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SVM-RFE With MRMR Filter for Gene Selection
Piyushkumar A. Mundra and Jagath C. Rajapakse∗, Senior Member, IEEE

Abstract—We enhance the support vector machine recursive fea-
ture elimination (SVM-RFE) method for gene selection by incor-
porating a minimum-redundancy maximum-relevancy (MRMR)
filter. The relevancy of a set of genes are measured by the mutual
information among genes and class labels, and the redundancy is
given by the mutual information among the genes. The method
improved identification of cancer tissues from benign tissues on
several benchmark datasets, as it takes into account the redun-
dancy among the genes during their selection. The method selected
a less number of genes compared to MRMR or SVM-RFE on most
datasets. Gene ontology analyses revealed that the method selected
genes that are relevant for distinguishing cancerous samples and
have similar functional properties. The method provides a frame-
work for combining filter methods and wrapper methods of gene
selection, as illustrated with MRMR and SVM-RFE methods.

Index Terms—Cancer classification, gene redundancy, gene rel-
evancy, mutual information, support vector machine recursive fea-
ture elimination (SVM-RFE) .

I. INTRODUCTION

THE ADVENT of DNA microarray technology has enabled
simultaneous measurements of expressions of thousands

of genes. However, due to high cost of experiments, sample sizes
of gene expression measurements remain in hundreds, compared
to tens of thousands of genes involved. As there are only a few
samples (observations) compared to the genes (features), the ex-
traction of useful information from microarray data is hindered
by the curse of input dimensionality as well as by the com-
putational instabilities. Therefore, selection of relevant genes
remains a challenge in the analysis of gene expression data [1].
In this paper, we address the problem of distinguishing cancer
samples from benign samples by collecting gene expressions by
microarrays.

The genes or input features to a classifier can be broadly cat-
egorized into two types: relevant or redundant. The relevancy of
a gene is measured with respect to the output class labels and re-
lates to the importance of the gene for the classification task [2].
It is usually measured by the mutual information or correlation
between gene expressions and class labels. Highly correlated
genes tend to deteriorate the performance and become redun-
dant for classification [3]. Mutual information or correlation
among genes is often used to measure the redundancy of a set of
genes. Usually, optimal classification accuracy is achieved by a
set of maximally relevant and minimally redundant genes.
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Gene selection has recently attracted many scientists in func-
tional genomics and numerous algorithms have, therefore, re-
sulted [4]–[13]. The aim of gene selection is to select a small
subset of genes from a larger pool, rendering not only a good
performance of classification, but also biologically meaningful
insights. Gene selection methods are classified into two types:
filter methods and wrapper methods [14]. Filter methods eval-
uate a gene subset by looking at the intrinsic characteristics of
data with respect to class labels [4], while wrapper methods
evaluate the goodness of a gene subset by the accuracy of its
learning or classification method. Wrapper methods of gene se-
lection are embedded in the classification process—so better in
principle—but are more complex and could be computationally
expensive.

Several algorithms have been developed to maximize the rele-
vancy of a gene subset while minimizing the redundancy among
the genes [5]–[9], [13], for example, MRMR criterion based on
mutual information [6], [7]. Though a good gene subset should
contain genes that are highly relevant and nonredundant, weakly
relevant (but nonredundant) genes help the correlation-based
feature selection algorithms [2], [3] and a tradeoff between rel-
evancy and redundancy of genes may be useful for classifica-
tion [15]. The MRMR method does not allow a tradeoff between
relevancy and redundancy of genes. Greedy algorithms and sim-
ulated annealing have been attempted to determine the optimal
tradeoff between the relevancy and the redundancy of a set of
genes [5], [16]. In another study, the relevancy–redundancy cri-
terion was attempted in two stages [9]: using Wilcoxon test or
F-test, the relevant gene set was obtained from original microar-
ray dataset, and subsequently, redundant genes were removed
from the selected gene set by controlling the upper bound of
Bayes error. Ooi et al. in [8] studied the tradeoff between rel-
evancy and redundancy in multiclass gene selection problem
by introducing a data-dependent tuning parameter called dif-
ferential degree of prioritization. Recently, ReliefF and MRMR
algorithms were combined in a two-stage strategy for large-
scale gene selection [13]. In the first stage, a small subset of
genes was selected using ReliefF, and then, MRMR method
was applied to select nonredundant genes into the subset. All
the aforementioned methods are filter approaches and do not
incorporate classifier operation into the gene selection process.

Wrapper approaches usually achieve higher classification
accuracies by embedding classifier characteristics into the
gene selection process [10], [11], [17]–[25]. Least-square (LS)
SVM-based leave-one-out sequential forward-selection algo-
rithm was proposed for gene selection [11], [23]. Recursive
cluster-elimination-based approach has been introduced to rank
gene clusters in classification [10]. Using the principles of
bagging and random gene selection for tree building, a ran-
dom forest-based approach was proposed to measure the im-
portance of a gene in classification [18]. Wahde and Szallasi
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reviewed evolutionary-algorithms-based wrapper methods, in
which, gene selection is achieved by optimizing a selection
criteria by using genetic operations [17]. Though the aforemen-
tioned methods seem to outperform filter methods, each has its
own pros and cons, and most suffer from high computational
cost and instabilities.

Support vector machine recursive feature elimination (SVM-
RFE) approach for gene selection [21] has recently attracted
many researchers. SVM-RFE is a multivariate gene ranking
method that uses SVM weights as the ranking criterion of
genes. Earlier, we introduced multiple SVM-RFE (MSVM-
RFE), where the SVM was trained on multiple subsets of data
and the genes were ranked using statistical analysis of gene
weights in multiple runs, and demonstrated its applications in
selecting genes in microarray data [22] SVM-RFE was also
applied to identify peaks in mass spectrometry data [26]. The
performance of SVM-RFE becomes unstable at some values
of the gene filter-out factor, i.e., the number of genes elimi-
nated in each iteration. To overcome this, two-stage SVM-RFE
algorithm was proposed [24], where initial gene subset was se-
lected using several MSVM-RFE models with different gene
filter-out factors, and in the second stage, genes were selected
by eliminating one gene at each iteration. A fuzzy granular
SVM-RFE algorithm was recently proposed by incorporating
statistical learning, fuzzy clustering, and granular computing to
select highly informative genes [25].

In wrapper methods, the classifier characteristics such as
SVM weights in SVM-RFE provide a criterion to rank genes
based on their relevancy, but they do not account for the re-
dundancy among the genes [27]. Our aim is to combine clas-
sifier characteristics with a filter criterion that could minimize
the redundancy among selected genes, resulting in a selection
of a small subset of genes and improved classification accu-
racy. In this paper, we propose an approach that incorporate
mutual-information-based MRMR filter in SVM-RFE to mini-
mize the redundancy among the selected genes. As seen later,
our approach, referred to as SVM-RFE with MRMR filter, im-
proved the accuracy of classification and yielded smaller gene
sets on several benchmark cancer gene expression datasets.
Experiments show that our method outperforms MRMR and
SVM-RFE methods, as well as other popular methods on most
datasets, and selects genes that are biologically relevant in dis-
criminating cancer samples and have properties belonging to the
same pathway.

The manuscript is organized as follows. Section II describes
MRMR and SVM-RFE methods, and gives a detailed descrip-
tion of the proposed algorithm: SVM-RFE with MRMR Filter.
The numerical experiments on four gene expression datasets
are demonstrated in Section III. The performance of our algo-
rithm and comparison with earlier approaches are presented.
Section IV concludes the manuscript with a discussion.

II. METHODS

A. Minimum Redundancy–Maximum Relevancy (MRMR)

The MRMR method aims at selecting maximally relevant
and minimally redundant set of genes for discriminating tissue

classes. In this paper, we use mutual-information-based MRMR
criterion to find a maximally relevant and minimally redundant
set of genes.

Let D = {xi,k}n×K denote a microarray gene expression
data matrix, where xi,k is the expression of gene i in sam-
ple k, n denotes the number of genes measured by the mi-
croarray, and K denotes the number of samples. Let xk =
(x1,k , x2,k , . . . , xn,k ) denote the kth sample of gene expressions
and xi· = (xi,1 , xi,2 , . . . , xi,K ) denote the gene expressions of
ith gene across samples. Let G = {1, 2, . . . , n} be the indexed
set representing the genes. In this paper, we address two class
classification of tissue samples into cancer or benign tissues.
Let the target class label of sample k be yk = � ∈ {+1,−1},
taking values +1 or −1 for benign or cancerous tissues, respec-
tively. The mutual information between class labels � and gene
i will quantify the relevancy of gene i for the classification. The
relevancy RS of genes in a subset S ⊂ G is given by

RS =
1
|S|

∑
�

∑
i∈S

I(�, i) (1)

where I (�, i) =
∑

xi ·
p (�, xi·) log p(�,xi ·)

p(�)p(xi ·)
is the mutual infor-

mation between class labels � and gene i, where the summation
is taken over the space of gene expression values. The redun-
dancy of a gene subset is determined by the mutual information
among the genes. The redundancy of gene i with the other genes
in the subset S is given by

QS,i =
1

|S|2
∑

i ′∈S,i′ �=i

I(i, i′). (2)

In MRMR method, gene ranking is performed by optimizing the
ratio of the relevancy of a gene to the redundancy of the genes in
the set. The maximally relevant and minimally redundant gene
i∗ in the set S is given by

i∗ = arg maxi∈S
RS

QS,i
. (3)

The relevancy and redundancy measures of genes can be
combined in many ways, but the quotient in (3) has been found
to select highly relevant genes with least redundancy [6]. The
effectiveness of this ratio is reflected by its consistently good
performance shown on various expression datasets than by other
criterion, such as the difference between relevancy and redun-
dancy [6], [7]. After selecting the top-ranked genes, the subse-
quent genes are selected by forward selection, maximizing the
criterion given in (3).

B. Support Vector Machine Recursive Feature Elimination
(SVM-RFE)

SVM-RFE was introduced by Guyon et. al., for ranking genes
from gene expression data for cancer classification [21]. It is now
being widely used for gene selection and several improvements
have been recently suggested [22], [24], [25]. SVM-RFE, start-
ing with all the genes, removes the gene that is least significant
for classification recursively in a backward elimination manner.
The ranking score is given by the components of the weight
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vector w of the SVM as follows:

w =
∑

k

αkykxk (4)

where yk ∈ � is the class label of the sample xk and the summa-
tion is taken over all the training samples. αk is the Lagrange
multipliers involved in maximizing the margin of separation of
the classes [28]. If wi denotes the component weight connecting
to the gene i, wi

2 gives a measure the ranking of the gene i based
on its effect on the margin of separation upon removal [21], [22].
For computational efficiency, more than one gene can be re-
moved at a single step, though it may have negative effect on
selection of genes when the set of genes is small [21].

C. SVM-RFE with MRMR Filter

The MRMR filter, when used alone, may not yield optimal
accuracy because the classifier performs independently and is
not involved in the selection of genes. On the other hand, SVM-
RFE does not take into account the redundancy among genes.
Our aim is to improve the gene selection in SVM-RFE by in-
troducing an MRMR filter to minimize the redundancy among
relevant genes. As seen later, this improves the classification
accuracy by compromising relevancy and redundancy of genes
relating to cancer.

In our approach of SVM-RFE with MRMR filter, the genes
are ranked by a convex combination of the relevancy given by
SVM weights and the MRMR criterion. For ith gene, the ranking
measure ri is given by

ri = β |wi | + (1 − β)
RS,i

QS,i
(5)

where the parameter β ∈ [0, 1] determines the tradeoff between
SVM ranking and MRMR ranking, and the relevancy RS,i of
gene i in the set S on classification is given by

RS,i =
1
|S|

∑
�

I(�, i) ∀i ∈ S. (6)

To facilitate the backward selection, we use gene-wise
MRMR criterion for ranking in the present method. Also, we
use |wi | as the gene relevancy measure from SVM to better
compromise with redundancy of genes. Algorithm 1 illustrates
an iteration of SVM-RFE with MRMR filter method of rank-
ing genes: the least important gene at a time is identified after
ranking the genes in the subset S ⊂ G. In each iteration, one
(or more) of least significant genes are removed and the remain-
ing subset will go through the removal process iteratively, until
the removal of any more genes does not improve the classifier
performance.

D. Gene Ontology (GO)-Based Gene Similarity

GO (www.geneontology.org) provides a structured and con-
trolled vocabulary to annotate gene and gene products of an
organism. The functions of genes are distributed in terms of
three hierarchies (or taxonomies): molecular function (MF),
biological process (BP), and cellular compartment (CC). The
interrelationships among the terms are represented in a directed

acyclic graphs (DAGs), where each node of the graph represents
a term and an edge represents is-a or part-of relation between
two terms. GO helps to evaluate functional similarities among
a set of genes [22], [29], as there exists a direct relationship
between semantic similarity of gene pairs and their structural-
and sequence-based similarity [30], [31]. The semantic similar-
ity represents the biological similarity among a set of genes. In
order to find biological relevancy and redundancy of genes se-
lected by our method, we investigate into GO-based biological
semantics.

The concept of semantic similarity among genes is derived
from how GO terms describing the gene function relate to one
another. We use Lin’s semantic similarity measure that estimates
similarity on the basis of parent commonality of two query terms
and incorporates the information content of the query terms [32].
For each term t, let p(t) be the probability of finding a child of t
in the annotation database. If ti and tj are two query terms and
a (ti , tj ) represents the set of parent terms shared by both ti and
tj , then the similarity is given by

ρ (ti , tj ) =
2 × maxt∈a(ti ,tj ) log (p (t))
log (p (ti)) + log (p (tj ))

. (7)

To compute semantic similarity between two genes i and j,
let Ti and Tj be the sets of terms annotating the two genes,
respectively. The semantic similarity between the two genes is
defined as the average interset similarity of terms in sets Ti and
Tj . The biological similarity of the genes in the set S is given
by

ρ (S) =
2

|S| (|S| − 1)

∑
i,j∈S,i �=j

1
|Ti | |Tj |

∑
ti ∈Ti ,tj ∈Tj

ρ (ti , tj ) .

(8)

III. EXPERIMENTS AND RESULTS

A. Data

We evaluated the performance of the proposed method on four
microarray gene expression cancer datasets, namely, colon [33],
leukemia [4], hepato [34], and prostate [35]. These datasets have
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TABLE I
NUMBER OF GENES AND SAMPLES IN GENE EXPRESSION DATASETS

been widely used to benchmark gene selection algorithms. In
colon cancer dataset, no separate testing set is available, and
therefore, we randomly divided the original dataset into separate
training and testing datasets. The numbers of samples and genes
in the datasets are given in Table I.

B. Preprocessing

Datasets were normalized to zero mean and unit variance,
based on gene expressions of a particular sample. The gene
expression values were directly used as input features to SVM-
RFE, but were discretized in order to compute mutual informa-
tion to evaluate MRMR values. The discretization of expression
values were done to represent over, no, and underexpression
of the gene. The discretization x̃ of the gene expression x was
obtained as follows:

x̃ =




+2, if x > µ + σ/2

−2, if x < µ − σ/2

0, otherwise

(9)

where the discretized value x̃ = +2, 0, or − 2 represents an
overexpression, no expression, and an underexpression of the
gene, respectively. µ and σ denote the mean and standard devi-
ation of the gene expressions.

C. Parameter Estimation

In each iteration of Algorithm 1, we trained the lin-
ear SVM model with the selected subset S. The linear
SVM sensitivity parameter η was estimated from the set of{
2−20 , 2−19 , . . . , 20 , . . . , 215

}
, giving the maximum Matthew’s

correlation coefficient (MCC1) on tenfold cross validation on
training data. MCC was chosen because of the small sample
sizes and the imbalances of labels in most datasets. The value of
η was used with linear SVM model to select genes in SVM-RFE
and SVM-RFE with MRMR filter methods. The β value for the
SVM-RFE with filter method was then determined empirically
from the set {0.2, 0.4, 0.5, 0.6, 0.8} based on the best tenfold
cross-validation performance.

D. Performance Evaluation and Implementation

Starting with all the genes measured, we used Algorithm
1 to gradually remove genes to select the most relevant and
minimally redundant subset of genes. To increase the speed
of gene selection with both SVM-RFE and SVM-RFE with
MRMR filter methods, we eliminated 100 genes in one iteration,
when the number of genes in the gene subset was equal to or

1MCC = T P ×T N −F P ×F N√
(T P +F P )(T P +F N )(T N +F P )(T N +F N )

greater than 10 000, 10 genes if the number of genes was less
than 10 000, but greater than 1000, and one gene at a time if the
set contained less than 1000 genes.

After parameter estimation with tenfold cross validation,
genes were selected using optimal parameters on training data.
Using the selected genes, the performance of the methods were
evaluated on test samples. Because of the small number of test
samples and imbalances of training and testing sets, the test
errors were evaluated on bootstrap samples: training and test-
ing datasets were merged and all samples were then partitioned
for training and testing sets for 100 times. The performance
measures such as accuracy, sensitivity, and specificity were av-
eraged over 100 trials. The genes were selected from the gene
subset giving the least-average test error. MCC was also used to
evaluate the performances on test data. We performed pairwise
t-test to determine whether there is a statistical significance of
the differences of performances of the present method over the
other methods. In addition to MRMR and SVM-RFE methods,
we compared our method with several other widely used meth-
ods: Bayes-error-based filter with k-nearest neighbor (KNN)
and SVM [9], t-test with Fisher discriminant analysis [36], and
LS-bound with SVM [23].

We used MATLAB toolbox from the original authors for ex-
periments with MRMR method [6]. The classification accuracy
of the gene subset was evaluated using SVM. We also com-
pared our results with the SVM-RFE method. For gene selection
and testing with SVM, we used LIBSVM—version 2.84 soft-
ware [37]. For implementation of LS-bound SVM method, the
original source codes (available in [23, supplementary material])
were utilized. For GO analysis, we used GOSim [38] package
developed in R to compute the Lin’s similarity measures. Gene
Entrez Ids were obtained from National Center for Biotechnol-
ogy Information (NCBI) database. The genes without Human
Genome Organization (HUGO) symbols were excluded from
GO analysis.

E. Results

Table II gives a comparison of classification performances of
MRMR, SVM-RFE, and SVM-RFE with filter methods on four
datasets. As seen, the performance of SVM-RFE with MRMR
filter was significantly better in most of the performance mea-
sures on leukemia, hepato, and prostate datasets. SVM with
MRMR filter showed significant improvement in the sensitivity
against SVM-RFE method on colon data. The numbers of genes
selected by SVM-RFE with filter were lower than those selected
by MRMR or SVM-RFE methods except that for prostate can-
cer, the present method selected one more gene than MRMR.
Table III shows a comparison of performances of the present
method with other existing methods for gene selection. As seen,
SVM-RFE with MRMR filter gave higher classification accu-
racies on Colon, Leukemia and Prostate cancer datasets, which
were statistically significant. In hepato dataset, there was no
statistical difference between the accuracies between Bayes fol-
lowed by SVM and the present method. However, the numbers
of genes selected by the present method were relatively higher
compared to the other methods.
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TABLE II
PERFORMANCE OF MRMR, SVM-RFE, AND SVM-RFE WITH MRMR FILTER AND STATISTICAL SIGNIFICANCE OF DIFFERENCES

OF PERFORMANCE OF SVM-RFE WITH FILTER

TABLE III
COMPARISON OF GENES SELECTED, ACCURACIES, AND SIGNIFICANCE OF DIFFERENCE OF PERFORMANCES WITH OTHER METHODS

TABLE IV
RELEVANCY AND GO ANALYSIS OF SELECTED GENE SUBSETS

Table IV shows the mutual-information-based relevancies of
selected gene subsets by different methods on four datasets.
For all four datasets, the present method selected comparable
or slightly more relevant genes compared to other methods, but
the subtle differences were statistically insignificant. To evalu-
ate biological similarity among genes, we performed GO-based
similarity analysis with Lin’s similarity measure on the selected
gene sets. Table IV gives GO-based similarities for best gene

subsets selected by different methods. There were no statistically
significant differences among GO measures of genes selected
by different methods. This indicates that the present method
selected functionally similar genes to those selected by other
methods. Except for the MRMR-selected genes on Prostate data,
the present method always selected a smaller subset of genes,
yet functionally similar and coherent to those sets selected by
other methods.
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IV. DISCUSSION

The redundancy among genes expressions in microarray data
hinders the identification of cancerous tissues from benign tis-
sues. In order to remove the redundancy or collinearity among
genes, we introduced MRMR filter in the ranking of genes by the
SVM-RFE method. The efficacy of embedding of MRMR filter
in SVM-RFE was evidenced by improved classification perfor-
mance on benchmark datasets. It enhanced the gene selection
based on SVM weights. On most datasets tested, the proposed
approach outperformed other methods in the classification be-
cause it was able to reduce the redundancy among the selected
genes. Furthermore, the present method selected a less number
of genes compared to MRMR and SVM-RFE methods on most
datasets. We also observed improvements of standard deviations
of performance measures (accuracy, sensitivity, specificity, and
MCC) over bootstrap samples by the proposed method in the
experiments, indicating more stability in gene selection than the
other methods.

The proposed algorithm is computationally more expensive
than SVM-RFE or MRMR methods. By removing a set of genes
instead of one gene at a time, the present algorithm can be expe-
dited. The use of discretized data for computation of mutual in-
formation could lead to a loss of information, but might improve
the robustness to noise. But other methods which discretize the
data optimally into a number of levels could further improve the
present method. Parameter β and the sensitivity η of the SVM
were empirically determined. Investigation into other methods
that could estimate both parameters together may yield better
estimates of parameters.

It is not advisable to determine relevant and redundant genes
independent of the classifier, for example, using only MRMR
criterion. On the other hand, a simple filter might improve the
selection of genes if it understands how the filtered genes are
used by the classifier. We proposed to incorporate MRMR cri-
terion into the ranking scheme of SVM-RFE, so that the filter
takes care of the redundancies among genes. This work can be
extended to investigate into other filter criteria. Similarly im-
portant is to investigate the enhancement of introducing filters,
such as MRMR, into the recent development of SVM-RFE,
such as MSVM-RFE, two-stage SVM-RFE, and fuzzy-granular
SVM-RFE. However, the scope of this paper is to demonstrate
how the incorporation of redundancy, such as by MRMR filter,
into a classifier-based gene selection method could improve the
process of gene selection.

Functional similarity exists among the genes involved in a
specific BP, but usually hinders computational methods of tissue
classification. The GO analysis shows that functional similari-
ties among the genes in terms of biological pathways, MFs, and
colocalization of the top-ranked genes by the present method
were comparable to those selected by MRMR or SVM-RFE
methods. However, SVM-RFE with MRMR filter selects a fewer
number of genes and attempts to eliminate redundant genes
some of which may have biological functions important to can-
cer. Therefore, once a good classification is achieved, the origi-
nal gene set need to be scanned to find genes that are biologically
similar to those selected. Ideally, one could integrate the biolog-

ical measures of relevancy and redundancy, using information
from GO, into the gene selection process, so that the results
are directed by biological underpinnings. However, this is not
feasible at this time, as many genes measured by microarrays
do not have entries in the GO database.
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