip at its origin. Decision variables

p indicate the number of passengers originally on itinerary p who are re-accommodated on

itinerary r and dp represents the arrival delay of these passengers. pr is the number of passengers

on the non-disrupted itinerary p. Parameters Capf are the number of seats on flight f and

parameter 6 is 1 if flight f is on itinerary r and zero otherwise.

The following constraint ensures that all passengers are flown to their destinations.

p = nP Vp E P (4.16)
rER(p)

To ensure that no passengers are assigned to a canceled flight leg, and to restrict the num-

ber of passengers assigned to a flight leg if the flight is not canceled, we add the following

constraint:

6 pS < Capf (1-zf) Vf cF (4.17)
pEP rER(p)

4.4.5.3 Cost coefficients

The two elements of cost we capture using this model are the fuel burn costs and the passenger

delay costs. With each flight copy k E Cf for each flight f is associated a cost ck that is a sum

of (i) the fuel burn costs obtained from the flight planning engine, and (ii) incremental costs of

delayed departure. Small incremental costs of $10 per minute are associated with each minute

a flight is delayed beyond its scheduled departure time to prevent the model from unnecessarily

delaying flights. Passenger-related costs cp denote the cost of using itinerary r to accommodate

passenger p. This is based on the actual arrival time of itinerary r E R(p) at the destination,

and includes delay costs, goodwill costs, and hotel and meal costs if relevant.

4.4.5.4 Aircraft Recovery and Passenger Re-accommodation Model

Given the defined notation and constraints in §4.4, the following is our formulation for combined

aircraft recovery and passenger re-accommodation including flight planning opportunities.
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minl f cxf cP;
f GF kcCf pEP

s.t. Z4Xf + z1
kECf

E ± a S Zyg+ z
gEn- (f,k)En- gEn+ (f,k)En+

E p = np
rER(p)

6 Z p; <Capf (1-z)
pEP rER(p)

E { , 1}

yg > 0

(4.18)

VfEc-F (4.19)

Vn E Na,Va E A (4.20)

VpEP (4.21)

Vf eF (4.22)

Vk E Cf,Vf e F

Vr E R(p),Vp E P

Vg c Ga

(4.23)

(4.24)

(4.25)

4.4.6 Approximate Aircraft and Passenger Recovery Model to Trade-off

Fuel Burn and Passenger Cost

Solving the aircraft and passenger recovery model with passenger re-accommodation described

in (4.18) - (4.25) can be excessive for real-time decision making. For a similar model, Bratu

and Barnhart [BB06] report solution times of 84 minutes for instances drawn from a US airline.

Moreover, they report that feasible solutions obtained when the model is stopped after 5 minutes

result in high operating costs. Similar behavior can be expected from (4.18) - (4.25) due to the

large sizes of the problem (due to flight copies from alternate flight plans and departure times),

and due to the capacity constraints (4.22) that can often result in fractional solutions; which

are also observed in Barnhart, Kniker and Lohatepanont [BKM02] and Bratu and Barnhart

[BB06]. Thus solving (4.18) - (4.25) typically requires excessive solution time and therefore

is impractical to solve in real-time [BB06], it is not suitable for application when flight plan

selection decisions of choosing the flight plans have to be determined in a few minutes, before

filing a flight plan for an aircraft. Therefore, we introduce an alternative model that captures the

trade-off between fuel burn and passenger delays approximately.
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In addition to the notation in (4.18) - (4.25), let P denote the set of passenger itineraries,

C the set of connecting itineraries, IT(p) the set of flight legs in itinerary p, IT(p, n) the nth

flight leg in itinerary p, and np the number of passengers originally booked on itinerary p. Let

nf be the number of booked passengers whose itineraries terminate with flight leg f; 6 equal 1

if itinerary p terminates with flight leg f, and 0 otherwise; and d be an incremental delay cost

associated with operating copy k of flight f. In the formulation presented in this section, we

assume that connecting passenger itineraries have two flight legs, however, this can be extended

to itineraries with more than two flight legs in a straightforward manner. We let MC(p, f, k)

denote the set of flight leg copies in the passenger flow network Np for itinerary p to which there

is insufficient time to connect from copy k of flight leg f, and which, if chosen, will result in

itinerary p passenger misconnects. Let AP be a binary variable that is 1 if itinerary p is disrupted

and 0 otherwise, and let cp be the cost of disruption per passenger on itinerary p.

cp approximates the costs of re-accommodation for each disrupted itinerary p. In our model,

we assume that if passenger itinerary p is disrupted, the passengers on itinerary p are re-

accommodated on similar flight(s) in the next bank. Based on this assumption, we compute

the per passenger average arrival delay cost to the airline for passengers on itinerary p. These

costs represent the airline's estimate of the costs it incurs due to passenger delays, including

recovery, hotel and meal costs, and goodwill costs corresponding to the arrival delay. Note that

setting a cost per itinerary p allows the capture of non-linearity in costs, where higher delays

incur higher costs compared to smaller delays.

Our modified aircraft recovery model with passenger disruptions is as follows:

min ckj±+ cpnpAp± d) (4.26)
fEF kECf pEP fEFkECf

s.t. Zx +±zf =1 V fE F (4.27)
keC5

Yg+ 5 X)+s= Yg+ 5 k VnENa,VaE A (4.28)
gEn- (f,k)En- gEn+ (f,k)En+

IT p,1) T(p,2) - A < 1 V k E CIT(p,1), V P C P (4.29)
mEMC(p,IT(p,1),k)

132



AP > Zf V f E IT(p), Vp E P (4.30)

XE {0, 1} VkECf,Vf EF (4.31)

Zf E {0, 1} Vf EF (4.32)

A, E {0, 1} VpEP (4.33)

y9 > 0 V g c GaVa c A (4.34)

The objective function (4.26) consists of three terms - the fuel costs of flights, the costs of

passenger itinerary disruptions and the incremental costs of flight delays. Constraints (4.29)

ensure that itineraries with insufficient connection time are classified as disrupted. Because the

value of c, is greater than zero and by definition of MC(p, IT(p, 1), k), this constraint ensures

that A, is 1 only if both xjT(pl) and T(p,2) are 1, that is, if passengers on
mEMC(p,IT(p,1),k)

itinerary p cannot connect from the first leg on their itinerary to the second leg on their itinerary.

Constraints (4.30) similarly ensure that if a flight leg is canceled, all itineraries containing the

flight are classified as disrupted. The constraints (4.33) that variables A, should be binary can be

relaxed to 0 < A, < 1 because x and z variables are binary and A variables are 1 only if the first

two terms in (4.29) are 1 or a corresponding z variable is 1. In all other cases, A variables will be

zero because of the positive cost associated with them in the objective. Thus their binary nature

can be enforced even by specifying A as continuous between 0 and 1. Constraints (4.27), (4.28),

(4.31), (4.32) and (4.34) ensure flight cover, aircraft balance, and binary nature of variables x,

z and y respectively, as discussed for (4.18) - (4.25).

For all the instances that we solve in our experiments, described in @4.6, (4.26) - (4.34) is

solved within a minute of run time, making it suitable for real-time application.

4.5 Experimental Setup

4.5.1 Network Structure and Experiment Design

In this section, we demonstrate the potential impact of disruption management enhanced with

flight planning, using data obtained from a major European airline, Airline 1 specified in §4.3.2,

that serves multiple continents. The airline operates a hub-and-spoke network with about 250
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flights per day serving about 60 cities daily. (This does not include feeder airline flights.)

The airline operates a banked schedule at its hub. About 243 flights, or 93% of the flights

operated by the airline are into or out of the hub. 10% of the flights (approximately 30 arrivals

and departures per day) operated are long-haul, and present significant opportunities for speed

changes. The remaining 90% of flights are short-haul. Aircraft rotations on this network are

typically designed as cycles originating from and ending at the hub, with each cycle consisting

of 2 to 4 flights. This is particularly true of short-haul flights that operate within Europe, which

are operated as short cycles around the hub. Long-haul flight operations comprise more than

30% of the flying hours of the airline per day. About 40% of the passengers have at least

one long-haul flight on their itinerary. Because these itineraries bring in more revenue than

itineraries with only short-haul flights, we estimate that about 50% of the revenue is associated

with long-haul flights on the passenger itinerary.

In our experiments, we focus on disruptions of long-haul flights that are inbound to the

hub. This is because of two reasons. First, a significant percentage of passengers connect at

the hub from international locations to Europe and vice versa, and therefore the hub presents an

opportunity to study passenger connectivity. Second, flight planning opportunities, in particular,

speed changes, are significant for long-haul flights. These two reasons lead us to concentrate on

disruptions of such long-haul flights arriving into the hub.

We compare three different types of disruption management options: (i) disruption man-

agement that does not incorporate operational speed changes, (ii) operational speed changes

according to the airline's rule of thumb, and (iii) our enhanced disruption management mod-

els with operational speed changes and intentional holding of downstream flights to wait for

delayed connecting passengers from upstream flights.

Here we add a remark on applicability to other airlines. Our computations in this section

are geared towards Airline 1 that has provided us data for this research. As discussed in §4.3.2,

this airline operates at a 'normal' CI of 30, and dispatchers and dispatchers and pilots typically

speed up flights up to CI 300 based on their discretion. Other airlines operate at different values

of CI and the network trade-offs of their operations will be determined by the operational CI.

For example, an airline that operates at a higher CI than Airline 1 will observe higher fuel costs

for speeding up, as it is already operating at a steeper portion of the flight time-fuel burn curve
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(Figure 4-5); however, there is also greater possibility for slowing down of flights and saving

fuel if network connectivity is not impaired.

Our models are implemented in Java and C using ILOG CPLEX 9.0. Computational exper-

iments are conducted on a workstation using an Intel Pentium 4 2.8 GHz processor and 1 GB

RAM.

4.5.2 Historical Delay Analysis and Scenario Generation

First, we conduct an analysis of delays of long-haul flights that are inbound to the hub and gen-

erate distributions of these delays to understand the frequency of such delays. Our historical

delay analysis is conducted for data available for the months of August, September and Octo-

ber 2008. In our experiments, we focus on those scenarios that are frequent in a statistically

significant manner. For the airline under consideration, we observe that in a given bank, there

is typically at most one inbound long-haul flight delayed into the hub. Simultaneous delays of

long-haul flights into the hub though existing, are not found to be statistically significant.

Based on this observation, we divide the inbound delay for each long-haul flight into 'buck-

ets' of delay. Beginning from a bucket of 0 minutes of delay, we create buckets in 10 minute

increments to the highest level of delay observed in the data. Corresponding to each long-haul

flight, we create a histogram of frequency of delay occurrences in each delay bucket. From the

histogram for each flight, we construct instances where long-haul flight f is delayed into the hub

H by A minutes, where A takes on values of each bucket of delay. Our instances encompass a

representative set of long-haul flights f, for a representative set of delays A. We represent each

instance of this type by S(f, A).

Though historical flight delay information is available for August-October 2008, passenger

information for this period is not available. We have passenger data only for a period of two

weeks in November 2008 (for which we do not have flight delay data). We replicate each

instance S(f, A) for each day for which passenger data is available. Thus, each delay scenario

(from Aug-Oct 2008) is solved multiple times, once for each day (of two weeks in Nov 2008)

with its particular passenger connections.
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4.5.3 Parameter assumptions

We assume the following values for the parameters in the model:

" Passenger-related delay costs = $1.161/passenger per minute, for 2008. This number is

the airline's estimate of their own cost incurred for passenger delays, including recovery,

re-accommodation and goodwill cost.

" Fuel cost = $6.08/gal. This estimate is a result of the airline AOCC's reported costs of

E 700 - E 800 per metric ton of fuel in February 2010. Jeppesen [Jepa] converts this

to a cost range in September 2008. The airline's cost in Feb 2010 is converted to a

cost of E 2.2-E 2.52/gal (with density 0.82 kg/litre and a litre equal to 0.26 US gal).

Further, guided by the IATA fuel price development charts [Int10a], a ratio of 1.78 for

costs in September 2008 to February 2010 is applied, to convert the price range to E 3.9 1-

E 4.48/gal in September 2008, or $5.27 - $6.27/gal (using a conversion rate of $1.35 - $1.4

per E[Eur10]).

" T = approximately 1.5 days, encompassing two successive arrival banks at the hub to

allow for aircraft swaps.

" normal CI = 30; rule-of-thumb maximum CI, specified by the airline = 300

e cp, Cost per disrupted passenger in model (4.26) - (4.34) = $384.3. This cost is calcu-

lated assuming that disrupted passengers are re-accommodated in the next bank, with an

average time of 5 hours, by calculating the average time to the next connecting flight for

different passenger itineraries.

4.5.4 Baseline for comparison

We use as a basis for comparison the case where airlines allow for fleet-based aircraft recov-

ery, followed by passenger re-accommodation and recovery. Models for combined aircraft and

passenger recovery are not standard practice at most airlines, one reason being that this would

involve delaying outbound flights and risking loss of on-time performance. Another reason is

that airlines may not have the type of decision support that simultaneously enables both aircraft
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and passenger recovery. Some information systems can be used to allow larger groups of pas-

sengers to connect, but this is also done in an ad-hoc and manual way rather than using a form

of automated decision-support.

The conventional recovery model used as a basis for comparison in this work follows the

model (4.3) - (4.7) described in §4.2. We use an aircraft recovery model, with flight depar-

ture copies for the fleet types(s) undergoing recovery in order to allow for swaps, departure

delays and cancelations. This model does not allow speed changes and passenger-related delay

costs are not the objective, rather the objective is to minimize flight departure delay costs and

cancelation costs.

4.5.5 Simulation

The solutions to our baseline and our enhanced disruption management models are evaluated

using an airline disruption management simulator [DCT] [Vaa], which is part of the Integrated

Operational Control System developed by Jeppesen[Jepa]. The purpose of this simulator is to

compute the estimated true realized passenger delay costs of our models' solutions on the day

of operations. This simulator performs passenger re-accommodation by solving the passenger

recovery problem (4.10) - (4.13) with the actual cost values experienced by the airline and

provides an estimate of the true passenger-related delay cost to the airline. These are computed

using the delay cost specified in §4.5.3, which include passenger-delay related costs to the

airline, hotel, meal reimbursements and goodwill costs. Note that the simulated costs obtained

using this approach are different from the objective functions to our model (4.26) - (4.34).

This is because (4.26) - (4.34) approximates passenger disruption costs, whereas the simulator

evaluates the actual cost realizations of the solutions to our models. In §4.6, we present the

estimated true costs of our model solutions for the simulator, and not simply the objective

function values to our models.

4.6 Results

In this section, we present the results of our experiments. In our computations, we compare

the following disruption management strategies: (i) Baseline disruption management using the
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model (4.3) - (4.7) described in §4.2, (ii) Naive approach of speeding up to the maximum

allowable CI when a disruption is encountered, and (iii) Enhanced disruption management with

flight planning ((4.26) - (4.34)) with 0 = 0, 10 and 15 minutes.

4.6.1 Case Study 1

In this case study, we describe results for instances of type S(f, A) (described earlier in §4.5.2),

which contain a single long-haul inbound delay into the hub. We then scale these up to measure

the impact of our approach at a network-wide scale. To discuss the performance of solutions to

our model (4.26) - (4.34), we report the simulated solution costs.

To illustrate the trends in the solutions, we first present the results for a specific flight f,
for different levels of delay A on 12 days of operation of f, in November 2008. Flight f is

representative of the other flights in the network in that the trends and trade-offs observed with

this flight are also seen in the case of other flights. In this case, we vary A from 10 minutes to

60 minutes in intervals of 10 minutes.

Figure 4-7 shows the change in fuel burn and passenger cost curves for different levels of

A, for selected days. The horizontal axis represents the arrival delay of flight f and the vertical

axis represents costs incurred. First, observe that for each value of A, the fuel cost curve can

be plotted to reflect speed changes in f, resulting in different arrival delays and corresponding

fuel burn. Fuel cost curves are marked by A values from 10 to 60 in the upper portion of the

figure. As the value of A increases, the curve itself does not change. shape, but shifts to the right

to reflect increased arrival delay.

In the case when downstream flights are not held on the ground (0 = 0), the passenger costs

incurred for different levels of flight arrival delay are shown, for instances across five days of

data. (These are indicated in the lower part of Figure 4-7.) As arrival delay increases, passenger

delay increases and more passenger misconnects occur. The delay cost curve incurs a 'jump'

when a set of passengers misconnect and require recovery and re-accommodation. The total

cost curve that is a sum of fuel costs and passenger costs changes dynamically with changes in

the delay A of flight f. This we illustrate using Figure 4-8, which demonstrates the change in

the total cost curve for different A, for one day of operations (represented by Day 2 in Figure
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Figure 4-7: Trade-offs between fuel burn and passenger delay costs over multiple days

4-7).

Figure 4-8 serves to illustrate that the choice of the optimal arrival time, and hence the

optimal flight plan, depends on the network connectivity at all the possible arrival times of the

flight. This dynamic changes when the departure times of downstream flights are allowed to be

altered (or are altered in the course of the day, due to plans not operating exactly as planned) so

that passengers can make connections. Holding downstream passenger connections opens up

the possibility of the upstream flight speeding up to a smaller extent and burning less fuel, but

incurring fewer misconnections. The network interactions now become more interesting, as we

have the flexibility of changing speeds and departure times of inbound delayed flights as well

as the outbound flight departure times.

We now describe the phenomena that occur when flight speeds and departure times are

simultaneously modified to mitigate the effects of disruptions. We do so by solving the model

(4.26) - (4.34), with different values of 8. E = 0 results in the phenomenon so far discussed and

described in Figures 4-7 and 4-8. Now we present the trends in fuel burn and passenger-related

139

. ..... .................. ... ............. . .... ...........



- -- Fuel Cost

- Passenger Cost

-4- Total Cost

-20 0 20 40
Flight Arrival Delay (min)

200000

180000

160000

140000

00000M

80000

60000

40000

20000

A = 20

-- Fuel Cost

- Passenger Cost

-4- Total Cost

60 80 -20 0 20 40
Flight Arrival Delay (min)

60 80

A = 30

-U-Fuel Cost
- Passenger Cost

-4- Total Cost

-20 0 20 40
Flight Arrival Delay (mini)

60 80

A = 50

p

p

I

-U-Fuel Cost

- Passenger Cost

-4- Total Cost

200000

180000

160000

140000

120000

100000

80000

60000

40000

20000

A = 40
-- Fuel Cost

- Passenger Cost

-4- Total Cost

-20 0 20 40
Flight Arrival Delay (mini)

200000

18000

160000

140000

120000

100000

80000

60000

40000

20000

60 80

A = 60

-U-Fuel Cost

- Passenger Cost

-4- Total Cost

-20 0 20 40
Flight Arrival Delay (min)

Figure 4-8:
delay A

60 80 -20 0 20 40
Flight Arrival Delay (min)

Changing optimal trade-off point between fuel and passenger cost with departure

airline costs (true costs estimated via simulation) when (4.26) - (4.34) is solved for E = 0, 10

and 15, for the representative flight f and each value of A; and compare them to our baseline

results. The costs presented in this table are over a period of 12 days for which data is available

for this flight. Note that the fuel burn costs presented are those related to the disruption, not

related to the schedule - that is, we report not the total fuel burned, but the additional fuel

140

200000

180000

160000

140000

A = 10

200000

180000

160000

140000

120000

100000

80000

60000

40000

20000

200000

180000

160000

140000

120000

100000

80000

60000

40000

20000

60 80

[] 
I



burned compared to the schedule due to the disruption. In Table 4.2, we present the fuel burn,

passenger (pax) misconnections and associated costs experienced by the airline, for results from

five different strategies of disruption management:

" Column 1: The baseline disruption management strategy described in Section 4.5.4,

which does not allow for speed changes

" Column 2: A disruption management strategy that combines the baseline disruption man-

agement strategy with a naive speed-up strategy. In the case of delay, the dispatcher

always speeds up to the maximum rule-of-thumb CI. In this case, the speed up is to CI

300.

" Column 3: The enhanced disruption management strategy that combines the baseline

disruption management strategy with 'optimal' speed changes using (4.26) - (4.34). 8 is

set to 0 to prevent downstream flights from being delayed at departure.

" Column 4: The enhanced disruption management model strategy that combines the base-

line disruption management strategy with flight speed changes and downstream flight

departure delays up to 10 minutes. This is obtained by solving (4.26) - (4.34) with 0 set

to 10 minutes.

" Column 5: The enhanced disruption management model strategy that combines the base-

line disruption management strategy with flight speed changes and downstream flight

departure delays up to 15 minutes. This is obtained by solving (4.26) - (4.34) with 0 set

to 15 minutes.

From our analysis, we present the following findings:

1. For all levels of disruption, recovery models enhanced using flight planning will hold

constant or decrease total passenger delay costs compared to the baseline approach. In

the instances we tested for a proof-of-concept, the cost improvements ranged from 0 to

15%.

2. The naive model that is sometimes adopted by dispatchers, of speeding up to the allow-

able cost-index (Column 2 solutions), results in improved passenger costs compared to
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Recovery without Naive speed up Enhanced recov- Enhanced re- Enhanced re-
speed changes (airline's rule- ery: don't hold covery: hold covery: hold

of-thumb to CI connecting flights connecting flights connecting flights
300) up to 10 min up to 15 min

A = 10 min
Fuel burn (lb) 0 60036 -624 -624 -624
Fuel cost ($) 0.00 54480.43 -566.26 -566.26 -566.26
Pax misconnects 0 0 0 0 0
Num. flights held - - 0 0
Delayed pax cost ($) 0.00 0.00 0.00 0.00 0.00
Total cost ($) 0 54480.43 -566.26 -566.26 -566.26

A = 20 min
Fuel burn (lb) 0 60036 34813 34813 -624
Fuel cost ($) 0.00 54480.43 31591.50 31591.50 -566.26
Pax misconnects 351 1 23 12 1
Num. flights held - - 4 16
Delayed pax cost ($) 55329.75 3505.95 10899.90 9514.80 3505.95
Total cost($) 55329.75 57986.38 42491.40 41106.30 2939.69

A =30 min
Fuel burn (lb) 0 60036 43489 35021 35021
Fuel cost ($) 0.00 54480.43 39464.64 31780.25 31780.25
Pax misconnects 351 203 101 22 12
Num. flights held - - 14 20
Delayed pax cost ($) 59695.65 36224.55 25108.65 18719.10 17545.95
Total cost ($) 59695.65 90704.98 64573.29 50499.35 49326.20

A = 40 min
Fuel burn (lb) 0 60036 76233 55458 55458
Fuel cost ($) 0.00 54480.43 69178.60 50326.07 50326.07
Pax misconnects 806 351 239 46 45
Num. flights held - - - 40 42
Delayed pax cost ($) 216265.95 57948.75 59332.50 30870.45 31387.50
Total cost ($) 216265.95 112429.18 128511.10 81196.52 81713.57

A = 60 min
Fuel burn (lb) 0 60036 79954 110916 79954
Fuel cost ($) 0.00 54480.43 72555.27 100652.13 72555.27
Pax misconnects 1239 1069 363 355 342
Num. flights held - - - 71 143
Delayed pax cost ($) 533182.50 413020.35 82301.40 77556.15 189668.25
Total cost ($) 533182.5 467500.78 154856.67 178208.28 262223.52

Table 4.2: Flight A - H disruption costs from simulations for different recovery strategies,
summed over 12 days of operation

the baseline recovery model, as it improves the on-time performance of the flight. How-

ever, for medium levels of disruption, such as 20-30 minutes, it results in increased fuel

consumption even in cases where it may not be required. This rule-of-thumb-based pol-

icy may be able to recover passengers for A = 10 and A = 20, but may fall short for

larger disruptions. In comparison with our optimization-based models, the rule-of-thumb

to speed up to CI 300 almost always results in higher costs.

3. Because the objective function of the model (4.26) - (4.34) captures different costs than

the simulation (it captures approximate costs of disruption and not exact recovery costs),

discrepancies may be (rarely) observed in cases where true passenger delay costs from the

simulation, are not well approximated by the passenger disruption costs in the objective
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Table 4.3: Flight A - H simulated average cost savings per day for different recovery strategies,
averaged over 12 days of operation

function of (4.26) - (4.34). For example, note the negative value (indicating expenditure)

of realized total cost value for A = 30 in column 3 of Table 4.3. The simulated passenger

delay cost savings are not as high as is indicated by the objective function when (4.26) -

(4.34) is solved, resulting in costs instead of savings.

4. Depending on the itineraries of passengers, both flight speed changes as well as holding

of downstream flights can reduce the number of misconnected itineraries. For example,

in the case of a 20 minute initial disruption, simply allowing speed changes without hold-

143

Recovery Naive speed up Enhanced recov- Enhanced re- Enhanced re-
without (airline's rule- ery: don't hold covery: hold covery: hold

speed of-thumb to CI connecting flights connecting flights connecting flights
changes 300) up to 10 mm up to 15 mi

A = 10 mmin_______

Fuel burn savings (lb) - -5003 52 52 52

Fuel cost savings ($) - -4540.04 47.19 47.19 47.19

Pax misconnects saved - 0 0 0 0

Delayed pax cost savings ($) - 0.00 0.00 0.00 0.00

Total cost savings ($) - -4540.04 47.19 47.19 47.19

Std.dev. total savings ($) - 0.00 0.00 0.00 0.00
Total cost savings (%) - N/A N/A N/A N/A

A =20 min________

Fuel burn savings (lb) - -5003 -2901.083333 -2901.083333 52

Fuel cost savings ($) - -5448.04 -2632.62 -2632.62 47.19

Pax misconnects saved - 35.00 27.33 28.25 29.17

Delayed pax cost savings ($) - 5182.38 3702.49 3817.91 4318.65

Total cost savings ($) - -265.66 1069.86 1185.29 4365.84

Std.dev. total savings ($) - 3380.51 4286.77 4263.51 12503.64

Total cost savings (%) - -4.80 23.20 25.71 94.69
A =30 min________ ________

Fuel bum savings (lb) - -5003 -3624.1 -2918.4 -2918.4

Fuel cost savings ($) - -4540.04 -3288.72 -2648.35 -2648.35
Pax misconnects saved - 12.33 20.83 27.42 28.25

Delayed pax cost savings ($) - 1955.93 2882.25 3414.71 3512.48
Total cost savings ($) - -2584.11 -406.47 766.36 864.12

Std.dev. total savings ($) - 1569.33 1218.01 2323.02 2146.41

Total costnsavingsc - -51.95 -8.17 15.41 17.37
A = 40 min

Fuel bur savings (lb) - -5003 -6352.75 -4621.5 -4621.5

Fuel cost savings ( - -4540.04 -5764.88 -4193.84 -4193.84

Pax misconnects saved - 37.92 47.25 63.33 63.42

Delayed pax cost savings () - 13193.10 13077.79 15449.63 15406.54

Total cost savings ($) - 8653.06 7312.90 11255.79 11212.70

Std.dev. total savings () - 7756.53 7936.95 6146.52 6181.36
Total cost savings 48.01 40.58 62.46 62.22

A = 60 min

Fuel burn savings (lb) - -5003 -6662.8 -9243 -6662.8

Fuel cost savings ($) - -4540.04 -6046.27 -8387.68 -6046.27
Pax misconnects saved - 14.17 73.00 73.67 74.75

Delayed pax cost savings - 10013.51 37573.43 37968.86 28626.19
Total cost savings ($) - 5473.48 31527.15 29581.18 22579.91
Std.dev. total savings - 6300.55 11011.94 9284.81 11884.86
Total cost savings (%) 12.32 70.96 66.58 50.82



ing downstream flights is sufficient to recapture 93% of disrupted passengers back onto

their original itineraries compared to the baseline case. On the other hand, in the case of

30 and 40 minute delays, more than 33% of passenger misconnects can be prevented by

allowing speed changes without holding flights; however, by allowing downstream flight

departures to be delayed by 10 minutes, the misconnects are decreased by 95% in this

case. In practice, as A increases above 30 minutes, speed ups are considered in an ad-hoc

manner by the aircraft controllers as means of mitigating disruption, though not inte-

grated with the disruption management system. So, in the case of A = 30 and A = 40,

the true savings in misconnections lies somewhere between the 'recovery without flight

planning' and the 'naive speed-up' cases. This translates into a decrease in passenger

misconnections compared to airline practice of between 95% and 87%.

5. For lower levels of disruption, fuel burn costs dominate and drive the trade-off between

fuel bum, as seen in the cases of 10 - 20 minutes of delay. In these cases, because

fewer passengers are impacted, the balance in the optimization model tilts in the favor

of decreasing fuel costs. The decision in such cases is to slow down the flight because

passengers are not disrupted by the slow down. Occurrences of these levels of delays

provide an opportunity to save fuel in comparison to the baseline recovery approach.

6. For very low levels of disruption (for example, 10 minutes), enough slack is present in the

system to absorb the disruption, and flight planning mechanisms such as speed increases

and holding downstream flights, are not required. Instead, we might be able to slow down

the flight without incurring disruptions, as seen in Table 4.2. However, for even fairly

low levels of disruption such as 20 minutes, the interaction between speed changes and

passenger delays can come into play. In the case of the flight demonstrated in Table 4.2,

some passenger connections have a small amount of slack for which delays of 20 minutes

cannot be absorbed, resulting in misconnections if the flight is not sped up. In the case of

20 minutes of delay, we see that almost all disruptions can be absorbed by speeding up

the flight, and/or delaying downstream flights to the appropriate extent.

7. For higher levels of initial disruption (more than 30 minutes in the case shown above),

passenger delay costs dominate the trade-off between fuel burn and delay costs. This
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is because many more downstream flights are impacted by a large initial disruption. To

reduce the number of passenger disruptions, the optimal least total cost decision is to

speed up the long-haul flight. If allowed, downstream flights are also held in order to

facilitate passenger connections.

8. For intermediate levels of delay, such as 20 - 40 minutes, holding downstream flights to

wait for connecting passengers can have significant benefits. In Table 4.2, the number

of passenger misconnections decreases significantly from Column 3 to Columns 4 and 5.

With the decrease in the number of misconnections, we see a corresponding decrease in

passenger-related costs, for A = 20 and A = 30. For A = 40 and higher, however, we

see that passenger delay costs increase in the case of E = 15, even though the number of

misconnects decreases. The increase in passenger-related costs connected with holding

downstream flights begins to exceed the decrease in passenger-related costs associated

with re-accommodation and recovery of disrupted passengers. However, the optimization

model (4.26) - (4.34) chooses these solutions which decrease misconnects but increase

delayed passenger costs because it is geared towards passenger misconnects and not pas-

senger recovery and re-accommodations. Thus the benefits of holding downstream flights

are seen to decrease as the level of the initial disruption A increases, because many more

flights must be held, and causing increased waiting time for passengers (who are not

necessarily connecting from A-H) on the downstream flights. Thus the cost savings of

preventing misconnections from the long-haul flight is more than offset by the cost due

to holding the downstream flights.

9. We also observe from Table 4.2 that for departure delay levels less than 40 minutes, the

number of passenger misconnections and the corresponding passenger costs significantly

decrease when downstream flights are held compared to the case when only flight speeds

are changed without holding the downstream flights. For higher levels of delay, as shown

in the 60 minute case, the decrease in the number of misconnections and the passenger

cost is less significant when flights are held compared to when only speed changes are al-

lowed. (In fact, passenger delay costs increase for e = 15.) This is because of the model

(4.26) - (4.34) being geared towards passenger misconnections; and costs of intentionally
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holding downstream flights exceed the cost savings from the decrease is passenger mis-

connections. Thus it may be recommended to hold downstream flights when the delay

is less than 40 minutes; whereas this is not recommended when the delay is 60 minutes

or more. Similar behavior is observed for other flights f for which experiments were

conducted. Therefore, for a flight, depending on the connectivity, we can identify such a

threshold where passenger flights should be held below the threshold and not held above

it.

Table 4.3 shows the average savings in dollars per day and the standard deviation (std.dev.)

in cost savings for flight A - H, for different values of initial disruption, as compared to the

baseline recovery model. Positive values in this table represent cost savings and negative val-

ues represent additional expenditure compared to the baseline disruption management model

described in Column 1.

While the discussion in this section focused on a single inbound flight delay into the hub,

such types of delays occur in more than 85% of cases for the airline under consideration. Sum-

marizing the savings over a representative set of long-haul flights and disruption levels, that is,

S(f. A) for different A and f; and further weighting these savings with their historical occur-

rence frequencies, we conclude that the benefit of integrating speed changes and flight departure

scheduling with disruption management can be significant, as shown in Table 4.4. Compared

to the baseline disruption management approach, for the time period that our experiments were

conducted, the three enhanced recovery approaches shown in Table 4.4 result in annual savings

of $ 15,879,801, $ 15,846,767, and $ 14,555,865 respectively. These savings are possible with

a relatively small increase in fuel burn of 0.2% per long-haul flight. Passenger misconnects

from long-haul flights are reduced by 47.2% - 53.3% and delayed passenger costs are reduced

by 44.9% - 46.61% compared to the baseline case.

We add a note on the sensitivity of our model solutions and the corresponding savings to

fuel costs. Note, from Figure 4-8 that for more than 20 minutes of initial delay, passenger delay

costs dominate fuel bum costs, and drive the total cost function. This indicates that the dominant

component of the cost savings are due to the reduction in passenger misconnects, especially at

higher levels of delay. Therefore, even if fuel costs fluctuate significantly, it is likely that in

(4.26) - (4.34), the passenger cost component will drive the objective, and similar savings in
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Table 4.4: Improvements observed using enhanced models, compared to conventional disrup-
tion management case

passenger misconnects can be observed compared to the baseline.

4.6.2 Case Study 2

In the previous section, we analyzed cases of a single inbound flight delay into the hub at a

given time, and optimize for one inbound delay at a time. This was motivated by the historically

observed delay distributions for the carrier from which we have available data. In contrast, cases

of multiple inbound delays into a hub have been frequently observed for several US airlines. In

this section, we provide some insight into optimizing simultaneously for multiple delayed flights

entering a hub, and contrast this with our earlier flight-by-flight analysis. The underlying idea

we want to explore in this case study is the value of additional information about other flights

in the system, and that impact on our total costs. We first present an illustrative scenario.

We consider a scenario where one-third of the incoming flights into a hub experience delays.

The delays range from 45 minutes to an hour. Table 4.5, presented in a similar format as Table

4.2, shows the impacts over a day of operations of using different flight planning strategies, for

the flights involved in the disruption.

As in the case of single inbound flight delays, the disruption management strategies that in-

clude flight planning decrease cost, on the order of $44,000 - $66,000 per day. Our approaches

reduce passenger misconnects from 45% to 63%. By taking advantage of the speed-up possi-

bilities of flights, these approaches all consume more fuel compared to the baseline recovery

approaches. Some of the additional fuel cost can be decreased by allowing downstream flights

to be held, requiring less speed-up of the long-haul flight. Compared to the case where airlines
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Enhanced recov- Enhanced re- Enhanced re-
ery: don't hold covery: hold covery: hold
connecting flights connecting flights connecting flights

up to 10 min up to 15 min

Passenger miscon- 47.2% 52.0% 53.3%
nects decreased
compared to baseline
Increase in fuel cost 0.2% 0.22% 0.14%
per long-haul flight
Delayed passenger 44.90% 47.60% 46.61%
delay costs decreased
compared to baseline



Recovery without Naive speed up Enhanced recov- Enhanced re- Enhanced re-
flight planning (airline's rule- ery: don't hold covery: hold covery: hold

of-thumb to CI connecting flights connecting flights connecting flights
300) up to 10 min up to 15 min

Fraction of flights delayed into hub = 1/3
Fuel burn (lb) 0 15228 3547 904 626
Fuel cost ($) 0 13818.84 3218.77 1727.8 568.07
Pax mis-connects 144 82 78 61 53
Delayed pax cost($) 150773.02 111457.1 103403.89 89578.71 82613.22
Total cost ($) 150773.02 125275.94 106622.66 91306.51 83181.29
Total cost savings (%) - 16.91 29.28 39.44 44.83

Table 4.5: One-third of inbound flights delayed into hub: Incorporating information about mul-
tiple disrupted flights simultaneously

include speeding up to the maximum allowable CI as part of recovery, fuel cost is seen to be

lower by $10,000 - $13,000.

Recovery without Naive speed up Enhanced recov- Enhanced re- Enhanced re-
flight planning (airline's rule- ery: don't hold covery: hold covery: hold

of-thumb to CI connecting flights connecting flights connecting flights
300) up to 10 min up to 15 min

Fraction of flights delayed into hub = 1/3
Fuel burn (lb) 0 15228 3547 999 626
Fuel cost ($) 0 13818.84 3218.77 906.55 568.07
Pax mis-connects 144 82 78 61 53
Delayed pax cost ($) 150773.02 111457.1 103403.89 89578.71 82613.22
Total cost ($) 150773.02 125275.94 106622.66 90485.26 83181.29
Total cost savings (%) - 16.91 29.28 39.98 44.83

Table 4.6: One-third of inbound flights delayed into hub: optimizing flight plans for individual
flight disruptions

If the same problem were to be solved by optimizing for each disrupted flight individually,

instead of considering the flight network as a whole and optimizing considering all disrup-

tions simultaneously, the solutions are as shown in Table 4.6. When downstream flights are

not allowed to be held for passengers, both the strategies of flight-by-flight optimization and

network-based optimization will yield the same results (see columns 3 of Tables 4.5 and 4.6).

When downstream flights are allowed to be held, then we observe interactions between the

downstream networks of these disrupted flights. For example, if long-haul flights fi and f2 into

the hub are both delayed at departure, and both share several downstream connections, then

fi may not be sped up as much (compared to when it is optimized individually). This results

when, for example, f2 requires shared downstream flights to be delayed by 10 minutes and fi

requires only 5 minutes, then the optimal solution is to delay shared downstream flights by 10

minutes and to operate fi at a (slower) speed to take advantage of the newly available slack of

5 minutes. Solutions in column 4 of Table 4.5 and Table 4.6 both indicate the same level of
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passenger connectivity available, however, Table 4.5 shows less fuel burn because one flight is

not sped up to the extent it would be if optimized for individually. Thus the network-optimal

course of action for a disrupted flight and the downstream flights is a function of the status of

other flights arriving into the hub.

The key insight from this study is that as additional information about the state of the system

becomes available, incorporating such information can add value. Detailed experiments over

several scenarios are required to assess the benefits of added information, both pre-departure

and enroute, at a network-wide level, which we propose in future work in Chapter 5.
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Chapter 5

Conclusions and Future Directions

Inherent uncertainty in airline operations guarantees that delays and disruptions are inevitable

in the air transportation system. Delays and disruptions cost airlines and passengers billions

of dollars a year, as seen by the growing costs in the US from $6B in 2006 to $12B in 2007.

The delays and disruptions seen in 2007, the fuel price hikes in 2008 and the economic crisis in

2009 exposed the vulnerabilities of the system. In addition, the growing demand for air travel,

combined with the fact that the infrastructure of the airspace system cannot be scaled easily,

results in higher expected levels of congestion and delays. In this thesis, we present strategic

and operational approaches that can be adopted by airlines to reduce delays and associated costs.

5.1 Summary

5.1.1 Strategic Approaches

Robust Aircraft Routing

We study the application of three types of models to aircraft routing - extreme-value model

based on the Bertsimas and Sim [BSO4] robust optimization approach; the probabilistic model

based on Charnes and Cooper's [CC59] chance-constrained programming (CCP) approach;

and the tailored robust aircraft routing model of Lan, Clarke and Barnhart (LCB)[LCB06].

These three robustness mechanisms lead to different models and solutions that have different

robustness performances with respect to various metrics of interest.
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Increased complexity and solution times are associated with the basic extreme value and

probabilistic models, when compared to a deterministic model, because the models have to be

solved several times for different values of the robustness parameters. To avoid iterative re-

solving, we developed the following extensions to these models: the Delta (extended extreme-

value) model for the extreme-value approach, and the Extended CCP for the probabilistic ap-

proaches. Our extended models can be solved in a single iteration, with run times equivalent or

lower than those of a single iteration each of the basic models.

We evaluate solutions to the different models through simulation, and measure performance

via total aircraft delay, on-time performance metrics, and passenger disruption metrics. The

extended extreme value and probabilistic approaches can consistently lead to the generation of

more robust solutions (compared to the basic models, and the solution currently operated by the

airline), as defined by the metrics of interest. These models are also generally applicable, as

described in §2.2.2 and §2.2.4.

To understand the differences between the modeling paradigms, we compare the extended

extreme value (Delta) model, the extended chance-constrained (ECCP) model and the tailored

approach (LCB). The extreme value models' dependence on extreme delay values, ignoring

probabilistic information, leads in some cases to large variability in the performance of alter-

native optimal solutions to the models. In such cases, extra care should be taken in evaluating

alternative optimal solutions to these approaches. From this, we conclude that it is not effective

to drive the solution process with extreme values that are rare. Probabilistic approaches (such

as ECCP) focus on higher-probability delay events, and produce improved solutions accord-

ing to our metrics. These approaches capture more information about the system and focus on

more likely delay events, and thus are more in-line with our metrics of interest, which relate

to decreasing total delay. In addition, the tailored LCB approach is seen to be a special case

of the probabilistic chance-constrained approach. Though the tailored approach in itself does

not explicitly capture knowledge of probability distributions, by simplistically incorporating

the 'right' delay quantile in its objective (guided by the Chance-constrained approach), it can

achieve improved results through a less complex model.

Our work underscores the importance of choosing an approach that aligns well with the

underlying data distributions and the evaluation metrics of interest to the various stakeholders,
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including the DoT, the airline and passengers.

Insights from Multiple Applications

In collaboration with IBM Research's Zurich Research Laboratory, we further examine the ap-

plicability of the general models applied in the aircraft routing context in Chapter 2, to other

problems in pharmaceutical supply chain management and corporate portfolio optimization.

We apply the extreme-value based Bertsimas and Sim and Delta approaches, the probabilis-

tic Chance-Constrained Programming (CCP) and Extended Chance-Constrained Programming

(ECCP) approaches, and the Conditional-Value-at-Risk(CVaR) approach.

We see that the CVaR approach requires the ability to sample from the joint probability

distribution of the uncertain parameters, which can be a considerable challenge in most real-

world problems. Also, we quickly run into tractability issues for CVaR, even for medium size

problem instances, and certainly for large-scale instances. Thus, this approach proves to be

impractical for many of our problem instances.

Extreme-value based approaches - the Bertsimas and Sim and Delta approaches - exhibit a

high degree of conservatism because they are guided by worst-case realizations. This makes

them more applicable when near-extreme conditions are more frequent in the underlying data

(heavy-tailed distributions), that is, when extreme realizations are not rare; or when worst-case

realizations must be avoided. We show empirically that when extreme values are rare, this

approach can lead to unnecessarily conservative solutions. We also show that when the type of

distribution is known with very little certainty, this approach becomes more effective.

Probabilistic CCP and ECCP approaches, on the other hand, need more information than the

extreme-value based approaches about the distribution, at least in the form of quantiles, to be

effective. When little information is available, they are simply equivalent to a mean-value or a

worst-case approach. These approaches, which weight more heavily probable data realizations

in the optimization, do not give a great deal of importance to worst-case realizations. They

result, then, in solutions geared towards optimizing average-case performance metrics.

Because the robust approach's robustness metric can be different from those of the decision-

maker, and multiple robustness metrics can be defined for a system, it is difficult to assess the

robustness of a solution simply based on the model's robustness parameters and its objective
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function. This points to the importance of simulation, and evaluation based on multiple criteria

to choose robust solutions. In addition, we show that knowledge of underlying data distri-

butions, even if empirically derived, can be used to modify the input parameters of the robust

models and lead to improved solutions. In conclusion, the efficacy of any given robust approach

is determined not by the approach or model alone, but by the interaction between the model,

data and evaluation metrics.

5.1.2 Operational Approaches

Integrated Disruption Management And Flight Planning

We show in this chapter that considerable benefits can be obtained by integrating flight planning

into disruption management. In current practice, flight planning and disruption management are

treated separately. Flight planning enables pre-departure decisions about flight speeds, routes

and fuel burn. Through flight planning, we re-allocate slack in block and ground times in the

network, and add additional flexibility into disruption management by changing flight speeds

and/or re-timing downstream flights to preserve aircraft, crew and passenger connections.

We glean information from multiple airlines about the state-of-the-practice in flight plan-

ning. We show that the consequences of using a static (pre-determined) Cost Index value as

is used in practice can result in non-optimal flight plans that burn more fuel than needed or do

not ensure network connectivity. An optimization-based decision making tool that optimizes

the trade-off of schedule delay costs and fuel burn is required to make the best decisions during

operations.

We present models that enable aircraft recovery and passenger recovery by integrating flight

planning decisions and disruption management. In the interest of tractability, we also present

models for aircraft recovery with approximate passenger connectivity, and solve these models

within 1 second.

Through experiments using data from a hub-and-spoke carrier, we show that propagation of

inbound hub delays and their associated costs can be decreased significantly using our models.

In fact, as the level of delay into the hub increases, disruption management enhanced using

flight planning mechanisms provides higher cost savings. We also show that as the number of
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disrupted flights increases, the savings from integrated flight planning and disruption manage-

ment increase. In comparison with traditional disruption management approaches, our models

decrease passenger misconnections by 47.2% - 53.3%, resulting in a corresponding decrease in

passenger-related operating costs of the airline.

5.2 Extensions and Future Directions

Dynamic robustness. Robust optimization is motivated by the fact that the ability to recover

from disruptions and uncertainty is closely correlated with the original schedule and network

design. To fundamentally address the sequential nature of transportation network operations,

where new system information is continuously revealed, a dynamic notion of robustness is

needed. The new notion of robustness therefore is to incorporate flexibility allowing us to

reconfigure easily and inexpensively the system (matching operations to external system state)

as information is revealed. The goal in designing such systems is to incorporate new information

and enable continual modification of operations to match the system state.

Planning and operations synergies. An open question of interest is the interaction between

strategic and operational delay management approaches. Ideally, we would like to have syner-

gistic interactions between the planning and operations stages. Thus far, few approaches have

been developed with the express purpose of facilitating this synergy. It is of value to explore

if (i) specific robust planning approaches are synergistic with specific dynamic recovery opera-

tions; (ii) the added flexibility for individual components of the system are synergistic as more

information is revealed in real-time.

Emissions taxes. An interesting extension of our models in Chapter 4 is to capture emissions

taxes in the fuel costs. In order to constrain the negative environmental impacts of aviation

emissions and associated radiative forcing, market measures such as taxation may be imposed

(possibly as part of a cap-and-trade scheme). Estimates of emissions cost incurred during the

flight can be obtained from the flight plan or by using the value of emissions index [CT09].

Estimating CO 2 is a function of fuel burn alone, and NO_ estimates can be obtained using the

thrust settings of the engines used in the fleet. A new trade-off frontier between fuel costs

and delay costs is generated when taxes on emissions are introduced. An understanding of

155



the optimal trade-off points would help estimate the effect of the taxation measures on airline

operating costs.

Enroute speed changes. Enroute flight planning can add to the operational flexibility pro-

vided by before-departure flight planning. If information is available about delays to flights

to which passengers will connect, or about delays to flights whose passengers share a down-

stream flight, then we can further enhance airborne recovery and decrease costs. If we are able

to incorporate enroute flight plan changes, especially as information about other flights in the

system becomes available, we may be able to exploit the synergy demonstrated in Case Study

2 (@4.6.2) to further decrease delay costs.

Robust flight planning. An additional problem of interest is to build 'robust' flight plans

that can protect against uncertainty. Our model works with assumptions on flight departure

time from the origin airport, and arrival time at the destination airport; assuming that additional

delay is not incurred due to taxi delays, en-route weather and congestion. One of the biggest

sources of uncertainty in flight operations, however, is the wheels-up time, as described by Altus

[Alta], followed by weather and enroute/arrival/ATC issues. Models to estimate the wheels-up

time accurately would yield better estimates of outbound delay and in choosing the most cost-

effective flight plan.

Flight planning and Air traffic flow management. A further avenue of research is to integrate

flight planning with air traffic flow management. For example, because flight planning provides

avenues for slack reallocation, we can ask the question - what is the best choice between a

longer route without changing the departure time versus a later departure time and a shorter

route? Answering such questions might provide further opportunities to alleviate congestion at

slot-controlled airports.
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