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Constrained Consensus and Optimization
in Multi-Agent Networks

Angelia Nedić, Member, IEEE, Asuman Ozdaglar, Member, IEEE, and Pablo A. Parrilo, Senior Member, IEEE

Abstract—We present distributed algorithms that can be used
by multiple agents to align their estimates with a particular value
over a network with time-varying connectivity. Our framework is
general in that this value can represent a consensus value among
multiple agents or an optimal solution of an optimization problem,
where the global objective function is a combination of local agent
objective functions. Our main focus is on constrained problems
where the estimates of each agent are restricted to lie in different
convex sets.

To highlight the effects of constraints, we first consider a con-
strained consensus problem and present a distributed “projected
consensus algorithm” in which agents combine their local aver-
aging operation with projection on their individual constraint sets.
This algorithm can be viewed as a version of an alternating pro-
jection method with weights that are varying over time and across
agents. We establish convergence and convergence rate results for
the projected consensus algorithm. We next study a constrained op-
timization problem for optimizing the sum of local objective func-
tions of the agents subject to the intersection of their local con-
straint sets. We present a distributed “projected subgradient al-
gorithm” which involves each agent performing a local averaging
operation, taking a subgradient step to minimize its own objective
function, and projecting on its constraint set. We show that, with
an appropriately selected stepsize rule, the agent estimates gener-
ated by this algorithm converge to the same optimal solution for
the cases when the weights are constant and equal, and when the
weights are time-varying but all agents have the same constraint
set.

Index Terms—Consensus, constraints, distributed optimization,
subgradient algorithms.

I. INTRODUCTION

T HERE has been much interest in distributed cooperative
control problems, in which several autonomous agents

collectively try to achieve a global objective. Most focus has
been on the canonical consensus problem, where the goal is to
develop distributed algorithms that can be used by a group of
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agents to reach a common decision or agreement (on a scalar or
vector value). Recent work also studied multi-agent optimiza-
tion problems over networks with time-varying connectivity,
where the objective function information is distributed across
agents (e.g., the global objective function is the sum of local ob-
jective functions of agents). Despite much work in this area, the
existing literature does not consider problems where the agent
values are constrained to given sets. Such constraints are signif-
icant in a number of applications including motion planning and
alignment problems, where each agent’s position is limited to a
certain region or range, and distributed constrained multi-agent
optimization problems.

In this paper, we study cooperative control problems where
the values of agents are constrained to lie in closed convex
sets. Our main focus is on developing distributed algorithms
for problems where the constraint information is distributed
across agents, i.e., each agent only knows its own constraint
set. To highlight the effects of different local constraints, we
first consider a constrained consensus problem and propose
a projected consensus algorithm that operates on the basis of
local information. More specifically, each agent linearly com-
bines its value with those values received from the time-varying
neighboring agents and projects the combination on its own
constraint set. We show that this update rule can be viewed as
a novel version of the classical alternating projection method
where, at each iteration, the values are combined using weights
that are varying in time and across agents, and projected on the
respective constraint sets.

We provide convergence and convergence rate analysis for the
projected consensus algorithm. Due to the projection operation,
the resulting evolution of agent values has nonlinear dynamics,
which poses challenges for the analysis of the convergence prop-
erties of the algorithm. To deal with the nonlinear dynamics
in the evolution of the agent estimates, we decompose the dy-
namics into two parts: a linear part involving a time-varying av-
eraging operation and a nonlinear part involving the error due to
the projection operation. This decomposition allows us to repre-
sent the evolution of the estimates using linear dynamics and de-
couples the analysis of the effects of constraints from the conver-
gence analysis of the local agent averaging. The linear dynamics
is analyzed similarly to that of the unconstrained consensus up-
date, which relies on convergence of transition matrices defined
as the products of the time-varying weight matrices. Using the
properties of projection and agent weights, we prove that the
projection error diminishes to zero. This shows that the non-
linear parts in the dynamics are vanishing with time and, there-
fore, the evolution of agent estimates is “almost linear.” We then
show that the agents reach consensus on a “common estimate”
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in the limit and that the common estimate lies in the intersection
of the agent individual constraint sets.

We next consider a constrained optimization problem for op-
timizing a global objective function which is the sum of local
agent objective functions, subject to a constraint set given by
the intersection of the local agent constraint sets. We focus on
distributed algorithms in which agent values are updated based
on local information given by the agent’s objective function and
constraint set. In particular, we propose a distributed projected
subgradient algorithm, which for each agent involves a local
averaging operation, a step along the subgradient of the local
objective function, and a projection on the local constraint set.

We study the convergence behavior of this algorithm for two
cases: when the constraint sets are the same, but the agent con-
nectivity is time-varying; and when the constraint sets are
different, but the agents use uniform and constant weights in
each step, i.e., the communication graph is fully connected. We
show that with an appropriately selected stepsize rule, the agent
estimates generated by this algorithm converge to the same op-
timal solution of the constrained optimization problem. Similar
to the analysis of the projected consensus algorithm, our con-
vergence analysis relies on showing that the projection errors
converge to zero, thus effectively reducing the problem into an
unconstrained one. However, in this case, establishing the con-
vergence of the projection error to zero requires understanding
the effects of the subgradient steps, which complicates the anal-
ysis. In particular, for the case with different constraint sets but
uniform weights, the analysis uses an error bound which relates
the distances of the iterates to individual constraint sets with the
distances of the iterates to the intersection set.

Related literature on parallel and distributed computation
is vast. Most literature builds on the seminal work of Tsit-
siklis [1] and Tsitsiklis et al. [2] (see also [3]), which focused
on distributing the computations involved with optimizing a
global objective function among different processors (assuming
complete information about the global objective function at
each processor). More recent literature focused on multi-agent
environments and studied consensus algorithms for achieving
cooperative behavior in a distributed manner (see [4]–[10]).
These works assume that the agent values can be processed
arbitrarily and are unconstrained. Another recent approach
for distributed cooperative control problems involve using
game-theoretic models. In this approach, the agents are en-
dowed with local utility functions that lead to a game form
with a Nash equilibrium which is the same as or close to a
global optimum. Various learning algorithms can then be used
as distributed control schemes that will reach the equilibrium.
In a recent paper, Marden et al. [11] used this approach for
the consensus problem where agents have constraints on their
values. Our projected consensus algorithm provides an alterna-
tive approach for this problem.

Most closely related to our work are the recent papers
[12], [13], which proposed distributed subgradient methods
for solving unconstrained multi-agent optimization problems.
These methods use consensus algorithms as a mechanism for
distributing computations among the agents. The presence of
different local constraints significantly changes the operation
and the analysis of the algorithms, which is our main focus in

this paper. Our work is also related to incremental subgradient
algorithms implemented over a network, where agents sequen-
tially update an iterate sequence in a cyclic or a random order
[14]–[17]. In an incremental algorithm, there is a single iterate
sequence and only one agent updates the iterate at a given
time. Thus, while operating on the basis of local information,
incremental algorithms differ fundamentally from the algorithm
studied in this paper (where all agents update simultaneously).
Furthermore, the work in [14]–[17] assumes that the constraint
set is known by all agents in the system, which is in a sharp
contrast with the algorithms studied in this paper (our primary
interest is in the case where the information about the constraint
set is distributed across the agents).

The paper is organized as follows. In Section II, we intro-
duce our notation and terminology, and establish some basic
results related to projection on closed convex sets that will be
used in the subsequent analysis. In Section III, we present the
constrained consensus problem and the projected consensus al-
gorithm. We describe our multi-agent model and provide a basic
result on the convergence behavior of the transition matrices that
govern the evolution of agent estimates generated by the algo-
rithms. We study the convergence of the agent estimates and
establish convergence rate results for constant uniform weights.
Section IV introduces the constrained multi-agent optimization
problem and presents the projected subgradient algorithm. We
provide convergence analysis for the estimates generated by this
algorithm. Section V contains concluding remarks and some fu-
ture directions.

NOTATION, TERMINOLOGY, AND BASICS

A vector is viewed as a column, unless clearly stated other-
wise. We denote by or the th component of a vector

. When for all components of a vector , we write
. We write to denote the transpose of a vector . The

scalar product of two vectors and is denoted by . We use
to denote the standard Euclidean norm, .

A vector is said to be a stochastic vector when its
components are nonnegative and their sum is equal to 1, i.e.,

. A set of vectors , with
for all , is said to be doubly stochastic when each is a sto-
chastic vector and for all . A square
matrix is doubly stochastic when its rows are stochastic vec-
tors, and its columns are also stochastic vectors.

We write to denote the standard Euclidean dis-
tance of a vector from a set , i.e.,

We use to denote the projection of a vector on a closed
convex set , i.e.

In the subsequent development, the properties of the projection
operation on a closed convex set play an important role. In par-
ticular, we use the projection inequality, i.e., for any vector

(1)
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Fig. 1. Illustration of the relationship between the projection error and feasible
directions of a convex set.

We also use the standard non-expansiveness property, i.e.

(2)

In addition, we use the properties given in the following lemma.
Lemma 1: Let be a nonempty closed convex set in .

Then, we have for any ,
(a) , for all .
(b) , for all .

Proof:
(a) Let be arbitrary. Then, for any , we have

By the projection inequality [cf. (1)], it follows that
, implying

(b) For an arbitrary and for all , we have

By using the inequality of part (a), we obtain

Part (b) of the preceding lemma establishes a relation be-
tween the projection error vector and the feasible directions of
the convex set at the projection vector, as illustrated in Fig. 1.

We next consider nonempty closed convex sets , for
, and an averaged-vector obtained by taking an

average of vectors , i.e., for some
. We provide an “error bound” that relates the distance

of the averaged-vector from the intersection set
to the distance of from the individual sets . This relation,
which is also of independent interest, will play a key role in
our analysis of the convergence of projection errors associated
with various distributed algorithms introduced in this paper. We
establish the relation under an interior point assumption on the
intersection set stated in the following:

Fig. 2. Illustration of the error bound in Lemma 2.

Assumption 1: (Interior Point) Given sets ,
, let denote their intersection. There is a

vector i.e., there exists a scalar such that

We provide an error bound relation in the following lemma,
which is illustrated in Fig. 2.

Lemma 2: Let , , be nonempty
closed convex sets that satisfy Assumption 1. Let ,

, be arbitrary vectors and define their average as
. Consider the vector defined by

and is the scalar given in Assumption 1.
(a) The vector belongs to the intersection set .
(b) We have the following relation:

As a particular consequence, we have

Proof:
(a) We first show that the vector belongs to the intersection

. To see this, let be arbitrary
and note that we can write as

By the definition of , it follows that ,
implying by the interior point assumption (cf. Assumption
1) that the vector belongs to the
set , and therefore to the set . Since the vector is
the convex combination of two vectors in the set , it
follows by the convexity of that . The preceding
argument is valid for an arbitrary , thus implying that

.
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(b) Using the definition of the vector and the vector , we
have

Substituting the definition of yields the desired relation.

II. CONSTRAINED CONSENSUS

In this section, we describe the constrained consensus
problem. In particular, we introduce our multi-agent model
and the projected consensus algorithm that is locally executed
by each agent. We provide some insights about the algorithm
and we discuss its connection to the alternating projections
method. We also introduce the assumptions on the multi-agent
model and present key elementary results that we use in our
subsequent analysis of the projected consensus algorithm.
In particular, we define the transition matrices governing the
linear dynamics of the agent estimate evolution and give a basic
convergence result for these matrices. The model assumptions
and the transition matrix convergence properties will also
be used for studying the constrained optimization problem
and the projected subgradient algorithm that we introduce in
Section IV.

A. Multi-Agent Model and Algorithm

We consider a set of agents denoted by We
assume a slotted-time system, and we denote by the esti-
mate generated and stored by agent at time slot . The agent
estimate is a vector in that is constrained to lie in a
nonempty closed convex set known only to agent .
The agents’ objective is to cooperatively reach a consensus on
a common vector through a sequence of local estimate updates
(subject to the local constraint set) and local information ex-
changes (with neighboring agents only).

We study a model where the agents exchange and update their
estimates as follows: To generate the estimate at time ,
agent forms a convex combination of its estimate with
the estimates received from other agents at time , and takes the
projection of this vector on its constraint set . More specifi-
cally, agent at time generates its new estimate according
to the following relation:

(3)

where is a vector of nonnegative weights.
The relation in (3) defines the projected consensus algorithm.

We note here an interesting connection between the projected
consensus algorithm and a multi-agent algorithm for finding a
point in common to the given closed convex sets .
The problem of finding a common point can be formulated as

an unconstrained convex optimization problem of the following
form:

(4)

In view of this optimization problem, the method can be inter-
preted as a distributed gradient algorithm where each agent is
assigned an objective function .
At each time , an agent incorporates new information
received from some of the other agents and generates a weighted
sum . Then, the agent updates its estimate by
taking a step (with stepsize equal to 1) along the negative gra-
dient of its own objective function at

. In particular, since the gradient of
is (see Theorem 1.5.5 in Facchinei and
Pang [18]), the update rule in (3) is equivalent to the following
gradient descent method for minimizing :

Motivated by the objective function of problem (4), we use
with as a Lyapunov function

measuring the progress of the algorithm (see Section III-F).1

B. Relation to Alternating Projections Method

The method of (3) is related to the classical alternating or
cyclic projection method. Given a finite collection of closed
convex sets with a nonempty intersection (i.e.,

), the alternating projection method finds a vector
in the intersection . In other words, the algorithm solves
the unconstrained problem (4). Alternating projection methods
generate a sequence of vectors by projecting iteratively on the
sets, either cyclically or with some given order; see Fig. 3(a),
where the alternating projection algorithm generates a se-
quence by iteratively projecting onto sets and ,
i.e., , . The
convergence behavior of these methods has been established by
Von Neumann [19] and Aronszajn [20] for the case when the
sets are affine; and by Gubin et al. [21] when the sets are
closed and convex. Gubin et al. [21] also have provided conver-
gence rate results for a particular form of alternating projection
method. Similar rate results under different assumptions have
also been provided by Deutsch [22], and Deutsch and Hundal
[23].

1We focus throughout the paper on the case when the intersection set� �

is nonempty. If the intersection set is empty, it follows from the definition of
the algorithm that the agent estimates will not reach a consensus. In this case,
the estimate sequences �� ���� may exhibit oscillatory behavior or may all be
unbounded.
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Fig. 3. Illustration of the connection between the alternating/cyclic projection
method and the constrained consensus algorithm for two closed convex sets�
and � .

The constrained consensus algorithm [cf. (3)] generates a se-
quence of iterates for each agent as follows: at iteration , each
agent first forms a linear combination of the other agent values

using its own weight vector and then projects this
combination on its constraint set . Therefore, the projected
consensus algorithm can be viewed as a version of the alter-
nating projection algorithm, where the iterates are combined
with the weights varying over time and across agents, and then
projected on the individual constraint sets; see Fig. 3(b), where
the projected consensus algorithm generates sequences
for agents ,2 by first combining the iterates with dif-
ferent weights and then projecting on respective sets , i.e.,

and for
,2.

We conclude this section by noting that the alternating projec-
tion method has much more structured weights than the weights
we consider in this paper. As seen from the assumptions on the
agent weights in Section IV, the analysis of our projected con-
sensus algorithm (and the projected subgradient algorithm in-
troduced in Section IV) is complicated by the general time vari-
ability of the weights .

Assumptions

Following Tsitsiklis [1] (see also Blondel et al. [24]), we
adopt the following assumptions on the weight vectors ,

and on information exchange.
Assumption 2: (Weights Rule) There exists a scalar with

such that for all ,
(a) for all .
(b) If , then .
Assumption 3: (Doubly Stochasticity) The vectors

satisfy:
(a) and for all and , i.e., the

vectors are stochastic.
(b) for all and .
Informally speaking, Assumption 2 says that every agent as-

signs a substantial weight to the information received from its
neighbors. This guarantees that the information from each agent
influences the information of every other agent persistently in
time. In other words, this assumption guarantees that the agent
information is mixing at a nondiminishing rate in time. Without
this assumption, information from some of the agents may be-
come less influential in time, and in the limit, resulting in loss
of information from these agents.

Assumption 3(a) establishes that each agent takes a convex
combination of its estimate and the estimates of its neighbors.
Assumption 3(b), together with Assumption 2, ensures that the

estimate of every agent is influenced by the estimates of every
other agent with the same frequency in the limit, i.e., all agents
are equally influential in the long run.

We now impose some rules on the agent information ex-
change. At each update time , the information exchange
among the agents may be represented by a directed graph

with the set of directed edges given by

Note that, by Assumption 2(a), we have for each
agent and all . Also, we have if and only if agent

receives the information from agent in the time interval
.

We next formally state the connectivity assumption on the
multi-agent system. This assumption ensures that the informa-
tion of any agent influences the information state of any other
agent infinitely often in time.

Assumption 4: (Connectivity) The graph is strongly
connected, where is the set of edges representing
agent pairs communicating directly infinitely many times, i.e.

We also adopt an additional assumption that the intercommu-
nication intervals are bounded for those agents that communi-
cate directly. In particular, this is stated in the following.

Assumption 5: (Bounded Intercommunication Interval)
There exists an integer such that for every ,
agent sends its information to a neighboring agent at least
once every consecutive time slots, i.e., at time or at time

or or (at latest) at time for any .
In other words, the preceding assumption guarantees that

every pair of agents that communicate directly infinitely many
times exchange information at least once every time slots.2

C. Transition Matrices

We introduce matrices , whose th column is the weight
vector , and the matrices

for all and with , where for all .
We use these matrices to describe the evolution of the agent esti-
mates associated with the algorithms introduced in Sections III
and IV. The convergence properties of these matrices as

have been extensively studied and well-established (see [1],
[5], [26]). Under the assumptions of Section III-C, the matrices

converge as to a uniform steady state distri-
bution for each at a geometric rate, i.e.,

for all . The fact that transition matrices converge at
a geometric rate plays a crucial role in our analysis of the algo-
rithms. Recent work has established explicit convergence rate
results for the transition matrices [12], [13]. These results are
given in the following proposition without a proof.

Proposition 1: Let Weights Rule, Doubly Stochasticity, Con-
nectivity, and Information Exchange Assumptions hold (cf. As-
sumptions 2, 3, 4 and 5). Then, we have the following:

2It is possible to adopt weaker connectivity assumptions for the multi-agent
model as those used in the recent work [25].
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(a) The entries of the transition matrices converge
to as with a geometric rate uniformly with
respect to and , i.e., for all , and all
and with

(b) In the absence of Assumption 3(b) [i.e., the weights
are stochastic but not doubly stochastic], the

columns of the transition matrices converge
to a stochastic vector as with a geo-
metric rate uniformly with respect to and , i.e., for all

, and all and with

Here, is the lower bound of Assumption 2, ,
is the number of agents, and is the intercommunication

interval bound of Assumption 5.

D. Convergence

In this section, we study the convergence behavior of the
agent estimates generated by the projected consensus
algorithm (3) under Assumptions 2–5. We write the update rule
in (3) as

(5)

where represents the error due to projection given by

(6)

As indicated by the preceding two relations, the evolution dy-
namics of the estimates for each agent is decomposed into
a sum of a linear (time-varying) term and a
nonlinear term . The linear term captures the effects of
mixing the agent estimates, while the nonlinear term captures
the nonlinear effects of the projection operation. This decom-
position plays a crucial role in our analysis. As we will shortly
see [cf. Lemma 3 (d)], under the doubly stochasticity assump-
tion on the weights, the nonlinear terms are diminishing in
time for each , and therefore, the evolution of agent estimates
is “almost linear”. Thus, the nonlinear term can be viewed as
a non-persistent disturbance in the linear evolution of the esti-
mates.

For notational convenience, let denote

(7)

Using this notation, the iterate and the projection error
are given by

(8)

(9)

In the following lemma, we show some relations for the
sums and , and

and for an arbitrary
vector in the intersection of the agent constraint sets. Also, we
prove that the errors converge to zero as for all
. The projection properties given in Lemma 1 and the doubly

stochasticity of the weights play crucial roles in establishing
these relations. The proof is provided in Appendix.

Lemma 3: Let the intersection set be nonempty,
and let Doubly Stochasticity assumption hold (cf. Assumption
3). Let , , and be defined by (7)–(9). Then, we
have the following.

(a) For all and all , we have
(i)

for all ;
(ii) ;

(iii) .
(b) For all , the sequences and

are monotonically nonincreasing
with .

(c) For all , the sequences and

are monotonically nonincreasing
with .

(d) The errors converge to zero as , i.e.

We next consider the evolution of the estimates
generated by method (3) over a period of time. In particular,
we relate the estimates to the estimates gen-
erated earlier in time with by exploiting the de-
composition of the estimate evolution in (5)–(6). In this, we use
the transition matrices from time to time (see Sec-
tion III-D). As we will shortly see, the linear part of the dy-
namics is given in terms of the transition matrices, while the
nonlinear part involves combinations of the transition matrices
and the error terms from time to time .

Recall that the transition matrices are defined as follows:

for all and with , where for all ,
and each is a matrix whose th column is the vector .
Using these transition matrices and the decomposition of the
estimate evolution of (5)–(6), the relation between
and the estimates at time is given by

(10)

Here we can view as an external perturbation input to the
system.
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We use this relation to study the “steady-state” behavior of a
related process. In particular, we define an auxiliary sequence

, where is given by

(11)

Since , under the doubly stochas-
ticity of the weights, it follows that:

(12)

Furthermore, from the relations in (10) using the doubly
stochasticity of the weights, we have for all and with

(13)

The next lemma shows that the limiting behavior of the agent
estimates is the same as the limiting behavior of as

. We establish this result using the assumptions on the
multi-agent model of Section III-C. The proof is omitted for
space reasons, but can be found in [27].

Lemma 4: Let the intersection set be
nonempty. Also, let Weights Rule, Doubly Stochasticity, Con-
nectivity, and Information Exchange Assumptions hold (cf.
Assumptions 2, 3, 4, and 5). We then have for all

We next show that the agents reach a consensus asymptoti-
cally, i.e., the agent estimates converge to the same point
as goes to infinity.

Proposition 2: (Consensus) Let the set be
nonempty. Also, let Weights Rule, Doubly Stochasticity, Con-
nectivity, and Information Exchange Assumptions hold (cf. As-
sumptions 2, 3, 4, and 5). For all , let the sequence
be generated by the projected consensus algorithm (3). We then
have for some and all

Proof: The proof idea is to consider the sequence ,
defined in (13), and show that it has a limit point in the set . By
using this and Lemma 4, we establish the convergence of each

and to .
To show that has a limit point in the set , we first

consider the sequence

Since for all and , we have

Taking the limit as in the preceding relation and using
Lemma 4, we conclude

(14)

For a given , using Lemma 3(c), we have

This implies that the sequence , and there-
fore each of the sequences are bounded. Since for all

using Lemma 4, it follows that the sequence is bounded.
In view of (14), this implies that the sequence has a
limit point that belongs to the set . Furthermore,
because for all , we conclude that

is also a limit point of the sequence for all . Since

the sum sequence is nonincreasing by

Lemma 3(c) and since each is converging to along a
subsequence, it follows that:

implying for all . Using this, to-
gether with the relations and

for all (cf. Lemma 4), we con-
clude

E. Convergence Rate

In this section, we establish a convergence rate result for the
iterates generated by the projected consensus algorithm
(3) for the case when the weights are time-invariant and equal,
i.e., for all and . In our multi-agent
model, this case corresponds to a fixed and complete connec-
tivity graph, where each agent is connected to every other agent.
We provide our rate estimate under an interior point assumption
on the sets , stated in Assumption 1.

We first establish a bound on the distance from the vectors of
a convergent sequence to the limit point of the sequence. This
relation holds for constant uniform weights, and it is motivated
by a similar estimate used in the analysis of alternating projec-
tions methods in Gubin et al. [21] (see the proof of Lemma 6
there).

Lemma 5: Let be a nonempty closed convex set in . Let
be a sequence converging to some , and

such that for all and all
. We then have
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Proof: Let denote the closed ball centered at a
vector with radius , i.e., .
For each , consider the sets

The sets are convex, compact, and nested, i.e.,
for all . The nonincreasing property of the sequence
implies that
for all ; hence, the sets are also nonempty. Conse-
quently, their intersection is nonempty and every point

is a limit point of the sequence . By as-
sumption, the sequence converges to , and there-
fore, . Then, in view of the definition of the sets

, we obtain for all

We now establish a convergence rate result for constant uni-
form weights. In particular, we show that the projected con-
sensus algorithm converges with a geometric rate under the In-
terior Point assumption.

Proposition 3: Let Interior Point, Weights Rule, Doubly
Stochasticity, Connectivity, and Information Exchange As-
sumptions hold (cf. Assumptions 1, 2, 3, 4, and 5). Let
the weight vectors in algorithm (3) be given by

for all and . For all , let
the sequence be generated by the algorithm (3). We
then have for all

where is the limit of the sequence , and
with and given in the Interior Point

assumption.
Proof: Since the weight vectors are given by

, it follows that:

[see the definition of in (7)]. For all , using Lemma
2(b) with the identification for each ,
and , we obtain

where the vector and the scalar are given in Assumption
1. Since , the sequence is non-
increasing by Lemma 3(c). Therefore, we have

for all . Defining the constant
and substituting in the preceding

relation, we obtain

(15)

where the second relation follows in view of the definition of
[cf. (8)].

By Proposition 2, we have for some as
. Furthermore, by Lemma 3(c) and the relation

for all and , we have that the sequence is
nonincreasing for any . Therefore, the sequence
satisfies the conditions of Lemma 5, and by using this lemma
we obtain

Combining this relation with (15), we further obtain

Taking the square of both sides and using the convexity of the
square function , we have

(16)

Since for all and , using Lemma 3(a)
with the substitutions and
for all , we see that for all

Using this relation in (16), we obtain

Rearranging the terms and using the relation
[cf. Lemma 3(a) with and

], we obtain

which yields the desired result.

III. CONSTRAINED OPTIMIZATION

We next consider the problem of optimizing the sum of
convex objective functions corresponding to agents con-
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nected over a time-varying topology. The goal of the agents is
to cooperatively solve the constrained optimization problem

(17)

where each is a convex function, representing
the local objective function of agent , and each is a
closed convex set, representing the local constraint set of agent
. We assume that the local objective function and the local

constraint set are known to agent only. We denote the op-
timal value of this problem by .

To keep our discussion general, we do not assume differentia-
bility of any of the functions . Since each is convex over the
entire , the function is differentiable almost everywhere (see
[28] or [29]). At the points where the function fails to be dif-
ferentiable, a subgradient exists and can be used in the role of a
gradient. In particular, for a given convex function
and a point , a subgradient of the function at is a vector

such that

(18)

The set of all subgradients of at a given point is denoted by
, and it is referred to as the subdifferential set of at .

A. Distributed Projected Subgradient Algorithm

We introduce a distributed subgradient method for solving
problem (17) using the assumptions imposed on the informa-
tion exchange among the agents in Section III-C. The main idea
of the algorithm is the use of consensus as a mechanism for dis-
tributing the computations among the agents. In particular, each
agent starts with an initial estimate and updates
its estimate. An agent updates its estimate by combining the
estimates received from its neighbors, by taking a subgradient
step to minimize its objective function , and by projecting on
its constraint set . Formally, each agent updates according
to the following rule:

(19)

(20)

where the scalars are nonnegative weights and the scalar
is a stepsize. The vector is a subgradient of the

agent local objective function at .
We refer to the method (19)–(20) as the projected subgra-

dient algorithm. To analyze this algorithm, we find it conve-
nient to re-write the relation for in an equivalent
form. This form helps us identify the linear effects due to agents
mixing the estimates [which will be driven by the transition ma-
trices ], and the nonlinear effects due to taking subgra-

dient steps and projecting. In particular, we re-write the relations
(19)–(20) as follows:

(21)

(22)

The evolution of the iterates is complicated due to the non-
linear effects of the projection operation, and even more compli-
cated due to the projections on different sets. In our subsequent
analysis, we study two special cases: 1) when the constraint sets
are the same [i.e., for all ], but the agent connectivity is
time-varying; and 2) when the constraint sets are different,
but the agent communication graph is fully connected. In the
analysis of both cases, we use a basic relation for the iterates

generated by the method in (22). This relation stems from
the properties of subgradients and the projection error and is es-
tablished in the following lemma.

Lemma 6: Let Assumptions Weights Rule and Doubly
Stochasticity hold (cf. Assumptions 2 and 3). Let be
the iterates generated by the algorithm (19)–(20). We have for
any and all

Proof: Since , it fol-
lows from Lemma 1(b) and from the definition of the projection
error in (22) that for all and all

By expanding the term , we obtain

Since is a subgradient of at , we have

which implies

By combining the preceding relations, we obtain
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Since , using the convexity of the
norm square function and the stochasticity of the weights ,

, it follows that:

Combining the preceding two relations, we obtain

By summing the preceding relation over and
using the doubly stochasticity of the weights, i.e.

we obtain the desired relation.
1) Convergence When for all : We first study the

case when all constraint sets are the same, i.e., for all
. The next assumption formally states the conditions we adopt

in the convergence analysis.
Assumption 6: (Same Constraint Set)
(a) The constraint sets are the same, i.e, for a

closed convex set .
(b) The subgradient sets of each are bounded over the set

, i.e., there is a scalar such that for all

The subgradient boundedness assumption in part (b) holds
for example when the set is compact (see [28]).

In proving our convergence results, we use a property of the
infinite sum of products of the components of two sequences. In
particular, for a scalar and a scalar sequence , we
consider the “convolution” sequence

We have the following result,
presented here without proof for space reasons (see [27]).

Lemma 7: Let and let be a positive scalar
sequence. Assume that . Then

In addition, if then

Our goal is to show that the agent disagreements
converge to zero. To measure the agent

disagreements in time, we consider their av-
erage , and consider the agent disagreement
with respect to this average. In particular, we define

In view of (21), we have

When the weights are doubly stochastic, since
, it follows that:

(23)

Under Assumption 6, the assumptions on the agent weights and
connectivity stated in Section III-C, and some conditions on the
stepsize , the next lemma studies the convergence properties
of the sequences for all (see Appendix for
the proof).

Lemma 8: Let Weights Rule, Doubly Stochasticity, Connec-
tivity, Information Exchange, and Same Constraint Set Assump-
tions hold (cf. Assumptions 2, 3, 4, 5, and 6). Let be the
iterates generated by the algorithm (19)–(20) and consider the
auxiliary sequence defined in (23).

(a) If the stepsize satisfies , then

(b) If the stepsize satisfies , then

The next proposition presents our main convergence result
for the same constraint set case. In particular, we show that the
iterates of the projected subgradient algorithm converge
to an optimal solution when we use a stepsize converging to zero
fast enough. The proof uses Lemmas 6 and 8.

Proposition 4: Let Weights Rule, Doubly Stochasticity, Con-
nectivity, Information Exchange, and Same Constraint Set As-
sumptions hold (cf. Assumptions 2, 3, 4, 5, and 6). Let
be the iterates generated by the algorithm (19)–(20) with the
stepsize satisfying and In addi-
tion, assume that the optimal solution set is nonempty. Then,
there exists an optimal point such that

Proof: From Lemma 6, we have for and all
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By dropping the nonpositive term on the right hand side, and by
using the subgradient boundedness, we obtain

(24)

In view of the subgradient boundedness and the stochasticity of
the weights, it follows:

implying, by the doubly stochasticity of the weights, that

By using this in relation (24), we see that for any , and
all and

By letting , and by re-arranging the terms and
summing these relations over some arbitrary window from
to with , we obtain for any ,

(25)

By letting and in relation (25), and using
and

[which follows by Lemma 8], we obtain

Since for all , we have for all .
Since , it follows that for all

. This relation, the assumption that , and
imply

(26)

We next show that each sequence converges to the
same optimal point. By dropping the nonnegative term involving

in (25), we have

Since and ,
it follows that the sequence is bounded for each and

Thus, the scalar sequence is convergent
for every . By Lemma 8, we have

. Therefore, it also follows that is bounded
and the scalar sequence is convergent for every

. Since is bounded, it must have a limit point,
and in view of [cf. (26)] and the
continuity of (due to convexity of over ), one of the limit
points of must belong to ; denote this limit point by

. Since the sequence is convergent, it follows
that can have a unique limit point, i.e., .
This and imply that each of the
sequences converges to the same .

2) Convergence for Uniform Weights: We next consider a
version of the projected subgradient algorithm (19)–(20) for the
case when the agents use uniform weights, i.e.,
for all , , and . We show that the estimates generated
by the method converge to an optimal solution of problem (17)
under some conditions. In particular, we adopt the following
assumption in our analysis.

Assumption 7: (Compactness) For each , the local constraint
set is a compact set, i.e., there exists a scalar such that

An important implication of the preceding assumption is that,
for each , the subgradients of the function at all points
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are uniformly bounded, i.e., there exists a scalar such
that

(27)

The next proposition presents our convergence result for the
projected subgradient algorithm in the uniform weight case. The
proof uses the error bound relation established in Lemma 2
under the interior point assumption on the intersection set

(cf. Assumption 1) together with the basic subgradient
relation of Lemma 6.

Proposition 5: Let Interior Point and Compactness Assump-
tions hold (cf. Assumptions 1 and 7). Let be the iterates
generated by the algorithm (19)–(20) with the weight vectors

for all and , and the stepsize sat-
isfying and . Then, the sequences

, converge to the same optimal point, i.e.

Proof: By Assumption 7, each set is compact, which
implies that the intersection set is compact. Since
each function is continuous (due to being convex over ),
it follows from Weierstrass’ Theorem that problem (17) has an
optimal solution, denoted by . By using Lemma 6 with

, we have for all and

(28)

For any , define the vector by

where is the scalar given in Assumption 1,
, and (cf. Lemma

2). By using the subgradient boundedness [see (27)] and adding
and subtracting the term in (28), we obtain

Using the subgradient definition and the subgradient bounded-
ness assumption, we further have for all and

Combining these relations with the preceding and using the no-
tation , we obtain

(29)

Since the weights are all equal, from relation (19) we have
for all and . Using Lemma 2(b) with the

substitution and , we
obtain for all and

Since , we have
for all and , Furthermore, since for all ,

using Assumption 7, we obtain . Therefore,
for all and

(30)

Moreover, we have for all and , implying

In view of the definition of the error term in (22) and the
subgradient boundedness, it follows:

which when substituted in relation (30) yields for all and

(31)

We now substitute the estimate (31) in (29) and obtain for all
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(32)

Note that for each , we can write

Therefore, by summing the preceding relations over , we have
for all

which when substituted in (32) yields

where . By re-ar-
ranging the terms and summing the preceding relations over
for for some arbitrary and with ,
we obtain

(33)

By setting and letting , in view of ,
we see that

Since by Lemma 2(a) we have , the relation
holds for all , thus implying

that

In view of the former of the preceding two relations, we have

while from the latter, since and
[because for all ], we obtain

(34)

Since for all and [in view of
], from (31) it follows that:

Finally, since [see (22)],
in view of , , and , we see
that for all . This and the
preceding relation yield

We now show that the sequences , con-
verge to the same limit point, which lies in the optimal solution
set . By taking limsup as in relation (33) and then
liminf as , (while dropping the nonnegative terms on
the right hand side there), since , we obtain for any

implying that the scalar sequence is con-
vergent for every . Since for all
, it follows that the scalar sequence is also con-

vergent for every . In view of
[cf. (34)], it follows that one of the limit points of must
belong to ; denote this limit by . Since is
convergent for , it follows that .
This and for all imply that each of the
sequences converges to a vector , with .

IV. CONCLUSION

We studied constrained consensus and optimization problems
where agent ’s estimate is constrained to lie in a closed convex
set . For the constrained consensus problem, we presented
a distributed projected consensus algorithm and studied its
convergence properties. Under some assumptions on the agent
weights and the connectivity of the network, we proved that
each of the estimates converge to the same limit, which belongs
to the intersection of the constraint sets . We also showed
that the convergence rate is geometric under an interior point
assumption for the case when agent weights are time-invariant
and uniform. For the constrained optimization problem, we
presented a distributed projected subgradient algorithm. We
showed that with a stepsize converging to zero fast enough, the
estimates generated by the subgradient algorithm converges to
an optimal solution for the case when all agent constraint sets
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are the same and when agent weights are time-invariant and
uniform.

The framework and algorithms studied in this paper motivate
a number of interesting research directions. One interesting fu-
ture direction is to extend the constrained optimization problem
to include both local and global constraints, i.e., constraints
known by all the agents. While global constraints can also be ad-
dressed using the “primal projection” algorithms of this paper,
an interesting alternative would be to use “primal-dual” subgra-
dient algorithms, in which dual variables (or prices) are used to
ensure feasibility of agent estimates with respect to global con-
straints. Such algorithms have been studied in recent work [30]
for general convex constrained optimization problems (without
a multi-agent network structure).

Moreover, we presented convergence results for the dis-
tributed subgradient algorithm for two cases: agents have
time-varying weights but the same constraint set; and agents
have time-invariant uniform weights and different constraint
sets. When agents have different constraint sets, the conver-
gence analysis relies on an error bound that relates the distances
of the iterates (generated with constant uniform weights) to
each with the distance of the iterates to the intersection set
under an interior point condition (cf. Lemma 2). This error
bound is also used in establishing the geometric convergence
rate of the projected consensus algorithm with constant uniform
weights. These results can be extended using a similar analysis
once an error bound is established for the general case with
time-varying weights. We leave this for future work.

APPENDIX

In this Appendix, we provide the missing proofs for some of
the lemmas presented in the text.

Proof of Lemma 3:
(a) For any and , we consider the term

. Since for all , it follows that for all
. Since we also have , we have

from Lemma 1(b) that for all and all

which yields the relation in part (a)(i) in view of relation
(9).
By the definition of in (7) and the stochasticity of
the weight vector [cf. Assumption 3(a)], we have
for every agent and any

(35)

Thus, for any , and all and

where the inequality holds since the vector
is a convex combination

of the vectors and the squared norm is

a convex function. By summing the preceding relations
over , we obtain

Using the doubly stochasticity of the weight vectors
, i.e., for all and [cf. Assump-

tion 3(b)], we obtain the relation in part (a)(ii), i.e., for all
and

Similarly, from relation (35) and the doubly stochasticity
of the weights, we obtain for all and all

thus showing the relation in part (a)(iii).
(b) For any , the nonincreasing properties

of the sequences and
follow by combining the relations

in parts (a)(i)–(ii).
(c) Since for all and , using

the nonexpansiveness property of the projection operation
[cf. (2)], we have for all and

Summing the preceding relations over all
yields for all

(36)

The nonincreasing property of the sequences
and follows

from the preceding relation and the relation in part
(a)(iii).

(d) By summing the relations in part (a)(i) over ,
we obtain for any and all

Combined with the inequality
of part (a)(ii), we further obtain for all

Summing these relations over for any yields
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By letting , we obtain

implying for all .
Proof of Lemma 8:

(a) Using the relations in (22) and the transition matrices
, we can write for all , and for all and with

Similarly, using the transition matrices and relation (23),
we can write for and for all and with

Therefore, since , we have for

Using the estimate for of Proposi-
tion 1(a), we have for all

with and
Hence, using this relation

and the subgradient boundedness, we obtain for all and

(37)

We next show that the errors satisfy
for all and In view of the relations in (22), since

for all and , and the vector is
stochastic for all and , it follows that for all
and . Furthermore, by the projection property in Lemma
1(b), we have for all and

where in the last inequality we use (see
Assumption 6). It follows that for all
and . By using this in relation (37), we obtain

(38)

By taking the limit superior in relation (38) and using the
facts (recall ) and , we obtain
for all

Finally, since and , by Lemma
7 we have
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In view of the preceding two relations, it follows that
for all .

(b) By multiplying the relation in (38) with , we obtain

By using and
for any and , we have

where . Therefore, by
summing and grouping some of the terms, we obtain

In the preceding relation, the first term is summable
since . The second term is summable since

. The third term is also summable by
Lemma 7. Hence,
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