
MIT Open Access Articles

Reading Between the Lines: Learning to
Map High-level Instructions to Commands

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Branavan, S.R.K., Luke S. Zettlemoyer, Regina Barzilay. "Reading Between the Lines:
Learning to Map High-level Instructions to Commands." 48th Annual Meeting of the Association
for Computational Linguistics, ACL 2010, Uppsala, Sweden, July 11–16, 2010.

As Published: http://acl2010.org/program_mainconf.html#s101

Publisher: Association for Computational Linguistics

Persistent URL: http://hdl.handle.net/1721.1/62213

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/62213
http://creativecommons.org/licenses/by-nc-sa/3.0/

Reading Between the Lines:
Learning to Map High-level Instructions to Commands

S.R.K. Branavan, Luke S. Zettlemoyer, Regina Barzilay
Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology
{branavan, lsz, regina}@csail.mit.edu

Abstract

In this paper, we address the task of
mapping high-level instructions to se-
quences of commands in an external en-
vironment. Processing these instructions
is challenging—they posit goals to be
achieved without specifying the steps re-
quired to complete them. We describe
a method that fills in missing informa-
tion using an automatically derived envi-
ronment model that encodes states, tran-
sitions, and commands that cause these
transitions to happen. We present an ef-
ficient approximate approach for learning
this environment model as part of a policy-
gradient reinforcement learning algorithm
for text interpretation. This design enables
learning for mapping high-level instruc-
tions, which previous statistical methods
cannot handle.1

1 Introduction

In this paper, we introduce a novel method for
mapping high-level instructions to commands in
an external environment. These instructions spec-
ify goals to be achieved without explicitly stat-
ing all the required steps. For example, consider
the first instruction in Figure 1 — “open control
panel.” The three GUI commands required for its
successful execution are not explicitly described
in the text, and need to be inferred by the user.
This dependence on domain knowledge makes the
automatic interpretation of high-level instructions
particularly challenging.

The standard approach to this task is to start
with both a manually-developed model of the en-
vironment, and rules for interpreting high-level in-
structions in the context of this model (Agre and

1Code, data, and annotations used in this work are avail-
able at http://groups.csail.mit.edu/rbg/code/rl-hli/

Chapman, 1988; Di Eugenio and White, 1992;
Di Eugenio, 1992; Webber et al., 1995). Given
both the model and the rules, logic-based infer-
ence is used to automatically fill in the intermedi-
ate steps missing from the original instructions.

Our approach, in contrast, operates directly on
the textual instructions in the context of the in-
teractive environment, while requiring no addi-
tional information. By interacting with the en-
vironment and observing the resulting feedback,
our method automatically learns both the mapping
between the text and the commands, and the un-
derlying model of the environment. One partic-
ularly noteworthy aspect of our solution is the in-
terplay between the evolving mapping and the pro-
gressively acquired environment model as the sys-
tem learns how to interpret the text. Recording the
state transitions observed during interpretation al-
lows the algorithm to construct a relevant model
of the environment. At the same time, the envi-
ronment model enables the algorithm to consider
the consequences of commands before they are ex-
ecuted, thereby improving the accuracy of inter-
pretation. Our method efficiently achieves both of
these goals as part of a policy-gradient reinforce-
ment learning algorithm.

We apply our method to the task of mapping
software troubleshooting guides to GUI actions in
the Windows environment (Branavan et al., 2009;
Kushman et al., 2009). The key findings of our
experiments are threefold. First, the algorithm
can accurately interpret 61.5% of high-level in-
structions, which cannot be handled by previous
statistical systems. Second, we demonstrate that
explicitly modeling the environment also greatly
improves the accuracy of processing low-level in-
structions, yielding a 14% absolute increase in
performance over a competitive baseline (Brana-
van et al., 2009). Finally, we show the importance
of constructing an environment model relevant to
the language interpretation task — using textual

"open control panel, double click system, then go to the advanced tab"

Document (input):

"open control panel"

left-click Advanced

double-click System

left-click Control Panel

left-click Settings

left-click Start

Instructions:

high-level
instruction

low-level
instructions

Command Sequence (output):

: :

:

::

:::

::::

"double click system"

"go to the advanced tab"

:

:

Figure 1: An example mapping of a document containing high-level instructions into a candidate se-
quence of five commands. The mapping process involves segmenting the document into individual in-
struction word spans Wa, and translating each instruction into the sequence ~c of one or more commands
it describes. During learning, the correct output command sequence is not provided to the algorithm.

instructions enables us to bias exploration toward
transitions relevant for language learning. This ap-
proach yields superior performance compared to a
policy that relies on an environment model con-
structed via random exploration.

2 Related Work

Interpreting Instructions Our approach is most
closely related to the reinforcement learning algo-
rithm for mapping text instructions to commands
developed by Branavan et al. (2009) (see Section 4
for more detail). Their method is predicated on the
assumption that each command to be executed is
explicitly specified in the instruction text. This as-
sumption of a direct correspondence between the
text and the environment is not unique to that pa-
per, being inherent in other work on grounded lan-
guage learning (Siskind, 2001; Oates, 2001; Yu
and Ballard, 2004; Fleischman and Roy, 2005;
Mooney, 2008; Liang et al., 2009; Matuszek et
al., 2010). A notable exception is the approach
of Eisenstein et al. (2009), which learns how an
environment operates by reading text, rather than
learning an explicit mapping from the text to the
environment. For example, their method can learn
the rules of a card game given instructions for how
to play.

Many instances of work on instruction inter-
pretation are replete with examples where in-
structions are formulated as high-level goals, tar-
geted at users with relevant knowledge (Winograd,
1972; Di Eugenio, 1992; Webber et al., 1995;
MacMahon et al., 2006). Not surprisingly, auto-
matic approaches for processing such instructions

have relied on hand-engineered world knowledge
to reason about the preconditions and effects of
environment commands. The assumption of a
fully specified environment model is also com-
mon in work on semantics in the linguistics lit-
erature (Lascarides and Asher, 2004). While our
approach learns to analyze instructions in a goal-
directed manner, it does not require manual speci-
fication of relevant environment knowledge.

Reinforcement Learning Our work combines
ideas of two traditionally disparate approaches to
reinforcement learning (Sutton and Barto, 1998).
The first approach, model-based learning, con-
structs a model of the environment in which the
learner operates (e.g., modeling location, velocity,
and acceleration in robot navigation). It then com-
putes a policy directly from the rich information
represented in the induced environment model.
In the NLP literature, model-based reinforcement
learning techniques are commonly used for dia-
log management (Singh et al., 2002; Lemon and
Konstas, 2009; Schatzmann and Young, 2009).
However, if the environment cannot be accurately
approximated by a compact representation, these
methods perform poorly (Boyan and Moore, 1995;
Jong and Stone, 2007). Our instruction interpreta-
tion task falls into this latter category,2 rendering
standard model-based learning ineffective.

The second approach – model-free methods
such as policy learning – aims to select the opti-

2For example, in the Windows GUI domain, clicking on
the File menu will result in a different submenu depending on
the application. Thus it is impossible to predict the effects of
a previously unseen GUI command.

Policy function

clicking start
word span :

LEFT_CLICK()start

command :

Observed text
and environment

Select run after
clicking start.
In the open box
type "dcomcnfg".

State

Observed text
and environment

Select run after
clicking start.
In the open box
type "dcomcnfg".

StateAction

Figure 2: A single step in the instruction mapping process formalized as an MDP. State s is comprised of
the state of the external environment E , and the state of the document (d,W), where W is the list of all
word spans mapped by previous actions. An action a selects a span Wa of unused words from (d,W),
and maps them to an environment command c. As a consequence of a, the environment state changes to
E ′ ∼ p(E ′|E , c), and the list of mapped words is updated to W ′ =W ∪Wa.

mal action at every step, without explicitly con-
structing a model of the environment. While pol-
icy learners can effectively operate in complex en-
vironments, they are not designed to benefit from
a learned environment model. We address this
limitation by expanding a policy learning algo-
rithm to take advantage of a partial environment
model estimated during learning. The approach of
conditioning the policy function on future reach-
able states is similar in concept to the use of post-
decision state information in the approximate dy-
namic programming framework (Powell, 2007).

3 Problem Formulation

Our goal is to map instructions expressed in a nat-
ural language document d into the corresponding
sequence of commands ~c = 〈c1, . . . , cm〉 exe-
cutable in an environment. As input, we are given
a set of raw instruction documents, an environ-
ment, and a reward function as described below.

The environment is formalized as its states and
transition function. An environment state E spec-
ifies the objects accessible in the environment at
a given time step, along with the objects’ prop-
erties. The environment state transition function
p(E ′|E , c) encodes how the state changes from E
to E ′ in response to a command c.3 During learn-
ing, this function is not known, but samples from it
can be collected by executing commands and ob-

3While in the general case the environment state transi-
tions maybe stochastic, they are deterministic in the software
GUI used in this work.

serving the resulting environment state. A real-
valued reward function measures how well a com-
mand sequence~c achieves the task described in the
document.

We posit that a document d is composed of a
sequence of instructions, each of which can take
one of two forms:

• Low-level instructions: these explicitly de-
scribe single commands.4 E.g., “double click
system” in Figure 1.

• High-level instructions: these correspond to
a sequence of one or more environment com-
mands, none of which are explicitly de-
scribed by the instruction. E.g., “open control
panel” in Figure 1.

4 Background

Our innovation takes place within a previously
established general framework for the task of
mapping instructions to commands (Branavan
et al., 2009). This framework formalizes the
mapping process as a Markov Decision Process
(MDP) (Sutton and Barto, 1998), with actions
encoding individual instruction-to-command map-
pings, and states representing partial interpreta-
tions of the document. In this section, we review
the details of this framework.

4Previous work (Branavan et al., 2009) is only able to han-
dle low-level instructions.

starting
environment
state

parts of the environment
state space reachable
after commands and .

state where a
control panel icon was
observed during previous
exploration steps.

Figure 3: Using information derived from future states to interpret the high-level instruction “open con-
trol panel.” Ed is the starting state, and c1 through c4 are candidate commands. Environment states are
shown as circles, with previously visited environment states colored green. Dotted arrows show known
state transitions. All else being equal, the information that the control panel icon was observed in state
E5 during previous exploration steps can help to correctly select command c3.

States and Actions A document is interpreted
by incrementally constructing a sequence of ac-
tions. Each action selects a word span from the
document, and maps it to one environment com-
mand. To predict actions sequentially, we track the
states of the environment and the document over
time as shown in Figure 2. This mapping state s is
a tuple (E , d,W) where E is the current environ-
ment state, d is the document being interpreted,
and W is the list of word spans selected by previ-
ous actions. The mapping state s is observed prior
to selecting each action.

The mapping action a is a tuple (c,Wa) that
represents the joint selection of a span of words
Wa and an environment command c. Some of the
candidate actions would correspond to the correct
instruction mappings, e.g., (c = double-click sys-
tem, Wa = “double click system”). Others such
as (c = left-click system, Wa = “double click sys-
tem”) would be erroneous. The algorithm learns
to interpret instructions by learning to construct
sequences of actions that assign the correct com-
mands to the words.

The interpretation of a document d begins at an
initial mapping state s0 = (Ed, d, ∅), Ed being the
starting state of the environment for the document.
Given a state s = (E , d,W), the space of possi-
ble actions a = (c,Wa) is defined by enumerat-
ing sub-spans of unused words in d and candidate
commands in E .5 The action to execute, a, is se-
lected based on a policy function p(a|s) by find-
ing argmaxa p(a|s). Performing action a in state

5Here, command reordering is possible. At each step, the
span of selected words Wa is not required to be adjacent to
the previous selections. This reordering is used to interpret
sentences such as “Select exit after opening the File menu.”

s = (E , d,W) results in a new state s′ according
to the distribution p(s′|s, a), where:

a = (c,Wa),

E ′ ∼ p(E ′|E , c),
W ′ = W ∪Wa,

s′ = (E ′, d,W ′).

The process of selecting and executing actions
is repeated until all the words in d have been
mapped.6

A Log-Linear Parameterization The policy
function used for action selection is defined as a
log-linear distribution over actions:

p(a|s; θ) = eθ·φ(s,a)∑
a′

eθ·φ(s,a
′)
, (1)

where θ ∈ Rn is a weight vector, and φ(s, a) ∈ Rn
is an n-dimensional feature function. This repre-
sentation has the flexibility to incorporate a variety
of features computed on the states and actions.

Reinforcement Learning Parameters of the
policy function p(a|s; θ) are estimated to max-
imize the expected future reward for analyzing
each document d ∈ D:

θ = argmax
θ

Ep(h|θ) [r(h)] , (2)

where h = (s0, a0, . . . , sm−1, am−1, sm) is a
history that records the analysis of document d,
p(h|θ) is the probability of selecting this analysis
given policy parameters θ, and the reward r(h) is
a real valued indication of the quality of h.

6To account for document words that are not part of an
instruction, c may be a null command.

5 Algorithm

We expand the scope of learning approaches for
automatic document interpretation by enabling the
analysis of high-level instructions. The main chal-
lenge in processing these instructions is that, in
contrast to their low-level counterparts, they cor-
respond to sequences of one or more commands.
A simple way to enable this one-to-many mapping
is to allow actions that do not consume words (i.e.,
|Wa| = 0). The sequence of actions can then be
constructed incrementally using the algorithm de-
scribed above. However, this change significantly
complicates the interpretation problem – we need
to be able to predict commands that are not di-
rectly described by any words, and allowing ac-
tion sequences significantly increases the space of
possibilities for each instruction. Since we can-
not enumerate all possible sequences at decision
time, we limit the space of possibilities by learn-
ing which sequences are likely to be relevant for
the current instruction.

To motivate the approach, consider the deci-
sion problem in Figure 3, where we need to find a
command sequence for the high-level instruction
“open control panel.” The algorithm focuses on
command sequences leading to environment states
where the control panel icon was previously ob-
served. The information about such states is ac-
quired during exploration and is stored in a partial
environment model q(E ′|E , c).

Our goal is to map high-level instructions to
command sequences by leveraging knowledge
about the long-term effects of commands. We do
this by integrating the partial environment model
into the policy function. Specifically, we modify
the log-linear policy p(a|s; q, θ) by adding look-
ahead features φ(s, a, q) which complement the
local features used in the previous model. These
look-ahead features incorporate various measure-
ments that characterize the potential of future
states reachable via the selected action. Although
primarily designed to analyze high-level instruc-
tions, this approach is also useful for mapping
low-level instructions.

Below, we first describe how we estimate the
partial environment transition model and how this
model is used to compute the look-ahead features.
This is followed by the details of parameter esti-
mation for our algorithm.

5.1 Partial Environment Transition Model

To compute the look-ahead features, we first need
to collect statistics about the environment transi-
tion function p(E ′|E , c). An example of an envi-
ronment transition is the change caused by click-
ing on the “start” button. We collect this informa-
tion through observation, and build a partial envi-
ronment transition model q(E ′|E , c).

One possible strategy for constructing q is to ob-
serve the effects of executing random commands
in the environment. In a complex environment,
however, such a strategy is unlikely to produce
state samples relevant to our text analysis task.
Instead, we use the training documents to guide
the sampling process. During training, we execute
the command sequences predicted by the policy
function in the environment, caching the resulting
state transitions. Initially, these commands may
have little connection to the actual instructions. As
learning progresses and the quality of the interpre-
tation improves, more promising parts of the en-
vironment will be observed. This process yields
samples that are biased toward the content of the
documents.

5.2 Look-Ahead Features

We wish to select actions that allow for the best
follow-up actions, thereby finding the analysis
with the highest total reward for a given docu-
ment. In practice, however, we do not have in-
formation about the effects of all possible future
actions. Instead, we capitalize on the state tran-
sitions observed during the sampling process de-
scribed above, allowing us to incrementally build
an environment model of actions and their effects.

Based on this transition information, we can es-
timate the usefulness of actions by considering the
properties of states they can reach. For instance,
some states might have very low immediate re-
ward, indicating that they are unlikely to be part
of the best analysis for the document. While the
usefulness of most states is hard to determine, it
correlates with various properties of the state. We
encode the following properties as look-ahead fea-
tures in our policy:

• The highest reward achievable by an action
sequence passing through this state. This
property is computed using the learned envi-
ronment model, and is therefore an approxi-
mation.

• The length of the above action sequence.

• The average reward received at the envi-
ronment state while interpreting any docu-
ment. This property introduces a bias towards
commonly visited states that frequently re-
cur throughout multiple documents’ correct
interpretations.

Because we can never encounter all states and
all actions, our environment model is always in-
complete and these properties can only be com-
puted based on partial information. Moreover, the
predictive strength of the properties is not known
in advance. Therefore we incorporate them as sep-
arate features in the model, and allow the learning
process to estimate their weights. In particular, we
select actions a based on the current state s and
the partial environment model q, resulting in the
following policy definition:

p(a|s; q, θ) = eθ·φ(s,a,q)∑
a′

eθ·φ(s,a
′,q)
, (3)

where the feature representation φ(s, a, q) has
been extended to be a function of q.

5.3 Parameter Estimation
The learning algorithm is provided with a set of
documents d ∈ D, an environment in which to ex-
ecute command sequences ~c, and a reward func-
tion r(h). The goal is to estimate two sets of
parameters: 1) the parameters θ of the policy
function, and 2) the partial environment transition
model q(E ′|E , c), which is the observed portion of
the true model p(E ′|E , c). These parameters are
mutually dependent: θ is defined over a feature
space dependent on q, and q is sampled according
to the policy function parameterized by θ.

Algorithm 1 shows the procedure for joint
learning of these parameters. As in standard policy
gradient learning (Sutton et al., 2000), the algo-
rithm iterates over all documents d ∈ D (steps 1,
2), selecting and executing actions in the environ-
ment (steps 3 to 6). The resulting reward is used
to update the parameters θ (steps 8, 9). In the new
joint learning setting, this process also yields sam-
ples of state transitions which are used to estimate
q(E ′|E , c) (step 7). This updated q is then used
to compute the feature functions φ(s, a, q) during
the next iteration of learning (step 4). This pro-
cess is repeated until the total reward on training
documents converges.

Input: A document set D,
Feature function φ,
Reward function r(h),
Number of iterations T

Initialization: Set θ to small random values.
Set q to the empty set.

for i = 1 · · ·T do1
foreach d ∈ D do2

Sample history h ∼ p(h|θ) where
h = (s0, a0, · · · , an−1, sn) as follows:

Initialize environment to document specific
starting state Ed
for t = 0 · · ·n− 1 do3

Compute φ(a, st, q) based on latest q4
Sample action at ∼ p(a|st; q, θ)5
Execute at on state st: st+1 ∼ p(s|st, at)6

Set q = q ∪ {(E ′, E , c)} where E ′, E , c are the7
environment states and commands from st+1,
st, and at

end

∆←8 ∑
t

[
φ(st, at, q)−

∑
a′

φ(st, a
′, q) p(a′|st; q, θ)

]
θ ← θ + r(h)∆9

end
end
Output: Estimate of parameters θ

Algorithm 1: A policy gradient algorithm that
also learns a model of the environment.

This algorithm capitalizes on the synergy be-
tween θ and q. As learning proceeds, the method
discovers a more complete state transition function
q, which improves the accuracy of the look-ahead
features, and ultimately, the quality of the result-
ing policy. An improved policy function in turn
produces state samples that are more relevant to
the document interpretation task.

6 Applying the Model

We apply our algorithm to the task of interpret-
ing help documents to perform software related
tasks (Branavan et al., 2009; Kushman et al.,
2009). Specifically, we consider documents from
Microsoft’s Help and Support website.7 As in
prior work, we use a virtual machine set-up to al-
low our method to interact with a Windows 2000
environment.

Environment States and Actions In this appli-
cation of our model, the environment state is the
set of visible user interface (UI) objects, along

7http://support.microsoft.com/

with their properties (e.g., the object’s label, par-
ent window, etc). The environment commands
consist of the UI commands left-click , right-click ,
double-click , and type-into. Each of these commands
requires a UI object as a parameter, while type-into
needs an additional parameter containing the text
to be typed. On average, at each step of the in-
terpretation process, the branching factor is 27.14
commands.

Reward Function An ideal reward function
would be to verify whether the task specified by
the help document was correctly completed. Since
such verification is a challenging task, we rely on
a noisy approximation: we assume that each sen-
tence specifies at least one command, and that the
text describing the command has words matching
the label of the environment object. If a history
h has at least one such command for each sen-
tence, the environment reward function r(h) re-
turns a positive value, otherwise it returns a neg-
ative value. This environment reward function is
a simplification of the one described in Branavan
et al. (2009), and it performs comparably in our
experiments.

Features In addition to the look-ahead features
described in Section 5.2, the policy also includes
the set of features used by Branavan et al. (2009).
These features are functions of both the text and
environment state, modeling local properties that
are useful for action selection.

7 Experimental Setup

Datasets Our model is trained on the same
dataset used by Branavan et al. (2009). For test-
ing we use two datasets: the first one was used
in prior work and contains only low-level instruc-
tions, while the second dataset is comprised of
documents with high-level instructions. This new
dataset was collected from the Microsoft Help
and Support website, and has on average 1.03
high-level instructions per document. The second
dataset contains 60 test documents, while the first
is split into 70, 18 and 40 document for training,
development and testing respectively. The com-
bined statistics for these datasets is shown below:

Total # of documents 188
Total # of words 7448
Vocabulary size 739
Avg. actions per document 10

Reinforcement Learning Parameters Follow-
ing common practice, we encourage exploration
during learning with an ε-greedy strategy (Sutton
and Barto, 1998), with ε set to 0.1. We also iden-
tify dead-end states, i.e. states with the lowest pos-
sible immediate reward, and use the induced en-
vironment model to encourage additional explo-
ration by lowering the likelihood of actions that
lead to such dead-end states.

During the early stages of learning, experience
gathered in the environment model is extremely
sparse, causing the look-ahead features to provide
poor estimates. To speed convergence, we ignore
these estimates by disabling the look-ahead fea-
tures for a fixed number of initial training itera-
tions.

Finally, to guarantee convergence, stochas-
tic gradient ascent algorithms require a learning
rate schedule. We use a modified search-then-
converge algorithm (Darken and Moody, 1990),
and tie the learning rate to the ratio of training
documents that received a positive reward in the
current iteration.

Baselines As a baseline, we compare our
method against the results reported by Branavan
et al. (2009), denoted here as BCZB09.

As an upper bound for model performance, we
also evaluate our method using a reward signal
that simulates a fully-supervised training regime.
We define a reward function that returns posi-
tive one for histories that match the annotations,
and zero otherwise. Performing policy-gradient
with this function is equivalent to training a fully-
supervised, stochastic gradient algorithm that op-
timizes conditional likelihood (Branavan et al.,
2009).

Evaluation Metrics We evaluate the accuracy
of the generated mapping by comparing it against
manual annotations of the correct action se-
quences. We measure the percentage of correct
actions and the percentage of documents where
every action is correct. In general, the sequential
nature of the interpretation task makes it difficult
to achieve high action accuracy. For example, ex-
ecuting an incorrect action early on, often leads
to an environment state from which the remaining
instructions cannot be completed. When this hap-
pens, it is not possible to recover the remaining
actions, causing cascading errors that significantly
reduce performance.

Low-level instruction dataset High-level instruction dataset
action document action high-level action document

BCZB09 0.647 0.375 0.021 0.022 0.000
BCZB09 + annotation ∗ 0.756 0.525 0.035 0.022 0.000
Our model 0.793 0.517 ∗ 0.419 ∗ 0.615 ∗ 0.283
Our model + annotation 0.793 0.650 ∗ 0.357 0.492 0.333

Table 1: Accuracy of the mapping produced by our model, its variants, and the baseline. Values marked
with ∗ are statistically significant at p < 0.01 compared to the value immediately above it.

8 Results

As shown in Table 1, our model outperforms
the baseline on the two datasets, according to
all evaluation metrics. In contrast to the base-
line, our model can handle high-level instructions,
accurately interpreting 62% of them in the sec-
ond dataset. Every document in this set con-
tains at least one high-level action, which on av-
erage, maps to 3.11 environment commands each.
The overall action performance on this dataset,
however, seems unexpectedly low at 42%. This
discrepancy is explained by the fact that in this
dataset, high-level instructions are often located
towards the beginning of the document. If these
initial challenging instructions are not processed
correctly, the rest of the actions for the document
cannot be interpreted.

As the performance on the first dataset indi-
cates, the new algorithm is also beneficial for pro-
cessing low-level instructions. The model outper-
forms the baseline by at least 14%, both in terms
of the actions and the documents it can process.
Not surprisingly, the best performance is achieved
when the new algorithm has access to manually
annotated data during training.

We also performed experiments to validate the
intuition that the partial environment model must
contain information relevant for the language in-
terpretation task. To test this hypothesis, we re-
placed the learned environment model with one of
the same size gathered by executing random com-
mands. The model with randomly sampled envi-
ronment transitions performs poorly: it can only
process 4.6% of documents and 15% of actions
on the dataset with high-level instructions, com-
pared to 28.3% and 41.9% respectively for our al-
gorithm. This result also explains why training
with full supervision hurts performance on high-
level instructions (see Table 1). Learning directly
from annotations results in a low-quality environ-
ment model due to the relative lack of exploration,

High-level instruction
∘ open device manager

Extracted low-level instruction paraphrase
∘ double click my computer
∘ double click control panel
∘ double click administrative tools
∘ double click computer management
∘ double click device manager

High-level instruction
∘ open the network tool in control panel

Extracted low-level instruction paraphrase
∘ click start
∘ point to settings
∘ click control panel
∘ double click network and dial-up connections

Figure 4: Examples of automatically generated
paraphrases for high-level instructions. The model
maps the high-level instruction into a sequence of
commands, and then translates them into the cor-
responding low-level instructions.

hurting the model’s ability to leverage the look-
ahead features.

Finally, to demonstrate the quality of the
learned word–command alignments, we evaluate
our method’s ability to paraphrase from high-level
instructions to low-level instructions. Here, the
goal is to take each high-level instruction and con-
struct a text description of the steps required to
achieve it. We did this by finding high-level in-
structions where each of the commands they are
associated with is also described by a low-level
instruction in some other document. For exam-
ple, if the text “open control panel” was mapped
to the three commands in Figure 1, and each of
those commands was described by a low-level in-
struction elsewhere, this procedure would create
a paraphrase such as “click start, left click set-
ting, and select control panel.” Of the 60 high-
level instructions tagged in the test set, this ap-
proach found paraphrases for 33 of them. 29 of

these paraphrases were correct, in the sense that
they describe all the necessary commands. Fig-
ure 4 shows some examples of the automatically
extracted paraphrases.

9 Conclusions and Future Work

In this paper, we demonstrate that knowledge
about the environment can be learned and used ef-
fectively for the task of mapping instructions to ac-
tions. A key feature of this approach is the synergy
between language analysis and the construction of
the environment model: instruction text drives the
sampling of the environment transitions, while the
acquired environment model facilitates language
interpretation. This design enables us to learn to
map high-level instructions while also improving
accuracy on low-level instructions.

To apply the above method to process a broad
range of natural language documents, we need to
handle several important semantic and pragmatic
phenomena, such as reference, quantification, and
conditional statements. These linguistic construc-
tions are known to be challenging to learn – exist-
ing approaches commonly rely on large amounts
of hand annotated data for training. An interest-
ing avenue of future work is to explore an alter-
native approach which learns these phenomena by
combining linguistic information with knowledge
gleaned from an automatically induced environ-
ment model.

Acknowledgments

The authors acknowledge the support of the
NSF (CAREER grant IIS-0448168, grant IIS-
0835445, and grant IIS-0835652) and the Mi-
crosoft Research New Faculty Fellowship. Thanks
to Aria Haghighi, Leslie Pack Kaelbling, Tom
Kwiatkowski, Martin Rinard, David Silver, Mark
Steedman, Csaba Szepesvari, the MIT NLP group,
and the ACL reviewers for their suggestions and
comments. Any opinions, findings, conclusions,
or recommendations expressed in this paper are
those of the authors, and do not necessarily reflect
the views of the funding organizations.

References
Philip E. Agre and David Chapman. 1988. What are

plans for? Technical report, Cambridge, MA, USA.

J. A. Boyan and A. W. Moore. 1995. Generalization
in reinforcement learning: Safely approximating the

value function. In Advances in NIPS, pages 369–
376.

S.R.K Branavan, Harr Chen, Luke Zettlemoyer, and
Regina Barzilay. 2009. Reinforcement learning for
mapping instructions to actions. In Proceedings of
ACL, pages 82–90.

Christian Darken and John Moody. 1990. Note on
learning rate schedules for stochastic optimization.
In Advances in NIPS, pages 832–838.

Barbara Di Eugenio and Michael White. 1992. On the
interpretation of natural language instructions. In
Proceedings of COLING, pages 1147–1151.

Barbara Di Eugenio. 1992. Understanding natural lan-
guage instructions: the case of purpose clauses. In
Proceedings of ACL, pages 120–127.

Jacob Eisenstein, James Clarke, Dan Goldwasser, and
Dan Roth. 2009. Reading to learn: Constructing
features from semantic abstracts. In Proceedings of
EMNLP, pages 958–967.

Michael Fleischman and Deb Roy. 2005. Intentional
context in situated natural language learning. In
Proceedings of CoNLL, pages 104–111.

Nicholas K. Jong and Peter Stone. 2007. Model-based
function approximation in reinforcement learning.
In Proceedings of AAMAS, pages 670–677.

Nate Kushman, Micah Brodsky, S.R.K. Branavan,
Dina Katabi, Regina Barzilay, and Martin Rinard.
2009. Wikido. In Proceedings of HotNets-VIII.

Alex Lascarides and Nicholas Asher. 2004. Impera-
tives in dialogue. In P. Kuehnlein, H. Rieser, and
H. Zeevat, editors, The Semantics and Pragmatics
of Dialogue for the New Millenium. Benjamins.

Oliver Lemon and Ioannis Konstas. 2009. User sim-
ulations for context-sensitive speech recognition in
spoken dialogue systems. In Proceedings of EACL,
pages 505–513.

Percy Liang, Michael I. Jordan, and Dan Klein. 2009.
Learning semantic correspondences with less super-
vision. In Proceedings of ACL, pages 91–99.

Matt MacMahon, Brian Stankiewicz, and Benjamin
Kuipers. 2006. Walk the talk: connecting language,
knowledge, and action in route instructions. In Pro-
ceedings of AAAI, pages 1475–1482.

C. Matuszek, D. Fox, and K. Koscher. 2010. Follow-
ing directions using statistical machine translation.
In Proceedings of Human-Robot Interaction, pages
251–258.

Raymond J. Mooney. 2008. Learning to connect
language and perception. In Proceedings of AAAI,
pages 1598–1601.

James Timothy Oates. 2001. Grounding knowledge
in sensors: Unsupervised learning for language and
planning. Ph.D. thesis, University of Massachusetts
Amherst.

Warren B Powell. 2007. Approximate Dynamic Pro-
gramming. Wiley-Interscience.

Jost Schatzmann and Steve Young. 2009. The hidden
agenda user simulation model. IEEE Trans. Audio,
Speech and Language Processing, 17(4):733–747.

Satinder Singh, Diane Litman, Michael Kearns, and
Marilyn Walker. 2002. Optimizing dialogue man-
agement with reinforcement learning: Experiments
with the njfun system. Journal of Artificial Intelli-
gence Research, 16:105–133.

Jeffrey Mark Siskind. 2001. Grounding the lexical
semantics of verbs in visual perception using force
dynamics and event logic. Journal of Artificial In-
telligence Research, 15:31–90.

Richard S. Sutton and Andrew G. Barto. 1998. Re-
inforcement Learning: An Introduction. The MIT
Press.

Richard S. Sutton, David McAllester, Satinder Singh,
and Yishay Mansour. 2000. Policy gradient meth-
ods for reinforcement learning with function approx-
imation. In Advances in NIPS, pages 1057–1063.

Bonnie Webber, Norman Badler, Barbara Di Euge-
nio, Libby Levison Chris Geib, and Michael Moore.
1995. Instructions, intentions and expectations. Ar-
tificial Intelligence, 73(1-2).

Terry Winograd. 1972. Understanding Natural Lan-
guage. Academic Press.

Chen Yu and Dana H. Ballard. 2004. On the integra-
tion of grounding language and learning objects. In
Proceedings of AAAI, pages 488–493.

