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Abstract

In this thesis, we examine a recent paradigm for solving dynamic optimization prob-
lems under uncertainty, whereby one considers decisions that depend directly on the
sequence of observed disturbances. The resulting policies, called recourse decision
rules, originated in Stochastic Programming, and have been widely adopted in recent
works in Robust Control and Robust Optimization; the specific subclass of affine
policies has been found to be tractable and to deliver excellent empirical performance
in several relevant models and applications.

In the first chapter of the thesis, using ideas from polyhedral geometry, we prove
that disturbance-affine policies are optimal in the context of a one-dimensional, con-
strained dynamical system. Our approach leads to policies that can be computed by
solving a single linear program, and which bear an interesting decomposition prop-
erty, which we explore in connection with a classical inventory management problem.
The result also underscores a fundamental distinction between robust and stochastic
models for dynamic optimization, with the former resulting in qualitatively simpler
problems than the latter.

In the second chapter, we introduce a hierarchy of polynomial policies that are
also directly parameterized in the observed uncertainties, and that can be efficiently
computed using semidefinite optimization methods. The hierarchy is asymptotically
optimal and guaranteed to improve over affine policies for a large class of relevant
problems. To test our framework, we consider two problem instances arising in in-
ventory management, for which we find that quadratic policies considerably improve
over affine ones, while cubic policies essentially close the optimality gap.

In the final chapter, we examine the problem of dynamically pricing inventories
in multiple items, in order to maximize revenues. For a linear demand function, we
propose a distributionally robust uncertainty model, argue how it can be constructed
from limited historical data, and show how pricing policies depending on the observed
model misspecifications can be computed by solving second-order conic or semidefinite
optimization problems. We calibrate and test our model using both synthetic data,
as well as real data from a large US retailer. Extensive Monte-Carlo simulations show
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that adaptive robust policies considerably improve over open-loop formulations, and
are competitive with popular heuristics in the literature.

Thesis Supervisor: Dimitris Bertsimas
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Thesis Supervisor: Pablo A. Parrilo

Title: Professor
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Chapter 1

Introduction

Multi-stage optimization problems under uncertainty have been prevalent in numer-

ous fields of science and engineering, and have elicited interest from diverse research

communities, on both a theoretical and a practical level. Several solution approaches

have been proposed throughout the years, with various degrees of generality, tractabil-

ity, and performance guarantees. Some of the most successful ones include exact and

approximate dynamic programming, stochastic programming, sampling-based meth-

ods, and, more recently, robust and adaptive optimization, which is the main focus

of the present thesis.

The key underlying philosophy behind the robust optimization approach is that,

in many practical situations, a complete stochastic description of the uncertainty may

not be available, and one may only have information with less detailed structure, such

as bounds on the magnitude of the uncertain quantities or rough algebraic relations

linking multiple unknown parameters. In such cases, one may be able to describe

the unknowns by specifying a set in which any realization should lie, the so-called

uncertainty set. The goal of the decision maker is then to ensure that the constraints in

the problem remain feasible for any possible realization, while optimizing an objective

that corresponds to the worst possible outcome.

In its original form, proposed by Soyster [136] and Falk [64] in the early 1970s,

robust optimization was mostly concerned with linear programming problems in which

the data was inexact. The former paper considered cases where the column vectors
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of the constraint matrix (interpreted as the consumption of some finite resource) and

the right-hand side vector (the resource availability), were only known to belong to

closed, convex sets, and the goal was to find an allocation, given by the decision

variables, which would remain feasible for any realization of the consumption and

availability. The latter paper dealt with an uncertain objective, with coefficients only

known to lie in a convex set - as such, the goal was to find a feasible solution which

would optimize the worst-case outcome for the objective.

Interestingly enough, following these early contributions, the approach remained

unnoticed in the operations research literature, until the late 1990s. The sequence of

papers by Ben-Tal and Nemirovski [10, 18, 11, 12], Ben-Tal et al. [13], El-Ghaoui and

Lebret [62], El-Ghaoui et al. [61], and then Bertsimas and Sim [30, 31], Bertsimas et al.

[34] and Goldfarb and Iyengar [75] considerably generalized the earlier framework, by

extending it to other classes of convex optimization problems (quadratic, conic and

semidefinite programs), as well as more complex descriptions of the uncertainty sets

(intersections of ellipsoids, cardinality-constrained uncertainty sets, etc). Throughout

the papers, the key emphases were on

1. Tractability - under what circumstances can a nominal problem with uncertain

data be formulated as a tractable (finite dimensional, convex) optimization

problem, and what is the complexity of solving this resulting robust counterpart.

As it turns out, many interesting classes of nominal optimization problems result

in robust counterparts within the same (or related) complexity classes, which

allows the use of fast, interior point methods developed for convex optimization

(Nesterov and Nemirovski [109]).

2. Degree of conservativeness and probabilistic guarantees - Robust Optimization

constructs solutions that are feasible for any realization of the unknown pa-

rameters within the uncertainty set, and optimizes worst-case outcomes. In

many realistic situations, particularly cases where the uncertainties are really

stochastic, these prescriptions might lead to overly pessimistic solutions, which

simultaneously guard against violations in constraints and low-quality objec-
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tives. In this case, as the papers above show, one can still use the framework

of Robust Optimization to construct uncertainty sets so that, when solving

the (deterministic) robust problem, one obtains solutions which are, with high

probability, feasible for the original (stochastic) problem. In such formulations,

the structure and size of the uncertainty sets are directly related to the desired

probabilistic guarantees, and several systematic ways for trading off between

conservativeness and probability of constraint violation exist.

Most of these early contributions were focused on robustification of mathematical

programs in static settings. That is, the decision process typically involved a single

stage/period, and all the decisions were to be taken at the same time, before the

uncertainty was revealed. Recognizing that this was a modelling limitation which

was not adequate in many realistic settings, a sequence of later papers (Ben-Tal et al.

[14, 15, 17]) considered several extensions of the base model. Ben-Tal et al. [14] in-

troduced a setting in which a subset of the decision variables in a linear program

could be decided after the uncertainty wass revealed, hence resulting in adjustable

policies, or decision rules. The paper showed that allowing arbitrary adjustable rules

typically results in intractable problems, and then proceeded to consider the special

class of affine rules, i.e., decisions that depend affinely on model disturbances. Under

the assumption of fixed recourse, the paper showed that such affine policies remain

tractable for several interesting classes of uncertainty sets. For cases without fixed

recourse, the paper suggested several approximation techniques, using tools derived

from linear systems and control theory. In Ben-Tal et al. [15, 17], the same approach

was extended to multi-period linear dynamical systems affected by uncertainty, and

tractable exact or approximate reformulations were presented, which allow the com-

putation of affine decision rules.

A related stream of work, focused mostly on applications of robust optimization

in different areas of operations management, also considered multi-period models.

Formulations have been proposed for several variations of inventory management

problems (e.g., Ben-Tal et al. [16], Bertsimas and Thiele [32], Bienstock and Özbay

[40]), for dynamic pricing and network revenue management (e.g., Perakis and Roels
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[114], Adida and Perakis [1], Thiele [139], Thiele [140]), or for portfolio optimiza-

tion (Goldfarb and Iyengar [74], Tütüncü and Koenig [142], Ceria and Stubbs [47],

Pinar and Tütüncü [116], Bertsimas and Pachamanova [27]). For more references,

and a more comprehensive overview, we refer the reader to the recent review paper

Bertsimas et al. [35] and the book Ben-Tal et al. [19].

In the context of multi-period decision making, we should note that a parallel

stream of work, focusing on similar notions of robustness, has also existed for several

decades in the field of dynamical systems and control. The early thesis Witsenhausen

[145] and the paper Witsenhausen [146] first formulated problems of state estimation

with a set-based membership description of the uncertainty, and the thesis Bertsekas

[25] and paper Bertsekas and Rhodes [22] considered the problem of deciding under

what conditions the state of a dynamical system affected by uncertainties is guaran-

teed to lie in specific ellipsoidal or polyhedral tubes (the latter two references showed

that, under some conditions, control policies that are linear in the states are sufficient

for such a task). The literature on robust control received a tremendous speed-up in

the 1990s, with contributions from numerous groups (e.g., Doyle et al. [56], Fan et al.

[65]), resulting in two published books on the topic (Zhou and Doyle [148], Dullerud

and Paganini [57]. Typically, in most of this literature, the main objective was to

design control laws that ensured the dynamical system remained stable under uncer-

tainty, and the focus was on coming up with computationally efficient procedures for

synthesizing such controllers. Several (more recent) papers, particularly in the field

of model predictive control, have also considered multi-period formulations with dif-

ferent objectives, and have shown how specific classes of policies (typically, open-loop

or affine) can be computed efficiently (e.g., Löfberg [99], Kerrigan and Maciejowski

[87], Bemporad et al. [9], Goulart and Kerrigan [76], Kerrigan and Maciejowski [88],

Bertsimas and Brown [26], Skaf and Boyd [133]).

A unifying theme in both the operations research and robust control literature

mentioned above has been that, whenever one deals with multi-period decision prob-

lems affected by uncertainty, one always faces the unpleasant conundrum of choosing

between optimality and tractability. If one insists on finding optimal decision policies,
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then one typically resorts to a formulation via Dynamic Programming (DP) (Bertsekas

[21]). More precisely, with a properly defined notion of the state of the dynamical

system, one tries to use the Bellman recursions in order to find optimal decision poli-

cies and optimal value functions that depend on the underlying state. While DP is

a powerful theoretical tool for the characterization of optimal decision policies, it is

plagued by the well-known curse of dimensionality, in that the complexity of the un-

derlying recursive equations grows quickly with the size of the state-space, rendering

the approach ill suited to the computation of actual policy parameters. Therefore, in

practice, one would typically either solve the recursions numerically (e.g., by multi-

parametric programming Bemporad et al. [7, 8, 9]), or resort to approximations of the

value functions, by approximate DP techniques (Bertsekas and Tsitsiklis [23], Pow-

ell [120]), sampling (Calafiore and Campi [45], Calafiore and Campi [46]), or other

methods.

Instead of considering policies in the states, one could equivalently look for deci-

sions that are directly parametrized in the sequence of observed uncertainties. The

resulting policies, usually called recourse decision rules, were originally proposed in

the Stochastic Programming community (see Birge and Louveaux [41], Garstka and

Wets [70] and references therein), and have been widely adopted in recent works in

robust control and robust optimization, typically under the names of disturbance-

feedback parametrizations or adjustable robust counterparts. While allowing general

decision rules is just as intractable as solving the DP formulation (Ben-Tal et al. [14],

Nemirovski and Shapiro [107], Dyer and Stougie [60]), searching for specific functional

forms, such as the affine class, can often be done by solving convex optimization prob-

lems, which vary from linear and quadratic (e.g. Ben-Tal et al. [15], Kerrigan and

Maciejowski [88]), to second-order conic and semidefinite programs (e.g. Löfberg

[99], Ben-Tal et al. [15], Skaf and Boyd [133]).

Contributing to the popularity of the affine decision rules was also their empirical

success, reported in a variety of applications (Ben-Tal et al. [16], Mani et al. [102],

Adida and Perakis [1], Lobel and Perakis [97], Babonneau et al. [6]). Ben-Tal et al.

[16] performed simulations in the context of a supply chain contracts problem, and
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found that in only two out of three hundred instances were the affine policies sub-

optimal (in fact, Chapter 14 of the recent book Ben-Tal et al. [19] contains a slight

modification of the model in Ben-Tal et al. [16], for which the authors find that in

all tested instances, the affine class is optimal!). By comparing (computationally)

with appropriate dual formulations, the recent paper Kuhn et al. [90] also found that

affine policies were always optimal.

While convenient from a tractability standpoint, the restriction to the affine case

could potentially result in large optimality gaps, and it is rarely obvious apriori when

that is the case - in the words of Ben-Tal et al. [19], “in general, [...], we have no idea

of how much we lose in terms of optimality when passing from general decision rules

to the affine rules. At present, we are not aware of any theoretical tools for evaluating

such a loss.”

While proving optimality for affine policies in non-trivial multi-stage problems

would certainly be interesting, one might also take a different approach - namely,

considering other classes of tractable policies, which are guaranteed to improve over

the affine case. Along this train of thought, recent works have considered param-

eterizations that are affine in a new set of variables, derived by lifting the original

uncertainties into a higher dimensional space. For example, the authors in Chen and

Zhang [50], Chen et al. [52], Sim and Goh [131] suggest using so-called segregated

linear decision rules, which are affine parameterizations in the positive and negative

parts of the original uncertainties. Such policies provide more flexibility, and their

computation (for two-stage decision problems in a robust setting) requires roughly

the same complexity as that needed for a set of affine policies in the original vari-

ables. Another example following similar ideas is Chatterjee et al. [49], where the

authors consider arbitrary functional forms of the disturbances, and show how, for

specific types of p-norm constraints on the controls, the problems of finding the co-

efficients of the parameterizations can be relaxed into convex optimization problems.

A similar approach is taken in Skaf and Boyd [134], where the authors also consider

arbitrary functional forms for the policies, and show how, for a problem with convex

state-control constraints and convex costs, such policies can be found by convex op-
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timization, combined with Monte-Carlo sampling (to enforce constraint satisfaction).

Chapter 14 of the recent book Ben-Tal et al. [19] also contains a thorough review of

several other classes of such adjustable rules, and a discussion of cases when sophisti-

cated rules can actually improve over the affine ones. The main drawback of some of

the above approaches is that the right choice of functional form for the decision rules

is rarely obvious, and there is no systematic way to influence the trade-off between

the performance of the resulting policies and the computational complexity required

to obtain them, rendering the frameworks ill-suited for general multi-stage dynamical

systems, involving complicated constraints on both states and controls.

With the above issues in mind, we now arrive at the point of discussing the

main questions addressed in the present thesis, and the ensuing results. Our main

contributions can be summarized as follows:

• In Chapter 2, we consider a similar problem to that in Ben-Tal et al. [19], namely

a one-dimensional, linear dynamical system evolving over a finite horizon, with

box constraints on states and controls, affected by bounded uncertainty, and

under an objective consisting of linear control penalties and any convex state

penalties. For this model, we prove that disturbance-affine policies are optimal.

Furthermore, we show that a certain (affine) relaxation of the state costs is

also possible, without any loss of optimality, which gives rise to very efficient

algorithms for computing the optimal affine policies when the state costs are

piece-wise affine. Our theoretical constructions are tight, and the proof of the

theorem itself is atypical, consisting of a forward induction and making use of

polyhedral geometry to construct the optimal affine policies. Thus, we gain

insight into the structure and properties of these policies, which we explore in

connection with a classical inventory management problem.

We remark that two concepts are central to our constructions. First, consider-

ing policies over an enlarged state space (i.e., the history of all disturbances)

is essential, in the sense that affine state-feedback controllers depending only

on the current state are, in general, suboptimal for the problems we consider.
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Second, the construction makes full use of the fact that the problem objective

is of mini-max type, which allows the decision maker the freedom of computing

policies that are not optimal in every state of the system evolution (but rather,

only in states that could result in worst-case outcomes). This underscores a fun-

damental distinction between robust and stochastic models for decision making

under uncertainty, and it suggests that utilizing the framework of Dynamic

Programming to solve multi-period robust problems might be an unnecessary

overkill, since simpler (not necessarily “Bellman optimal”) policies might be

sufficient to achieve the optimal worst-case outcome.

• In Chapter 3, we consider a multi-dimensional system, under more general state-

control constraints and piece-wise affine, convex state-control costs. For such

problems, we introduce a natural extension of the aforementioned affine de-

cision rules, by considering control policies that depend polynomially on the

observed disturbances. For a fixed polynomial degree d, we develop a convex

reformulation of the constraints and objective of the problem, using Sums-Of-

Squares (SOS) techniques. In the resulting framework, polynomial policies of

degree d can be computed by solving a single semidefinite programming prob-

lem (SDP). Our approach is advantageous from a modelling perspective, since

it places little burden on the end user (the only choice is the polynomial degree

d), while at the same time providing a lever for directly controlling the trade-off

between performance and computation (higher d translates into policies with

better objectives, obtained at the cost of solving larger SDPs).

To test our polynomial framework, we consider two classical problems arising in

inventory management (single echelon with cumulative order constraints, and

serial supply chain with lead-times), and compare the performance of affine,

quadratic and cubic control policies. The results obtained are very encouraging

- in particular, for all problem instances considered, quadratic policies consid-

erably improve over affine policies (typically by a factor of 2 or 3), while cubic

policies essentially close the optimality gap (the relative gap in all simulations
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is less than 1%, with a median gap of less than 0.01%).

• Finally, Chapter 4 considers a classical problem arising in operations manage-

ment, namely that of dynamically adjusting the prices of inventories in order to

maximize the revenues obtained from customers. For the multi-product case,

under a linear demand function, we propose a distributionally robust model for

the uncertainties, and argue how it can be constructed from limited historical

data. We then consider polynomial pricing policies parameterized directly in

the observed model mis-specifications, and show how these can be computed by

solving second-order conic or semidefinite programming problems.

In order to test our framework, we consider both simulated data, as well as

real data from a large US retailer. We discuss issues related to the calibration

of our model, and present extensive Monte-Carlo simulations, which show that

adjustable robust policies improve considerably over open-loop robust formula-

tions, and are competitive with popular heuristics in the literature.
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Chapter 2

Optimality of Disturbance-Affine

Policies

2.1 Introduction

We begin our treatment by examining the following multi-period problem:

Problem 1. Consider a one-dimensional, discrete-time, linear dynamical system,

xk+1 = αk · xk + βk · uk + γk · wk , (2.1)

where αk, βk, γk 6= 0 are known scalars, and the initial state x1 ∈ R is specified. The

random disturbances wk are unknown, but bounded,

wk ∈ Wk
def
= [wk, wk]. (2.2)

We would like to find a sequence of robust controllers {uk}, obeying upper and lower

bound constraints,

uk ∈ [Lk, Uk] , (2.3)

(Lk, Uk ∈ R are known and fixed), and minimizing the following cost function over a
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finite horizon 1, . . . , T ,

J = c1 u1 + max
w1

[

h1(x2) + c2 u2 + max
w2

[

h2(x3) + . . .

+ max
wT−1

[
cT uT + max

wT

hT (xT+1)
]
. . .
]]

, (2.4)

where the functions hk : R → R ∪ {+∞} are extended-real and convex, and ck ≥ 0

are fixed and known.

The problem corresponds to a situation in which, at every time step k, the decision

maker has to compute a control action uk, in such a way that certain constraints (2.3)

are obeyed, and a cost penalizing both the state (hk(xk+1)) and the control (ck · uk)

is minimized. The uncertainty, wk, always acts so as to maximize the costs, hence

the problem solved by the decision maker corresponds to a worst-case scenario (a

minimization of the maximum possible cost). An example of such a problem, which

we use extensively in the current paper, is the following:

Example 1. Consider a retailer selling a single product over a planning horizon

1, . . . , T . The demands wk from customers are only known to be bounded, and the

retailer can replenish her inventory xk by placing capacitated orders uk, at the be-

ginning of each period, for a cost of ck per unit of product. After the demand wk is

realized, the retailer incurs holding costs Hk ·max{0, xk +uk−wk} for all the amounts

of supply stored on her premises, and penalties Bk · max{wk − xk − uk, 0}, for any

demand that is backlogged.

Other examples of Problem 1 are the norm-1/∞ and norm-2 control, i.e., hk(x) =

rk |x| or hk(x) = rk x2, all of which have been studied extensively in the control

literature in the unconstrained case (see Zhou and Doyle [148] and Dullerud and

Paganini [57]).

The solution to Problem 1 could be obtained using a “classical” Dynamic Pro-

gramming (DP) formulation (Bertsekas [21]), in which the optimal policies u⋆
k(xk)

and the optimal value functions J⋆
k(xk) are computed backwards in time, starting at

the end of the planning horizon, k = T . The resulting policies are piecewise affine in
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the states xk, and have properties that are well known and documented in the liter-

ature (e.g., for the inventory model above, they exactly correspond to the base-stock

ordering policies of Scarf [129] and Kasugai and Kasegai [86]). We remark that the

piecewise structure is essential, i.e., control policies that are only affine in the states

xk are, in general, suboptimal.

As detailed in the introduction, our goal is to study the performance of a new

class of policies, where instead of regarding the controllers uk as functions of the state

xk, one seeks disturbance-feedback policies, i.e., policies that are directly parameteri-

zations in the observed disturbances:

uk : W1 ×W2 × · · · ×Wk−1 → R. (2.5)

One such example (of particular interest) is the disturbance-affine class, i.e., policies

of the form (2.5) which are also affine. In this new framework, we require that

constraint (2.3) should be robustly feasible, i.e.,

uk(w) ∈ [Lk, Uk] , ∀w ∈ W1 × · · · ×Wk−1. (2.6)

Note that if we insisted on this category of parameterizations, then we would have

to consider a new state for the system, Xk, which would include at least all the

past-observed disturbances, as well as possibly other information (e.g., the previ-

ous controls {ut}1≤t<k, the previous states {xt}1≤t<k, or some combination thereof).

Compared with the original, compact state formulation, xk, the new state Xk would

become much larger, and solving the DP with state variable Xk would produce ex-

actly the same optimal objective function value. Therefore, one should rightfully ask

what the benefit for introducing such a complicated state might be.

The hope is that, by considering policies over a larger state, simpler functional

forms might be sufficient for optimality, for instance, affine policies. These have a

very compact representation, since only the coefficients of the parameterization are

needed, and, for certain classes of convex costs hk(·), there may be efficient procedures

available for computing them.
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This approach is also not new in the literature. It has been originally advo-

cated in the context of stochastic programming (see Charnes et al. [48], Garstka

and Wets [70], and references therein), where such policies are known as decision

rules. More recently, the idea has received renewed interest in robust optimization

(Ben-Tal et al. [14]), and has been extended to linear systems theory (Ben-Tal et al.

[15, 17]), with notable contributions from researchers in robust model predictive con-

trol and receding horizon control (see Löfberg [99], Bemporad et al. [9], Kerrigan and

Maciejowski [88], Skaf and Boyd [133], and references therein). In all the papers,

which usually deal with the more general case of multi-dimensional linear systems,

the authors typically restrict attention, for purposes of tractability, to the class of

disturbance-affine policies, and show how the corresponding policy parameters can

be found by solving specific types of optimization problems, which vary from linear

and quadratic programs (Ben-Tal et al. [15], Kerrigan and Maciejowski [87, 88]) to

conic and semi-definite (Löfberg [99], Ben-Tal et al. [15]), or even multi-parametric,

linear or quadratic programs (Bemporad et al. [9]). The tractability and empirical

success of disturbance-affine policies in the robust framework have lead to their reex-

amination in stochastic settings, with several recent papers (Nemirovski and Shapiro

[107], Chen et al. [52], Kuhn et al. [90]) providing tractable methods for determining

the best parameters of the policies, in the context of both single-stage and multi-stage

linear stochastic programming problems.

The first steps towards analyzing the properties of such parameterizations were

made in Kerrigan and Maciejowski [88], where the authors show that, under suitable

conditions, the resulting affine parameterization has certain desirable system theo-

retic properties (stability and robust invariance). Other notable contributions were

Goulart and Kerrigan [76] and Ben-Tal et al. [15], who prove that the class of affine

disturbance feedback policies is equivalent to the class of affine state feedback poli-

cies with memory of prior states, thus subsuming the well known classes of open-loop

and pre-stabilizing control policies. In terms of characterizing the optimal objective

obtained by using affine parameterizations, most research efforts thus far focus on

providing tractable dual formulations, which allow a computation of lower or upper
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bounds to the problems, and hence an assessment of the degree of sub-optimality (see

Kuhn et al. [90] for details). Empirically, several authors have observed that affine

policies deliver excellent performance, with Ben-Tal et al. [16] and Kuhn et al. [90]

reporting many instances in which they are actually optimal. However, to the best

of our knowledge, apart from these advances, there has been very little progress in

proving results about the quality of the objective function value resulting from the

use of such parameterizations.

Our main result, summarized in Theorem 1 of Section 2.3, is that, for Problem 1

stated above, disturbance-affine policies of the form (2.5) are optimal. Furthermore,

we prove that a certain (affine) relaxation of the state costs is also possible, without

any loss of optimality, which gives rise to very efficient algorithms for computing the

optimal affine policies when the state costs hk(·) are piece-wise affine. To the best of

our knowledge, this is the first result of its kind, and it is surprising, particularly since

similar policies, i.e., decision rules, are known to be severely suboptimal for stochastic

problems (see, e.g., Garstka and Wets [70], and our discussion in Section 2.4.5).

The result provides intuition and motivation for the widespread advocation of such

policies in both theory and applications. Our theoretical constructions are tight, i.e.,

if the conditions in Problem 1 are slightly perturbed, then simple counterexamples

for Theorem 1 can be found (see Section 2.4.5). The proof of the theorem itself is

atypical, consisting of a forward induction and making use of polyhedral geometry

to construct the optimal affine policies. Thus, we gain insight into the structure

and properties of these policies, which we explore in connection with the inventory

management problem in Example 1.

We remark that two concepts are central to our constructions. First, considering

policies over an enlarged state space (here, the history of all disturbances) is essential,

in the sense that affine state-feedback controllers depending only on the current state

xk (e.g., uk(xk) = ℓkxk +ℓk,0) are, in general, suboptimal for the problems we consider.

Second, the construction makes full use of the fact that the problem objective is of

mini-max type, which allows the decision maker the freedom of computing policies

that are not optimal in every state of the system evolution (but rather, only in states
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that could result in worst-case outcomes). This is a fundamental distinction between

robust and stochastic models for decision making under uncertainty, and it suggests

that utilizing the framework of Dynamic Programming to solve multi-period robust

problems might be an unnecessary overkill, since simpler (not necessarily “Bellman

optimal”) policies might be sufficient to achieve the optimal worst-case outcome.

The chapter is organized as follows. Section 2.2 presents an overview of the Dy-

namic Programming formulation in state variable xk, extracting the optimal policies

u⋆
k(xk) and optimal value functions J⋆

k(xk), as well as some of their properties. Sec-

tion 2.3 contains our main result, and briefly discusses some immediate extensions

and computational implications. In Section 2.4, we introduce the constructive proof

for building the affine control policies and the affine cost relaxations, and present

counterexamples that prevent a generalization of the results. Section 2.5 concludes

the chapter, by discussing our results in connection with the classical inventory man-

agement problem of Example 1.

2.1.1 Notation.

Throughout the rest of the chapter, the subscripts k and t are used to denote time-

dependency, and vector quantities are distinguished by bold-faced symbols, with op-

timal quantities having a ⋆ superscript, e.g., J⋆
k . Also, R̄ = R ∪ {+∞} stands for the

set of extended reals.

Since we seek policies parameterized directly in the uncertainties, we introduce

w[k]
def
= (w1, . . . , wk−1) to denote the history of known disturbances in period k, and

Hk
def
= W1 × · · · ×Wk−1 to denote the corresponding uncertainty set (a hypercube in

Rk−1). A function qk that depends affinely on variables w1, . . . , wk−1 is denoted by

qk(w[k])
def
= qk,0 + q′

kw[k], where qk is the vector of coefficients, and ′ denotes the usual

transpose.
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2.2 Dynamic Programming Solution.

As mentioned in the introduction, the solution to Problem 1 can be obtained using a

“classical” DP formulation (see, e.g., Bertsekas [21]), in which the state is taken to be

xk, and the optimal policies u⋆
k(xk) and optimal value functions J⋆

k (xk) are computed

starting at the end of the planning horizon, k = T , and moving backwards in time.

In this section, we briefly outline the DP solution for our problem, and state some of

the key properties that are used throughout the rest of the paper. For completeness,

a full proof of the results is included in Section A.1 of the Appendix.

In order to simplify the notation, we remark that, since the constraints on the

controls uk and the bounds on the disturbances wk are time-varying, and independent

for different time-periods, we can restrict attention, without loss of generality1, to a

system with αk = βk = γk = 1. With this simplification, the problem that we would

like to solve is the following:

min
u1

[

c1 u1 + max
w1

[

h1(x2) + · · ·+ min
uk

[

ck uk + max
wk

[

hk(xk+1) + . . .

+ min
uT

[

cT uT + max
wT

hT (xT+1)
]

. . .

]]

(DP )

s.t. xk+1 = xk + uk + wk

Lk ≤ uk ≤ Uk ∀ k ∈ {1, 2, . . . , T}

wk ∈ Wk = [wk, wk].

The corresponding Bellman recursion for (DP ) can then be written as follows:

J⋆
k (xk)

def
= min

Lk≤uk≤Uk

[

ck uk + max
wk∈Wk

[

hk(xk + uk + wk) + J⋆
k+1 (xk + uk + wk)

] ]

,

1Such a system can always be obtained by the linear change of variables x̃k = xk
Q

k−1

i=1
αi

, and by

suitably scaling the bounds Lk, Uk, wk, wk.
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where J⋆
T+1(xT+1) ≡ 0. By defining:

yk
def
= xk + uk (2.7a)

gk(yk)
def
= max

wk∈Wk

[

hk(yk + wk) + J⋆
k+1 (yk + wk)

]

, (2.7b)

we obtain the following solution to the Bellman recursion (see Section A.1 in the

Appendix for the derivation):

u⋆
k(xk) =







Uk, if xk < y⋆
k − Uk

−xk + y⋆
k, otherwise

Lk, if xk > y⋆
k − Lk

(2.8)

J⋆
k (xk) = ck · u

⋆
k(xk) + gk

(
xk + u⋆

k(xk)
)

=







ck · Uk + gk(xk + Uk), if xk < y⋆
k − Uk

ck · (y
⋆
k − xk) + gk(y

⋆), otherwise

ck · Lk + gk(xk + Lk), if xk > y⋆
k − Lk ,

(2.9)

where y⋆
k represents the minimizer2 of the convex function ck · y + gk(y) (for the

inventory Example 1, y⋆
k is the basestock level in period k, i.e., the inventory position

just after ordering, and before seeing the demand). A typical example of the optimal

control law and the optimal value function is shown in Figure 2-1.

The main properties of the solution relevant for our later treatment are listed

below:

(P1) The optimal control law u⋆
k(xk) is piecewise affine, continuous and non-increasing.

(P2) The optimal value function, J⋆
k (xk), and the function gk(yk) are convex.

(P3) The difference in the values of the optimal control law at two distinct arguments

2For simplicity of exposition, we work under the assumption that the minimizer is unique. The
results can be extended to the case of multiple minimizers.
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y⋆
k − Uky⋆

k − Lk

Uk

Lk

xk

u⋆
k(xk) uk = Uk

uk = y⋆
k − xk

uk = Lk

uk = u⋆
k

y⋆
k − Uky⋆

k − Lk

xk

J⋆
k (xk)

Figure 2-1: Optimal control law u⋆
k(xk) and optimal value function J⋆

k (xk) at time k.

s ≤ t always satisfies: 0 ≤ u⋆
k(s) − u⋆

k(t) ≤ t − s. Equivalently, xk + u⋆
k(xk) is

non-decreasing as a function of xk.

2.3 Optimality of Affine Policies in the History of

Disturbances.

In this section, we introduce our main contribution, namely a proof that policies that

are affine in the disturbances w[k] are, in fact, optimal for problem (DP ). Using the

same notation as in Section 2.2, and with J⋆
1 (x1) denoting the optimal overall value,

we can summarize our main result in the following theorem:

Theorem 1 (Optimality of disturbance-affine policies). Affine disturbance-feedback

policies are optimal for Problem 1 stated in the introduction. More precisely, for every

time step k = 1, . . . , T , the following quantities exist:

an affine control policy, qk(w[k])
def
= qk,0 + q′

kw[k], (2.10a)

an affine running cost, zk(w[k+1])
def
= zk,0 + z′

kw[k+1], (2.10b)
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such that the following properties are obeyed:

Lk ≤ qk(w[k]) ≤ Uk, ∀w[k] ∈ Hk, (2.11a)

zk(w[k+1]) ≥ hk

(

x1 +

k∑

t=1

(

qt(w[t]) + wt

))

, ∀w[k+1] ∈ Hk+1, (2.11b)

J⋆
1 (x1) = max

w[k+1]∈Hk+1

[
k∑

t=1

(

ct · qt(w[t]) + zt(w[t+1])
)

+ J⋆
k+1

(

x1 +

k∑

t=1

(

qt(w[t]) + wt

))
]

.

(2.11c)

Let us interpret the main statements in the theorem. Equation (2.11a) confirms

the existence of an affine policy qk(w[k]) that is robustly feasible, i.e., that obeys

the control constraints, no matter what the realization of the disturbances may be.

Equation (2.11b) states the existence of an affine cost zk(w[k+1]) that is always larger

than the convex state cost hk(xk+1) incurred when the affine policies {qt(·)}1≤t≤k

are used. Equation (2.11c) guarantees that, despite using the (suboptimal) affine

control law qk(·), and incurring a (potentially larger) affine stage cost zk(·), the overall

objective function value J⋆
1 (x1) is, in fact, not increased. This translates in the

following two main results:

• Existential result. Affine policies qk(w[k]) are, in fact, optimal for Problem 1.

• Computational result. When the convex costs hk(xk+1) are piecewise affine, the

optimal affine policies
{
qk(w[k])

}

1≤k≤T
can be computed by solving a Linear

Programming problem.

To see why the second implication would hold, suppose that hk(xk+1) is the maximum

of mk affine functions, hk(xk+1) = max
(
pi

k · xk+1 + pi
k,0

)
, i ∈ {1, . . . , mk}. Then the

optimal affine policies qk(w[k]) can be obtained by solving the following optimization
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problem (see Ben-Tal et al. [16]):

min
J ;{qk,t};{zk,t}

J

s.t. ∀w ∈ HT+1, ∀ k ∈ {1, . . . , T} :

(AARC)

J ≥
T∑

k=1

[

ck · qk,0 + zk,0 +

k−1∑

t=1

(ct · qk,t + zk,t) · wt + zk,k · wk

]

,

zk,0 +
k∑

t=1

zk,t · wt ≥ pi
k ·

[

x1 +
k∑

t=1

(

qt,0 +
t−1∑

τ=1

qt,τ · wτ + wt

)]

+ pi
k,0 ,

∀ i ∈ {1, . . . , mk},

Lk ≤ qk,0 +
k−1∑

t=1

qk,t · wt ≤ Uk.

(2.12)

Although Problem (AARC) is still a semi-infinite LP (due to the requirement of

robust constraint feasibility, ∀w), since all the constraints are inequalities that are

bi-affine in the decision variables and the uncertain quantities, a very compact re-

formulation of the problem is available. In particular, with a typical constraint in

(AARC) written as

λ0(x) +
T∑

t=1

λt(x) · wt ≤ 0, ∀w ∈ HT+1 ,

where λi(x) are affine functions of the decision variables x, it can be shown (see Ben-

Tal and Nemirovski [12], Ben-Tal et al. [14] for details) that the previous condition is

equivalent to:







λ0(x) +
∑T

t=1

(

λt(x) · wt+wt

2
+

wt−wt

2
· ξt

)

≤ 0

−ξt ≤ λt(x) ≤ ξt, t = 1, . . . , T ,

(2.13)

which are linear constraints in the decision variables x, ξ. Therefore, (AARC) can be

reformulated as a Linear Program, with O (T 2 maxk mk) variables and O (T 2 maxk mk)
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constraints, which can be solved very efficiently using commercially available software.

We conclude our observations by making one last remark related to an immediate

extension of the results. Note that in the statement of Problem 1, there was no

mention about constraints on the states xk of the dynamical system. In particular,

one may want to incorporate lower or upper bounds on the states, as well,

Lx
k ≤ xk ≤ Ux

k . (2.14)

We claim that, in case the mathematical problem including such constraints remains

feasible3, then affine policies are, again, optimal. The reason is that such constraints

can always be simulated in our current framework, by adding suitable convex barriers

to the stage costs hk(xk+1). In particular, by considering the modified, convex stage

costs

h̃k(xk+1)
def
= hk(xk+1) + 1[Lx

k+1,Ux
k+1]

(xk+1),

where 1S(x)
def
=
{
0, ifx ∈ S; ∞, otherwise

}
, it can be easily seen that the original

problem, with convex stage costs hk(·) and state constraints (2.14), is equivalent to

a problem with the modified stage costs h̃k(·) and no state constraints. And, since

affine policies are optimal for the latter problem, the result is immediate. Therefore,

our decision to exclude such constraints from the original formulation was made only

for sake of brevity and conciseness of the proofs, but without loss of generality.

2.4 Proof of Main Theorem.

The current section contains the proof of Theorem 1. Before presenting the details,

we first give some intuition behind the strategy of the proof, and introduce the orga-

nization of the material.

Unlike most Dynamic Programming proofs, which utilize backward induction on

3Such constraints may lead to infeasible problems. For example, T = 1, x1 = 0, u1 ∈ [0, 1], w1 ∈
[0, 1], x2 ∈ [5, 10].
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the time-periods, we proceed with a forward induction. Section 2.4.1 presents a

test of the first step of the induction, and then introduces a detailed analysis of the

consequences of the induction hypothesis.

We then separate the completion of the induction step into two parts. In the first

part, discussed in Section 2.4.2, by exploiting the structure provided by the forward

induction hypothesis, and making critical use of the properties of the optimal control

law u⋆
k(xk) and optimal value function J⋆

k (xk) (the DP solutions), we introduce a

candidate affine policy qk(w[k]). In Section 2.4.2, we then prove that this policy is

robustly feasible, and preserves the min-max value of the overall problem, J⋆
1 (x1),

when used in conjunction with the original, convex state costs, hk(xk+1).

Similarly, for the second part of the inductive step (Section 2.4.3), by re-analyzing

the feasible sets of the optimization problems resulting after the use of the (newly

computed) affine policy qk(w[k]), we determine a candidate affine cost zk(w[k+1]),

which we prove to be always larger than the original convex state costs, hk(xk+1).

However, despite this fact, in Section 2.4.3 we also show that when this affine cost is

incurred, the overall min-max value J⋆
1 (x1) remains unchanged, which completes the

proof of the inductive step.

Section 2.4.4 concludes the proof of Theorem 1, and outlines several counterex-

amples that prevent an immediate extension of the result to more general cases.

2.4.1 Induction Hypothesis.

As mentioned before, the proof of the theorem utilizes a forward induction on the

time-step k. We begin by verifying the induction at k = 1.

Using the same notation as in Section 2.2, by taking the affine control to be

q1
def
= u⋆

1(x1), we immediately get that q1, which is simply a constant, is robustly

feasible, so (2.11a) is obeyed. Furthermore, since u⋆
1(x1) is optimal, we can write the
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overall optimal objective value as:

J⋆
1 (x1) = min

u1∈[L1,U1]
[ c1 · u1 + g1(x1 + u1) ] = c1 · q1 + g1 (x1 + q1)

=
(
by (2.7b) and convexity of h1, J

⋆
2

)

= c1 · q1 + max
{
(h1 + J⋆

2 ) (x1 + q1 + w1) , (h1 + J⋆
2 ) (x1 + q1 + w1)

}
. (2.15)

Next, we introduce the affine cost z1(w1)
def
= z1,0 + z1,1 · w1, where we constrain the

coefficients z1,i to satisfy the following two linear equations:

z1,0 + z1,1 · w1 = h1(x1 + q1 + w1), ∀w1 ∈
{
w1, w1

}
.

Note that for fixed x1 and q1, the function z1(w1) is nothing but a linear interpolation

of the mapping w1 7→ h1(x1 + q1 + w1), matching the value at points {w1, w1}.

Since h1 is convex, the linear interpolation defined above clearly dominates it, so

condition (2.11b) is readily satisfied. Furthermore, by (2.15), J⋆
1 (x1) is achieved for

w1 ∈ {w1, w1}, so condition (2.11c) is also obeyed.

Having checked the induction at time k = 1, let us now assume that the statements

of Theorem 1 are true for times t = 1, . . . , k. Equation (2.11c) written for stage k

then yields:

J⋆
1 (x1) = max

w[k+1]∈Hk+1

[
k∑

t=1

(

ct · qt(w[t]) + zt

(
w[t+1]

))

+ J⋆
k+1

(

x1 +
k∑

t=1

(
qt(w[t]) + wt

)
)]

= max
(θ1,θ2)∈Θ

[

θ1 + J⋆
k+1(θ2)

]

, where (2.16)

Θ
def
=

{

(θ1, θ2) ∈ R2 : θ1
def
=

k∑

t=1

(
ct · qt(w[t]) + zt

(
w[t+1]

))
,

θ2
def
= x1 +

k∑

t=1

(
qt(w[t]) + wt

)
, w[k+1] ∈ Hk+1

}

. (2.17)

Since {qt}1≤t≤k and {zt}1≤t≤k are affine functions, this implies that, although the
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uncertainties w[k+1] = (w1, . . . , wk) lie in a set with 2k vertices (the hyperrectangle

Hk+1), they are only able to affect the objective JmM through two affine combina-

tions (θ1 summarizing all the past stage costs, and θ2 representing the next state,

xk+1), taking values in the set Θ. Such a polyhedron, arising as a 2-dimensional

affine projection of a k-dimensional hyperrectangle, is called a zonogon (see Figure 2-

2 for an example). It belongs to a larger class of polytopes, known as zonotopes,

whose combinatorial structure and properties are well documented in the discrete

and computational geometry literature. The interested reader is referred to Chapter

7 of Ziegler [149] for a very nice and accessible introduction.

v0 = vmin [000000]
v1 [100000]

v2 [110000]

v3 [111000]

v4 [111100]

v5 [111110]
v6 = vmax [111111]

vj v
#
j

θ1

θ2

Figure 2-2: Zonogon obtained from projecting a hypercube in R6.

The main properties of a zonogon that we are interested in are summarized in

Lemma 13, found in the Appendix. In particular, the set Θ is centrally symmetric, and

has at most 2k vertices (see Figure 2-2 for an example). Furthermore, by numbering

the vertices of Θ in counter-clockwise fashion, starting at

v0 ≡ vmin
def
= arg max

{
θ1 : θ ∈ arg min{θ′2 : θ′ ∈ Θ}

}
, (2.18)

we establish the following result concerning the points of Θ that are relevant in our

problem:

Lemma 1. The maximum value in (2.16) is achieved for some (θ1, θ2) ∈ {v0, v1, . . . , vk}.
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Proof. The optimization problem described in (2.16) and (2.17) is a maximization

of a convex function over a convex set. Therefore (see Section 32 of Rockafellar

[126]), the maximum is achieved at the extreme points of the set Θ, namely on the

set {v0, v1, . . . , v2p−1, v2p ≡ v0}, where 2p is the number of vertices of Θ. Letting O

denote the center of Θ, by part (iii) of Lemma 13 in the Appendix, we have that the

vertex symmetrically opposed to vmin, namely vmax
def
= 2O− vmin, satisfies vmax = vp.

Consider any vertex vj with j ∈ {p + 1, . . . , 2p − 1}. From the definition of

vmin, vmax, for any such vertex, there exists a point v
#
j ∈ [vmin, vmax], with the same

θ2-coordinate as vj , but with a θ1-coordinate larger than vj (refer to Figure 2-2).

Since such a point will have an objective in problem (2.16) at least as large as vj ,

and v
#
j ∈ [v0, vp], we can immediately conclude that the maximum of problem (2.16)

is achieved on the set {v0, . . . , vp}. Since 2p ≤ 2k (see part (ii) of Lemma 13), we

immediately arrive at the conclusion of the lemma.

Since the argument presented in the lemma is recurring throughout several of our

proofs and constructions, we end this subsection by introducing two useful definitions,

and generalizing the previous result.

Consider the system of coordinates (θ1, θ2) in R2, and let S ⊂ R2 denote an

arbitrary, finite set of points and P denote any (possibly non-convex) polygon such

that its set of vertices is exactly S. With ymin
def
= arg max

{
θ1 : θ ∈ arg min{θ′2 : θ′ ∈

P}
}

and ymax
def
= arg max

{
θ1 : θ ∈ arg max{θ′2 : θ′ ∈ P}

}
, by numbering the vertices

of the convex hull of S in a counter-clockwise fashion, starting at y0
def
= ymin, and with

ym = ymax, we define the right side of P and the zonogon hull of S as follows:

Definition 1. The right side of an arbitrary polygon P is:

r-side (P)
def
= {y0, y1, . . . , ym} . (2.19)

Definition 2. The zonogon hull of a set of points S is:

z-hull (S)
def
=

{

y ∈ R2 : y = y0 +

m∑

i=1

wi · (yi − yi−1) , 0 ≤ wi ≤ 1

}

. (2.20)
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y0 = ymin
y1

y2

y3

ym = ymax

θ1

θ2

y0 = ymin

y1

y2

ym = ymax

θ1

θ2

y0 = ymin

y1

y2

y3

ym = ymax

θ1

θ2

Figure 2-3: Examples of zonogon hulls for different sets S ∈ R2.

Intuitively, r-side(P) represents exactly what the names hints at, i.e., the vertices

found on the right side of P. An equivalent definition using more familiar operators

would be

r-side(P) ≡ ext
(

cone
([

−1
0

])
+ conv (P)

)

,

where cone(·) and conv(·) represent the conic and convex hull, respectively, and ext(·)

denotes the set of extreme points.

Using Definition 3 in Section A.2 of the Appendix, one can see that the zonogon

hull of a set S is simply a zonogon that has exactly the same vertices on the right side

as the convex hull of S, i.e., r-side (z-hull (S)) = r-side (conv (S)). Some examples

of zonogon hulls are shown in Figure 2-3 (note that the initial points in S do not

necessarily fall inside the zonogon hull, and, as such, there is no general inclusion

relation between the zonogon hull and the convex hull). The reason for introducing

this object is that it allows for the following immediate generalization of Lemma 1:

Corollary 1. If P is any polygon in R2 (coordinates (θ1, θ2) ≡ θ) with a finite set S

of vertices, and f(θ)
def
= θ1 + g(θ2), where g : R → R̄ is any convex function, then the

following chain of equalities holds:

max
θ∈P

f(θ) = max
θ∈conv(P)

f(θ) = max
θ∈S

f(θ) = max
θ∈r-side(P)

f(θ)

= max
θ∈z-hull(S)

f(θ) = max
θ∈r-side(z-hull(S))

f(θ).

Proof. The proof is identical to that of Lemma 1, and is omitted for brevity.
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Using this result, whenever we are faced with a maximization of a convex function

θ1 + g(θ2), we can switch between different feasible sets, without affecting the overall

optimal value of the optimization problem.

In the context of Lemma 1, the above result allows us to restrict attention from a

potentially large set of relevant points (the 2k vertices of the hyperrectangle Hk+1),

to the k+1 vertices found on the right side of the zonogon Θ, which also gives insight

into why the construction of an affine controller qk+1(w[k+1]) with k + 1 degrees of

freedom, yielding the same overall objective function value JmM , might actually be

possible.

In the remaining part of Section 2.4.1, we further narrow down this set of relevant

points, by using the structure and properties of the optimal control law u⋆
k+1(xk+1)

and optimal value function J⋆
k+1(xk+1), derived in Section 2.2. Before proceeding,

however, we first reduce the notational clutter by introducing several simplifications

and assumptions.

Simplified Notation and Assumptions.

For the remaining part of the chapter, we seek a simplified notation as much as

possible, in order to clarify the key ideas. To start, we omit the time subscript

k + 1 whenever possible, so that we write w[k+1] ≡ w, qk+1(·) ≡ q(·), J⋆
k+1(·) ≡

J⋆(·), gk+1(·) ≡ g(·). The affine functions θ1,2(w[k+1]) and qk+1(w[k+1]) are written:

θ1(w)
def
= a0 + a′ w; θ2(w)

def
= b0 + b′ w; q(w)

def
= q0 + q′ w , (2.21)

where a, b ∈ Rk are the generators of the zonogon Θ. Since θ2 is nothing but the

state xk+1, instead of referring to J⋆
k+1(xk+1) and u⋆

k+1(xk+1), we use J⋆(θ2) and u⋆(θ2).

Since our exposition relies heavily on sets given by maps γ : Rk 7→ R2 (k ≥ 2), in

order to reduce the number of symbols, we denote the resulting coordinates in R2 by

γ1, γ2, and use the following overloaded notation:

• γi[v] denotes the γi-coordinate of the point v ∈ R2,
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• γi(w) is the value assigned by the i-th component of the map γ to w ∈ Rk

(equivalently, γi(w) ≡ γi[γ(w)]).

The different use of parentheses should remove any ambiguity from the notation

(particularly in the case k = 2). For the same (γ1, γ2) coordinate system, we use

cotan
(
M , N

)
to denote the cotangent of the angle formed by an oriented line segment

[M , N ] ∈ R2 with the γ1-axis,

cotan
(
M , N

)
def
=

γ1[N ] − γ1[M ]

γ2[N ] − γ2[M ]
. (2.22)

Also, to avoid writing multiple functional compositions, since most quantities of

interest depend solely on the state xk+1 (which is the same as θ2), we use the following

shorthand notation for any point v ∈ R2, with corresponding θ2-coordinate given by

θ2[v]:

u⋆
(
θ2[v]

)
≡ u⋆(v); J⋆

(
θ2[v]

)
≡ J⋆(v); g

(
θ2[v] + u⋆(θ2[v])

)
≡ g(v).

We use the same counter-clockwise numbering of the vertices of Θ as introduced

earlier in Section 2.4.1,

v0
def
= vmin, . . . , vp

def
= vmax, . . . , v2p = vmin , (2.23)

where 2p is the number of vertices of Θ, and we also make the following simplifying

assumptions:

Assumption 1. The uncertainty vector at time k +1, w[k+1] = (w1, . . . , wk), belongs

to the unit hypercube of Rk, i.e., Hk+1 = W1 × · · · ×Wk ≡ [0, 1]k.

Assumption 2. The zonogon Θ has a maximal number of vertices, i.e., p = k.

Assumption 3. The vertex of the hypercube projecting to vi, i ∈ {0, . . . , k}, is exactly

[1, 1, . . . , 1, 0, . . . , 0], i.e., 1 in the first i components and 0 thereafter (see Figure 2-2).

These assumptions are made only to facilitate the exposition, and result in no

loss of generality. To see this, note that the conditions of Assumption 1 can always

45



be achieved by adequate translation and scaling of the generators a and b (refer to

Section A.2 of the Appendix for more details), and Assumption 3 can be satisfied

by renumbering and possibly reflecting4 the coordinates of the hyperrectangle, i.e.,

the disturbances w1, . . . , wk. As for Assumption 2, we argue that an extension of our

construction to the degenerate case p < k is immediate (one could also remove the

degeneracy by applying an infinitesimal perturbation to the generators a or b, with

infinitesimal cost implications).

Further Analysis of the Induction Hypothesis.

In the simplified notation, equation (2.16) can now be rewritten, using (2.9) to express

J⋆(·) as a function of u⋆(·) and g(·), as follows:

(OPT ) JmM = max
(γ1,γ2)∈Γ⋆

[

γ1 + g (γ2)
]

, (2.24a)

Γ⋆ def
=
{

(γ⋆
1 , γ

⋆
2) : γ⋆

1
def
= θ1 + c · u⋆(θ2), γ⋆

2
def
= θ2 + u⋆(θ2), (θ1, θ2) ∈ Θ

}

.

(2.24b)

In this form, (OPT ) represents the optimization problem solved by the uncertainties

w ∈ H when the optimal policy, u⋆(·), is used at time k + 1. The significance of γ⋆
1,2

in the context of the original problem is straightforward: γ⋆
1 stands for the cumulative

past stage costs, plus the current-stage control cost c ·u⋆, while γ⋆
2 , which is the same

variable as yk+1, is the sum of the state and the control (in the inventory Example 1, it

would represent the inventory position just after ordering, before seeing the demand).

Note that we have Γ⋆ ≡ γ⋆(Θ), where a characterization for the map γ⋆ can be

4Reflection would represent a transformation wi 7→ 1−wi. As we show in a later result (Lemma 4
of Section 2.4.2), reflection is actually not needed, but this is not obvious at this point.
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obtained by replacing the optimal policy, given by (2.8), in equation (2.24b):

γ⋆ : R2 → R2, γ⋆(θ) ≡
(
γ⋆

1(θ), γ⋆
2(θ)

)
=







(θ1 + c · U, θ2 + U) , if θ2 < y⋆ − U

(θ1 − c · θ2 + c · y⋆, y⋆) , otherwise

(θ1 + c · L, θ2 + L) , if θ2 > y⋆ − L

(2.25)

The following is a compact characterization for the maximizers in problem (OPT )

from (2.24a):

Lemma 2. The maximum in problem (OPT ) over Γ⋆ is reached on the right side of:

∆Γ⋆
def
= conv ({y⋆

0, . . . , y
⋆
k}) , (2.26)

where:

y⋆
i

def
= γ⋆(vi) =

(
θ1[vi] + c · u⋆(vi), θ2[vi] + u⋆(vi)

)
, i ∈ {0, . . . , k}. (2.27)

Proof. By Lemma 1, the maximum in (2.16) is reached at one of the vertices v0,

v1, . . . , vk of the zonogon Θ. Since this problem is equivalent to problem (OPT )

in (2.24b), written over Γ⋆, we can immediately conclude that the maximum of the

latter problem is reached at the points {y⋆
i }1≤i≤k given by (2.27). Furthermore, since

g(·) is convex (see Property (P2) of the optimal DP solution, in Section 2.2), we

can apply Corollary 1, and replace the points y⋆
i with the right side of their convex

hull, r-side (∆Γ⋆), without changing the result of the optimization problem, which

completes the proof.

Since this result is central to our future construction and proof, we spend the

remaining part of the subsection discussing some of the properties of the main object

of interest, the set, r-side(∆Γ⋆). To understand the geometry of the set ∆Γ⋆ , and

its connection with the optimal control law, note that the mapping γ⋆ from Θ to

Γ⋆ discriminates points θ = (θ1, θ2) ∈ Θ depending on their position relative to the

47



horizontal band

BLU
def
=
{

(θ1, θ2) ∈ R2 : θ2 ∈ [y⋆ − U, y⋆ − L]
}
. (2.28)

In terms of the original problem, the band BLU represents the portion of the state

space xk+1 (i.e., θ2) in which the optimal control policy u⋆ is unconstrained by the

bounds L, U . More precisely, points below BLU and points above BLU correspond to

state-space regions where the upper-bound, U , and the lower bound, L, are active,

respectively.

With respect to the geometry of Γ⋆, we can use (2.25) and the definition of

v0, . . . , vk to distinguish a total of four distinct cases. The first three, shown in

Figure 2-4, are very easy to analyze:

v0 = vmin
v1

v2

vk−1
vk = vmax

θ1

θ2
BLU

y⋆ − L
y⋆ − U

v0 = vmin
v1

v2

vk−1
vk = vmax

θ1

BLU

y⋆ − L

y⋆ − U

v0 = vmin
v1

v2

vk−1
vk = vmax

θ1

θ2

BLU

y⋆ − L
y⋆ − U

Figure 2-4: Trivial cases, when zonogon Θ lies entirely [C1] below, [C2] inside, or [C3]
above the band BLU .

[C1] If the entire zonogon Θ falls below the band BLU , i.e., θ2 [vk] < y⋆ −U , then Γ⋆

is simply a translation of Θ, by (c·U, U), so that r-side (∆Γ⋆) = {y⋆
0, y

⋆
1, . . . , y

⋆
k}.

[C2] If Θ lies inside the band BLU , i.e., y⋆−U ≤ θ2 [v0] ≤ θ2 [vk] ≤ y⋆−L, then all the

points in Γ⋆ will have γ⋆
2 = y⋆, so Γ⋆ will be a line segment, and |r-side (∆Γ⋆)| =

1.

[C3] If the entire zonogon Θ falls above the band BLU , i.e., θ2 [v0] > y⋆−L, then γ⋆ is

again a translation of Θ, by (c · L, L), so, again r-side (∆Γ⋆) = {y⋆
0, y

⋆
1, . . . , y

⋆
k}.

The remaining case, [C4], is when Θ intersects the horizontal band BLU in a

nontrivial fashion. We can separate this situation in the three sub-cases shown in
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Figure 2-5, depending on the position of the vertex vt ∈ r-side(Θ), where the index t

v0 = vminv0 = vminv0 = vmin

v1v1v1

v2v2v2

v3v3v3

v5v5v5

v6v6v6

v7v7v7

vtvtvt

vk = vmaxvk = vmaxvk = vmax

y⋆ − L

y⋆ − L

y⋆ − L

y⋆ − U

y⋆ − U

y⋆ − U

θ1θ1θ1

θ2θ2θ2

γ⋆
1γ⋆
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Figure 2-5: Case [C4]. Original zonogon Θ (first row) and the set Γ⋆ (second row) when
vt falls (a) under, (b) inside or (c) above the band BLU .

relates the per-unit control cost, c, with the geometrical properties of the zonogon:

t
def
=







0 , if a1

b1
≤ c

max
{

i ∈ {1, . . . , k} : ai

bi
> c
}

, otherwise .

(2.29)

We remark that the definition of t is consistent, since, by the simplifying Assump-

tion 3, the generators a, b of the zonogon Θ always satisfy:







a1

b1
> a2

b2
> · · · > ak

bk

b1, b2, . . . , bk ≥ 0.

(2.30)

An equivalent characterization of vt can be obtained as the result of an optimization

problem,

vt ≡ arg min
{

θ2 : θ ∈ arg max
{
θ′1 − c · θ′2 : θ′ ∈ Θ

}}

.

The following lemma summarizes all the relevant geometrical properties correspond-
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ing to this case:

Lemma 3. When the zonogon Θ has a non-trivial intersection with the band BLU

(case [C4]), the convex polygon ∆Γ⋆ and the set of points on its right side, r-side(∆Γ⋆),

verify the following properties:

1. r-side(∆Γ⋆) is the union of two sequences of consecutive vertices (one starting

at y⋆
0, and one ending at y⋆

k), and possibly an additional vertex, y⋆
t :

r-side(∆Γ⋆) = {y⋆
0, y

⋆
1, . . . , y

⋆
s} ∪ {y⋆

t } ∪
{
y⋆

r , y
⋆
r+1 . . . , y⋆

k

}
,

for some s ≤ r ∈ {0, . . . , k}.

2. With cotan
(
·, ·
)

given by (2.22) applied to the (γ⋆
1 , γ

⋆
2) coordinates, we have that:







cotan
(
y⋆

s , y⋆
min(t,r)

)
≥ as+1

bs+1
, whenever t > s

cotan
(
y⋆

max(t,s), y⋆
r

)
≤ ar

br
, whenever t < r.

(2.31)

While the proof of the lemma is slightly technical (which is why we have decided to

leave it for Section A.2.1 of the Appendix), its implications are more straightforward.

In conjuction with Lemma 2, it provides a compact characterization of the points

y⋆
i ∈ Γ⋆ which are potential maximizers of problem (OPT ) in (2.24a), which immedi-

ately narrows the set of relevant points vi ∈ Θ in optimization problem (2.16), and,

implicitly, the set of disturbances w ∈ Hk+1 that can achieve the overall min-max

cost.

2.4.2 Construction of the Affine Control Law.

Having analyzed the consequences that result from using the induction hypothe-

sis of Theorem 1, we now return to the task of completing the inductive proof,

which amounts to constructing an affine control law qk+1(w[k+1]) and an affine cost

zk+1(w[k+2]) that verify conditions (2.11a), (2.11b), and (2.11c) in Theorem 1. We

separate this task into two parts. In the current section, we exhibit an affine control
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law qk+1(w[k+1]) that is robustly feasible, i.e., satisfies constraint (2.11a), and that

leaves the overall min-max cost J⋆
1 (x1) unchanged, when used at time k+1 in conjunc-

tion with the original convex state cost, hk+1(xk+2). The second part of the induction,

i.e., the construction of the affine costs zk+1(w[k+2]), is left for Section 2.4.3.

In the simplified notation introduced earlier, the problem we would like to solve

is to find an affine control law q(w) such that:

J⋆
1 (x1) = max

w∈Hk+1

[

θ1(w) + c · q(w) + g
(
θ2(w) + q(w)

) ]

L ≤ q(w) ≤ U , ∀w ∈ Hk+1.

The maximization represents the problem solved by the disturbances, when the

affine controller, q(w), is used instead of the optimal controller, u⋆(θ2). As such,

the first equation amounts to ensuring that the overall objective function remains

unchanged, and the inequalities are a restatement of the robust feasibility condition.

The system can be immediately rewritten as

(AFF ) J⋆
1 (x1) = max

(γ1,γ2)∈Γ

[

γ1 + g (γ2)
]

(2.32a)

L ≤ q(w) ≤ U , ∀w ∈ Hk+1 (2.32b)

where

Γ
def
=
{

(γ1, γ2) : γ1
def
= θ1(w) + c · q(w), γ2

def
= θ2(w) + q(w), w ∈ Hk+1

}

. (2.33)

With this reformulation, all our decision variables, i.e., the affine coefficients of

q(w), have been moved to the feasible set Γ of the maximization problem (AFF )

in (2.32a). Note that, with an affine controller q(w) = q0 + q′ w, and θ1,2 affine in

w, the feasible set Γ will represent a new zonogon in R2, with generators given by

a + c · q and b + q. Furthermore, since the function g is convex, the optimization

problem (AFF ) over Γ is of the exact same nature as that in (2.16), defined over the

zonogon Θ. Thus, in perfect analogy with our discussion in Section 2.4.1 (Lemma 1
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and Corollary 1), we can conclude that the maximum in (AFF ) must occur at a

vertex of Γ found in r-side(Γ).

In a different sense, note that optimization problem (AFF ) is also very similar to

problem (OPT ) in (2.24b), which was the problem solved by the uncertainties w when

the optimal control law, u⋆(θ2), was used at time k+1. Since the optimal value of the

latter problem is exactly equal to the overall min-max value, J⋆
1 (x1), we interpret the

equation in (2.32a) as comparing the optimal values in the two optimization problems,

(AFF ) and (OPT ).

As such, note that the same convex objective function, γ1 +g(γ2), is maximized in

both problems, but over different feasible sets, Γ⋆ for (OPT ) and Γ for (AFF ), respec-

tively. From Lemma 2 in Section 2.4.1, the maximum of problem (OPT ) is reached on

the set r-side(∆Γ⋆), where ∆Γ⋆ = conv ({y⋆
0, y

⋆
1, . . . , y

⋆
k}). From the discussion in the

previous paragraph, the maximum in problem (AFF ) occurs on r-side(Γ). Therefore,

in order to compare the two results of the maximization problems, we must relate the

sets r-side(∆Γ⋆) and r-side(Γ).

In this context, we introduce the central idea behind the construction of the affine

control law, q(w). Recalling the concept of a zonogon hull introduced in Definition 2,

we argue that, if the affine coefficients of the controller, q0, q, were computed in

such a way that the zonogon Γ actually corresponded to the zonogon hull of the

set {y⋆
0, y

⋆
1, . . . , y

⋆
k}, then, by using the result in Corollary 1, we could immediately

conclude that the optimal values in (OPT ) and (AFF ) are the same.

To this end, we introduce the following procedure for computing the affine control

law q(w):
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Algorithm 1 Compute affine controller q(w)

Require: θ1(w), θ2(w), g(·), u⋆(·)

1: if (Θ falls below BLU ) or (Θ ⊆ BLU ) or (Θ falls above BLU) then

2: Return q(w) = u⋆(θ2(w)).

3: else

4: Apply the mapping (2.25) to obtain the points y⋆
i , i ∈ {0, . . . , k}.

5: Compute the set ∆Γ⋆ = conv ({y⋆
0, . . . , y

⋆
k}).

6: Let r-side(∆Γ⋆) = {y⋆
0, y

⋆
1, . . . , y

⋆
s} ∪ {y⋆

t } ∪ {y⋆
r , . . . , y

⋆
k}.

7: Solve the following system for q0, . . . , qk and KU , KL:

(S)







q0 + · · · + qi = u⋆ (vi) , ∀y⋆
i ∈ r-side(∆Γ⋆) (matching)

ai + c · qi

bi + qi

= KU , ∀ i ∈ {s + 1, . . . , min(t, r)} (alignment below t)

ai + c · qi

bi + qi

= KL, ∀ i ∈ {max(t, s) + 1, . . . , r} (alignment above t)

(2.34)

8: Return q(w) = q0 +
∑k

i=1 qiwi.

9: end if

Before proving that the construction is well-defined and produces the expected

result, we first give some intuition for the constraints in system (2.34). In order

to have the zonogon Γ be the same as the zonogon hull of {y⋆
0, . . . , y

⋆
k}, we must

ensure that the vertices on the right side of Γ exactly correspond to the points on

the right side of ∆Γ⋆ = conv ({y⋆
0, . . . , y

⋆
k}).This is achieved in two stages. First,

we ensure that vertices wi of the hypercube Hk+1 that are mapped by the optimal

control law u⋆(·) into points v⋆
i ∈ r-side(∆Γ⋆)

(
through the succession of mappings

wi

(2.17)
7→ vi ∈ r-side(Θ)

(2.27)
7→ y⋆

i ∈ r-side(∆Γ⋆)
)
, will be mapped by the affine control

law, q(wi), into the same point y⋆
i

(
through the mappings wi

(2.17)
7→ vi ∈ r-side(Θ)

(2.33)
7→

y⋆
i ∈ r-side(∆Γ⋆)

)
. This is done in the first set of constraints, by matching the value of

the optimal control law at any such points. Second, we ensure that any such matched

points y⋆
i actually correspond to the vertices on the right side of the zonogon Γ. This

is done in the second and third set of constraints in (2.34), by computing the affine
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coefficients qj in such a way that the resulting segments in the generators of the

zonogon Γ, namely
( aj+c·qj

bj+qj

)
, are all aligned, i.e., have the same cotangent, given by

the KU , KL variables. Geometrically, this exactly corresponds to the situation shown

in Figure 2-6 below.

v0 = vmin
v1

v2

v3

v4 = vt

v5

v6

v7

vk = vmax

y⋆ − L

y⋆ − U

BLU

θ1

θ2

Original zonogon Θ.
 

 

γ⋆
1

γ⋆
2

y⋆
0 = y0

y⋆
s = ys

y⋆
2

y⋆
3

y⋆
5

y⋆
6

y⋆
r = yr

y⋆
t = yt

y⋆
k = yk Γ⋆

y⋆
i

Γ
yj

y2

y3

y5

y6

Set Γ⋆ and points yj ∈ r-side(Γ).

y⋆

Figure 2-6: Outcomes from the matching and alignment performed in Algorithm 1.

We remark that the above algorithm does not explicitly require that the con-

trol q(w) be robustly feasible, i.e., condition (2.32b). However, this condition turns

out to hold as a direct result of the way matching and alignment are performed in

Algorithm 1.

Affine Controller Preserves Overall Objective and Is Robust.

In this section, we prove that the affine control law q(w) produced by Algorithm 1

satisfies the requirements of (2.32a), i.e., it is robustly feasible, and it preserves the

overall objective function J⋆
1 (x1), when used in conjunction with the original convex

state costs, h(·). With the exception of Corollary 1, all the key results that we are

using are contained in Section 2.4.1 (Lemmas 2 and 3). Therefore, we preserve the

same notation and case discussion as initially introduced there.

First consider the condition on line 1 of Algorithm 1, and note that this corre-

sponds to the three trivial cases [C1], [C2] and [C3] of Section 2.4.1. In particular,

since θ2 ≡ xk+1, we can use (2.8) to conclude that in these cases, the optimal control

law u⋆(·) is actually affine:
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[C1] If Θ falls below the band BLU , then the upper bound constraint on the control

at time k is always active, i.e., u⋆
(
θ2(w)

)
= U, ∀w ∈ Hk+1.

[C2] If Θ ⊆ BLU , then the constraints on the control at time k are never active, i.e.,

u⋆
(
θ2(w)

)
= y⋆ − θ2(w), hence affine in w, since θ2 is affine in w, by (2.21).

[C3] If Θ falls above the band BLU , then the lower bound constraint on the control

is always active, i.e., u⋆
(
θ2(w)

)
= L, ∀w ∈ Hk+1.

Therefore, with the assignment in line 2 of Algorithm 1, we obtain an affine control

law that is always feasible and also optimal.

When none of the trivial cases holds, we are in case [C4] of Section 2.4.1. There-

fore, we can invoke the results from Lemma 3 to argue that the right side of the set

∆Γ⋆ is exactly the set on line 7 of the algorithm, i.e., r-side(∆Γ⋆) = {y⋆
0, . . . , y

⋆
s} ∪

{y⋆
t } ∪ {y⋆

r , . . . , y
⋆
k}. In this setting, we can now formulate the first claim about

system (2.34) and its solution:

Lemma 4. System (2.34) is always feasible, and the solution satisfies:

1. −bi ≤ qi ≤ 0, ∀ i ∈ {1, . . . , k}.

2. L ≤ q(w) ≤ U, ∀w ∈ Hk+1.

Proof. Note first that system (2.34) has exactly k+3 unknowns, two for the cotangents

KU , KL, and one for each coefficient qi, 0 ≤ i ≤ k. Also, since |r-side(∆Γ⋆)| ≤

|ext(∆Γ⋆)| ≤ k + 1, and there are exactly |r-side(∆Γ⋆)| matching constraints, and

k + 3 − |r-side(∆Γ⋆)| alignment constraints, it can be immediately seen that the

system is always feasible.

Consider any qi with i ∈ {1, . . . , s}∪{r+1, . . . , k}. From the matching conditions,

we have that qi = u⋆(vi)−u⋆(vi−1). By Property (P3) from Section 2.2, the difference

in the values of the optimal control law u⋆(·) satisfies:

u⋆(vi) − u⋆(vi−1)
def
= u⋆(θ2[vi]) − u⋆(θ2[vi−1])

(
by (P3)

)
= −f · (θ2[vi] − θ2[vi−1])

(2.21)
= −f · bi, where f ∈ [0, 1].
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Since, by (2.30), bj ≥ 0, ∀ j ∈ {1, . . . , k}, we immediately obtain −bi ≤ qi ≤ 0, for

i ∈ {1, . . . , s} ∪ {r + 1, . . . , k}.

Now consider any index i ∈ {s + 1, . . . , t ∧ r}, where t ∧ r ≡ min(t, r). From the

conditions in system (2.34) for alignment below t, we have qi = ai−KU ·bi

KU−c
. By summing

up all such relations, we obtain:

t∧r∑

i=s+1

qi =

∑t∧r

i=s+1 ai − KU ·
∑t∧r

i=s+1 bi

KU − c
⇔ (using the matching)

u⋆(vt∧r) − u⋆(vs) =

∑t∧r

i=s+1 ai − KU ·
∑t∧r

i=s+1 bi

KU − c
⇔

KU =

∑t∧r

i=s+1 ai + c · (u⋆(vt∧r) − u⋆(vs))
∑t∧r

i=s+1 bi + u⋆(vt∧r) − u⋆(vs)

=

[∑t∧r

i=0 ai + c · u⋆(vt∧r)
]
− [
∑s

i=0 ai + c · u⋆(vs)]
[∑t∧r

i=0 bi + u⋆(vt∧r)
]
− [
∑s

i=0 bi + u⋆(vs)]

(2.27)
=

γ⋆
1 [y

⋆
t∧r] − γ⋆

1 [y
⋆
s ]

γ⋆
2 [y

⋆
t∧r] − γ⋆

2 [y
⋆
s ]

(2.22)
= cotan

(
y⋆

s , y⋆
t∧r

)
.

In the first step, we have used the fact that both v⋆
s and v⋆

min(t,r) are matched, hence

the intermediate coefficients qi must sum to exactly the difference of the values of

u⋆(·) at vmin(t,r) and vs respectively. In this context, we can see that KU is simply

the cotangent of the angle formed by the segment [y⋆
s , y

⋆
min(t,r)] with the horizontal

(i.e., γ⋆
1) axis. In this case, we can immediately recall result (2.31) from Lemma 3, to

argue that KU ≥ as+1

bs+1
. Combining with (2.29) and (2.30), we obtain:

KU ≥
as+1

bs+1

(2.30)

≥ · · · ≥
amin(t,r)

bmin(t,r)
≥

at

bt

(2.29)
> c.

Therefore, we immediately have that for any i ∈ {s + 1, . . . , min(t, r)},







ai − KU · bi ≤ 0

KU − c > 0
⇒ qi =

ai − KU · bi

KU − c
≤ 0 ,







ai − c · bi > 0

qi + bi =
ai − c · bi

KU − c

⇒ qi + bi ≥ 0.

The argument for indices i ∈ {max(t, s)+1, . . . , r} proceeds in exactly the same fash-

ion, by recognizing that KL defined in the algorithm is the same as cotan
(
y⋆

max(t,s), y⋆
r

)
,
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and then applying (2.31) to argue that KL < ar

br
≤

amax(t,s)+1

bmax(t,s)+1
≤ at+1

bt+1
≤ c. This will

allow us to use the same reasoning as above, completing the proof of part (i) of the

claim.

To prove part (ii), consider any w ∈ Hk+1
def
= [0, 1]k. Using part (i), we obtain:

q(w)
def
= q0 +

k∑

i=1

qi · wi ≤ (since wi ∈ [0, 1], qi ≤ 0) ≤ q0
(∗∗)
= u⋆(v0) ≤ U ,

q(w) ≥ q0 +

k∑

i=1

qi · 1
(∗∗)
= u⋆(vk) ≥ L.

Note that in step (∗∗), we have critically used the result from Lemma 3 that, when

Θ * BLU , the points v⋆
0 , v

⋆
k are always among the points on the right side of ∆Γ⋆ , and,

therefore, we always have the equations q0 = u⋆(v0), q0 +
∑k

i=1 qi = u⋆(vk) among the

matching equations of system (2.34). For the last arguments, we have simply used the

fact that the optimal control law, u⋆(·), is always feasible, hence L ≤ u⋆(·) ≤ U .

This completes our first goal, namely proving that the affine controller q(w) is

always robustly feasible. To complete the construction, we introduce the following

final result:

Lemma 5. The affine control law q(w) computed in Algorithm 1 verifies equa-

tion (2.32a).

Proof. From (2.33), the affine controller q(w) induces the generators a+c·q and b+q

for the zonogon Γ. This implies that Γ will be the Minkowski sum of the following

segments in R2:

[
a1+c·q1

b1+q1

]

, . . . ,
[

as+c·qs

bs+qs

]

,
[

KU ·(bs+1+qs+1)
bs+1+qs+1

]

, . . . ,
[

KU ·(bmin(t,r)+qmin(t,r))
bmin(t,r)+qmin(t,r)

]

,
[

KL·(bmax(t,s)+1+qmax(t,s)+1)
bmax(t,s)+1+qmax(t,s)+1

]

. . . ,
[

KL·(br+qr)
br+qr

]

,
[

ar+1+c·qr+1

br+1+qr+1

]

, . . . ,
[

ak+c·qk

bk+qk

]

. (2.35)

From Lemma 4, we have that qi + bi ≥ 0, ∀ i ∈ {1, . . . , k}. Therefore, if we consider
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the points in R2:

yi =

( i∑

j=0

(aj + c · qj),
i∑

j=0

(bj + qj)

)

, ∀ i ∈ {0, . . . , k},

we can make the following simple observations:

• For any vertex vi ∈ Θ, i ∈ {0, . . . , k}, that is matched, i.e., y⋆
i ∈ r-side(∆Γ⋆), if

we let wi represent the unique5 vertex of the hypercube Hk projecting onto vi,

i.e., vi = (θ1(wi), θ2(wi)), then we have:

yi

(2.33)
=
(
γ1(wi), γ2(wi)

) (2.34)
=
(
γ⋆

1(vi), γ⋆
2(vi)

) (2.27)
= y⋆

i .

The first equality follows from the definition of the mapping that characterizes

the zonogon Γ. The second equality follows from the fact that for any matched

vertex vi, the coordinates in Γ⋆ and Γ are exactly the same, and the last equality

is simply the definition of the point y⋆
i .

• For any vertex vi ∈ Θ, i ∈ {0, . . . , k}, that is not matched, we have:

yi ∈ [ys, ymin(t,r)], ∀ i ∈ {s + 1, . . . , min(t, r) − 1}

yi ∈ [ymax(t,s), yr], ∀ i ∈ {max(t, s) + 1, . . . , r − 1}.

This can be seen directly from (2.35), since the segments in R2 given by [ys, ys+1],

. . . , [ymin(t,r)−1, ymin(t,r)] are always aligned (with common cotangent, given by

KU), and, similarly, the segments [ymax(t,s), ymax(t,s)+1], . . . , [yr−1, yr] are also

aligned (with common cotangent KL).

This exactly corresponds to the situation shown earlier in Figure 2-6. By com-

bining the two observations, it can be seen that the points
{
y0, y1, . . . , ys, ymax(t,s),

5This vertex is unique due to our standing Assumption 2 that the number of vertices in Θ is 2k

(also see part (iv) of Lemma 13 in the Appendix).
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ymin(t,r), yr, . . . , yk

}
will satisfy the following properties:

yi = y⋆
i , ∀y⋆

i ∈ r-side(∆Γ⋆) ,

cotan
(
y0, y1

)
≥ cotan

(
y1, y2

)
≥ · · · ≥ cotan

(
ys−1, ys

)
≥ cotan

(
ys, ymin(t,r)

)
≥

≥ cotan
(
ymax(t,s), yr

)
≥ cotan

(
yr, yr+1

)
≥ · · · ≥ cotan

(
yk−1, yk

)
,

where the second relation follows simply because the points y⋆
i ∈ r-side(∆Γ⋆) are

extreme points on the right side of a convex hull, and thus satisfy the same string of

inequalities. This immediately implies that this set of yi exactly represent the right

side of the zonogon Γ, which, in turn, implies that Γ ≡ z-hull
(
{y⋆

0, y
⋆
1, . . . , y⋆

s , y
⋆
max(t,s),

y⋆
min(t,r), y

⋆
r , y

⋆
r+1, . . . , y

⋆
k}
)
. But then, by Corollary 1, the maximum value of problem

(OPT ) in (2.24b) is equal to the maximum value of problem (AFF ) in (2.32a), and,

since the former is always JmM , so is that latter.

This concludes the construction of the affine control law q(w). We have shown

that the policy computed by Algorithm 1 satisfies the conditions (2.32b) and (2.32a),

i.e., is robustly feasible (by Lemma 4) and, when used in conjunction with the original

convex state costs, preserves the overall optimal min-max value J⋆
1 (x1) (Lemma 5).

2.4.3 Construction of the Affine State Cost.

Note that we have essentially completed the first part of the induction step. For the

second part, we would still need to show how an affine stage cost can be computed,

such that constraints (2.11b) and (2.11c) are satisfied. We return temporarily to

the notation containing time indices, so as to put the current state of the proof into

perspective.

In solving problem (AFF ) of (2.32a), we have shown that there exists an affine

qk+1(w[k+1]) such that:

J⋆
1 (x1) = max

w[k+1]∈Hk+1

[

θ1(w[k+1]) + ck+1 qk+1(w[k+1]) + gk+1

(
θ2(w[k+1]) + qk+1(w[k+1])

)]

(2.33)
= max

w[k+1]∈Hk+1

[

γ1(w[k+1]) + gk+1

(
γ2(w[k+1])

) ]

.
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Using the definition of gk+1(·) from (2.7b), we can write the above (only retaining the

second term) as:

J⋆
1 (x1) = max

w[k+1]∈Hk

[

γ1(w[k+1]) + max
wk+1∈Wk+1

[

hk+2

(
γ2(w[k+1]) + wk+2

)

+ J⋆
k+2

(
γ2(w[k+1]) + wk+2

)]
]

def
= max

w[k+2]∈Hk+2

[

γ̃1(w[k+2]) + hk+2

(
γ̃2(w[k+2])

)
+ J⋆

k+2

(
γ̃2(w[k+2])

) ]

,

where γ̃1(w[k+2])
def
= γ1(w[k+1]), and γ̃2(w[k+2])

def
= γ2(w[k+1]) + wk+2. In terms of

physical interpretation, γ̃1 has the same significance as γ1, i.e., the cumulative past

costs (including the control cost at time k + 1, c · qk+1), while γ̃2 represents the state

at time k + 2, i.e., xk+2.

Geometrically, is is easy to note that

Γ̃
def
=
{(

γ̃1(w[k+2]), γ̃2(w[k+2])
)

: w[k+2] ∈ Hk+2

}

(2.36)

represents yet another zonogon, obtained by projecting a hyperrectangle Hk+2 ⊂ Rk+1

into R2. It has a particular shape relative to the zonogon Γ = (γ1, γ2), since the

generators of Γ̃ are simply obtained by appending a 0 and a 1, respectively, to the

generators of Γ, which implies that Γ̃ is the convex hull of two translated copies of Γ,

where the translation occurs on the γ̃2 axis. As it turns out, this fact will bear little

importance for the discussion to follow, so we include it here only for completeness.

In this context, the problem we would like to solve is to replace the convex func-

tion hk+2

(
γ̃2(w[k+2])

)
with an affine function zk+2(w[k+2]), such that the analogues of

conditions (2.11b) and (2.11c) are obeyed:

zk+2(w[k+2]) ≥ hk+2

(
γ̃2(w[k+2])

)
, ∀w[k+2] ∈ Hk+2,

J⋆
1 (x1) = max

w[k+2]∈Hk+2

[

γ̃1(w[k+2]) + zk+2(w[k+2]) + J⋆
k+2

(
γ̃2(w[k+2])

) ]

.

We can now switch back to the simplified notation, where the time subscript k + 2

is removed. Furthermore, to preserve as much of the familiar notation from Sec-
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tion 2.4.1, we denote the generators of zonogon Γ̃ by a, b ∈ Rk+1, and the coefficients

of z(w) by z0, z, so that we have:

γ̃1(w) = a0 + a′ w, γ̃2(w) = b0 + b′ w, z(w) = z0 + z′ w. (2.37)

In perfect analogy to our discussion in Section 2.4.1, we can introduce:

vmin
def
= arg max

{
γ̃1 : γ̃ ∈ arg min{ξ′2 : ξ′ ∈ Γ̃}

}
;

vmax
def
= 2O − vmin

(

O is the center of Γ̃
)

(2.38)

v0
def
= vmin, . . . , v2p1 = vmin

(
counter-clockwise numbering of Γ̃’s vertices

)
.

Without loss of generality, we work, again, under Assumptions 1, 2, and 3, i.e., we

analyze the case when Hk+2 = [0, 1]k+1, p1 = k + 1 (the zonogon Γ̃ has a maximal

number of vertices), and vi = [1, 1, . . . , 1, 0, . . . , 0] (ones in the first i positions). We

also use the same overloaded notation when referring to the map γ̃ : Rk+1 → R2 (i.e.,

γ̃1,2(w) denote the value assigned by the map to a point w ∈ Hk+2, while γ̃1,2[vi] are

the γ̃1,2 coordinates of a point vi ∈ R2), and we write h(vi) and J⋆(vi) instead of

h(γ̃2[vi]) and J⋆(γ̃2[vi]), respectively.

With the simplified notation, the goal is to find z(w) such that:

z(w) ≥ h
(
γ̃2(w)

)
, ∀w ∈ Hk+1 (2.39a)

max
(γ̃1,γ̃2)∈Γ̃

[

γ̃1 + h(γ̃2) + J⋆(γ̃2)
]

= max
w∈Hk+1

[

γ̃1(w) + z(w) + J⋆
(
γ̃2(w)

) ]

(2.39b)

In (2.39b), the maximization on the left corresponds to the problem solved by the

uncertainties, w, when the original convex state cost, h(γ̃2), is incurred. As such,

the result of the maximization is always exactly equal to J⋆
1 (x1), the overall min-

max value. The maximization on the right corresponds to the problem solved by

the uncertainties when the affine cost, z(w), is incurred instead of the convex cost.

Requiring that the two optimal values be equal thus amounts to preserving the overall

min-max value.
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Since h and J⋆ are convex (see Property (P2) in Section 2.2), we can immediately

use Lemma 1 to conclude that the optimal value in the left maximization problem

in (2.39b) is reached at one of the vertices v0, . . . , vk+1 found in r-side(Γ̃). Therefore,

by introducing the points:

y⋆
i

def
=
(
γ̃1[vi] + h(vi), γ̃2[vi]

)
, ∀ i ∈ {0, . . . , k + 1}, (2.40)

we can immediately conclude the following result:

Lemma 6. The maximum in problem:

(OPT ) max
(π1,π2)∈Π⋆

[

π1 + J⋆(π2)
]

, (2.41a)

Π⋆ def
=
{

(π⋆
1 , π

⋆
2) ∈ R2 : π⋆

1
def
= γ̃1 + h(γ̃2), π⋆

2
def
= γ̃2, (γ̃1, γ̃2) ∈ Γ̃

}

, (2.41b)

is reached on the right side of:

∆Π⋆
def
= conv

({
y⋆

0, . . . , y
⋆
k+1

})
. (2.42)

Proof. The result is analogous to Lemma 2, and the proof is a rehashing of similar

ideas. In particular, first note that problem (OPT ) is a rewriting of the left maxi-

mization in (2.39b). Therefore, since the maximum of the latter problem is reached

at the vertices vi, i ∈ {0, . . . , k + 1}, of zonogon Γ̃, by the definition (2.40) of the

points y⋆
i , we can conclude that the maximum in problem (OPT ) must be reached

on the set {y⋆
0, . . . , y

⋆
k+1}. Noting that the function maximized in (OPT ) is convex,

this set of points can be replaced with its convex hull, ∆Π⋆ , without affecting the

result. Furthermore, since J⋆ is convex, by applying the results in Corollary 1, and

replacing the set by the right-side of its convex hull, r-side(∆Π⋆), the optimal value

remains unchanged.

The significance of the new variables π⋆
1,2 is as follows. π⋆

1 represents the cumulative

past stage costs, plus the true (i.e., ideal) convex cost as stage k + 1, while π⋆
2, just

like γ̃2, stands for the state at the next time-step, xk+2.
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Continuing the analogy with Section 2.4.2, the right optimization in (2.39b) can

be rewritten as

(AFF )
max

(π1,π2)∈Π

[
π1 + J⋆(π2)

]

Π
def
=
{

(π1, π2) : π1(w)
def
= γ̃1(w) + z(w), π2(w)

def
= γ̃2(w), w ∈ Hk+2

}

.

(2.43)

In order to examine the maximum in problem (AFF ), we remark that its feasible set,

Π ⊂ R2, also represents a zonogon, with generators given by a+z and b, respectively.

Therefore, by Lemma 1, the maximum of problem (AFF ) is reached at one of the

vertices on r-side(Π).

Using the same key idea from the construction of the affine control law, we now

argue that, if the coefficients of the affine cost, zi, were computed in such a way that Π

represented the zonogon hull of the set of points
{
y⋆

0, . . . , y
⋆
k+1

}
, then (by Corollary 1),

the maximum value of problem (AFF ) would be the same as the maximum value of

problem (OPT ).

To this end, we introduce the following procedure for computing the affine cost

z(w):

Algorithm 2 Compute affine stage cost z(w)

Require: γ̃1(w), γ̃2(w), h(·), J⋆(·).

1: Apply the mapping (2.40) to obtain v⋆
i , ∀ i ∈ {0, . . . , k + 1}.

2: Compute the set ∆Π⋆ = conv
(
{y⋆

0, . . . , y
⋆
k+1}

)
.

3: Let r-side(∆Π⋆)
def
=
{
y⋆

s(1), . . . , y
⋆
s(n)

}
, where s(1) ≤ s(2) ≤ · · · ≤ s(n) ∈ {0, . . . , k+

1} are the sorted indices of points on the right side of ∆Π⋆ .

4: Solve the following system for zj, (j ∈ {0, . . . , k +1}), and Ks(i), (i ∈ {2, . . . , n}):







z0 + z1 + · · ·+ zs(i) = h
(
vs(i)

)
, ∀y⋆

s(i) ∈ r-side(∆Π⋆) (matching)

zj + aj

bj

= Ks(i), ∀ j ∈ {s(i − 1) + 1, . . . , s(i)},

∀ i ∈ {2, . . . , n} (alignment)

(2.44)

5: Return z(w) = z0 +
∑k+1

i=1 zi · wi.
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To visualize how the algorithm is working, an extended example is included in

Figure 2-7.

v0 = vmin

v1

v2

v3

v4

v5

v6

v7

vk+1 = vmax

γ̃1

γ̃2

Original zonogon Γ̃.
 

 

π1

π2

y⋆
0 = y⋆

s(1) = ys(1)

y⋆
1

y⋆
2

y⋆
3

y⋆
s(2) = ys(2)

y⋆
5

y⋆
6

y⋆
s(3) = ys(3)

y⋆
k+1 = y⋆

s(n) = ys(n)

y⋆
i

Π = z-hull ({y⋆
i })

yj ∈ r-side(Π)

y1

y2

y3

y5

y6

Points y⋆
i and yi ∈ r-side(Π).

Figure 2-7: Matching and alignment performed in Algorithm 2.

The intuition behind the construction is the same as that presented in Sec-

tion 2.4.2. In particular, the matching constraints in system (2.44) ensure that for any

vertex w of the hypercube Hk+2 that corresponds to a potential maximizer in problem

(OPT )
(
through w ∈ Hk+2

(2.37)
7→ vi ∈ Γ̃

(2.40)
7→ y⋆

i ∈ r-side(∆Π⋆)
)
, the value of the affine

cost z(w) is equal to the value of the initial convex cost, h(vi), implying that the

value in problem (AFF ) of (2.43) at
(
π1(w), π2(w)

)
is equal to the value in problem

(OPT ) of (2.41a) at y⋆
i . The alignment constraints in system (2.44) ensure that any

such matched points,
(
π1(w), π2(w)

)
, actually correspond to the vertices on the right

side of the zonogon Π, which implies that, as desired, Π ≡ z-hull
(
{y⋆

0, . . . , y
⋆
k+1}

)
.

We conclude our preliminary remarks by noting that, similar to the affine construc-

tion, system (2.44) does not directly impose the robust domination constraint (2.39a).

However, as we will soon argue, this result is a byproduct of the way the matching

and alignment are performed in Algorithm 2.

Affine Cost z(·) Dominates Convex Cost h(·) and Preserves Overall Objec-

tive.

In this section, we prove that the affine cost z(w) computed in Algorithm 2 not only

robustly dominates the original convex cost (2.39a), but also preserves the overall
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min-max value (2.39b). The following lemma summarizes the first main result:

Lemma 7. System (2.44) is always feasible, and the solution z(w) always satisfies

equation (2.39b).

Proof. We first note that s(1) = 0 and s(n) = k + 1, i.e., y⋆
0, y⋆

k+1 ∈ r-side(∆Π⋆).

To see why that is the case, note that, by (2.38), v0 will always have the smallest γ̃2

coordinate in the zonogon Γ̃. Since the transformation (2.40) yielding y⋆
i leaves the

second coordinate unchanged, it is always true that

y⋆
0 = arg max

{

π1 : π ∈ arg min
{
π′

2 : π′ ∈ {y⋆
i , i ∈ {0, . . . , k + 1}

}}

,

which immediately implies that y⋆
0 ∈ r-side(∆Π⋆). The proof for y⋆

k+1 follows in an

identical matter, since vk+1 has the largest γ̃2 coordinate in Γ̃.

It can then be checked that the following choice of zi always satisfies system (2.44):

z0 = h(v0); zj = Ks(i) · bj − aj, ∀ j ∈ {s(i − 1) + 1, . . . , s(i)}, ∀ i ∈ {2, . . . , n},

Ks(i) =
zs(i−1)+1 + · · · + zs(i) + as(i−1)+1 + · · · + as(i)

bs(i−1)+1 + · · ·+ bs(i)

=
h(vs(i)) − h(vs(i−1)) + as(i−1)+1 + · · ·+ as(i)

bs(i−1)+1 + · · · + bs(i)

.

The proof of the second part of the lemma is analogous to that of Lemma 5. To

start, consider the feasible set of problem (AFF ) in (2.43), namely the zonogon Π,

and note that, from (2.37), its generators are given by a + z and b,

[
a+z

b

]

=
[

a1+z1 ... as(i)+zs(i) as(i)+1+zs(i)+1 ... ak+1+zk+1

b1 ... bs(1) bs(1)+1 ... bk+1

]

. (2.45)

By introducing the following points in R2,

yi =

(
i∑

j=0

(aj + zj),

i∑

j=0

bj

)

,

we have the following simple claims:
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• For any vi ∈ r-side(Γ̃) that is matched, i.e., y⋆
i ∈ r-side(∆Π⋆), with wi =

[1, 1, . . . , 1, 0, . . . , 0] denoting the unique6 vertex of Hk+2 satisfying
(
γ̃1(wi),

γ̃2(wi)
)

= vi, we have

yi

(2.43)
=
(
γ̃1(wi) + z(wi), γ̃2(wi)

) (2.44)
=
(
γ̃1[vi] + h(vi), γ̃2[vi]

) (2.40)
= y⋆

i .

The first equality follows from the definition of the zonogon Π, the second

follows because any y⋆
i ∈ r-side(∆Π⋆) is matched in system (2.44), and the third

equality represents the definition of the points y⋆
i .

• For any vertex vj ∈ r-side(Γ̃), which is not matched, i.e., y⋆
j /∈ r-side(∆Π⋆), and

s(i) < j < s(i+1) for some i, we have yj ∈ [ys(i), ys(i+1)]. This can be seen by us-

ing the alignment conditions in system (2.44), in conjunction with (2.45), since

the segments in R2 given by
[
ys(i), ys(i)+1

]
,
[
ys(i)+1, ys(i)+2

]
, . . . ,

[
ys(i+1)−1, ys(i+1)

]

are always parallel, with common cotangent given by Ks(i+1).

For a geometric interpretation, the reader is referred back to Figure 2-7. Corroborat-

ing these results with the fact that
{
y⋆

s(1), . . . , y
⋆
s(n)

}
= r-side(∆Π⋆) always satisfy:

cotan
(
y⋆

s(1), y⋆
s(2)

)
≥ cotan

(
y⋆

s(2), y⋆
s(3)

)
≥ · · · ≥ cotan

(
y⋆

s(n−1), y⋆
s(n)

)
, (2.46)

we immediately obtain that the points
{
ys(1), ys(2), . . . , ys(n)

}
exactly represent the

right side of the zonogon Π, which, in turn, implies that Π ≡ z-hull
({

y⋆
0, y

⋆
1, . . . , y

⋆
k+1

})
.

But then, by Corollary 1, the maximum value of problem (OPT ) in (2.41a) is equal

to the maximum value of problem (AFF ) in (2.43), and, since the former is always

J⋆
1 (x1), so is that latter.

In order to complete the second step of the induction, we must only show that

6We are working under Assumption 2, which implies uniqueness of the vertex.
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the robust domination constraint (2.39a) is also obeyed:

z(w) ≥ h
(
γ̃2(w)

)
⇔

z0 + z1 · w1 + · · ·+ zk+1 · wk+1 ≥ h (b0 + b1 · w1 + · · ·+ bk+1 · wk+1) , ∀w ∈ Hk+1.

The following lemma takes us very close to the desired result:

Lemma 8. The coefficients for the affine cost z(w) computed in Algorithm 2 always

satisfy the following property:

h
(
b0 + bj(1) + · · · + bj(m)

)
≤ z0 + zj(1) + · · · + zj(m),

∀ j(1), . . . , j(m) ∈ {1, . . . , k + 1}, ∀m ∈ {1, . . . , k + 1}.

Proof. Before proceeding with the proof, we first list several properties related to the

construction of the affine cost. We claim that, upon termination, Algorithm 2 always

produces a solution to the following system:







z0 = h
(
vs(1)

)

z0 + z1 + · · ·+ zs(2) = h
(
vs(2)

)

...
...

z0 + z1 + · · ·+ zs(n) = h
(
vs(n)

)

z1+a1

b1
= · · · =

zs(2)+as(2)

bs(2)
= Ks(2)

...
...

zs(n−1)+1+as(n−1)+1

bs(n−1)+1
= · · · =

zs(n)+as(n)

bs(n)
= Ks(n)

(2.47)

Ks(2) ≥ · · · ≥ Ks(n) (2.48)
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





h(vj)−h(v0)+a1+···+aj

b1+···+bj
≤ Ks(2) ≤

h(vs(2))−h(vj)+aj+1+···+as(1)

bj+1+···+bs(1)
,

∀ j ∈ {1, . . . , s(2) − 1}

...
...

h(vj)−h(vs(n−1))+as(n−1)+1+···+aj

bs(n−1)+1+···+bj
≤ Ks(n) ≤

h(vs(n))−h(vj)+aj+1+···+as(n)

bj+1+···+bs(n)
,

∀ j ∈ {s(n − 1) + 1, . . . , s(n) − 1} .

(2.49)

Let us explain the significance of all the equations. (2.47) is simply a rewriting of the

original system (2.44), which states that at any vertex vs(i), the value of the affine

function should exactly match the value assigned by the convex function h(·), and

the coefficients zi between any two matched vertices should be such that the resulting

segments, [zj +aj , bj ], are aligned (i.e., the angles they form with the π1 axis have the

same cotangent, specified by K(·) variables). We note that we have explicitly used

the fact that s(1) = 0, which we have shown in the first paragraph of the proof of

Lemma 7.

Equation (2.48) is a simple restatement of (2.46), that the cotangents on the right

side of a convex hull must be decreasing.

Equation (2.49) is a direct consequence of the fact that {y⋆
s(1), y

⋆
s(2), . . . , y

⋆
s(n)}

represent r-side(∆Π⋆). To see why that is, consider an arbitrary j ∈ {s(i)+1, . . . , s(i+

1) − 1}. Since y⋆
j /∈ r-side(∆Π⋆), we have:

cotan
(
y⋆

s(i), y⋆
j

)
≤ cotan

(
y⋆

j , y⋆
s(i+1)

) (2.37),(2.40)
⇔

as(i)+1 + · · ·+ aj + h (vj) − h
(
vs(i)

)

bs(i)+1 + · · ·+ bj

≤
aj+1 + · · · + as(i+1) + h

(
vs(i+1)

)
− h (vj)

bj+1 + · · · + bs(i+1)
⇔

as(i)+1 + · · ·+ aj + h (vj) − h
(
vs(i)

)

bs(i)+1 + · · ·+ bj

≤ Ks(i+1)

≤
aj+1 + · · · + as(i+1) + h

(
vs(i+1)

)
− h (vj)

bj+1 + · · · + bs(i+1)

,

where, in the last step, we have used the mediant inequality7 and the fact that,

from (2.47), Ks(i+1) = cotan
(
y⋆

s(i), y⋆
s(i+1)

)
=

as(i)+1+···+as(i+1)+h(vs(i+1))−h(vs(i))
bs(i)+1+···+bs(i+1)

(refer

7If b, d > 0 anda
b
≤ c

d
, then a

b
≤ a+c

b+d
≤ c

d
.
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back to Figure 2-7 for a geometrical interpretation).

With these observations, we now prove the claim of the lemma. The strategy of

the proof will be to use induction on the size of the subsets, m. First, we show the

property for any subset of indices j(1), . . . , j(m) ∈ {s(1) = 0, . . . , s(2)}, and then

extend it to j(1), . . . , j(m) ∈ {s(i)+ 1, . . . , s(i+1)} for any i, and then to any subset

of {1, . . . , k + 1}.

The following implications of the conditions (2.47), (2.48) and (2.49), are stated

here for convenience, since they are used throughout the rest of the proof:

h
(
vs(1)

)
= h(v0) = z0; h(vs(2)) = z0 + z1 + · · · + zs(2). (2.50)

h(vj) − h(v0) ≤ z1 + · · · + zj , ∀ j ∈ {1, . . . , s(2) − 1}. (2.51)

z1

b1
≤ · · · ≤

zj

bj

≤ · · · ≤
zs(2)

bs(2)
, ∀ j ∈ {1, . . . , s(2) − 1}. (2.52)

Their proofs are straightforward. (2.50) follows directly from system (2.47), and:

h(vj) − h(v0) + a1 + · · ·+ aj

b1 + · · ·+ bj

(2.49)

≤ Ks(2)
(2.47)
=

z1 + · · · + zj + a1 + · · ·+ aj

b1 + · · ·+ bj

⇒ (2.51).







(2.47) : a1+z1

b1
= · · · =

aj+zj

bj
= · · · =

as(2)+zs(2)

bs(2)

Π zonogon ⇒ a1

b1
> · · · >

aj

bj
> · · · >

as(2)

bs(2)

⇒ (2.52).

We can now proceed with the proof, by checking the induction for m = 1. We

would like to show that h (b0 + bj) ≤ z0 + zj , ∀ j ∈ {1, . . . , s(2)}. Writing b0 + bj as

b0 + bj = (1 − λ) · b0 + λ · (b0 + · · · + bj), with λ = bj/(b1 + · · ·+ bj), we obtain:

h(b0 + bj) ≤ (1 − λ) · h(b0) + λ · h(b0 + · · ·+ bj)
︸ ︷︷ ︸

≡h(vj)

= h(v0) +
bj

b1 + · · ·+ bj

[h(vj) − h(v0) ] ≤ (by (2.50) or (2.51))

≤ z0 +
bj

b1 + · · · + bj

(z1 + · · ·+ zj) ≤ (by (2.52) and mediant inequality)

≤ z0 + zj .
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Assume the property is true for any subsets of size m. Consider a subset j(1), . . . ,

j(m) , j(m + 1), and, without loss of generality, let j(m + 1) be the largest index.

With the convex combination:

b⋆ def
= b0 + bj(1) + · · · + bj(m) + bj(m+1)

= (1 − λ) · (b0 + bj(1) + · · ·+ bj(m)) + λ · (b0 + b1 + · · ·+ bj(m+1)−1 + bj(m+1)),

where λ =
bj(m+1)

(b1 + b2 + · · ·+ bj(m+1)) − (bj(1) + bj(2) + · · ·+ bj(m))
,

we obtain:

h(b⋆) ≤ (1 − λ) · h(b0 + bj(1) + · · ·+ bj(m)) + λ · h
(
vi(m+1)

)

≤
(
by induction hypothesis and (2.50), (2.51)

)

≤ (1 − λ) · (z0 + zj(1) + · · ·+ zj(m)) + λ ·
(
z0 + z1 + · · ·+ zi(m+1)

)

= z0 + zj(1) + · · · + zj(m) +
bj(m+1)

(b1 + b2 + · · ·+ bj(m+1)) − (bj(1) + bj(2) + · · ·+ bj(m))
·

·
[
(z1 + z2 + · · · + zj(m+1)) − (zj(1) + zj(2) + · · ·+ zj(m))

]

≤
(
by (2.52) and the mediant inequality

)

≤ z0 + zj(1) + · · ·+ zj(m) + zj(m+1).

We claim that the exact same procedure can be repeated for a subset of indices from

{s(i) + 1, . . . , s(i + 1)}, for any index i ∈ {1, . . . , n − 1}. We would simply be using

the adequate inequality from (2.49), and the statements equivalent to (2.50), (2.51)

and (2.52). The following results are immediate:

h
(
(b0 + b1 + · · · + bs(i)) + bj(1) + · · · + bj(m)

)

≤
(
z0 + z1 + · · · + zs(i)

)
+ zj(1) + · · ·+ zj(m), ∀ i ∈ {1, . . . , n}, (2.53)

∀ j(1), . . . , j(m) ∈ {s(i) + 1, . . . , s(i + 1)}.

Note that instead of the term b0 for the argument of h(·), we would use the complete

sum b0 + b1 + · · ·+ bs(i), and, similarly, instead of z0 we would have the complete sum
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z0 + z1 + · · ·+ zs(i). With these results, we can make use of the increasing increments

property of convex functions,

h(x1 + ∆) − h(x1)

∆
≤

h(x2 + ∆) − h(x2)

∆
, ∀∆ > 0, x1 ≤ x2 ,

to obtain the following result:

h
(

b0 + bj(1) + · · · + bj(m)
︸ ︷︷ ︸

j(·)∈{1,...,s(2)}

+ bi(1) + · · ·+ bi(l)
︸ ︷︷ ︸

i(·)∈{s(2)+1,...,s(3)}

)

− h
(
b0 + bj(1) + · · ·+ bj(m)

)
≤

≤ h
(

b0 + b1 + · · ·+ bs(2)
︸ ︷︷ ︸

all indices in {1,...,s(2)}

+ bi(1) + · · ·+ bi(l)

)

− h
(
b0 + b1 + · · · + bs(2)

)

︸ ︷︷ ︸

def
= h(vs(2))

(2.50),(2.53)

≤
(
z0 + z1 + · · · + zs(2)

)
+ zi(1) + · · ·+ zi(l) −

(
z0 + z1 + · · ·+ zs(2)

)

= zi(1) + · · · + zi(l),

which would imply

h
(
b0 + bj(1) + · · · + bj(m) + bi(1) + · · ·+ bi(l)

)

≤ h
(
b0 + bj(1) + · · ·+ bj(m)

)
+ zi(1) + · · · + zi(l)

(2.53)

≤ z0 + zj(1) + · · ·+ zj(m) + zi(1) + · · · + zi(l).

We showed the property for indices drawn only from the first two intervals, {s(1) +

1, . . . , s(2)} and {s(2) + 1, . . . , s(3)}, but it should be clear how the argument can

be immediately extended to any collection of indices, drawn from any intervals. We

omit the details for brevity, and conclude that the claim of the lemma is true.

We are now ready for the last major result:

Lemma 9. The affine cost z(w) computed by Algorithm 2 always dominates the

convex cost h
(
γ̃2(w)

)
:

h

(

b0 +

k+1∑

i=1

bi · wi

)

≤ z0 +

k+1∑

i=1

zi · wi, ∀w ∈ Hk+1 = [0, 1]k+1.
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Proof. Note first that the function f(w)
def
= h

(

b0 +
∑k+1

i=1 bi · wi

)

− (z0 +
∑k+1

i=1 zi ·wi)

is a convex function of w. Furthermore, the result of Lemma 8 can be immediately

rewritten as:

h

(

b0 +
k+1∑

i=1

bi · wi

)

≤ z0 +
k+1∑

i=1

zi · wi, ∀w ∈ {0, 1}k+1 ⇔ f(w) ≤ 0, ∀w ∈ {0, 1}k+1.

Since the maximum of a convex function on a polytope occurs on the extreme points of

the polytope, and ext(Hk+1) = {0, 1}k+1, we immediately have that: maxw∈Hk+1
f(w) =

maxw∈{0,1}k+1 f(w) ≤ 0, which completes the proof of the lemma.

We can now conclude the proof of correctness in the construction of the affine

stage cost, z(w). With Lemma 9, we have that the affine cost always dominates the

convex cost h(·), thus condition (2.39a) is obeyed. Furthermore, from Lemma 7, the

overall min-max cost remains unchanged even when incurring the affine stage cost,

z(w), hence condition (2.39b) is also true. This completes the construction of the

affine cost, and hence also the full step of the induction hypothesis.

2.4.4 Proof of Main Theorem.

To finalize the current section, we summarize the steps that have lead us to the result,

thereby proving the main Theorem 1.

Theorem 1. In Section 2.4.1, we have verified the induction hypothesis at time k = 1.

With the induction hypothesis assumed true for times t = 1, . . . , k, we have listed

the initial consequences in Lemma 1 and Corollary 1 of Section 2.4.1. By exploring

the structure of the optimal control law, u⋆
k+1(xk+1), and the optimal value function,

J⋆
k+1(xk+1), in Section 2.4.1, we have finalized the analysis of the induction hypothesis,

and summarized our findings in Lemmas 2 and 3.

Section 2.4.2 then introduced the main construction of the affine control law,

qk+1(w[k+1]), which was shown to be robustly feasible (Lemma 4). Furthermore, in

Lemma 5, we have shown that, when used in conjuction with the original convex

72



state costs, hk+1 (xk+2), this affine control preserves the min-max value of the overall

problem.

In Section 2.4.3, we have also introduced an affine stage cost, zk+1(w[k+1]), which,

if incurred at time k + 1, will always preserve the overall min-max value (Lemma 7),

despite being always larger than the original convex cost, hk+1 (xk+2) (Lemma 9).

2.4.5 Counterexamples for potential extensions.

On first sight, one might be tempted to believe that the results in Theorem 1 could be

immediately extended to more general problems. In particular, one could be tempted

to ask one of the following natural questions:

1. Would both results of Theorem 1 (i.e., existence of affine control laws and

existence of affine stage costs) hold for a problem which also included linear

constraints coupling the controls ut across different time-steps? (see Ben-Tal

et al. [16] for a situation when this might be of interest)

2. Would both results of Theorem 1 hold for multi-dimensional linear systems?

(i.e., problems where xk ∈ Rd, ∀ k, with d ≥ 2)

3. Are affine policies in the disturbances optimal for the two problems above?

4. Are affine policies also optimal for stochastic versions of this problem, e.g., for

the case where wk is uniformly distributed in Wk = [wk, wk], and the goal is to

minimize expected costs?

In the rest of the current section, we argue that all of the above questions can

be answered negatively. To address the first three, we use the following simple coun-

terexample:
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Example 2 (Suboptimality of affine policies and affine cost relaxations).

T = 4, ck = 1, hk(xk+1) = max{18.5 · xk+1, −24 · xk+1}, Lk = 0, Uk = ∞, 1 ≤ k ≤ 4,

w1 ∈ [−7, 0], w2 ∈ [−11, 0], w3 ∈ [−8, 0], w4 ∈ [−44, 0] ,

k∑

i=1

ui ≤ 10 · k , ∀ k ∈ {1, . . . , 4}.

The first two rows describe a one-dimensional problem that fits the conditions of

Problem 1 in Section 2.1. The third row corresponds to a coupling constraint for

controls at different times, so that the problem fits question (i) above. Furthermore,

since the state in such a problem consists of two variables (one for xk and one for
∑k

i=1 uk), the example also fits question (ii) above.

The optimal min-max value for Example 2 above can be found by solving an

optimization problem (see Ben-Tal et al. [16]), in which non-anticipatory decisions

are computed at all the extreme points of the uncertainty set, i.e., for {w1, w1} ×

{w2, w2} × {w3, w3} × {w4, w4}. The resulting model, which is a large linear pro-

gram, can be solved to optimality, resulting in a corresponding value of approximately

838.493 for Example 2.

To compute the optimal min-max objective obtained by using affine policies

qk(w[k]) and incurring affine costs zk(w[k+1]), one can amend the model (AARC)

from Section 2.3 by including constraints for the cumulative controls (see Ben-Tal

et al. [16] for details), and then using (2.13) to rewrite the resulting model as a lin-

ear program. The optimal value of this program for Example 2 was approximately

876.057, resulting in a gap of 4.4%, and thus providing a negative answer to ques-

tions (i) and (ii).

To investigate question (iii), we remark that the smallest objective achievable

by using affine policies of the type qk(w[k]) can be found by solving another linear

optimization problem, having as decision variables the affine coefficients {qk,t}0≤t<k≤T ,

as well as (non-anticipatory) stage cost variables zw
k for every time step k ∈ {1, . . . , T}

and every extreme point w of the uncertainty set. Solving the resulting linear program

74



for Example 2 gave an optimal value of 873.248, so strictly larger than the (true)

optimum (838.493), and strictly smaller than the optimal value of the model utilizing

both affine control policies and affine stage costs (876.057).

Thus, with question (iii) also answered negatively, we conclude that policies that

are affine in the disturbances, qk(w[k]), are in general suboptimal for problems with

cumulative control constraints or multiple dimensions, and that replacing the convex

state costs hk(xk+1) by (larger) affine costs zk(w[k+1]) would, in general, result in even

further deterioration of the objective.

As for question (iv), the following simple example suggests that affine rules are,

in general, suboptimal, and that the gap can be arbitrarily large:

Example 3 (Suboptimality of affine policies in stochastic problems).

J = Ew1

[

min
u2(w1)

(u2 − w1)
2

]

s.t. 0 ≤ u2 ≤
1

K
,

w1 ∼ Uniform[0, 1],

K ∈ (1, 3), fixed and known.

From the convexity of the problem, it is easy to see that the optimal policy is

u⋆
2(w1) =







w1, if 0 ≤ w1 ≤
1
K

1
K

, otherwise,

which results in an objective J⋆ = (K−1)3

3K3 . It can also be easily shown that the optimal

objective achievable under affine rules (that satisfy the constraint almost surely) is

JAFF = (K−1)2

4K2 , for uAFF
2 (w1) = 3−K

2K
w1 + K−1

2K
. In particular, note that the relative

optimality gap, JAFF−J⋆

J⋆ = 4−K
4(K−1)

, can be made arbitrarily large, by taking K ց 1.
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2.5 An application in inventory management.

In this section, we would like to explore our results in connection with the classical

inventory problem mentioned in Example 1. This example was originally considered

by Ben-Tal et al. [16], in the context of a more general model: a retailer-supplier with

flexible commitment contracts problem. We first describe the problem in detail, and

then draw a connection with our results.

The setting is the following: consider a single-product, single-echelon, multi-period

supply chain, in which inventories are managed periodically over a planning horizon of

T periods. The unknown demands wt from customers arrive at the (unique) echelon,

henceforth referred to as the retailer, and are satisfied from the on-hand inventory,

denoted by xt at the beginning of period t. The retailer can replenish the inventory

by placing orders ut, at the beginning of each period t, for a cost of ct per unit of

product. These orders are immediately available, i.e., there is no lead-time in the

system, but there are capacities on how much the retailer can order: Lt ≤ ut ≤ Ut.

After the demand wt is realized, the retailer incurs holding costs Ht · max{0, xt +

ut − wt} for all the amounts of supply stored on her premises, as well as penalties

Bt · max{wt − xt − ut, 0}, for any demand that is backlogged.

In the spirit of robust optimization, we assume that the only information available

about the demand at time t is that it resides within a certain inverval centered

around a nominal (or mean) demand d̄t, which results in the uncertainty set Wt =

{
∣
∣wt − d̄t

∣
∣ ≤ ρ · d̄t }, where ρ ∈ [0, 1] can be interpreted as an uncertainty level. As

such, if we take the objective function to be minimized as the cost resulting in the

worst-case scenario, we immediately obtain an instance of our original Problem 1,

with αt = βt = 1, γt = −1, and the convex state costs ht(·) denoting the Newsvendor

costs, ht(xt+1) = Ht · max{xt + ut − wt, 0} + Bt · max{wt − xt − ut, 0}.

Therefore, the results in Theorem 1 are immediately applicable to conclude that

no loss of optimality is incurred when we restrict attention to affine order quantities qt

that depend on the history of available demands at time t, qt(w[t]) = qt,0 +
∑t−1

τ=1 qt,τ ·

wτ , and when we replace the Newsvendor costs ht(xt+1) by some (potentially larger)
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affine costs zt(w[t+1]). The main advantage is that, with these substitutions, the

problem of finding the optimal affine policies becomes an LP (see the discussion in

Section 2.3 and Ben-Tal et al. [16] for more details).

The more interesting connection with our results comes if we recall the construc-

tion in Algorithm 1. In particular, we have the following simple claim:

Proposition 1. If the affine orders qt(w[t]) computed in Algorithm 1 are implemented

at every time step t, and we let: xk(w[k]) = x1 +
∑k−1

t=1

(
qt(w[t]) − wt

)
def
= xt,0 +

∑k−1
t=1 xk,t · wt denote the affine dependency of the inventory xk on the history of

demands, w[k], then:

1. If a certain demand wt is fully satisfied by time k ≥ t + 1, i.e., xk,t = 0, then

all the (affine) orders qτ placed after time k will not depend on wt.

2. Every demand wt is at most satisfied by the future orders qk, k ≥ t + 1, and

the coefficient qk,t represents what fraction of the demand wt is satisfied by the

order qk.

Proof. To prove the first claim, recall that, in our notation from Section 2.4.1, xk ≡

θ2 = b0 +
∑k−1

t=1 bt · wt. Applying part (i) of Lemma 4 in the current setting8, we

have that 0 ≤ qk,t ≤ −xk,t. Therefore, if xk,t = 0, then qk,t = 0, which implies that

xk+1,t = 0. By induction, we immediately get that qτ,t = 0, ∀ τ ∈ {k, . . . , T}.

To prove the second part, note that any given demand, wt, initially has an affine

coefficient of −1 in the state xt+1, i.e., xt+1,t = −1. By part (i) of Lemma 4, 0 ≤

qt+1,t ≤ −xt+1,t = 1, so that qt+1,t represents a fraction of the demand wt satisfied

by the order qt+1. Furthermore, xt+2,t = xt+1,t + qt+1,t ∈ [−1, 0], so, by induction, we

immediately have that qk,t ∈ [0, 1], ∀ k ≥ t + 1, and
∑T

k=t+1 qk,t ≤ 1.

In view of this result, if we think of {qk}k≥t+1 as future orders that are partially

satisfying the demand wt, then every future order quantity qk(w[k]) satisfies exactly

a fraction of the demand wt (since the coefficient for wt in qk is always in [0, 1]), and

8The signs of the inequalities are changed because every disturbance, wt, is entering the system
dynamics with a coefficient −1, instead of +1, as was the case in the discussion from Section 2.4.1.
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every demand is at most satisfied by the sequence of orders following after it appears.

This interpretation bears some similarity with the unit decomposition approach of

Muharremoglu and Tsitsiklis [105], where every unit of supply can be interpreted as

satisfying a particular unit of the demand. Here, we are accounting for fractions of

the total demand, as being satisfied by future order quantities.

2.5.1 Capacity Commitment and Negotiation.

Our theoretical result can also be employed in solving an interesting capacity commit-

ment problem. In particular, we introduce the following modification of our original

problem:

Problem 2. Consider an identical setup as Problem 1, i.e., a dynamical system

described by (2.1), with scalar uncertainties given by (2.2) and control constraints

described by (2.3), but assume that the bounds on the controls, Lk, Uk, are not fixed,

but part of the decision process. In particular, L
def
= (L1, . . . , LT ) ∈ RT and U

def
=

(U1, . . . , UT ) ∈ RT must be decided at time k = 1, before observing any disturbances.

The goal is to find a sequence of constrained controllers {uk}1≤k≤T , minimizing

the following cost function over a finite horizon 1, . . . , T ,

J̃ = J + F(U) −R(L), (2.54)

where J is the original cost given in (2.4), and F : RT → R̄ is an extended-real,

convex function, while R : RT → R is a concave function.

An example of such a problem, which arises naturally in the context of the in-

ventory example discussed earlier, is in negotiating supply contracts. In particular,

since Uk represents an upper bound on the replenishment order quantity uk that can

be obtained in every period, the function F can be interpreted as a cost of flexibility,

which the retailer must pay the supplier (at the beginning of the horizon) for hav-

ing additional capacity available. Similarly, since Lk are commitments to ordering

specific amounts in every period k, the function R can be interpreted as a rebate for
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commitment, which the retailer obtains from the supplier. The convexity restriction

on F can arise naturally in practice - for instance, when the production of additional

units requires installing technologies with increasing marginal cost Zipkin [150], or

overtime costs paid to employees. Similarly, the concavity assumption on R can be

seen as an effect of economies of scale (in the rebate payments of the supplier).

Under this setup, we have the following simple result concerning the problem that

the retailer has to solve.

Lemma 10. Assuming that an oracle providing subgradients for the functions F and

R is available, the computation of the optimal capacities U , commitments L and

replenishment policies {uk}1≤k≤T can be done by solving a subgradient optimization

problem. Furthermore, if F and R are also piecewise affine, then the retailer only

needs to solve a single linear program.

Proof. Consider a fixed choice of L, U . By the result in Theorem 1, the retailer must

solve the linear program (AARC) in (2.12) to determine the optimal affine ordering

policies. In this LP, L and U appear as right-hand side vectors; therefore, letting

J⋆(L, U) denote the optimal value of (AARC) as a function of L, U , it can be argued

by standard results in linear programming duality (see Chapter 5 of Bertsimas and

Tsitsiklis [33]) that:

• J⋆ is piece-wise affine and convex

• The optimal dual variables corresponding to the constraints involving L and U

represent a valid subgradient for J⋆.

Therefore, at any fixed L, U , the retailer has access to subgradients for the functions

F(U),R(L) and J⋆(L, U). Since the objective is always convex, standard nonlinear

programming algorithms based on subgradient methods can be used to solve the

resulting problem (refer to Bertsekas [20] for a detailed discussion).

Now suppose the functions F ,R are also piecewise affine, i.e., F(U) = maxi∈I f ′
i U

and R(L) = minj∈J r′
j L, where I and J are finite index sets, and fi, rj ∈ RT , ∀ i, ∀ j.

Then the retailer can consider a slight modification of problem (AARC), where L
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and U are decision variables, and the objective is to minimize J + JF − JR, where J

is constrained just as in (2.12), while JF , JR are constrained by:

JF ≥ f ′
i U, ∀ i ∈ I,

JR ≤ r′
j L, ∀ j ∈ J .

In can be easily seen that the resulting problem is an LP, and has the same optimal

value as the problem with cost F and rebate R.
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Chapter 3

A Hierarchy of Near-Optimal

Polynomial Policies in the

Disturbances

3.1 Introduction

In Chapter 2, we studied a particular instance of multi-stage dynamical systems,

where the class of disturbance-affine policies was provably optimal. While insightful

from a theoretical viewpoint, the model suffered from several limitations, including

the one-dimensional dynamics, the independent (box) state-control constraints, the

linear control cost, and the simple structure of the uncertainty sets (box). In the

present chapter, we seek to relax several of these modelling pitfalls.

To make things concrete, we consider discrete-time, linear dynamical systems of

the form

x(k + 1) = A(k) x(k) + B(k) u(k) + w(k), (3.1)

evolving over a finite planning horizon, k = 0, . . . , T − 1. The variables x(k) ∈

Rn represent the state, and the controls u(k) ∈ Rnu denote actions taken by the

decision maker. A(k) and B(k) are matrices of appropriate dimensions, describing
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the evolution of the system, and the initial state, x(0), is assumed fixed. The system

is affected by unknown1, additive disturbances, w(k), which are assumed to lie in a

given compact, basic semialgebraic set,

Wk
def
= {w(k) ∈ Rnw : gj(w(k)) ≥ 0, j ∈ Jk} , (3.2)

where gj ∈ R[w] are multivariate polynomials depending on the vector of uncertainties

at time k, w(k), and Jk is a finite index set. For simplicity, we omit pre-multiplying

w(k) by a matrix C(k) in (3.1), since such an evolution could be recast in the current

formulation by defining a new uncertainty, w̃(k) = C(k)w(k), evolving in a suitably

adjusted set W̃k.

We note that this formulation captures many uncertainty sets of interest in the

robust optimization literature (see Ben-Tal et al. [19]), such as polytopic (all gj affine),

p-norms, ellipsoids, and intersections thereof. For now, we restrict our description to

uncertainties that are additive and independent across time, but our framework can

also be extended to cases where the uncertainties are multiplicative (e.g., affecting

the system matrices), and also dependent across time (please refer to Section 3.3.3

for details).

We assume that the dynamic evolution of the system is constrained by a set of

linear inequalities,







Ex(k) x(k) + Eu(k) u(k) ≤ f (k), k = 0, . . . , T − 1,

Ex(T ) x(T ) ≤ f (T ),
(3.3)

where Ex(k) ∈ Rrk·n, Eu(k) ∈ Rrk·nu , f (k) ∈ Rrk for the respective k, and the system

incurs penalties that are piece-wise affine and convex in the states and controls,

h (k, x(k), u(k)) = max
i∈Ik

[
c0(k, i) + cx(k, i)T x(k) + cu(k, i)T u(k)

]
, (3.4)

1Just as in Chapter 2, we use the convention that the disturbance w(k) is revealed in period k

after the control action u(k) is taken, so that u(k + 1) is the first decision allowed to depend on
w(k).
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where Ik is a finite index set, and c0(k, i) ∈ R, cx(k, i) ∈ Rn, cu(k, i) ∈ Rnu are

pre-specified cost parameters. The goal is to find non-anticipatory control policies

u(0), u(1), . . . , u(T − 1) that minimize the cost incurred by the system in the worst-

case scenario,

J = h (0, x(0), u(0)) + max
w(0)

[

h (1, x(1), u(1)) + . . .

+ max
w(T−2)

[
h (T − 1, x(T − 1), u(T − 1)) + max

w(T−1)
h (T, x(T ))

]
. . .
]

.

Examples of such systems naturally arise in many different contexts. One par-

ticular instance, in the area of operations management, is the problem of deciding

optimal replenishment orders in multi-echelon networks. There, x(k) denotes the

vector of all inventories (of potentially different items) stored at various echelons in

the supply chain, as well as the replenishment orders that are in the pipeline (i.e., en-

route between the echelons), uk denotes the new replenishment orders placed at the

beginning of period k, and wk denotes exogenous demand from customers. The cost

functions represent combinations of holding, backlogging, and inventory reordering

costs. The interested reader is referred to the books Zipkin [150], Simchi-Levi et al.

[132] and Porteus [119] for more examples and details.

With the state of the dynamical system at time k given by x(k), one can re-

sort to the Bellman optimality principle of DP Bertsekas [21] to compute optimal

policies, u⋆(k, x(k)), and optimal value functions, J⋆(k, x(k)). Although DP is a

powerful technique as to the theoretical characterization of the optimal policies, it

is plagued by the well-known curse of dimensionality, in that the complexity of the

underlying recursive equations grows quickly with the size of the state-space, render-

ing the approach ill suited to the computation of actual policy parameters. There-

fore, in practice, one would typically solve the recursions numerically (e.g., by multi-

parametric programming Bemporad et al. [7, 8, 9]), or resort to approximations, such

as approximate DP Bertsekas and Tsitsiklis [23], Powell [120], stochastic approxima-

tion Asmussen and Glynn [3], simulation based optimization (Glasserman and Tayur

[73], Marbach and Tsitsiklis [103]), and others. Some of the approximations also

83



come with performance guarantees in terms of the objective value in the problem,

and many ongoing research efforts are placed on characterizing the sub-optimality

gaps resulting from specific classes of policies (the interested reader can refer to the

books Bertsekas [21], Bertsekas and Tsitsiklis [23] and Powell [120] for a thorough

review).

An alternative approach, which we have already encountered in Chapter 2, is to

consider control policies that are parametrized directly in the sequence of observed

uncertainties. For the case of linear constraints on the controls, with uncertainties

regarded as random variables having bounded support and known distributions, and

the goal of minimizing an expected piece-wise quadratic, convex cost, the authors

in Garstka and Wets [70] show that piece-wise affine decision rules are optimal, but

pessimistically conclude that computing the actual parameterization is usually an

“impossible task” (for a precise quantification of that statement, see Dyer and Stougie

[60] and Nemirovski and Shapiro [107]).

As briefly discussed in Chapter 2, such disturbance-feedback parameterizations

have gained a lot of attention from researchers in robust control and robust optimiza-

tion (see Löfberg [99], Kerrigan and Maciejowski [87, 88], Goulart and Kerrigan [76],

Ben-Tal et al. [14, 15, 17], Skaf and Boyd [133, 134], and references therein). In most

of the papers, the authors restrict attention to the case of affine policies, and show

how reformulations can be done that allow the computation of the policy parameters

by solving specific convex optimization problems.

However, with the exception of a few classical cases, such as linear quadratic

Gaussian or linear exponential quadratic Gaussian2, characterizing the performance

of affine policies in terms of objective function value is typically very hard. Chapter 2

presented a proof for a one-dimensional case, and also introduced simple examples of

multi-dimensional systems where affine policies are (very) sub-optimal.

In fact, in most applications, the restriction to the affine case is done for purposes

of tractability, and almost invariably results in loss of performance (see the remarks

2These refer to problems that are unconstrained, with Gaussian disturbances, and the goal of
minimizing expected costs that are quadratic or exponential of a quadratic, respectively. For these,
the optimal policies are affine in the states - see Bertsekas [21] and references therein.
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at the end of Nemirovski and Shapiro [107] and in Chapter 14 of Ben-Tal et al. [19]),

with the optimality gap being sometimes very large. In an attempt to address this

problem, recent work has considered parameterizations that are affine in a new set of

variables, derived by lifting the original uncertainties into a higher dimensional space.

For example, the authors in Chen and Zhang [50], Chen et al. [52], Sim and Goh [131]

suggest using so-called segregated linear decision rules, which are affine parameteri-

zations in the positive and negative parts of the original uncertainties. Such policies

provide more flexibility, and their computation (for two-stage decision problems in

a robust setting) requires roughly the same complexity as that needed for a set of

affine policies in the original variables. Another example following similar ideas is

Chatterjee et al. [49], where the authors consider arbitrary functional forms of the

disturbances, and show how, for specific types of p-norm constraints on the controls,

the problems of finding the coefficients of the parameterizations can be relaxed into

convex optimization problems. A similar approach is taken in Skaf and Boyd [134],

where the authors also consider arbitrary functional forms for the policies, and show

how, for a problem with convex state-control constraints and convex costs, such poli-

cies can be found by convex optimization, combined with Monte-Carlo sampling (to

enforce constraint satisfaction). Chapter 14 of the recent book Ben-Tal et al. [19] also

contains a thorough review of several other classes of such adjustable rules, and a

discussion of cases when sophisticated rules can actually improve over the affine ones.

The main drawback of some of the above approaches is that the right choice of

functional form for the decision rules is rarely obvious, and there is no systematic

way to influence the trade-off between the performance of the resulting policies and

the computational complexity required to obtain them, rendering the frameworks ill-

suited for general multi-stage dynamical systems, involving complicated constraints

on both states and controls.

The goal of the current chapter is to introduce a new framework for modeling and

(approximately) solving such multi-stage dynamical problems. In keeping with the

philosophy introduced in our earlier work, we examine the performance of disturbance-

feedback policies, i.e., policies which are directly parameterized in the sequence of
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observed uncertainties. While we restrict attention mainly to the robust, mini-max

objective setting, our ideas can be extended to deal with stochastic problems, in which

the uncertainties are random variables with known, bounded support and distribu-

tion that is either fully or partially known3 (see Section 3.3.3 for a discussion, and

Chapter 4 for a more elaborate example). Our main contributions are summarized

as follows:

• We introduce a natural extension of the aforementioned affine decision rules,

by considering control policies that depend polynomially on the observed dis-

turbances. For a fixed polynomial degree d, we develop a convex reformulation

of the constraints and objective of the problem, using Sums-Of-Squares (SOS)

techniques. In the resulting framework, polynomial policies of degree d can be

computed by solving a single semidefinite programming problem (SDP), which,

for a fixed precision, can be done in polynomial time (Vandenberghe and Boyd

[143]). Our approach is advantageous from a modelling perspective, since it

places little burden on the end user (the only choice is the polynomial degree

d), while at the same time providing a lever for directly controlling the trade-off

between performance and computation (higher d translates into policies with

better objectives, obtained at the cost of solving larger SDPs).

• To test our polynomial framework, we consider two classical problems arising in

inventory management (single echelon with cumulative order constraints, and

serial supply chain with lead-times), and compare the performance of affine,

quadratic and cubic control policies. The results obtained are very encouraging

- in particular, for all problem instances considered, quadratic policies consid-

erably improve over affine policies (typically by a factor of 2 or 3), while cubic

policies essentially close the optimality gap (the relative gap in all simulations

is less than 1%, with a median gap of less than 0.01%).

The chapter is organized as follows. Section 3.2 presents the mathematical formu-

lation of the problem, briefly discusses relevant solution techniques in the literature,

3In the latter case, the cost would correspond to the worst-case distribution consistent with the
partial information.
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and introduces our framework. Section 3.3, which is the main body of the chap-

ter, first shows how to formulate and solve the problem of searching for the optimal

polynomial policy of fixed degree, and then discusses the specific case of polytopic un-

certainties. Section 3.3.3 also elaborates on immediate extensions of the framework

to more general multi-stage decision problems. Section 3.5 translates two classical

problems from inventory management into our framework, and Section 3.6 presents

our computational results, exhibiting the strong performance of polynomial policies.

3.1.1 Notation

Throughout the rest of the chapter, we denote scalar quantities by lowercase, non-bold

face symbols (e.g. x ∈ R, k ∈ N), vector quantities by lowercase, boldface symbols

(e.g. x ∈ Rn, n > 1), and matrices by uppercase symbols (e.g. A ∈ Rn·n, n > 1).

Also, in order to avoid transposing vectors several times, we use the comma operator

( , ) to denote vertical vector concatenation, e.g. with x = (x1, . . . , xn) ∈ Rn and

y = (y1, . . . , ym) ∈ Rm, we write (x, y)
def
= (x1, . . . , xn, y1, . . . , ym) ∈ Rm+n.

We refer to quantities specific to time-period k by either including the index in

parenthesis, e.g. x(k), J⋆ (k, x(k)), or by using an appropriate subscript, e.g. xk,

J⋆
k (xk). When referring to the j-th component of a vector at time k, we always use

the parenthesis notation for time, and subscript for j, e.g., xj(k).

Since we seek policies parameterized directly in the uncertainties, we introduce

w[k]
def
= (w1, . . . , wk−1) to denote the history of known disturbances at the beginning

of period k, and W[k]
def
= W1 × · · · × Wk−1 to denote the corresponding uncertainty

set. By convention, w[0] ≡ {∅}.

With x = (x1, . . . , xn), we denote by R[x] the ring of polynomials in variables

x1, . . . , xn, and by Pd[x] the R-vector space of polynomials in x1, . . . , xn, with degree

at most d. We also let

Bd(x)
def
=
(
1, x1, x2, . . . , xn, x2

1, x1x2, . . . , x1xn, x2
2, x2x3 . . . , xd

n

)
(3.5)

be the canonical basis of Pd[x], and s(d)
def
=
(

n+d

d

)
be its dimension. Any polynomial
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p ∈ Pd[x] is written as a finite linear combination of monomials,

p(x) = p(x1, . . . , xn) =
∑

α∈Nn

pαxα = pTBd(x), (3.6)

where xα def
= xα1

1 xα2
2 . . . xαn

n , and the sum is taken over all n-tuples α = (α1, α2, . . . , αn) ∈

Nn satisfying
∑n

i=1 αi ≤ d. In the expression above, p = (pα) ∈ Rs(r) is the vector

of coefficients of p(x) in the basis (3.5). In situations where the coefficients pα of a

polynomial are decision variables, in order to avoid confusions, we refer to x as the

indeterminate (similarly, we refer to p(x) as a polynomial in indeterminate x). By

convention, we take p(∅) ≡ p0,0,...,0, i.e., a polynomial without indeterminate is simply

a constant.

For a polynomial p ∈ R[x], we use deg(p) to denote the largest degree of a mono-

mial present in p.

3.2 Problem Description

Using the notation mentioned in the introduction, our goal is to find non-anticipatory

control policies u0, u1, . . . , uT−1 that minimize the cost incurred by the system in the

worst-case scenario. In other words, we seek to solve the problem:

min
u0

[

h0 (x0, u0) + max
w0

min
u1

[

h1 (x1, u1) + · · ·+

+ min
uT−1

[
hT−1 (xT−1, uT−1) + max

wT−1

hT (xT )
]
. . .
]]

(3.7a)

(P ) s.t. xk+1 = Ak xk + Bk uk + wk, ∀ k ∈ {0, . . . , T − 1}, (3.7b)

Ex(k) xk + Eu(k) uk ≤ fk, ∀ k ∈ {0, . . . , T − 1}, (3.7c)

Ex(T ) xT ≤ fT . (3.7d)

As already mentioned, the control actions uk do not have to be decided entirely

at time period k = 0, i.e., (P ) does not have to be solved as an open-loop problem.
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Rather, uk is allowed to depend on the information set available4 at time k, resulting

in control policies uk : Fk → Rnu , where Fk consists of past states, controls and

disturbances, Fk = {xt}0≤t≤k ∪ {ut}0≤t<k ∪ {wt}0≤t<k.

While Fk is a large (expanding with k) set, the state xk represents sufficient infor-

mation for taking optimal decisions at time k. Thus, with control policies depending

on the states, one can resort to the Bellman optimality principle of Dynamic Program-

ming (DP) (Bertsekas [21]), to compute optimal policies, u⋆
k(xk), and optimal value

functions, J⋆
k (xk). As suggested in the introduction, the approach is limited due to

the curse of dimensionality, so that, in practice, one typically resorts to approximate

schemes for computing suboptimal, state-dependent policies (Bertsekas and Tsitsiklis

[23], Powell [120], Marbach and Tsitsiklis [103]).

In keeping with the approach introduced in Chapter 2, we take a slightly different

view, and consider instead policies parametrized directly in the observed uncertainties,

uk : W0 ×W1 × · · · ×Wk−1 → Rnu . (3.8)

In this context, the decisions that must be taken are the parameters defining the

specific functional form sought for uk. A particular example of disturbance-feedback

policies, which we have already encountered in Chapter 2, is the affine case, i.e.,

uk = Lk · (1, w0, . . . , wk−1), where the decision variables are the coefficients of the

matrices Lk ∈ Rnu×(1+k×nw), k = 0, . . . , T − 1.

In this framework, with (3.7b) used to express the dependency of states xk on past

uncertainties, the state-control constraints (3.7c), (3.7d) at time k can be written as

functions of the parametric decisions L0, . . . , Lk and the uncertainties w0, . . . , wk−1,

and one typically requires these constraints to be obeyed robustly, i.e., for any possible

realization of the uncertainties.

As already mentioned, this approach has been explored before in the literature,

in both the stochastic and robust frameworks (Birge and Louveaux [41], Garstka and

Wets [70], Löfberg [99], Kerrigan and Maciejowski [87, 88], Goulart and Kerrigan

4More formally, the decision process uk is adapted to the filtration generated by past values of
the disturbances and controls.
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[76], Ben-Tal et al. [14, 15, 17], Bertsimas and Brown [26], Skaf and Boyd [133]). The

typical restriction to the sub-class of affine policies, done for purposes of tractability,

almost invariably results in loss of performance Nemirovski and Shapiro [107], with the

gap being sometimes very large. To illustrate this effect, we introduce the following

simple example5, motivated by a similar case in Chen and Zhang [50]:

Example 4. Consider a two-stage problem, where w ∈ W is the uncertainty, with

W =
{
w ∈ RN : ‖w‖2 ≤ 1

}
, x ∈ R is a first-stage decision (taken before w is

revealed), and y ∈ RN is a second-stage decision (allowed to depend on w). We

would like to solve the following optimization:

minimize
x,y(w)

x

such that x ≥
N∑

i=1

yi, ∀w ∈ W,

yi ≥ w2
i , ∀w ∈ W.

(3.9)

It can be easily shown (see Lemma 14 in Appendix B.1) that the optimal objective

in Problem (3.9) is 1, corresponding to yi(w) = w2
i , while the best objective achievable

under affine policies y(w) is N , for yi(w) = 1, ∀ i. In particular, this simple example

shows that the optimality gap resulting from the use of affine policies can be made

arbitrarily large (as the problem size increases).

Motivated by these facts, in the current chapter, we explore the performance of

a more general class of disturbance-feedback control laws, namely policies that are

polynomial in past-observed uncertainties. More precisely, for a specified degree d,

and with w[k] denoting the vector of all disturbances in Fk,

w[k]
def
= ( w0, w1, . . . , wk−1 ) ∈ Rk·nw , (3.10)

we consider a control law at time k in which every component is a polynomial of

5We note that this example can be easily cast as an instance of Problem (P ). We opt for the
simpler notation to keep the ideas clear.

90



degree at most d in variables w[k], i.e., uj(k, w[k]) ∈ Pd[w[k]], and thus:

uk(w[k]) = Lk Bd(w[k]), (3.11)

where Bd(w[k]) is the canonical basis of Pd[w[k]], given by (3.5). The new decision

variables become the matrices of coefficients Lk ∈ Rnu·s(d), k = 0, . . . , T − 1, where

s(d) =
(

k·nw+d

d

)
is the dimension of Pd[w[k]]. Therefore, with a fixed degree d, the

number of decision variables remains polynomially bounded in the size of the problem

input, T, nu, nw.

This class of policies constitutes a natural extension of the disturbance-affine con-

trol laws, i.e., the case d = 1. Furthermore, with sufficiently large degree, one can

expect the performance of the polynomial policies to become near-optimal - recall

that, by the Stone-Weierstrass Theorem (Rudin [127]), any continuous function on a

compact set can be approximated as closely as desired by polynomial functions. The

main drawback of the approach is that searching over arbitrary polynomial policies

typically results in non-convex optimization problems. To address this issue, in the

next section, we develop a tractable, convex reformulation of the problem based on

Sum-Of-Squares (SOS) techniques (Parrilo [112, 113], Lasserre [94]).

3.3 Polynomial Policies and Convex Reformula-

tions Using Sums-Of-Squares

Under polynomial policies of the form (3.11), one can use the dynamical equa-

tion (3.7b) to express every component of the state at time k, xj(k), as a polynomial

in indeterminate w[k], whose coefficients are linear combinations of the entries in

{Lt}0≤t≤k−1. As such, with ex(k, j)T and eu(k, j)T denoting the j-th row of Ex(k)

and Eu(k), respectively, a typical state-control constraint (3.7c) can be written

ex(k, j)T xk + eu(k, j)T uk ≤ fj(k) ⇔

pcon
j,k (w[k])

def
= fj(k) − ex(k, j)T xk − eu(k, j)T uk ≥ 0, ∀w[k] ∈ W[k].
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In particular, feasibility of the state-control constraints at time k is equivalent to

ensuring that the coefficients {Lt}0≤t≤k−1 are such that the polynomials pcon
j,k (w[k]), j =

1, . . . , rk, are non-negative on the domain W[k].

Similarly, the expression (3.4) for the stage cost at time k can be written as

hk(xk, uk) = max
i∈Ik

pcost
i (w[k]),

pcost
i (w[k])

def
= c0(k, i) + cx(k, i)T xk(w[k]) + cu(k, i)T uk(w[k]),

i.e., the cost hk is a piece-wise polynomial function of the past-observed disturbances

w[k]. Therefore, under polynomial control policies, we can rewrite the original Prob-

lem (P) as the following polynomial optimization problem:

min
L0

[

max
i∈I1

pcost
i (w[0]) + max

w0

min
L1

[

max
i∈I2

pcost
i (w[1]) + . . .

(PPOP) + max
wT−2

min
LT−1

[
max

i∈IT−1

pcost
i (w[T−1]) + max

wT−1

max
i∈IT

pcost
i (w[T ])

]
. . .
]]

(3.12a)

s.t. pcon
j,k (w[k]) ≥ 0, ∀ k = 0, . . . , T, ∀ j = 1, . . . , rk, ∀w[k] ∈ W[k]. (3.12b)

In this formulation, the decision variables are the coefficients {Lt}0≤t≤T−1, and (3.12b)

summarize all the state-control constraints. We emphasize that the expression of the

polynomial controls (3.11) and the dynamical system equation (3.7b) should not be

interpreted as real constraints in the problem (rather, they are only used to derive the

dependency of the polynomials pcost
i (w[k]) and pcon

j,k (w[k]) on {Lt}0≤t≤k−1 and w[k]).

3.3.1 Reformulating the Constraints

As mentioned in the previous section, under polynomial control policies, a typical

state-control constraint (3.12b) in program (PPOP) can now be written as:

p(ξ) ≥ 0, ∀ ξ ∈ W[k], (3.13)
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where ξ ≡ w[k] ∈ Rk·nw is the history of disturbances, and p(ξ) is a polynomial in

variables ξ1, ξ2, . . . , ξk·nw
with degree at most d,

p(ξ) = pTBd

(
ξ
)
,

whose coefficients pi are affine combinations of the decision variables Lt, 0 ≤ t ≤ k−1.

It is easy to see that constraint (3.13) can be rewritten equivalently as

p(ξ) ≥ 0, ∀ ξ ∈ W[k]
def
=
{
ξ ∈ Rk·nw : gj(ξ) ≥ 0, j = 1, . . . , m

}
, (3.14)

where {gj}1≤j≤m are all the polynomial functions describing the compact basic semi-

algebraic set W[k] ≡ W0 × · · · ×Wk−1, immediately derived from (3.2). In this form,

(3.14) falls in the general class of constraints that require testing polynomial non-

negativity on a basic closed, semi-algebraic set, i.e., a set given by a finite number of

polynomial equalities and inequalities. To this end, note that a sufficient condition

for (3.14) to hold is:

p = σ0 +
m∑

j=1

σj gj, (3.15)

where σj ∈ R[ξ], j = 0, . . . , m, are polynomials in the variables ξ which are further-

more sums of squares (SOS). This condition translates testing the non-negativity of p

on the set W[k] into a system of linear equality constraints on the coefficients of p and

σj , j = 0, . . . , m, and a test whether σj are SOS. The main reason why this is valuable

is because testing whether a polynomial of fixed degree is SOS is equivalent to solving

a semidefinite programming problem (SDP) (refer to Parrilo [112, 113], Lasserre [94]

for details), which, for a fixed precision, can be done in polynomial time, by interior

point methods (Vandenberghe and Boyd [143]).

On first sight, condition (3.15) might seem overly restrictive. However, it is mo-

tivated by recent powerful results in real algebraic geometry (Putinar [121], Jacobi

and Prestel [84]), which, under mild conditions6 on the functions gj, state that any

6These are readily satisfied when gj are affine, or can be satisfied by simply appending a redundant
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polynomial that is strictly positive on a compact semi-algebraic set W[k] must admit

a representation of the form (3.15), where the degrees of the σj polynomials are not

a priori bounded. In our framework, in order to obtain a tractable formulation, we

furthermore restrict these degrees so that the total degree of every product σj gj is at

most max
(

d, maxj

(
deg(gj)

))

, the maximum between the degree of the control poli-

cies (3.11) under consideration and the largest degree of the polynomials gj giving

the uncertainty sets. While this requirement is more restrictive, and could, in princi-

ple, result in conservative parameter choices, it avoids ad-hoc modeling decisions and

has the advantage of keeping a single parameter that is adjustable to the user (the

degree d), which directly controls the trade-off between the size of the resulting SDP

formulation and the quality of the overall solution. Furthermore, in our numerical

simulations, we find that this choice performs very well in practice, and never results

in infeasible conditions.

3.3.2 Reformulating the Objective

Recall from our discussion in the beginning of Section 3.3 that, under polynomial

control policies, a typical stage cost becomes a piecewise polynomial function of past

uncertainties, i.e., a maximum of several polynomials. A natural way to bring such a

cost into the framework presented before is to introduce, for every stage k = 0, . . . , T ,

a polynomial function of past uncertainties, and require it to be an upper-bound on

the true (piecewise polynomial) cost.

More precisely, and to fix ideas, consider the stage cost at time k, which, from our

earlier discussion, can be written as

hk(xk, uk) = max
i∈Ik

pcost
i (w[k]),

pcost
i (w[k]) = c0(k, i) + cx(k, i)T xk(w[k]) + cu(k, i)T uk(w[k]), ∀ i ∈ Ik.

In this context, we introduce a modified stage cost h̃k ∈ Pd[w[k]], which we con-

constraint that bounds the 2-norm of the vector ξ.
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strain to satisfy

h̃k(w[k]) ≥ pcost
i (w[k]), ∀w[k] ∈ W[k], ∀ i ∈ Ik,

and we replace the overall cost for Problem (PPOP) with the sum of the modified stage

costs. In other words, instead of minimizing the objective (3.7a), we seek to solve:

min J

s.t. J ≥
T∑

k=0

h̃k(w[k]), ∀w[T ] ∈ w[T ], (3.16a)

h̃k(w[k]) ≥ pcost
i (w[k]), ∀w[k] ∈ W[k], ∀ i ∈ Ik. (3.16b)

The advantage of this approach is that, now, constraints (3.16a) and (3.16b) are

of the exact same nature as (3.13), and thus fit into the SOS framework developed

earlier. As a result, we can use the same semidefinite programming approach to

enforce them, while preserving the tractability of the formulation and the trade-off

between performance and computation delivered by the degree d. The main drawback

is that the cost J may conceivably, in general, over-bound the optimal cost of Problem

(P ), due to several reasons:

1. We are replacing the (true) piece-wise polynomial cost hk with an upper bound

given by the polynomial cost h̃k. Therefore, the optimal value J of prob-

lem (3.16a) may, in general, be larger than the true cost corresponding to the

respective polynomial policies, i.e., the cost of problem (PPOP).

2. All the constraints in the model, namely (3.16a), (3.16b), and the state-control

constraints (3.12b), are enforced using SOS polynomials with fixed degree (see

the discussion in Section 3.3.1), and this is sufficient, but not necessary.

However, despite these multiple layers of approximation, our numerical experi-

ments, presented in Section 3.6, suggest that most of the above considerations are

second-order effects when compared with the fact that polynomial policies of the form

(3.11), are themselves, in general, suboptimal. In fact, our results suggest that with
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a modest polynomial degree (3, and sometimes even 2), one can close most of the

optimality gap between the SDP formulation and the optimal value of Problem (P ).

To summarize, our framework can be presented as the sequence of steps below:

Algorithm 3 Framework for computing polynomial policies of degree d

1: Consider polynomial control policies in the disturbances, uk(w[k]) = Lk Bd

(
w[k]

)
.

2: Express all the states xk according to equation (3.7b). Each component of a

typical state xk becomes a polynomial in indeterminate w[k], with coefficients

given by linear combinations of {Lt}0≤t≤k−1.

3: Replace a typical stage cost hk(xk, uk) = maxi∈Ik
pcost

i (w[k]) with a modified

stage cost h̃k ∈ Pd[w[k]], constrained to satisfy h̃k(w[k]) ≥ pcost
i (w[k]), ∀w[k] ∈

W[k], ∀ i ∈ Ik.

4: Replace the overall cost with the sum of the modified stage costs.

5: Replace a typical constraint p(w[k]) ≥ 0, ∀w[k] ∈
{
ξ : gj(ξ) ≥ 0, j = 1, . . . , m

}

(for either state-control or costs) with the requirements:

p = σ0 +

m∑

j=1

σjgj

(
linear constraints on coefficients

)

σj SOS, j = 0, . . . , m.
(
m + 1 SDP constraints

)

deg(σj gj) ≤ max
(

d, max
j

(
deg(gj)

))

,

deg(σ0) = max
j

(
deg(σj gj)

)
.

6: Solve the resulting SDP to obtain the coefficients Lk of the policies.

The size of the overall formulation is controlled by the following parameters:

• There are O
(

T 2 · maxk(rk + |Ik|) · (maxk |Jk|) ·
(

T ·nw+d̂

d̂

))

linear constraints

• There are O
(
T 2 ·maxk(rk + |Ik|) · (maxk |Jk|)

)
SDP constraints, each of size at

most
(

T ·nw+⌈ d̂
2
⌉

⌈ d̂
2
⌉

)

• There are O
(

T ·
[
nu + T · maxk(rk + |Ik|) · (maxk |Jk|)

] (
T ·nw+d̂

d̂

))

variables
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Above, d̂
def
= max

(

d, maxj

(
deg(gj)

))

, i.e., the largest between d and the degree of any

polynomial gj defining the uncertainty sets. Since, for all practical purposes, most

uncertainty sets considered in the literature are polyhedral or quadratic, the main

parameter that controls the complexity is d (for d ≥ 2).

As the main computational bottleneck comes from the SDP constraints, we note

that their size and number could be substantially reduced by requiring the control

policies to only depend on a partial history of the uncertainties, e.g., by considering

uk : Wk−q ×Wk−q+1 × · · · × Wk−1, for some fixed q > 0, and by restricting xk in a

similar fashion. In this case, there would be O
(
T ·q ·maxk(rk+|Ik|)·(maxk |Jk|)

)
SDP

constraints, each of size at most
(

q·nw+⌈ d̂
2
⌉

⌈ d̂
2
⌉

)

, and only O
(∑

k |Jk|
)

SDP constraints

of size
(

T ·nw+⌈ d̂
2
⌉

⌈ d̂
2
⌉

)

.

3.3.3 Extensions

For completeness, we conclude our discussion by briefly mentioning several modelling

extensions that can be readily captured in our framework:

1. Although we only consider uncertainties that are “independent” across time, i.e.,

the history w[k] always belongs to the cartesian product W0 × · · · ×Wk−1, our

approach could be immediately extended to situations in which the uncertainty

sets characterize partial sequences. As an example, instead of Wk, we could

specify a semi-algebraic description for the history W[k],

(w0, w1, . . . , wk−1) ∈ W[k] =
{
ξ ∈ Rk×nw : gj(ξ) ≥ 0, ∀ j ∈ J̃k

}
,

which could be particularly useful in situations where the uncertainties are

generated by processes that are dependent across time. The only modification

would be to use the new specification for the set W[k] in the typical state-control

constraints (3.13) and the cost reformulation constraints (3.16a), (3.16b).

2. While we restrict the exposition to uncertainties that are only affecting the

system dynamics additively, i.e., by means of equation (3.1), the framework
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can be extended to situations where the system and constraint matrices, A(k),

B(k), Ex(k), Eu(k), f (k) or the cost parameters, cx(k, i) or cu(k, i) are also

affected by uncertainty. These situations are of utmost practical interest, in

both the inventory examples that we consider in the current chapter, but also

in other realistic dynamical systems. As an example, suppose that the matrix

A(k) is affinely dependent on uncertainties ζk ∈ Zk ⊂ Rnζ ,

A(k) = A0(k) +

nζ∑

i=1

ζi(k)Ai(k),

where Ai(k) ∈ Rn×n, ∀ i ∈ {0, . . . , nζ} are deterministic matrices, and Zk are

closed, basic semi-algebraic sets. Then, provided that the uncertainties wk and

ζk are both observable in every period7, our framework can be immediately

extended to decision policies that depend on the histories of both sources of

uncertainty, i.e., uk(w0, . . . , wk−1, ζ0, . . . , ζk−1).

3. Note that, instead of considering uncertainties as lying in given sets, and adopt-

ing a min-max (worst-case) objective, we could accommodate the following

modelling assumptions:

(a) The uncertainties are random variables, with bounded support given by

the set W0 × W1 × . . .WT−1, and known probability distribution func-

tion F. The goal is to find u0, . . . , uT−1 so as to obey the state-control

constraints (3.3) almost surely, and to minimize the expected costs,

min
u0

[

h0 (x0, u0) + Ew0∼F min
u1

[

h1 (x1, u1) + . . .

+ min
uT−1

[
hT−1 (xT−1, uT−1) + EwT−1∼F hT (xT )

]
. . .
]]

. (3.17)

In this case, since our framework already enforces almost sure (robust)

constraint satisfaction, the only potential modifications would be in the

7When only the states xk are observable, then one might not be able to simultaneously discrim-
inate and measure both uncertainties.
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reformulation of the objective. Since the distribution of the uncertainties

is assumed known, and the support is bounded, the moments exist and can

be computed up to any fixed degree d. Therefore, we could preserve the

reformulation of state-control constraints and stage-costs in our framework

(i.e., Steps 2 and 4), but then proceed to minimize the expected sum of the

polynomial costs h̃k (note that the expected value of a polynomial function

of uncertainties can be immediately obtained as a linear function of the

moments).

(b) The uncertainties are random variables, with the same bounded support

as above, but unknown distribution function F, belonging to a given set of

distributions, F . The goal is to find control policies obeying the constraints

almost surely, and minimizing the expected costs corresponding to the

worst-case distribution F,

min
u0

[

h0 (x0, u0) + sup
F∈F

Ew0 min
u1

[

h1 (x1, u1) + · · ·+

min
uT−1

[
hT−1 (xT−1, uT−1) + sup

F∈F
EwT−1

hT (xT )
]
. . .
]]

. (3.18)

In this case, if partial information (such as the moments of the distribution

up to degree d) is available, then the framework in (a) can be applied.

Otherwise, if the only information available about F were the support,

then our framework could be applied without modification, but the solution

obtained would exactly correspond to the min-max approach, and hence

be quite conservative.

We note that, under moment information, some of the seemingly “ad-hoc”

substitutions that we performed in our framework can actually become

tight. More precisely, the recent paper Zuluaga and Pena [151] argues that,

when the set of measures F is characterized by a compact support and fixed

moments up to degree d, then the optimal value in the worst-case expected

cost problem sup
F∈F Ew[k]

hk (xk, uk) (where hk are piece-wise polynomial
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functions) exactly corresponds to the cost supF∈F Ew[k]
h̃k(w[k]), where h̃k

are exactly given by the constraints (3.16b). In other words, introducing

a single modified polynomial stage cost of the form does not increase the

optimal value of the problem under the distributionally-robust framework.

In general, under the distributionally robust framework, if more informa-

tion about the measures in the set F is available, such as uni-modality,

symmetry, directional deviations (Chen et al. [51]), then one should be

able to obtain better bounds on the stage costs hk, by employing appro-

priate Tchebycheff-type inequalities (Bertsimas and Popescu [29], Popescu

[117], Zuluaga and Pena [151]). The interested reader to the recent papers

Popescu [118], Natarajan et al. [106], Chen et al. [52], Sim and Goh [131],

which take similar approaches in related contexts.

While these extensions are certainly worthy of attention, we do not pursue them here,

and restrict our discussion in the remainder of the chapter to the original worst-case

formulation. For a more elaborate discussion of the distributionally-robust framework

(in a slightly different setting), we refer the interested reader to Chapter 4 of the thesis.

3.4 Other Methodologies for Computing Decision

Rules or Exact Values

Our goal in the current section is to discuss the relation between our polynomial

hierarchy and several other established methodologies in the literature8 for comput-

ing affine or quadratic decision rules. More precisely, for the case of ∩-ellipsoidal

uncertainty sets, we show that our framework delivers policies of degree 1 or 2 with

performance at least as good as that obtained by applying the methods in Ben-Tal

et al. [19]. In the second part of the section, we discuss the particular case of polytopic

uncertainty sets, where exact values for Problem (P ) can be found (which are very

useful for benchmarking purposes).

8We are grateful to one of the anonymous referees for pointing out reference Ben-Tal et al. [19],
which was not at our disposal at the time of conducting the research.
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3.4.1 Affine and Quadratic Policies for ∩-Ellipsoidal Uncer-

tainty Sets

Let us consider the specific case when the uncertainty sets Wk are given by the

intersection of finitely many convex quadratic forms, and have nonempty interior -

one of the most general classes of uncertainty sets treated in the robust optimization

literature (see, e.g., Ben-Tal et al. [19]).

We first focus attention on affine disturbance-feedback policies, i.e., uk(w[k]) =

Lk B1(w[k]), and perform the same substitution of a piece-wise affine stage cost with

an affine cost that over-bounds it9. Finding the optimal affine policies then requires

solving the following instance of Problem (PPOP):

min
Lk,zk,zk,0,J

J (3.19a)

J ≥
T∑

k=0

(
zT

k w[k] + zk,0

)
, (3.19b)

zT
k B1(w[k]) ≥ c0(k, i) + cx(k, i)T xk(w[k]) + cu(k, i)T uk(w[k]), (3.19c)

(PAFF) ∀w[k] ∈ W[k], ∀ i ∈ Ik, ∀ k ∈ {0, . . . , T − 1},

zT
TB1(w[T ]) ≥ c0(T, i) + cx(T, i)T xT (w[T ]), (3.19d)

∀w[T ] ∈ W[T ], ∀ i ∈ IT ,

(
xk+1(w[k+1]) = Ak xk(w[k]) + Bk uk(w[k]) + w(k),

)
(3.19e)

∀ k ∈ {0, . . . , T − 1},

fk ≥ Ex(k) xk(w[k]) + Eu(k) uk(w[k]), (3.19f)

∀w[k] ∈ W[k], ∀k ∈ {0, . . . , T − 1},

fT ≥ Ex(T ) xT (w[T ]), ∀w[T ] ∈ W[T ]. (3.19g)

In this formulation, the decision variables are {Lk}0≤k≤T−1, {zk}0≤k≤T and J , and

equation (3.19e) should be interpreted as giving the dependency of xk on w[k] and the

decision variables, which can then be used in the constraints (3.19c), (3.19d), (3.19f),

9This is the same approach as that taken in Ben-Tal et al. [19]; when the stage costs hk are
already affine in xk, uk, the step is obviously not necessary
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and (3.19g). Note that, in the above optimization problem, all the constraints are

bi-affine functions of the uncertainties and the decision variables, and thus, since the

uncertainty sets W[k] have tractable conic representations, the techniques in Ben-Tal

et al. [19] can be used to compute the optimal decisions in (PAFF).

Letting J⋆
AFF

denote the optimal value in (PAFF), and with J⋆
d=r representing the

optimal value obtained from our polynomial hierarchy (with SOS constraints) for

degree d = r, we have the following result.

Theorem 2. If the uncertainty sets Wk are given by the intersection of finitely many

convex quadratic forms, and have nonempty interior, then the objective functions

obtained from the polynomial hierarchy satisfy the following relation

J⋆
AFF

≥ J⋆
d=1 ≥ J⋆

d=2 ≥ . . .

Proof. First, note that the hierarchy can only improve when the polynomial degree

d is increased (this is because any feasible solutions for a particular degree d remain

feasible for degree d + 1). Therefore, we only need to prove the first inequality.

Consider any feasible solution to Problem (PAFF) under disturbance-affine policies,

i.e., any choice of matrices {Lk}0≤k≤T−1, coefficients {zk}0≤k≤T and cost J , such that

all constraints in (PAFF) are satisfied.

Note that a typical constraint in Problem (PAFF) becomes

f(w[k]) ≥ 0, ∀w[k] ∈ W[k],

where f is a degree 1 polynomial in indeterminate w[k], with coefficients that are

affine functions of the decision variables. By the assumption in the statement of the

theorem, the sets Wk are convex, with nonempty interior, ∀ k ∈ {0, . . . , T −1}, which

implies that W[k] = W0 × · · · ×Wk−1 is also convex, with non-empty interior.

Therefore, the typical constraint above can be written as

f(w[k]) ≥ 0, ∀w[k] ∈
{
ξ ∈ Rk×nw : gj(ξ) ≥ 0, j ∈ J

}
,
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where J is a finite index set, and gj(·) are convex. By the nonlinear Farkas Lemma

(see, e.g., Proposition 3.5.4 in Bertsekas et al. [24]), there must exist multipliers

0 ≤ λj ∈ R, ∀ j ∈ J , such that

f(w[k]) ≥
∑

j∈J

λjgj(w[k]).

But then, recall that our SOS framework required the existence of polynomials

σj(w[k]), j ∈ {0} ∪ J , such that

f(w[k]) = σ0(w[k]) +
∑

j∈J

σj(w[k]) gj(w[k]).

By choosing σj(w[k]) ≡ λj , ∀ j ∈ J , and σ0(w[k]) = f(w[k]) −
∑

j∈J λjgj(w[k]), we

can immediately see that:

• ∀ j 6= 0, σj are SOS (they are positive constants)

• Since gj are quadratic, and f is affine, σ0 is a quadratic polynomial which is non-

negative, for any w[k]. Therefore, since any such polynomial can be represented

as a sum-of-squares (see Parrilo [113], Lasserre [94]), we also have that σ0 is

SOS.

By these two observations, we can conclude that the particular choice Lk, zk, J will

also remain feasible in our SOS framework applied to degree d = 1, and, hence,

J⋆
AFF ≥ J⋆

d=1.

The above result suggests that the performance of our polynomial hierarchy can

never be worse than that of the best affine policies.

For the same case of Wk given by intersection of convex quadratic forms, a popular

technique introduced by Ben-Tal and Nemirovski in the robust optimization litera-

ture, and based on using the approximate S-Lemma, could be used for computing

quadratic decision rules. More precisely, the resulting problem (PQUAD) can be ob-

tained from (PAFF) by using uk(xk) = Lk · B2(w[k]), and by replacing zT
k B2(w[k])

and zT
TB2(w[T ]) in (3.19c) and (3.19d), respectively. Since all the constraints become
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quadratic polynomials in indeterminates w[k], one can use the Approximate S-Lemma

to enforce the resulting constraints (See Chapter 14 in Ben-Tal et al. [19] for details).

If we let J⋆
QUAD denote the optimal value resulting from this method, a proof parallel-

ing that of Theorem 2 can be used to show that J⋆
QUAD

≥ J⋆
d=2, i.e., the performance

of the polynomial hierarchy for d ≥ 2 cannot be worse than that delivered by the

S-Lemma method.

In view of these results, one can think of the polynomial framework as a gener-

alization of two classical methods in the literature, with the caveat that (for degree

d ≥ 3), the resulting SOS problems that need to be solved can be more computation-

ally challenging.

3.4.2 Determining the Optimal Value for Polytopic Uncer-

tainties

Here, we briefly discuss a specific class of Problems (P ), for which the exact optimal

value can be computed by solving a (large) mathematical program. This is partic-

ularly useful for benchmarking purposes, since it allows a precise assessment of the

polynomial framework’s performance (note that the approach presented in Section 3.3

is applicable to the general problem, described in the introduction).

Consider the particular case of polytopic uncertainty sets, i.e., when all the poly-

nomial functions gj in (3.2) are actually affine. It can be shown (see Theorem 2 in

Bemporad et al. [9]) that piece-wise affine state-feedback policies10 uk(xk) are op-

timal for the resulting Problem (P ), and that the sequence of uncertainties that

achieves the min-max value is an extreme point of the uncertainty set, that is,

w[T ] ∈ ext(W0) × · · · × ext(WT−1). As an immediate corollary of this result, the

optimal value for Problem (P ), as well as the optimal decision at time k = 0 for a

fixed initial state x0, u⋆
0(x0), can be computed by solving the following optimization

10One could also immediately extend the result of Garstka and Wets [70] to argue that disturbance-
feedback policies uk(w[k]) are also optimal.
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problem (see Ben-Tal et al. [15], Bemporad et al. [8, 9] for a proof):

min
uk(w[k]),zk(w[k]),J

J (3.20a)

s.t. ∀ t ∈ {0, . . . , T − 1}, ∀w[k] ∈ ext(W0) × · · · × ext(Wk−1),

J ≥
T∑

k=0

zk(w[k]), (3.20b)

zk(w[k]) ≥ hk

(
xk(w[k]), uk(w[k])

)
, (3.20c)

(P )ext zT (w[T ]) ≥ hT

(
xT (w[T ])

)
, (3.20d)

xk+1(w[k+1]) = Ak xk(w[k]) + Bk uk(w[k]) + w(k), (3.20e)

fk ≥ Ex(k) xk(w[k]) + Eu(k) uk(w[k]), (3.20f)

fT ≥ Ex(T ) xT (w[T ]). (3.20g)

In this formulation, non-anticipatory control values uk(w[k]) and corresponding states

xk(w[k]) are computed for every vertex of the disturbance set, i.e., for every w[k] ∈

ext(W0)×· · ·×ext(Wk−1), k = 0, . . . , T −1. The variables zk(w[k]) are used to model

the stage cost at time k, in scenario w[k]. Note that constraints (3.20c), (3.20d)

can be immediately rewritten in linear form, since the functions hk(x, u), hT (x) are

piece-wise affine and convex in their arguments.

We emphasize that the formulation does not seek to compute an actual policy

u⋆
k(xk), but rather the values that this policy would take (and the associated states

and costs), when the uncertainty realizations are restricted to extreme points of the

uncertainty set. As such, the variables uk(w[k]), xk(w[k]) and zk(w[k]) must also

be forced to satisfy a non-anticipativity constraint11, which is implicitly taken into

account when only allowing them to depend on the portion of the extreme sequence

available at time k, i.e., w[k]. Due to this coupling constraint, Problem (P )ext results

in a Linear Program which is doubly-exponential in the horizon T , with the number of

variables and the number of constraints both proportional to the number of extreme

sequences in the uncertainty set, O
(∏T−1

k=0 |ext(Wk)|
)
. Therefore, solving (P )ext is

11In our current notation, non-anticipativity is equivalent to requiring that, for any two sequences
(w0, . . . , wT−1) and (ŵ0, . . . , ŵT−1) satisfying wt = ŵt, ∀ t ∈ {0, . . . , k − 1}, we have ut(w[t]) =
ut(ŵ[t]), ∀ t ∈ {0, . . . , k}.
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relevant only for small horizons, but is very useful for benchmarking purposes, since

it provides the optimal value of the original problem.

We conclude this section by examining a particular example when the uncertainty

sets take an even simpler form, and polynomial policies (3.11) are provably optimal.

More precisely, we consider the case of scalar uncertainties (nw = 1), and

w(k) ∈ W(k)
def
= [wk, wk] ⊂ R, ∀ k = 0, . . . , T − 1, (3.21)

which corresponds to the exact case of one-dimensional box uncertainty which we

considered in Chapter 2. Under this model, any partial uncertain sequence w[k] will

be a k-dimensional vector, lying inside the hypercube W[k] ⊂ Rk.

Introducing the subclass of multi-affine policies12 of degree d, given by

uj(k, w[k]) =
∑

α∈{0,1}k

ℓα (w[k])
α, where

k∑

i=1

αi ≤ d, (3.22)

one can show (see Theorem 3 in Appendix B) that multi-affine policies of degree

T − 1 are, in fact, optimal for Problem (P ). While this theoretical result is of minor

practical importance (due to the large degree needed for the policies, which trans-

lates into prohibitive computation), it provides motivation for restricting attention to

polynomials of smaller degree, as a midway solution that preserves tractability, while

delivering high quality objective values.

For completeness, we remark that, for the case of box-uncertainty, the authors in

Ben-Tal et al. [19] show one can seek separable polynomial policies of the form

uj(k, w[k]) =

k∑

i=1

pi(wi), ∀ j ∈ {1, . . . , nu}, ∀ k ∈ {0, . . . , T − 1},

where pi ∈ Pd[x] are univariate polynomials in indeterminate x. The advantage of

this approach is that the reformulation of a typical state-control constraint would be

12Note that these are simply polynomial policies of the form (3.11), involving only square-free

monomials, i.e., every monomial, wα
[k]

def
=
∏k−1

i=0 wαi

i , satisfies the condition αi ∈ {0, 1}.
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exact (refer to Lemma 14.3.4 in Ben-Tal et al. [19]). The main pitfall, however, is

that, for the case of box-uncertainty, such a rule would never improve over purely

affine rules, i.e., where all the polynomials pi have degree 1 (refer to Lemma 14.3.6 in

Ben-Tal et al. [19]). However, as we will see in our numerical results (to be presented

in Section 3.6), polynomials policies that are not separable, i.e., are of the general

form (3.11), can and do improve over the affine case.

3.5 Examples from Inventory Management

To test the performance of our proposed policies, we consider two problems arising

in inventory management.

3.5.1 Single Echelon with Cumulative Order Constraints

Our first example corresponds to a slight generalization of the instance we considered

in Chapter 2, namely the problem of negotiating flexible contracts between a retailer

and a supplier in the presence of uncertain orders from customers, originally discussed

in a robust framework by Ben-Tal et al. [16]. We describe the version of the problem

here, and refer the interested reader to Ben-Tal et al. [16] for more details.

The setting is the following: consider a single-product, single-echelon, multi-period

supply chain, in which inventories are managed periodically over a planning horizon

of T periods. The unknown demands wk from customers arrive at the (unique)

echelon, henceforth referred to as the retailer, and are satisfied from the on-hand

inventory, denoted by xk at the beginning of period k. The retailer can replenish

the inventory by placing orders uk, at the beginning of each period k, for a cost

of ck per unit of product. These orders are immediately available, i.e., there is no

lead-time in the system, but there are capacities on the order size in every period,

Lk ≤ uk ≤ Uk, as well as on the cumulative orders places in consecutive periods,

L̂k ≤
∑k

t=0 ut ≤ Ûk. After the demand wk is realized, the retailer incurs holding costs

Hk+1 ·max{0, xk + uk −wk} for all the amounts of supply stored on her premises, as

well as penalties Bk+1 · max{wk − xk − uk, 0}, for any demand that is backlogged.
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In the spirit of robust optimization, we assume that the only information available

about the demand at time k is that it resides within an interval centered around a

nominal (mean) demand d̄k, which results in the uncertainty set Wk = {wk ∈ R :
∣
∣wk − d̄k

∣
∣ ≤ ρ · d̄k }, where ρ ∈ [0, 1] can be interpreted as an uncertainty level.

With the objective function to be minimized as the cost resulting in the worst-case

scenario, we immediately obtain an instance of our original Problem (P ), i.e., a linear

system with n = 2 states and nu = 1 control, where x1(k) represents the on-hand

inventory at the beginning of time k, and x2(k) denotes the total amount of orders

placed in prior times, x2(k) =
∑k−1

t=0 u(t). The dynamics are specified by

x1(k + 1) = x1(k) + u(k) − w(k),

x2(k + 1) = x2(k) + u(k),

with the constraints

Lk ≤ u(k) ≤ Uk,

L̂k ≤ x2(k) + u(k) ≤ Ûk,

and the costs

hk(xk, uk) = max
{
ck uk + [Hk, 0]Txk, ck uk + [−Bk, 0]T xk

}
,

hT (xT ) = max
{
[HT , 0]T xT , [−BT , 0]TxT

}
.

We remark that the cumulative order constraints, L̂k ≤
∑k

t=0 ut ≤ Ûk, are needed

here, since otherwise, the resulting (one-dimensional) system would fit the theoretical

results from Bertsimas et al. [37], which would imply that polynomial policies of the

form (3.11) and polynomial stage costs of the form (3.16b) are already optimal for

degree d = 1 (affine). Therefore, testing for higher order polynomial policies would

not add any benefit.
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3.5.2 Serial Supply Chain

As a second problem, we consider a serial supply chain, in which there are J echelons,

numbered 1, . . . , J , managed over a planning horizon of T periods by a centralized

decision maker. The j-th echelon can hold inventory on its premises, for a per-unit

cost of Hj(k) in time period k. In every period, echelon 1 faces the unknown, external

demands w(k), which it must satisfy from the on-hand inventory. Unmet demands

can be backlogged, incurring a particular per-unit cost, B1(k). The j-th echelon can

replenish its on-hand inventory by placing orders with the immediate echelon in the

upstream, j + 1, for a per-unit cost of cj(k). For simplicity, we assume the orders are

received with zero lead-time, and are only constrained to be non-negative, and we

assume that the last echelon, J , can replenish inventory from a supplier with infinite

capacity.

Following a standard requirement in inventory theory (Zipkin [150]), we maintain

that, under centralized control, orders placed by echelon j at the beginning of period

k cannot be backlogged at echelon j +1, and thus must always be sufficiently small to

be satisfiable from on-hand inventory at the beginning13 of period k at echelon j + 1.

As such, instead of referring to orders placed by echelon j to the upstream echelon

j + 1, we will refer to physical shipments from j + 1 to j, in every period.

This problem can be immediately translated into the linear systems framework

mentioned before, by introducing the following states, controls, and uncertainties:

• Let xj(k) denote the local inventory at stage j, at the beginning of period k.

• Let uj(k) denote the shipment sent in period k from echelon j + 1 to echelon j.

• Let the unknown external demands arriving at echelon 1 represent the uncer-

tainties, w(k).

13This implies that the order placed by echelon j in period k (to the upstream echelon, j + 1)
cannot be used to satisfy the order in period k from the downstream echelon, j − 1. Technically,
this corresponds to an effective lead time of 1 period, and a more appropriate model would redefine
the state vector accordingly. We have opted to keep our current formulation for simplicity.
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The dynamics of the linear system can then be formulated as

x1(k + 1) = x1(k) + u1(k) − w(k), k = 0, . . . , T − 1,

xj(k + 1) = xj(k) + uj(k) − uj−1(k), j = 2, . . . , J, k = 0, . . . , T − 1,

with the following constraints on the states and controls

uj(k) ≥ 0, j = 1, . . . , J, k = 0, . . . , T − 1, (non-negative shipments)

xj(k) ≥ uj−1(k), j = 2, . . . , J, k = 0, . . . , T − 1, (downstream order

≤ upstream inventory)

and the costs

h1

(
k, x1(k), u1(k)

)
= c1(k)u1(k) + max

{
H1(k) x1(k), −B1(k) x1(k)

}
, k = 0, . . . , T − 1

h1

(
T, x1(T )

)
= max

{
H1(T ) x1(T ), −B1(T ) x1(T )

}
,

hj

(
k, xj(k), uj(k)

)
= cj(k) uj(k) + Hj(k) xj(k), k = 0, . . . , T − 1

hj

(
T, xj(T )

)
= Hj(T ) xj(T ).

With the same model of uncertainty as before, Wk =
[
d̄k(1 − ρ), d̄k(1 + ρ)

]
, for

some known mean demand d̄k and uncertainty level ρ ∈ [0, 1], and the goal to decide

shipment quantities uj(k) so as to minimize the cost in the worst-case scenario, we

obtain a different example of Problem (P ).

3.6 Numerical Experiments

In this section, we present numerical simulations testing the performance of poly-

nomial policies in each of the two problems mentioned in Section 3.5. In order to

examine the dependency of our results on the size of the problem, we proceed in the

following fashion.
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3.6.1 First Example

For the first model (single echelon with cumulative order constraints), we vary the

horizon of the problem from T = 4 to T = 10, and for every value of T , we:

1. Create 100 problem instances, by randomly generating the cost parameters and

the constraints, in which the performance of polynomial policies of degree 1

(affine) is suboptimal.

2. For every such instance, we compute:

• The optimal cost OPT , by solving the exponential Linear Program (P )ext.

• The optimal cost P̄d obtained with polynomial policies of degree d = 1, 2,

and 3, respectively, by solving the corresponding associated SDP formula-

tions, as introduced in Section 3.3.

We also record the relative optimality gap corresponding to each polynomial

policy, defined as (P̄d − OPT )/OPT , and the solver time.

3. We compute statistics over the 100 different instances (recording the mean,

standard deviation, min, max and median) for the optimality gaps and solver

times corresponding to all three polynomial parameterizations.

Table 3.1 and Table 3.2 record these statistics for relative gaps and solver times,

respectively. The following conclusions can be drawn from the results:

• Policies of higher degree decrease the performance gap considerably. In partic-

ular, while affine policies yield an average gap between 2.8% and 3.7% (with a

median gap between 2% and 2.7%), quadratic policies reduce both average and

median gaps by a factor of 3, and cubic policies essentially close the optimality

gap (all gaps are smaller than 1%, with a median gap smaller than 0.01%). To

better see this, Figure 3-1 illustrates the box-plots corresponding to the three

policies for a typical case (here, T = 6).
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• The reductions in the relative gaps are not very sensitive to the horizon, T .

Figure 3-2(a) illustrates this effect for the case of quadratic policies, and similar

plots can be drawn for the affine and cubic cases.

• The computational time grows polynomially with the horizon size. While com-

putations for cubic policies are rather expensive, the quadratic case, shown in

Figure 3-2(b), shows promise for scalability - for horizon T = 10, the median

and average solver times are below 15 seconds.

3.6.2 Second Example

For the second model (serial supply chain), we fix the problem horizon to T = 7,

and vary the number of echelons from J = 2 to J = 5. For every resulting size,

we go through the same steps 1-3 as outlined above, and record the same statistics,

displayed in Table 3.3 and Table 3.4, respectively. Essentially the same observations

as before hold. Namely, policies of higher degree result in strict improvements of

the objective function, with cubic policies always resulting in gaps smaller than 1%

(see Figure 3-3(a) for a typical case). Also, increasing the problem size (here, this

corresponds to the number of echelons, J) does not affect the reductions in gaps, and

the computational requirements do not increase drastically (see Figure 3-3(b), which

corresponds to quadratic policies).

All our computations were done in a MATLABR© environment, on the MIT Oper-

ations Research Center computational machine (3 GHz IntelR© Dual Core XeonR© 5050

Processor, with 8GB of RAM memory, running Ubuntu Linux). The optimization

problems were formulated using YALMIP (Löfberg [100]), and the resulting SDPs

were solved with SDPT3 (Toh et al. [141]).

We remark that the computational times could be substantially reduced by ex-

ploiting the structure of the polynomial optimization problems (e.g., Nie [110]), and

by utilizing more suitable techniques for solving smooth large-scale SDPs (see, e.g.,

Lan et al. [92] and the references therein). Such techniques are immediately applica-

ble to our setting, and could provide a large speed-up over general-purpose algorithms
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Figure 3-1: Box plots comparing the performance of different polynomial policies for
horizon T = 6
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(such as the interior point methods implemented in SDPT3), hence allowing much

larger and more complicated instances to be solved.

Table 3.1: Relative gaps (in %) for polynomial policies in Example 1

Degree d = 1 Degree d = 2 Degree d = 3
T avg std mdn min max avg std mdn min max avg std mdn min max

4 2.84 2.41 2.18 0.02 9.76 0.75 0.85 0.47 0.00 3.79 0.03 0.12 0.00 0.00 0.91
5 2.82 2.29 2.52 0.04 11.22 0.62 0.71 0.39 0.00 3.92 0.02 0.09 0.00 0.00 0.56
6 3.09 2.63 2.36 0.01 9.82 0.69 0.89 0.25 0.00 3.47 0.03 0.10 0.00 0.00 0.59
7 3.25 2.95 2.58 0.13 15.00 0.83 0.99 0.43 0.00 4.79 0.06 0.17 0.00 0.00 0.93
8 3.66 3.29 2.69 0.03 18.36 1.06 1.17 0.74 0.00 5.81 0.10 0.17 0.00 0.00 0.99
9 2.93 2.78 2.12 0.05 11.56 0.80 0.86 0.55 0.00 3.39 0.07 0.13 0.00 0.00 0.61
10 3.44 3.60 2.09 0.00 18.20 0.76 1.16 0.26 0.00 5.76 0.05 0.12 0.00 0.00 0.74

Table 3.2: Solver times (in seconds) for polynomial policies in Example 1

Degree d = 1 Degree d = 2 Degree d = 3
T avg std mdn min max avg std mdn min max avg std mdn min max

4 0.47 0.05 0.46 0.38 0.63 1.27 0.10 1.27 1.13 1.62 3.33 0.21 3.24 3.01 4.03
5 0.58 0.06 0.58 0.46 0.75 2.03 0.20 1.97 1.69 2.65 7.51 0.91 7.27 6.58 12.08
6 0.73 0.11 0.72 0.62 1.50 2.29 0.22 2.28 1.87 3.26 18.96 2.54 18.25 16.07 31.86
7 0.88 0.08 0.87 0.72 1.07 3.08 0.23 3.10 2.47 3.67 48.83 5.63 47.99 40.65 74.09
8 1.13 0.12 1.11 0.94 1.92 4.79 0.32 4.75 3.97 5.96 157.73 20.67 153.91 126.15 217.80
9 1.53 0.17 1.51 1.27 2.66 7.65 0.51 7.65 6.10 9.59 420.75 60.10 411.09 334.71 760.13
10 1.31 0.15 1.30 1.07 2.19 14.77 1.24 14.80 11.81 18.57 1846.94 600.89 1640.10 1313.18 4547.09
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Figure 3-2: Performance of quadratic policies for Example 1 - (a) illustrates the weak
dependency of the improvement on the problem size (measured in terms of the horizon
T ), while (b) compares the solver times required for different problem sizes.
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Figure 3-3: Performance of polynomial policies for Example 2. (a) compares the three
policies for problems with J = 3 echelons, and (b) shows the solver times needed to
compute quadratic policies for different problem sizes.

Table 3.3: Relative gaps (in %) for polynomial policies in Example 2

Degree d = 1 Degree d = 2 Degree d = 3
J avg std mdn min max avg std mdn min max avg std mdn min max

2 1.87 1.48 1.47 0.00 8.27 1.38 1.16 1.11 0.00 6.48 0.06 0.14 0.01 0.00 0.96
3 1.47 0.89 1.27 0.16 4.46 1.08 0.68 0.93 0.14 3.33 0.04 0.06 0.00 0.00 0.32
4 1.14 2.46 0.70 0.05 24.63 0.67 0.53 0.53 0.01 2.10 0.04 0.07 0.00 0.00 0.38
5 0.35 0.37 0.21 0.03 1.85 0.27 0.32 0.15 0.00 1.59 0.02 0.03 0.00 0.00 0.15
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Table 3.4: Solver times (in seconds) for polynomial policies Example 2

Degree d = 1 Degree d = 2 Degree d = 3
J avg std mdn min max avg std mdn min max avg std mdn min max

2 1.22 0.20 1.18 0.86 2.35 5.58 1.05 5.44 3.82 8.79 81.64 14.02 80.88 52.55 116.56
3 1.72 0.26 1.70 1.21 3.09 8.84 1.40 8.53 6.83 13.19 115.08 20.91 109.96 77.29 183.84
4 1.57 0.22 1.55 1.20 2.85 12.59 1.63 12.44 8.86 17.86 160.05 19.34 159.29 82.11 207.56
5 2.59 1.46 1.97 1.51 8.18 18.97 6.59 17.59 13.21 63.71 250.43 109.96 227.56 144.54 952.37
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Chapter 4

Polynomial Policies for Multi-Item

Dynamic Pricing

4.1 Introduction

In the final chapter of the thesis, we examine a different variation of a multi-period

decision problem under uncertainty, arising in the field of revenue management (RM).

More precisely, we consider a setting in which a single firm (a monopolist) is selling

a set of nonperishable products to an incoming stream of (non-strategic) customers,

and is seeking a pricing policy that would maximize its revenue over a finite selling

season.

Variations of this problem have received attention from numerous research groups

in the dynamic pricing and RM community (the interested reader is referred to the

books Talluri and van Ryzin [138] and Phillips [115], and the review papers Bitran

and Mondschein [42] and Elmaghraby and Keskinocak [63] for an in-depth overview

of the field). Most models typically assume that the unknown quantities affecting the

system can be characterized completely through a probability distribution function.

While this paradigm is certainly justified in stationary environments with abundant

historical information, it does not fit several interesting situations arising naturally in

RM, such as the introduction of new products or the changing dynamics of existing

markets (e.g., due to the entry of a new competitor or some unforeseen event strongly
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affecting supply and/or demand).

In recognition of this shortfall, several recent papers have considered formulations

and models that avoid specifying complete distributional information for the unknown

parameters. One such approach is to consider robust optimization formulations, based

on either maximizing the minimum possible revenue (Thiele [139], Adida and Perakis

[1], Lim and Shanthikumar [95], Thiele [140], Lobel and Perakis [97]), minimizing the

worst-case regret (Perakis and Roels [114], Lobel and Perakis [97]), or maximizing the

competitive ratio (Lan et al. [93]). An alternative approach, which has been popular

in several recent papers (Lobo and Boyd [98], Bertsimas and Perakis [28], Aviv and

Pazgal [4, 5], Lin [96], Araman and Caldentey [2], Kachani et al. [85], Cope [54],

Besbes and Zeevi [38], Farias and Van Roy [67], Besbes and Zeevi [39], Cooper et al.

[53]) is to attempt to learn the unknown parameters in the model from realized sales,

by performing suitable updates (Bayesian or otherwise). Yet another approach is to

simply resort to completely non-parametric formulations, which make direct use of

data, and are hence inherently “distribution-free” (see, e.g., Kleinberg and Leighton

[89], Rusmevichientong et al. [128]).

The formulation we pursue in the current chapter is mostly in line with the first set

of approaches above. Namely, we consider a setting where the demand model belongs

to a known parametric class, and the goal is to estimate the correct parameters,

while computing pricing policies so as to maximize revenues. Moreover, we focus

on a situation where the estimation and the optimization stages are segregated, in

that one first uses historical data to estimate the model, and then proceeds to solve

the ensuing optimization problem, based on the estimated model. However, instead

of believing that the constructed model is correct, we take the pragmatic view of

knowingly accepting that it is most likely incorrect, and thus focus on robust(ified)

formulations, which account for potential mis-specification. As a final ingredient

in our approach, we also recognize that static decisions (i.e., open-loop controls)

intrinsically miss several key dynamic features of the problem, and hence, we focus

on formulations that allow the computation of adjustable policies. Our contributions

in the current chapter are as follows:
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• We consider a multi-period, multi-item dynamic pricing problem under a linear

demand function, with additive uncertainties. For such a model, we propose

distributionally robust formulations, in which the uncertainties are character-

ized by support and limited moment information, and argue how the ensuing

models can be constructed and calibrated from limited historical data.

• For the resulting dynamic optimization model, we consider policies that de-

pend polynomially on the observed model disturbances, and show how the pol-

icy parameters can be computed by solving tractable optimization problems

(second-order conic or semidefinite programs).

• We present extensive computational results, based on both simulated and real

data from a large US retailer. These show that robust policies with minimal

degree of adjustability (e.g., affine policies) already improve considerably over

open-loop robust policies, and are competitive with popular heuristics in the

literature.

The chapter is organized as follows. Section 4.2 introduces the complete model

description, and briefly discusses relevant results in the RM literature. Section 4.3 in-

troduces the polynomial policies, presents tractable reformulations based on semidef-

inite relaxations and sums-of-squares techniques, and discusses alternative heuristic

methods for solving the problem. Section 4.4 discusses possible model extensions.

Section 4.5 introduces our data-set, and elaborates on several aspects related to esti-

mation using the real data, and Section 4.6 presents the numerical results obtained

using both simulated and real data.

4.1.1 Notation

Similar to Talluri and van Ryzin [138], we denote the price vector at time t by pt ∈ Rn
+.

For a given price vector pt, we let dt(pt) ∈ Rn
+ denote the deterministic part of the

demand function at time t, and Dt

(
dt(pt), εt

)
the unknown (realized) demand, which

also depends on an unknown component ε. For a vector xt ∈ Rn, we use xi,t to denote

the i-th component. We also let 1 denote the vector of all ones.
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Throughout the chapter, since much of the exposition is centered on polynomial

policies, an identical notation to that introduced in Chapter 3 will be in place. In par-

ticular, since we work extensively with quantities which depend on the entire history of

available information at a given time t, we define, for any time-varying vector quantity

{xt ∈ Rn}t=1,...,T , the following stacked vector x[t]
def
= (x1, x2, . . . , xt−1) ∈ Rn×(t−1),

which represents measurements available at the beginning of period t. Similarly, if

xt ∈ Xt, ∀ t, we define X[t]
def
= X1 × · · · × Xt−1 as the cartesian-product support of the

quantity x[t].

For a vector x ∈ Rn, we use diag(x) to denote the n×n matrix that has x on the

main diagonal and zeros everywhere else.

4.2 Model Description

We consider a setting in which a single firm (a monopolist) is selling a set of n

nonperishable products, denoted by i ∈ I
def
= {1, . . . , n}, over a finite planning horizon,

t ∈ T
def
= {1, . . . , T}. The initial inventory in each product (i.e., the capacity) is

denoted by Ci. In every period, the firm is selecting the prices for all products,

pt
def
= (p1,t, . . . , pn,t), subject to certain constraints, p[t+1]

def
= (p1, . . . , pt) ∈ Ωp

t+1, where

the set Ωp
t+1 ⊆ Rn×t is assumed to be polyhedral. Such constraints could include price

non-negativity, as well as mark-down (i.e., pt ≤ pt−1) or mark-up (i.e., pt ≥ pt−1)

constraints.

After setting the prices, the firm observes the resulting customer demand, Dt
def
=

(D1,t, . . . , Dn,t), which is influenced by the prices, as well as by unknown external

factors εt. We assume that the customers are non-strategic, and also that backlogging

of demand is possible, at no cost to the firm, but that any remaining backlog must

be satisfied by placing a constrained order u = (u1, . . . , un), in period T , at a cost of

ri ∈ R̄+ per unit of item i. We assume that the order can be decided in the last period

(i.e., there is no requirement for a pre-commitment), but the order is constrained,

u ∈ Ωu ⊆ R+, where Ωu is a polyhedral set (containing, e.g., non-negativity or

capacity constraints).

120



The problem that the firm would like to solve is to find a sequence of prices and

a final-period order so as to maximize its revenue (net of reordering cost) collected

from an unknown stream of customers.

Clearly, in order to complete the description of the model, we must further specify

two key ingredients:

1. The functional form for the demand Di,t - in particular, how the price vector

pt influences the customer demand for the different items i ∈ I.

2. The exact way in which the firm is quantifying its preference over uncertain

outcomes - recall that the demand depends on a set of unknown factors εt,

hence a recipe must be prescribed for measuring all the uncertain quantities

(revenue stream, realized sales, etc.)

In the next sections, we discuss in detail each of these two aspects. Since the choices

involved with the former will influence our modelling decisions related to the latter,

we begin by describing the demand models.

4.2.1 Demand Model

While several choices of demand models are possible (see Chapter 7 of Talluri and

van Ryzin [138] for more details and examples), we restrict attention to one of the

most popular options in the RM literature, namely the linear demand model under

additive noise (for extensions to other relevant demand models, we refer the reader

to Section 4.4). This model is characterized by:

dt(pt) = bt + At pt, (4.1a)

Dt(dt, εt) = dt + εt, (4.1b)

where the terms have the following significance:

• pt is the price vector at the beginning of period t
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• dt is the planned demand, i.e., the deterministic component of the demand

function, dependent only on the price vector pt

• bt ∈ Rn represents a base demand in period t

• At ∈ Rn×n represents a matrix of price sensitivity coefficients in period t

• Dt is the realized demand in period t

• εt is an exogenous noise.

In particular, the functional form dt is linear in the prices, and the noise affects

the demand in an additive fashion. This model is quite popular due to its simplicity,

and the ease of estimation from data. As such, it has been used extensively in both

theoretical, as well as experimental studies (see Talluri and van Ryzin [138] and Mas-

Colell et al. [104]). Standard assumptions on the matrices At include the following:

Assumption 4. The diagonal coefficients of At are non-positive, i.e., aii ≤ 0, ∀ t ∈

T .

This assumption is a fundamental law in economics, and reflects the fact that

decreasing the price of a given product makes it more attractive to the customers.

Items not satisfying this requirement (known as Veblen or Giffen goods Mas-Colell

et al. [104]) are usually ignored in the revenue management literature.

Assumption 5. The matrices At are strictly row-diagonally dominant, i.e., |aii| >
∑

j 6=i |aij | , ∀ i ∈ I.

The latter fact states that the demand for a product i is more sensitive to changes

in its own price, rather than simultaneous changes in the prices of other products.

Alternatively, one sometimes requires that

Assumption 6. The matrices At are strictly column diagonally-dominant, i.e., |ajj| >
∑

i6=j |aij | , ∀ j ∈ I.
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This would reflect that changes in the price of one product impacts the demand

of that product more than the total demand of other products combined. All of

the above assumptions have well grounded economic justifications (Mas-Colell et al.

[104]), and have been widely adopted in the operations management literature. In can

be seen by standard facts in linear algebra (see Theorem 5.6.17 in Horn and Johnson

[79] and Chapter 2 in Horn and Johnson [80]) that the first assumption corroborated

with any of the latter two ensure that:

1. The matrices At are invertible. This is convenient, since it allows inverting

the price-demand relation to obtain a specific price pt that would generate a

particular demand dt. In this sense, we can equivalently think of the decisions

as being the demands dt, rather than the prices.

2. The eigenvalues of At all have non-positive real parts. Since the At matrices are

also usually taken to be symmetric, this latter fact has the direct implication

that the revenue function, r(pt)
def
= p′

t dt(pt), is concave in the prices, which

ensures the existence of a unique revenue-maximizing price (see Chapter 7 of

Talluri and van Ryzin [138]).

Despite these attactive theoretical properties, the model does suffer from several

pitfalls. On a theoretical level, it requires bounding the range of feasible prices in order

to ensure the demand is non-negative (e.g., in a single product case, we would need

pt ≤ −at/bt). This also implies that the model violates another typical requirement

in the OM literature, namely that the range of the revenue function r(pt) span the

entire positive half-line (refer to Section 7.3 of Talluri and van Ryzin [138] for more

details). For recent work that provides a natural extension of the linear demand

model which does not suffer from some of these shortcomings, we refer the reader to

Farahat and Perakis [66].

On a practical level, several empirical studies (e.g., Smith and Achabal [135]), as

well as several patent filings (Woo et al. [147], Boyd et al. [44]) have found the model

to under-perform other functional forms, such as exponential or power sensitivity.

However, despite these shortcomings, due to widespread use of the model in both
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theory and practice (see, e.g., Heching et al. [78], Bertsimas and Perakis [28], Maglaras

and Meissner [101], Adida and Perakis [1], Thiele [140] and references therein), we

have chosen it as the main object of study in the current chapter.

In terms of the estimation requirements, since the functional form of the demand

is linear (4.1a), and the noise affects the model in an additive fashion (4.1b), one can

use ordinary least-squares regression techniques (OLS) (Greene [77]) to estimate the

parameters of the model. More precisely, with dependent variables yit = Dit, ∀ i ∈

I, ∀ t ∈ {2, . . . , T}, and with independent variables xit = {pit, δt} (where δt is an

indicator for period t, with t ∈ {1, . . . , T − 1}), one can compute estimates Ât, b̂t, as

well as associated confidence intervals.

The key underlying assumptions supporting the use of OLS techniques (see Chap-

ter 2 of Greene [77]) are the standard Gauss-Markov requirements, namely

(i) The linearity of the functional form (i.e., equation (4.1a), in our case)

(ii) The full rank assumption on the data matrix X (consisting of the pi,t, δt vari-

ables)

(iii) Exogeneity of the independent variables, i.e., E [εi,t | xjt] = 0, ∀ i, j ∈ I, ∀ t ∈ T .

In words, the expected value of the disturbance corresponding to a particular

observation should not be a function of the independent variables xit corre-

sponding to any observation (including the current one).

(iv) Homoscedasticity and nonautocorrelation, i.e., the disturbances εit should have

the same finite variance and be uncorrelated across i and t. More precisely,

var[εit |X] = 0, ∀ i ∈ I, ∀ t ∈ T , cov[εit εjτ |X] = 0, ∀ i, j ∈ I, ∀ t, τ ∈ T with

(it) 6= (jτ).

(v) Normality, i.e., that the disturbances εit follow a Gaussian distribution.

Since, in reality, several of these assumptions are violated, procedures have been

designed to test for mis-specifications, and several extensions of the regression tech-

niques are available for more general cases (see Greene [77] for a complete account
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and more references). In Section 4.6.3, we revisit some of these issues in the specific

context of estimating the linear demand model (4.1a), and we also discuss several

aspects related to our own data-set.

4.2.2 Model Uncertainties and Preferences Over Uncertain

Outcomes

From our earlier discussion, it is evident that there are several potential sources of

disturbances affecting our model. In particular, apart from the noise εit reflected

in (4.1b), one might also be introducing errors through the estimation procedure

itself. For instance, it is likely that the true form of the demand function is not

linear, and that the disturbances εit affecting the model are both heteroscedastic and

autocorrelated (the latter is a particularly common phenomenon when dealing with

panel data Greene [77], such as bulk transactional data from an RM system), resulting

in potentially systematic mis-specifications of the model.

At the same time, in many practical settings (including the one we face with our

data-set), records are affected by mistakes, as well as scarce (e.g., few seasons avail-

able, preventing an adequate estimation of the non-stationary factors). Such issues

not only affect the quality of the regressions, but also prevent one from performing ad-

equate tests for violations of the standard assumptions (Greene [77]) or constructing

adequate distributions for stochastic quantities.

In particular, we maintain that a much more sensible requirement would be to

estimate the support and moments of stochastic quantities, instead of complete dis-

tributions. Bearing the above issues in mind, we model the uncertain quantities using

a distributionally robust framework. More precisely, we assume that {εt}t∈T repre-

sents a stochastic process defined on an underlying probability space (Ω,F , P), but

that the measure P is not completely specified. Rather, the only information available

is that the measure P belongs to the class of all measures P which are characterized

by the following partial information:

• All measures in P are supported on the set E1 × E2 × · · · × ET , where Et ⊆ Rn
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is a closed, basic semialgebraic set, i.e.,

Et
def
= {εt ∈ Rn : gj(εt) ≥ 0, j ∈ Jt} , (4.2)

where gj ∈ R[εt] are multivariate polynomials depending on the disturbances

at time t, and Jt is a finite index set.

• All measures in P have a given set of moments, up to a specified degree.

4.2.3 Complete Formulation

We now return to the original problem formulation, which we describe in detail. The

goal of the firm is to choose a sequence of pricing policies p1, . . . , pT and a last-period

order u, so as to maximize the worst-case net expected revenue, that is

max
p1,...,pT ,u

inf
P∈P

Eε[T+1]∼P

[
T∑

t=1

p′
t Dt(pt, εt) − r′ u

]

(4.3a)

(P ) such that
T∑

t=1

Dt(pt, εt) ≤ C + u (4.3b)

p[t] ∈ Ωp
t , ∀ t ∈ {2, . . . , T + 1}. (4.3c)

u ∈ Ωu. (4.3d)

In the above formulation, the inner (minimization) corresponds to the problem solved

by nature, which chooses the worst possible measure in the set P for the uncertain

quantities ε[T+1]
def
= (ε1, . . . , εT ). The outer maximization corresponds to the problem

the firm is seeking to solve, namely choosing the prices so as to maximize its expected

revenue
∑T

t=1 p′
t Dt(pt, εt), net of the reordering cost r′ u. The constraint (4.3b) re-

flects that fact that sales should not exceed available capacity, while (4.3c) and (4.3d)

capture the constraints that the planned prices and the planned order quantity should

obey, respectively.

In analogy to our exposition in Chapter 3, we make the following two additional

remarks:
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• The price chosen in period t, pt, is allowed to depend on any information that

is available at the beginning of period t. Put formally, the firm is free to seek

pricing policies pt that are adapted to the filtration induced by ε[t].

• We ask that any constraints involving stochastic quantities should be obeyed

almost surely, i.e., for any possible realization of the uncertain quantities.

As stated, our model falls in the large class of mini-max stochastic programming

formulations, pioneered by Žáčová [144] and Dupac̆ová [58, 59]. Such models have

seen renewed interest in several recent papers (Popescu [118], Natarajan et al. [106],

Delage and Ye [55], Sim and Goh [131], Bertsimas et al. [36]), in which tractable

reformulations and computational aspects are discussed, typically in the context of

two-stage problems, with more general objectives (concave utility functions). How-

ever, in the level of generality considered in Problem (P ), these models are typically

severely computationally intractable, hence the usual approach is to look for ap-

proximate solutions, most often by restricting attention to specific classes of policies

(Shapiro et al. [130]).

We remark that, when the only information about the measures in the set P is the

support, the distributionally robust model above becomes equivalent to the robust

optimization models, which we have extensively discussed in Chapter 2 and Chap-

ter 3. Similar models have been considered recently in the RM literature, and are

gaining increased attention due to their advantageous computational properties. One

of the initial papers to make use of such formulations is Adida and Perakis [1], which

considers a firm pricing several products that utilize a common production capacity,

and in which both ordering and pricing decisions are possible in every period. For

a linear demand model without cross-item price effects (i.e., a diagonal At), the au-

thors compare different robust formulations (affine adjustable and open loop) with

closed-loop (dynamic programming) solutions, and conclude that the robust models

perform well, while remaining tractable. Thiele [139] and Thiele [140] also considers

robust models under open-loop (i.e., non-adjustable) policies, discusses managerial

insights of the robust formulation for the single-item case, and presents computa-
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tional results for the multi-product case under linear demand models. Perakis and

Roels [114] also considers robust (maximin or minimax-regret) formulations in net-

work RM problems, and find that open-loop minimax-regret controls perform very

well on average, despite their worst-case focus, and outperform traditional controls

when demand is censored. The recent paper Lobel and Perakis [97] employs sampling-

based techniques in the context of multi-period network revenue management, and

computes affinely-adjustable policies which deliver excellent empirical performance

when compared with heuristic policies.

4.3 Polynomial Policies and Tractable Robust Re-

formulations

As a natural follow-up to the approach introduced in Chapter 3, we consider policies

for both pricing and reordering that are adjustable in the sequence of observed model

disturbances, i.e.,

pt : E1 × E2 × · · · × Et−1 → Rn, ∀ t ∈ T ,

u : E1 × E2 × · · · × ET → Rn.

Furthermore, we restrict attention to policies in which every component is a polyno-

mial function of the history. That is, for a fixed degree d, we seek pit(ε[t]) ∈ Pd[ε[t]]

and ui(ε[T+1]) ∈ Pd[ε[T+1]], ∀ t ∈ T , ∀ i ∈ I, i.e.,

pt(ε[t]) = Lt Bd(ε[t]),

u(ε[t]) = U Bd(ε[T+1]),
(4.4)

where Bd(ε[t]) is the canonical basis of Pd[ε[k]]. The new decision variables become

the matrices of coefficients Lt ∈ Rn·s(t,d), t = 1, . . . , T , and U ∈ Rn·s(T,d), where

s(t, d) =
(

t·n+d

d

)
is the dimension of polynomial ring in t · n variables.

We note that, under the assumption that the demand functions are invertible
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(i.e., the sensitivity matrices At in (4.1a) are non-singular), we could equivalently

look for polynomial disturbance-feedback demand policies dit(ε[t]) ∈ Pd[ε[t]]. For a

brief discussion of cases when this approach might be advantageous, please refer to

Section 4.4.

Just as with the approach in Chapter 2, note that, under polynomial policies of

the form (4.4), the original Problem (P ) becomes non-convex in the decision variables.

Hence, the current section is devoted to showing how to formulate tractable convex

optimization problems that allow the computation of the optimal policy parameters.

Let us first consider the capacity constraints (4.3b) in Problem (P ). Note that,

with polynomial pricing policies of the form (4.4), the realized demand function

Dt(pt, εt) can be written as

Dt(pt, εt) = AtLtξt + bt + εt,

where ξt ≡ Bd(ε[t]) denotes all the monomials in indeterminates ε[t] of degree ≤ d.

In particular, it is a polynomial function of the history ε[t+1], which implies that the

capacity constraints (4.3b) (written in vector form) become:

f (ξt)
def
= C + UξT+1 −

T∑

t=1

(
AtLtξt + bt + εt

)
≥ 0, ∀ ε[T+1] ∈ E[T+1].

Above, C, At and bt are data, U, {Lt}t∈T are decision variables, and ξt are monomials

of uncertain quantities. In particular, every constraint is a polynomial with coeffi-

cients that are affine combinations of the decision variables, and with indeterminates

ε[T ]. Since the goal is to test whether the polynomial is non-negative on the set

E[T+1], and by (4.2), the latter set is simply a basic, closed semialgebraic set, we can

immediately see that these constraints fall in the same category as the state-control

constraints of Chapter 3. In particular, if we denote by g̃j the polynomials1 generating

1These can be directly obtained from (4.2).
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the set E[T+1], i.e.,

E[T+1] ≡
{
g̃j(ε[T ]) ≥ 0, j = 1, . . . , m

}
,

a sufficient condition for the capacity constraints to hold is

fi = σ0 +

m∑

j=1

σjgj, ∀ i ∈ I,

where the polynomials σj are SOS. As such, all the remarks in Chapter 3 pertaining

to the relation between the choice of degree for σj , the size of the resulting SDP

formulation, and the degree of conservativeness also apply here, as well (the reader is

referred to Section 3.3 for details).

In an analogous fashion, the constraints on the prices (4.3c) and on the order

quantity (4.3d) can also be written as polynomial functions, with coefficients depend-

ing on the decision variables {Lt}t∈T , and with indeterminates ε[T+1]. Thus, the SOS

framework can be applied here, as well, to derive a safe convex reformulation of the

constraints.

4.3.1 Reformulating the Objective

We now focus attention on the objective in Problem (P ), which can be written con-

cisely as

max
{Lt},U

inf
P∈P

Eε[T+1]∼P

[
J(L1, . . . , LT , U, ε[T+1])

]
,

J(L1, . . . , LT , U, ε[T+1])
def
=
∑

t

ξ′
tL

′
t

(
AtLtξt + bt + εt

)
− r′ UξT+1,

(4.5)

where we use the same shorthand notation introduced earlier, ξt ≡ Bd(ε[t]). At this

point, we segregate our discussion into two parts. The first considers the case when

the only information available about the set P is the support, while the second extends

the discussion to a situation when moments are also available.
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Known Support Information

The following proposition characterizes the first case:

Proposition 2 (Remark 23 in Shapiro et al. [130]). If the only information available

on the measures in the set P is the support E[T+1] = E1 ×· · ·×ET , then problem (4.5)

is equivalent to the following (deterministic) problem:

max
{Lt},U

min
ε[T+1]∈E[T+1]

J(L1, . . . , LT , U, ε[T+1]).

Proof. First note that, since ε[T+1] is a compact set and J(L1, . . . , LT , U, ε[T+1]) is a

polynomial in ε[T+1], then for any choice of the decision variables Lt, U , we have

inf
ε[T+1]∈E[T+1]

J(L1, . . . , LT , U, ε[T+1]) = min
ε[T+1]∈E[T+1]

J(L1, . . . , LT , U, ε[T+1])
def
= J̄ ,

i.e., the infimum is achieved. The proof is now immediate, since any measure that

assigns non-zero probability to a set Ẽ ⊂ E[T+1] not achieving J̄ is dominated by a

singleton measure that assigns all mass to (one of) the points in arg minε[T+1]∈E[T+1]

J(L1, . . . , LT , U, ε[T+1]).

This proposition allows us to formulate the following simple claim:

Lemma 11. Under Assumptions 4 and 5, when the only information about the set

P is the support E[T+1], solving Problem (4.5) is equivalent to providing an efficient

test for the condition:

Q(L1, . . . , Lt, U, ε[T+1]) � 0 , ∀ ε[T+1] ∈ E[T+1], (4.6)
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where

Q(L1, . . . , Lt, U, ε[T+1])
def
=














∑

t ξ
′
tL

′
t(bt + εt) − r′ UξT+1 − J ξ′

1L
′
1 ξ′

2L
′
2 . . . ξ′

TL′
T

L1ξ1 −A−1
1 0 . . . 0

L2ξ2 0 −A−1
2 . . . 0

...
... . . .

. . .
...

LT ξT 0 0 . . . −A−1
T














. (4.7)

Proof. By Proposition 2, solving Problem (4.5) is equivalent to solving the following

optimization:

max
{Lt},U,J

J

s.t. J ≤
∑

t

ξ′
tL

′
t

(
AtLtξt + bt + εt

)
− r′UξT+1, ∀ ξT+1 ∈ ET+1.

Under Assumptions 4 and 5, the matrices At are negative definite (see Horn and

Johnson [80]). Therefore, with −At ≻ 0, the second constraint above is equivalent to

∑

t

ξ′
tL

′
t

(
AtLtξt + bt + εt

)
− r′UξT+1 − J ≥ 0, ∀ ξT+1 ∈ ET+1 ⇔

(by Shur complement)













∑

t ξ′
tL

′
t(bt + εt) − r′ UξT+1 − J ξ′

1L
′
1 ξ′

2L
′
2 . . . ξ′

T L′
T

L1ξ1 −A−1
1 0 . . . 0

L2ξ2 0 −A−1
2 . . . 0

...
... . . .

. . .
...

LT ξT 0 0 . . . −A−1
T














� 0 , ∀ ε[T+1] ∈ E[T+1].

Note that, in condition (4.6), all the entries in the matrix Q are polynomials in the

indeterminates ε[T+1], with coefficients depending affinely on the decision variables
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{Lt}t∈T , U . As such, condition (4.6) requires testing when a polynomial matrix is

positive semidefinite over a basic compact semialgebraic set.

While such conditions are, in general, NP-hard, several recent papers (see Nie

[111] and references therein) have provided characterizations for cases of interest

when polynomial-time tests are available. Unfortunately, in the general setting that

we consider here, the conditions of Nie [111] do not apply, but a sufficient condition

for testing is available. In particular, note that (4.6) is equivalent to:

[y0, y
′] Q(L1, . . . , Lt, U, ε[T+1])




y0

y





︸ ︷︷ ︸

def
= q(L1,...,Lt,U,ε[T+1],y0,y)

≥ 0, ∀ (y0, y) ∈ R1+n·T , ∀ ε[T+1] ∈ E[T+1]. (4.8)

In the last inequality, q(·) is a polynomial in indeterminates y0, y, ε[T+1], with co-

efficients that are affine functions of the decision variables {Lt}t∈T , U . Hence, the

condition requires testing non-negativity of a polynomial over a set that is the carte-

sian product of the Euclidean space R1+n·T and a basic semialgebraic set E[T+1]. A

sufficient condition for the latter is simply:

q = σ0(y0, y, ε[T+1]) +
m∑

j=1

σj(y0, y, ε[T+1]) gj(ε[T+1]), σj s.o.s., (4.9)

where gj are all the polynomial constraints giving the set ε[T+1], and the σj poly-

nomials are all sums-of-squares. As such, this condition directly fits into the SDP

framework that we introduced earlier, resulting in the following algorithm for solving

the overall pricing problem:

133



Algorithm 4 Computing pricing and ordering policies of degree d under support
information

1: Consider polynomial pricing and ordering policies in the disturbances, pt(ε[t]) =

Lt Bd

(
ε[t]

)
, u(ε[T+1]) = U Bd(ε[T+1]).

2: Express the planned and realized demands according to (4.1a). Each component

of a price, planned or realized demand becomes a polynomial in indeterminate

ε[t], with coefficients given by linear combinations of {Lt}1≤t≤t−1.

3: Express the revenue polynomial q(·) according to (4.8), and replace con-

straint (4.8) with the tractable constraint (4.9).

4: Replace a typical constraint f(ε[t]) ≥ 0, ∀ ε[t] ∈ E[t]
def
=
{
ε : gj(ε) ≥ 0, j =

1, . . . , m
}

(for capacity, price, order quantity or revenue) with the requirements:

p = σ0 +

m∑

j=1

σjgj

(
linear constraints on coefficients

)

σj SOS, j = 0, . . . , m.
(
m + 1 SDP constraints

)

deg(σj gj) ≤ max
(

d, max
j

(
deg(gj)

))

,

deg(σ0) = max
j

(
deg(σj gj)

)
.

5: Solve the resulting SDP to obtain the coefficients Lt, U of the policies.

The main observations made in Section 3.3.2 of Chapter 3 with respect to the size

of the overall formulation apply here, as well. However, the size of the SDP constraints

here is potentially even larger than that of Chapter 3, due to the introduction of the

additional variables y, y0. Natural choices for reducing the size would be to consider

pricing policies that (a) do not depend on errors from all the items (e.g., the price pi,t

could be restricted to depend on disturbances εi,1, . . . , εi,t−1), or (b) do not depend on

the entire history (e.g., pt could be restricted to depend on εt−W , εt−W+1, . . . , εt−1,

where W is the size of a rolling window).
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Known Support and Moment Information

We now consider the second case, namely when both the support ε[T+1], as well as

moment information is available for the set P. In particular, we make the following

assumption about the number of moments:

Assumption 7. All the measures P in the set P have specified moments at least up to

degree 2d. In particular, for any α = (α1, α2, . . . , αT ), with αi ∈ Nn and 1′ α ≤ 2d,

we have

Eε[T+1]∼P

[
T∏

t=1

εαt

t

]

= µα, ∀P ∈ P,

where µα ∈ R are given values which constitute a valid set of moments.

We note that, in general, testing membership in the set P when both support

and moments are specified is NP-hard - even with mean and covariance information

available, a particular instance of this problem requires testing whether a matrix is

copositive, which is known to be co-NP-complete (see Quist et al. [122]). To avoid

this issue, we follow the same pragmatic approach as Popescu [118], and explicitly

assume that the moments µα are specified so that the set P is nonempty. As we will

later see in Section 4.2.2, when one is free to construct the set of measures P from

available data samples, this can always be ensured.

We now return to examine Problem (4.5). Note that the term under the expecta-

tion operator, i.e.,

∑

t

ξ′
tL

′
t

(
AtLtξt + bt + εt

)
− r′ UξT+1,

is a polynomial in indeterminates ε[T+1] of degree ≤ 2d (recall that ξt
def
= Bd(ε[t])

represents all monomials of degree ≤ d). Therefore, with Assumption 7 in place,

the expectation operator in (4.5) simply resumes to replacing any term of the form
∏T

t=1 εαt

t with the corresponding µα. Therefore, the expression becomes independent

of the measure P, and hence the infimum operator in (4.5) has no effect. Furthermore,
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it can be immediately seen that, if the set µα constitutes a valid set of moments, then

the new objective,

∑

t

Tr
(
AtLtE[ξtξ

′
t]L

′
t

)
+
∑

t

b′
t Lt E[ξt] + Tr

(
εtξ

′
tL

′
t

)
− r′ U E[ξT+1],

is a concave quadratic function of the decision variables {Lt}t∈T and U - a function

which can be very efficiently optimized.

We can now see that the scheme under support and moment information only

entails a trivial modification of Algorithm 1. In particular, instead of Step 3, we simply

replace all the moments EP

[
∏T

t=1 εαt

t

]

by the values µα, and then solve the resulting

SDP formulation to obtain the desired policy parameters. The main advantage of

including moment information is that one can preserve a potentially simpler structure

for the robust counterpart. In particular, note that if the supports Et are polytopic

or ellipsoidal, and we restrict attention to degrees d ≤ 1 (i.e., non-adjustable or affine

adjustable), the resulting robust counterpart is a second-order conic optimization

problem (see Ben-Tal et al. [19]), which can be solved very efficiently even for large

sizes using state-of-the-art solvers such as CPLEX (ILOG [82]).

4.3.2 Other Methods for Solving the Problem

In order to test the performance of our policies, we also consider several alterna-

tive methods for solving the original Problem (P ), which we briefly discuss in the

current section. First note that, under our setting where the uncertainties are speci-

fied by support (and moment) information, solving the problem exactly by Dynamic

Programming would be prohibitive, not only due to the number of items, but also

since the state space at time t would have to involve the entire sequence of real-

ized uncertainties, ε[t]. Therefore, we discuss a set of heuristic policies against which

we benchmark the performance of our robustified polynomial policies, under specific

choices of degree d.
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Certainty Equivalent

The first approximate method that we consider is the Certainty Equivalent (CE)

heuristic, also known as Model Predictive Control (MPC) (Garcia et al. [69], Bert-

sekas [21], Bemporad et al. [8]). This procedure replaces the uncertain quantities

corresponding to any future periods by a “sufficient statistic” (usually, the condi-

tional mean), solves the resulting deterministic problem to obtain optimal open-loop

decisions, and then proceeds to implement these decisions for the first (or first couple

of) time periods. The heuristic is usually implemented in a rolling-horizon fashion,

by resolving at successive periods.

Under the additive uncertainty model of Section 4.2.1, a typical CE step (at time

k) would involve solving the following problem:

max
u,pk,...,pT

T∑

t=k

p′
t (Atpt + bt + ε̄t) − r′ u

(CE) s.t.
T∑

t=k

(At pt + bt + ε̄t) ≤ C + u −
k−1∑

t=1

(At p̄t + bt + εt)

(p̄1, . . . , p̄k−1, pk, . . . , pT ) ∈ Ωp
t , ∀ t ∈ {k, . . . , T}

u ∈ Ωu.

(4.10)

Here, p̄1, . . . , p̄k−1 are prices that have been implemented in past periods, and ε1,

. . . , εk−1 are realized (known) values, so that these quantities act as data for the op-

timization problem. The decision variables are the open-loop controls u, {pt}t=k,...,T ,

while {ε̄t}t=k,...,T represents the sufficient statistic of εt which we referred to earlier.

In particular, if moments are available, then the conditional mean can be directly

used. If only support information is provided, then a good substitute would be to

replace every εt with a point that is “central” in Et (e.g., since most sensible supports

for εt should contain the point 0, one could simply take ε̄t = 0).

We note that, since the sets Ωp
t and Ωu are polyhedral, and the objective is concave,

the above problem is a Quadratic Program (QP) of fairly small size, and can be solved

efficiently using commercially available software, such as CPLEX (ILOG [82]), SDPT3
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(Toh et al. [141]) or SeDuMi (Sturm et al. [137]).

Sample Average Approximation

A second heuristic that we consider is a variation of the Sample Average Approxima-

tion (SAA) (Shapiro et al. [130], Birge and Louveaux [41]). Here, we assume that

N sample-path realizations are available for the stochastic process of disturbances,

i.e., we have ε
(i)
[T+1], i = 1, . . . , N . In practice, these could either be obtained from

historical data, or from a simulation engine.

In the SAA method, Problem (4.10) above is replaced with the following opti-

mization:

max
u,pk,...,pT

T∑

t=k

1

N
p′

t (Atpt + bt + ε
(i)
t ) − r′ u

(SAA) s.t.
T∑

t=k

(At pt + bt + ε
(i)
t ) ≤ C + u −

k−1∑

t=1

(At p̄t + bt + ε
(i)
t )

(p̄1, . . . , p̄k−1, pk, . . . , pT ) ∈ Ωp
t , ∀ t ∈ {k, . . . , T}

u ∈ Ωu.

(4.11)

Note that, here, we are essentially using an empirical distribution measure to estimate

the true measure of the stochastic quantities. If the latter measure were actually

unique (i.e., the set P contained a singleton), then, under mild technical conditions,

one could expect the objective in Problem (4.11) to converge (uniformly) to the true

objective of the problem, as N gets large (see Chapter 5 of Shapiro et al. [130] for

details). Certain estimates for the size of N are also available, which guarantee

that the solution to the SAA approximation is feasible, with high probability, for the

original problem (see Calafiore and Campi [45], Calafiore and Campi [46], Nemirovski

and Shapiro [108] for the case of known distribution, and Iyengar and Erdoğan [83] for

a distributionally robust setting, similar to the one we consider here). The advantage

of the SAA approach is that one could also embed adjustability, by allowing decisions

to depend in a parametric fashion on the realized uncertainties (we refer the interested

reader to the recent paper Lobel and Perakis [97] for more details). Here, we simply
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consider the non-adjustable SAA described in (4.11), and allow resolving (in a similar

fashion as for the CE heuristic), at particular points in time.

Perfect Hindsight

The perfect hindsight heuristic, as the name suggests, is a sample-path optimization

which has the entire realization ε[T+1] available (the optimization to be solved looks

exactly like the one in (4.10), except that ε̄t is replaced with the realized εt). This is

clearly not an implementable policy, but it provides an upper-bound for the achievable

revenue, against which we can compare the different heuristics.

While several other computational approaches are also possible, for instance, based

on one- or two-step look-ahead policies (Bertsekas [21]) or by Approximate Dynamic

Programming (Bertsekas and Tsitsiklis [23]), we have decided to restrict attention to

a subset, and leave a more comprehensive comparison for future research.

4.4 Extensions

In this section, we introduce several relevant extensions of the models presented thus

far. In particular, we discuss multiplicative disturbances, disturbances affecting the

sensitivity matrices At, and also potential generalizations to log-linear (or exponen-

tial) demand functions.

4.4.1 Multiplicative Disturbances

Note that the linear demand model we presented in Section 4.2.1 was affected by

additive disturbances, i.e., via (4.1b). The pitfall of this approach is that, for large,

negative disturbances εt, one can obtain negative sales. While, in some applications,

this may be suitable (e.g., to capture the effect of returns of merchandise), it is often

undesirable, and avoided in models (see the comments in Section 7.3.4.1 of Talluri and

van Ryzin [138]). Therefore, we would like to briefly discuss the case of multiplicative
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uncertainty, i.e., when the realized demand depends on the planned demand by

Dt(dt, ζt) = diag(ζt) dt.

Under this model, the usual assumption in the literature is that ζit are non-negative

random variables, with mean 1, ∀ i ∈ I, ∀ t ∈ T . For simplicity, we focus on the case

where diag(ζt) = ε2
tI (i.e., the same multiplicative factor affects all demands), but

several of our ideas can be immediately extended to the case of distinct disturbances.

Here, we model the quantities εt as before. In particular, we assume that ε[T+1] is

distributed according to an unknown probability measure P, belonging to a set P

characterized by a known support of type (4.2) (restricted to be in the non-negative

orthant), and (possibly) having known moments up to degree 2d.

Under this new setting, we can also consider polynomial pricing policies of the

form pt = Lt ξt, where ξt ≡ Bd(ε[t]). The following remarks outline the similarities

and changes from our previous discussion for additive uncertainty:

• Every capacity, pricing and order quantity constraint still represents a polyno-

mial inequality, where the polynomial is in indeterminates ε[t], and with coef-

ficients affinely depending on {Lt}t∈T , U . Thus, they can be processed exactly

as described in the prior section, using the SOS framework.

• The objective can be written as

max
{Lt},U

inf
P∈P

Eε[T+1]∼P

[
J(L1, . . . , LT , U, ε[T+1])

]
,

J(L1, . . . , LT , U, ε[T+1])
def
=
∑

t

ξ′
tL

′
tε

2
t (AtLtξt + bt) − r′ UξT+1

As such, we can discuss the same two cases encountered earlier.

• When the only information about the measure is the support, then a similar re-

sult to 2 holds, and, under Assumptions 4 and 5, the Shur Complement Lemma
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can be invoked to obtain a condition such as














∑

t ε
2
tξ

′
tL

′
tbt − r′ UξT+1 − J ε1ξ

′
1L

′
1 ε2ξ

′
2L

′
2 . . . εTξ′

T L′
T

ε1L1ξ1 −A−1
1 0 . . . 0

ε2L2ξ2 0 −A−1
2 . . . 0

...
... . . .

. . .
...

εTLT ξT 0 0 . . . −A−1
T














� 0,

∀ ε[T+1] ∈ E[T+1].

In this form, we can again rewrite the condition as in (4.8), (4.9), with the

only difference being the slightly larger degree of the resulting polynomial q(·)

of (4.8).

• When moment information is also available, we can simply apply the same

procedure as before, and replace all the monomials in ε[t] with the respective

moments. It is easy to see that the resulting expression for the objective remains

concave in the variables Lt, U , and, therefore, the exact same approach as before

is immediately applicable.

We note that the model above could also be interpreted as corresponding to a

case when there are disturbances ε2
t affecting the sensitivity matrices At. Combining

such a model with our earlier one, on additive disturbances, and under the additional

assumption that one can simultaneously observe2 both sources of uncertainty, one

could then use the same SOS framework to look for adjustable polynomial policies.

4.4.2 Exponential (or Log-Linear) Demand Model with Mul-

tiplicative Noise

One of the major arguments against the demand model (4.1a), which we have ex-

amined thus far, is that the linear functional dependency has often been found to

2Note that, even for a single item with demand given by Dt(dt, εt, ζt) = ζt dt +εt, where εt and ζt

are additive and multiplicative disturbances, respectively, if one only observes the realized demand
Dt, then one might not be able to simultaneously estimate εt and ζt.
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deliver poor performance in practice. A different form, which has been quite popu-

lar in econometric studies, and that has also received a lot of attention in the RM

literature (see Rakesh and Steinberg [123], Gallego and van Ryzin [68], Smith and

Achabal [135], and Talluri and van Ryzin [138] for more details) is the exponential

(or log-linear) model with multiplicative uncertainty. That is,

log dt(pt) = bt + At pt,

log Dt(dt, ζt) = log dt + ζt,

where the log(·) operator is interpreted component-wise, and the parameters have the

same significance as in Section 4.4.2. We note that referring to this as a multiplicative

model is in keeping with the fact that the realized demand for item i is given by Dit =

dite
ζit , hence one could equivalently consider as disturbances εit ≡ eζit , obtaining a

typical instance of the multiplicative models in Talluri and van Ryzin [138]. A main

advantage of this model is that (i) the demand function is non-negative for any (non-

negative) value of the price, and (ii) the model is well suited for estimation by OLS

regression techniques, provided the sales are sufficiently frequent3.

With respect to restrictions on the model parameters, one typically requires the

same Assumptions 4 and 5 (or 6) to argue that the matrices At are non-singular,

so that an inverse demand function always exists, and corresponding prices can be

computed for any given demand vector dt. This is the approach we take here, as

well. In particular, letting our decisions be the demand policies dt, we can rewrite

the earlier equations as

pt(dt) = Ãt log dt + b̃t (4.13a)

Dt(dt, ζt) = diag(εt) dt, (4.13b)

where Ãt = A−1
t and b̃t = −A−1

t bt.

We focus our remaining discussion on the case of a single item, with time-invariant

3Note that, in case there are records with 0 sales/demand, one has to deal with the quantity
log(0).
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sensitivity, and discuss the limitations of the approach. As mentioned, we look for

demand policies that depend polynomially on the observed uncertainties, i.e.,

dt = ℓ′t ξt

where ξt
def
= Bd(ε[t]). The decision variables are now the vectors ℓt ∈ R

(
n·(t−1)+d

d

)
×1.

The modifications/similarities from our earlier approach are as follows:

• The capacity constraint, as well as any constraints on the order quantity u or

on a demand sequence d[t], resume to testing polynomial non-negativity, where

the coefficients of the polynomial are affine in the decision variables {ℓt}t∈T , u.

Thus, any such constraint can be directly enforced using the SOS framework.

• Under Assumption 4, a price lowerbound would translate to pt ≥ Γ ⇔ dt ≤

exp
(

Γ−bt

−at

)

, which can also be immediately enforced in the SOS framework. Sim-

ilarly, price upper-bounds or price monotonicity can also be re-written equiva-

lently as affine constraints on the demands, and hence can be accommodated.

However, we remark that incorporating arbitrary affine constraints on the price

sequence p[t] is not possible. More precisely, since any such constraint
∑

t αt pt ≥

β is equivalent to
∏

t d
αt at

t ≥ eβ −
P

t αt bt , arbitrary coefficients αt lead to non-

linear constraints in the dt polynomials, hence are outside the scope of our

approach.

• For the objective, note that a typical stage revenue can be written as

(dt εt) pt(dt) = (dt εt)(ãt log dt + b̃t).

The term potentially presenting problems is ãt εt dt log dt. Since εt ≥ 0, and

ãt ≤ 0, this is always a concave function of dt, and, as such, we can introduce

a piece-wise affine, concave under-estimator for it. More precisely, consider a
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finite number of pieces {αk, βk}, k ∈ It, such that

min
k∈It

(
αkx + βk

)
≤ ãt x log x, ∀x ∈ (0, +∞).

The number of pieces, |It|, as well as the slopes and intercepts, αk, βk, can be

chosen (offline) so as to achieve a good trade-off between maximum revenue

loss and computational burden. Once the under-estimators are fixed, we can

introduce a new polynomial stage revenue, Ct(ε[t+1])
def
= c′

t ξt+1, constrained to

satisfy

Ct(ε[t+1]) ≤ εtb̃t l
′ξt + εt αkl

′ξt + εtβk, ∀ ε[t+1] ∈ E[t+1], ∀ k ∈ It.

Such constraints can be directly enforced within the SOS framework. The

corresponding overall objective would then be to maximize
∑

t Ct − r u(ε[T+1]).

Since this term is also a polynomial in indeterminates ε[T+1], with coefficients

that are affine in the variables ct, u, they can directly be accommodated for the

case of known support or known moments.

The approach as presented can also be extended to the case of multiple products

sharing a common capacity (e.g., Adida and Perakis [1]), as long as there are no price-

interaction terms (i.e., the matrices At are diagonal). For the case of non-diagonal At,

note that the revenue would involve the function f : Rn → R, f(d) = d′A−1
t log(d).

The complication is that, even when At satisfies Assumptions 4, 5 and/or 6, it may

be that f(d) is not concave in d. In this situation, finding under-estimators as we

did above might be considerably more challenging. However, if one can compute, by

some other techniques, a concave, piece-wise (or quadratic) underestimator for the

function f(d), then the SOS framework as described is immediately applicable to this

setting.
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4.5 Calibrating the Models from Real Data

In the current section, we briefly discuss our data-set, and describe the techniques we

used for calibrating the models directly from data.

4.5.1 Data Set

Our original set consisted of one season of sales (30 weeks) from a large US retailer

in the fashion industry. After appropriate cleaning, the data contained a total of 102

different stock keeping units (SKU), corresponding to one division of the retailer. The

organizational structure (a sub-part of which is depicted in Figure 4-1), consisted of

6 different departments, with each department segregated into subclasses, and each

subclass containing a specific number of different SKUs - refer to Table 4.1 below for

a breakdown of the SKUs into the higher organizational units4.

Figure 4-1: Organizational chart for the division.

Department # 1 2 3 4 5 6

Subclasses 2 7 5 3 2 3
Total SKUs 3 38 38 12 8 3

Table 4.1: Size and composition of each department and subclass.

For each SKU, the following fields were available:

• A brief description (containing the name of the SKU), and a unique SKU id

4The original names of the units have been masked for privacy, but the numbers correspond to
the actual data.

145



• The production cost of the SKU (in $)

• The full price of the SKU (in $)

• The ticket price charged in each week (in $)

• The average sell price in each week (in $)

• The number of items sold in each week

• The inventory at the end of each week

• The number of units received in each week.

Before proceeding, we make the following remarks with respect to the various fields.

1. The ticket price for each SKU corresponded to the price displayed on the sticker

at the beginning of each week. This price was typically discounted during

the selling season, with most SKUs having between 3 and 7 markdowns, and

the average size of a markdown being 27% (see Figure 4-2 for a histogram).

Typically, in all dynamic pricing problems, this would be the variable that one

would be optimizing over, i.e., the pt variables in Problem (P ).
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Figure 4-2: Histogram of the discounts in the division.

However, note that, in the data, the ticket price is actually different from the

average sell price, which is the actual price received in any given week. In fact,
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a boxplot of the data (see Figure 4-3) revealed that the latter price can be

considerably lower than the former, particularly in certain periods of the year

(during the major selling season, and then also towards the end of the season).
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Figure 4-3: Boxplot of the relative difference between ticket price and average selling
price.

The main reason for the discrepancy seems to be related to additional coupons

for discounts, which the retailer is sending directly to its customers or em-

ployees Ramakrishnan [125]. The literature on dynamic pricing with promo-

tions and coupons is certainly abundant (see, e.g., Chapter 9 of Talluri and

van Ryzin [138] for examples of such models), but most work assumes that

the coupons/promotions are endogenous decisions, rather than exogenous (un-

known) factors. Since our data-set contained no information whatsoever about

these coupons, apart from the observed effect on the prices, we have decided to

ignore this issue in our ensuing model, and simply treat the ticket price as the

relevant decision in each week.

We note that, in practice, this might not be the best possible choice, since the

effect is certainly relevant. An alternative might be to represent the actual prices

received in each period as random, e.g., Pit = pitζit, where Pit is the received
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price for the i-th SKU, pit is the planned price, and ζit is a multiplicative

uncertainty. One could then construct a description for the disturbances ζt,

and consider policies in both ζt and εt. However, such an approach was outside

the scope of the current work, so we decided to leave it for future consideration.

2. Note that there is a field entitled number of units received in each week. This

relates to the fact that, for several SKUs in our data-set, there were items re-

ceived during the selling season. This does not refer to items returned from

customers (in our data, the latter would reflect in the sales units for the respec-

tive week), but rather to additional units sent from a central store/warehouse

to the outlets. As evidenced in the boxplot of Figure 4-4, most of the receipts

occurred during the first 7 weeks of the selling season, and some were quite

sizeable relative to the initial inventory in the respective SKU.
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Figure 4-4: Percent of (extra) units received in each week, relative to initial inventory.

Since our data-set provided no additional information with respect to the po-

tential sizes and times of such receipts, we, again, decided to ignore this factor.

In our handling of the data, we simply added all such receipts to the initial in-

ventory and operated under the premise that the initial capacity C was larger.
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It is important to note that, even under the original inventory (i.e., ignoring

the effect of receipts completely), none of the SKUs ran out of items by week

12, so that we were not accidentally ignoring instances of lost sales by adding

the receipts in this way - see Figure 4-5 for boxplots of the (normalized) origi-

nal inventory for all the SKUs, as well as the transformed one (by adding the

receipts). Section 4.5.2 further elaborates on this issue.
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Figure 4-5: Original inventory (left) and transformed inventory, by adding receipts
(right). Y-axis is normalized due to privacy reasons.

4.5.2 Demand Model Estimation and Calibration

We now discuss some aspects related to the estimation of the models using our specific

data-set. We begin by focusing on the linear demand model from Section 4.2.1. Recall

that the functional dependency introduced there was given by (4.1a), (4.1b), which

we paste below, for convenience:

Dt(pt, εt) = bt + At pt + εt.

While the model is certainly a simplification of reality, since it ignores several salient

features (such as the effect of inventory on sales Smith and Achabal [135], the effect

of promotions and coupons Woo et al. [147], Boyd et al. [44], the strategic customer

behavior Talluri and van Ryzin [138], etc.), it remains very popular in the academic

literature, and also in practice. One of the main attractive features of the model is
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the ease of estimation from data - more precisely, with unconstrained demand as the

dependent variable, and price as an independent variable, one could utilize regression

techniques to estimate the sensitivity matrices At and the market-size factors bt.

In practice, however, several issues can arise. Firstly, it is easy to see that the

number of parameters to be estimated can quickly become very large, since it is

proportional with both the number of items and the horizon. In particular, in case

only a few selling seasons are available (in our data-set, we only have one!), estimating

independent bit for each item is practically infeasible. Therefore, what is often done

in practice is to aggregate data from multiple items together, and/or to ignore some

of the time dependencies. For instance, a popular choice (Talluri and van Ryzin [138],

Ramakrishnan [124]) is to assume that the items in different organizational units are

independent, that the price sensitivity matrix is time-invariant, i.e., At = A, ∀ t ∈ T ,

and that the bt component can be separated into a base demand b ∈ Rn, which is

time-invariant, and a seasonal factor st ∈ Rn, often assumed to be the same for all

items in a particular organizational group. For instance, if all the items i ∈ S were

taken to have the same seasonality, and be independent of items in I \ S, then the

functional equation for the demand of items in S would become

Dt(pt, εt) = b + A pt + 1 st + εt, ∀ t ∈ T , (4.14)

where A ∈ R|S|×|S|, b ∈ R|S|, and st ∈ R would represent an additive seasonal factor

corresponding to period t. The aggregation of the items can be performed either

by using sensible business rules Ramakrishnan [124], Talluri and van Ryzin [138], or

by using other statistical techniques, such as clustering, classification and regression

trees or time-series analysis (see, e.g., Kumar and Patel [91], Ghysels et al. [72] or the

books Greene [77] and Box et al. [43]).

Due to these considerations, we decided to also make the following simplifications

in our model:

1. We assume that SKUs in different subclasses are independent.

2. We assume that all the SKUs inside a given subclass have the same seasonality

150



factor st, but different market sizes, bi.

3. We assume that the demand-sensitivity matrices are time-invariant, i.e., At =

A, ∀ t ∈ T .

4. We assume that each item’s demand only depends on its own price and the

average price of the other items inside the same subclass. Furthermore, we

assume that the effects are the same across all the SKUs in a particular subclass.

More precisely, we take:

Dit = bi + a pit + a−

∑

j∈S\{i}

pjt + st + εit, (4.15)

where a represents the effect of SKU i’s own price, while a− denotes the effect

from the prices of all the other items j inside the same subclass S.

These assumptions are made more out of necessity (i.e., to enable an adequate

estimation), rather than out of solid economic or business considerations. In reality,

even items inside the same subclass can be quite “different” in terms of seasonality

patterns, and one can expect both substitutability, as well as complementarity effects

to exist across subclasses5. Such effects could be captured with a significantly larger

data-set, consisting of several selling seasons involving the same items, but were

outside the scope of our data.

The second remark we would like to make is that some of the requirements in our

model description (most importantly, Assumptions 4 and 5) might not hold if the

parameters are estimated by running an OLS regression. One immediate correction

for this would be to run a constrained regression, in which the parameters are forced,

via inequality constraints, to obey the properties mentioned in our discussion in Sec-

tion 4.4.2. This approach does not present any computational difficulties (one would

have to solve a constrained quadratic program), but has the main pitfall of invali-

dating most of the standard statistical analysis in linear regression (e.g., inferences

5For an example of the former, imagine an item in fashion outerwear is discounted, hence one
prefers to buy that rather than a functional outerwear item; for the latter, suppose a shirt is dis-
counted, inducing the purchase of a matching pant, from a different subclass
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based on t- or F-statistics are no longer possible under inequality constrained linear

regression Geweke [71], so one must resort to other techniques, such as bootstrapping,

for testing statistical significance). Our regression results, presented in Section 4.5.4,

frequently encountered this problem, thus requiring a pragmatic choice that traded

off between (a) the convenient theoretical properties of OLS regression and (b) the

consistency of the model parameters with standard microeconomic theory.

Our third (and final) remark is related to the fact that our data-set contained sales,

rather than direct demand information. The distinction becomes relevant when one

might be dealing with a censoring effect, whereby, once on-hand inventory becomes

0, one observes a truncated demand function. There are standard tools in regres-

sion modelling for dealing with such situations (e.g., tobit regression Greene [77], the

expectation-maximization algorithm, Gibbs sampling or the Kaplan-Meier estima-

tor Talluri and van Ryzin [138]). However, in our data-set, the vast majority of SKUs

still had remaining inventory after the end of the sales period, thus the number of

records that could have suffered from censoring effects was very small. Therefore, we

decided to ignore this issue in our regression estimation procedures.

4.5.3 Estimating the Model for the Uncertainties

With the above simplifications in place, one can perform panel regressions within each

subclass S to obtain estimates b̂, ŝt and Â for the demand model corresponding to all

the items i ∈ S. One last component of our model must still be described, namely

the construction of the support (and moment) information for the random terms εt.

Note that, as a result of performing the OLS (or constrained) regression, one also

obtains sample paths of the disturbances εit by means of the regression residuals. In

particular, we have

eit
def
= Dit −

(

b̂i + â pit + â−

∑

j∈S\{i}

pjt + ŝt

)

, ∀ i ∈ S, ∀ t ∈ T .

Based on these residuals, we propose the following simple scheme for constructing the

supports and moments of the stochastic terms εit:
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• Construct the support using a box model, i.e., take εit ∈ [lit, uit], ∀ i ∈ S, ∀ t ∈

T , where the bounds lit and uit are given by quantiles of the empirical dis-

tribution of the residuals eit. A very similar model was recently considered

by Perakis and Roels [114], in the context of network RM. The recommended

choices there are the twenty-fifth and seventy-fifth percentiles of the empirical

distribution, since they are less sensitive to censored data, and make the results

more robust to the actual shape of the distribution or the location of the mode.

In our models, we have also attempted using other variations, based on quan-

tiles or widths controlled by standard deviations, but we generally found that

the rule in Perakis and Roels [114] works quite well, and is less sensitive to the

underlying (true) model of the disturbance terms.

We note that many different approaches for constructing these supports are pos-

sible. Another option could be to additionally use the confidence intervals for

the coefficients bi and st, which (especially for highly variable periods), might

better incorporate the original data. However, we decided to not pursue these

further in our current model.

• Due to the scarcity of our data-set, estimating arbitrary moments is clearly not

feasible without additional assumptions about the error terms εit. In particular,

there are two natural assumptions that one could make: (a) that the distur-

bances εit are independent across the items, but correlated across time, or (b)

that the disturbances are independent across time, but correlated across the

items. For our analysis, we chose to make the following standing assumption

about the error terms:

Assumption 8. The stochastic error terms εit are independent across the items

i ∈ S.

This simplification then allows us to estimate the raw (i.e., non-central) mo-
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ments up to a pre-specified degree 2d, by using the sample moments,

E
[∏

t∈T̃

εi,t

]

=
1

|S|

|S|
∑

j=1

∏

t∈T̃

ej,t, ∀ i ∈ I, ∀ T̃ ⊆ T s.t. |T̃ | ≤ 2d.

For cases when the estimated mean did not lie in the support of the quantities

(not very frequent), we opted to replace the estimated mean with the estimated

median, which never suffered from this issue.

Assumption 8, which might appear as a gross oversimplification, is motivated by

our belief that, in our data-set, most of the variability and poor(er) prediction

came from residuals that are strongly correlated in time and heteroscedastic

(as evidenced by the results in Section 4.5.4). As such, while cross-sectional

(i.e., cross-item) correlations might indeed exist, we chose to ignore them for

the remainder of the analysis.

Before proceeding to present our numerical results, we would like to make one last

clarification with regards to the motivation behind our approach, and some of the

choices involved. We recognize that, under the belief/assumption that the residuals

in a regression model are correlated and/or heterscedastic, one can take the following

approach:

(a) Test for such a phenomenon. There are well established procedures, for both

heteroscedasticity (White, Goldfeld-Quandt or Breusch-Pagan tests - see Greene

[77] for details), as well as auto-correlation (Box-Pierce, Durbin-Watson, etc.)

(b) If the phenomena are identified, one can attempt to adjust the regression model

to correct for them. For instance, one could estimate a covariance matrix for the

errors terms, and run a Generalized Least Squares (GLS) regression (see Chap-

ter 13 of Greene [77] for details). Or, if one finds auto-regressive conditional

heteroscedasticity, one can use powerful tools in time-series (ARCH, GARCH)

to amend the initial model.

In our regressions, we have actually attempted some of the above procedures, as

well as non-linear regressions which accounted for potential AR(p) disturbances (see
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page 257 of Greene [77] for a theoretical description). However, even in the corrected

models, we still found evidence of the phenomena, most likely due to the other model

mis-specifications (e.g., the shape of the demand functional form itself, the fact that

SKUs inside the same subclass do not have identical seasonalities, etc.). In this

context, we took the pragmatic approach of (a) accepting the fact that the models

are most likely mis-specified, and (b) looking for robustified, adjustable policies, which

partially allow one to correct for such problems.

4.5.4 Regression Results

With the above simplifications in place, we began our tests by running individual

panel regressions (Greene [77]) for several subclasses. We restrict our descriptions

below to one of the larger subclasses, namely subclass 2 of department 1, with 21

SKUs, but similar observations apply to some of the smaller ones.

The results for an unconstrained regression in department 2, subclass 1, are pre-

sented below. In particular, the regression had an R2 = 0.51, an adjusted R2 = 0.50,

the two price coefficients,

â = −95.384 â− = 13.930

were both significant at the 95% confidence level, and 8 (out of 29) seasonality terms

ŝt were found to be significant. Summaries for the values of the coefficients b̂i and

the seasonality factors are shown in Figure 4-6.

In particular, it can be seen that the results suffer from two of the caveats men-

tioned in Section 4.5.2, namely that several of the bi terms are not positive, and the

A matrix resulting from â and â− is not diagonally dominant (in fact, it is not even

negative semi-definite).

Furthermore, three different heteroscedasticity tests with respect to both the price

variables and the time variables (Breusch-Pagan-Koenker, White and modified White)

delivered p-values in the range of 10−9, leading to a rejection of the hypothesis that
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Figure 4-6: Results using OLS regression. Histogram of the values b̂i (left) and plot
of the values ŝt (right)

the residuals are homoscedastic. The Durbin-Watson test for autocorrelation also

produced a p-value of 10−214, confirming our suspicion of autocorrelation. Very similar

results were obtained for the other subclasses mentioned above - in fact, in all the

cases, the hypotheses for homoscedasticity and non-autocorrelation were rejected at

levels of confidence ≥ 99.99%.

As already mentioned, although we attempted several techniques to correct the

regression model by accounting for these undesirable effects, in most instances, the

problems persisted in the new regressions, as well. Furthermore, the issues related to

the matrix A not being negative semidefinite and the coefficients bi being negative

also persisted throughout.

Therefore, we have taken the pragmatic decision of giving up the OLS regression,

and running, instead, a version of constrained regression, where the structure given

by Assumptions 4 and 5 was pre-imposed on the regression. The resulting price-

sensitivity coefficients (for department 2, subclass 1), are

â = −104.115 â− = 5.199,

and the coefficients b̂i and seasonality terms ŝt are represented in Figure 4-7 below.

We note that we have also attempted a version of regression where the b̂i were
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Figure 4-7: Results using constrained regression. Histogram of the values b̂i (left)
and plot of the values ŝt (right)

also constrained to be non-negative. This did not result in significant changes in the

price sensitivity coefficients, but rather a readjustment of the seasonal factors st to

accommodate for the new requirement. Since all the coefficients st, as well as the

bi factors, were essentially computed relative to a baseline (the last period additive

sales, the indicator of which was removed from the regression6), it appeared as though

constraining b̂i would not add much.

A similar process was run for the other subclasses mentioned above, as well as for

several smaller subclasses. We remark that, in all the results, the coefficients â− were

always positive (suggesting substitutability effects in the data), and the regression

constraining only â and â− already returned positive b̂i’s (hence the issue mentioned

in the above paragraph might have been specific to the subclass under consideration

there). We also attempted the following modifications/extensions:

• Building models that performed data aggregations at higher levels (e.g., impos-

ing the same seasonality for all items in a given division, but allowing individual

price sensitivity coefficients at the subclass level).

• Using robust regression techniques Huber and Ronchetti [81] to correct for some

of the outliers in the data. We tested several different weighting schemes (An-

6By removing one indicator from the regression, one is automatically introducing a bias. A
different procedure, suggested in Greene [77], is to run a regression where the indicators are all
constrained to sum up to 1. While this might remove some of the bias, it was outside the scope of
our present work.
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drews, bi-square, Cauchy, Welsch, Talwar, Welsch), and found that, while there

was, occasionally, improvement in the number of significant coefficients, the

quality of the overall prediction was not necessarily better than that obtained

using the regular (OLS-based) methods.

Since the results were rather mixed, and not necessarily better than our baseline

model, we decided to keep the initial choice of subclass-level aggregation, with con-

strained regression for the A matrix.

Results for the Uncertainty Models

Once the regressions were run, we used the residuals to construct the support and

moments of the uncertain quantities εit, as described in Section 4.2.2. A typical

boxplot of the residuals from the regression (here, again, department 2, subclass 1)

is shown in Figure 4-8.
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Figure 4-8: Residuals from the constrained regression in Subclass 1 of Department 2.

It can be seen even directly from the figure that the residuals are exhibiting

heteroscedasticity (with considerably larger variability in the first half of the selling
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season), as well as strong autocorrelation (the sample autocorrelation matrix revealed

a succession of clusters of strong negative correlation, followed by clusters of strong

positive correlation). Therefore, a typical model for the residuals would involve a

second-moment matrix with large (in absolute value) entries, of both positive and

negative signs.

4.6 Testing the Polynomial Pricing Policies for the

Linear Demand Model

Ideally, one would like to test the (combined) results of the estimation and optimiza-

tion in an out-of-sample fashion. Unfortunately, due to the limited data available, and

also the nature of the dynamic pricing problem (with pricing decisions influencing the

observed demand), such a test is quite difficult to achieve. With this motivation in

mind, we decided to test our policies on both the real data, as well as simulated data,

which we artificially generated. The current section describes the exact procedures

used throughout, and discusses the numerical results.

4.6.1 Testing with Simulated Data

As a first step in testing our algorithm, we constructed our own data-generating pro-

cess, which produced historical records based on which the model would be estimated

and policies would be computed. The advantage of this procedure is that it allowed

us to test the performance of the scheme under the true demand model.

In order to better understand the interplay between the estimation and optimiza-

tion engines, as well as to isolate the impact of particular parameters on the results,

we began our tests by considering a case with no price interactions, i.e., when the A

matrix in (4.14) is diagonal. More precisely, we proceeded in the following fashion:
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Algorithm 5 Testing the policies of degree d with simulated data

1: For a collection S of n items, S = {1, . . . , n}, fix a set of nominal values for the

parameters of the demand model (4.15). More precisely, take b̄ = b̄ · 1 ∈ Rn,

Ā = ā I ∈ Rn×n (with ā ≤ 0), a seasonal pattern s̄t = s̄t · 1 ∈ Rn, ∀ t ∈ T , and a

stochastic model for {εt}t∈T , given by a collection of nominal parameters Σ̄.

2: Fix a particular pricing sequence for every item i ∈ S.

3: Set the true model parameters to b̄, Ā, s̄, Σ̄.

4: for several values of a particular parameter η do

5: Generate “historical” records for each SKU using the true model and the pricing

sequences.

6: for every SKU i ∈ S do

7: Using the data for all items j ∈ S, j 6= i, construct a linear demand model

of type (4.15), with the assumptions discussed in Section 4.5.2, and the ad-

ditional simplification that ā− = 0 (i.e., no interaction effects between the

items).

8: Using the residuals from the regression model, estimate the support and

moments of the disturbances εj,t, as discussed in Section 4.2.2.

9: Using the constructed model for the demand function and error terms, com-

pute policies of degree 0 and 1 for item i. Here, the constraints in the sets Ωp
t

are price and demand non-negativity and price mark-down, while the only

constraint in Ωu is non-negativity.

10: Compare the performance (realized revenue) by Monte-Carlo simulation.

More precisely,

(a) Generate noise terms according to different distributions, which may or

may not obey the model constructed in Step 8 (i.e., in terms of support

and moments).

(b) Compare the revenue under polynomial policies with the revenue

achieved by the heuristics of Section 4.3.2.

11: end for

12: end for
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We note that some of the steps in the above procedure have been left ambiguous:

the specification of the noise model, the exact choice of the distributions for perform-

ing Monte-Carlo simulation, and the choice of parameter η to vary in Step 4. While

many options are possible, we decided for the following:

• For the “true” noise model, we generate the noise for any item7 according to

an AR(1) process, i.e., εt+1 = ρ εt + ut, ∀ t ∈ T , where the terms ut are i.i.d.

random variables, and |ρ| < 1 determines the level of correlation. For ut,

we consider several possibilities: Gaussian (with mean p Lt + (1 − p) Ht, and

standard deviation σt), truncated Gaussian (with mean and standard deviation

as before, and truncated in the interval [Lt, Ht]), mixture of Gaussians (two

Gaussians, each with standard deviation σt, with means Lt and Ht, respectively,

and with the former occurring with probability p), uniform (in the interval

[Lt, Ht]). As such, the collection of parameters describing the noise model is

Σ
def
= {ρ, σt, Lt, Ht, p}.

• For the Monte-Carlo step, we either use the original model to generate “true”

noise terms, or we fit a Gaussian or mixture of Gaussians (so that the mo-

ments are matched), or a uniform distribution (so that the range information

is matched).

• For the parameter η in Step 4, we choose σt (the standard deviation of the

residuals), ρ (the auto-correlation of the residuals), p (which controls the mean

of the residuals) and a (the price sensitivity coefficient).

Throughout all the tests, the nominal values of the parameters that we used were

σ̄t = σ = 1.0, ρ̄ = 0.0, b̄ = 20, ā = −1.0, Lt = L = −1.0, Ht = H = 1.0.

The results are presented in a sequence of tables and figures in Appendix C. Every

case (corresponding to a particular parameter varying) is accompanied by two tables,

a collection of boxplots, and a collection of histograms. We explain their significance

for the first case, where the coefficient that varies is σt, and the meaning for the

remaining ones is analogous.

7Recall that we are operating under the standing Assumption 8, hence we can drop the index i.
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The first table and collection of boxplots always pertain to relative gaps from

the perfect hindsight solution. For example, Table C.1 records statistics (average,

standard deviation, minimum, maximum and median), while the accompanying Fig-

ure C-1 shows box-plots for the same relative gaps.

The second table and the collection of histograms pertain to performance gaps

computed relative to the highest-degree polynomial policy (here, d = 1). As an

example, Table C.2 records the same statistics mentioned above, while Figure C-2

then presents a histogram of these relative gaps.

The acronyms pertaining to the heuristics are as follows:

• ALY - As Last Year - that is, simply use the same price sequences as the

historical ones.

• CESO - Certainty Equivalent Solved Once - this is the Certainty Equivalent

procedure described in Section 4.3.2, solved only once (at the beginning of the

horizon).

• CEST - Certainty Equivalent Same Times - the Certainty Equivalent procedure

of Section 4.3.2, but with resolving (at the same set of times when the prices

were discounted in the previous year).

• SAA - Sample Average Approximation - the procedure described in Section 4.3.2,

solved only once (at the beginning of the horizon).

From the simulations, we can draw the following conclusions:

• The heuristic “As Last Year” performs very poorly, which is certainly justified,

since the periods and sizes of the discounts in the historical sequence were chosen

randomly (this heuristic has more meaning when applied to real data, since the

historical choices in that context are most likely based on sensible reasons).

• Adjustability results in increased performance for robust policies. In particular,

policies with d = 1 improve quite systematically over policies with d = 0 (i.e.,

robust, non-adjustable), both in terms of worst-case expected revenue, as well
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as in Monte-Carlo simulations on various distributions. This is particularly

evident in the histograms of Figures C-2, C-4, C-6 and C-8, which clearly outline

the improvements that one obtains by introducing minimal adjustability (i.e.,

degree 1).

• The heuristics CESO and CEST deliver comparable performance, and are, in

many cases, quite close to the robust policies. In fact, these heuristics often

outperform robust non-adjustable policies (d = 0), but are typically inferior

to the adjustable robust ones, as evidenced by both the average and standard

deviation of the optimality gaps (also refer to the same set of figures men-

tioned in the previous paragraph, and note that the histograms tend to have

thicker left-tails, indicating under-performance). The most notable cases when

the performance gaps increase (i.e., adjustable robust policies are even better)

are cases where the standard deviation of the residuals, σt, is reasonably large

(see Tables C.1 and C.2). This observation is certainly in line with our expecta-

tion that adjustable robust policies should guard against highly heteroscedastic

residuals.

• Many of the heuristics are very close to the PH solution. This is mostly due to

the choice in parameters, and - as we shall see in the next set of experiments

- there are certainly interesting cases where the typical gaps from PH can be

much larger.

4.6.2 Multi-Product Tests with Simulated Data

For the second category of tests, we considered several items (here, n = 3), and a

price-sensitivity matrix A that was diagonally dominant and with equal off-diagonal

terms (i.e., the demand equation given by (4.15)). Since our goal was more to test

the quality of the optimization engine, we decided to make the following changes to

the procedure described in Section 4.6.1:

• Instead of generating historical sales data, and then estimating the models,
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we proceeded to directly construct a system model (i.e., matrix A, vector b,

seasonalities st, etc.).

• We directly generated historical samples for the disturbance sequences εt.

• We no longer imposed a markdown constraint on the prices.

An instance of such a simulation is reported in Table C.9 and Figures C-9 and C-

10. Here, the true distribution used for generating the disturbance terms was uniform,

with 0-mean and a reasonably large support, and the values of εt in different periods

were strongly negatively correlated. The testing distribution was chosen to be either

the true one (i.e, uniform), or a Gaussian or mixture of Gaussians, matching the first

two moments of the generated sample.

Several interesting observations emerged from our tests:

• The CESO and CEST heuristics can actually have noticeably different perfor-

mance. In particular, while it is easy to think of instances when the latter

improves over the former (i.e., resolving the problem increases the objective),

we chose this particular example to show that the reverse case can actually hold,

as well8.

• Adjustable robust policies deliver very good performance, while open-loop for-

mulations are considerably worse (note the average gap of 24% under all the

testing distributions). The SAA and CESO heuristics also deliver very good

performance, and are quite close to the affine policies (average gaps of 1− 2%).

As with our simulations for the single-item case, these gaps tend to become more

pronounced when using distributions with larger variance or wider supports.

• Removing the markdown constraint resulted in more instances with larger opti-

mality gaps from the PH solution, as well as larger gaps between the heuristics

8The main reason for the behavior here, which became obvious once the pricing sequences from
the two heuristics were examined, is the following: since the residuals εt in successive periods are
strongly, negatively correlated, when the CE is resolved in a particular period (e.g., an odd period),
it can respond to a large residual in the preceding period, and adjust prices disproportionately in
the wrong direction (since it cannot anticipate the fact that the residual in the succeeding period
will have an opposite sign).
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and the adjustable robust policies. The reason is intuitively clear, as not having

a cap on the prices is more valuable (in relative terms) for an adjustable policy,

than it is for open-loop formulations.

4.6.3 Real Data

A similar behavior was observed when testing with the real data. As an example, Ta-

ble C.10 records the relative gaps from policies of degree d = 0 (open-loop), obtained

for data in Department 2, Subclass 1. In this case, it can be noticed that adjustable

policies with d = 1 and the CESO, CEST and SAA policies deliver comparable results,

better than open-loop robust policies, and the ALY heuristic.
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Chapter 5

Conclusions and Future Research

In this dissertation, we have discussed several theoretical and computational aspects

related to disturbance-feedback policies in multi-period robust optimization, and have

explored several potential applications to problems in inventory and revenue manage-

ment.

In Chapter 2, we introduced a novel theoretical result concerning the optimality of

affine disturbance-feedback policies, in the context of a one-dimensional, constrained,

multi-period dynamical system. Our proof technique strongly utilized the connections

between the geometrical properties of the feasible sets (zonogons), and the objective

functions being optimized, in order to prune the set of relevant points and derive

properties that the optimal policies for the problem should obey. We have also shown

an interesting implication of our theoretical results in the context of a classical prob-

lem in inventory management, consisting of a single (risk-averse) retailer replenishing

inventory in the face of unknown demand.

Chapter 3 then proceeded to introduce an extension of the affine policies to

multi-dimensional linear dynamical systems, by considering a hierarchy of polyno-

mial disturbance-feedback policies, parametrized by the degree d. We showed how

the problem of computing such policies can be reformulated as a semi-definite pro-

gram, and hence solved efficiently by interior point methods. To test the quality of

the policies, we considered two applications in inventory management, and noted that

quadratic policies (requiring modest computational requirements) were able to sub-
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stantially reduce the optimality gap, while cubic policies (under more computational

requirements) were always within 1% of the optimal solution.

Finally, Chapter 4 considered a different version of a multi-period dynamical sys-

tem, arising in the context of dynamic pricing applications in revenue management.For

the multi-product case, under a linear demand function, we proposed a distribution-

ally robust model for the uncertainties, and argued how it can be constructed from

limited historical data. We then considered polynomial pricing policies parameter-

ized directly in the observed model mis-specifications, and showed how these can be

computed by solving second-order conic or semidefinite programming problems. Ex-

tensive simulation results on both real and synthetic data allowed us to conclude that

considering adjustable policies (versus open-loop formulations) considerably improves

the quality of the objective, and yields pricing policies that are competitive with some

of the popular heuristics in the literature.

On a theoretical level, one immediate direction of future research would be to

explore potential generalizations of the optimality result in Chapter 2 to non-trivial

multi-dimensional systems. It would also be worthwhile to get a better understanding

of the connections between the matching performed in Algorithm 1 and Algorithm 2

and the properties of convex (or supermodular) functions, as well as to explore ex-

tensions of the approach to handle different cost functions. Another potential de-

velopment would be to use our analysis tools to quantify the performance of affine

or polynomial policies even in problems where they are known to be suboptimal.

This could potentially lead to fast approximation algorithms, with solid theoretical

foundations.

In a different sense, our research thus far suggests that multi-stage, worst-case

oriented decision making, results, in a fundamental sense, in “simpler” optimization

problems than stochastic decision-making (recall that, even in the simple example of

Chapter 2, disturbance-affine policies are severely suboptimal for the latter problem).

However, this type of “freedom” cannot be explored if one uses Dynamic Programming

formulations to solve the resulting problems! Thus, new theoretical tools have to

be developed, which are capable of exploiting this very property when computing
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optimal actions at every stage. This may yield very interesting results in terms of the

structure and properties of the solution (in particular, it may well be that optimal

policies in robust decision making have far simpler structure than their stochastic

counterparts...)

On a more practical level, it would be interesting to explore connections between

the robust optimization formulations that we have seen in this thesis and several prob-

lems arising in risk management and risk-adjusted decision making. In particular, sev-

eral recent developments in the literature on coherent risk measures, combined with

some of the techniques that we developed for multi-stage, worst-case oriented decision

making, might provide novel ways of modeling and solving large-scale risk-adjusted

decision problems, with very interesting applications in a variety of fields, from op-

erations to financial engineering. In this direction, a key development would be to

better understand (a) how to translate particular business goals into risk-adjusted ob-

jectives, and (b) how to construct uncertainty sets that correspond to the respective

objectives, and that remain tractable for multi-period, adjustable optimization.
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Appendix A

Appendix for Chapter 2

A.1 Dynamic Programming Solution.

This section contains a detailed proof for the solution of the Dynamic Programming

formulation, initially introduced in Section 2.2. Recall that the problem we would

like to solve is the following:

min
u1

[

c1 u1 + max
w1

[

h1(x2) + · · ·+ min
uk

[

ck uk + max
wk

[

hk(xk+1) + . . .

+ min
uT

[

cT uT + max
wT

hT (xT+1)
]

. . .

]]

(DP )

s.t. xk+1 = xk + uk + wk

Lk ≤ uk ≤ Uk ∀ k ∈ {1, 2, . . . , T}

wk ∈ Wk = [wk, wk],

which gives rise to the corresponding Bellman recursion:

J⋆
k(xk)

def
= min

Lk≤uk≤Uk

[

ck uk + max
wk∈Wk

[

hk(xk + uk + wk) + J⋆
k+1 (xk + uk + wk)

] ]

.
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According to our definition of running cost and cost-to-go, the cost at T +1 is J⋆
T+1 =

0, which yields the following Bellman recursion at time T :

J⋆
T (xT )

def
= min

LT ≤uT≤UT

[

cT · uT + max
wT∈WT

hT (xT + uT + wT )
]

.

First consider the inner (maximization) problem. Letting yT
def
= xT + uT , we obtain:

gT (yT )
def
= max

wT ∈[wT ,wT ]
hT (xT + uT + wT )

(since hT (·) convex) = max {hT (yT + wT ) , hT (yT + wT )} . (A.1)

Note that gT is the maximum of two convex functions of yT , hence it is also convex

(see [126]). The outer (minimization) problem at time T becomes:

J⋆
T (xT ) = min

LT≤uT (·)≤UT

cT · uT + gT (xT + uT )

= −cT · xT + min
LT ≤uT (·)≤UT

[
cT · (xT + uT ) + gT (xT + uT )

]

For any xT , cT ·(xT +uT )+gT (xT +uT ) is a convex function of its argument yT = xT +

uT . As such, by defining y⋆
T to be the minimizer1 of the convex function cT ·y +gT (y),

we obtain that the optimal controller and optimal value function at time T will be:

u⋆
T (xT ) =







UT , if xT < y⋆
T − UT

−xT + y⋆
T , otherwise

LT , if xT > y⋆
T − LT

(A.2)

J⋆
T (xT ) =







cT · UT + gT (xT + UT ), if xT < y⋆
T − UT

cT · (y⋆
T − xT ) + gT (y⋆

T ), otherwise

cT · LT + gT (xT + LT ), if xT > y⋆
T − LT .

(A.3)

The following properties are immediately obvious:

1We assume, again, that the minimizer is unique. The results can be extended to a compact set
of minimizers, [y

T
, yT ].
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1. u⋆
T (xT ) is piecewise affine (with at most 3 pieces), continuous, monotonically

decreasing in xT .

2. J⋆
T (xT ) is convex, since it represents a partial minimization of a convex function

with respect to one of the variables (see Proposition 2.3.6 in [24]).

The results can be immediately extended by induction on k:

Lemma 12. The optimal control policy u⋆
k(xk) is piecewise affine, with at most 3

pieces, continuous, and monotonically decreasing in xk. The optimal objective func-

tion J⋆
k(xk) is convex in xt.

Proof. The induction is checked at k = T . Assume the property is true at k + 1.

Letting yk
def
= xk + uk, the Bellman recursion at k becomes:

J⋆
k(xk)

def
= min

Lk≤uk≤Uk

[

ck · uk + gk (xk + uk)
]

gk (yk)
def
= max

wk∈Wk

[

hk(yk + wk) + J⋆
k+1 (yk + wk)

]

.

Consider first the maximization problem. Since hk is convex, and (by the induction

hypothesis) J⋆
k+1 is also convex, the maximum will be reached on the boundary of

Wk = [wk, wk],

gk(yk) = max
wk∈{wk,wk}

[
hk(yk + wk) + J⋆

k+1 (yk + wk)
]
, (A.4)

and gk(yk) will be also be convex. The minimization problem becomes:

J⋆
k (xk) = min

Lk≤uk≤Uk

[ ck · uk + gk (xk + uk) ]

= −ck · xk + min
Lk≤uk≤Uk

[ ck · (xk + uk) + gk (xk + uk) ] (A.5)
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Defining, as before, y⋆
k as the minimizer of ck · y + gk(y), we get:

u⋆
k(xk) =







Uk, if xk < y⋆
k − Uk

−xk + y⋆
k, otherwise

Lk, if xk > y⋆
k − Lk

(A.6)

J⋆
k (xk) =







ck · Uk + gk(xk + Uk), if xk < y⋆
k − Uk

ck · (y
⋆
k − xk) + gk(y

⋆
k), otherwise

ck · Lk + gk(xk + Lk), if xk > y⋆
k − Lk.

(A.7)

In particular, u⋆
k will be piecewise affine with 3 pieces, continuous, monotonically

decreasing, and J⋆
k will be convex (as the partial minimization of a convex function

with respect to one of the variables). A typical example of the optimal control law

and the optimal value function is shown in Figure 2-1 of Section 2.2.

A.2 Zonotopes and Zonogons.

In this section of the Appendix, we would like to outline several useful properties of

the main geometrical objects of interest in our exposition, namely zonotopes. The

presentation here parallels that in Chapter 7 of [149], to which the interested reader

is referred for a much more comprehensive treatment.

Zonotopes are special polytopes that can be viewed in various ways: as projections

of hypercubes, as Minkowski sums of line segments, and as sets of bounded linear

combinations of vector configurations. Each description gives a different insight into

the combinatorics of zonotopes, and there exist some very interesting results that

unify the different descriptions under a common theory. For our purposes, it will

be sufficient to understand zonotopes under the first two descriptions. In particular,

letting Hk denote the k-dimensional hypercube, Hk = {w ∈ Rk : 0 ≤ wi ≤ 1, ∀ i},

we can introduce the following definition:

Definition 3 (7.13 in [149]). A zonotope is the image of a hypercube under an affine
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projection, that is, a d-polytope Z ⊆ Rd of the form

Z = Z(V ) := V · Hk + z = {V w + z : w ∈ Hk}

= {x ∈ Rd : x = z +

k∑

i=1

wivi, 0 ≤ wi ≤ 1}

for some matrix (vector configuration) V = (v1, . . . , vk) ∈ Rd×k and some z ∈ Rd.

The rows of the matrix V are often referred to as the generators defining the

zonotope. An equivalent description of the zonotope can be obtained by recalling

that every k-cube Hk is a product of line segments Hk = H1 × · · · × H1. Since for

a linear operator π we always have: π(H1 × · · · × H1) = π(H1) + · · · + π(H1), by

considering an affine map given by π(w) = V w + z, it is easy to see that every

zonotope is the Minkowski sum of a set of line segments:

Z(V ) = [0, v1] + · · ·+ [0, vk] + z.

For completeness, we remark that there is no loss of generality in regarding a

zonotope as a projection from the unit hypercube Hk, since any projection from an

arbitrary hyperrectangle in Rk can be seen as a projection from the unit hypercube

in Rk. To see this, consider an arbitrary hyperrectangle in Rk:

Wk = [w1, w1] × [w2, w2] × · · · × [wk, wk],

and note that, with V ∈ Rd×k, and a′ ∈ Rk denoting the j-th row of V , the j-th

component of Z(V )
def
= V · Wk + z can be written:

Z(V )j
def
= zj +

k∑

i=1

(ai · wi) =

(

zj +

k∑

i=1

ai · wi

)

+

k∑

i=1

ai · (wi − wi) · yi,

where yi ∈ [0, 1], ∀ 1 ≤ i ≤ k.

An example of a subclass of zonotopes are the zonogons, which are all centrally

symmetric, two-dimensional 2p-gons, arising as the projection of p-cubes to the plane.
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An example is shown in Figure 2-2 of Section 2.4.1. These are the main objects of

interest in our treatment, and the following lemma summarizes their most important

properties:

Lemma 13. Let Hk = [0, 1]k be a k-dimensional hypercube, k ≥ 2. For fixed a, b ∈ Rk

and a0, b0 ∈ R, consider the affine transformation π : Rk → R2, π(w) =
[

a′

b′

]

·

w+
[

a0
b0

]

and the zonogon Θ ⊂ R2:

Θ = π (Hk)
def
=
{
θ ∈ R2 : ∃w ∈ Hk s.t. θ = π(w)

}
.

If we let VΘ denote the set of vertices of Θ, then the following properties are true:

1. ∃O ∈ Θ such that Θ is symmetric around O : ∀x ∈ Θ ⇒ 2O − x ∈ Θ.

2. |VΘ| = 2p ≤ 2k vertices. Also, p < k if and only if ∃ i 6= j ∈ {1, . . . , k} such

that rank
([

ai aj

bi bj

])

< 2.

3. If we number the vertices of VΘ in cyclic order:

VΘ = (v0, . . . , vi, vi+1, . . . , v2p−1) (v2p+i
def
= v(2p+i) mod (2p))

then 2O − vi = vi+p, and we have the following representation for Θ as a

Minkowski sum of line segments:

Θ = O +

[

−
v1 − v0

2
,
v1 − v0

2

]

+ · · ·+

[

−
vp − vp−1

2
,
vp − vp−1

2

]

def
= O +

p
∑

i=1

λi ·
vi − vi−1

2
, −1 ≤ λi ≤ 1.

4. If ∃w1, w2 ∈ Hk such that v1
def
= π(w1) = v2

def
= π(w2) and v1,2 ∈ VΘ, then

∃ j ∈ {1, . . . , k} such that aj = bj = 0.

5. With the same numbering from (iii) and k = p, for any i ∈ {0, . . . , 2p − 1},

the vertices of the hypercube that are projecting to vi and vi+1, respectively, are

adjacent, i.e., they only differ in exactly one component.
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Proof. We will omit a complete proof of the lemma, and will instead simply suggest

the main ideas needed for checking the validity of the statements.

For part (i), it is easy to argue that the center of the hypercube, OH = [1/2, 1/2,

. . . , 1/2]′, will always project into the center of the zonogon, i.e., O = π (OH). This

implies that any zonogon will be centrally symmetric, and will therefore have an even

number of vertices.

Part (ii) can be shown by induction on the dimension k of the hypercube, Hk. For

instance, to prove the first claim, note that the projection of a polytope is simply the

convex hull of the projections of the vertices, and therefore projecting a hypercube of

dimension k simply amounts to projecting two hypercubes of dimension k−1, one for

wk = 0 and another for wk = 1, and then taking the convex hull of the two resulting

polytopes. It is easy to see that these two polytopes in R2 are themselves zonogons,

and are translated copies of each other (by an amount [ak, bk]
′). Therefore, by the

induction hypothesis, they have at most 2(k − 1) vertices, and taking their convex

hull introduces at most two new vertices, for a total of at most 2(k − 1) + 2 = 2k

vertices. The second claim can be proved in a similar fashion.

One way to prove part (iii) is also by induction on p, by taking any pair of

opposite (i.e., parallel, of the same length) edges and showing that they correspond

to a Minkowski summand of the zonogon.

Part (iv) also follows by induction. Using the same argument as for part (ii), note

that the only ways to have two distinct vertices of the hypercube Hk (of dimension

k) project onto the same vertex of the zonogon Θ is to either have this situation

happen for one of the two k− 1 dimensional hypercubes (in which case the induction

hypothesis would complete the proof), or to have zero translation between the two

zonogons, which could only happen if ak = bk = 0.

Part (v) follows by using parts (iii) and (iv) and the definition of a zonogon as

the Minkowski sum of line segments. In particular, since the difference between two

consecutive vertices of the zonogon, vi, vi+1, for the case k = p, is always given by

a single column of the projection matrix (i.e., [aj , bj]
′, for some j), then the unique

vertices of Hk that were projecting onto vi and vi+1, respectively, must be incidence
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vectors that differ in exactly one component, i.e., are adjacent on the hypercube Hk.

A.2.1 Technical Lemmas.

This section of the Appendix contains a detailed proof for the technical Lemma 3

introduced in Section 2.4.1, which we include below, for convenience.

Lemma 3. When the zonogon Θ has a non-trivial intersection with the band

BLU (case [C4]), the convex polygon ∆Γ⋆ and the set of points on its right side,

r-side(∆Γ⋆), satisfy the following properties:

1. r-side(∆Γ⋆) is the union of two sequences of consecutive vertices (one starting

at y⋆
0, and one ending at y⋆

k), and possibly an additional vertex, y⋆
t :

r-side(∆Γ⋆) = {y⋆
0, y

⋆
1, . . . , y

⋆
s} ∪ {y⋆

t } ∪
{
y⋆

r , y
⋆
r+1 . . . , y⋆

k

}
,

for some s ≤ r ∈ {0, . . . , k}.

2. With cotan
(
·, ·
)

given by (2.22) applied to the (γ⋆
1 , γ

⋆
2) coordinates, we have that:







cotan
(
y⋆

s , y⋆
min(t,r)

)
≥ as+1

bs+1
, whenever t > s

cotan
(
y⋆

max(t,s), y⋆
r

)
≤ ar

br
, whenever t < r.

Lemma 3. In the following exposition, we use the same notation as introduced in

Section 2.4.1. Recall that case [C4] on which the lemma is focused corresponds to

a nontrivial intersection of the zonotope Θ with the horizontal band BLU defined

in (2.28). As suggested in Figure 2-5 of Section 2.4.1, this case can be separated into

three subcases, depending on the position of the vertex vt relative to the band BLU ,

where the index t is defined in (2.29). Since the proof of all three cases is essentially

identical, we will focus on the more “complicated” situation, namely when vt ∈ BLU .

The corresponding arguments for the other two cases should be straightforward.

First, recall that ∆Γ⋆ is given by (2.26), i.e., ∆Γ⋆ = conv ({y⋆
0, . . . , y

⋆
k}), where the
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points y⋆
i are given by (2.27), which results from applying mapping (2.25) to vi ∈ Θ.

From Definition 1 of the right side, it can be seen that the points of interest to us,

namely r-side(∆Γ⋆), will be a maximal subset
{
y⋆

i(1), y
⋆
i(2), . . . , y

⋆
i(m)

}
⊆
{
y⋆

0, . . . , y
⋆
k

}
,

satisfying:







y⋆
i(1) = arg max

{

γ1 : γ ∈ arg min
{
γ′

2 : γ ′
2 ∈ {y⋆

0, . . . , y
⋆
k}
}}

y⋆
i(m) = arg max

{

γ1 : γ ∈ arg max
{
γ′

2 : γ ′
2 ∈ {y⋆

0, . . . , y
⋆
k}
}}

cotan
(
y⋆

i(1), y⋆
i(2)

)
> cotan

(
y⋆

i(2), y⋆
i(3)

)
> · · · > cotan

(
y⋆

i(m−1), y⋆
i(m)

)
.

(A.8)

For the analysis, we find it useful to define the following two indices:

ŝ
def
= min

{
i ∈ {0, . . . , k} : θ2(vi) ≥ y⋆ − U

}
,

r̂
def
= max

{
i ∈ {0, . . . , k} : θ2(vi) ≤ y⋆ − L

}
.

(A.9)

In particular, ŝ is the index of the first vertex of r-side(Θ) falling inside BLU , and

r̂ is the index of the last vertex of r-side(Θ) falling inside BLU . Since we are in the

situation when vt ∈ BLU , it can be seen that 0 ≤ ŝ ≤ t ≤ r̂ ≤ k, and thus, from (2.29)

(the definition of t) and (2.30) (typical conditions for the right side of a zonogon):

a1

b1
> · · · >

aŝ

bŝ

> · · · >
at

bt

> c ≥
at+1

bt+1
> · · · >

ar̂

br̂

> · · · >
ak

bk

. (A.10)

With this new notation, we proceed to prove the first result in the claim. First,

consider all the vertices vi ∈ r-side(Θ) falling strictly below the band BLU , i.e., satis-

fying θ2[vi] < y⋆ − U . From the definition of ŝ, (A.9), these are exactly v0, . . . , vŝ−1,

and mapping (2.25) applied to them will yield y⋆
i = ( θ1[vi] + c · U, θ2[vi] + U ). In

other words, any such points will simply be translated by (c · U, U). Similarly, any

points vi ∈ r-side(Θ) falling strictly above the band BLU , i.e., θ2[vi] > y⋆ −L, will be

translated by (c · L, L), so that we have:

y⋆
i = vi + (c · U, U), i ∈ {0, . . . , ŝ − 1},

y⋆
i = vi + (c · L, L), i ∈ {r̂ + 1, . . . , k},

(A.11)

179



which immediately implies, since vi ∈ r-side(Θ), that:







cotan
(
y⋆

0, y⋆
1

)
> cotan

(
y⋆

1, y⋆
2

)
> · · · > cotan

(
y⋆

ŝ−2, y⋆
ŝ−1

)
,

cotan
(
y⋆

r̂+1, y⋆
r̂+2

)
> cotan

(
y⋆

r̂+2, y⋆
r̂+3

)
> · · · > cotan

(
y⋆

k−1, y⋆
k

)
.

(A.12)

For any vertices inside BLU , i.e., vi ∈ r-side(Θ) ∩ BLU , mapping (2.25) will yield:

y⋆
i = ( θ1[vi] − c · θ2[vi] + c · y⋆, y⋆ ) , i ∈ {ŝ, . . . , t, . . . , r̂}, (A.13)

that is, they will be mapped into points with the same γ⋆
2 coordinates. Furthermore,

using (2.21), it can be seen that y⋆
t will have the largest γ⋆

1 coordinate among all

such y⋆
i :

γ⋆
1 [y

⋆
t ] − γ⋆

1 [y
⋆
i ]

def
= θ1[vt] − θ1[vi] − c · (θ2[vt] − θ2[vi])

(2.21)
=







∑t

j=i+1 aj − c ·
∑t

j=i+1 bj

(A.10)

≥ 0, if ŝ ≤ i < t

−
∑i

j=t+1 aj + c ·
∑i

j=t+1 bj

(A.10)

≥ 0, if t < i ≤ r̂.

(A.14)

Furthermore, since the mapping (2.25) yielding γ⋆
2 is only a function of θ2, and

is monotonic non-decreasing (strictly monotonic increasing outside the band BLU),

vertices v0, . . . , vk ∈ r-side(Θ) will be mapped into points y⋆
0, . . . , y

⋆
k ∈ γ⋆ with non-

decreasing γ⋆
2 coordinates:

γ⋆
2 [y

⋆
0 ] < γ⋆

2 [y
⋆
1] < · · · < γ⋆

2 [y
⋆
ŝ−1] <

< y⋆ = γ⋆
2 [y

⋆
ŝ ] = · · · = γ⋆

2 [y
⋆
t ] = · · · = γ⋆

2 [y
⋆
r̂ ] < γ⋆

2 [y
⋆
r̂+1] < · · · < γ⋆

2 [y
⋆
k].

Therefore, combining this fact with (A.12) and (A.14), we can conclude that the

points y⋆
i satisfying conditions (A.8) are none other than:

r-side(∆Γ⋆) =
{
y⋆

0, y
⋆
1, . . . , y

⋆
s , y

⋆
t , y

⋆
r , y

⋆
r+1, y

⋆
k

}
,
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where the indices s and r are given as:

s
def
=







max
{
i ∈ {1, . . . , ŝ − 1} : cotan

(
y⋆

i−1, y⋆
i

)
> cotan

(
y⋆

i , y⋆
t

)}

0, if the above condition is never true,

r
def
=







min
{
i ∈ {r̂ + 1, . . . , k − 1} : cotan

(
y⋆

t , y⋆
i

)
> cotan

(
y⋆

i , y⋆
i+1

)}

k, if the above condition is never true.

(A.15)

This completes the proof of part (i) of the Lemma. We remark that, for the cases

when vt falls strictly below BLU or strictly above BLU , one can repeat the exact same

reasoning, and immediately argue that the same result would hold.

In order to prove the first claim in part (ii), we first recall that, from (A.15), if

s < ŝ − 1, we must have:

cotan
(
y⋆

s , y⋆
s+1

)
≤ cotan

(
y⋆

s+1, y⋆
t

)
,

since otherwise, we would have taken s+1 instead of s in (A.15). But this immediately

implies that:

cotan
(
y⋆

s , y⋆
s+1

)
≤ cotan

(
y⋆

s+1, y⋆
t

) (2.22)
⇔

γ⋆
1 [y

⋆
s+1] − γ⋆

1 [y
⋆
s ]

γ⋆
2 [y

⋆
s+1] − γ⋆

2 [y
⋆
s ]

≤
γ⋆

1 [y
⋆
t ] − γ⋆

1 [y
⋆
s+1]

γ⋆
2 [y

⋆
t ] − γ⋆

1 [y
⋆
s+1]

,

which, by the mediant inequality, then implies

γ⋆
1 [y

⋆
s+1] − γ⋆

1 [y
⋆
s ]

γ⋆
2 [y

⋆
s+1] − γ⋆

2 [y
⋆
s ]

≤
γ⋆

1 [y
⋆
t ] − γ⋆

1 [y
⋆
s ]

γ⋆
2 [y

⋆
t ] − γ⋆

1 [y
⋆
s ]

(A.11)
⇔

as+1

bs+1
≤ cotan

(
y⋆

s , y⋆
t

)
,

which is exactly the first claim in part (ii). Thus, the only case to discuss is s = ŝ−1.

Since s ≥ 0, it must be that, in this case, there are vertices vi ∈ r-side(Θ) falling

strictly below the band BLU . Therefore, we can introduce the following point in Θ:

M
def
= arg max

{
θ1 : (θ1, θ2) ∈ Θ, θ2 = y⋆ − U

}
(A.16)

Referring back to Figure 2-6 in Section 2.4.2, it can be seen that M represents the
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point with smallest θ2 coordinate in BLU ∩ r-side(Θ), and M ∈ [vŝ−1, vŝ]. If we let

(θ1[M ], θ2[M ]) denote the coordinates of M , then by applying mapping (2.25) to M ,

the coordinates of the point M̃ ∈ γ⋆ are:

M̃ = ( θ1[M ] + c · U, θ2[M ] + U ) = ( θ1[M ] + c · U, y⋆ ) . (A.17)

Furthermore, a similar argument with (A.14) can be invoked to show that γ⋆
1 [M̃ ] ≤

γ⋆
1 [y

⋆
t ]. With s = ŝ − 1, we then have:

cotan
(
y⋆

s , y⋆
t

) (2.22)
=

γ⋆
1 [y

⋆
t ] − γ⋆

1 [y
⋆
ŝ−1]

γ⋆
2 [y

⋆
t ] − γ⋆

2 [y
⋆
ŝ−1]

≥ (since γ⋆
2 [y

⋆
t ] = γ⋆

2 [M̃ ] = y⋆ > γ⋆
2 [y

⋆
ŝ−1])

≥
γ⋆

1 [M̃ ] − γ⋆
1 [y

⋆
ŝ−1]

γ⋆
2 [M̃ ] − γ⋆

2 [y
⋆
ŝ−1]

(A.11),(A.17)
=

θ1[M ] − θ1[vŝ−1]

θ2[M ] − θ2[vŝ−1]
= (since M ∈ [vŝ−1, vŝ])

=
as+1

bs+1
,

which completes the proof of the first claim in part (ii).

The proof of the second claim in (ii) proceeds in an analogous fashion, by first

examining the trivial case r > r̂+1 in (A.15), and then introducing N
def
= arg max

{
θ1 :

(θ1, θ2) ∈ Θ, θ2 = y⋆ − L
}

for the case r = r̂ + 1.
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Appendix B

Appendix for Chapter 3

B.1 Suboptimality of Affine Policies

Lemma 14. Consider Problem (3.9), written below for convenience. Recall that x

is a (first-stage) non-adjustable decision, while y is a second-stage adjustable policy

(allowed to depend on w).

minimize
x,y(w)

x

such that x ≥
N∑

i=1

yi, ∀w ∈ W =
{
(w1, . . . , wN) ∈ RN : ‖w‖2 ≤ 1

}
, (B.1a)

yi ≥ w2
i , ∀w ∈ W. (B.1b)

The optimal value in the problem is 1, corresponding to policies yi(w) = w2
i , i =

1, . . . , N . Furthermore, the optimal achievable objective under affine policies y(w) is

N .

Proof. Note that for any feasible x, y, we have x ≥
∑N

i=1 yi ≥
∑N

i=1 w2
i , for any

w ∈ W. Therefore, with
∑N

i=1 w2
i = 1, we must have x ≥ 1. Also note that

y⋆
i (w) = w2

i is robustly feasible for constraint (B.1b), and results in an objective

x⋆ = maxw∈W

∑N

i=1 w2
i = 1, which equals the lower bound, and is hence optimal.

Consider an affine policy in the second stage, yAFF
i (w) = βi + αT

i w, i = 1, . . . , N .
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With e1 denoting the first unit vector (1 in the first component, 0 otherwise), for any

i = 1, . . . , N , we have:

w = e1 ∈ W ⇒ βi + αi(1) ≥ 1

w = −e1 ∈ W ⇒ βi − αi(1) ≥ 1

}

⇒ βi ≥ 1.

This implies that xAFF ≥
∑N

i=1 yAFF
i (w) ≥ N +

∑N

i=1 αT
i w. In particular, with

w = 0 ∈ W, we have xAFF ≥ N . The optimal choice, in this case, will be to set

αi = 0, resulting in xAFF = N .

B.2 Optimality of Multi-affine Policies

Theorem 3. Multi-affine policies of the form (3.22), with degree at most d = T − 1,

are optimal for problem (P ).

Proof. The following trivial observation will be useful in our analysis:

Observation 1. A multi-affine policy uj of the form (3.22) is an affine function of

a given variable wi, when all the other variables wl, l 6= i, are fixed. Also, with uj of

degree at most d, the number of coefficients ℓα is
(

k

0

)
+
(

k

1

)
+ · · ·+

(
k

d

)
.

Recall that the optimal value in Problem (P ) is that same as the optimal value in

Problem (P )ext from Section 3.4.2. Let us denote the optimal decisions obtained from

solving problem (P )ext by uext
k (w[k]), x

ext
k (w[k]), respectively. Note that, at time k,

there are at most 2k such distinct values uext
k (w[k]), and, correspondingly, at most 2k

values xext
k (w[k]), due to the non-anticipativity condition and the fact that the extreme

uncertainty sequences at time k, w[k] ∈ ext(W[k]) = ext(W0) × · · · × ext(Wk−1), are

simply the vertices of the hypercube W[k] ⊂ Rk. In particular, at the last time

when decisions are taken, k = T − 1, there are at most 2T−1 distinct optimal values

uext
T−1(w[T−1]) computed.

Consider now a multi-affine policy of the form (3.22), of degree T−1, implemented

at time T − 1. By Observation 1, the number of coefficients in the j-th component

of such a policy is exactly
(

T−1
0

)
+
(

T−1
1

)
+ · · ·+

(
T−1
T−1

)
= 2T−1, by Newton’s binomial

184



formula. Therefore, the total nu · 2T−1 coefficients for uT−1 could be computed so

that

uT−1(w[T−1]) = uext
T−1(w[T−1]), ∀ w[T−1] ∈ ext(W[T−1]), (B.2)

that is, the value of the multi-affine policy exactly matches the 2T−1 optimal decisions

computed in (P )ext, at the 2T−1 vertices of W[T−1]. The same process can be conducted

for times k = T − 2, . . . , 1, 0, to obtain multi-affine policies of degree at most1 T − 1

that match the values uext
k (w[k]) at the extreme points of W[k].

With such multi-affine control policies, it is easy to see that the states xk become

multi-affine functions of w[k]. Furthermore, we have xk(w[k]) = xext
k (w[k]), ∀w[k] ∈

ext(w[k]). A typical state-control constraint (3.7c) written at time k amounts to

ensuring that

ex(k, j)T xk(w[k]) + eu(k, j)Tuk(w[k]) − fj(k) ≤ 0,

∀w[k] ∈ W[k],

where ex(k, j)T , eu(k, j)T denote the j-th row of Ex(k) and Eu(k), respectively. Note

that the left-hand side of this expression is also a multi-affine function of the variables

w[k]. Since, by our observation, the maximum of multi-affine functions is reached at

the vertices of the feasible set, i.e., w[k] ∈ ext(W[k]), and, by (B.2), we have that

for any such vertex, uk(w[k]) = uext
k (w[k]), xk(w[k]) = xext

k (w[k]), we immediately

conclude that the constraint above is satisfied, since uext
k (w[k]), x

ext
k (w[k]) are certainly

feasible.

A similar argument can be invoked for constraint (3.7d), and also to show that

the maximum of the objective function is reached on the set of vertices ext(W[T ]),

and, since the values of the multi-affine policies exactly correspond to the optimal

decisions in program (P )ext, optimality is preserved.

1In fact, multi-affine policies of degree k would be sufficient at time k
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Appendix C

Appendix for Chapter 4

ALY CESO CEST SAA d=0 d=1

σt = 1.0

avg -34.15 -2.60 -2.28 -2.60 -2.01 -1.78
std 13.68 4.14 3.92 4.14 3.27 3.23
mdn -33.83 -0.39 -0.33 -0.39 -0.45 -0.38
min -69.73 -25.09 -24.62 -25.09 -23.93 -24.28
max -5.24 -0.00 -0.00 -0.00 -0.00 -0.00

σt = 2.0

avg -37.34 -6.21 -5.47 -6.21 -5.22 -4.24
std 20.65 8.15 7.55 8.15 7.11 6.03
mdn -34.56 -2.09 -1.69 -2.08 -2.00 -1.50
min -98.29 -44.95 -43.26 -44.95 -58.32 -34.95
max -3.20 -0.01 -0.01 -0.01 -0.01 -0.01

σt = 3.0

avg -42.52 -9.50 -8.28 -19.33 -9.01 -6.73
std 25.33 11.41 10.20 12.47 11.85 8.68
mdn -38.12 -4.35 -3.68 -14.60 -4.70 -3.31
min -121.11 -77.22 -54.28 -89.10 -107.06 -65.24
max -2.83 -0.02 -0.02 -4.75 -0.01 -0.01

Table C.1: Relative gaps (in %) from perfect hindsight. Here, the noise terms ut are
Gaussian, and the standard deviation σt varies. Testing distribution is the true one.

ALY CESO CEST SAA PH d=0

avg -34.94 -2.18 -1.35 -2.18 4.92 -1.04
std 20.37 3.87 3.78 3.87 7.80 3.90
mdn -32.53 -0.25 0.03 -0.25 1.52 -0.01
min -97.72 -21.94 -12.78 -21.94 0.01 -40.90
max 7.24 18.26 18.26 18.25 53.72 18.26

Table C.2: Relative gaps (in %) from polynomial policies with d = 1. Here, the noise
terms ut are Gaussian with σt = 2.0. Testing distribution is the true one.
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Figure C-1: Boxplots for the relative gaps (in %) from the perfect hindsight solution.
Here, the noise terms ut are Gaussian, and the standard deviation σt varies. Testing
distribution is the true one.
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Figure C-2: Histograms of relative gaps (in %) from polynomial policies with d = 1.
Here, the noise terms ut are Gaussian, with σt = 2.0. Testing distribution is the true
one.
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ALY CESO CEST SAA d=0 d=1

ρ = 1.0

avg -33.89 -2.80 -2.52 -2.80 -2.37 -2.25
std 15.06 4.50 4.38 4.50 3.87 4.04
mdn -32.44 -0.42 -0.32 -0.42 -0.43 -0.40
min -74.17 -29.59 -29.35 -29.59 -28.85 -31.83
max -5.58 -0.00 -0.00 -0.00 -0.00 -0.00

ρ = 0.6

avg -34.66 -2.44 -2.16 -2.44 -1.77 -1.59
std 12.92 3.95 3.72 3.95 2.94 2.76
mdn -34.98 -0.33 -0.29 -0.33 -0.36 -0.39
min -67.46 -24.57 -24.04 -24.57 -19.02 -19.02
max -4.32 -0.00 -0.00 -0.00 -0.00 -0.00

ρ = 0.2

avg -35.32 -1.59 -1.49 -1.59 -1.21 -0.92
std 9.94 2.67 2.48 2.67 1.98 1.65
mdn -36.13 -0.18 -0.19 -0.18 -0.22 -0.26
min -59.44 -19.06 -18.43 -19.05 -12.78 -14.69
max -4.33 -0.00 -0.00 -0.00 -0.00 -0.01

Table C.3: Relative gaps (in %) from perfect hindsight. Here, the noise terms ut are
Gaussian, and the correlation ρ varies, so as to make the disturbances in different
time-periods less correlated. Testing distribution is the true one.

ALY CESO CEST SAA PH d=0

avg -33.69 -0.89 -0.59 -0.89 1.70 -0.17
std 12.58 2.18 1.97 2.18 3.11 1.81
mdn -33.54 0.00 0.03 0.00 0.39 0.01
min -61.12 -8.76 -6.21 -8.76 0.00 -13.23
max -4.14 7.31 7.31 7.31 23.48 7.31

Table C.4: Relative gaps (in %) from polynomial policies with d = 1. Here, the noise
terms ut are Gaussian with ρ = 0.6. Testing distribution is the true one.

ALY CESO CEST SAA d=0 d=1

a = −1.0

avg -33.04 -3.28 -2.91 -3.28 -2.68 -1.97
std 10.37 4.35 4.17 4.35 3.69 3.04
mdn -33.29 -1.19 -0.81 -1.19 -1.21 -0.73
min -59.88 -24.47 -24.47 -24.47 -24.07 -19.48
max -8.68 -0.00 -0.00 -0.00 -0.00 -0.00

a = −0.8

avg -31.30 -3.23 -2.82 -3.23 -3.34 -1.33
std 12.07 4.42 4.23 4.42 4.75 1.94
mdn -32.25 -1.07 -0.75 -1.07 -1.24 -0.60
min -66.46 -23.31 -23.32 -23.31 -36.55 -15.07
max -8.21 -0.00 -0.00 -0.00 -0.00 -0.01

a = −0.6

avg -31.84 -2.48 -2.17 -21.82 -5.35 -1.39
std 15.42 3.85 3.62 5.70 7.84 1.74
mdn -32.60 -0.30 -0.29 -20.19 -1.34 -0.57
min -73.79 -30.02 -30.02 -50.81 -38.88 -18.17
max -6.71 -0.00 -0.00 -11.77 0.00 0.00

Table C.5: Relative gaps (in %) from perfect hindsight. Here, the noise terms ut are
Gaussian, and the value a in the price sensitivity matrix varies. Testing distribution
is the true one.

ALY CESO CEST SAA PH d=0

avg -30.40 -1.95 -1.52 -1.95 1.39 -2.06
std 12.03 3.47 3.63 3.47 2.13 3.83
mdn -31.20 0.02 0.09 0.02 0.60 -0.46
min -62.30 -13.82 -13.82 -13.83 0.01 -27.79
max -8.16 4.60 4.60 4.60 17.74 4.60

Table C.6: Relative gaps (in %) from polynomial policies with d = 1. Here, the price
sensitivity coefficient is a = −0.8. Testing distribution is the true one.
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Figure C-3: Boxplots for the relative gaps (in %) from the perfect hindsight solution.
Here, the noise terms ut are Gaussian, and the correlation ρ varies, so as to make the
disturbances in different time-periods less correlated. Testing distribution is the true
one.
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Figure C-4: Histograms of relative gaps (in %) from polynomial policies with d = 1.
Here, the noise terms ut are Gaussian, with ρ = 0.6. Testing distribution is the true
one.
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Figure C-5: Boxplots of relative gaps (in %) from perfect hindsight. Here, the noise
terms ut are Gaussian, and the value a in the price sensitivity matrix varies. Testing
distribution is the true one.
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Figure C-6: Histogram of relative gaps (in %) from polynomial policies with d = 1.
Here, the price sensitivity coefficient is a = −0.8. Testing distribution is the true one.
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ALY CESO CEST SAA d=0 d=1

p̄ = 0.2

avg -39.90 -4.41 -4.21 -4.41 -3.28 -3.84
std 13.12 5.92 5.78 5.92 4.70 5.43
mdn -39.91 -0.70 -0.51 -0.70 -0.50 -0.81
min -73.15 -28.73 -28.26 -28.73 -26.41 -37.43
max -5.38 -0.00 -0.00 -0.00 -0.00 -0.00

p̄ = 0.5

avg -34.38 -2.68 -2.39 -2.68 -2.02 -1.87
std 14.05 4.31 4.10 4.31 3.36 3.28
mdn -34.48 -0.39 -0.33 -0.39 -0.45 -0.43
min -73.61 -26.64 -26.23 -26.64 -21.71 -21.70
max -5.40 -0.00 -0.00 -0.00 -0.00 -0.00

p̄ = 0.8

avg -29.80 -2.18 -1.55 -2.18 -2.41 -1.43
std 13.11 3.40 2.79 3.40 3.49 2.42
mdn -29.31 -0.76 -0.56 -0.76 -0.97 -0.66
min -66.90 -28.00 -27.63 -28.00 -23.52 -29.52
max -5.20 -0.00 -0.00 -0.01 -0.00 -0.00

Table C.7: Relative gaps (in %) from perfect hindsight. Here, the coefficient p̄ varies,
changing the mean of the perturbations. Testing distribution is the true one.

ALY CESO CEST SAA PH d=0

avg -33.25 -0.84 -0.54 -0.84 2.04 -0.14
std 13.62 2.16 1.96 2.16 3.79 1.76
mdn -32.54 -0.00 0.02 -0.00 0.44 0.01
min -66.75 -9.75 -5.78 -9.75 0.00 -13.94
max -5.29 8.54 9.11 8.53 27.72 8.54

Table C.8: Relative gaps (in %) from polynomial policies with d = 1. Here, the
coefficient p̄ = 0.5, corresponding to 0-mean perturbations ut. Testing distribution is
the true one.

Testing distribution ALY CESO CEST SAA PH d=0

True

avg -73.12 -2.28 -12.47 -1.74 5.48 -24.92
std 3.81 3.49 2.89 3.45 3.34 2.96
mdn -72.79 -2.65 -12.47 -2.07 4.64 -25.62
min -85.84 -10.81 -19.17 -10.38 0.93 -29.63
max -61.43 13.67 -1.67 13.74 25.01 -8.94

Gaussian

avg -72.94 -1.98 -12.14 -1.46 5.46 -24.67
std 3.66 3.82 3.05 3.64 3.58 3.17
mdn -72.41 -1.80 -12.14 -1.40 4.53 -25.40
min -87.55 -11.86 -22.14 -11.37 1.20 -30.13
max -62.66 15.51 3.62 15.52 29.19 -4.92

Gauss mix

avg -73.26 -1.67 -11.98 -1.15 5.85 -24.45
std 3.57 3.75 3.25 3.68 5.60 3.45
mdn -72.70 -1.64 -11.98 -1.09 4.72 -25.29
min -88.61 -11.46 -19.91 -11.25 0.83 -29.93
max -63.43 16.63 18.24 19.56 100.64 5.20

Table C.9: Relative gaps (in %) from polynomial policies with d = 1. Here, the noise
terms are uniform and strongly negatively correlated, and the testing distributions
are uniform, Gaussian or mixture of Gaussians.
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Figure C-7: Boxplots of relative gaps (in %) from perfect hindsight. Here, the coef-
ficient p̄ varies, changing the mean of the perturbations. Testing distribution is the
true one.
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Figure C-8: Histograms of relative gaps (in %) from polynomial policies with d = 1.
Here, the coefficient p̄ = 0.5, corresponding to 0-mean perturbations ut. Testing
distribution is the true one.
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Figure C-9: Histograms of relative gaps (in %) from polynomial policies with d = 1.
Here, the noise terms are uniform and strongly, negatively correlated, and the testing
distribution is the true one.
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Figure C-10: Histograms of relative gaps (in %) from polynomial policies with d = 1.
Here, the noise terms are uniform and strongly, negatively correlated, and the testing
distribution is gaussian.
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Testing distribution ALY CESO CEST SAA PH d=1

Uniform

avg -22.29 0.43 0.43 0.41 3.60 0.43
std 3.15 0.44 0.44 0.48 0.55 0.46
cv -0.14 1.02 1.02 1.16 0.15 1.06
mdn -21.67 0.48 0.48 0.41 3.59 0.47
min -30.88 -0.74 -0.74 -0.78 2.21 -0.70
max -15.35 1.60 1.60 1.45 5.19 1.58

Gaussian

avg -26.37 2.41 2.41 2.57 6.17 2.39
std 3.24 3.12 3.12 3.25 4.10 3.13
cv -0.12 1.30 1.30 1.27 0.66 1.31
mdn -26.91 1.53 1.53 1.54 5.01 1.51
min -32.50 -0.81 -0.81 -0.67 1.55 -0.83
max -11.00 22.24 22.24 22.92 30.88 22.25

Gauss mix

avg -26.00 2.94 2.94 3.09 6.77 2.92
std 3.47 3.62 3.62 3.77 4.72 3.63
cv -0.13 1.23 1.23 1.22 0.70 1.24
mdn -26.52 1.98 1.98 2.07 5.80 1.95
min -31.56 -0.64 -0.64 -0.75 1.65 -0.70
max -10.65 23.38 23.38 24.00 32.23 23.36

Table C.10: Test using real data (department 2, subclass 1). Table records relative
gaps (in %) from polynomial policies with d = 0. Here, the noise terms are uniform
and strongly negatively correlated, and the testing distributions are uniform, Gaussian
or mixture of Gaussians.
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[99] J. Löfberg. Approximations of closed-loop minimax MPC. Proceedings of the
42nd IEEE Conference on Decision and Control, 2:1438–1442 Vol.2, Dec. 2003.
ISSN 0191-2216. doi: 10.1109/CDC.2003.1272813.
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