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Learning Gaussian Tree Models: Analysis of Error
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Abstract—The problem of learning tree-structured Gaussian
graphical models from independent and identically dis-
tributed (i.i.d.) samples is considered. The influence of the
tree structure and the parameters of the Gaussian distribution on
the learning rate as the number of samples increases is discussed.
Specifically, the error exponent corresponding to the event that
the estimated tree structure differs from the actual unknown
tree structure of the distribution is analyzed. Finding the error
exponent reduces to a least-squares problem in the very noisy
learning regime. In this regime, it is shown that the extremal tree
structure that minimizes the error exponent is the star for any
fixed set of correlation coefficients on the edges of the tree. If the
magnitudes of all the correlation coefficients are less than 0.63,
it is also shown that the tree structure that maximizes the error
exponent is the Markov chain. In other words, the star and the
chain graphs represent the hardest and the easiest structures to
learn in the class of tree-structured Gaussian graphical models.
This result can also be intuitively explained by correlation decay:
pairs of nodes which are far apart, in terms of graph distance,
are unlikely to be mistaken as edges by the maximum-likelihood
estimator in the asymptotic regime.

Index Terms—Error exponents, Euclidean information theory,
Gauss-Markov random fields, Gaussian graphical models, large
deviations, structure learning, tree distributions.

I. INTRODUCTION

L EARNING of structure and interdependencies of a large
collection of random variables from a set of data sam-

ples is an important task in signal and image analysis and many
other scientific domains (see examples in [1]–[4] and references
therein). This task is extremely challenging when the dimen-
sionality of the data is large compared to the number of samples.
Furthermore, structure learning of multivariate distributions is
also complicated as it is imperative to find the right balance be-
tween data fidelity and overfitting the data to the model. This
problem is circumvented when we limit the distributions to the
set of Markov tree distributions, which have a fixed number of
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parameters and are tractable for learning [5] and statistical in-
ference [1], [4].

The problem of maximum-likelihood (ML) learning of a
Markov tree distribution from i.i.d. samples has an elegant so-
lution, proposed by Chow and Liu in [5]. The ML tree structure
is given by the maximum-weight spanning tree (MWST) with
empirical mutual information quantities as the edge weights.
Furthermore, the ML algorithm is consistent [6], which implies
that the error probability in learning the tree structure decays to
zero with the number of samples available for learning.

While consistency is an important qualitative property, there
is substantial motivation for additional and more quantitative
characterization of performance. One such measure, which we
investigate in this theoretical paper is the rate of decay of the
error probability, i.e., the probability that the ML estimate of
the edge set differs from the true edge set. When the error prob-
ability decays exponentially, the learning rate is usually referred
to as the error exponent, which provides a careful measure of
performance of the learning algorithm since a larger rate im-
plies a faster decay of the error probability.

We answer three fundamental questions in this paper: i) Can
we characterize the error exponent for structure learning by the
ML algorithm for tree-structured Gaussian graphical models
(also called Gauss-Markov random fields)? ii) How do the struc-
ture and parameters of the model influence the error exponent?
iii) What are extremal tree distributions for learning, i.e., the dis-
tributions that maximize and minimize the error exponents? We
believe that our intuitively appealing answers to these impor-
tant questions provide key insights for learning tree-structured
Gaussian graphical models from data, and thus, for modeling
high-dimensional data using parameterized tree-structured dis-
tributions.

A. Summary of Main Results

We derive the error exponent as the optimal value of the
objective function of a nonconvex optimization problem,
which can only be solved numerically (Theorem 2). To gain
better insights into when errors occur, we approximate the
error exponent with a closed-form expression that can be
interpreted as the signal-to-noise ratio (SNR) for structure
learning (Theorem 4), thus showing how the parameters of
the true model affect learning. Furthermore, we show that due
to correlation decay, pairs of nodes which are far apart, in
terms of their graph distance, are unlikely to be mistaken as
edges by the ML estimator. This is not only an intuitive result,
but also results in a significant reduction in the computational
complexity to find the exponent—from for exhaustive
search and for discrete tree models [7] to for
Gaussians (Proposition 7), where is the number of nodes.

1053-587X/$26.00 © 2010 IEEE
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We then analyze extremal tree structures for learning, given a
fixed set of correlation coefficients on the edges of the tree. Our
main result is the following: The star graph minimizes the error
exponent and if the absolute value of all the correlation coeffi-
cients of the variables along the edges is less than 0.63, then the
Markov chain also maximizes the error exponent (Theorem 8).
Therefore, the extremal tree structures in terms of the diam-
eter are also extremal trees for learning Gaussian tree distribu-
tions. This agrees with the intuition that the amount of correla-
tion decay increases with the tree diameter, and that correlation
decay helps the ML estimator to better distinguish the edges
from the nonneighbor pairs. Lastly, we analyze how changing
the size of the tree influences the magnitude of the error expo-
nent (Propositions 11 and 12).

B. Related Work

There is a substantial body of work on approximate learning
of graphical models (also known as Markov random fields)
from data e.g., [8]–[11]. The authors of these papers use
various score-based approaches [8], the maximum entropy
principle [9] or regularization [10], [11] as approximate
structure learning techniques. Consistency guarantees in terms
of the number of samples, the number of variables and the
maximum neighborhood size are provided. Information-theo-
retic limits [12] for learning graphical models have also been
derived. In [13], bounds on the error rate for learning the
structure of Bayesian networks were provided but in contrast
to our work, these bounds are not asymptotically tight (cf.
Theorem 2). Furthermore, the analysis in [13] is tied to the
Bayesian Information Criterion. The focus of our paper is the
analysis of the Chow-Liu [5] algorithm as an exact learning
technique for estimating the tree structure and comparing error
rates amongst different graphical models. In a recent paper [14],
the authors concluded that if the graphical model possesses
long range correlations, then it is difficult to learn. In this paper,
we in fact identify the extremal structures and distributions in
terms of error exponents for structure learning. The area of
study in statistics known as covariance selection [15], [16] also
has connections with structure learning in Gaussian graphical
models. Covariance selection involves estimating the nonzero
elements in the inverse covariance matrix and providing con-
sistency guarantees of the estimate in some norm, e.g., the
Frobenius norm in [17].

We previously analyzed the error exponent for learning dis-
crete tree distributions in [7]. We proved that for every discrete
spanning tree model, the error exponent for learning is strictly
positive, which implies that the error probability decays expo-
nentially fast. In this paper, we extend these results to Gaussian
tree models and derive new results which are both explicit and
intuitive by exploiting the properties of Gaussians. The results
we obtain in Sections III and IV are analogous to the results
in [7] obtained for discrete distributions, although the proof
techniques are different. Sections V and VI contain new results
thanks to simplifications which hold for Gaussians but which do
not hold for discrete distributions.

C. Paper Outline

This paper is organized as follows: In Section II, we state
the problem precisely and provide necessary preliminaries on

learning Gaussian tree models. In Section III, we derive an ex-
pression for the so-called crossover rate of two pairs of nodes.
We then relate the set of crossover rates to the error exponent
for learning the tree structure. In Section IV, we leverage on
ideas from Euclidean information theory [18] to state conditions
that allow accurate approximations of the error exponent. We
demonstrate in Section V how to reduce the computational com-
plexity for calculating the exponent. In Section VI, we identify
extremal structures that maximize and minimize the error ex-
ponent. Numerical results are presented in Section VII and we
conclude the discussion in Section VIII.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Basics of Undirected Gaussian Graphical Models

Undirected graphical models or Markov random fields1

(MRFs) are probability distributions that factorize according
to given undirected graphs [3]. In this paper, we focus solely
on spanning trees (i.e., undirected, acyclic, connected graphs).
A -dimensional random vector
is said to be Markov on a spanning tree
with vertex (or node) set and edge set

if its distribution satisfies the (local)
Markov property: , where

denotes the set of neighbors
of node . We also denote the set of spanning trees with
nodes as , thus . Since is Markov on the tree ,
its probability density function (pdf) factorizes according to

into node marginals and pairwise marginals
in the following specific way [3] given the

edge set :

(1)

We assume that , in addition to being Markov on the spanning
tree , is a Gaussian graphical model or Gauss-
Markov random field (GMRF) with known zero mean2 and un-
known positive definite covariance matrix . Thus,
can be written as

(2)

We also use the notation as a shorthand for
(2). For Gaussian graphical models, it is known that the fill-pat-
tern of the inverse covariance matrix encodes the structure
of [3], i.e., if and only if (iff) .

We denote the set of pdfs on by , the set of
Gaussian pdfs on by and the set of Gaussian
graphical models which factorize according to some tree in

as . For learning the structure of (or
equivalently the fill-pattern of ), we are provided with a set
of -dimensional samples drawn from ,
where .

1In this paper, we use the terms “graphical models” and “Markov random
fields” interchangeably.

2Our results also extend to the scenario where the mean of the Gaussian is
unknown and has to be estimated from the samples.
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B. ML Estimation of Gaussian Tree Models

In this subsection, we review the Chow-Liu ML learning al-
gorithm [5] for estimating the structure of given samples .
Denoting as the Kullback-Leibler
(KL) divergence [19] between and , the ML estimate of the
structure is given by the optimization problem3

(3)

where and is the
empirical covariance matrix. Given , and exploiting the fact
that in (3) factorizes according to a tree as in (1), Chow and
Liu [5] showed that the optimization for the optimal edge set in
(3) can be reduced to a MWST problem:

(4)

where the edge weights are the empirical mutual information
quantities [19] given by4

(5)

and where the empirical correlation coefficients are given by
. Note that in (4), the

estimated edge set depends on and, specifically, on
the samples in and we make this dependence explicit. We as-
sume that is a spanning tree because with probability 1, the
resulting optimization problem in (4) produces a spanning tree
as all the mutual information quantities in (5) will be nonzero.
If were allowed to be a proper forest (a tree that is not con-
nected), the estimation of will be inconsistent because the
learned edge set will be different from the true edge set.

C. Problem Statement

We now state our problem formally. Given a set of i.i.d. sam-
ples drawn from an unknown Gaussian tree model with
edge set , we define the error event that the set of edges is es-
timated incorrectly as

(6)

where is the edge set of the Chow-Liu ML estimator in
(3). In this paper, we are interested to compute and subsequently
study the error exponent , or the rate that the error probability
of the event with respect to the true model decays with the
number of samples . is defined as

(7)

assuming the limit exists and where is the product probability
measure with respect to the true model . We prove that the limit

3Note that it is unnecessary to impose the Gaussianity constraint on � in (3).
We can optimize over�� � � � instead of� � � � �. It can be shown that
the optimal distribution is still Gaussian. We omit the proof for brevity.

4Our notation for the mutual information between two random variables dif-
fers from the conventional one in [19].

in (7) exists in Section III (Corollary 3). The value of for
different tree models provides an indication of the relative ease
of estimating such models. Note that both the parameters and
structure of the model influence the magnitude of .

III. DERIVING THE ERROR EXPONENT

A. Crossover Rates for Mutual Information Quantities

To compute , consider first two pairs of nodes
such that . We now derive a large-deviation prin-
ciple (LDP) for the crossover event of empirical mutual infor-
mation quantities

(8)

This is an important event for the computation of because if
two pairs of nodes (or node pairs) and happen to crossover,
this may lead to the event occurring (see the next subsec-
tion). We define , the crossover rate of em-
pirical mutual information quantities, as

(9)

Here we remark that the following analysis does not depend on
whether and share a node. If and do share a node, we
say they are an adjacent pair of nodes. Otherwise, we say and

are disjoint. We also reserve the symbol to denote the total
number of distinct nodes in and . Hence, if and
are adjacent and if and are disjoint.

Theorem 1 (LDP for Crossover of Empirical MI): For two
node pairs with pdf (for
or ), the crossover rate for empirical mutual information
quantities is

(10)

The crossover rate iff the correlation coefficients of
satisfy .
Proof (Sketch) : This is an application of Sanov’s Theorem

[20, Ch. 3], and the contraction principle [21, Ch. 3] in large de-
viations theory, together with the maximum entropy principle
[19, Ch. 12]. We remark that the proof is different from the cor-
responding result in [7]. See Appendix A.

Theorem 1 says that in order to compute the crossover rate
, we can restrict our attention to a problem that involves

only an optimization over Gaussians, which is a finite-dimen-
sional optimization problem.

B. Error Exponent for Structure Learning

We now relate the set of crossover rates over all the
node pairs to the error exponent , defined in (7). The
primary idea behind this computation is the following: We con-
sider a fixed non-edge in the true tree which may
be erroneously selected during learning process. Because of the
global tree constraint, this non-edge must replace some edge
along its unique path in the original model. We only need to con-
sider a single such crossover event because will be larger if
there are multiple crossovers (see formal proof in [7]). Finally,
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Fig. 1. If the error event occurs during the learning process, an edge � �

������ � � � is replaced by a non-edge � �� � in the original model. We
identify the crossover event that has the minimum rate � and its rate is � .

we identify the crossover event that has the minimum rate. See
Fig. 1 for an illustration of this intuition.

Theorem 2 (Exponent as a Crossover Event): The error expo-
nent for structure learning of tree-structured Gaussian graphical
models, defined in (7), is given as

(11)

where is the unique path joining the nodes
in in the original tree .

This theorem implies that the dominant error tree [7], which
is the asymptotically most-likely estimated error tree under the
error event , differs from the true tree in exactly one edge.
Note that in order to compute the error exponent in (11), we
need to compute at most crossover
rates, where is the diameter of . Thus, this is a sig-
nificant reduction in the complexity of computing as com-
pared to performing an exhaustive search over all possible error
events which requires a total of computations [22]
(equal to the number of spanning trees with nodes).

In addition, from the result in Theorem 2, we can derive con-
ditions to ensure that and hence for the error probability
to decay exponentially.

Corollary 3 (Condition for Positive Error Exponent): The
error probability decays exponentially, i.e., iff
has full rank and is not a forest (as was assumed in Section II).

Proof: See Appendix B for the proof.
The above result provides necessary and sufficient conditions

for the error exponent to be positive, which implies exponen-
tial decay of the error probability in , the number of samples.
Our goal now is to analyze the influence of structure and param-
eters of the Gaussian distribution on the magnitude of the error
exponent . Such an exercise requires a closed-form expres-
sion for , which in turn, requires a closed-form expression
for the crossover rate . However, the crossover rate, despite
having an exact expression in (10), can only be found numer-
ically, since the optimization is nonconvex (due to the highly
nonlinear equality constraint ). Hence, we pro-
vide an approximation to the crossover rate in the next section
which is tight in the so-called very noisy learning regime.

IV. EUCLIDEAN APPROXIMATIONS

In this section, we use an approximation that only considers
parameters of Gaussian tree models that are “hard” for learning.
There are three reasons for doing this. First, we expect parame-
ters which result in easy problems to have large error exponents
and so the structures can be learned accurately from a moderate
number of samples. Hard problems thus lend much more in-
sight into when and how errors occur. Second, it allows us to

approximate the intractable problem in (10) with an intuitive,
closed-form expression. Finally, such an approximation allows
us to compare the relative ease of learning various tree struc-
tures in the subsequent sections.

Our analysis is based on Euclidean information theory [18],
which we exploit to approximate the crossover rate and
the error exponent , defined in (9) and (7), respectively. The
key idea is to impose suitable “noisy” conditions on (the
joint pdf on node pairs and ) so as to enable us to relax the
nonconvex optimization problem in (10) to a convex program.

Definition 1 ( -Very Noisy Condition): The joint pdf on
node pairs and is said to satisfy the -very noisy condition if
the correlation coefficients on and satisfy .

By continuity of the mutual information in the correlation co-
efficient, given any fixed and , there exists a

such that , which means that if is
small, it is difficult to distinguish which node pair or has the
larger mutual information given the samples . Therefore the
ordering of the empirical mutual information quantities
and may be incorrect. Thus, if is small, we are in the
very noisy learning regime, where learning is difficult.

To perform our analysis, we recall from Verdu [23, Sec. IV-E]
that we can bound the KL-divergence between two zero-mean
Gaussians with covariance matrices and as

(12)

where is the Frobenius norm of the matrix . Further-
more, the inequality in (12) is tight when the perturbation ma-
trix is small. More precisely, as the ratio of the singular
values tends to zero, the inequality in
(12) becomes tight. To convexify the problem, we also perform
a linearization of the nonlinear constraint set in (10) around the
unperturbed covariance matrix . This involves taking the
derivative of the mutual information with respect to the covari-
ance matrix in the Taylor expansion. We denote this derivative
as where is the mutual infor-
mation between the two random variables of the Gaussian joint
pdf . We now define the linearized constraint set
of (10) as the affine subspace

(13)

where is the sub-matrix of (
3 or 4) that corresponds to the covariance matrix of the node
pair . We also define the approximate crossover rate of and

as the minimization of the quadratic in (12) over the affine
subspace defined in (13)

(14)

Equation (14) is a convexified version of the original optimiza-
tion in (10). This problem is not only much easier to solve, but
also provides key insights as to when and how errors occur when
learning the structure. We now define an additional informa-
tion-theoretic quantity before stating the Euclidean approxima-
tion.
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Fig. 2. Illustration of correlation decay in a Markov chain. By Lemma 5(b),
only the node pairs ��� �� and ��� �� need to be considered for computing the
error exponent � . By correlation decay, the node pair ����� will not be mis-
taken as a true edge by the estimator because its distance, which is equal to 3,
is longer than either ����� or ��� ��, whose distances are equal to 2.

Definition 2 (Information Density): Given a pairwise joint
pdf with marginals and , the information density de-
noted by , is defined as

(15)

Hence, for each pair of variables and , its associated infor-
mation density is a random variable whose expectation is
the mutual information of and , i.e., .

Theorem 4 (Euclidean Approx. of Crossover Rate): The ap-
proximate crossover rate for the empirical mutual information
quantities, defined in (14), is given by

(16)

In addition, the approximate error exponent corresponding to
in (14) is given by

(17)

Proof: The proof involves solving the least squares
problem in (14). See Appendix C.

We have obtained a closed-form expression for the approxi-
mate crossover rate in (16). It is proportional to the square
of the difference between the mutual information quantities.
This corresponds to our intuition—that if and are
relatively well separated then the rate is
large. In addition, the SNR is also weighted by the inverse vari-
ance of the difference of the information densities . If
the variance is large, then we are uncertain about the estimate

, thereby reducing the rate. Theorem 4 illustrates
how parameters of Gaussian tree models affect the crossover
rate. In the sequel, we limit our analysis to the very noisy regime
where the above expressions apply.

V. SIMPLIFICATION OF THE ERROR EXPONENT

In this section, we exploit the properties of the approximate
crossover rate in (16) to significantly reduce the complexity in
finding the error exponent to . As a motivating ex-
ample, consider the Markov chain in Fig. 2. From our anal-
ysis to this point, it appears that, when computing the approx-
imate error exponent in (17), we have to consider all pos-
sible replacements between the non-edges , , and

and the true edges along the unique paths connecting these
non-edges. For example, might be mistaken as a true edge,
replacing either or .

We will prove that, in fact, to compute we can ignore
the possibility that longest non-edge is mistaken as a true
edge, thus reducing the number of computations for the approx-
imate crossover rate . The key to this result is the exploita-
tion of correlation decay, i.e., the decrease in the absolute value
of the correlation coefficient between two nodes as the distance
(the number of edges along the path between two nodes) be-
tween them increases. This follows from the Markov property:

(18)

For example, in Fig. 2, and because
of this, the following lemma implies that is less likely to
be mistaken as a true edge than or .

It is easy to verify that the crossover rate in (16) depends
only on the correlation coefficients and and not the vari-
ances . Thus, without loss of generality, we assume that all
random variables have unit variance (which is still unknown to
the learner) and to make the dependence clear, we now write

. Finally define .
Lemma 5 (Monotonicity of ): , derived in

(16), has the following properties:
a) is an even function of both and ;
b) is monotonically decreasing in for fixed

;
c) Assuming that , then is mono-

tonically increasing in for fixed ;
d) Assuming that , then is monotoni-

cally increasing in for fixed .
See Fig. 3 for an illustration of the properties of .

Proof (Sketch): Statement (a) follows from (16). We prove
(b) by showing that for all .
Statements (c) and (d) follow similarly. See Appendix D for the
details.

Our intuition about correlation decay is substantiated by
Lemma 5(b), which implies that for the example in Fig. 2,

, since due to
Markov property on the chain (18). Therefore, can
be ignored in the minimization to find in (17). Interestingly
while Lemma 5(b) is a statement about correlation decay,
Lemma 5(c) states that the absolute strengths of the correlation
coefficients also influence the magnitude of the crossover rate.

From Lemma 5(b) (and the above motivating example in
Fig. 2), finding the approximate error exponent now re-
duces to finding the minimum crossover rate only over triangles
( and ) in the tree as shown in Fig. 2, i.e., we
only need to consider for adjacent edges.

Corollary 6 (Computation of ): Under the very noisy
learning regime, the error exponent is

(19)

where means that the edges and are adjacent and
the weights are defined as

(20)

If we carry out the computations in (19) independently, the
complexity is , where is the maximum de-
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Fig. 3. Illustration of the properties of ��� � � � in Lemma 5. ��� � � � is
decreasing in �� � for fixed � (top) and ��� � � � � is increasing in �� �

for fixed � if �� � � � (middle). Similarly, ��� � � � is increasing in
�� � for fixed � if �� � � � (bottom).

gree of the nodes in the tree graph. Hence, in the worst case, the
complexity is , instead of if (17) is used. We can,
in fact, reduce the number of computations to .

Proposition 7 (Complexity in Computing ): The approx-
imate error exponent , derived in (17), can be computed in
linear time ( operations) as

(21)

where the maximum correlation coefficient on the edges adja-
cent to is defined as

(22)

Proof: By Lemma 5(b) and the definition of , we obtain
the smallest crossover rate associated to edge . We obtain the
approximate error exponent by minimizing over all edges

in (21).
Recall that is the diameter of . The computation

of is reduced significantly from in (11) to
. Thus, there is a further reduction in the complexity to es-

timate the error exponent as compared to exhaustive search
which requires computations. This simplification only
holds for Gaussians under the very noisy regime.

VI. EXTREMAL STRUCTURES FOR LEARNING

In this section, we study the influence of graph structure on
the approximate error exponent using the concept of cor-
relation decay and the properties of the crossover rate in
Lemma 5. We have already discussed the connection between
the error exponent and correlation decay. We also proved that
non-neighbor node pairs which have shorter distances are more
likely to be mistaken as edges by the ML estimator. Hence, we
expect that a tree which contains non-edges with shorter dis-
tances to be “harder” to learn (i.e., has a smaller error exponent

) as compared to a tree which contains non-edges with longer
distances. In subsequent subsections, we formalize this intuition
in terms of the diameter of the tree , and show that the
extremal trees, in terms of their diameter, are also extremal trees
for learning. We also analyze the effect of changing the size of
the tree on the error exponent.

From the Markov property in (18), we see that for a Gaussian
tree distribution, the set of correlation coefficients fixed on the
edges of the tree, along with the structure , are sufficient sta-
tistics and they completely characterize . Note that this param-
eterization neatly decouples the structure from the correlations.
We use this fact to study the influence of changing the structure

while keeping the set of correlations on the edges fixed.5 Be-
fore doing so, we provide a review of some basic graph theory.

A. Basic Notions in Graph Theory

Definition 3 (Extremal Trees in Terms of Diameter): Assume
that . Define the extremal trees with nodes in terms of
the tree diameter as

(23)

Then it is clear that the two extremal structures, the chain (where
there is a simple path passing through all nodes and edges ex-
actly once) and the star (where there is one central node) have
the largest and smallest diameters, respectively, i.e.,

, and .
Definition 4 (Line Graph): The line graph [22] of a graph
, denoted by , is one in which, roughly speaking,

the vertices and edges of are interchanged. More precisely,
is the undirected graph whose vertices are the edges of

and there is an edge between any two vertices in the line graph

5Although the set of correlation coefficients on the edges is fixed, the ele-
ments in this set can be arranged in different ways on the edges of the tree. We
formalize this concept in (24).
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Fig. 4. (a): A graph �. (b): The line graph � � ���� that corresponds to �
is the graph whose vertices are the edges of � (denoted as � ) and there is an
edge between any two vertices � and � in � if the corresponding edges in �
share a node.

if the corresponding edges in have a common node, i.e., are
adjacent. See Fig. 4 for a graph and its associated line graph

.

B. Formulation: Extremal Structures for Learning

We now formulate the problem of finding the best and worst
tree structures for learning and also the distributions associated
with them. At a high level, our strategy involves two distinct
steps. First, and primarily, we find the structure of the optimal
distributions in Section VI-D. It turns out that the optimal struc-
tures that maximize and minimize the exponent are the Markov
chain (under some conditions on the correlations) and the star,
respectively, and these are the extremal structures in terms of
the diameter. Second, we optimize over the positions (or place-
ment) of the correlation coefficients on the edges of the optimal
structures.

Let be a fixed vector of feasible6 cor-
relation coefficients, i.e., for all . For a tree,
it follows from (18) that if ’s are the correlation coefficients on
the edges, then is a necessary and sufficient condition
to ensure that . Define to be the group of permuta-
tions of order , hence elements in are permutations of
a given ordered set with cardinality . Also denote the set of
tree-structured, -variate Gaussians which have unit variances
at all nodes and as the correlation coefficients on the edges in
some order as . Formally,

(24)

where is the length- vector
consisting of the covariance elements7 on the edges (arranged
in lexicographic order) and is the permutation of ac-
cording to . The tuple uniquely parameterizes a
Gaussian tree distribution with unit variances. Note that we can
regard the permutation as a nuisance parameter for solving
the optimization for the best structure given . Indeed, it can
happen that there are different ’s such that the error exponent

is the same. For instance, in a star graph, all permutations
result in the same exponent. Despite this, we show that extremal
tree structures are invariant to the specific choice of and .

For distributions in the set , our goal is to find
the best (easiest to learn) and the worst (most difficult to learn)

6We do not allow any of the correlation coefficient to be zero because other-
wise, this would result in � being a forest.

7None of the elements in ��� are allowed to be zero because � �� � for every
� � � and the Markov property in (18).

distributions for learning. Formally, the optimization problems
for the best and worst distributions for learning are given by

(25)

(26)

Thus, (respectively, ) corresponds to the Gaussian
tree model which has the largest (respectively, smallest) approx-
imate error exponent.

C. Reformulation as Optimization Over Line Graphs

Since the number of permutations and number of spanning
trees are prohibitively large, finding the optimal distributions
cannot be done through a brute-force search unless is small.
Our main idea in this section is to use the notion of line graphs to
simplify the problems in (25) and (26). In subsequent sections,
we identify the extremal tree structures before identifying the
precise best and worst distributions.

Recall that the approximate error exponent can be ex-
pressed in terms of the weights between two adja-
cent edges as in (19). Therefore, we can write the extremal
distribution in (25) as

(27)

Note that in (27), is the edge set of a weighted graph whose
edge weights are given by . Since the weight is between two
edges, it is more convenient to consider line graphs defined in
Section VI-A.

We now transform the intractable optimization problem in
(27) over the set of trees to an optimization problem over all
the set of line graphs:

(28)

and can be considered as an edge weight between
nodes and in a weighted line graph . Equivalently, (26)
can also be written as in (28) but with then argmax replaced by
an argmin.

D. Main Results: Best and Worst Tree Structures

In order to solve (28), we need to characterize the set of line
graphs of spanning trees . This
has been studied before [24, Theorem 8.5], but the set
is nonetheless still very complicated. Hence, solving (28) di-
rectly is intractable. Instead, our strategy now is to identify the
structures corresponding to the optimal distributions,
and by exploiting the monotonicity of given
in Lemma 5.

Theorem 8 (Extremal Tree Structures): The tree structure that
minimizes the approximate error exponent in (26) is given
by

(29)
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Fig. 5. Illustration for Theorem 8: The star (a) and the chain (b) minimize and
maximize the approximate error exponent, respectively.

for all feasible correlation coefficient vectors with
. In addition, if

(where ), then the tree structure that maximizes
the approximate error exponent in (25) is given by

(30)

Proof (Idea): The assertion that follows
from the fact that all the crossover rates for the star graph are the
minimum possible, hence . See Appendix E for the
details.

See Fig. 5. This theorem agrees with our intuition: for the
star graph, the nodes are strongly correlated (since its diameter
is the smallest) while in the chain, there are many weakly corre-
lated pairs of nodes for the same set of correlation coefficients
on the edges thanks to correlation decay. Hence, it is hardest
to learn the star while it is easiest to learn the chain. It is in-
teresting to observe Theorem 8 implies that the extremal tree
structures and are independent of the correlation
coefficients (if in the case of the star). Indeed, the
experiments in Section VII-B also suggest that Theorem 8 may
likely be true for larger ranges of problems (without the con-
straint that ) but this remains open.

The results in (29) and (30) do not yet provide the com-
plete solution to and in (25) and (26) since there
are many possible pdfs in corresponding to a
fixed tree because we can rearrange the correlation coefficients
along the edges of the tree in multiple ways. The only excep-
tion is if is known to be a star then there is only one pdf in

, and we formally state the result below.
Corollary 9 (Most Difficult Distribution to Learn):

The Gaussian defined in
(26), corresponding to the most difficult distribution to
learn for fixed , has the covariance matrix whose upper
triangular elements are given as if

and otherwise. More-
over, if and ,
then corresponding to the star graph can be written ex-
plicitly as a minimization over only two crossover rates:

.
Proof: The first assertion follows from the Markov prop-

erty (18) and Theorem 8. The next result follows from Lemma
5(c) which implies that for all

.
In other words, is a star Gaussian graphical model with

correlation coefficients on its edges. This result can also be
explained by correlation decay. In a star graph, since the dis-
tances between non-edges are small, the estimator in (3) is more
likely to mistake a non-edge with a true edge. It is often useful

in applications to compute the minimum error exponent for a
fixed vector of correlations as it provides a lower bound of
the decay rate of for any tree distribution with param-
eter vector . Interestingly, we also have a result for the easiest
tree distribution to learn.

Corollary 10 (Easiest Distribution to Learn): Assume that
. Then, the Gaussian

defined in (25), corresponding
to the easiest distribution to learn for fixed , has the covariance
matrix whose upper triangular elements are

for all and for all
.

Proof: The first assertion follows from the proof of The-
orem 8 in Appendix E and the second assertion from the Markov
property in (18).

In other words, in the regime where , is a
Markov chain Gaussian graphical model with correlation coeffi-
cients arranged in increasing (or decreasing) order on its edges.
We now provide some intuition for why this is so. If a particular
correlation coefficient (such that ) is fixed, then
the edge weight , defined in (20), is maximized when

. Otherwise, if the event that the non-edge
with correlation replaces the edge with correlation (and
hence results in an error) has a higher likelihood than if equality
holds. Thus, correlations and that are close in terms of
their absolute values should be placed closer to one another (in
terms of graph distance) for the approximate error exponent to
be maximized. See Fig. 6.

E. Influence of Data Dimension on Error Exponent

We now analyze the influence of changing the size of the tree
on the error exponent, i.e., adding and deleting nodes and edges
while satisfying the tree constraint and observing samples from
the modified graphical model. This is of importance in many
applications. For example, in sequential problems, the learner
receives data at different times and would like to update the
estimate of the tree structure learned. In dimensionality reduc-
tion, the learner is required to estimate the structure of a smaller
model given high-dimensional data. Intuitively, learning only a
tree with a smaller number of nodes is easier than learning the
entire tree since there are fewer ways for errors to occur during
the learning process. We prove this in the affirmative in Propo-
sition 11.

Formally, we start with a -variate Gaussian
and consider a -variate pdf

, obtained by marginalizing over
a subset of variables and is the tree8 associated to the
distribution . Hence and is a subvector of . See
Fig. 7. In our formulation, the only available observations are
those sampled from the smaller Gaussian graphical model .

Proposition 11 (Error Exponent of Smaller Trees): The ap-
proximate error exponent for learning is at least that of , i.e.,

.

8Note that � still needs to satisfy the tree constraint so that the variables
that are marginalized out are not arbitrary (but must be variables that form the
first part of a node elimination order [3]). For example, we are not allowed to
marginalize out the central node of a star graph since the resulting graph would
not be a tree. However, we can marginalize out any of the other nodes. In effect,
we can only marginalize out nodes with degree either 1 or 2.
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Fig. 6. If �� � � �� �, then the likelihood of the non-edge ��� �� replacing
edge ����� would be higher than if �� � � �� �. Hence, the weight
� �� � � � is maximized when equality holds.

Fig. 7. Illustration of Proposition 11. � � ��� � � is the original tree and � �
� . � � �� � � � is a subtree. The observations for learning the structure �
correspond to the shaded nodes, the unshaded nodes correspond to unobserved
variables.

Fig. 8. Comparison of true and approximate crossover rates in (10) and (16),
respectively.

Proof: Reducing the number of adjacent edges to a fixed
edge as in Fig. 7 (where ) ensures
that the maximum correlation coefficient , defined in (22),
does not increase. By Lemma 5(b) and (17), the approximate
error exponent does not decrease.

Thus, lower-dimensional models are easier to learn if the set
of correlation coefficients is fixed and the tree constraint remains
satisfied. This is a consequence of the fact that there are fewer
crossover error events that contribute to the error exponent .

We now consider the “dual” problem of adding a new edge
to an existing tree model, which results in a larger tree. We are
now provided with -dimensional observations to learn
the larger tree. More precisely, given a -variate tree Gaussian
pdf , we consider a -variate pdf such that is a
subtree of . Equivalently, let be
the vector of correlation coefficients on the edges of the graph
of and let be that of .

By comparing the error exponents and , we can ad-
dress the following question: Given a new edge correlation co-
efficient , how should one adjoin this new edge to the ex-
isting tree such that the resulting error exponent is maximized or
minimized? Evidently, from Proposition 11, it is not possible to
increase the error exponent by growing the tree but can we de-
vise a strategy to place this new edge judiciously (respectively,
adversarially) so that the error exponent deteriorates as little (re-
spectively, as much) as possible?

To do so, we say edge contains node if and we
define the nodes in the smaller tree

(31)

(32)

Proposition 12 (Error Exponent of Larger Trees): Assume
that . Then,

(a) The difference between the error exponents
is minimized when is obtained by adding to a new
edge with correlation coefficient at vertex given
by (31) as a leaf.

(b) The difference is maximized when the new edge
is added to given by (32) as a leaf.

Proof: The vertex given by (31) is the best vertex to attach
the new edge by Lemma 5(b).

This result implies that if we receive data dimensions se-
quentially, we have a straightforward rule in (31) for identifying
larger trees such that the exponent decreases as little as possible
at each step.

VII. NUMERICAL EXPERIMENTS

We now perform experiments with the following two objec-
tives. Firstly, we study the accuracy of the Euclidean approxi-
mations (Theorem 4) to identify regimes in which the approxi-
mate crossover rate is close to the true crossover rate .
Secondly, by performing simulations we study how various tree
structures (e.g., chains and stars) influence the error exponents
(Theorem 8).

A. Comparison Between True and Approximate Rates

In Fig. 8, we plot the true and approximate crossover rates9

[given in (10) and (14), respectively] for a 4-node symmetric
star graph, whose structure is shown in Fig. 9. The zero-mean
Gaussian graphical model has a covariance matrix such that

is parameterized by in the following way:
for all , for all

and otherwise. By increasing , we
increase the difference of the mutual information quantities on
the edges and non-edges . We see from Fig. 8 that both rates
increase as the difference increases. This is in
line with our intuition because if is such that
is large, the crossover rate is also large. We also observe that if

is small, the true and approximate rates are close.
This is also in line with the assumptions of Theorem 4. When the
difference between the mutual information quantities increases,
the true and approximate rates separate from each other.

B. Comparison of Error Exponents Between Trees

In Fig. 10, we simulate error probabilities by drawing i.i.d.
samples from three node tree graphs—a chain, a star
and a hybrid between a chain and a star as shown in Fig. 9. We
then used the samples to learn the structure via the Chow-Liu
procedure [5] by solving the MWST in (4). The

9This small example has sufficient illustrative power because as we have seen,
errors occur locally and only involve triangles.
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Fig. 9. Left: The symmetric star graphical model used for comparing the true
and approximate crossover rates as described in Section VII-A. Right: The struc-
ture of a hybrid tree graph with � � �� nodes as described in Section VII-B.
This is a tree with a length-��� chain and a order ��� star attached to one of
the leaf nodes of the chain.

Fig. 10. Simulated error probabilities and error exponents for chain, hybrid
and star graphs with fixed ���. The dashed lines show the true error exponent �
computed numerically using (10) and (11). Observe that the simulated error
exponent converges to the true error exponent as � � �. The legend applies
to both plots.

correlation coefficients were chosen to be equally spaced in the
interval and they were randomly placed on the edges
of the three tree graphs. We observe from Fig. 10 that for fixed

, the star and chain have the highest and lowest error probabil-
ities , respectively. The simulated error exponents given
by also converge to their true values as

. The exponent associated to the star is higher than
that of the chain, which is corroborated by Theorem 8, even
though the theorem only applies in the very-noisy case (and
for in the case of the chain). From this experi-
ment, the claim also seems to be true even though the setup is
not very-noisy. We also observe that the error exponent of the
hybrid is between that of the star and the chain.

VIII. CONCLUSION

Using the theory of large deviations, we have obtained
the error exponent associated with learning the structure of
a Gaussian tree model. Our analysis in this theoretical paper
also answers the fundamental questions as to which set of
parameters and which structures result in high and low error
exponents. We conclude that Markov chains (respectively,
stars) are the easiest (respectively, hardest) structures to learn
as they maximize (respectively, minimize) the error exponent.
Indeed, our numerical experiments on a variety of Gaussian
graphical models validate the theory presented. We believe the
intuitive results presented in this paper will lend useful insights
for modeling high-dimensional data using tree distributions.

APPENDIX A
PROOF OF THEOREM 1

Proof: This proof borrows ideas from [25]. We assume
(i.e., disjoint edges) for simplicity. The result for

follows similarly. Let be a set of nodes corre-
sponding to node pairs and . Given a subset of node pairs

such that , the set of feasible
moments [4] is defined as

(33)

Let the set of densities with moments
be denoted as

(34)
Lemma 13 (Sanov’s Thm, Contraction Principle [20]): For

the event that the empirical moments of the i.i.d. observations
are equal to , we have the LDP

(35)

If , the optimizing pdf in (35) is given by
where the set of

constants are chosen such that
given in (34).

From Lemma 13, we conclude that the optimal in (35)
is a Gaussian. Thus, we can restrict our search for the optimal
distribution to a search over Gaussians, which are parameter-
ized by means and covariances. The crossover event for mutual
information defined in (8) is , since in the
Gaussian case, the mutual information is a monotonic function
of the square of the correlation coefficient [cf. (5)]. Thus it suf-
fices to consider , instead of the event involving the
mutual information quantities. Let , and

be the moments of
, where is the covariance of and , and

is the variance of (and similarly for the other mo-
ments). Now apply the contraction principle [21, Ch. 3] to the
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Fig. 11. Illustration for the proof of Corollary 3. The correlation coefficient on
the non-edge is � and satisfies �� � � �� � if �� � � �.

continuous map , given by the difference between
the square of correlation coefficients

(36)

Following the same argument as in [7, Theorem 2], the
equality case dominates , i.e., the event
dominates .10 Thus, by considering the set

, the rate corresponding to can
be written as

(37)

where the function is defined as

(38)

and the set is defined in (34). Combining (37) and (38)
and the fact that the optimal solution is Gaussian yields

as given in the statement of the theorem [cf. (10)].
The second assertion in the theorem follows from the fact that

since satisfies , we have since
is a monotonic function in . Therefore,

on a set whose (Lebesgue) measure is strictly positive. Since
if and only if almost every-

where- , this implies that [19, Theorem
8.6.1].

APPENDIX B
PROOF OF COROLLARY 3

Proof: Assume that . Suppose, to the con-
trary, that either i) is a forest or ii) and is
not a forest. In i), structure estimation of will be inconsistent
(as described in Section II-B), which implies that , a
contradiction. In ii), since is a spanning tree, there exists an
edge such that the correlation coefficient (oth-
erwise would be full rank). In this case, referring to Fig. 11
and assuming that , the correlation on the non-edge

satisfies , which implies that
. Thus, there is no unique maximizer in (4) with the em-

piricals replaced by . As a result, ML for structure learning
via (4) is inconsistent hence , a contradiction.

Suppose both and not a proper forest, i.e.,
is a spanning tree. Assume, to the contrary, that .

Then from [7], for some and some
. This implies that . Let

be a non-edge and let the unique path from node to node
be for some . See Fig. 12. Then,

. Suppose, without loss

10This is also intuitively true because the most likely way the error event �
occurs is when equality holds, i.e., � � � .

Fig. 12. Illustration for the proof of Corollary 3. The unique path between �

and � is �� � � � � � � � � � � ���	�� 
 � �.

of generality, that edge is such that
holds, then we can cancel and on both sides to give

Cancelling is legitimate
because we assumed that for all , because
is a spanning tree. Since each correlation coefficient has magni-
tude not exceeding 1, this means that each correlation coefficient
has magnitude 1, i.e., . Since
the correlation coefficients equal to , the submatrix of the
covariance matrix containing these correlation coefficients is
not positive definite. Therefore by Sylvester’s condition, the co-
variance matrix , a contradiction. Hence, .

APPENDIX C
PROOF OF THEOREM 4

Proof: We first assume that and do not share a
node. The approximation of the KL-divergence for Gaussians
can be written as in (12). We now linearize the constraint
set as defined in (13). Given a positive definite
covariance matrix , to simplify the notation, let

be the mutual information of the two
random variables with covariance matrix . We now perform
a first-order Taylor expansion of the mutual information around

. This can be expressed as

(39)

Recall that the Taylor expansion of log-det [26] is
, with the notation

. Using this result we can
conclude that the gradient of with respect to in the above
expansion (39) can be simplified to give the matrix

(40)

where is the (unique) off-diagonal element of the 2 2
symmetric matrix . By applying the same expansion to

, we can express the linearized constraint as

(41)

where the symmetric matrix is defined in
the following fashion: if ,

if and
otherwise.

Thus, the problem reduces to minimizing (over ) the
approximate objective in (12) subject to the linearized con-
straints in (41). This is a least-squares problem. By using
the matrix derivative identities and

, we can solve for the opti-
mizer yielding:

(42)
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Substituting the expression for into (12) yields

(43)

Comparing (43) to our desired result (16), we observe
that problem now reduces to showing that

. To this end, we note that for Gaussians,
the information density is

. Since the first term is a constant, it suffices to
compute . Now, we define
the matrices

and use the following identity for the normal random vector

and the definition of to conclude that
. This completes the proof for the case when

and do not share a node. The proof for the case when and
share a node proceeds along exactly the same lines with a

slight modification of the matrix .

APPENDIX D
PROOF OF LEMMA 5

Proof: Denoting the correlation coefficient on edge
and non-edge as and , respectively, the approximate
crossover rate can be expressed as

(44)

where the numerator and the denominator are defined as

The evenness result follows from and because
is, in fact a function of . To simplify the notation, we
make the following substitutions: and . Now
we apply the quotient rule to (44). Defining

it suffices to show that

for all . Upon simplification, we have

where and
. Since , the

logs in are positive, i.e., , so it
suffices to show that

for all . By using the inequality for
all , it again suffices to show that

Now upon simplification,
, and this polynomial

is equal to zero in (the closure of ) iff . At all other
points in , . Thus, the derivative of
with respect to is indeed strictly negative on . Keeping
fixed, the function is monotonically decreasing in
and hence . Statements (c) and (d) follow along exactly the
same lines and are omitted for brevity.

APPENDIX E
PROOFS OF THEOREM 8 AND COROLLARY 10

Proof: Proof of : Sort the correlation
coefficients in decreasing order of magnitude and relabel the
edges such that . Then, from Lemma
5(b), the set of crossover rates for the star graph is given by

. For edge
, the correlation coefficient is the largest correlation co-

efficient (hence, results in the smallest rate). For all other edges
, the correlation coefficient is the largest pos-

sible correlation coefficient (and hence results in the smallest
rate). Since each member in the set of crossovers is the min-
imum possible, the minimum of these crossover rates is also the
minimum possible among all tree graphs.

Before we prove part (b), we present some properties of the
edge weights , defined in (20).

Lemma 14 (Properties of Edge Weights): Assume that all
the correlation coefficients are bounded above by , i.e.,

. Then satisfies the following properties:
(a) The weights are symmetric, i.e., .
(b) , where is the ap-

proximate crossover rate given in (44).
(c) If , then

(45)

(d) If , then

(46a)

(46b)

Proof: Claim (a) follows directly from the definition of
in (20). Claim (b) also follows from the definition of and
its monotonicity property in Lemma 5(d). Claim (c) follows
by first using Claim (b) to establish that the right-hand side of
(45) equals since
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Fig. 13. Illustration of the proof of Theorem 8. Let �� � � � � � � �� �. The
figure shows the chain � (in the line graph domain) where the correlation
coefficients �� � are placed in decreasing order.

. By the same argument, the left-hand side of (45), equals
. Now we have

(47)
where the first and second inequalities follow from Lemmas 5(c)
and 5(b), respectively. This establishes (45). Claim (d) follows
by applying Claim (c) recursively.

Proof: Proof of : Assume, without
loss of generality, that and we also abbre-
viate as for all . We use the idea of line
graphs introduced in Section VI-A and Lemma 14. Recall that

is the set of line graphs of spanning trees with nodes.
From (28), the line graph for the structure of the best distribu-
tion for learning in (25) is

(48)

We now argue that the length chain (in the line
graph domain) with correlation coefficients arranged
in decreasing order on the nodes (see Fig. 13) is the line graph
that optimizes (48). Note that the edge weights of are
given by for . Consider any other
line graph . Then we claim that

(49)

To prove (49), note that any edge is consecu-
tive, i.e., of the form . Fix any such . Define the
two subchains of as and

(see Fig. 13). Also,
let and
be the nodes in subchains and , respectively. Because

, there is a set of edges (called cut set edges)
to ensure that

the line graph remains connected.11 The edge weight of each
cut set edge satisfies by
(46) because and and . By consid-
ering all cut set edges for fixed and subsequently
all , we establish (49). It follows that

(50)

because the other edges in and in (49) are common.
See Fig. 14 for an example to illustrate (49).

Since the chain line graph achieves the maximum
bottleneck edge weight, it is the optimal line graph, i.e.,

. Furthermore, since the line graph of a chain

11The line graph � � ���� of a connected graph � is connected. In addi-
tion, any � � ��� � must be a claw-free, block graph [24, Th. 8.5].

Fig. 14. A 7-node tree � and its line graph � � ��� � are shown
in the left and right figures, respectively. In this case, � 	 � �
���� ��� ��� ��� ������ �	� ��� and � 	 � � ������� ���	�� �	����.
Equation (49) holds because from (46) � �� � � � 
 � �� � � �,
� �� � � � 
 � �� � � �, etc. and also if � 
 � for 	 � � (for finite
�), then 
�� � 
 
�� � .

is a chain, the best structure is also a chain and we
have established (30). The best distribution is given by the chain
with the correlations placed in decreasing order, establishing
Corollary 10.
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