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On the Accuracy of Localization Systems
Using Wideband Antenna Arrays

Yuan Shen, Student Member, IEEE, and Moe Z. Win, Fellow, IEEE

Abstract—Accurate positional information is essential for
many applications in wireless networks. Time-of-arrival (TOA)
and angle-of-arrival (AOA) are the two most commonly used
signal metrics for localizing nodes with unknown positions. In
this paper, we consider a wireless network in which each node is
equipped with a wideband antenna array capable of performing
both TOA and AOA measurements. Since both the position and
orientation of the agent are of interest, we propose a localization
framework that jointly estimates these two parameters. The
notion of equivalent Fisher information is applied to derive the
squared error bounds for the position and orientation. Since
our analysis starts from the received waveforms rather than
directly from the signal metrics, these bounds characterize the
fundamental limits of the position and orientation accuracy.
Surprisingly, our result reveals that AOA measurements obtained
by wideband antenna arrays do not further improve position
accuracy beyond that provided by TOA measurements.

Index Terms—Localization, wideband antenna array, equiv-
alent Fisher information (EFI), Cramèr-Rao bound (CRB),
squared position error bound (SPEB), squared orientation error
bound (SOEB).

I. INTRODUCTION

LOCALIZATION in an absolute frame through Global
Positioning Systems (GPS) has found applications in

many different fields [1]. However, due to the inability of
GPS signals to penetrate most obstacles, the effectiveness of
GPS is limited in harsh environments, such as in buildings,
in urban canyons, under tree canopies, and in caves [2]. To
address this problem, wireless networks employing wideband
transmission techniques have recently been introduced for
localization in GPS-denied environments [2]–[15]. In these
networks, each node is equipped with a wide bandwidth
transceiver. Wide bandwidth or ultrawide bandwidth (UWB)
signals are inherently well-suited for localization: in addition
to communication, these signals can provide precise range
measurements due to their fine delay resolution and robustness
in cluttered environments [14], [16]–[23].

We consider a wireless network consisting of anchors and
agents, in which each node is equipped with a wideband
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antenna array. Anchors are nodes with known positions and
orientations (for example, by GPS or system design). Agents
are nodes with unknown positions and/or orientations, and
they attempt to determine this information based on the wave-
forms received from neighboring anchors. Thus, localization
in this paper refers to determining both the position and
orientation of the agent.

The angle at which a signal arrives at the agent, known
as AOA, provides information about the agent’s position and
orientation relative to the anchor. AOA can be estimated using
an array of antennas, based on the received waveforms at
each antenna.1 The use of the AOA metric for localization
has been investigated, and many hybrid systems have been
proposed. These include hybrid TOA/AOA systems [29]–[31],
and hybrid time-difference-of-arrival (TDOA)/AOA systems
[32]. However, some of these studies employ narrowband
signal models, and others are restricted to far-field scenarios
or use far-field assumptions. A general framework to analyze
localization systems using wideband antenna arrays in various
scenarios needs to be developed.

Performance bounds for wideband localization using a sin-
gle antenna have been derived in [4]–[7], [9]. In this paper, we
investigate the accuracy of localization systems that employ
wideband antenna arrays. Our analysis starts from the received
waveforms rather than directly from TOA and AOA metrics,
and hence the results characterize the fundamental limits of
localization accuracy. The main contributions of this paper
are as follows:

∙ We derive the fundamental limits of localization accuracy
for wireless networks employing wideband antenna ar-
rays, in terms of performance measures called the squared
position error bound (SPEB) and squared orientation
error bound (SOEB).

∙ We apply the notion of the equivalent Fisher information
(EFI) [6], [7], which enables us to succinctly derive
the SPEB and SOEB. This methodology also provides
insights into the essence of the localization problem by
unifying the localization information from anchors in a
canonical form.

∙ We prove that the AOA measurements by antenna arrays
do not further improve the position accuracy beyond
that provided by TOA measurements, since the AOA is

1There are two ways to obtain the AOA: the first is through measurement by
a directional antenna, and the second is indirectly through TOA measurements
using an antenna array [24]–[27]. Wideband directional antennas that satisfy
size and cost requirements are difficult to implement, since they are required
to work across a large bandwidth [28]. As such, antenna arrays are more
commonly used when angle measurement for wide bandwidth signals is
necessary.
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obtained through the TOAs at the antennas in the array.
∙ We show that exploiting the geometric relationship in-

herent in multipath propagation does not further improve
the localization accuracy by antenna arrays.

We also apply the SOEB analysis to AOA estimation using
wideband antenna arrays and compare the performance of two
specific array geometries, i.e., the uniform linear array (ULA)
and uniform circular array (UCA).

The rest of the paper is organized as follows. Section II
presents a wideband antenna array model for localization and
puts forth the concepts of the SPEB and SOEB in terms of the
Fisher information. The SPEB and SOEB are derived using
the notion of EFI in Section III. Discussion and examples are
given in Section IV. Some numerical illustrations are provided
in Section V, and conclusions are drawn in the last section.

Notations: The notation 𝔼z{⋅} is the expectation operator
with respect to the random vector z; A ≻ B and A ર B
denote that the matrix A−B is positive definite and positive
semi-definite, respectively; tr{⋅} denotes the trace of a square
matrix; [ ⋅ ]𝑛×𝑛 denotes the upper left 𝑛× 𝑛 submatrix of its
argument; [ ⋅ ]𝑛,𝑚 denotes the element at the 𝑛th row and 𝑚th
column of its argument; ∥ ⋅ ∥ denotes the Euclidean distance;
and the superscript [ ⋅ ]T denotes the transpose of its argument.
We denote by 𝑓(x) the probability density function (PDF)
𝑓X(x) of the random vector X unless specified otherwise,
and we use the following function for the Fisher information
matrix (FIM):

Fz(w ;x,y) ≜ 𝔼z

{[
∂

∂x
ln 𝑓(w)

] [
∂

∂y
ln 𝑓(w)

]T
}
. (1)

II. SYSTEM MODEL AND MATHEMATICAL PRELIMINARIES

In this section, we first present a model for location-
aware networks employing wideband antenna arrays together
with an associated channel propagation model. We then put
forth performance measures called the squared position and
orientation error bounds (SPEB/SOEB) in terms of the Fisher
information matrix.

A. Network Model

Consider a network consisting of 𝑁b anchors and multi-
ple agents with a fixed topology. Each anchor is equipped
with a single antenna,2 and each agent is equipped with
an array of 𝑁a antennas, which can obtain both TOA and
AOA measurements with respect to their neighboring anchors.
Radio signals traveling from anchors to agents are subject to
multipath propagation. The agents estimate their positions and
orientations based on the received waveforms. Without loss of
generality, we focus on one agent in the network, since agents
estimate their positions and orientations independently.

Let 𝒩b = {1, 2, . . . , 𝑁b} be the set of all anchors with
known positions p𝑘 ≜ [𝑥𝑘 𝑦𝑘 ]

T (𝑘 ∈ 𝒩b). Let 𝒩a =
{1, 2, . . . , 𝑁a} be the set of antennas, and p̃𝑛 ≜ [ �̃�𝑛 𝑦𝑛 ]

T

(with 𝑛 ∈ 𝒩a) denotes the position of the agent’s 𝑛th
antenna, which needs to be estimated.3 Let 𝜙𝑛,𝑘 denote

2The case in which an anchor is equipped with multiple antennas will be
addressed in Section IV. An anchor with multiple antennas can be thought
of as multiple anchors, each of which has a single antenna.

3Our discussion is focused on two-dimensional localization, and its results
can be easily extended to three-dimensional cases.

. . .
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Fig. 1. An antenna array with arbitrary geometry is described by the reference
point p, the orientation 𝜑, and the relative positions of the antennas.

the angle from anchor 𝑘 to the 𝑛th antenna, and q𝑛,𝑘 ≜[
cos𝜙𝑛,𝑘 sin𝜙𝑛,𝑘

]T
denote the corresponding normal

vector.
Note that the relative positions of the antennas in the array

are usually known. Hence if we denote p = [𝑥 𝑦 ]T as a
reference point and 𝜑 as the orientation of the array,4 then the
position of the 𝑛th antenna in the array can be represented as

p̃𝑛 = p+

[
Δ𝑥𝑛(p, 𝜑)

Δ𝑦𝑛(p, 𝜑)

]
, 𝑛 ∈ 𝒩a ,

where Δ𝑥𝑛(p, 𝜑) and Δ𝑦𝑛(p, 𝜑) denote the relative distance
in 𝑥 and 𝑦 direction from the reference point p to the 𝑛th
antenna. The reference point can be arbitrary, but one natural
choice is the array center, which is defined as the value p0

satisfying∑
𝑛∈𝒩a

Δ𝑥𝑛(p0, 𝜑) = 0 and
∑
𝑛∈𝒩a

Δ𝑦𝑛(p0, 𝜑) = 0 .

As mentioned before, localization in this paper involves
determining both the position and the orientation of the
agent. In some scenarios, either the position or the orien-
tation of the agent may be known, and then we have two
special localization problems, position-aware localization and
orientation-aware localization, respectively. Correspondingly,
from the perspective of Bayesian estimation, p and 𝜑 can
be thought of as random parameters with infinite a priori
Fisher information for position-aware and orientation-aware
localization, respectively [7].

B. Channel Model

The received waveform from anchor 𝑘 at the 𝑛th antenna
of the agent in passband can be written as

𝑟𝑛,𝑘(𝑡) =

𝐿𝑛,𝑘∑
𝑙=1

𝛼
(𝑙)
𝑛,𝑘 𝑠

(
𝑡− 𝜏

(𝑙)
𝑛,𝑘

)
+ 𝑧𝑛,𝑘(𝑡) , 𝑡 ∈ [ 0, 𝑇ob) ,

(2)

4Note from geometry that the orientation 𝜑 is independent of the specific
reference points.



272 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 1, JANUARY 2010

where 𝑠(𝑡) is a known wideband waveform, 𝛼(𝑙)
𝑛,𝑘 and 𝜏

(𝑙)
𝑛,𝑘

are the amplitude and delay, respectively, of the 𝑙th path,
𝐿𝑛,𝑘 is the number of multipath components (MPCs), 𝑧𝑛,𝑘(𝑡)
represents the observation noise modeled as additive white
Gaussian processes with two-side power spectral density
𝑁0/2, and [ 0, 𝑇ob) is the observation interval. The relationship
between the 𝑛th antenna’s position and the delay of the 𝑙th
path is given by

𝜏
(𝑙)
𝑛,𝑘 =

1

𝑐

[
∥p𝑘 − p̃𝑛∥+ 𝑏

(𝑙)
𝑛,𝑘

]
, (3)

where 𝑐 is the propagation speed of the signal, and 𝑏(𝑙)𝑛,𝑘 ≥ 0 is

a range bias. The range bias 𝑏(1)𝑛,𝑘 = 0 for line of sight (LOS)

propagation, whereas 𝑏(𝑙)𝑛,𝑘 > 0 for non-line of sight (NLOS)
propagation.

Our analysis is based on the received waveforms given by
(2), and hence the parameters to be estimated include the
position of the reference point, the array orientation, and the
nuisance multipath parameters, i.e.,

𝜽 =
[
pT 𝜑 𝜿T

]T
, (4)

where 𝜿 is the vector consisting of all the multipath parameters
associated with the received waveforms, i.e., 𝑏(𝑙)𝑛,𝑘 and 𝛼(𝑙)

𝑛,𝑘 for
𝑛 ∈ 𝒩a, 𝑘 ∈ 𝒩b, and 𝑙 = 1, 2, ..., 𝐿𝑛,𝑘.

C. Bounds for Squared Position and Orientation Errors

Let 𝜽 denote an estimate of the parameter vector 𝜽 based
on the observation vector

r =
[
rT
1 rT

2 ⋅ ⋅ ⋅ rT
𝑁a

]T
,

where r𝑛 =
[
rT
𝑛,1 rT

𝑛,2 ⋅ ⋅ ⋅ rT
𝑛,𝑁b

]T
in which the elements

of r𝑛,𝑘 can be obtained from the Karhunen-Loève expansion
of 𝑟𝑛,𝑘(𝑡) [33], [34]. The mean squared error (MSE) matrix
of 𝜽 satisfies the information inequality [33], [35]

𝔼r,𝜽

{
(𝜽 − 𝜽)(𝜽 − 𝜽)

T
}
ર J−1

𝜽 , (5)

where J𝜽 is the FIM for the parameter vector 𝜽.5

Equation (5) implies that the MSE of the position estimate
p̂ and that of the orientation estimate 𝜑 are bounded below
by

𝒫(p) ≜ tr
{[

J−1
𝜽

]
2×2

}
, (6)

and

𝒫(𝜑) ≜
[
J−1
𝜽

]
3,3

, (7)

respectively. In the following, we refer to 𝒫(p) and 𝒫(𝜑)
as the squared position error bound (SPEB) and the squared
orientation error bound (SOEB), respectively [6].

5More precisely, J𝜽 is called the Bayesian information matrix if the
parameter vector 𝜽 is random, and the corresponding lower bound is called
the Bayesian Cramèr-Rao bound or the hybrid Bayesian Cramèr-Rao bound,
respectively, if all or some parameters in 𝜽 are random. In this paper, we do
not distinguish these names.

D. Fisher Information Matrix

We first consider the case in which a priori knowledge of
the channel parameters, the agent’s position, and the agent’s
orientation is not available. The results will be extended to
cases where a priori knowledge is available in Section IV.

Since the observation noise in the received waveforms
𝑟𝑛,𝑘(𝑡) from different 𝑛’s and 𝑘’s are independent, the likeli-
hood function of the observation r conditioned on 𝜽 can be
written as

𝑓(r∣𝜽) =
∏
𝑛∈𝒩a

∏
𝑘∈𝒩b

𝑓(r𝑛,𝑘∣𝜽) ,

where each term in the above factor is given by [33]

𝑓(r𝑛,𝑘∣𝜽) ∝ exp

{
2

𝑁0

∫ 𝑇ob

0

𝑟𝑛,𝑘(𝑡)

𝐿𝑛,𝑘∑
𝑙=1

𝛼
(𝑙)
𝑛,𝑘 𝑠(𝑡− 𝜏

(𝑙)
𝑛,𝑘) 𝑑𝑡

− 1

𝑁0

∫ 𝑇ob

0

[ 𝐿𝑛,𝑘∑
𝑙=1

𝛼
(𝑙)
𝑛,𝑘 𝑠(𝑡− 𝜏

(𝑙)
𝑛,𝑘)

]2
𝑑𝑡

}
. (8)

We then have the FIM for the parameter vector 𝜽 as follows

J𝜽 ≜ Fr(r∣𝜽 ; 𝜽, 𝜽) , (9)

where the right-hand side is defined in (1) except that w is
replaced by r∣𝜽.

III. EVALUATION OF FIM AND SPEB/SOEB

The SPEB and SOEB can be evaluated by taking the
inverse of the FIM J𝜽 in (9). However, J𝜽 is a matrix of
very high dimension, while only [J−1

𝜽 ]2×2 and [J−1
𝜽 ]3,3 (or

equivalently [J−1
𝜽 ]3×3) are of interest. To circumvent direction

matrix inversion and gain insights into the problem, we apply
the notion of EFI introduced in [4], [6], which retains all the
necessary information to obtain the information inequality for
a subset of parameters.

A. Equivalent Fisher Information Matrix for SPEB and SOEB

In this subsection, we derive the equivalent Fisher infor-
mation matrix (EFIM) for the position and the EFI for the
orientation.

Let 𝜼𝑛,𝑘 ≜
[
𝜏
(1)
𝑛,𝑘 �̃�

(1)
𝑛,𝑘 𝜏

(2)
𝑛,𝑘 �̃�

(2)
𝑛,𝑘 ⋅ ⋅ ⋅ 𝜏 (𝐿𝑛,𝑘)

𝑛,𝑘 �̃�
(𝐿𝑛,𝑘)
𝑛,𝑘

]T
,

where �̃�
(𝑙)
𝑛,𝑘 ≜ 𝛼

(𝑙)
𝑛,𝑘/𝑐. After some algebra, the FIM can be

derived as (10), shown at the bottom of the next page, where6

G𝑛 =
[
q𝑛,1l

T
𝑛,1 q𝑛,2l

T
𝑛,2 ⋅ ⋅ ⋅ q𝑛,𝑁b l

T
𝑛,𝑁b

]
,

h𝑛 =
[
ℎ𝑛,1l

T
𝑛,1 ℎ𝑛,2l

T
𝑛,2 ⋅ ⋅ ⋅ ℎ𝑛,𝑁bl

T
𝑛,𝑁b

]
,

with

ℎ𝑛,𝑘 =
𝑑

𝑑𝜑
Δ𝑥𝑛(p, 𝜑) cos𝜙𝑛,𝑘 +

𝑑

𝑑𝜑
Δ𝑦𝑛(p, 𝜑) sin𝜙𝑛,𝑘 ,

l𝑛,𝑘 =
[
1 0 1 0 ⋅ ⋅ ⋅ 1 0

]
︸ ︷︷ ︸

2𝐿𝑛,𝑘 components

T
;

and

Λ𝑛 = diag {Ψ𝑛,1,Ψ𝑛,2, . . . ,Ψ𝑛,𝑁b} ,
6Without confusion, unspecified elements are 0 in this paper.
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with Ψ𝑛,𝑘 ≜ Fr(r∣𝜽 ;𝜼𝑛,𝑘,𝜼𝑛,𝑘). In particular, the diagonal
elements in Ψ𝑛,𝑘 are

Fr(r∣𝜽 ; 𝜏
(𝑙)
𝑛,𝑘, 𝜏

(𝑙)
𝑛,𝑘) = 8𝜋2𝛽2 SNR

(𝑙)
𝑛,𝑘 , (11)

where

𝛽 =

(∫ +∞
−∞ 𝑓2 ∣𝑆(𝑓)∣2𝑑𝑓∫ +∞
−∞ ∣𝑆(𝑓)∣2𝑑𝑓

)1/2

, (12)

and

SNR
(𝑙)
𝑛,𝑘 =

𝛼
(𝑙) 2
𝑛,𝑘

∫ +∞
−∞ ∣𝑆(𝑓)∣2𝑑𝑓
𝑁0

.

In the above, 𝛽 is known as the effective bandwidth [33], and
𝑆(𝑓) is the Fourier transform of 𝑠(𝑡).

By applying the notion of EFI to (10), we can derive the
3× 3 EFIM Je(p), after some algebra, as7

Je(p, 𝜑) =
∑
𝑛∈𝒩a

∑
𝑘∈𝒩b

[
𝜆𝑛,𝑘 q𝑛,𝑘 q

T
𝑛,𝑘 𝜆𝑛,𝑘ℎ𝑛,𝑘 q𝑛,𝑘

𝜆𝑛,𝑘ℎ𝑛,𝑘 q
T
𝑛,𝑘 𝜆𝑛,𝑘ℎ

2
𝑛,𝑘

]
,

(13)

where 𝜆𝑛,𝑘 is called the ranging information intensity (RII)8

from anchor 𝑘 to the 𝑛th antenna given by (14), shown at the
bottom of this page, in which D𝑛,𝑘 =

[
0 I2𝐿𝑛,𝑘−1

]
. Note

that in the case of LOS signals, we eliminate 𝑏(1)𝑛,𝑘 from 𝜿𝑛,𝑘

and the corresponding rows and columns from J𝜽 since they
are known to be 0.

Therefore, the EFIM for the position and the EFI for the
orientation, using an 𝑁a-antenna array, can be obtained from
(13) as

Je(p) =
∑
𝑛∈𝒩a

∑
𝑘∈𝒩b

𝜆𝑛,𝑘 q𝑛,𝑘 q
T
𝑛,𝑘

− 1∑
𝑛∈𝒩a

∑
𝑘∈𝒩b

𝜆𝑛,𝑘ℎ2𝑛,𝑘
qqT, (15)

and

7The notation Je(𝜽1) denotes the EFIM for the parameter vector 𝜽1 ⊆ 𝜽.
Note that Je(𝜽1) does not depend on the value of 𝜽1 for a random parameter
vector 𝜽1, whereas it may be a function of 𝜽1 for a deterministic parameter
vector 𝜽1.

8The RII is determined by the SNR of the received waveform, the effective
bandwidth of the pulse, the multipath propagation condition, and the a priori
channel knowledge if available [6].

𝐽e(𝜑) =
∑
𝑛∈𝒩a

∑
𝑘∈𝒩b

𝜆𝑛,𝑘ℎ
2
𝑛,𝑘

− qT

[∑
𝑛∈𝒩a

∑
𝑘∈𝒩b

𝜆𝑛,𝑘 q𝑛,𝑘 q
T
𝑛,𝑘

]−1

q , (16)

where

q =
∑
𝑛∈𝒩a

∑
𝑘∈𝒩b

𝜆𝑛,𝑘 ℎ𝑛,𝑘 q𝑛,𝑘 .

Note that the angle 𝜑 is known in the orientation-aware
case, and hence excluded from the parameter vector 𝜽 in
(4). Consequently, the components corresponding to 𝜑 are
eliminated from the FIMs in (10) and (13), and the EFIM
for the position in (15) becomes

Je(p) =
∑
𝑛∈𝒩a

∑
𝑘∈𝒩b

𝜆𝑛,𝑘 q𝑛,𝑘 q
T
𝑛,𝑘 . (17)

Similarly, in the position-aware case, p is eliminated from 𝜽,
and (16) becomes

𝐽e(𝜑) =
∑
𝑛∈𝒩a

∑
𝑘∈𝒩b

𝜆𝑛,𝑘 ℎ
2
𝑛,𝑘 .

B. Remarks on the EFIM

Since qqT in (15) is a positive semi-definite 2 × 2 matrix
and

∑
𝑛∈𝒩a

∑
𝑘∈𝒩b

𝜆𝑛,𝑘 ℎ
2
𝑛,𝑘 > 0, we have9

Je(p) ⪯
∑
𝑛∈𝒩a

∑
𝑘∈𝒩b

𝜆𝑛,𝑘 q𝑛,𝑘 q
T
𝑛,𝑘 . (18)

Note that the right-hand side of (18) is the sum of localiza-
tion information obtained from individual antennas [6]. This
implies that the EFIM for the position, using antenna arrays,
is bounded above by the sum of all EFIMs corresponding
to individual antennas. The inequality of (18) is due to the
uncertainty associated with the unknown orientation, and the
equality is achieved for the cases of q = 0 or orientation-
aware localization (c.f. (17)).

We have shown in [6] that in orientation-unaware localiza-
tion there exists a unique reference point p∗, called orientation
center, such that the equality in (18) is achieved, and the SPEB
of any other reference point is strictly larger than that of p∗.
In general, p∗ depends on the topology of the anchors and

9For notational convenience, we suppress the dependence of ℎ𝑛,𝑘 , 𝜆𝑛,𝑘 ,
and q on the reference position p throughout the paper.

J𝜽 =
1

𝑐2

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∑
𝑛∈𝒩a

G𝑛Λ𝑛G
T
𝑛

∑
𝑛∈𝒩a

G𝑛Λ𝑛h
T
𝑛 G1Λ1 ⋅ ⋅ ⋅ G𝑁aΛ𝑁a∑

𝑛∈𝒩a
h𝑛Λ𝑛G

T
𝑛

∑
𝑛∈𝒩a

h𝑛Λ𝑛h
T
𝑛 h1Λ1 ⋅ ⋅ ⋅ h𝑁aΛ𝑁a

Λ1G
T
1 Λ1h

T
1 Λ1

...
...

. . .

Λ𝑁aG
T
𝑁a

Λ𝑁ah
T
𝑁a

Λ𝑁a

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(10)

𝜆𝑛,𝑘 =

⎧⎨⎩lT𝑛,𝑘

{
Ψ𝑛,𝑘 −

(
Ψ𝑛,𝑘D

T
𝑛,𝑘

)(
D𝑛,𝑘Ψ𝑛,𝑘D

T
𝑛,𝑘

)−1

(D𝑛,𝑘Ψ𝑛,𝑘)

}
l𝑛,𝑘/𝑐

2 , LOS

0 , NLOS
(14)
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the agent, the properties of the received waveforms, the array
geometry, and the array orientation.

The SPEB and SOEB can be obtained from Je(p) and 𝐽e(𝜑)
through (15) and (16 ), respectively. Although not apparent in
(16), it is shown in [6] that 𝒫(𝜑) does not depend on the
specific reference point. This is because different reference
points only introduce different translations, but not rotations.
In contrary, Je(p) depends on the specific reference point
p since both ℎ𝑛,𝑘 and q depend on p. The SPEB for any
reference point p is given by [6]

𝒫(p) = 𝒫(p∗) + 𝒫(𝜑) ⋅ ∥p− p∗∥2 . (19)

This implies that the SPEB of p is equal to that of the
orientation center p∗ plus the orientation-induced position
error. The latter is proportional to the squared distance from
p to p∗ and the SOEB.

The EFIM Je(p) in (15) depends only on the ranging infor-
mation between each pair of anchors and antennas (through
𝜆𝑛,𝑘’s and 𝜙𝑛,𝑘’s), and the array geometry (through ℎ𝑛,𝑘’s).
Thus, AOA measurements obtained at the antenna array does
not further increase the position accuracy. Intuitively, AOA
is obtained indirectly by the antenna array through TOA
measurements, whereas the TOA information has already been
fully utilized for localization by individual antennas.

C. EFIM in Far-Field Scenarios

We now investigate localization in far-field scenarios, where
the antennas in the array are closely located such that the
received waveforms from each anchor experience propagation
channels with the same statistics. In such cases, we have
𝜙𝑛,𝑘 = 𝜙𝑘, 𝜆𝑛,𝑘 = 𝜆𝑘, and q𝑛,𝑘 = q𝑘 for all 𝑛.

Take the array center p0 as the reference point, and we have∑
𝑛∈𝒩a

ℎ𝑛,𝑘 =
𝑑

𝑑𝜑

[ ∑
𝑛∈𝒩a

Δ𝑥𝑛(p0, 𝜑) cos𝜙𝑛,𝑘

+
∑
𝑛∈𝒩a

Δ𝑦𝑛(p0, 𝜑) sin𝜙𝑛,𝑘

]
= 0 ,

and the corresponding

q =
∑
𝑛∈𝒩a

∑
𝑘∈𝒩b

𝜆𝑘ℎ𝑛,𝑘 q𝑘 =
∑
𝑘∈𝒩b

(∑
𝑛∈𝒩a

ℎ𝑛,𝑘

)
𝜆𝑘 q𝑘 = 0 ,

which implies p0 = p∗. Hence, the array center becomes the
orientation center in far-field scenarios and always achieves
the minimum SPEB. Moreover, the array center is a well-
suited choice for the reference point since it can be determined
from the array geometry alone, without requiring the received
waveforms or the knowledge of the agent-anchor topology.

Following an analysis similar to Section III-A together with
the fact that the array center is the orientation center, we obtain
the EFIM for the array center and the EFI for the orientation
as

Je(p0) = 𝑁a

∑
𝑘∈𝒩b

𝜆𝑘 q𝑘 q
T
𝑘 , (20)

and

𝐽e(𝜑) =
∑
𝑛∈𝒩a

∑
𝑘∈𝒩b

𝜆𝑘 ℎ̄
2
𝑛,𝑘 , (21)

where
∑

𝑘∈𝒩b
𝜆𝑘 q𝑘 q

T
𝑘 is the EFIM corresponding to a single

antenna, and ℎ̄𝑛,𝑘 is the function ℎ𝑛,𝑘 evaluated at p0. Note
that in such scenarios, the localization performance of an 𝑁a-
antenna array is equivalent to that of a single antenna with 𝑁a

measurements, regardless of the array geometry.
We now illustrate an application of (21) for AOA estimation

using wideband antenna arrays. Consider a position-aware
localization problem in a far-field scenario. Since 𝜙𝑘 is known,
estimation of the AOA from anchor 𝑘 to the array, i.e.,
𝜙𝑘 ≜ 𝜙𝑘 − 𝜑, is equivalent to the estimation of the array
orientation. The contribution of anchor 𝑘 in (21) becomes
exactly the EFI for the AOA from anchor 𝑘 to the array, i.e.,

𝐽e(𝜙𝑘) = 𝜆𝑘
∑
𝑛∈𝒩a

ℎ̄2𝑛,𝑘 , (22)

from which the error bound of AOA estimation can be
obtained.

IV. DISCUSSION

In this section, we will investigate the contribution of a
priori knowledge to the localization accuracy. The a priori
knowledge includes that of channel parameters, agent’s po-
sition and orientation, and multipath geometry. We will also
exemplify our results using two specific array geometries.

A. Contribution from A Priori Knowledge

We consider a scenario in which the channel parameter
vectors 𝜿𝑛,𝑘 are independent for different 𝑛’s and 𝑘’s. The in-
dependence assumption serves as a reasonable approximation
of many realistic scenarios, especially near-field cases. When
the different sets of channel parameters are correlated, our
results provide an upper bound for the EFIM since correlation
in parameters decreases the Fisher information.

The joint probability density function (PDF) of random
parameter vector 𝜽 obtained from a priori knowledge can be
written as10

𝑓(𝜽) = 𝑓(p) 𝑓(𝜑)
∏
𝑛∈𝒩a

∏
𝑘∈𝒩b

𝑓(𝜿𝑛,𝑘∣p, 𝜑) , (23)

where 𝑓(p) and 𝑓(𝜑) are the PDFs of the reference point
p and the orientation 𝜑 respectively, and 𝑓(𝜿𝑛,𝑘∣p, 𝜑) is the
PDF of the channel parameters conditioned on p and 𝜑.

1) Localization with A Priori Channel Knowledge: When a
priori channel knowledge is available, the likelihood function
of the random vectors r and 𝜽 can be written as

𝑓(r, 𝜽) =
∏
𝑛∈𝒩a

∏
𝑘∈𝒩b

𝑓(r𝑛,𝑘∣𝜽)𝑓(𝜿𝑛,𝑘∣p, 𝜑),

where 𝑓(r𝑛,𝑘∣𝜽) is given by (8). We then have the FIM for 𝜽
as follows

J𝜽 = Fr,𝜽(r, 𝜽 ; 𝜽, 𝜽) ≜ Jw + Jp ,

where Jw ≜ Fr,𝜽(r∣𝜽 ; 𝜽, 𝜽) and Jp ≜ F𝜽(𝜽 ; 𝜽, 𝜽) are the
FIMs corresponding to observation and a priori knowledge,
respectively.

10This is a general expression of a priori PDF, where all parameters are
assumed random. If some parameters are deterministic, the corresponding
𝑓(⋅)’s are eliminated from (23), and we do not take expectation over these
parameters in (5) as well.
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The FIM Jw can be obtained by taking expectation of J𝜽 in
(10) over the parameter vector 𝜽, and we will adopt notation
Ψ̄𝑛,𝑘 ≜ 𝔼𝜽 {Ψ𝑛,𝑘}.

We then proceed to derive Jp. It has been shown that
𝑓(𝜿𝑛,𝑘∣p, 𝜑) = 𝑓(𝜿𝑛,𝑘∣𝑑𝑛,𝑘) [6], where 𝑑𝑛,𝑘 = ∥p̃𝑛 − p𝑘∥.
Define

Ξ̃𝑛,𝑘
p,p ≜ F𝜽(𝜿𝑛,𝑘∣𝑑𝑛,𝑘 ; 𝑑𝑛,𝑘, 𝑑𝑛,𝑘) ,

Ξ̃
𝑛,𝑘

p,𝜿 ≜ F𝜽(𝜿𝑛,𝑘∣𝑑𝑛,𝑘 ; 𝑑𝑛,𝑘,𝜿𝑛,𝑘) ,

and

Ξ𝑛,𝑘
𝜿,𝜿 ≜ F𝜽(𝜿𝑛,𝑘∣𝑑𝑛,𝑘 ;𝜿𝑛,𝑘,𝜿𝑛,𝑘) .

After some algebra, we can obtain the FIM from the a priori
knowledge as (24), shown at the bottom of this page, where
Ξ𝑛,𝑘

p,p = q𝑛,𝑘 Ξ̃
𝑛,𝑘
p,p q

T
𝑛,𝑘, Ξ𝑛,𝑘

p,𝜑 = q𝑛,𝑘 Ξ̃
𝑛,𝑘
p,p ℎ𝑛,𝑘, Ξ𝑛,𝑘

𝜑,𝜑 =

ℎ2𝑛,𝑘 Ξ̃
𝑛,𝑘
p,p,

Ξp,𝑛 =
[
Ξ𝑛,1

p,𝜿 Ξ𝑛,2
p,𝜿 ⋅ ⋅ ⋅ Ξ𝑛,𝑁b

p,𝜿

]
,

Ξ𝜑,𝑛 =
[
Ξ𝑛,1

𝜑,𝜿 Ξ𝑛,2
𝜑,𝜿 ⋅ ⋅ ⋅ Ξ𝑛,𝑁b

𝜑,𝜿

]
,

and

Ξ𝑛 = diag
{
Ξ𝑛,1

𝜿,𝜿,Ξ
𝑛,2
𝜿,𝜿, . . . ,Ξ

𝑛,𝑁b
𝜿,𝜿

}
,

with Ξ𝑛,𝑘
p,𝜿 = q𝑛,𝑘 Ξ̃

𝑛,𝑘

p,𝜿 and Ξ𝑛,𝑘
𝜑,𝜿 = ℎ𝑛,𝑘 Ξ̃

𝑛,𝑘

p,𝜿.
Combining Jw and Jp, we can then apply the notion of EFI

to derive the 3× 3 EFIM Je(p, 𝜑) in the same form as (13),
where the RII 𝜆𝑛,𝑘 is now given by (25), shown at the bottom
of the page. The RII in (25) accounts for the a priori channel
knowledge, and as can be expected, it degenerates to (14) if
the channel knowledge is unavailable.

2) Localization with Position and Orientation Knowledge:
We next consider the case in which a priori knowledge of
the agent’s position and orientation is available. Note that the
topology, i.e., relative positions of all the antennas in the net-
work, changes with the agent’s positions and orientations. The
expression of the EFIM for this general case is very involved,
and hence we give the result for far-field scenarios as they
provide insights into the contribution of the a priori knowledge
of the agent’s position and orientation to localization.

In far-field scenarios, 𝜙𝑛,𝑘’s are approximately the same
for every possible agent’s position and orientation, and so are
𝑑𝑛,𝑘’s. Moreover, we approximate p = 𝔼p {p} = p0. Note
that for a fixed 𝑘, 𝛼(𝑙)

𝑛,𝑘’s are the same for all 𝑛 and so are

𝑏
(𝑙)
𝑛,𝑘’s. After some algebra, the 3×3 EFIM for the array center

and orientation can be written as

Je(p0, 𝜑) = diag

{
𝑁a

∑
𝑘∈𝒩b

�̄�𝑘 q𝑘 q
T
𝑘 +Ξp ,

∑
𝑛∈𝒩a

∑
𝑘∈𝒩b

�̄�𝑘 ℎ̄
2
𝑛,𝑘 + Ξ𝜑

}
,

where Ξp ≜ Fp(p ;p,p), Ξ𝜑 ≜ F𝜑(𝜑 ;𝜑, 𝜑), and ℎ̄𝑛,𝑘, �̄�𝑘,
and q𝑘 are evaluated at p0. Consequently, the EFIM for the
position and the EFI for the orientation are given given by

Je(p0) = 𝑁a

∑
𝑘∈𝒩b

�̄�𝑘 q𝑘 q
T
𝑘 +Ξp ,

and

𝐽e(𝜑) =
∑
𝑛∈𝒩a

∑
𝑘∈𝒩b

�̄�𝑘 ℎ̄
2
𝑛,𝑘 + Ξ𝜑 ,

where the a priori position and orientation knowledge con-
tribute to the EFIM in the form of additive terms Ξp and
Ξ𝜑.

B. Geometric Relationship of Multipath Propagation

Multipath propagation refers to a phenomenon in which a
signal reaches the receive antenna via multiple paths, arising
from either reflecting off objects or scattering. The MPCs from
reflecting can be thought of as direct paths from the virtual
anchors behind the reflecting surfaces (see Fig. 2).11 Thus, at
the antenna array, the arrival times of the signal from the same
virtual anchor are dependent. We refer to this as the geometric
relationship of multipath propagation.12 Such a relationship
may appear to be useful for localization at first glance. This,
however, is not the case when the MPCs are resolvable.

Proposition 1: When MPCs are resolvable, the geometric
relationship of multipath propagation does not contribute to
the localization accuracy.

Proof: See Appendix A.
Note that signals from virtual anchors are equivalent to

those from agents with no a priori position knowledge. Hence,

11Since wider transmission bandwidths translate to higher multipath reso-
lution, dominant MPCs can be resolved via the use of wide bandwidth signals
[16]–[20].

12If the reflection is not ideal, for example the wall is not flat in Fig. 2,
then the corresponding MPCs at the array can be thought of as direct paths
coming from different virtual anchors. In such cases, a geometric relationship
among the MPCs does not exist.

Jp =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∑
𝑛∈𝒩a

∑
𝑘∈𝒩b

Ξ𝑛,𝑘
p,p

∑
𝑛∈𝒩a

∑
𝑘∈𝒩b

Ξ𝑛,𝑘
p,𝜑 Ξp,1 ⋅ ⋅ ⋅ Ξp,𝑁a∑

𝑛∈𝒩a

∑
𝑘∈𝒩b

Ξ𝑛,𝑘
p,𝜑

T ∑
𝑛∈𝒩a

∑
𝑘∈𝒩b

Ξ𝑛,𝑘
𝜑,𝜑 Ξ𝜑,1 ⋅ ⋅ ⋅ Ξ𝜑,𝑁a

ΞT
p,1 ΞT

𝜑,1 Ξ1

...
...

. . .

ΞT
p,𝑁a

ΞT
𝜑,𝑁a

Ξ𝑁a

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(24)

𝜆𝑛,𝑘 =
1

𝑐2

{
lT𝑛,𝑘Ψ̄𝑛,𝑘l𝑛,𝑘 + 𝑐2Ξ̃𝑛,𝑘

p,p −
(
lT𝑛,𝑘Ψ̄𝑛,𝑘 + 𝑐2Ξ𝑛,𝑘

𝜿,𝜿

) (
Ψ̄𝑛,𝑘 + 𝑐2Ξ𝑛,𝑘

)−1
(
lT𝑛,𝑘Ψ̄𝑛,𝑘 + 𝑐2Ξ𝑛,𝑘

𝜿,𝜿

)T
}

(25)
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Virtual Anchor

Antenna
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Fig. 2. Multipath geometry: MPCs come from reflecting off objects, and
these paths can be considered as direct paths from virtual anchors (𝑎1 of
anchor 𝐴).

Proposition 1 implies that cooperation with such agents does
not increase the localization accuracy of the antenna array.
This seems contradictory to the results in [5], [9]–[11], which
show that cooperation can significantly improve localization.
The discrepancy is due to the fact that the relative positions
of the antennas in the array are known, unlike those of the
agents in cooperative localization, and hence the estimates of
the antennas’ positions cannot be further improved by virtual
anchors.

C. Examples: Uniform Linear and Circular Array

The results in this paper are valid for arbitrary array
geometries. We now illustrate these results for two commonly
used arrays, i.e., the uniform linear array (ULA) and the
uniform circular array (UCA), in far-field scenarios. Without
loss of generality, we consider the array center as the reference
point, and the position of each antenna in the array can be
represented in terms of the array center p0 and the orientation
𝜑.

∙ Uniform linear array:

p̃𝑛 = p0 +Δ ⋅
(
𝑛− 𝑁a + 1

2

) [
cos𝜑

sin𝜑

]
,

where Δ is the spacing of the antennas.
∙ Uniform circular array:

p̃𝑛 = p0 +𝑅0

[
cos

(
2𝜋 𝑛−1

𝑁a
+ 𝜑

)
sin

(
2𝜋 𝑛−1

𝑁a
+ 𝜑

) ]
, (26)

where 𝑅0 is the radius of the array.
1) Position and Orientation: For orientation estimation, the

EFI for the orientation can be obtained using (21) as

𝐽L
e (𝜑) =

𝑁a(𝑁a − 1)(𝑁a + 1)

12
Δ2

∑
𝑘∈𝒩b

𝜆𝑘 sin
2(𝜙𝑘 − 𝜑) + Ξ𝜑 ,

(27)

for the ULA, and

𝐽C
e (𝜑) =

{
2𝑅2

0

∑
𝑘∈𝒩b

𝜆𝑘 sin
2(𝜙𝑘 − 𝜑) + Ξ𝜑 , 𝑁a = 2 ,

𝑁a𝑅
2
0/2

∑
𝑘∈𝒩b

𝜆𝑘 + Ξ𝜑 , 𝑁a > 2 ,

(28)

for the UCA.

For position estimation, the SPEB for the array center
in far-field scenarios is the same for both the ULA and
the UCA, implied by (20). However, the SPEBs for other
positions are usually different, depending on the orientation
accuracy provided by different array geometries. For example,
the SPEBs can be calculated from (19) using (27) for the ULA
and (28) for the UCA.

2) AOA Estimation: From (22), the EFI for the AOA from
anchor 𝑘 to the array can be written as

𝐽L
e (𝜙𝑘) =

𝑁a(𝑁a − 1)(𝑁a + 1)

12
Δ2 𝜆𝑘 sin

2(𝜙𝑘) + Ξ𝜑 , (29)

for the ULA, and

𝐽C
e (𝜙𝑘) =

{
2𝑅2

0 𝜆𝑘 sin2(𝜙𝑘) + Ξ𝜑 , 𝑁a = 2 ,

𝑁a𝑅
2
0/2𝜆𝑘 + Ξ𝜑 , 𝑁a > 2 ,

(30)

for the UCA.
Note that 𝐽L

e (𝜙𝑘) in (29) agrees with 𝐽C
e (𝜙𝑘) in (30) when

𝑁a = 2, as it should, since the two array geometries coincide
in this case. When 𝑁a > 2, 𝐽L

e (𝜙𝑘) is highly dependent
on the specific AOA, while the performance of the UCA is
independent of the AOA. For a fair comparison, we consider
an example with the same array size, i.e., 𝑅0 = (𝑁a−1)Δ/2.
If a priori orientation knowledge is unavailable, i.e., Ξ𝜑 = 0,
then the ratio of EFIs is

𝐽L
e (𝜙𝑘)

𝐽C
e (𝜙𝑘)

=

{
1 , 𝑁a = 2 ,
2 (𝑁a+1) sin2(˜𝜙𝑘)

3 (𝑁a−1) , 𝑁a > 2 .
(31)

When 𝑁a ≥ 5, the above ratio is always less than or equal
to 1, implying that the UCA outperforms the ULA. When
𝑁a = 3, 4, the ratio depends on the AOA from anchor 𝑘 to
the array, and on average,

𝔼𝜙𝑘

{
𝐽L

e (𝜙𝑘)

𝐽C
e (𝜙𝑘)

}
=

(𝑁a + 1)

3 (𝑁a − 1)
< 1 , (32)

provided that 𝜙𝑘 is uniformly distributed on [ 0, 2𝜋). There-
fore, we conclude that the UCA can provide better AOA
estimates.

D. Multiple Antennas at Anchors

The discussion above focuses on the case where each anchor
is equipped with only one antenna. From the result in (15),
the gain of using an antenna array at the agent mainly comes
from the multiple copies of the waveform received at different
antennas.13 Hence, the localization performance using an
𝑁a-antenna array is equivalent to that of a single antenna
with measurements in 𝑁a time slots, and the advantage of
using antenna arrays lies in their ability for simultaneous
measurements at the agent.

When anchors are equipped with multiple antennas, each
antenna can be viewed as an individual anchor, and the agent’s
SPEB decreases with the number of the antennas at each
anchor. If the antennas of a given anchor are closely located,
multipath propagations from these “individual anchors” are
highly correlated and the agent-anchor topology gives approx-
imately the same AOA. In such cases, the antennas of a given

13In near-field scenarios, there may be additional gain that arises from the
spatial diversity of the multiple antennas at the agent.
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Fig. 3. SPEB as a function of the distance from the reference point to the
array center for different a priori knowledge of the orientation Ξ𝜑.

anchor will provide ranging information to the agent with
highly correlated intensity and direction.

V. NUMERICAL RESULTS

In this section, we provide several numerical examples to
illustrate applications of our results.

A. SPEB with A Priori Knowledge of Orientation

We investigate the SPEB for different reference points of a
ULA when a priori knowledge of the orientation is available.
The numerical results are based on a network with six equally
spaced anchor nodes (𝑁b = 6) located on a circle with
an agent in the center. The agent is equipped with a 5-
antenna array (𝑁a = 5) with spacing Δ = 0.5m. In far-
field scenarios, 𝜆𝑛,𝑘 = 𝜆𝑘 = 10 and 𝜙𝑛,𝑘 = 𝜙𝑘. The
SPEB as a function of different reference points along the
ULA is plotted in Fig. 3 for different a priori knowledge of
the orientation, Ξ𝜑. First, we see that a priori knowledge of
the orientation improves the localization accuracy since the
SPEB decreases with increasing Ξ𝜑. The curve of Ξ𝜑 = ∞
corresponds to orientation-aware localization, and the curve
of Ξ𝜑 = 0 corresponds to the cases where orientation is
unknown. Second, the array center has the best localization
accuracy, and its SPEB does not depend on Ξ𝜑, which agrees
with (21). Third, the SPEB increases with both the distance
from the reference point to the array center and the SOEB, as
shown by (19). Fourth, the SPEB is independent of the specific
reference point if Ξ𝜑 = ∞, and this situation is referred to as
orientation-aware localization.

B. SOEB with A Priori Knowledge of Reference Point

We now examine the SOEB for different reference points
of a ULA when a priori knowledge of the reference point is
available. The parameters are the same as those in Section
V-A except that a priori knowledge of the reference point
is available instead. The SOEB as a function of different
reference points along the ULA is plotted in Fig. 4 for different
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Fig. 4. SOEB as a function of the distance from the reference point to the
array center for different a priori knowledge of the reference point Ξp.

a priori knowledge of the reference point, Ξp. The results are
counterparts of those in Fig. 3. First, a priori knowledge of
the reference point improves the orientation accuracy since
the SOEB decreases with increasing Ξp. This agrees with
both intuition and (21). Second, the array center has the worst
orientation accuracy, and its SOEB does not depend on Ξp.
This is due to the fact that the knowledge for the array
center gives no information about the array orientation. Third,
the SOEB decreases as a function of the distance from the
reference point to the array center if a priori knowledge of the
reference point is available. Fourth, the SOEB is independent
of the specific reference point if Ξp = 0, as shown by (19).

C. Performance Comparison of ULA and UCA

We compare the performance of the ULA and the UCA for
AOA estimation as a function of the number of antennas in
the array. We consider a case where the a priori knowledge of
the orientation is unavailable, i.e., Ξ𝜑 = 0, and Fig. 5 shows
the ratio of SOEBs corresponding to the UCA and the ULA
for different AOA, 𝜙 ≜ 𝜙 − 𝜑. First, the performance of the
ULA and the UCA is always the same for 𝑁a = 2, since they
have the same array geometry in this case. Second, the ratio
highly depends on 𝜙 for 𝑁a = 3, 4, while it is less than or
equal to 1 for 𝑁a ≥ 5. But the average ratio over uniform
𝜙 ∈ [ 0, 2𝜋) is always less than 1, implying that the UCA
outperforms the ULA. These observations were predicted by
(31) and (32). Finally, the asymptotic ratio as 𝑁a → ∞ is

lim
𝑁a→∞

𝒫C(𝜙)

𝒫L(𝜙)
= lim

𝑁a→∞
𝐽L

e (𝜙)

𝐽C
e (𝜙)

=
2

3
sin2(𝜙) .

VI. CONCLUSION

In this paper, we consider the problem of localizing nodes
using wideband antenna arrays in location-aware networks.
We derived the squared position error bound (SPEB) and the
squared orientation error bound (SOEB) to characterize the
position and orientation accuracy. Our results reveal that both



278 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 58, NO. 1, JANUARY 2010

2 4 6 8 10 12 14 16
0

0.5

1

1.5

 

 
Δ𝜙 = 𝜋/2

Δ𝜙 = 𝜋/3

Δ𝜙 = 𝜋/6

Average

Number of antennas

SO
E
B

ra
tio

(U
C

A
/U

L
A

)

Fig. 5. Ratio of SOEBs for the ULA and UCA as a function of
different number of antennas in the array. The four curves correspond to
𝜙 = 𝜋/6, 𝜋/3, 𝜋/2, and average over uniform 𝜙 ∈ [0, 2𝜋).

the AOA measurements obtained by antenna arrays and the
geometric relationship of multipath propagation do not further
improve the localization accuracy beyond that provided by
TOA measurements. In the absence of a priori knowledge
of the position and orientation, the SOEB is proven to be
independent of the reference points, while the SPEB increases
with the distance from the reference point to the orientation
center, which has the minimum SPEB. In far-field scenarios,
the array center becomes the orientation center, and the
localization performance of an 𝑁a-antenna array is equivalent
to that of a single antenna with 𝑁a measurements. We also
characterized the performance of AOA estimation using two
array geometries, the UCA and ULA. The comparison showed
that the UCA can provide better AOA estimates than the ULA.

APPENDIX A
PROOF OF PROPOSITION 1

Consider the numbers of MPCs at the antennas coming from
each anchor be the same, i.e., 𝐿𝑛,𝑘 = 𝐿𝑘 for all 𝑛, and when
a certain MPC in the waveform at a particular antenna does
not exist, its amplitude is assigned to be zero. Furthermore,
we consider all the first paths to be LOS, and the amplitudes
of the first paths in NLOS signals are assigned to be zero.

For each anchor 𝑘, there is one real anchor with known
position p

(1)
𝑘 = p𝑘 and 𝐿𝑘 − 1 virtual anchors with unknown

position p
(𝑙)
𝑘 (𝑙 = 2, . . . , 𝐿𝑘). Hence the relationship (3)

becomes

𝜏
(𝑙)
𝑛,𝑘 =

1

𝑐

∥∥∥p(𝑙)
𝑘 − p̃𝑛

∥∥∥ ,
and the parameter vector 𝜽 in (4) becomes

𝜽 =
[
pT 𝜑 p̃T

1 p̃T
2 ⋅ ⋅ ⋅ p̃T

𝑁b
𝜶T

1 𝜶T
2 ⋅ ⋅ ⋅ 𝜶T

𝑁a

]T
,

where p̃𝑘 =
[
p
(2) T
𝑘 p

(3) T
𝑘 ⋅ ⋅ ⋅ p

(𝐿𝑘) T
𝑘

]T
and 𝜶𝑛 =[

𝜶T
𝑛,1 𝜶T

𝑛,2 ⋅ ⋅ ⋅ 𝜶T
𝑛,𝑁b

]T
, in which 𝜶𝑛,𝑘 =[

𝛼
(1)
𝑛,𝑘 𝛼

(2)
𝑛,𝑘 ⋅ ⋅ ⋅ 𝛼

(𝐿𝑘)
𝑛,𝑘

]T
.

When MPCs are resolvable, it can be shown that

Fr(r∣𝜽 ;𝛼
(𝑖)
𝑛,𝑘, 𝜏

(𝑗)
𝑛,𝑘) = 0 , ∀ 𝑖 , 𝑗 ,

Fr(r∣𝜽 ; 𝜏
(𝑖)
𝑛,𝑘, 𝜏

(𝑗)
𝑛,𝑘) = 0 , ∀ 𝑖 ∕= 𝑗 ,

and

Fr(r∣𝜽 ;𝛼
(𝑖)
𝑛,𝑘, 𝛼

(𝑗)
𝑛,𝑘) = 0 , ∀ 𝑖 ∕= 𝑗 .

We also define

𝜆
(𝑙)
𝑛,𝑘 ≜ 1

𝑐2
Fr(r∣𝜽 ; 𝜏

(𝑙)
𝑛,𝑘, 𝜏

(𝑙)
𝑛,𝑘) =

8𝜋2𝛽2

𝑐2
SNR

(𝑙)
𝑛,𝑘 ,

where 𝛽 and SNR
(𝑙)
𝑛,𝑘 are given in (12).

The FIM for the parameter 𝜽 can be expressed as

J𝜽 =

⎡⎢⎢⎣
A B 0

BT C 0

0 0 D

⎤⎥⎥⎦ , (33)

where

A ≜ Fr(r∣𝜽 ; {pT, 𝜑}, {pT, 𝜑}) ,
B ≜ Fr(r∣𝜽 ; {pT, 𝜑}, {p̃T

1, p̃
T
2 , . . . , p̃

T
𝑁b
}) ,

C ≜ Fr(r∣𝜽 ; {p̃T
1, p̃

T
2 , . . . , p̃

T
𝑁b
}, {p̃T

1, p̃
T
2, . . . , p̃

T
𝑁b
}) ,

and

D ≜ Fr(r∣𝜽 ; {𝜶T
1 ,𝜶

T
2, . . . ,𝜶

T
𝑁b
}, {𝜶T

1,𝜶
T
2 , . . . ,𝜶

T
𝑁b
}) .

The expression of block matrices A, B, and C can be
obtained, after some algebra, as follows:14

∙ Matrix A is given by (34), shown at the bottom of the
next page, where 𝜙(𝑙)

𝑛,𝑘 is the angle from p
(𝑙)
𝑘 to the 𝑛th

antenna, q(𝜙(𝑙)
𝑛,𝑘) =

[
cos(𝜙

(𝑙)
𝑛,𝑘) sin(𝜙

(𝑙)
𝑛,𝑘)

]T
, and

ℎ
(𝑙)
𝑛,𝑘 =

𝑑

𝑑𝜑
Δ𝑥𝑛(p, 𝜑) cos𝜙

(𝑙)
𝑛,𝑘 +

𝑑

𝑑𝜑
Δ𝑦𝑛(p, 𝜑) sin𝜙

(𝑙)
𝑛,𝑘 ;

∙ Matrix B = [B1 B2 ⋅ ⋅ ⋅ B𝑁b ], where each block
matrix is given by (35), shown at the bottom of the next
page.

∙ Matrix C = diag {C1, C2, . . . , C𝑁b}, where each block
matrix is given by15

C𝑘 = diag

{ ∑
𝑛∈𝒩a

𝜆
(2)
𝑛,𝑘 q(𝜙

(2)
𝑛,𝑘)q

T(𝜙
(2)
𝑛,𝑘) , . . . ,

∑
𝑛∈𝒩a

𝜆
(𝐿𝑘)
𝑛,𝑘 q(𝜙

(𝐿𝑘)
𝑛,𝑘 )qT(𝜙

(𝐿𝑘)
𝑛,𝑘 )

}
.

Apply the notion of the EFI [6] to the original FIM in (33),
and we have the EFIM for the position and orientation

Je(p, 𝜑) = A−BC−1BT = A−
∑
𝑘∈𝒩b

B𝑘C
−1
𝑘 BT

𝑘 . (36)

14It will be apparent later that the exact expression for the block matrix D
is not necessary.

15The diagonal structure of C is due to the fact that virtual anchors do not
communicate with each other.



SHEN and WIN: ON THE ACCURACY OF LOCALIZATION SYSTEMS USING WIDEBAND ANTENNA ARRAYS 279

The component B𝑘C
−1
𝑘 BT

𝑘 is derived in (37), shown at the
bottom of the page, where we have used∑
𝑛∈𝒩a

𝜆
(𝑙)
𝑛,𝑘ℎ

(𝑙)
𝑛,𝑘 q

T(𝜙
(𝑙)
𝑛,𝑘) =

[
𝑑
𝑑𝜑Δ𝑥𝑛(p, 𝜑)

𝑑
𝑑𝜑Δ𝑦𝑛(p, 𝜑)

]
×
∑
𝑛∈𝒩a

𝜆
(𝑙)
𝑛,𝑘 q(𝜙

(𝑙)
𝑛,𝑘)q

T(𝜙
(𝑙)
𝑛,𝑘) .

Substituting (37) and (34) into (36), and noting that A and
BC−1BT differ only by terms involving 𝑙 = 1, we have (38),
shown at the bottom of the page, which is equal to the EFIM
of the case where environmental knowledge is not exploited.
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