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Abstract—Self-aware computer systems will be capable
of adapting their behavior and resources thousands of
times a second to automatically find the best way to
accomplish a given goal despite changing environmental
conditions and demands. Such a capability benefits a broad
spectrum of computer systems from embedded systems
to supercomputers and is particularly useful for meeting
power, performance, and resource-metering challenges in
mobile computing, cloud computing, multicore computing,
adaptive and dynamic compilation environments, and par-
allel operating systems.

Some of the challenges in implementing self-aware
systems are a) knowing within the system what the goals of
applications are and if they are meeting them, b) deciding
what actions to take to help applications meet their goals,
and c) developing standard techniques that generalize and
can be applied to a broad range of self-aware systems.

This work presents our vision for self-aware adaptive
systems and proposes enabling technologies to address
these three challenges. We describe a framework called
Application Heartbeats that provides a general, standard-
ized way for applications to monitor their performance
and make that information available to external observers.
Then, through a study of a self-optimizing synchronization
library called Smartlocks, we demonstrate a powerful
technique that systems can use to determine which opti-
mization actions to take. We show that Heartbeats can be
applied naturally in the context of reinforcement learning
optimization strategies as a reward signal and that, us-
ing such a strategy, Smartlocks are able to significantly
improve performance of applications on an important
emerging class of multicore systems called asymmetric
multicores.

I. INTRODUCTION

Resources such as quantities of transistors and mem-
ory, the level of integration and the speed of components
have increased dramatically over the years. Even though
the technologies have improved, we continue to apply
outdated approaches to our use of these resources. Key
computer science abstractions have not changed since
the 1960’s. The operating systems, languages, etc we
use today, were designed for a different era. Therefore
this is the time for a fresh approach to the way systems
are designed and used. The Self-Aware computing re-
search leverages the new balance of resources to improve
performance, utilization, reliability and programmability
[1, 2].

Within this context, imagine a revolutionary com-
puting system that can observe its own execution and
optimize its behavior around a user’s or application’s
needs. Imagine a programming capability by which
users can specify their desired goals rather than how
to perform a task, along with constraints in terms of
an energy budget, a time constraint, or simply a prefer-
ence for an approximate answer over an exact answer.
Imagine further a computing chip that performs better
according to a user’s preferred goal the longer it runs
an application. Such an architecture will enable, for
example, a hand-held radio or a cell phone that can
run cooler the longer the connection time. Or, a system
that can perform reliably and continuously in a range
of environments by tolerating hard and transient failures
through self healing. Self-aware computer systems [3]
will be able to configure, heal, optimize and protect
themselves without the need for human intervention.
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Abilities that allow them to automatically find the best
way to accomplish a given goal with the resources
at hand. Considering the similarity to organic nature
we will refer this new class of computer systems as
Organic Computing System (OCS). These systems will
benefit the full range of computer infrastructures, from
embedded devices to servers to supercomputers. Some
of the main challenges in realizing such a vision are: to
add auto-adaptability capabilities to organic devices, to
implement distributed self-training algorithms over such
architectures, and to specify and formulate application
solutions using such a computing paradigm.

To realize this vision of an Organic Computing Sys-
tem, we must a) enable applications to specify their
goals, b) enable system services to determine whether
these goals are met, and c) enable adaptive systems to
make informed decisions among multiple possible ac-
tions. Tackling the first two of these challenges requires a
general framework allowing a wide range of applications
to express their goals while enabling adaptive systems to
read these goals and measure the applications’ progress
toward them. Addressing the third challenge requires
imbuing adaptive systems with the ability to navigate
a vast and interconnected decision space. Furthermore,
these challenges should be met using techniques that are
generalizable, repeatable, and portable.

We address the first two of these challenges by pre-
senting the Application Heartbeats framework (or Heart-
beats for short), which provides a general, portable inter-
face for applications to express their performance goals
and progress towards those goals [4]. Using Heartbeats
applications express their performance using the well-
known abstraction of a heartbeat; however, the API also
allows applications to express their goals as a desired
heart rate (for throughput oriented applications) or a
desired latency between heartbeats (for latency sensitive
applications). We find the use of Heartbeats within an
application allows adaptive systems to make decisions
using a direct measure of an application’s performance
rather than trying to infer it from underlying hardware
counters. Additionally, by specifying application goals,
the Heartbeats framework allows adaptive systems to
perform constraint-based optimizations like minimizing
power for a minimum performance target.

One promising approach to the third challenge, that
of making informed decisions, is to use machine learn-
ing in adaptive systems. We explore this approach in
an adaptive, self-aware spinlock library called Smart-
locks [5]. Smartlocks use an adaptation referred to as
lock acquisition scheduling to determine the optimal
policy for allowing access to a critical section within
an application. We find that guiding lock acquisition

scheduling using machine learning allows Smartlocks
to adopt a near perfect lock scheduling policy on an
asymmetric multicore. Furthermore, Smartlocks are able
to adapt their behavior in the face of environmental
changes, like changes in clock frequency.

The rest of this paper is organized as follows. Sec-
tion II identifies key system components of a self-
aware systems and presents several works proposed
in literature. Section III presents our vision on self-
aware adaptive systems, proposing enabling technologies
for adaptive computing that address these challenges.
Section IV presents our experimental results. Finally,
Section V concludes.

II. AN OVERVIEW OF SELF-AWARE SYSTEMS

One solution to overcoming the burden imposed by
the increasing complexity and the associated workload
of modern computing systems is to adopt self-adaptive
[3] and autonomic computing techniques [1]. This work
includes research on single- and multi-core architec-
tures [6–9], networks [10], self-healing systems [11–
13], self-monitoring for anomaly detection in distributed
systems [14], automatic techniques to detect and cope
with attacks [15] or faults in software systems [16],
managing in cloud computing and grid [17–19], complex
distributed Internet services [20, 21], self-healing and
operating systems [22–28].

Within this context classical reconfigurable and mul-
ticore systems are moving to self-aware computing sys-
tems [29] where hardware components [7, 30–32], the
applications [33, 34] and the operating system [26] can
be made to autonomously adapt their behavior to achieve
the best performance.

Tackling online monitoring and program optimization
together, it is possible to obtain an efficient monitoring
system able to improve operating system availability [35]
with dynamic updates based on hot-swapable objects
[32, 34]. The hot-swap mechanism is used to implement
software reconfiguration in the K42 Operating System
[26].

A self-optimizing hardware approach can be found
in [30], where a self-optimizing memory controller is
presented. This controler can optmize its scheduling
policy using a reinforcement learning approach which
allows it to estimate the performance impact of each
action it can take to better respond to the observations
made on the system state. Two interesting examples
of adaptable chip multiprocessor architecture have been
presented in [7] and [31]. In [7], a heterogeneous multi-
core architecture has been proposed which optimizes
power consumption by assigning different parts of an
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application to the core that will have the best energy
characteristics for that computation. This architecture
has been designed taking into consideration the fact
that typical programs go through phases with different
execution characteristics. Therefore the most appropriate
core during one phase may not be the right one for a
following phase. In [31] the Core Fusion architecture
is proposed. This architecture is characterized by the
presence of different tiny independent cores that can be
used as distinct processing elements or that can be fused
into a bigger CPU based on the software demand.

III. OUR WORK TOWARDS THE DEFINITION OF

SELF-AWARE ADAPTIVE SYSTEMS

To achieve the vision described in the previous sec-
tions, a self-aware system must be able to monitor
its behavior to update one or more of its components
(hardware architecture, operating system and running
applications), to achieve its goals. This paper proposes
the vision of organic computation that will create such
a self-aware computing system. An organic computer is
given a goal and a set of resources and their availability,
it then finds the best way to accomplish the goal while
optimizing constraints of interest. An organic computer
has four major properties:

• It is goal oriented in that, given application goals,
it takes actions automatically to meet them;

• It is adaptive in that it observes itself, reflects on its
behavior to learn, computes the delta between the
goal and observed state, and finally takes actions to
optimize its behavior towards the goal;

• It is self healing in that it constantly monitors
for faults and continues to function through them,
taking corrective action as needed;

• It is approximate in that it uses the least amount of
computation or energy to meet accuracy goals and
accomplish a given task.

More importantly, much like biological organisms, an or-
ganic computer can go well beyond traditional measures
of goodness like performance and can adapt to different
environments and even improve itself over time.

To adapt what the organic computer is doing or how
it is doing a given task at run time, it is necessary to de-
velop a control system as part of the system that observes
execution, measures thresholds and compares them to
goals, and then adapts the architecture, the operating
system or algorithms as needed. A key challenge is to
identify what parts of a computer need to be adapted and
to quantify the degree to which adaptation can afford
savings in metrics of interest to us. Examples of mech-
anisms that can be adapted include recent researches on

memory controller [30] or on reactive synchronization
mechanisms in which the waiting algorithm is tailored
at run time to the observed delay in lock acquisition.

In the following we present our first work in defin-
ing enabling technologies for adaptive computing that
address these challenges. Specifically, we present the
Application Heartbeats framework [4], an open source
project [36] which provides a simple, standardized way
for applications to monitor their performance and make
that information available to external observers. We
illustrate how other components of the system can use
Heartbeats to adapt and achieve better performance. We
discuss an example of Heartbeat usage within Smartlocks
[5], a self-aware synchronization library that adapts its
internal implementation using reinforcement learning
with the Heartbeat as the reward function.

A. Application Heartbeats

The Application Heartbeats framework provides a
simple, standardized way for applications to report their
performance and goals to external observers [4]. As
shown in Figure 1, this progress can then be observed
by either the application itself or an external system
(such as the OS or another application). Having a simple,
standardized interface makes it easy for programmers to
add Heartbeats to their applications. A standard interface,
or API, is also crucial for portability and inter-operability
between different applications, runtime systems, and
operating systems. Registering an application’s goals
with external systems enables adaptive systems to make
optimization decisions while monitoring the program’s
performance directly rather than having to infer that
performance from low-level details. If performance is
found to be unacceptable, information gleaned from
hardware counters can help explain why and what should
be changed.

(a) (b)
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Fig. 1: (a) Self-optimizing application using the Applica-
tion Heartbeats framework. (b) Optimization of machine
parameters by an external observer.

The Application Heartbeats framework measures ap-
plication progress toward goals using a simple and well-
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known abstraction: a heartbeat. At significant points,
applications make an API call to signify a heartbeat.
Over time, the intervals between heartbeats provide key
information about progress for the purpose of applica-
tion auto-tuning and/or externally-driven optimization.
The Heartbeats API allows applications to communicate
their goals by setting a target heart rate (i.e.,number
of heartbeats per second) and a target latency between
specially tagged heartbeats. Adaptive system services,
such as the operating system, runtime systems, hardware,
or the application itself, monitor progress through addi-
tional API calls and can then use this information to
change their behavior and help the application achieve
the specified performance goals. As an example, a video
codec application could use Application Heartbeats to
specify a target throughput of 30 video frames a second.
In the encoder example, an adaptive scheduler could
ensure that the encoder meets this goal while using the
least number of cores, thus saving power or allowing
extra cores to be assigned to other purposes.

B. Smartlocks

Smartlocks [5] is a self-aware system designed to help
reduce the programming complexity of extracting high
performance from today’s multicores and asymmetric
multicores. Smartlocks is a self-optimizing spin-lock
library that can be used as the basis for synchronization,
resource sharing, or programming models in multicore
software. As it runs, Smartlocks uses Application Heart-
beats [4] together with a Machine Learning (ML) engine
to monitor and optimize application performance by
adapting Smartlock’s internal behaviors.

The key adaptable behavior within Smartlocks is
the lock acquisition scheduling policy. Lock acquisition
scheduling is picking which thread or process among
those waiting should get the lock next (and thus get to
execute the critical section next) for the best long-term
effect. [5] demonstrates that intelligent lock acquisition
scheduling is an important optimization for multicores
with static and especially dynamic performance asym-
metries.

As illustrated in Figure 2, Smartlock applications
are C/C++ pthread applications that use pthreads for
thread spawning, Smartlocks for spin-lock synchroniza-
tion, and the Heartbeats framework for performance
monitoring. Application developers insert heart beats at
significant points in the application to indicate progress
toward the applicaion’s goals. Then, within Smartlock,
the Heartbeats heart rate signal is used as a reward
signal by a Reinforcement Learning (RL) algorithm.
The RL algorithm attempts to maximize the heart rate

Fig. 2: Smartlocks Architecture. ML engine tunes Smart-
lock internally to maximize monitor reward signal. Tun-
ing adapts the lock acquisition scheduling policy by con-
figuring a priority lock and per-thread priority settings.

by adjusting Smartlock’s lock acquisition scheduling
policy. The scheduler is implemented as a priority lock,
and the scheduling policy is configured by dynamically
manipulating per-thread priority settings.

IV. PRELIMINARY RESULTS

This section presents several examples illustrating the
use of the Heartbeats framework and Smartlocks. First,
a brief study is presented using Heartbeats to instrument
the PARSEC benchmark suite [37] and after that the
benefits in using Smartlocks have been presented using
a synthetic benchmark.

A. Heartbeats in the PARSEC Benchmark Suite

We present several results demonstrating the simplic-
ity and efficacy of the Heartbeat API. These results all
make use of our reference implementation of the API
which uses file I/O for communication. Results were
collected on an Intel x86 server with dual 3.16 GHz
Xeon X5460 quad-core processors.

To demonstrate the broad applicability of the Heart-
beats framework across a range of applications, we apply
it to the PARSEC benchmark suite (v. 1.0). For each
benchmark, we find the outer-most loop used to process
inputs and insert a call to register a heartbeat in that
loop. In some cases, the application is structured so that
multiple inputs are consumed during one iteration of the
loop. Table I shows both how the heartbeats relate to the
input processed by each benchmark and the average heart
rate (measured in beats per second) achieved running
the “native” input data set1. The Heartbeat interface
is found to be easy to insert into an application, as
it requires adding less than half-a-dozen lines of code
per benchmark, and only requires identifying the loop
that consumes input data. In addition, the interface is
low-overhead, resulting in immeasurable overhead for 9

1freqmine and vips are not included as the unmodified bench-
marks did not compile on the target system with our installed version
of gcc.

152



of 10 benchmarks and less than 5% for the remaining
benchmark. In a deployed system, users may want to
adjust the placement of the heartbeat calls to give un-
derlying adaptive services more or less time to respond
to changes in heart rate. To demonstrate the use of

TABLE I: Heartbeats in the PARSEC Benchmark Suite

Benchmark Heartbeat Location Heart Rate (beat/s)
blackscholes Every 25000 options 561.03
bodytrack Every frame 4.31
canneal Every 1875 moves 1043.76
dedup Every “chunk” 264.30
facesim Every frame 0.72
ferret Every query 40.78

fluidanimate Every frame 41.25
streamcluster Every 200000 points 0.02
swaptions Every “swaption” 2.27

x264 Every frame 11.32

the API by an external system we develop an adaptive
scheduler which assigns cores to a process to keep per-
formance within the target range. The Heartbeat-enabled
application communicates performance information and
goals to the scheduler which attempts to maintain the
required performance using the fewest cores possible.
The behavior of bodytrack under the external sched-

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 50 100 150 200 250

Time (Heartbeat)

H
ea

rt
 R

at
e 

(b
ea

t/
s)

0

1

2

3

4

5

6

7

8

9

C
o

re
s

Heartrate
Target Min
Target Max
Cores

Fig. 3: bodytrack coupled with an adaptive scheduler.

uler is illustrated in Figure 3, which shows the average
heart rate as a function of time measured in beats. The
scheduler quickly increases the assigned cores until the
application reaches the target range using seven cores.
Performance stays within that range until heartbeat 102,
when performance dips below 2.5 beats per second and
the eighth and final core is assigned to the application.
Then, at beat 141 the computational load decreases and
the scheduler is able to reclaim cores while maintaining
the desired performance.

Additional case studies are described in [38] and [39].
[38] has more information on our adaptive scheduler and

studies using heartbeats to develop adaptive video en-
coders. [39] describes the SpeedGuard run-time system
which can be automatically inserted into applications by
the SpeedPress compiler. SpeedGuard uses heartbeats to
monitor application performance and trade quality-of-
service for performance in the presence of faults such
as core failures or clock-frequency changes.

B. Smartlocks Versus Frequency Variation

This section demonstrates how Smartlocks helps ad-
dress asymmetry in multicores by applying Smartlocks
to the problem of thermal throttling and dynamic clock
speed variations. It describes our experimental setup then
presents results.

Our setup emulates an asymmetric multicore with six
cores where core frequencies are drawn from the set
{3.16 GHz, 2.11 GHz}. The benchmark is synthetic,
and represents a simple work-pile programming model
(without work-stealing). The app uses pthreads for thread
spawning and Smartlocks within the work-pile data
structure. The app is compiled using gcc v.4.3.2. The
benchmark uses 6 threads: one for the main thread, four
for workers, and one reserved for Smartlock. The main
thread generates work while the workers pull work items
from the queue and perform the work; each work item
requires a constant number of cycles to complete. On the
asymmetric multicore, workers will, in general, execute
on cores running at different speeds; thus, x cycles on
one core may take more wall-clock time to complete
than on another core.

Since asymmetric multicores are not widely available
yet, the experiment models an asymmetric multicore but
runs on a homogeneous 8-core (dual quad core) Intel
Xeon(r) X5460 CPU with 8 GB of DRAM running
Debian Linux kernel version 2.6.26. In hardware, each
core runs at its native 3.16 GHz frequency. Linux system
tools like cpufrequtils could be used to dynamically ma-
nipulate hardware core frequencies, but our experiment
instead models clock frequency asymmetry using a sim-
pler yet powerful software method: adjusting the virtual
performance of threads by manipulating the reward sig-
nal supplied by the application monitor. The experiment
uses Application Heartbeats [38] as the monitor and
manipulates the number of heartbeats such that at each
point where threads would ordinarily issue 1 beat, they
instead issue 2 or 3, depending on whether they are
emulating a 2.11 GHz or 3.16 GHz core.

The experiment simulates a throttling runtime envi-
ronment and two thermal-throttling events that change
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Fig. 4: Performance results on thermal throttling experi-
ment. Smartlocks adapt to different workloads; no single
static policy is optimal for all of the different conditions.

core speeds.2 No thread migration is assumed. Instead,
the virtual performance of each thread is adjusted by
adjusting heartbeats. The main thread always runs at 3.16
GHz. At any given time, 1 worker runs at 3.16 GHz and
the others run at 2.11 GHz. The thermal throttling events
change which worker is running at 3.16 GHz. The first
event occurs at time 1.4s. The second occurs at time 2.7s
and reverses the first event.

Figure 4 shows several things. First, it shows the
performance of the Smartlock against existing reactive
lock techniques. Smartlock performance is the curve
labeled “Smartlock” and reactive lock performance is
labeled “Spin-lock: reactive lock.” The performance of
any reactive lock implementation is upper-bounded by
its best-performing internal algorithm at any given time.
The best algorithm for this experiment is the write-biased
readers-writer lock so the reactive lock is implemented
as that.3 The graph also compares Smartlock against a
baseline Test and Set spin-lock labeled “Spin-lock: test
and set” for reference. The number of cycles required to
perform each unit of work has been chosen so that the
difference in acquire and release overheads between lock
algorithms is not distracting but so that lock contention
is high; what is important is the policy intrinsic to the
lock algorithm (and the adaptivity of the policy in the
case of the Smartlock). As the figure shows, Smartlock
outperforms the reactive lock and the baseline, implying
that reactive locks are sub-optimal for this and similar
benchmark scenarios.

The second thing that Figure 4 shows is the gap
between reactive lock performance and optimal perfor-
mance. One lock algorithm / policy that can outperform
standard techniques is the priority lock and prioritized
access. The graph compares reactive locks against two
priority locks / hand-coded priority settings (the curves
labeled “Priority lock: policy 1” and “Priority lock:

2We inject throttling events as opposed to recording natural events
so we can determine a priori some illustrative scheduling policies to
compare Smartlock against.

3This is the highest performing algorithm for this problem known
to the authors to be included in a reactive lock implementation.

policy 2”). Policy 1 is optimal for two regions of the
graph: from the beginning to the first throttling event and
from the second throttling event to the end. Its policy sets
the main thread and worker 0 to a high priority value and
all other threads to a low priority value (e.g. high = 2.0,
low = 1.0). Policy 2 is optimal for the region of the graph
between the two throttling events; its policy sets the main
thread and worker 3 to a high priority value and all other
threads to a low priority value. In each region, a priority
lock outperforms the reactive lock, clearly demonstrating
the gap between reactive lock performance and optimal
performance.

The final thing that Figure 4 illustrates is that Smart-
lock approaches optimal performance and readily adapts
to the two thermal throttling events. Within each region
of the graph, Smartlock approaches the performance of
the two hand-coded priority lock policies. Performance
dips after the throttling events (time=1.4s and time=2.7s)
but improves quickly.

V. CONCLUSION

Adaptive techniques promise to reduce the burden
modern computing systems place on application devel-
opers; however there are several obstacles to overcome
before we see widespread usage of adaptive systems.
Among these challenges, adaptive techniques must be
developed which are generally applicable to a wide
range of applications and systems. Furthermore, adaptive
systems should incorporate the goals of the applications
they are designed to support using standard and broadly
applicable methods.

This paper presents our work addressing these chal-
lenges. First, we have defined the key characteristics of
adaptive systems. We have also presented the Heartbeat
API which provides a standard interface allowing appli-
cations to express their goals and progress to adaptive
systems using a standard interface. With the Smartlocks
library we have provided an example of using machine
learning in combination with application performance
measurements to adapt to a challenging computing envi-
ronment. Both Heartbeats and Smartlocks are built upon
techniques which can be generalized to a wide range of
adaptive systems.

Our results show that Heartbeats are low-overhead and
easy to add to a variety of different applications. In
addition, we have demonstrated the use of Heartbeats
in an adaptive resource allocator to perform constraint
based optimization of an application incorporating that
application’s performance and goals. Furthermore, re-
sults using the Smartlocks library indicate that using
Heartbeats as a reward function for a reinforcement
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learning engine is an effective technique for adapting
an application’s behavior. Specifically, we show that
the Smartlock machine learning engine can dynamically
learn optimal lock acquisition policies even faced with
disruptive events like core frequency changes.
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