
MIT Open Access Articles

Integrated assessment of packaging 
architectures in earth observing programs

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Selva, D., and E.F. Crawley. “Integrated Assessment of Packaging Architectures in 
Earth Observing Programs.” Aerospace Conference, 2010 IEEE. 2010. 1-17. © 2010 IEEE.

As Published: http://dx.doi.org/10.1109/AERO.2010.5446885

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/62204

Version: Final published version: final published article, as it appeared in a journal, conference 
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be 
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/62204


 

 1

Integrated Assessment of Packaging Architectures in 
Earth Observing Programs 

Daniel Selva 
Massachusetts Institute of Technology 

77 Massachusetts Avenue 
Room 33-409 
617-682-6521 

dselva@mit.edu 
 

Edward F. Crawley 
Massachusetts Institute of Technology 

77 Massachusetts Avenue 
Room 33-413 
617-253-7510 

crawley@mit.edu 
 
Abstract—When designing Earth observation missions, it is 
essential to take into account the programmatic context. 
Considering individual missions as part of a whole enables 
overall program optimization, which may bring important 
cost reductions and scientific and societal benefits.12 

Several implementation trade-offs arise in the architecting 
process of an Earth Observation program such as NASA's 
National Polar-orbiting Operational Environmental Satellite 
System (NPOESS) or ESA's Earth Explorers. Such trade-
offs include choosing between large satellites and small 
satellites, standard buses and tailored buses, or centralized 
architectures versus clusters or trains of satellites. This work 
focuses on packaging problems, i.e. the assignment of 
instruments to satellites. More precisely, we study the trade-
off between multi-instrument platforms – satellites that 
carry more than one instrument - versus dedicated satellites 
carrying a single instrument.  

Our approach to the problem takes a systems engineering 
perspective and consists of three steps: first, a historical 
review of past Earth observation programs was done in 
order to gain insight into how decision makers have solved 
this trade-off in the past; second, we performed a qualitative 
analysis in which the most important issues of the trade-off 
were identified; third, a quantitative analysis was done 
based on an architecting model. The architecting model is 
multi-disciplinary because it takes a holistic view of the 
problem by considering at the same time scientific, 
engineering and programmatic issues. This exhaustive and 
multi-disciplinary exploration of the architectural tradespace 
can be very useful in the early steps of program architecting 
and could be a valuable tool to support decision making. 
The model is applied to ESA’s Envisat satellite as an 
example. Finally, some general insights on the architecture 
of an Earth Observation Program that we gained by 
developing and applying this methodology are provided.  
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1. INTRODUCTION 
It has been almost 50 years since the launch of the first 
Earth observation satellite, TIROS-1 (Television Infrared 
Observation Satellite) in 1960. Since then, several other 
missions and programs have been architected and designed 
in Europe, the US and around the world. One could argue 
that the fundamental needs behind these programs have not 
changed (to get a better understanding of Earth science, to 
provide data for weather forecast and imagery for 
operational applications.) However, their architecture has 
greatly evolved over time: there have been programs with 
small missions costing less than $100M and programs with 
very large missions beyond $2 billion; programs based on 
large multi-instrument platforms and programs based on 
dedicated satellites; programs based on single satellites and 
programs based on constellations or clusters of satellites 
flying in formation; programs using standard commercially 
available buses and program using ad-hoc designed buses. 
Mission size, number of instruments per satellite or use of 
standard versus dedicated buses are some of the trade-offs 
that appear when architecting an Earth observation program. 
This paper focuses on one particular trade-off, namely the 
assignment of instruments to satellites. 

The decisions that were made in the past concerning this 
and other trade-offs were different depending on the 
specific needs and context of the program. This work looks 
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at how these decisions were made in the past, infers the 
main categories of issues behind the decisions and provides 
insight into how a systematic approach using system 
architecting techniques can be used for improved 
architecting of future programs.  

This is not the first attempt to study packaging problems. As 
we mentioned before, NASA, ESA and other agencies have 
already faced this problem in the past. Unfortunately most 
of the relevant work by industry remains in the form of 
internal reports because industry is reluctant to release 
sensitive data. The work by Rasmussen is one of the few 
traces of this kind of work by industry. Rasmussen analyzes 
the trade-off between small and large Earth observing 
satellites in [1] and [2]. Some work also exists from 
academia. Matossian used a mixed integer programming 
algorithm to optimize NASA’s Earth Observing System 
(EOS) using several metrics including cost and performance 
[3], [4]. In addition, the National Research Council (NRC) 
and the independent RAND Corporation have also 
contributed with reports on related studies such as 
references [5], [6], [7] and [8]. 

Sadly most of these references date from the late nineties. 
No relevant reference concerning the formal analysis of 
packaging problems in Earth observation programs was 
found that dates from the last five years. Furthermore, these 
previous attempts to analyze this complex multi-disciplinary 
suffer from either of these two main limitations: they 
explore a reduced number of architectures (typically 3 or 4); 
they consider only part of the problem (scientific or 
engineering issues are not treated). [3] and [4] took a similar 
approach to ours to analyze the particular case of NASA’s 
Earth Observing System, but they did not explicitly 
consider engineering issues that we believe are a key factor 
in the trade-off. Schedule is also not taken into account. 

2. APPROACH  
Perhaps the most important contribution of this paper is that 
the problem is approached from a holistic, multi-
disciplinary systems engineering perspective.  

The methodology used to approach this problem has three 
steps:  

(1) Historical study: We looked at past Earth 
observation missions and programs with focus in particular 
in how instruments were assigned to satellites. 
Understanding the reasons behind these decisions provides 
valuable insight into the main issues to take into account in 
the analysis. 

(2) Qualitative analysis: Based on the findings of the 
historical study and on interviews with expert systems 
engineers, we identified the main advantages and 

disadvantages of multi-instrument satellites and dedicated 
satellites. 

(3) Quantitative analysis: We built a quantitative and 
executable model that for a given set of instruments can 
explore millions of different architectures and identify the 
most promising ones taking into account all the issues 
identified in the qualitative analysis. An essential task in 
this step is to perform a sensitivity analysis to study the 
influence of the results to the inputs and parameters of the 
model. This provides indeed valuable insight into how 
sensitive is the system to the different issues. 

This methodology could be extended to the study of other 
single axis architectural trade-offs. For instance, the trade-
off between standard buses and ad-hoc designed buses 
could be approached in a similar fashion. There are several 
examples in the past where standard buses were used and 
many others were the decision makers selected an ad-hoc 
design for the bus. A historical study of the reasons behind 
these decisions could provide some initial insight into the 
main issues behind the trade-off. Then, on the basis of these 
findings and with the help of experts, the major advantages 
and disadvantages of the two strategies could be identified. 
Finally, a quantitative model that is sensitive to those issues 
could be built and run in order to analyze the trade-off from 
a multi-disciplinary perspective.  

3. HISTORICAL NOTES  
A comprehensive review of the history of Earth observation 
missions and instruments can be found in reference [9]. 
References [10] and [11] are also rich in useful information 
on missions and payloads. These three documents were 
used to perform a comprehensive historical review of 
American and European Earth observation missions and 
programs. For the sake of brevity, only a few notes 
concerning selected programs are presented in this paper.  

The first coordinated series of civil Earth observation 
missions appeared in the early 60’s with the US 
meteorological program, TIROS. In these early years, Earth 
observing programs were mostly based on small dedicated 
satellites mainly due to risk and technological 
considerations: only three years had passed since the launch 
of Sputnik I in 1957; space technology was still incipient 
and in particular launch capability was still very limited. 
Furthermore, almost every satellite in the TIROS series 
brought a major technological advance: TIROS-6 was first 
used for snow cover analysis in 1962; TIROS-8 was the 
first satellite to be equipped with an automatic picture 
transmission system.  

No major architectural changes appeared with the follow-on 
of TIROS: the TOS/ESSA series (1966-69) and the 
ITOS/NOAA series (1970-76). In 1978, the advanced 
TIROS-N was launched with a completely different 
approach based on heavier satellites (700kg at the 
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beginning, 1400-1700kg after) launched at a slower tempo 
(11 satellites in 16 years). With the advanced TIROS-N, the 
paradigm of larger multi-instrument platforms for 
operational meteorology was established. This architectural 
change is explained in part by increased payload capabilities 
and more demanding requirements. As more and more 
powerful instruments were built, scientists were able to do 
better science which led them to have more stringent 
requirements, thus asking for even more massive and 
powerful instruments. On the other hand, advances in space 
technology and launch capability permitted to design, build 
and launch more massive and long lasting satellites into 
space. Furthermore, a new element was introduced into the 
system, namely downward budget pressures after the end of 
the Cold War which brought about the idea of sharing the 
bus between several instruments to reduce bus and launch 
cost. And last but not least, more complex scientific models 
made scientists become conscious of the technical problems 
related to data cross-registration.  

The trend of larger multi-instrument platforms became an 
architectural paradigm in the late 80’s and 90s not only for 
operational Earth observation but also for scientific 
programs. Envisat (10 instruments, 8 mt) and Metop (12 
instruments, 4 mt) are the best examples of large 
observatories in Europe. UARS, TRMM and EOS 
Terra/Aqua/Aura are the best examples in the US. Note that 
both Envisat/Metop and EOS are downgraded versions of 
their initial architectures. The initial EOS program with 38 
instruments was conceived to be launched in very large 
15mt platforms aboard the Space Shuttle. Envisat and 
Metop were first designed to be part of a single spacecraft, 
the Polar Orbiting Earth Mission (POEM [12]).  

This was the culmination of the architectural paradigm of 
large observatories. However both ESA and NASA 
experienced a number of problems during the development 
of these missions that would make them reconsider this 
architectural choice in the future. ESA Engineers for 
instance recognize that several engineering issues (e.g. 
mechanical or EMC problems between instruments) 
appeared in the development of Envisat. Designing, 
building and testing such complex systems proved indeed to 
be a very challenging endeavor.  

Thus little after, and perhaps partially reacting to the 
aforementioned problems, the concept of small dedicated 
missions was re-born with programs such as NASA’s Small 
Explorers (SMEX). The idea behind such programs was that 
a variety of scientific objectives can be achieved by small 
missions with usually a single instrument with lower costs 
and shorter development times than larger missions.  

In the last years, both NASA and ESA seem to have 
adopted a strategy mainly based on small (1mt) dedicated 
missions for Earth science (ESA Earth Explorers, NASA 
Earth Science System Pathfinder). Mid-size platforms 
remain used for operational applications which have lower 

risk and require longer lifetimes (future NASA/NOAA’s 
NPOESS and ESA/Eumetsat’s EPS). 

Although very succinct, these historical notes allow the 
identification of some of the most important categories of 
issues behind the decision of assigning instruments to 
satellites:  

(1) Scientific issues: there are benefits to the scientific 
community in flying synergistic instruments on the same 
platform. Scientific issues were an important factor on the 
decision to build large observatories such as EOS, Envisat 
and Metop. 

(2) Engineering issues: a variety of engineering issues 
such as mechanical and EMC problems appear when 
designing, building and testing multi-instrument satellites. 
These issues probably played an important role in the 
paradigm change that led to the creation of small missions 
programs such as NASA’s SMEX or ESA’s EE. 

(3) Programmatic issues: cost, schedule and risk issues 
continuously appeared as important drivers for almost all 
the decisions made in the past. For instance, the potential 
savings in bus and launch cost were important factors 
supporting the decision to build large observatories, and 
reductions in development time and cost drove the decision 
of creating NASA’s SMEX or ESA’s EE. 

4. QUALITATIVE ANALYSIS 
The goal of the second step of the methodology was to 
identify and describe the driving issues behind the trade-off 
between multi-instrument satellites and dedicated satellites. 
Some insight into what these main architectural drivers are 
was already provided by the historical analysis, in which 
three main categories of issues were identified: scientific 
issues, engineering issues and programmatic issues. In this 
section, we present a more detailed description of these 
issues. The discussion provided here is mainly qualitative 
and is based on several interviews held with senior systems 
engineers at the European Space Research and Technology 
Center (ESTEC) during the summer of 2009. 

Scientific issues 

As pointed out previously, most people currently concur 
that the quality of the science that comes from a set of 
remote sensing instruments can be improved if several 
instruments share a common platform. This is due to 
various reasons:  

(1) Most modern scientific models (e.g. climate 
models) require more than one measurement to be taken 
simultaneously on the same geographical zone. For 
instance, carbon cycle models require not only the 
measurement of CO2 atmospheric concentration, but also 
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atmospheric concentration of O2, CO or other trace gases, 
atmospheric pressure and temperature. 

(2) Secondary measurements can improve the quality 
of primary measurements by providing for example 
atmospheric correction or precise geolocation. The typical 
example are altimetry missions in which the main 
instrument (a radar or laser altimeter) is usually 
accompanied by a broadband microwave radiometer for 
atmospheric correction and some kind of navigating 
instrument (e.g. a DORIS , GPS or laser retro-reflector) to 
provide high precision geolocation.  

(3) Certain instruments are complementary in the 
sense that they provide the same measurements under 
different conditions such as daytime or weather. For 
instance, an instrument with spectral bands on the visible 
region may capture well a phenomenon on the Earth 
during day and sunny weather but it will not work on a 
cloudy day or during night; thus an equivalent passive 
instrument with bands on the infrared or an active 
instrument may provide measurements during night and 
may see through clouds. 

(4) The reliability of a given measurement can be 
increased by observing it using two different instruments, 
regardless of the nature of the instrument.  

All these factors generally translate more or less directly 
into strong coregistration requirements that are naturally 
met on a multi-instrument platform. Therefore, it can be 
considered that multi-instrument satellites are generally 
preferable in terms of these scientific issues. 

However, it should be noted that current advances in 
distributed systems, formation flying and miniaturization 
are diminishing the cost of data cross-registration in clusters 
of small satellites commonly called “trains” of satellites 
flying in almost identical orbits with only a few minutes 
difference in local time (e.g. the A-train). Trains of satellites 
provide near simultaneous measurements of the same 
geographical zones with minimum coregistration effort and 
are generally seen as a good alternative to multi-instrument 
platforms.  

Trains of satellites have not been explicitly considered in 
this study. As will be shown later, dedicated satellites are 
assumed to be worse than multi-instrument platforms in 
terms of data-cross registration. As these technologies 
continue to advance, this assumption will lose force and it 
will become necessary to incorporate trains of small 
satellites into the architectural trade-off. However, this is let 
for future work.  

Engineering issues 

A variety of engineering issues appear whenever one tries to 
design a common bus for several instruments: 

(1) Mechanical problems: a common source of 
engineering problems in multi-instrument platforms are 
micro-vibrations induced on the platform by one or 
multiple instruments that are propagated by the structure to 
the rest of the instruments. The problem arises when on the 
same platform there are other instruments which are very 
sensitive to vibrations. For instance, in one of the 
interviews, a senior engineer at ESA mentioned problems 
with the IASI instrument on the Metop satellite due to the 
microvibrations induced by the rest of the instruments on 
the platform. In that particular case the problem was solved 
by adding dampers on the instrument to isolate it from its 
environment, but this obviously had a penalty in 
development cost during the testing phase.  

(2) Electromagnetic Compatibility (EMC) problems: 
most remote sensing instruments send and/or receive 
radiation on a certain region of the electromagnetic 
spectrum. When an active instrument and a passive 
instrument that use similar spectral bands share a common 
platform, one may jam the other and EMC problems may 
arise. Note that it is not necessary that the instruments use 
the same band in order to see problems appear: harmonics 
an intermodulation products extend the dangerous zone to 
regions relatively close but not necessarily identical in the 
spectrum.  EMC problems are extremely difficult to 
characterize analytically. Hence the most reasonable way 
to avoid them is by carefully studying the configuration of 
the satellite and performing extensive testing. Long booms 
have actually been used in the past to isolate sensitive 
passive instruments from active instruments (e.g. 
magnetometers on ESA’s Swarm mission, or those on the 
3rd generation of GOES spacecraft).  

(3) Thermal problems: instruments and bus 
components all have more or less stringent thermal 
requirements which may bring forth incompatibilities. For 
instance, sensors on the mid and thermal infrared (e.g. 
ADEOS/GLI, MIPAS and AATSR from Envisat and 
ASTER, MOPITT, AIRS and HIRDLS from NASA’s 
Earth Observing System) usually require active 
cryocooling that cool down the focal plane to 70 or 80K in 
order to achieve acceptable signal to noise ratios. These 
very cold points on the platform need to be sufficiently 
away from other pieces of equipment requiring ambient 
temperature (typically secondary batteries). Furthermore, 
Stirling engines or other cryocoolers induce additional 
vibrations on the platform. Finally, even in the case of 
purely passive thermal control, problems appear when 
multiple instruments “fight” to get a clear view of cold 
space. 

(4) Optical problems: the configuration of the satellite 
needs to be carefully designed so that the dynamic fields of 
view of all the instruments are compatible, including 
calibration sequences. Since most of the instruments on 
Earth observing satellites share the same observable (the 
Earth), instruments tend to be all on the nadir face of the 



 

 5

spacecraft, further increasing the complexity of the 
problem. 

Most of these problems can be solved using a good dose of 
engineering skills and creativity. However, this has a price 
in the mission development process, which can be very 
expensive in platforms with large numbers of instruments 
(e.g. ESA’s Envisat). Obviously, all these problems are 
naturally avoided when instruments are flown on dedicated 
satellites. Therefore, we may say that from the perspective 
of engineering issues, dedicated satellites are preferable as 
they usually are easier to design, build and test. 

Programmatic issues 

Programmatic issues include cost, schedule and risk. It is 
commonly believed that a very strong programmatic 
argument that favors multi-instrument satellites is cost. 
Indeed, both bus and launch cost per instrument tend to be 
lower in multi-instrument platforms because instruments 
share a common bus and launch vehicle, and it is usually the 
case that one large platform is cheaper than two small 
platforms.  However, there are two caveats to this statement: 
first, because of all the aforementioned engineering issues, 
the economic advantage of very large platforms may be 
reduced; and second, a more adequate study of the cost 
issue must be comprehensive and include all aspects of 
lifecycle cost as opposed to only bus and launch cost.  

Rasmussen performs a cost comparison in [2] which takes 
into account estimations for operations cost, overhead cost 
and insurance cost based on historical data. Operations cost 
per instrument may be higher when instruments are on 
different satellites. The same seems to be true for the other 
aspects of lifecycle cost with some exceptions. For instance, 
one could argue that there is a penalty in “organizational” 
cost that grows more than linearly with the number of 
instruments on a platform, because the number of bilateral 
conflicts which can arise between instruments are 
proportional to the combinations of all the instruments taken 
2 by 2 (i.e. proportional to n*(n-1)/2 where n is the number 
of instruments). This captures facts such as meetings being 
more difficult to organize when a larger number of different 
teams are involved, and so forth. All in all, it may be that 
multi-instrument platforms are cheaper in terms of lifecycle 
cost per instrument, although the comparison is not as 
straightforward as one may think.  

The situation is reversed when we look at the problem from 
the point of view of schedule. If we accept that minimizing 
mission development time, or total time to deploy a set of 
instruments, are reasonable figures of merit for program 
schedule, then it seems intuitive that a program based on 
dedicated missions has more chances of meeting schedule 
requirements than a program based on a few large multi-
instrument platforms. The main reason for this is that when 
several instruments share a satellite and a launch vehicle, 
the mission development time and the launch date are 
driven by the slowest component of the system, which can 

be the instrument with the longest development time, or the 
bus, or even in some cases the launch vehicle itself. In other 
words, if an instrument is simple (e.g. it is a reflight from a 
previous instrument) and has a very short development 
time, it will have to wait for all the other instruments to be 
ready in order to be launched. The same instrument could 
have been launched before on a dedicated satellite. That 
way the system would deliver some value to the 
stakeholders before.  

As we mentioned earlier, risk is omnipresent and affects not 
only performance but also schedule and cost. In other 
words, there is not only technical risk, but also risk of 
schedule slippage and risk of cost overrun. It seems intuitive 
that risk of schedule slippage is higher for missions with 
long development times. Increasing the number of 
instruments is also a penalizing factor because the more 
instruments the higher the chances that one instrument 
suffers delays. As for risk of cost overrun it is well known 
in project management that schedule slippage and cost 
overrun are far from being independent. Indeed, delays in 
the development process systematically result in cost 
penalties which may not have been forecasted, leading to 
cost overruns.  
 
If dedicated missions appear to be a better option in general 
in terms of risk of schedule slippage and risk of cost 
overrun, the issue of technical risk is more controversial. 
Technical risk, or risk of program failure, is associated to 
the probability of failure of the instruments, satellites or 
launch vehicles of the program. The relevant question in the 
context of this study is whether the architectural decision of 
putting N instruments on the same satellite or on different 
satellites affects the probability of failure of each individual 
instrument. One could argue that the probability of 
instrument failure increases when flown with other 
instruments due to interferences between instruments, etc. 
However, this argument is similar to the one presented in 
the engineering issues. If engineering issues are adequately 
solved in the development phase, there is no reason to 
believe that the reliability of the instrument will decrease 
when flown on a multi-instrument platform. In other words, 
this phenomenon has already been taken into account and 
we must be careful not to account for it twice in a 
quantitative model.  
 
However, there is an important factor related to risk that 
affects the preferences of decision makers: risk aversion. 
Indeed, risk averse decision makers will naturally tend to 
prefer that critical instruments fly on different satellites in 
order to minimize the probability of losing everything if the 
large satellite is lost, say, at launch. On the other hand, risk 
takers might prefer gathering the critical instruments on a 
single platform in order to maximize the probability of a 
complete success, i.e. a scenario in which all the critical 
instruments are successfully put into orbit. It can be shown 
that a risk neutral decision maker would be indifferent 
between the two alternatives provided that no distinctions 
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are made in terms of reliabilities of big and small launch 
vehicles.  
 
To illustrate this, consider the following very simple 
example. We have a small set of N=4 identical instruments 
and we wish to study two different architectures in terms of 
risk of instrument failure. One consists in a single satellite 
with the 4 instruments and the other consists of 4 dedicated 
satellites, launched individually. To simplify, we only 
consider the risk of failure at launch, although the same 
discussion could easily be extended to other phases of the 
spacecraft lifetime. Each launch can be modeled as a 
Bernoulli trial with only two possible outcomes: success or 
failure. If the launch vehicle fails, all the instruments are 
loss; if it succeeds, all the instruments are correctly injected 
into orbit. Since each launch is modeled as a Bernoulli trial, 
the number of instruments successfully put into orbit 
follows a binomial distribution with parameters N = 4 
instruments and p = RLV  = reliability of launch vehicle. 
Assuming that the two types of launch vehicle have the 
same reliability (e.g. RLV =95%), the probability mass 
functions given in Figure 1 can be obtained.  
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Figure 1: Example of comparison of launch risk for 
multi-instrument platforms and dedicated missions for a 
simple program with N=4 instruments, RLV=95%. The 
calculations assume a binomial distribution for the 
number of instruments successfully put into orbit. 

 
As shown in Figure 1, in the multi-instrument case, only 
two outcomes are possible (either all the instruments make 
it or they all fail) whereas in the dedicated satellites option, 
any number between 0 and 4 successful instruments is 
possible. The multi-instrument satellite maximizes the 
probability of having all the instruments successfully 
launched, but has a non negligible probability of losing all 
the instruments. On the other hand, the dedicated satellites 
option minimizes the risk of losing all the instruments, but 
has a smaller probability of total success. It is important to 
note that both architectures are exactly equivalent in terms 
of average number of instruments. In both cases, the 
average number of instruments successfully put into orbit is 
identical and equals the average of a binomial distribution, 
i.e. N*p=4* RLV = 3.6 instruments. The difference is in the 

shape of the curve. The dedicated satellites option has a 
more spread risk profile. Therefore, whether one option is 
better than the other in terms of risk, eventually depends on 
the risk preferences of the decision maker. Should the 
decision maker have risk averse preferences, he or she 
would most probably pick the dedicated satellites option in 
order to minimize the probability of having very strong 
failures. We assume that in most space projects, decision 
makers will exhibit risk aversion, which makes dedicated 
satellites a slightly better option than multi-instrument 
platforms in terms of technical risk. However decision 
makers in certain types of programs such as technology-
driven programs may actually be risk takers and prefer the 
multi-instrument alternative.  
 
Design issues 

During the interviews with experts, an additional category 
of relevant issues appeared that was not identified during 
the historical study. This category can be loosely named 
design issues and it can be summarized in one sentence: the 
design of multi-instrument platforms is necessarily 
suboptimal because each design decision is a compromise 
amongst antagonist requirements of different instruments. 
No matter what the final decision is, the final design cannot 
be optimized for all the instruments. This kind of situation 
arises for instance when high energy instruments such as 
lidars or radars share a common platform with passive 
optical instruments. Lidars and radars prefer to fly on low 
orbits to limit the power requirements which increase 
heavily with altitude. That is why most spacecraft dedicated 
to laser payloads fly between 450 and 600km. On the other 
hand, passive optical instruments do not have the same 
constraints and usually seek large swaths, which are more 
easily achieved from higher altitudes. Hence passive optical 
instruments usually fly at 700 or 800km. A similar 
argument can be given for the right ascension of the 
ascending node of sun synchronous orbits, which fixes the 
local time of observation for most latitudes. In this case 
passive instruments are limited by sunlight constraints. 
They need to fly on min-morning or mid-afternoon orbits in 
order to optimize sunlight conditions. On the other hand, 
active instruments are not constrained by sunlight issues and 
can hence fly on dawn-dusk orbits which are more 
favorable in terms of power and thermal control. The two 
examples particularly concern orbit design, but the same 
reasoning could be extended to many other design decisions 
such as the allocation of limited resources of the spacecraft. 
Spacecraft resources such as mass, volume, power, data 
rate, or surface with a good view of cold space to name a 
few are scarce and limited by state-of-the-art technology. 
For instance, state-of-the-art downlinks achieve data rates of 
a few hundreds of Mbps, and available launchers fix the 
maximum satellite volume to approximately 10m x 4.5m x 
4.5m.  

Certainly, there are sometimes smart ways to partially 
overcome these limitations. For instance, volume and power 
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limitations can be overcome to a certain degree by using 
mechanisms (e.g. the James Webb Space Telescope). 
However these solutions are not universal and at a certain 
point they may become too expensive and/or decrease the 
overall reliability of the mission in an unacceptable way.  

Conclusions of qualitative analysis 

This section has provided a relatively in-depth qualitative 
analysis of the trade-off between multi-instrument platforms 
and dedicated missions. A summary of this analysis is 
presented in Figure 2.  

 

Figure 2: Qualitative analysis of the trade-off between 
multi-instrument platforms and dedicated missions. 
Each box is a category of advantages of one of the 

strategies. The color of the box represents the nature of 
the issue (science, engineering, programmatic, and 

design issues). 

Multi-instrument platforms have important scientific 
benefits and tend to be better in terms of lifecycle cost per 
instrument. On the other hand dedicated missions are easier 
to design, build and test and are seen as a more desirable 
option in terms of schedule and risk. Naturally, these are 
very general statements and the optimal choice for each 
program will depend on its nature (scientific versus 
operational program) and more particularly on how decision 
makers value these issues.  

5. QUANTITATIVE ANALYSIS 
 

Quantitative models support early concept exploration by 
providing a means for automatic enumeration and 
evaluation of thousands of different architectures. They 
capture part of the knowledge that is used by expert system 
architects and allow reproducing simplified architecting 
processes under changing conditions.  

However, users of such models need to be careful about 
their results. Architectural models are usually breadth 
oriented as opposed to depth oriented. This means that their 
level of fidelity is medium to low. In other words, they are 
very good to identify promising architectures or rather to 
discard dominated architectures, but they should not be used 
as a unique means to select the final architecture of the 
system. Furthermore, building and using an architectural 
model provides valuable insights on trade-offs such as the 
one being studied in detail in this paper. Last but not least, 
architectural models provide a formal metacognitive 
framework for the otherwise ambiguous system architecting 
process. 

Architectural tradespace exploration framework 

Several frameworks exist that perform tradespace 
exploration for large design spaces. Multi-attribute 
tradespace exploration (MATE) for instance has been used 
to analyze different architecting problems concerning 
complex space systems (see for example [13]). Algebra of 
Systems [14] is another framework, based on architectural 
decisions as opposed to design variables. 

In general all these frameworks consist in three major 
cognitive steps that carry different names: encoding, 
enumeration and evaluation. In the encoding phase the 
architectural or design vector containing the selected set of 
architectural variables or decisions is defined, together with 
the range of feasible values for each variable. In the 
enumeration phase, the architectural tradespace is generated 
by enumerating all the possible combinations of architecting 
variables. Additional constraints can be added to discard 
impossible combinations of variables. Finally, in the 
evaluation step, each feasible architecture is evaluated in 
terms of a set of metrics or objectives.  

These metrics are calculated from the architectural variables 
and the parameters of the model using objective functions 
or value functions. In the case of a single metric, an 
absolute ranking of architectures can be computed. This is 
not possible when two or more metrics are considered. 
Instead, there are two options: the simplest one is to assign 
weights to the metrics and build a single metric as a 
weighted average of the set of metrics; then an absolute 
ranking can again be calculated. Instead of reducing the 
problem to one dimension, the set of “non dominated” 
architectures can be identified and used as a set of 
potentially good architectures.  

Here the term “dominance” is defined in the Pareto sense, 
i.e. an architecture Ai is dominated if and only if we can 
find another architecture Aj in the tradespace that is better 
than Ai in all four metrics. In some cases however the set of 
non dominated architectures may still be too large and 
further downselection will be required. These two options 
are not necessarily mutually exclusive and can actually be 
used together. 
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Encoding 

Encoding is the phase where an ambiguous architecting 
problem is transformed into an unambiguous mathematical 
model. This is a very important step because different 
encodings will lead to different – although not necessarily 
contradicting – results. It is essential to encode the problem 
with a purpose in mind. 

We wish to study an Earth observation program and in 
particular we are interested in the trade-off between multi-
instrument platforms and dedicated missions. Hence, our 
model will be instrument-centered as opposed to mission-
centered for instance. We define a program as a set of Nins 
instruments that need to be flown. For simplicity we assume 
that all the instruments are flown exactly once. One possible 
architecture is then to fly them all on the same satellite. 
Another one is to fly them all on separate satellites. And 
there are naturally many other combinations. Hence the 
architectural vector can be defined as follows: 

[ ]
[ ] insinsi

insNSI

NiNS

SSSA

..1,1

...21

=∀∈

=→  (1) 

 
Where Si is an integer representing the satellite to which 
instrument i is assigned. This single array contains all the 
information that we need in order to identify one 
architecture. For instance, for a program with Nins= 4 
instruments we can define the following architectures: 
 

[ ]
[ ]
[ ]3121

4321
1111

3

2

1

=
=
=

A
A
A

 (2) 

  
A1 is a purely multi-instrument platform with only one 
satellite. A2 is a purely dedicated satellites approach with all 
the four instruments flying on different satellites. A3 is an 
intermediate architecture with 3 satellites, where 
instruments 1 and 3 share a common platform.  

Enumeration 

Once the architectural variables and their range have been 
selected, the architectural tradespace is generated. In our 
case, the tradespace consists of all the possible values of 
AI→S that satisfy the constraints given in Equation (1).  

Note that our definition of the problem assumes that each 
instrument is flown exactly once. Hence the problem is 
equivalent to finding all the possible partitions of 
instruments in satellites. Two such partitions are shown in 
Figure 3 for an example with seven instruments. 

 

Figure 3: Two possible architectures for a set of 7 
instruments. 

This problem is commonly called “set partitioning”, “set 
covering” or “bin-packing” problem in combinatorics and 
has been thoroughly studied. The number of partitions in a 
set of N elements is given by the Bell number, which is 
defined by the recursivity below:  

1,1
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=
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The Bell number grows worse than exponentially with N. 
Hence for practical purposes, exhaustive unconstrained 
tradespace exploration is unfeasible unless Nins is small (Nins 
< 12). Beyond this threshold, it is necessary to incorporate 
as many constraints as possible into the problem in order to 
reduce the size of the tradespace.  

Adding constraints is not only necessary but also desirable 
because we do not wish to lose computational time 
exploring architectures that we know in advance are poor 
architectures. The more constraints or heuristics we add to 
the model in order to identify these bad architectures, the 
more efficient the algorithm will be in screening the rest of 
architectures. The following constraints are used in the 
model: 

(1) Maximum number of instruments per satellite 
(MAXINSPERSAT): a satellite carrying more than 
MAXINSPERSAT instruments is considered unfeasible.  

(2) Maximum payload mass or volume per satellite: 
limitations on payload mass and volume are given based on 
current launch vehicle capabilities.  

(3) Scientific constraints: The model allows forcing 
some instruments to be flown on the same platform in order 
to meet very strong cross-registration requirements.  

Evaluation 

Once the feasible tradespace has been found, the 
architectures are evaluated in terms of the set of selected 
metrics. Selecting the metrics is important because much of 
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the sensitivity of the model to the particular trade-off that 
we want to study depends on the metrics that are 
considered. For instance, if we only consider cost and 
science as metrics, multi-instrument platforms will come up 
as a better option according to Figure 2. Conversely, if we 
only consider schedule and risk, architectures based on 
dedicated missions are likely to dominate the others. We 
selected four metrics for this study: lifecycle cost, schedule, 
risk and performance.  The cost metrics captures both 
engineering and programmatic issues. The schedule and risk 
metric are mainly programmatic issues. Design issues are 
captured in the performance metric. Engineering issues are 
translated into cost penalties in the development process. 
The risk metric considers only technical risk since risk of 
schedule slippage and risk of cost overrun are taken into 
account by the schedule and cost metrics respectively. 
Finally, scientific issues are expressed as constraints as 
opposed to metrics. In the next paragraphs the four metrics 
are described in more detail. 

Schedule—The schedule model estimates the development 
time of each mission in order to calculate when each 
instrument will start delivering data (i.e. value) to the 
stakeholders. There are two main assumptions behind the 
schedule model: 

(1) The development time of each mission is driven by 
the worst case development time of each instrument. In 
other words, instruments have to wait for each other. This 
concept is illustrated in Figure 4 which shows the 
probability density function (PDF) of the development time 
of a single instrument mission compared to the PDF of the 
development time of a multi-instrument mission with four 
instruments.  

 

Figure 4: PDF of the development time of two missions: 
one with a single instrument (blue) and another one 
carrying four instruments. All instruments are 
considered equivalent in terms of TRL, complexity, etc. 

Notice how the red line is shifted towards the right because 
instruments have to “wait for each other”. In this case, the 

platform with 4 identical instruments takes approximately 
one year longer to develop than the single-instrument 
satellite even if the instruments are assumed to have 
identical expected development times. This is so due to the 
aleatory nature of instrument development time.  

(2) The development time of each mission is driven by 
the Technology Readiness Level (TRL) of the instrument at 
the beginning of the development. In other words, 
instruments with low TRL are assumed to take longer to 
develop than instruments with high TRL. 

More precisely, the schedule model is a stochastic model 
based on Monte Carlo simulations of the development 
process of each mission. The uncertain parameter is the 
development time of each instrument, which is assumed to 
follow a Beta distribution, typically used in project 
management. The parameters of the Beta distribution are 
inferred from the Technology Readiness Level (TRL) of the 
instrument, in part using the exponential relationship 
between schedule slippage and TRL derived in [15].  

At each iteration, the model estimates a set of instrument 
development times using the Beta distributions and then 
computes mission development times as the maximum of 
the instrument development times. 

The metric used for schedule borrows the concept of net 
present value from economics to discount the value of the 
data produced by each instrument according to its 
development time. Hence short missions that are able to 
provide the data faster are considered better in terms of 
schedule. Weights are optionally used to capture the 
criticity of the instruments for the program. The metric is 
calculated as follows: 

∑ =

∑=
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−
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where sched is the schedule metric; Vi are the relative 
weights capturing the criticity of the instruments; Ti are the 
development times of the instruments taking into account 
their delay due to other instruments on the same missions; r 
is a discount rate that similar to the one used in engineering 
economics to take into account the time value of money, 
only in this case it is the time value of data.  

Cost—The metric used for cost is lifecycle cost. Lifecycle 
cost includes not only instrument and bus development and 
implementation cost, but also launch cost, operations cost, 
ground segment cost, overhead cost and an estimation of 
cost overrun. The cost model based is largely based on the 
parametric Cost Estimating Relationships (CER) provided 
in reference [16]. In order to use these CERs it is necessary 
to have a rough mass and power budget for each satellite. 
The mass budget is adapted from [17]. However, since this 
mass budget does not explicitly take into account many of 
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the issues that were discussed in the previous section, mass 
penalties were introduced in the mass budget to account for 
all types of engineering issues, as shown in Table 1.  

This table reads as follows. In the absence of penalties, the 
mass budget is given by the second column. Mass penalties 
are added to subsystem mass for each of the engineering 
issues highlighted in the qualitative analysis. For instance, if 
an active microwave instrument shares a bus with a passive 
microwave instrument, a penalty of 2% is added to the 
structure subsystem. Notice that this penalty does not model 
an actual increase in the structure mass, but rather an 
increase in the complexity of the spacecraft that translates 
into a penalty in development cost. 

Table 1: Mass budget and mass penalties.  

Subsytem  Allocate
d mass  

Penalties  

Payload  m   
Power  (power 

budget)  
 

Structure 
(includes 

configuration 
and 

mechanisms)  

0.81m + 
penalties  

+5% if mechanical 
coolers 
+5% if scanning 
instruments  
+10% if mechanisms 
+2% if EMC issues 

TT&C  0.22m if 
simple 

0.44m if 
complex  

Complex if instruments 
have high data rates  

ADCS  0.22m if 
simple 

0.44m if 
complex 

Complex if high point 
reqs. (e.g. HR sounders)  

Thermal  0.04m if 
simple 

0.22m if 
complex  

Complex if instruments 
with cryocoolers  

Propulsion  0.14m   
 

This is an example of how a classic architecting tool (top 
down mass budgets) is modified to fit our particular 
purpose, i.e. in this case to rank packaging architectures in 
terms of lifecycle cost taking into account engineering 
issues.  

It is important to understand that these mass penalties do not 
represent increases in the dry mass of the satellite; they 
represent instead an increased complexity of the satellite 
that has a penalty in terms of lifecycle cost. However, these 
penalties were modeled as mass penalties in order to avoid 
modifying the cost model. Mass penalties are directly 
translated into cost penalties by the CERs in the cost model. 

The NASA Instrument Cost Model was used to estimate the 
cost of instruments and the NASA Mission Operations Cost 
Model to estimate mission operations cost. Further 
information on these models can be found for instance in 
[18] and [19]. 

Although the CERs provided in [16] were left as they are, 
the cost model includes two additional modifications that 
make it explicitly sensitive to programmatic issues that were 
pointed out during the qualitative discussion:  

(1) Organizational cost penalty: this penalty accounts 
for the fact that increasing the number of instruments has a 
negative effect on overhead cost, and that this effect is not 
linear but combinatorial in nature. We used a very simple 
model for this in which a minimum overhead cost for the 
case of a dedicated satellite is computed using the CERs in 
[16] and then this number is multiplied by a factor of 
C(Nins,2)= Nins (Nins -1)/2 in order to account for this 
negative effect. This modification artificially increases the 
cost of multi-instrument platforms in order to increase the 
sensitivity of the model to this particular issue in the trade-
off. In consequence, the absolute magnitude of lifecycle 
cost will be artificially higher, but it does not matter since 
this the goal of the model is not to provide accurate cost 
estimations, but rather to compare architectures with each 
other. Indeed, models have to focus on a purpose, capture 
only the issues that are relevant to this purpose and make 
sure the model is sensitive to these issues. As noted by the 
authors of [20], a good model is like a caricature: it 
exaggerates some aspects of our system and leaves out the 
others.  

(2) Cost overrun: an estimation of cost overrun is 
added to each mission’s lifecycle cost. The main assumption 
is that cost overrun depends exclusively on schedule 
slippage, which depends on the architecture of the program 
but also on the TRL of the instruments as we have already 
seen. A constant value of 11% of overrun for each year of 
schedule slippage is assumed. This number comes from data 
concerning both ESA and NASA missions [21], [22]. 

Risk—The risk model is also a stochastic model that 
simulates the operational lifetime of each instrument and 
satellite, from launch to disposal. The lifetime is modeled as 
the combination of one discrete event (launch) followed by 
three continuous phases: early operations or commissioning, 
maturity and aging. At each iteration of the Monte Carlo 
analysis, the model simulates the launch as a Bernoulli 
process with two possible outcomes (success or failure). If 
the launch is successful, the times to failure of each 
instrument and the bus are simulated using a 3-stage 
Weibull probability distribution, commonly used in 
reliability theory because it allows modeling the three stages 
of the bathtub curve. Previous attemps to quantify 
spacecraft reliability used Weibull single stage distributions, 
with a shape parameter that was either greater than 1 
(Dezelan uses 1.6 in [23]) to account for wear-out or 
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smaller than 1 (Saleh et al use 0.4 in [24]) to account for 
infant mortality. Our approach contains both an infant 
mortality phase that lasts roughly for 6 months and wear-out 
that starts past the spacecraft design lifetime. 

The model assumes that a failure on the launch vehicle or 
the bus results in an immediate failure of all the instruments 
carried by that bus. Furthermore, the parameters of the 
Weibull distributions depend exclusively on the expected 
lifetime (an input to the model). They are thus independent 
of the architecture but also of mass, cost, TRL or any other 
instrument parameter. However, the risk metric is not 
independent of the architecture because of the inclusion of 
the utility functions and the weightings for the instruments. 
These weights allow accounting for the existence of critical 
and non critical instruments. The risk metric is more 
precisely defined as a weighted average of the probability of 
instrument success: 
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where risk is the risk metric; Vi are the relative criticities of 
the instruments; u(x) is the utility function of the decision 
maker for the probability of instrument success. Instrument 
success can be arbitrarily defined. One possibility is to 
define instrument success as time to failure of the 
instrument being larger than expected lifetime. Risk 
preferences for a unique decision maker are then entered in 
order to favor architectures with more or less spread risk 
profiles. For example, for a risk averse decision maker, one 
possibility is to use a logarithmic function: 

( ) ( )isuccisucc probprobu ,, 1log +=  (6) 

The marginal contribution of the first successful instruments 
is thus greater than the marginal contribution of the last 
instruments. This corresponds to the preferences of a risk 
averse decision maker who values more avoiding the risk of 
losing all the instruments than seizing the opportunity of 
having a total success.  

Performance—The performance metric is based on 
penalties that capture the sub-optimal design decisions that 
are necessarily made in the presence of contradicting 
requirements in multi-instrument platforms. Numerically, 
the metric is defined as follows: 
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where perf is the performance metric; Vi are the relative 
criticities of the instruments; prfi are the instrument design 
performances; penalties are the performance penalties 
which account for situations in which conflicting 
requirements between instruments sharing a platform result 
in suboptimal design decisions from the standpoint of the 
instruments. At this point, only two performance penalties 
have been implemented: orbit altitude and orbit RAAN. 
Instruments that fly at their preferred altitude and RAAN 
score 1 in their individual prfi. If they fly higher or lower 
they have a certain penalty and if they fly at a different local 
time they have an additional penalty. Hence there are only 
four possible values for the performance metric of a given 
instrument. Additional granularity is obtained by the 
introduction of the criticities of the instruments, which favor 
the architectures in which the critical instruments are flown 
at their preferred orbits. The aforementioned metrics are 
calculated from the architecture and the model parameters 
using value functions. Note that the goal of these functions 
is not to provide accurate absolute estimations of the 
metrics, but rather to provide a relative comparison of the 
architectures. The individual models for cost, schedule, risk 
and performance are succinctly described in the next 
paragraphs. 

Normalized metrics and utility 

The four metrics that have been defined are not necessarily 
normalized. Lifecycle cost is a number in $M; schedule and 
risk metrics are bounded between 0 and 1 but high values 
are very unlikely. This problem is solved in a post-
processing phase by introducing normalized metrics that are 
always Larger-Is-Better (LIB) metrics - some 
transformation is needed for lifecycle cost – and bounded 
between 0 and 1. At this point, utility curves can also be 
applied in order to account for the risk preferences of the 
decision maker. For instance, for lifecycle cost, an 
exponential utility function is used so that the least costly 
architecture receives a score of 1, and an architecture 
costing 50% more receives a score of 0.25. The overall 
utility of the architecture is a single metric that captures the 
information of the four metrics using a simple weighted 
average, as suggested in classic multi-attribute utility 
theory.  

Selection of best architectures 

The next step is the selection of the potentially optimal 
architecture or set of architectures. This occurs in two steps: 
first, dominated architectures are filtered out of the 
tradespace; second, the set of efficient or non dominated 
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architectures is ranked using a single value – utility – that 
combines the four metrics into a single one using a set of 
weights that capture the preferences of the decision maker. 
Table 3 summarizes the main features of the architectural 
model following the framework previously defined. A 
schematic representation of the model is also provided in 
Figure 5. 

 

Figure 5: Flow diagram representation of the model 

6. APPLICATION 
In this section, the quantitative model is applied to an 
example, namely ESA’s Envisat program in its final 
configuration. We have chosen this example because data is 
readily available for Envisat instruments and because the 
relatively small size of the program (ten instruments) is 
convenient to run the model using different sets of 
parameters. The mass, power and data rate of the ten 
Envisat instruments as well as other inputs to the model are 
provided in Table 4. The actual Envisat program consisted 
in a single satellite weighing 8211 kg and measuring 10.5m 
x 4.5m. Envisat is by far the largest Earth observation 
satellite ever built so in this case ESA clearly adopted a 
multi-instrument approach. 

Using our model, we enumerated and evaluated all the 
possible architectures for the set of ten instruments as 
defined in Table 2 and Table 3.  

Table 2: Parameters used for the Envisat test case.  

Name Value TRL Pref. 
Altitude 

Pref. 
LTAN 

AATSR 1 8 800km 1030 
ASAR 2 7 600km 0600 

GOMOS 1 7 800km 1030 
MERIS 1 7 800km 1030 
MIPAS 1 7 800km 1030 
MWR 0.5 9 600km 0600 
RA-2 0.7 9 600km 0600 

SCIAMACHY 1 7 800km 1030 
DORIS 0.2 9 600km 0600 

LRR 0.1 9 600km 0600 

The “Value” column captures the criticity of the instrument. 
Preferred orbits are all SSO; altitude is given in the 4th 
column and local time of the ascending node (LTAN) in the 
5th column. 

It was further assumed that the radar altimeter, the DORIS 
receiver, the laser retroreflector (LRR) and the microwave 
radiometer (MWR) need to fly together as a unique 
altimetry payload. This is consistent with what was 
presented in the qualitative analysis section. Under these 
constraints, the tradespace of feasible architectures contains 
877 different combinations of instruments into satellites. 
Possible solutions range from the original architecture using 
only one extremely large satellite to a solution with seven 
dedicated small satellites.  

In a first stage, the model identified 61 non dominated 
architectures taking into account the four metrics. Hence the 
remaining 816 architectures were dismissed as they were 
strongly dominated. Since there are four objectives, it is not 
possible to graphically show the 4D Pareto frontier with the 
61 non dominated architectures. However, one bi-objective 
Pareto frontier (cost-schedule) is explicitly shown in Figure 
6.  

 

Figure 6: Architectural tradespace for the Envisat case 
in the cost-schedule space. Each blue cross represents an 

architecture. Pareto efficient architectures when only 
cost and schedule are considered are marked with a red 

circle. 

Note that these architectures are not necessarily efficient 
when the four metrics are considered.  
 
The set of 61 architectures is still rather large to enter a 
more detailed analysis phase, thus further downselection is 
necessary. The methodology performs this second level of 
selection under the basis of a single metric, namely utility, 
combining the four previous metrics with different weights.  
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Table 3: List of the main exogeneous and endogenous parameters of the model. Endogeneous parameters vary to 
form the architectural tradespace; exogeneous parameters do not vary across architectures. 

Architectural 
variables 
(endogenous) 

AI2S: array containing the satellite to which is assigned each instrument 

Inputs 
(exogeneous) 

For each instrument: mass, power, data rate, dimensions, TRL, criticity. 

Model Parameters 
(exogenous) 

Weights for overall utility 
Mass penalties 
Performance penalties 
Launch vehicle data 
Risk utility functions 
Discount rate for schedule 

Constraints Instruments that need to fly together (science) 
Instruments that cannot fly together (engineering) 
Instruments that need to fly alone (engineering) 

Metrics Program Lifecycle cost 
Program discounted value (schedule) 
Weighted Average Probability of Instrument Success (risk) 
Program Performance 

Major 
Assumptions 

Instruments are only flown once. 
Mission development time is driven by worst case development time. 
Instrument development time follows a Beta distribution that depends only on TRL. 
Instrument and bus time to failure follow a three-segment Weibull distribution that depends 
only on design lifetime. 

 

Table 4: Mass, power and data rate of the Envisat instruments. Data comes mainly from [9]. Some of the information 
concerning in particular the dimensions and the viewing strategy of the instruments was not found in any public 

source. “Best guesses” were used as inputs in these cases.  

Name Mass 
(kg) 

Powe
r (W) 

Duty 
cycle 

Data rate 
(Mbps) illum d_x 

(m) 
d_y 
(m) 

d_z 
(m) freq thermal Viewing 

strategy 
Point 
reqs. 

AATSR 101 100 1 0.61 P 1 1 0.2 O Stirling Mechanical 
scanning L 

ASAR 832 1395 1 100 A 4.2 1.3 1 M
W none Electrical 

Scanning L 

GOMOS 175 200 1 0.217 P 0.3 0.2 0.1 O passive Mechanical 
Scanning H 

MERIS 200 175 0.43 24 P 1.8 0.9 1 O Peltier Fix 
pushbroom L 

MIPAS 327 210 1 8 P 0.7
5 

0.1
7 

0.1
7 O Stirling Mechanical 

Scanning H 

MWR 24 18 1 0.016 P 0.6 0.6 0.1 M
W none Fix 

nadir L 

RA-2 110 161 1 0.098 A 1.5 1.5 0.2 M
W none Fix 

nadir L 

SCIAMACH
Y 198 122 1 1.781 P 0.1

5 
0.1
1 

0.0
1 O passive Mechanical 

scanning L 

DORIS 17 20 1 0 P 0.3
8 

0.2
8 

0.2
1 

M
W none Fix 

nadir L 

LRR 2 0 1 0 P 0.2 0.2 0.2 N/A none N/A N/A 
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For the purpose of this example we chose a set of weights 
that emphasizes cost (50%) and puts little importance to the 
performance metric (10%) which at this stage was still too 
simple to provide a good basis for comparison. Schedule 
and risk were equally valued (20%).  
 
Figure 7 plots the overall utility using these weights as a 
function of the number of satellites. Note that the choice of 
the weights by the decision maker highly depends on the 
nature of the program. For instance, an operational program 
is likely to put more emphasis on low recurring cost and 
low risk, whereas a technological program may emphasize 
performance and schedule and a scientific program cost and 
schedule.  
 
The model finds that with the current parameters, the 
original Envisat architecture consisting in a single large 
satellite, although it is non dominated, is less desirable than 
other architectures. This is explained in part because a 
single satellite architecture scores very low in the schedule 
metric and in part because the cost of this multi-instrument 
platform is increased by the engineering penalties. 
 

 
Figure 7: Overall utility of non dominated architectures 

as a function of number of satellites.  

 
The top two architectures identified by the model are 
explicitly represented in Figure 8.  

Notice how satellite two is the same in both architectures 
and contains the two active microwave instruments (radar 
altimeter and synthetic aperture radar) plus SCIAMACHY, 
which is a passive optical instrument. The selection of the 
best architecture is driven in this case by the large gain 
assigned to the cost metric. Indeed, the top two architectures 
identified are the least costly.  

Varying the weights of the metrics or other model 
parameters would result in a different selection of 
architectures. For instance, we notice that the best 
architecture scores poorly in the performance/design 

optimality metric because it is flying the two active 
instruments at a higher orbit than their preferred orbit. 
Indeed, one of the heuristics in the model requires that 
whenever a conflict of preferred orbits appear, the higher 
orbit is always preferred. This soft constraint is not 
respected here because the presence of SCIAMACHY in 
satellite 2 is constraining the SAR and the RA to fly higher 
than they want, thus innecesasarily increasing their power 
requirements. However, the weight of this metric being only 
of 10%, this does not affect the final decision very much. 

 
 

1st Architecture: 
utility = 0.88 

2nd architecture: 
utility = 0.83 

 
Figure 8: Top 2 architectures for the Envisat example. 
 

The purpose of this paper is not to provide insights into the 
architecture of Envisat, but rather to illustrate the 
methodology and in particular the quantitative architectural 
model. Therefore the detailed sensitivity analysis is not 
shown. However, we were able to show by varying the 
inputs and parameters that the model correctly captures at 
least partially the main issues involved in the trade-off.  

7. CONCLUSION 
Accomplishments 

This paper proposes a methodology to analyze single-axis 
trade-offs in systems architecting. The methodology relies 
on a historical study to identify drivers of the trade-off, 
which where the reasons behind the architectural decisions 
in the past. A qualitative study is then performed through 
interviews with expert systems engineers, customers and 
program managers to add a level of detail into the categories 
of issues highlighted in the historical study. Then, a 
quantitative model is built to perform a systematic 
exploration of the architectural tradespace. This model must 
capture the issues encountered during the qualitative 
analysis and only these issues. The model can then perform 
exhaustive concept exploration and provides a framework 
for concept selection based on the elimination of dominated 



 

 15

architectures and multi-attribute utility theory for 
downselection of a handful of well balanced architectures. 

The methodology was illustrated with an integrated 
assessment of the trade-off between multi-instrument 
satellites and dedicated satellites in Earth observation 
program architecting. In particular, the quantitative model 
was applied to a relatively small program containing only 
ten instruments, namely ESA’s Envisat. Results show that 
the model provides reasonable answers and is able to 
reproduce part of the decision logic that is necessary to 
architect Earth observation programs.  

Future work 

There is much potential to improve the quantitative model. 
An improved version of the model is based on a multi-
objective genetic algorithm. This evolutionary algorithm 
allows the exploration of extremely large tradespaces that 
result of programs with more than 11 instruments, for which 
full factorial enumeration is unfeasible. This version of the 
model is currently being developed. 

Second, we have shown that the model captures part of the 
knowledge required to architect a program. However, more 
and better heuristics could improve the quality of the model. 
For instance, one factor that has not been taken into account 
concerns the payload to spacecraft mass ratio which is 
considered constant with spacecraft mass. The historical 
study shows that larger satellites tend to have higher 
payload to spacecraft mass ratios. It is important to take this 
into account because neglecting it can artificially bias the 
trade-off against multi-instrument platforms.  

Another important aspect of Earth observation program 
architecting that has not been captured in this study is 
budgeting and robustness of different architectures to 
changes in budget. One could argue that smaller missions 
are more robust to political and economic instability 
because they are less costly, and that this should be taken 
into account in a comprehensive architecting analysis. 

Finally, the quantitative model could also be improved to 
take into account uncertainty in the representation of the 
metrics. We captured some of the uncertainty in the 
problem by using Monte-Carlo simulations for the schedule 
and risk metrics and by systematically adding an expected 
cost overrun coming from the schedule model into the 
expected lifecycle cost. However, a more systematic 
approach to architecting under uncertainty should be 
entirely based on PDFs as opposed to average metrics as 
suggested for instance in [25]. 
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