
MIT Open Access Articles

Safety-Driven Design for Software-
Intensive Aerospace and Automotive Systems

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Stringfellow, M.V., N.G. Leveson, and B.D. Owens. “Safety-Driven Design for Software-
Intensive Aerospace and Automotive Systems.” Proceedings of the IEEE 98.4 (2010): 515-525. ©
Copyright 2010 IEEE

As Published: http://dx.doi.org/10.1109/jproc.2009.2039551

Publisher: Institute of Electrical and Electronics Engineers

Persistent URL: http://hdl.handle.net/1721.1/62231

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/62231

INV ITED
P A P E R

Safety-Driven Design for
Software-Intensive Aerospace
and Automotive Systems
A new hazard-analysis technique, that gives system designers the information

they need to make good decisions before their designs are completed,

has been successfully applied to many diverse systems.

By Margaret V. Stringfellow, Nancy G. Leveson, Member IEEE, and Brandon D. Owens

ABSTRACT | Too often, systems are designed and then an

attempt is made to add safety features or to prove that the design

is safe after the fact. Safety has to be designed into a system from

the startVit cannot be effectively added on to amature design. In

addition, the increasing use of software is changing the nature of

accident causation in software-intensive systems and our safety

engineering techniquesmust change accordingly. This article will

describe a new hazard analysis technique, called STPA, which is

effective on software-intensive systems. An advantage of this

technique is that it can be used to drive the earliest design

decisions and then proceed in parallel with ensuing design

decisions and design refinement. Not only is this approach more

effective, but the cost is nomore than amore conventional design

process and potentially much cheaper.

KEYWORDS | Accident; complexity; control; hazard; process;

risk; safety; safety-driven design; software; STAMP; STPA

I . INTRODUCTION

While the traditional approach to design of safety-critical

systems has been very successful in the aerospace and

automotive industries, we believe that relative simplicity

and the ability to effectively isolate and simplify the
interfaces between system components has been a critical

factor in this success. These factors, however, are

changing: 1) aerospace and automotive software is

becoming more complex along with the systems in which

it is embedded and 2) software is being used to implement

complex interactions and interfaces between previously

independent components. It is not surprising, then, that

the nature of accidents is changing and more are being

attributed to software-related problems [9] or to dysfunc-
tional interactions among system components (many of

these interactions controlled by software) rather than to

random individual component failure. Current hazard1

analysis techniques were developed for the simpler,

loosely coupled systems of the past and are becoming

less effective as system complexity and coupling increases.

Because the primary cause of accidents in the older

systems was component failure, the hazard analysis
techniques and safety design techniques focused on

identifying critical components and either preventing

their failure (increasing component integrity) or providing

redundancy to mitigate the effects of component failure.

One standard approach is to identify critical components

(fault hazard analysis) at the system level. In the auto-

motive and commercial aerospace communities, once the

software component has been assigned a criticality level,
the component is implemented using varying levels of

assurance techniques depending on the level assigned to it.

Often, no special hazard or safety analysis is applied to the

software (and sometimes not even on the hardware com-

ponents). In contrast, in the defense and space world and

occasionally in other industries, hazard analysis is com-

monly applied at the system level and used to identify

Manuscript received August 10, 2009; revised December 7, 2009. Current version

published March 31, 2010. This research was partially supported by JPL University

Subcontract 1297013 and NSF grant 0527660.

M. V. Stringfellow and N. G. Leveson are with the MIT Complex Systems Research

Laboratory, Cambridge, MA 02139 USA (email: mstring@alum.mit.edu;

leveson@mit.edu).

B. D. Owens was with the MIT Complex Systems Research Laboratory, Cambridge, MA

02139 USA. He is now at the University of California Space Sciences Laboratory,

Berkeley, CA 94720 USA (e-mail: owensbd@alum.mit.edu).

Digital Object Identifier: 10.1109/JPROC.2009.2039551

1We define a hazard as, BA system state or set of conditions that,
together with a particular set of worst-case environmental conditions, will
lead to an accident (loss) [1].[

Vol. 98, No. 4, April 2010 | Proceedings of the IEEE 5150018-9219/$26.00 �2010 IEEE

system hazards, which are used to guide system design to
eliminate or control the hazards. But once again, rarely is

anything done other than applying good software engi-

neering techniques to the software.

There are several limitations of these approaches. First,

current hazard analysis techniques essentially treat soft-

ware functions as if they were hardware functions,

assuming that they will fail randomly and that unreliability

of the software will be the major software problem. In fact,
however, the vast majority of software-related accidents

have involved errors in the requirements, not failures of

the software to correctly implement the requirements, i.e.,

the software was working completely correctly and reliably

with respect to the requirements provided to the software

developers [7].

A second major problem is that most common hazard

analysis techniques, e.g., fault tree analysis, FMECA
(failure modes and effects criticality analysis) or HAZOP,

work on an existing design. But systems and system

designs have become so complex that waiting until a

design is completed to perform a safety analysis on it is

impractical. Even if by dint of sheer will it is possible to

perform such an analysis, changing the design after the fact

is usually impractical (financially and intellectually).

Much of the safety effort, therefore, goes into proving
that existing designs are safe rather than building designs

that are safe from the beginning. The only hope for

practical and cost-effective safe design approaches in these

systems is to design safety in from the beginning. In safety-
driven design, the information needed by the designers to

make good decisions is provided to them before they create

the design and the analyses are performed in parallel to the

design process rather than after it. We believe that such
design approaches will not only cost a lot less but will

result in much safer systems.

In this paper, we describe a new hazard analysis

approach, and its use in safety-driven design. Because

current hazard analysis techniques start from a completed

design and assume that accidents are caused by component

failures (which is not true for software), a new approach to

hazard analysis is needed. That, in turn, requires an
expanded model of causality upon which the hazard

analysis technique can be based. In this paper, we briefly

describe the expanded causality model (STAMP), which

has been described in detail elsewhere [10], and provide a

detailed description of a new hazard analysis method

called STPA (Systems Theoretic Process Analysis) that can

be used to handle software contributions to accidents in

existing systems, or can be used to create safety-driven
design for new systems. A detailed example, using an

aerospace system (a planetary lander) is provided.

II . CURRENT STATE OF THE ART

Current hazard analysis techniques are basically bottom-up

or top-down. Bottom-up hazard analysis techniques, such as

FMECA, hypothesize component failures and determine
whether the failures will result in system hazards. This

approach quickly becomes impractical for hardware compo-

nents when there are thousands and perhaps tens of

thousands in the design. And it ignores problems that occur

due to multiple component failures (and all their potential

combinations) as well as hazards arising from dysfunctional

interactions among non-failing components, i.e., interface

errors. Attempting to identify all possible incorrect behavior
of software and tracing that to the system behavior is clearly

impractical as software can potentially do thousands and

perhaps millions of things wrong.

Top-down hazard analysis methods, such as Fault

Trees, while working better than bottom-up techniques for

relatively simple systems, also explode in size for complex

systems and quickly become impractical for systems with

functionally complex software components. Because of the
impracticality of doing anything else, usually a box is

assigned in the fault tree to software with the content

Bsoftware fails[or Bsoftware error[and then some

arbitrary failure density function is assigned to the box

[13]. This numerical information provides no useful input

to the designers or implementers of the software (besides

being unmeasurable and thus impossible to derive) and

appears to be useful (even if it made sense) only in an
after-the-fact certification argument.

Something new is clearly needed to maintain the same

levels of safety as we increase the complexity of our

designs and systems.

III . AN EXPANDED MODEL OF
ACCIDENT CAUSALITY BASED ON
SYSTEMS THEORY

Current models or assumptions about the cause of ac-

cidents are based on reliability theory and assume that

accidents arise from failures of system components. How-

ever, as we have noted many times before, most software-

related losses arise from requirements errors, i.e., the

software does not fail in the same sense as hardware, but

instead it operates exactly as intended by the designers [7].
These flawed requirements usually involve either

a) incomplete or wrong assumptions about the operation

of the controlled system or the required operation of the

computer or b) unhandled controlled-system states and

environmental conditions. Merely trying to get the soft-

ware Bcorrect[(satisfy its requirements) or to make it

reliable will not make it safer under these conditions.

BCorrect[or Breliable[software operation may, in fact,
result in unsafe system states if:

• The software correctly implements its require-

ments but the specified (required) behavior is

unsafe from a system perspective;

• The software requirements do not specify some

particular behavior required for system safety (they

are incomplete); or

Stringfellow et al. : Safety-Driven Design for Software-Intensive Aerospace and Automotive Systems

516 Proceedings of the IEEE | Vol. 98, No. 4, April 2010

• The software has unintended (and unsafe)
behavior beyond what is specified in the

requirements.

While these conditions may also be true for hardware,

we can usually thoroughly test hardware and remove the

requirements and design errors before using the system.

Thus the only remaining problems almost always involve

some type of component failure. But software can only be

tested partially prior to use and only a small part of the
potential software behavior can be validated to be safe

through testing. In complex systems, formal verification

methods to validate the safety of the software under all the

conditions listed above are not practical.

The safety of the operating software in a particular

system is also a function of the algorithm implemented, not

simply whether there are no coding or implementation

errors in that algorithm. As an example, consider a simple
altitude switch that issues a signal when a particular

altitude is reached. In this example, safety involves more

than simply getting the software correct: a different

algorithm is required for safety depending on how the

switch is used by the encompassing system. For example,

assume that there are three altimeters reporting the current

altitude to the switch (redundancy is needed because of the

possibility of a hardware altimeter failure). If the signal
sent by the altitude switch is safety increasing, i.e., the signal

is used to maintain safety such as lowering the landing gear

in an aircraft, then the algorithm used in the altitude switch

should require that any of the three altimeters report

reaching the threshold before issuing the signal. The safety

of the system will be compromised if the signal is not sent

when the altitude has been reached. On the other hand, if

the signal is safety decreasing, e.g., the signal is used to fire a
missile, the algorithm should probably require all three

altimeters to report the altitude as reaching the threshold.

Safety in this second case is compromised by inappropri-

ately sending the signal when the altitude has not been

reached. Safety, in this example, is not just dependent on

the software executing correctly but depends on the

appropriateness of the particular algorithm used with

respect to the safety of the entire system.
To handle software, the simple accident causality

model based on component failure that was developed for

relatively simple electro-mechanical systems needs to be

changed. STAMP (Systems-Theoretic Accident Model and

Process) is a new causality model that expands the

potential causes of accidents considered.

Rather than having reliability theory as its foundation,

STAMP is based on systems theory. In systems theory,
focus is on systems as a whole, not on the parts taken

separately. There are some properties of systems that can

only be treated adequately in their entirety, taking into

account all the social and technical aspects of these system
or emergent properties. The properties derive from the

relationships among the parts of the systems, i.e., how the

system components interact and fit together.

Complex systems can be modeled as a hierarchy of
organizational levels, where each level is more complex

than the one below and the levels are characterized by

emergent properties, which are irreducible and represent

constraints on the degree of freedom of the components at

a lower level of the hierarchy. Safety is such an emergent

propertyVit is not a component property. In the altitude

switch example above, a particular implementation

(algorithm) may be safe in one system and unsafe in
another, depending on how the component is used and the

design of the system as a whole. Thus safety can only be

analyzed in the context of the whole.

Every controller must contain a model of the system,

plant or process it is controlling [1]. For example, a ther-

mostat contains a model of the controlled process (room or

vehicle temperature) that includes the current room tem-

perature, the desired temperature, and some simple
control laws about how temperature can change. In a

human, we often call this model a mental model. Accidents

often occur when the process model used does not match

the true state of the process and incorrect control com-

mands are given, correct ones are not given, correct com-

mands are given at the wrong time (too early or too late),

or control stops too soon. Most software-related accidents

result from these types of mismatches between the model
of the process being used by the software and the real

process state. For example, the software thinks the

spacecraft has reached the planet surface (when it has

not) and turns off the descent engines prematurely, which

is what is thought to have happened with the Mars Polar

Lander [5], [22].

How do the process model and the process become

inconsistent? The model may be wrong from the beginning,
there may be missing or incorrect feedback to update the

model as the process changes, the updating algorithm may

be incorrect, or the control algorithm may not properly

account for time lags in the control loop. The result may be

uncontrolled disturbances, unhandled process states, in-

advertent commanding of the system into a hazardous

state, or unhandled or incorrectly handled system compo-

nent failures. Note that this theory includes component
failure as a causal factor in accidents, but it is only one

aspect of causality.

Thus, in STAMP, safety is viewed as a dynamic control

problem rather than simply a component failure or

component reliability problem. For example, the O-ring

did not control the propellant gas release in the Challenger

spacecraft loss by sealing a gap in a field joint. The software

did not adequately control the descent speed of the Mars
Polar Lander. The events that occur prior to and during an

accident, while clearly important in understanding the

causality, are the result of the inadequate control. They

result from lack of enforcement of the safety constraints

(constraints on the system state or behavior required to

ensure safety) by the system design or by operations.

Accidents occur when the control structure or control

Stringfellow et al.: Safety-Driven Design for Software-Intensive Aerospace and Automotive Systems

Vol. 98, No. 4, April 2010 | Proceedings of the IEEE 517

actions do not enforce the safety constraints, resulting in
unhandled environmental disturbances or conditions,

unhandled or uncontrolled component failures, or unsafe

interactions among system components.

The control structure is a graphical representation of

the control flow between the system elements. Enforce-

ment of the safety constraints is accomplished by

decomposing the system into a hierarchy of abstract

controllers. Each controller levies constraints to lower-
level controllers in order to control their behavior. At each

level of functional decomposition, each functional element

is assigned responsibility for the control of the functional

interactions within the element while one hierarchically

superior element is assigned responsibility for control of

the interactions across elements. Note that these assign-

ments are not necessarily a description of the software and

hardware architecture, but a representation of the
functions the system must perform and how the functions

are related to each other. Using the results of the

functional analysis, a high-level system control structure

is designed. A more in-depth discussion of control

structures can be found elsewhere [13].

An example system control structure for a spacecraft is

shown in Fig. 1. In the example (and in current standard

spacecraft architectures), interactions between spacecraft
functional elements are controlled by the spacecraft

command and data handling functional element. The

control structure can be evolved iteratively to capture

lower-level interactions and inform the lower-level design

as will be discussed later in the article.

A second source of risk occurs when the safety control
structure degrades or changes over time. Systems tend to

migrate toward states of higher risk under competitive

pressures and economic constraints [19] or because of

other factors such as complacency when no losses have

occurred for a while. These unsafe changes must either be

handled in the design or detected and corrected during

system operation.

A third cause of accidents is related to the occurrence
of multiple controllers in a system where the control

actions are inadequately coordinated among the control-

lers. For example, two aircraft collided over southern

Germany in 2002 when one pilot followed the instructions

given by the ground air traffic controller while the other

pilot followed the instructions provided by TCAS, an

airborne collision avoidance system. The two sets of

instructions were not coordinated, resulting in the deaths
of all aboard the two aircraft.

Using this causality model for accidents, a more

powerful hazard analysis technique can be created that is

effective not only for hardware components of systems

but for software components as well, as described in

Section V.

IV. STPA AND SAFETY DRIVEN DESIGN
OVERVIEW

An important advantage of the new causality model and

new hazard analysis technique on which it is based, is that

hazard analysis does not require a completed design. The

technique can be applied as soon as the high-level system

accidents and hazards are known. The first design

decisions are made on the basis of high-level system safety
constraints derived from the system hazards, at which

point the design and the hazard analysis are refined in

parallel, each driving the other in an iterative process.

The name of the new hazard analysis technique is

STPA (Systems Theoretic Process Analysis). The objec-

tives, as described in [10], are to identify instances of

inadequate control that could lead to the presence of

hazards and the safety-related constraints necessary to
ensure acceptable risk. Furthermore, performing STPA

produces information about how the safety constraints

may be violated. This information can be used to control,

eliminate, and mitigate hazards in the system design and

operation. Although the first steps of STPA are similar to

those performed in other hazard analysis techniques, the

later steps either deviate from traditional practice or

provide a rigorous framework for doing what is tradition-
ally done in an ad hoc manner.

The first step in safety-driven design is to identify

accidents or unacceptable loss events, such a loss of

vehicle, loss of life, or a great deal of money. The next step

is to define the hazardous states in the system that would

allow accidents to occur. These hazards are then translated

into safety constraints on system state and behavior so that

Fig. 1. Control Structure. Solid arrows down represent control in the

form of directive(s) or command(s). Solid arrows up represent

feedback in the form of sensor measurement(s). Dashed lines

represent physical or informational interaction other than

control or feedback interactions.

Stringfellow et al. : Safety-Driven Design for Software-Intensive Aerospace and Automotive Systems

518 Proceedings of the IEEE | Vol. 98, No. 4, April 2010

the hazardous states cannot occur. For example, the
translation of hazard to safety constraint in an automated

train door controller is simple:

Hazard 1. A person is present in the doorway when the

doors are closing.

The related system-level safety constraint is:

Safety Constraint 1: Train doors must not close while

anyone is in the doorway.

Various types of design features could be used to

enforce this constraint, such as motion detectors,

mechanical interlocks, etc. Choosing amongst possible

safety-related design decisions to enforce Safety Constraint
1 will clearly affect the cost and performance of the overall

system. By considering the safety impact of design

decisions early, engineers can make trades between safety,

performance, and cost in an informed fashion, rather than

suffering unexpected costs when trying to add on safety

(often in the form of additional fault protection) to an

already complete design.

After the high-level hazard analysis is created, the
overall control structure of the system is designed. For a

spacecraft, this structure may contain logical components

like attitude and articulation control, science data

collection, communications signal processing, propulsion,

etc. Once the high-level design is completed, the safety

design process proceeds iteratively using STPA throughout

the layers of abstraction in the control structure. The

required safety constraints for system components can be
generated, and then design decisions made to enforce

those constraints or the safety constraints may be refined

to a lower level of abstraction. As design decisions are

made and safety constraints identified, they are analyzed

with STPA. The process continues to iteratively refine and

generate ever more detailed constraints and design

decisions in parallel. Just as in any system engineering
process, requirements, or shall statements, are levied on

the system in order to accomplish the system-level goals.

Constraints, on the other hand, are requirements levied on

the system to constrain system behavior as it seeks to

satisfy system goals and fulfill requirements. In safety-

driven design, requirements are decomposed from system

level goals and are created in parallel with safety

constraints. More details about this safety-driven process
can be found in [21] and [17]. An example is provided in

the next section.

V. DETAILED DESCRIPTION OF
STPA AND ITS USE IN SAFETY
DRIVEN DESIGN

Underlying the STPA process is the notion that hazards are

eliminated or controlled through system design. Fig. 2

presents a generic, low-level process control loop in STPA.

As seen in the figure, the control input is a reference
signal. The controller uses the control input, in conjunc-

tion with received measurements, to generate commands.

Continuing along the loop, the command is sent to the

actuator, which implements the command through the

arrow labeled U. The U vector refers to actions of the

actuator that influence the controlled process. The control

algorithm used by the controller is based on an internal

process model of the controlled process. The controlled
process, or plant, is subject to process inputs and

disturbances. The process output may become an input

into another linked process control loop. The sensors

measure the output resulting from the actuator’s actions

and disturbances, and generate measurements that are

then fed into the estimator.

Fig. 2. Generic STPA low-level process control loop.

Stringfellow et al.: Safety-Driven Design for Software-Intensive Aerospace and Automotive Systems

Vol. 98, No. 4, April 2010 | Proceedings of the IEEE 519

Depending on the particular system, the control input
may be referred to as a goal, plan, sequence, directive or

set point in spacecraft or automotive engineering parlance.

The controller may send directives to a lower-level con-

troller rather than an actuator in order to affect control on

that process. Similarly, the lower-level control loop, rather

than a sensor, may pass measurements or status informa-

tion (such as its health and other components of its current

state) to the higher-level control loop.
STPA, as described above, is based on the concept of

controlling hazards rather than eliminating component

failures (which are only one cause of hazards). When a

safety constraint is violated, hazardous states arise and

accidents can occur. For example, if the physical process

being controlled is the landing of a spacecraft, one

potential accident is that the spacecraft crashes into the

surface of the planet and is consequently destroyed. The
related hazard (H1) is that the spacecraft comes into

contact with the planetary surface in an uncontrolled

descent. The spacecraft could be inadequately controlled

and the hazardous state could occur if, for example, the

landing controller directs the thrusters to turn off early. A

control flaw, such as an incorrectly calibrated velocity

sensor, could contribute to inadequate control of the

landing process. For this example, the system-level safety
constraints (SC 1 and SC 2) and some related design

decisions (DD 1, DD 2, and DD 3) to control them are:2

SC 1: The spacecraft must control its terminal descent to

the surface of Mars. (# DD 1, DD 2, DD 3)

SC 2: The spacecraft must be protected from impact

with the surface. (#DD 2)

Rationale: The spacecraft structure is susceptible to
damage from rocks even at low impact velocity.

DD 1: Thrusters on the spacecraft will be used to

provide reverse thrust and slow the spacecraft descent.

(" SC 1)

DD 2: When the spacecraft is within TBD meters of

the planet surface, pressurized, gas-filled balloons will

inflate around the spacecraft to protect the spacecraft

structure during the impact of landing. ("SC 1, SC 2)
DD 3: A vertical velocity sensor will measure

spacecraft velocity during descent and ensure that

reverse thrust is not stopped prematurely. ("SC 1)

Each safety constraint is analyzed using STPA. Starting
from the safety constraint to control the hazard, inadequate
control actions that could violate the safety constraint are

identified. An inadequate control action is an action or

inaction by the controller that leads to the violation of a

safety constraint. The four possible types of inadequate

control are:

1) A required action is not provided or is inade-

quately executed.
2) An incorrect or unsafe action is provided.

3) A potentially correct or adequate control action

is provided at the wrong time (too late or too

early).

4) A correct control action is stopped too soon or

continued too long.

The analyst takes each of the safety constraints and,

using these four general types of inadequate control,
identifies the specific types of inadequate control that

could be related to each safety constraint. For example,

for SC 1:

SC 1: The spacecraft must control its terminal descent to

the surface of Mars. (#DD 1, DD 2, DD 3)

ICA 1: Spacecraft descent control is not engaged.

ICA 2: Spacecraft disengages descent control.
ICA 3: Spacecraft descent control is activated too

late.

ICA 4: Spacecraft descent control is de-activated

too soon.

The next step in the STPA process is the identification

of control flaws and inadequate control executions in the

current system design. Control flaws are the mechanisms
that could lead to inadequate control actions due to errors

in the control algorithm, poor understanding of the

process, or poor coordination between multiple control-

lers. Control flaws are identified through inspecting the

process control loop to determine how the system can

produce an inadequate control action. For example, the

inadequate control action BSpacecraft descent control is

not engaged[may result if a control input to initiate
descent is not received by the Mars Lander Estimator and

Controller. The general types of control flaws are:

1) Design of the control algorithm does not enforce

constraints

• Flaw(s) in creation process

• Process changes without appropriate change in

control algorithm (asynchronous evolution)

• Incorrect modification or adaptation
2) Process models inconsistent, incomplete, or

incorrect

• Flaw(s) in creation process

• Flaw(s) in updating process

• Inadequate or missing feedback

� Not provided in system design

� Communication flaw

2The intent specification structure [8] we use for specifying systems
includes both the rationale for design decisions (denoted in the italics)
and links (denoted by arrows in the text) to ensure complete traceability
between requirements and design. Often, the rationale for a design choice
or requirement goes unrecorded. As the project evolves or time passes, the
perhaps once-obvious rationale for a design decision is lost. In addition, it
may be difficult to identify the parts of the design related to a particular
safety constraint when changes are required. The discovery of new
environment parameter values could require changes in all the design
affected by an assumption made using outdated values, and engineers
must be able to find all the affected parts of the design to safely make the
necessary changes. It is critical that rationale be made obvious and that
safety-related constraints and decisions are traceable to the parts of the
implementation they affect.

Stringfellow et al. : Safety-Driven Design for Software-Intensive Aerospace and Automotive Systems

520 Proceedings of the IEEE | Vol. 98, No. 4, April 2010

� Time lag
� Inadequate sensor operation

• Time lags and measurement inaccuracies not

accounted for

• Expected process inputs are wrong or missing

• Expected control inputs are wrong or missing

• Disturbance model is wrong

� Amplitude, frequency, or period is out of

range
� Unidentified disturbance

3) Inadequate coordination among controllers and

decision makers

Inadequate execution of a control action may occur

because of a communication flaw (such as a communica-

tion line failure), a failure of the mechanisms that actuate

control (such as a motor failure), or time lags (such as the

sluggish response of the motor; perhaps an indication that
the motor is soon to fail). In other words, inadequate

control execution can occur when the process model is

correct and the correct control action is selected, but the

control action is not successfully applied due to inadequate

actuator or sensor operation, time lag, or a communication

flaw. For example, if the descent sensors fail, the proper

measurements will not be received by the Mars Lander

landing controller, which may lead to the spacecraft not
limiting and controlling the descent velocity. The inade-

quate control execution types are:

1) Communication flaw

2) Inadequate actuator operation

3) Time lag

Fig. 3 shows some of these flaws superimposed on a
control loop. STPA involves drawing the control loops and

applying the types of control flaws and inadequate control

execution to a particular safety constraint and thus

identifying the ways they could occur.

Continuing the Mars Lander example, inadequate

control actions, control flaws, and inadequate control

executions can be identified for SC 1:

SC 1: The spacecraft must control its terminal descent to

the surface of Mars. (#DD 1, DD 2, DD 3)

ICA 1: Spacecraft descent control is not engaged.

CF 1.1: The spacecraft controller does not receive an

initiate descent control input.

CF 1.2: The spacecraft controller does not command

the descent actuators to activate.

CF 1.3: The descent actuators do not receive a
command to activate.

ICE 1.1: The controller sends the engage command

to the descent controller at the right time, but the

descent actuators fail.

ICA 2: Spacecraft disengages descent control.

CF 2.1: The descent controller receives incorrect

feedback from a velocity sensor.

ICA 3: Spacecraft descent control is activated too late.
ICA 4: Spacecraft descent control is de-activated

too soon.

Once the sources of inadequate control have been

identified, the associated hazard can be eliminated or

Fig. 3. STPA analysis superimposed on a control loop.

Stringfellow et al.: Safety-Driven Design for Software-Intensive Aerospace and Automotive Systems

Vol. 98, No. 4, April 2010 | Proceedings of the IEEE 521

controlled through design or, if that is not possible,
through operations. In the safety-driven design process,

the engineer may:

1) Create a new safety constraint, modify the related

safety constraint, or refine the related safety

constraint to better enforce control.

2) Create new design or modify existing design to

eliminate, prevent, or mitigate the effect of the

control flaw or inadequate control execution.
3) Accept the design as is and record the rationale for

doing so and, if possible, suggest ways to control

the hazard through operations.

The following example illustrates the refinement of

two safety constraints and the design decisions made to

enforce them. Again, pointers show traceability among the

hazards, design constraints, and design decisions along

with a recording of additional rationale underlying the
decision.

SC 1: The spacecraft must control its terminal descent to

the surface of Mars. (#DD 1, DD 2, DD 3)

SC 1.1: The spacecraft controller’s estimated velocity

must be accurate to within 0.2 m/s. (#DD 4)

DD 4: The spacecraft’s velocity is calculated using a

measurement device with accuracy of þ=�0.05 m/s.
("SC 1.1)

SC 2: The spacecraft must be protected from impact

with the surface. (#DD 2)

Rationale: The spacecraft structure is susceptible to
damage from rocks even at low impact velocity.

SC 2.1: Impact balloons must be capable of with-

standing contact with rocks at speeds of up to 10 m/s.

(#DD 5)
Rationale: The reverse thrusters are only capable of

landing the spacecraft at a speed in the range of 2–10 m/s.
There must be a system in place to lessen the impact of
landing.

DD 2: When the spacecraft is within TBD meters of

the planet surface, pressurized, gas-filled balloons will

inflate around the spacecraft to protect the spacecraft

structure during the impact of landing. ("SC 1, SC 2)
DD 5: The balloons must be inflated to a TBD

pressure and made of a tear-resistant material. ("SC 2.1)

SC 1.1 is a refinement of SC 1, and was created to pre-

vent ICA 1 and ICA 4. In this case, one new safety con-

straint (and a new design decision to enforce the new safety

constraint) helps to eliminate two inadequate control

actions.
After the high-level system design is complete, a func-

tional analysis is performed to assign system functions to

components and the safety constraints on the components

must be generated. These will be used, along with STPA, in

making component design decisions. The safety-driven

design process is an iterative one, with each subsystem

design leading to further refinement of the requirements

and constraints, further application of STPA, and further
system design.

The results of STPA are documented in the system

hazard log. Fig. 4 shows part of an example hazard log. For

each high-level hazard, the functional element pertaining

to the hazard is listed as well as the relevant operation or

mission phase. The causal factors shown in the hazard log

are pointers to the control flaws identified in the STPA

analysis. The hazard log usually also captures other in-
formation such as the hazard severity and type of potential

loss resulting from the hazard.

The examples of using the control loops and the Control

Flaw taxonomy to find control flaws in the design presented

above are by no means complete. The STPA taxonomy is a

useful guide in the discovery of control flaws and provides a

rigorous basis for categorizing control flaws; however, the

discovery of control flaws always relies on domain knowl-
edge. Only the proper application of domain knowledge to a

design can ferret out how instances of inadequate control

can arise. This limitation is, of course, true for any hazard

analysis technique. System engineers will need to collab-

orate with other experts in order to analyze system and

subsystem designs for control flaws.

STPA and safety-driven design should be performed

iteratively and opportunistically. Engineers can either drill
down into a particular hazard they wish to control or apply

STPA more broadly across several hazards. In the early

stages of design, few design decisions have been made and

control flaws and inadequate control executions may not

yet be identified. However, performing STPA early will

allow the results of the hazard analysis to inform the design

process. Note that iteration of the design via STPA can

cause high-level products and design decisions to change.
Feedback to the first stages in the system engineering pro-

cess can occur as engineers create new requirements and

constraints as a result of STPA. Attempts to control hazards

in the design may inspire engineers to modify system-level

goals, constraints, or programmatic considerations. Trac-

ing and linking the safety analysis and the design decisions

will help mitigate the negative impact of such changes.

In summary, STPA starts with a hazard and its related
requirements or constraints. The STPA taxonomy is used

to identify inadequate control actions and the control flaws

and inadequate control executions that lead to inadequate

control actions. From there, in safety-driven design,

engineers create new constraints or refine the existing

constraints and create new design or modify the existing

design until all hazards are eliminated, mitigated or

controlled. A chart describing the process can be seen in
Fig. 5. Engineering judgment is used to determine when

the design is Bsafe and complete enough.[

VI. RELATED RESEARCH

Most other attempts to perform hazard analysis on

software have involved extending the current techniques

Stringfellow et al. : Safety-Driven Design for Software-Intensive Aerospace and Automotive Systems

522 Proceedings of the IEEE | Vol. 98, No. 4, April 2010

to include software e.g., [2], [4], [14], [15]. In these

approaches, high-level hazards are identified and func-

tional failure analysis is performed on the completed high-
level system design to find system failure modes. An

augmented traditional hazard analysis technique is then

used to trace the failure events to the software components

(which implies the software architecture has also already

been defined). Finally, fault protection is then created to

mitigate the failure events or reduce its likelihood.

As we have argued, these techniques will have limited

success because they omit the basic causes of software

contributions to accidents [6]. Considering only scenarios

where software does not fulfill its requirements, i.e., it

fails, would have missed most of the cases where software
has in the past been a major contributor to accidents.

There needs to be a way to perform a hazard analysis that

includes requirements errors and design errors, not just

component failure. And such a technique should allow

creating the design in hand with the analysisVchanging

design elements after the major design decisions have been

made is almost always very costly and usually less effective

than if the designers had considered the safety constraints
from the beginning.

VII. DOES THIS WORK?

It is difficult to perform experimental analyses of hazard

analysis techniques due to the scarcity of accidents. In

the 50 years of modern safety engineering, almost no

such analyses have been performed. The few that have

been done have not shown the techniques to be very
successful [7].

It is possible, however, to compare the scenarios

generated by the analyses. We have compared STPA and

fault tree analysis using TCAS, a collision avoidance system

required on most commercial aircraft (more than 15

passengers). TCAS was chosen because an excellent fault

tree exists (and was done by people other than those doingFig. 5. Safety-driven design process.

Fig. 4. Partial hazard log example.

Stringfellow et al.: Safety-Driven Design for Software-Intensive Aerospace and Automotive Systems

Vol. 98, No. 4, April 2010 | Proceedings of the IEEE 523

the STPA, thus eliminating some potential bias in the
comparison), and the TCAS fault tree used is one of the

best the authors have ever seen for any system, particularly

those having large amounts of software. In this compar-

ison, STPA generated all the potential scenarios that are in

the fault tree but also generated additional scenarios, at

least one of which resulted in an aircraft collision and great

loss of life. These additional scenarios were not included in

the fault tree because the losses did not involve component
failure but instead resulted from unsafe interactions

among components [11].

Another way to determine whether something works is

to try to use it on a very complex system and to evaluate the

results, although this approach is less satisfactory than a

carefully controlled experimental comparison or evalua-

tion. STPA has been successfully used to perform a non-

advocate safety assessment for the new U.S. Ballistic
Missile Defense System (BMDS). STPA was selected after

it was determined that it was not practical to try to use

fault trees or other common hazard analysis techniques on

a system of such complexity [18]. The BMDS is an

enormously complex Bsystem of systems,[some new and

some existing for decades as parts of other systems (such as

NORAD and early warning systems) and shipboard control

systems such as AEGIS. Deployment and testing of the
BDMS was delayed for six months due to the large number

of plausible scenarios for inadvertent launch identified by

STPA [18]. Such delays and related costs might have been

averted if the hazard analysis had not been performed after

design of the system had been completed.

The safety-driven design process has also been applied

to a demonstration project at NASA’s Jet Propulsion Labo-

ratory (JPL) [16], [20]. This effort was largely conducted
by two graduate students, with the assistance of spacecraft

engineering domain experts from JPL, over the course of

one year. Without benefit of a career in the space industry,

the graduate students were able to hone in on design areas

of concern to JPL stakeholders. Using the safety-driven

design, the students were able to select a design among

several generated that had a higher level of safety at lower
cost and equal performance to others.

VIII . SUMMARY

This article has described an approach to safety-driven

design using a new hazard analysis method called STPA,

which is based on systems theory and on STAMP [10], a

more comprehensive model of accident causality than the
standard linear event-chain models. STPA considers the

non-linear inter-relationships among events and system

components rather than just linear cause-effect chains, it

looks at the processes behind the events, and it includes

the entire socio-technical system rather than just the

hardware or physical process. The result is that STPA can

identify more causes of accidents, particularly those

related to software and human decision-making, and can
be used early in concept formation and throughout system

development to guide design for safety rather than simply

evaluating designs after the fact. While only physical pro-

cesses were considered in this article, we have successfully

applied STPA to social and organizational structures and

systems such as Space Shuttle Operations [12], the devel-

opment process for the replacement for the Space Shuttle

[3], and such diverse systems as pharmaceutical safety,
food safety, hospital safety, and even corporate fraud.

We are currently working on more sophisticated ways

to evaluate human errors and unsafe decision-making. We

are also devising practical methodologies and tools for

applying STPA in the workplace and expanding it to

human-intensive systems. h

Acknowledgment

Inputs on STPA have been provided over the past few

years by Dr. Nicolas Dulac and other members of the MIT

Complex Systems Research Laboratory. Inputs on an early

version of the safety-driven design process were provided

by Dr. Michael Ingham and Dr. Kathryn Weiss of JPL.

REF ERENCE S

[1] R. C. Conant and W. R. Ashby, BEvery good
regulator of a system must be a model of that
system,[International Journal of System
Science, vol. 1, pp. 89–97, 1970.

[2] J. Dehlinger and R. R. Lutz, BSoftware fault
tree analysis for product lines,[in Proc. 8th
IEEE Symposium on High Assurance Systems
Engineering (HASE ’04), Tamp, FL, 2004,
pp. 12–21.

[3] N. Dulac, B. D. Owens, N. G. Leveson, and
J. S. Carroll, BA formal modeling approach
to risk management in the development of
space exploration systems,[in Proc. Int.
Assoc. Adv. Space Safety Conf., Chicago, IL,
May 2007.

[4] R. D. Hawkins and J. A. McDermid,
BPerforming hazard and safety analysis of
object oriented systems,[in Proc ISSC,
Denver, CO, Aug. 2002.

[5] JPL Special Review BoardReport on the Loss
of the Mars Polar Lander and Deep Space 2

Missions NASA Jet Propulsion Laboratory,
Mar. 22, 2000.

[6] N. G. Leveson and P. R. Harvey, BAnalyzing
software safety,[IEEE Trans. Software
Engineering, vol. SE-9, no. 5, pp. 569–583,
Sep. 1983.

[7] N. Leveson, Safeware: System Safety and
Computers. Addison-Wesley, 1995.

[8] N. G. Leveson, BIntent specifications:
An approach to building human-centered
specifications,[IEEE Trans. Software
Engineering, vol. 26, no. 1, pp. 15–35,
2000.

[9] N. G. Leveson, BThe role of software in
spacecraft accidents,[AIAA Journal of
Spacecraft and Rockets, vol. 41, no. 4,
pp. 564–575, Jul./Aug. 2004a.

[10] N. G. Leveson, BA new accident model for
engineering safer systems,[Safety Science,
vol. 42, no. 4, pp. 237–270, 2004b.

[11] N. G. Leveson, BModel-Based Analysis of
Socio-Technical Risk,[Massachusetts

Institute of Technology, Cambridge, MA,
Tech. Rep., ESD-WP-2004-08, 2004c.

[12] N. G. Leveson, N. Dulac,
J. Cutcher-Gershenfeld, B. Barrett, J. Carroll,
D. Zipkin, and S. Friedenthal, BModeling,
analyzing, and engineering safety culture,[in
1st Int. Conf. Int. Assoc. Adv. Space Safety, Nice,
France, Oct. 2005.

[13] N. G. Leveson, Engineering a Safer World:
System Safety for the 21st Century, 2009.

[14] O. Lisagor, J. A. McDermid, and D. J. Pumfrey,
BSafety analysis of software
architecturesVBLightweight PSSA[,[in Int.
Conf. of the System Safety Society, 2004.

[15] J. McDermid, Software Hazard and Safety
Analysis, in Formal Techniques in Real-Time and
Fault-Tolerant Systems. Berlin: Springer,
2002, pp. 23–34.

[16] B. Owens, M. Stringfellow, N. Leveson,
M. Ingham, and K. Weiss, BA Safety-Driven,
Model-Based System Engineering
Methodology, Part II: Application of the

Stringfellow et al. : Safety-Driven Design for Software-Intensive Aerospace and Automotive Systems

524 Proceedings of the IEEE | Vol. 98, No. 4, April 2010

Methodology to an Outer Planet Exploration
Mission, MIT Tech. Rep., 2007.

[17] B. D. Owens, M. S. Herring, N. Dulac,
N. G. Leveson, M. D. Ingham, and K. A. Weiss,
BApplication of a safety-driven design
methodology to an outer planet exploration
mission,[in Proc. IEEE Aerosp. Conf., Big Sky,
MT, Mar. 1–8, 2008, paper 1279.

[18] S. J. Pereira, G. Lee, and J. Howard, BA
system-theoretic hazard analysis methodology

for a non-advocate safety assessment of the
ballistic missile defense system,[in
Proc. AIAA Missile Sci. Conf., Monterey, CA,
Nov. 2006.

[19] J. Rasmussen, BRisk management in a 2
dynamic society: A modelling problem,[Safety
Science, vol. 27, no. 2/3, pp. 183–213, 1997.

[20] M. Stringfellow, B. Owens, N. Leveson,
M. Ingham, and K. Weiss, BA Safety-Driven,

Model-Based System Engineering Methodology,
Part I, MIT Tech. Rep., 2007.

[21] M. V. Stringfellow, BSafety-Driven System
Engineering Process,[S.M. Thesis, Aeronautics
and Astronautics, Massachusetts Institute of
Technology, Cambridge, MA, 2008.

[22] Y. Thomas, BMars Program Independent
Assessment Team Report,[NASA,
Mar. 2000, (Chairman).

ABOUT T HE AUTHO RS

Margaret V. Stringfellow is a doctoral student in

the department of Aeronautics and Astronautics.

Her research focuses on system safety in complex

socio-technical systems. In particular, she is

developing a hazard analysis method suitable for

organizational design to enable better decision-

making in risk and performance for system

stakeholders, including management and opera-

tors. Her research interests include modeling and

simulation, risk, system safety, human factors and

software. Prior to her graduate studies, Ms. Stringfellow characterized

UAV sense and avoid collision avoidance algorithms at Lincoln Labora-

tories. She has designed and implemented simulation of next gener-

ation deep space network antenna array at NASA’s Jet Propulsion Lab.

Ms. Stringfellow holds S.M. and S.B. degrees in Aerospace Engineering

and an S.B. in Electrical Engineering from MIT.

Nancy G. Leveson (Member, IEEE) is a Professor

of Aeronautics and Astronautics and a Professor of

Engineering Systems at the Massachusetts Insti-

tute of Technology. She is also the director of the

Complex Systems Research Laboratory at MIT. She

is an elected member of the National Academy of

Engineering (NAE). Prof. Leveson conducts re-

search on the topics of system safety, software

safety, software and system engineering, and

human-computer interaction. In 1999, she re-

ceived the ACM Allen Newell Award for outstanding computer science

research and in 1995 the AIAA Information Systems Award for

Bdeveloping the field of software safety and for promoting responsible

software and system engineering practices where life and property are at

stake.[In 2005 she received the ACM Sigsoft Outstanding Research

Award. She has published over 200 research papers and is author of a

book, BSafeware: System Safety and Computers[published by Addison-

Wesley. She consults extensively in many industries on the ways to

prevent accidents. She has degrees in math, management, and computer

science from the University of California, Los Angeles.

Brandon D. Owens is a flight dynamics analyst for

the Space Sciences Laboratory at the University of

California at Berkeley. His current work involves

orbit determination, maneuver planning, and ma-

neuver execution for the THEMIS spacecraft con-

stellation, which is presently in an extended

mission phase that will include the low energy

transfers of two of the spacecraft into lunar orbit

via two Earth-Moon libration points. He previously

was a research assistant for the Complex Systems

Research Laboratory at the Massachusetts Institute of Technology where

his research involved the development of techniques to evaluate the

effectiveness of system safety control structures. Prior to that, he was a

research assistant for the W. W. Hansen Experimental Physics Laboratory

at Stanford University where his responsibilities included mission

planning and radiation anomaly investigation for the Gravity Probe B

satellite mission. Before that, he served as a co-op student for United

Space Alliance in Houston, Texas in the departments of Cargo Operations

and Flight Control and Environmental Systems. He has a Ph.D. in

Engineering Systems from MIT, an M.S. in Aeronautics and Astronautics

from Stanford University, and a B.S. in Aeronautical and Astronautical

Engineering from Purdue University.

Stringfellow et al.: Safety-Driven Design for Software-Intensive Aerospace and Automotive Systems

Vol. 98, No. 4, April 2010 | Proceedings of the IEEE 525

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

