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Abstract

Midlevel ventilation, or the flux of low-entropy air into the inner core of a tropical
cyclone (TC), is a hypothesized mechanism by which environmental vertical wind
shear can constrain a TC’s intensity. An idealized framework is developed to assess
how ventilation affects TC intensity via two pathways: downdrafts outside the eyewall
and eddy fluxes directly into the eyewall. Three key aspects are found: ventilation
has a detrimental effect on TC intensity by decreasing the maximum steady state
intensity, imposing a minimum intensity below which a TC will unconditionally decay,
and providing an upper ventilation bound beyond which no steady TC can exist.

Based on the idealized framework, a ventilation index is derived that is equal to
the environmental vertical wind shear times the midlevel entropy deficit divided by
the potential intensity. The ventilation index has a strong influence on the present-
day climatology of tropical cyclogenesis and the distribution of TC intensification.
Additionally, changes in the ventilation index are also examined in general circulation
models (GCMs) between the late 20th century and the late 22nd century. Individual
GCMs indicate potential regional shifts in preferred locations of tropical cyclogenesis
and changes in TC intensity statistics due to shifts in the seasonal ventilation index,
but a statistically significant projection cannot be given. The GCMs do show a robust
increase in the midlevel entropy deficit and potential intensity nearly everywhere in
the tropics.

Lastly, an axisymmetric model with parameterized ventilation is used to examine
the sensitivity of TC intensity to the strength and location of the ventilation and
to examine the findings of the idealized framework. Increasing the strength of the
ventilation and placing the ventilation at lower to middle levels results in a greater
decrease in the quasi-steady intensity, whereas upper-level ventilation has little effect
on the intensity. For strong ventilation, an oscillatory intensity regime materializes
and is tied to transient convective bursts and strong downdrafts into the boundary
layer. The sensitivity of TC intensity to ventilation can be viewed in the context of a
modified thermal wind relation or the fractional Carnot efficiency of the inner-core.
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Chapter 1

Introduction

1.1 Motivation

Tropical cyclones (TCs) are one of nature’s most destructive phenomena, having

caused both heavy human and economic toll. For example, Hurricane Katrina (2005)

caused an estimated 81-82 billion dollars in losses (Pielke Jr. et al., 2008). The

Bagladesh Cyclone (1970) brought a storm surge that killed 300,000 people in the

Ganges Delta. As more property is built up along the world’s vulnerable coastlines,

the potential for damage is guaranteed to increase in the future. Thus, it is important

that the physics of TCs are understood in order to improve the ability to foresee short-

and long-term impacts.

1.1.1 Intensity Prediction

The human toll can be mitigated by accurate predictions of TC track and intensity.

The former has seen significant gains, with the track error at 72 hours in the north

Atlantic decreasing from 400 n mi in the 1970s to a little over 100 n mi in 2009

(Franklin, 2010). This has been brought forth by a combination of improvements in

numerical weather prediction models, better initialization of TCs in models (Kurihara

et al., 1993), and an understanding of the basic physics of TC motion (Chan, 2005).

On the contrary, intensity forecasts remain quite problematic. Fig. 1-1 shows the
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seasonal intensity errors compiled by the National Hurricane Center for the north

Atlantic basin from 1990-2009 (Franklin, 2010). The intensity is defined by the max-

imum one minute sustained near-surface wind speed. At all lead times, intensity

forecasts have shown no statistically significant improvement over the twenty-year

period. Despite the introduction of high resolution hurricane models, such as the

Hurricane Weather Research and Forecast model, accurate intensity forecasts pose a

challenge due to the large number of external mechanisms that control TC intensity.

Examples of such controls include ocean mixing, environmental vertical wind shear,

background thermodynamic state, and upper level trough interactions (Hanley et al.,

2001; Emanuel et al., 2004). Additionally, asymmetric convective features (Van Sang

et al., 2008) and eyewall replacement cycles (Willoughby et al., 1982) have little pre-

dictability but potentially large effects on TC intensity. Current understanding of

these mechanisms is limited, hindering the ability to develop and improve guidance

for intensity prediction, especially at longer forecast lead times.

This study focuses on one important external control on TC intensity: environ-

mental vertical wind shear. Environmental vertical wind shear has been shown to

have a negative impact on TC intensification. Figure 1-2 shows a box plot of the dis-

tribution of 12-hour intensity change of north Atlantic TCs between 1981-2000 binned

by the vertical wind shear. To obtain an estimate of the maximum symmetric wind

speed, 70% of the tropical cyclone’s translation speed is subtracted from its reported

maximum wind speed in the best track database. The 70% factor is chosen because

it best matches observations (K. Emanuel, pers. communication). Moreover, the

vertical wind shear is defined as the magnitude of the vector difference between the

winds at 850 mb and 200 mb. The shear is estimated at the TC’s center from ERA-40

reanalysis after a filter1 is applied to remove the TC’s circulation. In Fig. 1-2, there

is a clear tendency for the 25th, median, and 75th percentiles of the 12-hour intensity

change distribution to decrease with increasing vertical wind shear. In particular,

rapidly strengthening storms tend to be embedded in environments with low vertical

wind shear. The correlation between the vertical wind shear and the 12-hour inten-

1The filter used to remove TCs from the raw data is described in Appendix A.
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sity change is -0.26. Although this correlation is weak, it is statistically significant

and makes environmental vertical wind shear one of the most important predictors in

dynamical-statistical TC intensity models, such as the Statistical Hurricane Intensity

Prediction Scheme (DeMaria and Kaplan, 1994b) and the Logistic Growth Equation

Model (DeMaria, 2009), and simple dynamical models, such as the axisymmetric

Coupled Hurricane Intensity Prediction Scheme (CHIPS) (Emanuel et al., 2004).

The CHIPS model accounts for vertical wind shear through an empirical parame-

terization, in which the moisture at midlevels in the TC is decreased in proportion to

the square of the vertical wind shear. The reasoning behind such a parameterization

is based on the ventilation hypothesis (Simpson and Riehl, 1958), which is elaborated

upon in depth in the following chapters. While this parameterization increases the

skill of the model, there is no robust reason as to why the particular form of the

parameterization is valid in terms of how ventilation may actually operate. More-

over, a curious consequence of the parameterization is that it increases the sensitivity

of the model (Moskaitis, 2009). Fig. 1-3a depicts the 48 hour simulated intensity
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field as a function of mixed layer depth and vertical wind shear magnitude for a TC

with an initial intensity of 80 knots. Storms at low wind shear intensify rapidly to

greater than 140 knots, while storms embedded in greater than 10 m s−1 of vertical

wind shear weaken below the initial intensity. Fig. 1-3b shows the magnitude of the

intensity field gradient, which is a measure of sensitivity of the intensity to both the

vertical wind shear magnitude and mixed layer depth. The sensitivity is dominated

by vertical wind shear since the largest gradients are in the direction of the ordinate,

with the greatest sensitivity around a vertical wind shear of 5 m s−1. Unfortunately,

this coincides to the climatological mode of the distribution of vertical wind shear in

the tropics. The sensitivity reduces the predictability of TC intensity in the CHIPS

model. If this sensitivity does indeed exist in reality, what is causing it?

Given that the shear parameterization is empirical and effectively folds all model

error into it, it is possible that the sensitivity to vertical wind shear is unrealistic.

This underscores the importance of achieving a better understanding of the physi-

cal pathways by which vertical wind shear affects intensity, which ideally will lead

to refinements or new approaches to the CHIPS shear parameterization and other

statistical-dynamical intensity guidance.

1.1.2 Defining Shear

Perhaps the most fundamental question that must be addressed is how one defines

vertical wind shear for TC intensity studies. Obviously, there is a textbook definition

of shear, but why use only the winds at 200 mb and 850 mb? In fact, there is no

dynamical reason given in the literature as to why these two levels are used. Ap-

parently, the 850-200 mb convention arises from the fact that cloud track winds are

relatively dense and reliable at these two levels (Mark DeMaria, pers. communica-

tion). While the conventional metric is satisfactory for linear profiles of environmental

flow, hodographs from Reasor et al. (2000) and Rogers et al. (2003) show that the en-

vironmental wind profile contains nonlinear structure with height, and Elsberry and

Jeffries (1996) speculate that differently shaped profiles may arise depending on the

source of the vertical shear. Consequentially, is the structure of the environmental
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wind profile with height important for a tropical cyclone’s evolution?

In light of the possible high sensitivity of intensity to the value of the vertical

wind shear, it is imperative that the shear is accurately estimated. Achieving this,

however, is not straightforward due to the fact that the environmental flow must be

separated from the baroclinic structure of the TC, which itself contains very large

amounts of vertical shear. Several popular methods include averaging the winds over

a large annulus or disc around the TC and interpolating the synoptic flow to the TC’s

center (Gallina and Velden, 2002). The different methodologies can lead to differences

of a few m s−1 in the vertical wind shear estimate. What is the relevant quantity to

consider: the average vertical wind shear over the entire system or the shear in the

vicinity of the center?

The lack of solid reasoning behind the usage of the conventional vertical wind

shear metric that pervades the literature must be addressed. What one really seeks

is a dynamically and/or thermodynamically relevant metric based on the primary

physical pathway by which wind shear affects TC intensity. This may involve the

interaction of a number of parameters, and an example of one possible interaction is

explored in the third chapter.

1.2 Background

1.2.1 Observations of Sheared Tropical Cyclones

A number of studies have looked at the evolution of individual TCs in the pres-

ence of vertical wind shear using aircraft, radar, lightning, and satellite data. Low-

wavenumber asymmetries in the convective pattern consistently appear, with deep

convection favored on the downshear side of the storm coincident with the vertical

velocity and lightning strike density maxima (Reasor et al., 2000; Corbosiero and

Molinari, 2002). Conversely, the convective minimum and strongest subsidence are

located in the upshear direction. A detailed study of the life cycle of convective el-

ements in the eyewall of Hurricane Jimena embedded in 20 m s−1 of vertical shear
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was performed by Black et al. (2002). Initiation of updrafts occurred in the down-

shear semicircle below 6 km. The updrafts, sloping radially outward with height,

then reached their maximum magnitude after rotating cyclonically approximately

90◦. Thereafter, condensate loading and evaporative cooling drove strong downdrafts

of greater than 8 m s−1 through a deep layer in the upshear semicircle. The net result

of the vertical shear is to make individual convective elements generally shorter lived

and shallower than what might otherwise be observed in a healthy TC.

Asymmetries in convection and vertical velocity are intimately connected to asym-

metries in the horizontal flow and relative vorticity. Most of the variance in relative

vorticity in Hurricane Olivia was confined to a 5-10 km radial band and dominated

by the contributions from wavenumber one asymmetries above 3 km and wavenumber

two asymmetries below 3 km (Reasor et al., 2000). There are a number of plausible

sources for these convectively-coupled asymmetries: barotropic instability, asymmet-

ric diabatic heating, tilting of radial and azimuthal vorticity filaments by updraft-

downdraft couplets, and the projection of a tilted potential vorticity (PV) column

on individual levels. The tilt can be quite pronounced in strongly sheared storms,

with the horizontal distance between low and upper level centers exceeding 10 km

(Corbosiero and Molinari, 2002). Additionally, the tilt of the outer vortex may be

even larger (Jones, 2004). Although asymmetries are clearly prominent in TCs, their

behavior in sheared TCs along with their role in altering intensity have not been

thoroughly investigated.

The symmetric structure of the TC, which is analogous to an idealized Carnot

heat engine (Emanuel, 1986), is also altered by the presence of vertical wind shear.

Composited temperature data from the Advanced Microwave Sounding Unit indi-

cates that as shear increases, the height of the symmetric warm anomaly decreases in

the core of the TC. In accordance with thermal wind, the TC’s circulation becomes

shallower (Knutson and Tuleya, 2004). From the Carnot heat engine point of view,

a shallower circulation implies a reduced thermodynamic efficiency and a lower po-

tential intensity. It appears the tropical cyclone weakens from the top down, but the

composited analysis doesn’t indicate how this occurs, i.e. one cannot conclude that
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the mechanism behind the weakening also originates at upper levels and descends

with time.

To gain more insight beyond changes to the symmetric thermodynamic structure,

recent studies have looked at equivalent potential temperature (θe) or moist entropy

asymmetries in highly sheared TCs. For instance, dropsondes and flight data were

used construct the θe field in Tropical Storm Chantal (Heymsfield et al., 2006). At

low levels, very high θe air (> 360 K) was confined to the downshear semicircle of the

low-level center feeding a deep convective burst, while the upshear side had θe values

less than 355 K. Further aloft, a subsidence inversion, imparted by the shear-induced

secondary circulation, existed between 700-800 mb and inhibited any deep convection

over the low-level center. The lowest values of θe were also found on the upshear side

at about 500 mb, with minimum values around 335 K.

In another case study, Hurricane Claudette (2003) weakened drastically from a

hurricane to a weak tropical storm, as vertical wind shear rose to greater than 10

m s−1. Shelton and Molinari (2009) studied the evolution of the storm from recon-

naissance data. As the storm started to weaken, there was radial flow of greater than

15 m s−1 at 700 mb from NW and SE. Coinciding with the strong midlevel inflow

was a layer of dry air with low-θe values. It is hypothesized that the storm weakened

in response to the entrainment of the low-θe air into the eyewall, which subsequently

led to the production of evaporatively cooled downdrafts. The downdraft cold pool

produced divergence at low levels and stabilized the boundary layer.

Powell (1990) studied the boundary layer θe structure across outer rainbands and

found cold pools spreading out on the inner side of a rainband in Hurricane Earl

(1986) over an area of at least 250 km2. As this air then spirals inward, the presence

of additional downdrafts in the stratiform rain region adjacent to the convective

rainband and entrainment at the top of the mixed layer in a region of mesoscale

subsidence may prevent θe from increasing despite surface fluxes. Moreover, if the

rainband is positioned close to the center of the cyclone, then the time available for

recovery of the downdraft air is abbreviated.

Downdrafts sap the TC’s source of energy by mitigating the increase in θe due to
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surface fluxes leading to surface pressure rises in the center of the storm. Assuming

hydrostatic balance, Malkus and Riehl (1960) derived a relationship between changes

in surface pressure and changes in surface θe at the base of the eyewall:

p′ ≈ −2.6θ′e. (1.1)

Emanuel (1986) derived a similar relationship between changes in central surface

pressure and changes in the saturation equivalent potential temperature, θ∗ec, at the

center of the storm above the boundary layer by considering gradient wind balance

and slantwise neutrality:

p′cs ≈ −3.3θ∗′ec. (1.2)

As a consequence of thermal wind balance, Emanuel (1997) showed that the square

of the maximum tangential wind speed is directly proportional to the radial gradient

of θe or moist entropy:

v2m ≈ −rm (Tb − To)
∂sb
∂r

, (1.3)

where vm is the maximum tangential wind, rm is radius of maximum wind, Tb is

the temperature at the top of the boundary layer, To is the outflow temperature,

and sb is the moist entropy at the top of the boundary layer. Weakening the radial

gradient of entropy in the eyewall by adding an entropy sink in the inner-core region

will weaken the TC’s primary circulation. This can be accomplished, for instance,

by the incomplete recovery of downdraft air originating from spiral rainbands or

downdrafts in the eyewall itself. However, a numerical study by Wang (2002b) found

that downdraft air originating from spiral rainbands to have a negligible effect in a

mature, unsheared TC. In fact, downdrafts occurring outside the eyewall may enhance

the radial gradient of entropy and, hence, the maximum tangential wind speed as

long as enhanced surface fluxes lead to a full recovery of the downdraft air during its

inward transit (Yang et al., 2007). However, how different is the recovery timescale in

vertically sheared TCs? If inner rainbands with unsaturated downdrafts are excited
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closer to the eyewall and/or over a much larger region, do they have a correspondingly

larger effect, as there is less opportunity for recovery?

1.2.2 Numerical Modeling Studies of Sheared Tropical Cy-

clones

Since continuous, high-resolution monitoring of TCs is not currently possible, most

research on this topic uses sophisticated numerical models to understand how TC

structure is altered in the presence of vertical wind shear. Although numerical models

corroborate the observations presented in the previous section, it is much harder to

deduce whether and how these changes in structure lead to changes in intensity.

One such change in structure is the tilt of the vortex, which may play a role in

exciting asymmetries. Since observations of the tilt are scarce, numerical simulations

can elucidate the nature of the tilt evolution. Jones (1995) studied this phenomenon

using a dry, primitive equation model on an f-plane with an easterly shear of 4 m s−1.

The column of high PV precesses, and after a sufficient amount of time, the PV

anomalies in the lower and upper levels decouple, although the details of this behavior

are sensitive to the initial profile of relative vorticity (Reasor et al., 2004) and the

penetration depth (Smith et al., 2000). In a moist setting, the tilt is significantly

reduced due to a negative feedback associated with the diabatic heating, but can still

exceed 10 km for shears greater than 10 m s−1. Additionally, the tilt does not evolve

with a constant slope to mirror the specified linear shear profile, but rather, the layer

of strongest tilt is initially found at upper levels and descends with time (Frank and

Ritchie, 2001; Wong and Chan, 2004).

The tilt along with background vertical wind shear requires there to be isentropic

gradients which induce wavenumber one vertical velocity asymmetries in a dry frame-

work (Jones, 1995, 2000a,b). If moisture is introduced and diabatic effects dominate,

the strongest vertical velocities and convection are shifted to the downshear-left quad-

rant (in the N Hemisphere) in agreement with observations (Frank and Ritchie, 1999).

Instead of the adiabatic mechanisms, asymmetric divergence due to the relative flow
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is now primarily responsible for the wavenumber one vertical velocity asymmetries

(Bender, 1997). As necessitated by conservation of PV, asymmetric relative flow into

(out of) the core of the TC must be associated with asymmetric convergence (diver-

gence) and ascent (descent) at low levels. The same reasoning can also be applied at

upper levels to explain the shear-induced secondary circulation.

Thermodynamic changes to the structure of sheared TCs have also been doc-

umented in numerical simulations. With regards to the symmetric structure, the

warm core of a moist TC in 10 m s−1 of easterly shear erodes at upper levels after

the shear onset, but the lower half of the troposphere within 50 km of the center

warms by 2-4 K (Wong and Chan, 2004). DeMaria (1996) explained the warming

in the lower troposphere above the low-level circulation using a two-layer, dry model

with offset Gaussian PV anomalies in each layer. A positive temperature perturbation

of 3 K for an initial displacement of 60 km arises above the low-level center, increasing

the vertical stability and hypothetically retarding convection (cf. Heymsfield et al.

(2006)). On the other hand, a negative perturbation arises in the direction of the tilt,

decreasing the stability and augmenting convection.

While the thermodynamic changes partially explain the wavenumber one pat-

tern in convection, it is not immediately apparent that asymmetries must necessarily

weaken the mean circulation of the TC. In fact, there is evidence to the contrary from

both observational and modeling studies. Despite a large wavenumber one asymme-

try in convection, Tropical Storm Gabrielle was observed to intensify by 20 mb over

the course of 3 hours due to the downshear reformation of the center by diabatic

vorticity generation (Molinari et al., 2006). Two studies by Moller and Montgomery

(1999, 2000), using a barotropic and baroclinic model, indicate that symmetrizing

PV anomalies, which can be generated by asymmetrically distributed convection, act

to accelerate the tangential winds.

Frank and Ritchie (2001) investigated the PV and θe evolution of a TC embedded

in a vertical wind shear of 5 m s−1 and postulated that the weakening of the TC

occurs from the top down. A Fourier decomposition of the PV reveals that after the

onset of the shear, the power in the axisymmetric component decreases while the
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power in the wavenumber one component increases. High-θe air is advected outward

from the core of the TC most vigorously at upper levels at first, but then this out-

ward advection descends with time. However, the azimuthally averaged horizontal

eddy flux of θe is positive through a deep layer in the eyewall right before weakening

commences. Consequently, the central surface pressure must rise as the warm core

is weakened aloft. Wong and Chan (2004) also conjecture that ventilation in the

upper levels causes their simulated TC to weaken, but instead suggest a threshold

behavior. Weakening only occurs when the environmental vertical shear is strong

enough to produce net subsidence in the upshear portion of the eyewall, leading to

the entrainment of ambient low-θe air at upper levels as inflow dominates. However,

the θe at upper levels is typically high, so the source of this low-θe air is unclear.

Additionally, given the simulations of Bender (1997), it isn’t clear that large values

of vertical shear greater than 10 m s−1 are capable of offsetting the TC’s thermally

direct circulation. It also remains to be clarified whether the “eddies” responsible for

the aforementioned mechanisms are simply the projection of the relative flow onto

wavenumber one or mesoscale eddies, such as vortex Rossby waves.

In contrast, Wu and Braun (2004) concluded that eddies are unable to significantly

alter the temperature perturbations in the inner core of a TC embedded in 4 m s−1

of vertical wind shear. Rather, the lowering of the warm core and weakening of

the TC by 8 mb or 4 m s−1 is attributed to eddy momentum fluxes that act to

decelerate the radial and tangential flow at lower and upper levels. However, the

differences between the control simulation and shear simulation lie within the general

predictability envelope of 3D simulations (Van Sang et al., 2008), so it is unclear if

the differences are truly due to the vertical wind shear forcing or simply random.

Furthermore, the vertical wind shear was not varied in the study to assess whether

the results are sensitive to the magnitude of the shear.

Instead of ventilation at upper levels, ventilation at midlevels, near the climatolog-

ical minimum of θe, can affect the inner-core and act as “a constraint on the hurricane

heat engine (Simpson and Riehl, 1958).” Cram et al. (2007) investigated Lagrangian

back trajectories of parcels at a height of 5 km in the eyewall of a numerical simula-
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tion of Hurricane Bonnie (1998), which was embedded in 12 m s−1 of vertical shear

at the time. They found that about 20% of the eyewall mass originated from middle

to upper levels. Since parcels at these levels have a lower θe than that of the eyewall,

the midlevel ventilation acts to decrease the θe in the eyewall by approximately 1 K.

Ventilation’s effects on the TC inflow layer have also been examined in an idealized

numerical framework. Riemer et al. (2010) studied simulations of TCs embedded in

varying amounts of vertical shear and hypothesized that a shear-induced, standing

wavenumber one vorticity asymmetry forms in response to tilting of the outer vortex

between a radius of 150-200 km. Where the vorticity asymmetry is positive, upward

motion is enhanced due to frictional convergence and convection is enhanced. The

convection forms a helical updraft pattern, which allows rain to fall into unsaturated

air below it resulting in the formation of downdrafts. Consequently, these downdrafts

flux a significant quantity of low-θe air down into the boundary layer. Thereafter, the

low-θe air can then be swept in toward the eyewall of the storm where it acts as an

“anti-fuel” mechanism weakening the TC. Only after these downdrafts cease and the

vortex realigns do the simulated TCs begin to restrengthen.

One critical issue that needs to be addressed is how the low-θe air is actually getting

into the inner core. While the relative flow might do the job for weak vortices, the

relative flow would need to be unrealistically strong to be able to push the dividing

streamline close enough to the inner core in hurricane-strength vortices (Michael

Riemer, pers. communication). This is especially hard at midlevels since the steering

level of TCs is located in this layer, implying weak relative flow. Alternatively, there

may be some transient phenomena allowing the low-entropy air to be turbulently

advected inward. A good candidate is vortex Rossby waves.

1.2.3 Vortex Rossby Waves

Perturbations in the TC flow - induced by convective asymmetries, tilt of the vortex,

or some other mechanism - have been determined numerically and observationally to

be vortex Rossby waves propagating along the TC’s sharp gradient(s) of potential

vorticity. The linearized theory for vortex Rossby waves was first derived by Mont-
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gomery and Kallenbach (1997), and the wave-mean flow interaction was generalized

by McWilliams et al. (2003). Moller and Montgomery (2000) derived a dispersion

relationship for vortex Rossby waves using asymmetric-balance theory:

ω = nΩ̄ +
n

R

ξ̄

q̄

q̄′

k2 + n2/R2 + (η̄ξ̄m2)/N2
, (1.4)

where ω is the frequency, n is the azimuthal wavenumber, k is the radial wavenumber,

m is the vertical wavenumber, N is the Brunt-Vaisala frequency, R is a reference

radius, Ω is the angular velocity, q is the potential vorticity, η is the absolute vorticity,

and ξ is the inertia parameter. Any variable with an overbar refers to the basic-state

vortex, and any variable with a prime denotes its radial gradient. Strong evidence

of the existence of vortex Rossby waves was provided by Corbosiero et al. (2006) in

which wavenumber two banded features sporadically broke off from the shear-induced

wavenumber one distributed eyewall convection in Hurricane Elena and had phase and

group velocities consistent with those derived from (1.4).

Wang (2002a,b) conducted a detailed investigations of the structure and energy

budgets of vortex Rossby waves in a primitive equation model. The main findings

were:

• Most of the power lies in wavenumbers one and two, but wavenumber two

activity is much more variable.

• The horizontal flow and geopotential height anomalies are quasi-balanced2 with

maximum PV anomaly amplitudes at low levels near the radius of maximum

wind.

• The azimuthal wind anomalies are at times 10-20% the mean azimuthal mean

wind speed.

• Vertical velocity anomalies are greater than 50% the mean eyewall vertical ve-

locities and dominate outside the eyewall, implying convection can be greatly

modulated by vortex Rossby waves.

2Quasi-balanced refers to a class of hydrostatic motions in the atmosphere where horizontal
pressure gradients are closely balanced by centrifugal accelerations.
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• Eddy kinetic energy is maximized near the eyewall and shows three distinct

maxima located at the outflow layer, at 500 mb, and at low levels below 800

mb.

• Vertical velocity and relative vorticity perturbations are in approximate quadra-

ture and are strongly convectively coupled.

• A trailing spiral structure is prominent in the radius-azimuth plane, which im-

plies that the group velocity is directed outward, and the wave is transferring

its energy to the mean-flow. An outward tilt occurs in the radius-height plane.

• Nonlinear interactions of wavenumber one waves excites wavenumber two waves,

especially near the radius of maximum wind.

• There appears to be a stagnation radius and stagnation height, and both de-

crease as wavenumber increases. This implies that vortex Rossby waves are

limited to the inner region of the tropical cyclone at lower to middle levels.

On the last point, the stagnation radius and stagnation height can be derived

from the appropriate group velocities using (1.4) and letting t → ∞. The resulting

expression for the stagnation radius is

rs = R +
ξ̄q̄′

Rq̄Ω̄′
1

κ2t0
, (1.5)

and the stagnation height is

zs = Z − mη̄ξ̄2q̄′

RN2q̄|Ω̄′|
1

κ3k0

[
π

2
+

Ω̄′

|Ω̄′| arctan
(
ko
κk0

)

+
Ω̄′

|Ω̄′|
κk0ko
κ2t0

]

, (1.6)

where κ2 = k2 + n2/R2 + (η̄ξ̄m2)/N2, κt0 = κ(t = 0), κk0 = κ(k = 0), and Z is a

reference height.

The interplay of vortex Rossby waves with the mean flow has been primarily

studied through eddy momentum and PV fluxes. In a barotropic vortex, axisym-

metrization of vortex Rossby waves leads to an increase in the tangential winds near

and inside the radius of maximum wind and a decrease radially outward (Montgomery
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and Kallenbach, 1997; Moller and Montgomery, 1999). For a baroclinic vortex, the

picture is slightly altered with an increase in tangential wind around the radius of

maximum wind at the bottom of the domain bracketed by decreases in the tangential

wind at small and large radii (Moller and Montgomery, 2000; Wang, 2002b). In a

more complex, nonhydrstoatic 3D model of a quasi-steady TC, Eliassen-Palm flux

diagnostics performed by Chen et al. (2003) indicate that eddy momentum fluxes ac-

celerate the tangential winds on either side of the eyewall at low to midlevels. Wang

(2002a,b) attributed this pattern to the asymmetric horizontal redistribution of an-

gular momentum from the eyewall into the eye and vertical flux divergence of angular

momentum at the eyewall.

For larger amplitude perturbations in both the barotropic and baroclinic simula-

tions at upper levels, the radial gradient of PV changes sign at one or more radii,

satisfying the necessary condition for barotropic instability. This allows vortex Rossby

waves to grow at the expense of the energy of the mean flow, at least temporarily.

In contrast at lower levels in the baroclinic simulations, perturbations are axisym-

metrized for the entire range of amplitudes examined. When instead the pertur-

bations are pulsed every hour for a narrow double-cluster PV anomaly to simulate

convective bursts, as is often observed in a sheared TC, the TC intensifies about 16

m s−1 over a day. Broader perturbations are even more effective at increasing the

maximum winds. Thus in terms of eddy-mean flow interaction, it is not at all obvious

how asymmetries induced by environmental vertical wind shear cause TCs to weaken.

Wang (2002a,b) looked at the energy budget of vortex Rossby waves. The main

sink of eddy kinetic energy is barotropic conversion in the lower half of the tropo-

sphere. An upscale transfer of energy occurs as the vortex Rossby waves are axisym-

metrized. On the other hand, the main source of eddy kinetic energy is eddy potential

energy, driven by asymmetric diabatic heating. Another source of eddy kinetic energy

is baroclinic conversion, which is a function of the vertical shear of the mean radial

and tangential flows. Consequently, the conversion of kinetic energy from the mean

flow to the eddies is maximized in the eyewall, where the vertical shear of the vortex

is largest. Increasing the vertical shear of the vortex by tilting it would enhance the
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production of eddy kinetic energy and, thus, decrease the mean kinetic energy.

Kwon and Frank (2008) specifically studied the energy life cycle of asymmetries

in a 3D simulation of a moderately sheared TC. They found that there is significant

baroclinic growth of eddies at upper levels and hypothesize that the eddies act to

weaken the available potential energy of the mean vortex, leading to decay of the

upper-level warm core. Periods of enhanced eddy kinetic energy are correlated with

decreases in the temperature at upper-levels. Thus, they postulate that upper-level

ventilation causes a hydrostatic increase in central minimum pressure and a decrease

in the tangential wind, which is the same mechanism as that proposed by Frank and

Ritchie (2001).

Several studies have looked at the connection between the tilt of a TC and vortex

Rossby waves, primarily concentrating on the resistance of dry vortices to decoupling.

The tilt excites a near-discrete vortex Rossby wave “quasi-mode” and is resonantly

damped at the critical radius3 only if the radial gradient of PV is negative at the

critical radius. On the other hand, if the radial gradient of PV is instead positive at

the critical radius, then the quasi-mode (tilt) will grow (Schecter et al., 2002). For

small amplitude tilts, one can also view the quasi-mode heuristically as a harmonic

oscillator with shear as the time-invariant forcing (see Fig. 6 in Reasor et al. (2004)).

A downshear-left tilt equilibrium exists if the precession frequency is larger than

the quasi-mode damping rate. Conversely, decoupling of the vortex occurs when

the precession frequency is too small to counter the differential advection by the

environmental relative flow. If instead the Rossby number and the ratio between

the radius of maximum winds and internal deformation radius are both sufficiently

large, the tilt will project onto sheared vortex Rossby waves instead of the quasi-mode

allowing the tilt to decay, as the vortex Rossby waves are axisymmetrized (Reasor

et al., 2004). Although the explicit effects of moisture are excluded in these models,

it is speculated that diabatic effects will increase the resiliency of the vortex to tilting

by increasing the precession frequency and the quasi-mode damping rate.

3The radius at which the angular phase velocity of the quasi-mode equals the angular velocity of
the basic-state vortex
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Given that a quasi-mode or sheared vortex Rossby waves are directly associated

with vertical wind shear, how do they affect the intensity of the TC? There appears to

be disagreement on whether eddy momentum fluxes act to intensify (e.g. Moller and

Montgomery (2000)) or weaken (e.g. Wu and Braun (2004)) the mean circulation,

and the results depend on many degrees of freedom such as the behavior (discrete vs.

sheared), location, and amplitude of the eddies along with the mean vortex structure

itself. Eddy momentum fluxes are likely not the primary reason as to how vertical

wind shear constrains the intensity of TCs.

Thus, the attention turns toward the thermodynamic pathway, as TC intensity is

quite sensitive to the distribution of moist entropy in the inner core. Asymmetries

in the inner core are efficient at mixing entropy and other conserved tracers over

horizontal distances of 60-80 km (Hendricks and Schubert, 2009), so it is possible

that vortex Rossby waves are acting as the intermediary by which ventilation can

occur. This study seeks to use theoretical, observational, and idealized modeling

frameworks to study the parameterized role of vortex Rossby waves in ventilating the

TC and the resulting thermodynamic pathway by which the intensity is affected.

1.3 Hypothesis and Objectives

How does ventilation affect TC intensity? Two possible pathways are sketched in

Fig. 1-4. The first possible pathway is to inject low-entropy air at midlevels, given

by the hatched region, directly into the eyewall. The low-entropy air can be directly

entrained into the secondary circulation and then be communicated downward as

downdrafts. This results in a decrease in the entropy over a deep layer in the eyewall.

Additionally, a feedback can then occur in which surface fluxes are reduced due to a

decrease in surface winds, allowing ventilation to depress the entropy even further.

The second pathway by which ventilation can affect TC intensity are downdrafts

originating in near-inner core convection forced by the vertical wind shear. These

downdrafts flush the boundary layer with low-entropy air, which is then advected

radially inward into the inner core of the TC. Surface fluxes act to mitigate the

39



Figure 1-4: A radius-height schematic of the hypothesized pathways by which venti-
lation constrains a TC’s intensity: (1) direct ventilation of the eyewall at midlevels
and (2) downdraft modification of the boundary layer by near-inner core convection.
The hatched region denotes low-entropy air at midlevels, circular red arrows denote
vortex Rossby waves, and blue arrows denote ways the low-entropy air can enter the
secondary circulation, which is given by the gray arrow.

effect of the downdrafts, but if the recovery is incomplete upon reaching the radius of

maximum wind, the TC will still weaken. Like the previous pathway, a feedback may

play a role in further weakening a TC once surface fluxes are diminished, leading to

a greater amount of low-entropy air reaching the radius of maximum wind.

The primary objectives of each of the chapters in this thesis are listed below:

• Chapter 2: To formulate a steady-state theoretical framework for evaluating

the hypothesized effects of ventilation on the maximum intensity of TCs.

• Chapter 3: To assess whether ventilation has a detectable fingerprint on global

TC statistics and to evaluate how ventilation may affect TCs in the future.

• Chapter 4: To develop and use an axisymmetric model to study the sensitivity

of TCs to ventilation strength and location.

Conclusions and future work follow in Chapter 5.
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Chapter 2

A Theoretical Framework for

Ventilation Modified Intensity

c©2010 American Meteorological Society1

2.1 Introduction

Improving forecasts of tropical cyclone (TC) intensity has proven to be a vexing

challenge. Part of the challenge continues to be defining pathways by which the

ambient environment controls TC intensity. One particular environmental forcing,

vertical wind shear, is generally observed to be a negative factor for TC intensification

and is a primary reason why the vast majority of TCs fall well short of their potential

intensity (DeMaria and Kaplan, 1994a; Emanuel, 2000; Zeng et al., 2007, 2008).

Although a causal link between vertical wind shear and TC intensity clearly exists,

it is unclear how this physically comes about. Various theories have been put forth,

including ventilation of the upper level warm core (Frank and Ritchie, 2001; Wong and

Chan, 2004), increasing tropospheric stability (DeMaria, 1996), and eddy momentum

fluxes (Wu and Braun, 2004). The goal of this study is not to evaluate each hypothesis

that has been put forth, but to develop and analyze a simple framework for studying

1Permission to use figures, tables, and brief excerpts from this chapter in scientific and educational
works is hereby granted provided that the source is acknowledged: Tang, B. and K. Emanuel, 2010:
Midlevel ventilation’s constraint on tropical cyclone intensity. J. Atmos. Sci., 67, 1817-1830.
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Figure 2-1: Ventilation pathways by which low-entropy air can infiltrate the eyewall.
(1) Low-level pathway: downdraft air from convection originating outside eyewall
is advected inwards in the subcloud layer. (2) Midlevel pathway: eyewall directly
ventilated by eddy fluxes. A sample entropy profile of the environmental tropical
troposphere with a well mixed subcloud layer is given on the right.

one hypothesis in particular: midlevel ventilation of a TC’s inner core (Simpson and

Riehl, 1958).

The ventilation hypothesis consists of both dynamical and thermodynamical com-

ponents, and only the latter will be examined in this study. The dynamical compo-

nent deals with the kinematics of how the TC vortex interacts with the environmental

vertical wind shear, namely the tilt of the potential vorticity column due to differ-

ential advection by the background flow (Jones, 1995; Smith et al., 2000) and the

subsequent excitation of low-wavenumber asymmetries such as vortex Rossby waves

(Schecter et al., 2002; Reasor et al., 2004). The thermodynamic component concen-

trates on how eddy fluxes of low entropy from the ambient environment by these

shear-induced asymmetries subsequently interact with the tropical cyclone’s energet-

ics, thereby acting as a “constraint on the hurricane heat engine” (Simpson and Riehl,

1958).

Sea surface enthalpy fluxes allow the hurricane heat engine to maintain itself
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against frictional dissipation, and any process that acts as a source of low-entropy air

would counter the air-sea fluxes that drive the mechanical energy generation. There

are two possible ways for low entropy to infiltrate the inner core, as shown in Fig. 2-1.

The first is flushing the boundary layer with low-entropy air by convective downdrafts

in the near inner core region (Powell, 1990; Riemer et al., 2010). From there, the low-

entropy air is advected toward the eyewall by the radial inflow. We will refer to this

as the “low-level pathway.” The second is direct ventilation of the eyewall, where

low-entropy environmental air is forced into the eyewall at midlevels by eddies (Cram

et al., 2007). We will refer to this as the “midlevel pathway.” It should be recognized

that in both pathways, the origin of the low-entropy air is above the boundary layer

through the midlevels of the troposphere. Although ventilation likely operates to

some degree in all TCs, given that flow asymmetries and downdrafts are commonly

observed in TCs, the magnitude and scope of these negative factors in the presence of

vertical wind shear may be key to how TCs respond to hostile environments. Indeed,

such a response is a necessary part of the Coupled Hurricane Intensity Prediction

Scheme to produce skillful intensity forecasts (Emanuel et al., 2004).

There is compelling observational evidence of ventilation occurring in reconnais-

sance data and that the ventilation is correlated with observed intensity changes. Re-

connaissance through strongly sheared Hurricane Claudette (2003) sampled greater

than 15 m s−1 inflow of low-entropy air at 700 hPa on the NW side of the storm’s

inner core (Shelton and Molinari, 2009). Coinciding with the ventilation was a weak-

ening of Claudette’s intensity by about 10 m s−1. Additional reconnaissance data

has also recorded strong downdrafts spawned from precipitation falling into dry air in

the inner core of sheared Hurricanes Jimena (1991) and Olivia (1994) and may have

also contributed to the weakening of both storms (Black et al., 2002). More gener-

ally, ancillary evidence of these downdrafts can commonly be seen as low-level arc

clouds emanating away from sheared TCs on the upshear side (J. Dunion, personal

communication).

In light of the observational and modeling evidence of ventilation, a theoretical

framework is needed to assess the degree that these ventilation pathways are able
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to constrain a TC’s intensity. A useful starting point is the body of steady-state,

axisymmetric intensity theory (Malkus and Riehl, 1960; Emanuel, 1986; Holland,

1997; Bister and Emanuel, 1998). In doing so, one gains the benefit of a tractable

framework afforded by a set of rigid assumptions, including axisymmetry, steadiness,

and slantwise neutrality. Though sheared TCs are often asymmetric and unsteady in

appearance, key insights in to how ventilation diminishes the symmetric component

of TC’s winds are still garnered through this idealized approach.

To begin with, a heuristic illustration of the ventilation process as a modification

to the Carnot heat engine analogue of a tropical cyclone is given in section 2.2.

Section 2.3 then details modifications to the potential intensity theory to account

for ventilation. Section 2.4 examines the general behavior of a ventilated tropical

cyclone. In section 2.5, the sensitivity to various parameters is assessed, followed by

concluding remarks in section 2.6.

2.2 Carnot engine modification

Before deriving the theoretical framework, it is useful to think about ventilation’s

effect on TC intensity in a heuristic manner by considering the Carnot heat engine

analogue of a TC (Emanuel, 1997, 2003). As shown in Fig. 2-2a, the secondary

circulation can be divided in to the four steps of the Carnot cycle, which takes the

form of a rectangle on a temperature-entropy diagram in Fig. 2-2b. The steps are

(A) isothermal expansion in the inflow leg at the surface temperature, Ts; (B) adia-

batic expansion up the eyewall at a large value of saturation moist entropy, se; (C)

isothermal compression at the outflow temperature, To, as air radiates and subsides;

and (D) following an absolute vortex line (a surface of constant absolute angular mo-

mentum) at an ambient value of saturation moist entropy, sa. In lieu of following

an actual air parcel in the last step, the Carnot cycle is closed by assuming there

is little thermodynamic contribution along the absolute vortex line (Emanuel, 1991).

The area contained within the rectangle A-B-C-D in Fig. 2-2b is the work the cycle

performs.
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Figure 2-2: (a) The secondary circulation of an idealized TC, along with (b) the
legs of the secondary circulation represented on a entropy-temperature diagram. A
TC without ventilation travels along A-B-C-D, while a ventilated TC travels along
A-B′-C′-D. The hatched region in (b) denotes the work lost due to ventilation.

Now consider the effect of ventilation on this Carnot heat engine analogue. Venti-

lating the eyewall via the midlevel pathway results in a local decrease in the entropy

at midlevels along leg B. Given sufficient time, this perturbation is then spread by

convective motions through a deep, slantwise layer, which is a consequence of the

maintenence of subcloud layer quasi-equilibrium (Raymond, 1995). As a result, the

entropy decreases from se to s
′
e along leg B

′. Additionally, the loss in system buoyancy

(Smith et al., 2005) will correspond to a decrease in the outflow level or an increase

in the outflow temperature from To to T
′
o on leg C′. Now, consider ventilation via the

low-level pathway whereby the TC boundary layer entropy is depressed by downdrafts

in some region outside the eyewall. It is presumed that surface fluxes are unable to

act to fully restore the entropy to its unperturbed value in the eyewall. Subsequently,

the secondary circulation proceeds along the lower value of entropy, s′e, in the eyewall

and the outflow occurs at a higher temperature, T ′
o, similar to the midlevel pathway.

In both cases, the effect is detrimental to the TC heat engine. This can be plainly

seen in Fig. 2-2b on the T−s diagram as the secondary circulation of a ventilated TC

follows a modified path along A-B′-C′-D resulting in a smaller rectangle compared to
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the nonventilated TC. The difference in areas of the rectangles, given by the hatched

area, represents the work lost due to ventilation; work that would otherwise be used

to power the winds of a TC against frictional dissipation2. Ventilation, thus, works in

two ways: it decreases the maximum difference between the ambient value of entropy

and the eyewall entropy and it decreases the thermodynamic efficiency of the TC

Carnot heat engine. Both of these are negative factors on TC intensity, and how

much so will be examined in the next few sections.

2.3 Theoretical Framework

The derivation is based on conservation principles and closely parallels that of Bis-

ter and Emanuel (1998), hereafter BE98, with some major differences that will be

highlighted. Throughout the derivation, axisymmetry and steadiness are assumed.

Moreover, slantwise neutrality requires that the saturation isentropes be congruent

to angular momentum surfaces.

The first law of thermodynamics for saturated conditions,

Tδs∗ = cpδT + Lvδq
∗ − αδp, (2.1)

can be combined with the momentum equations to yield

Tδs∗ +
M

r2
δM − α

r
ζδψ = δ(E +

fM

2
), (2.2)

where cp is the specific heat at constant pressure, Lv is the latent heat of vaporization,

f is the Coriolis parameter, s is the specific moist entropy, T is the temperature, q

is the water vapor mixing ratio, α is the specific volume, p is the pressure, M =

rv + 0.5fr2 is the absolute angular momentum, ζ is the azimuthal vorticity, ψ is

the mass streamfunction, E = cpT + Lvq + gz + 0.5 |u|2 is the total energy, u is the

wind velocity, g is the gravitational acceleration, r is the radius, z is the height, and

any quantity with a star denotes the saturation value. Moreover, a pseudoadiabatic

2Some of the work is used to spin up the upper-level anticyclone as well, but to simplify matters,
this effect will be ignored.
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assumption is used, which implies the contribution of liquid water and ice to the

entropy is ignored. Details on how to arrive at (2.2) are given in BE98.

The contribution of unbalanced flow is given by the third term in (2.2) containing

δψ. The storm deviates from gradient wind balance where this term is significant

compared to the other terms, primarily in the eyewall. For instance, superintensity

results when this term is positive, and the centrifugal force exceeds the pressure gra-

dient force (Bryan and Rotunno, 2009a). In numerical simulations, it is possible to

get superintense storms for certain combinations of numerical parameters, such as

sufficiently small horizontal mixing length (Bryan and Rotunno, 2009b). Alterna-

tively, Persing and Montgomery (2003) hypothesized that superintensity was caused

by enhanced low-level entropy in the eye being drawn into the eyewall.

For the purposes of this study, the δψ term is ignored such that the precise problem

to be explored is how ventilation reduces the TC’s maximum achievable gradient

wind. Albeit, one must keep in mind that unbalanced effects will modulate the full

solution to some degree. However, since the goal is to describe the basic behavior of

the intensity of ventilation-modified TC, unbalanced effects are likely not absolutely

critical for the general picture. One could retain the δψ term and carry forward, but

this produces an undesirable term that is a function of the internal state of the TC

and is no longer closed (Bryan and Rotunno, 2009a).

The remaining terms are integrated around a closed circuit bounded by two

isotherms, one in the outflow layer at To and one at the top of the boundary layer

at Th, and two saturation isentropes or isopleths of angular momentum encompass-

ing the eyewall and adjacent region as illustrated in Fig. 2-3. The first and second

terms on the left hand side in (2.2) only have contributions from the integration along

isotherms while the term on the right hand side vanishes:

(Th − To)δs
∗ +

∫ r3

r1

M

r2
∂M

∂r
dr − 1

2r2o
δM2 = 0. (2.3)

The final term on the left hand side of (2.3) arises from the fact that it is evaluated

at the outer radius of the storm, ro. To evaluate (2.3), expressions for δs∗ and δM
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Figure 2-3: Closed circuit around which (2.2) is evaluated. Circuit consists of two
isotherms, Th and To, and two contours of constant χ, where χ ∈ {s∗,M, ψ}.

must be derived.

2.3.1 Subcloud layer entropy

Neutrality requires δs∗ = δsb, where sb is the subcloud layer entropy. Hence, the

entropy budget of the subcloud layer directly below the lowermost part of the inte-

gration circuit is required. In contrast to BE98, the subcloud layer is divided up in

to two regions, as sketched in Fig. 2-4a: an “inner” region from r1 to r2 centered

around the radius of maximum wind and an “outer” region from r2 to r3. Sources

of entropy in both regions include turbulent fluxes, Fs, dissipative heating, H, and

fluxes by the mean secondary circulation. In the outer region, convective entropy

fluxes, Fs(z = h) = w′s′, through the top of the subcloud layer are included. Convec-

tive downdrafts, in particular, are driven by evaporation of rain into subsaturated air

supplied by eddy entropy fluxes in the free troposphere, u′s′, as will be explained in

the next subsection. Division of the domain in this manner represents a generaliza-
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Figure 2-4: Sources and sinks of entropy and angular momentum in the subcloud layer
and free troposphere for (a) the low-level pathway and (b) the midlevel pathway: sur-
face fluxes of entropy, Fs(z = 0), and angular momentum, FM(z = 0) (wavy arrows);
dissipative heating, H; advection by the secondary circulation (gray arrow); convec-
tive entropy flux, w′s′ (vertical block arrow); and eddy entropy flux, u′s′, through
outer angular momentum surface in the free troposphere (horizontal block arrow).

tion that can be used to study both the low-level and midlevel ventilation pathways

sketched in Fig. 2-1.

In a steady state, the flux of entropy by the mean transverse circulation through

the boundaries of the subcloud layer control volume must be equal to the sum of

internal sources and sinks of entropy:

∫

uρs · ndσ =

∫ [

− ∂

∂z
(ρFs) + ρH

]

dV, (2.4)

where dσ is a surface integration element. To evaluate the left hand side of (2.4), the

definition of the mass streamfunction,

(u, w) =
1

ρr

(

−∂ψ
∂z
,
∂ψ

∂r

)

, (2.5)

is substituted, and the resulting expression is integrated by parts. Assuming ψ van-

ishes at the surface and s is constant with height in the subcloud layer,
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∫

uρs · ndσ = −2π

∫ r3

r1

ψ
∂s

∂r

∣
∣
∣
∣
h

dr ≈ −2πψδsb, (2.6)

where h is the height of the subcloud layer. The last step in (2.6) approximates the

integral using the average value of ψ at z = h over the radial interval.

Next, the right hand side of (2.4) must be evaluated separately for the inner and

outer regions. The aerodynamic flux formula is used for the surface flux of entropy:

Fs(z = 0) = Ck |u| (s∗SST − sb), (2.7)

along with the expression for the contribution of dissipative heating to the entropy

equation from BE98:

∫ h

0

Hdz =
CD
Ts

|u|3 , (2.8)

where Ck and CD are the enthalpy and drag coefficients, s∗SST is the saturation entropy

at the sea surface temperature, and Ts is the surface temperature. Using (2.7) and

(2.8) in the right hand side of (2.4) results in

∫ [

− ∂

∂z
(ρFs) + ρH

]

dV = 2π

{∫ r2

r1

[

ρCk |u| (s∗SST − sb) +
ρCD
Ts

|u|3
]

rdr

+

∫ r3

r2

[

ρCk |u| (s∗SST − sb) +
ρCD
Ts

|u|3 − ρw′s′
]

rdr

}

.

(2.9)

In order to arrive at a tractable expression, each integrand is assumed to be constant

in each region. This approximation is applied by expressing u as some fraction of

the maximum wind velocity, um, and r as some proportion of the radius of maximum

wind, rm, in the following fashion:
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u =







um r1 < r < r2

γum r2 < r < r3

r =







rm r1 < r < r2

αrm r2 < r < r3.
(2.10)

Two external parameters are introduced: γ (0 ≤ γ ≤ 1) controls the radial wind

decay and α (α ≥ 1) controls the ratio of the width of both the inner and outer

regions to the radius of maximum wind. Applying (2.10) in (2.9),

∫ [

− ∂

∂z
(ρFs) + ρH

]

dV ≈ 2πρrmδr

[

Ck |um| (s∗SST − sib) +
CD
Ts

|um|3

+ Ckαγ |um| (s∗SST − sob) +
CD
Ts
αγ3 |um|3 − αw′s′

]

,

(2.11)

where δr = r2 − r1 = r3 − r2, s
i
b is the subcloud layer entropy of the inner region,

and sob is the subcloud layer entropy of the outer region. The width of both regions

is chosen to be equal to simplify the analysis and should have a value that is roughly

the characteristic width of a TC’s eyewall. The approximation obviously degrades if

the width of each region is too large.

Equating (2.6) and (2.11) yields an expression for δsb or, equivalently, δs
∗:

δs∗ = −ρrmδr
ψ

{

Ck |um|
[
(1 + αγ)s∗SST − (sib + αγsob)

]
+
CD
Ts

(1 + αγ3) |um|3 − αw′s′
}

.

(2.12)

Next, sib and sob must be related to one another. A simple approach is to use an

“upwind” like approximation where sob = sa, the entropy of air entering the outer

region at r3. An accurate value of sa is ultimately needed to close the expression for
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the potential intensity, which requires information about the entropy of the ambient

environment along with assumptions of processes that occur along the entire inflow

leg (Emanuel, 1986). In this framework, an accurate value of sa is not critical for

the goal of understanding how ventilation causes differences between the steady-state

intensity and potential intensity.

To get an expression for sib, one must determine the entropy increase as air travels

from r3 to r2. Consider the vertically averaged entropy equation in the subcloud

layer:

< u >
∂sb
∂r

=
1

h

∫ h

0

(

−∂Fs
∂z

+H

)

dz. (2.13)

where < u > is the vertically averaged radial velocity in the subcloud layer. Using

(2.7) and (2.8) and integrating from r2 to r3,

< u > (sob − sib) =
1

h

∫ r3

r2

[

−w′s′ + Ck |u| (s∗SST − sa) +
CD
Ts

|u|3
]

dr, (2.14)

and after applying (2.10) and assuming the integrands are constant, sib can be ex-

pressed as

sib = sob −
δr

< u > h

[

−w′s′ + Ckγ |um| (s∗SST − sa) +
CD
Ts
γ3 |um|3

]

. (2.15)

The difference in entropy between the outer and inner regions is controlled by entropy

fluxes at the top and bottom of outer region’s subcloud layer, dissipative heating, the

depth of the subcloud layer, and the mean advection timescale for parcels to travel

across the outer region (i.e. δr/ < u >).

In order to have as few externally set parameters as possible, < u > can be

estimated by considering the vertically averaged, steady angular momentum equation

for a well-mixed subcloud layer:
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1

h

∫ h

0

u
∂M

∂r
dz =

1

h

∫ h

0

−∂FM
∂z

dz. (2.16)

FM , the turbulent flux of angular momentum, at the surface is given by the aerody-

namic flux formula:

FM(z = 0) = −CD |u| rv, (2.17)

where v is the azimuthal velocity. Upon evaluating (2.16) with the assumption that

M ≈ rv and applying (2.17) followed by (2.10), an expression for < u > in the outer

region is obtained:

< u >≈ −CDγ |um|αrm
h

. (2.18)

Substituting (2.18) into (2.15) and noting that α ≡ 1 + δr/rm,

sib = sob +∆s = sa +∆s

∆s =
α− 1

CDαγ |um|

[

−w′s′ + Ckγ |um| (s∗SST − sa) +
CD
Ts
γ3 |um|3

]

. (2.19)

2.3.2 Free troposphere entropy

Convective fluxes, particularly downdrafts, are a key ingredient in the subcloud layer

entropy budget in the outer region. Ventilation manifests itself through these down-

drafts that are driven by the evaporation of precipitation into subsaturated air. How-

ever, it remains to be seen how the direct effect of ventilation, namely radial eddy

fluxes of entropy in the free troposphere, is connected to these convective fluxes

through the top of the subcloud layer. Precisely connecting radial to convective

fluxes is non-trivial as it requires treatment of microphysical processes.

However, microphysical considerations can be circumvented by applying the as-

sumption of steadiness, which requires there be no net flux of entropy through the

sides of any control volume in the absence of internal sources and sinks of entropy.
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Taking the control volume to be the free troposphere above the outer region (upper

right region in Fig. 2-4a), the two prescribed fluxes that must be in balance are an

inward eddy flux of low-entropy air and evaporatively cooled downdrafts at the cloud

base. The latter is present if the column remains convectively active as to maintain

slantwise neutrality. If so, there is a one-to-one correspondence between these two

transient fluxes:

2π

∫ r3

r2

ρw′s′rdr =

∫

Mo

ρu′s′ · ndσ. (2.20)

Only radial eddy fluxes of entropy through the outer angular momentum surface,Mo,

are considered in this case. Moreover, irreversible sources of entropy, such as that due

to mixing or evaporation, have been neglected. Evaluating the left hand side using

(2.10) along with the constant integrand assumption and solving for w′s′,

w′s′ =
1

2πραrmδr

∫

Mo

ρu′s′ · ndσ ≡ V . (2.21)

The ventilation, V , is defined as the integrated eddy flux of entropy perpendicular to

the outer angular momentum surface scaled by the downdraft area. Henceforth, V is

substituted where w′s′ appears in (2.12) and (2.19).

2.3.3 Subcloud layer angular momentum

The subcloud layer angular momentum budget proceeds similar to the entropy budget

derivation. In a steady state, the flux of angular momentum through the boundaries of

each subcloud layer region must be equal to the turbulent flux of angular momentum

at the surface as sketched in Fig. 2-4a. The fundamental equation for this balance is

given by

∫

uρM · ndσ =

∫

−∂ρFM
∂z

dV. (2.22)

In the outer region, the convective flux of angular momentum is neglected in order

to isolate the thermodynamic effect of ventilation, though it should be noted that
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convective fluxes of angular momentum at the top of the subcloud layer have been

shown to locally increase the entropy gradient and hence the maximum tangential

winds within the boundary layer by 5-10% in numerical simulations (O. Pauluis and

A. Mrowiec 2008, personal communication). Evaluation of (2.22) for each region

proceeds similarly to the derivation for (2.12). With the use of (2.10) and (2.17),

δM =







r2mδr

ψ
ρCD |um| vm r1 < r < r2

α2r2mδr

ψ
ρCDγ

2 |um| vm r2 < r < r3.
(2.23)

Additionally, ψ in each region is assumed to be approximately equal since the mean

vertical velocity, and thus ∂ψ/∂r, is assumed to be small at the top of the subcloud

layer in the outer region3.

2.3.4 Steady-state intensity

All the pieces needed to evaluate the terms in (2.3) have now been derived. Combining

(2.12), (2.19), and (2.21) in the first term; (2.23) and assumingM ≈ rv in the second

term; and ignoring the third term for large ro results in

−(Th − To)
ρrmδr

ψ

{

Ck |um| [(1 + αγ) (s∗SST − sa)−∆s] +
CD
Ts

(1 + αγ3) |um|3 − αV
}

+

∫ r2

r1

v

r

r2m
ψ
ρCD |um| vmdr +

∫ r3

r2

v

r

α2r2m
ψ

ρCDγ
2 |um| vmdr = 0. (2.24)

Evaluating the integrals using (2.10) and simplifying,

−(Th − To)

{

Ck |um| [(1 + αγ) (s∗SST − sa)−∆s] +
CD
Ts

(1 + αγ3) |um|3 − αV
}

+ CD |um| v2m(1 + αγ3) = 0. (2.25)

3An more accurate derivation would use (B.1) and (2.18) to derive an expression for ψ in each sep-
arate region. For the inner region, ψ = ρCD |um| r2m; and for the outer region, ψ = α2γρCD |um| r2m.
Note that this change must also be applied in the preceding sections wherever ψ appears in order
to be consistent. Nonetheless, it appears that there is still quite a bit of cancellation in the end.
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The first term in the curly braces represents the energy source due to the air-sea

disequilibrium with a modification factor, given by ∆s, that increases the disequilib-

rium in the presence of downdrafts and decreases the disequilibrium due to entropy

sources in the outer region. The second term is the recycling effect of dissipative

heating that increases the wind speed, as noted by BE98. The final term in the curly

braces represents the power sink due to ventilation. The last term in (2.25) is the

power dissipated by friction in the TC subcloud layer.

Thus far, the framework presented resembles the low-level ventilation pathway

only. However, specifying α = 1 and γ = 0 transforms the framework into one

describing the midlevel ventilation pathway as shown in Fig. 2-4b. Setting α = 1

superposes the processes in the outer region on top of those in the inner region.

Ventilation now occurs through the angular momentum surface bounding the inner

region (eyewall), and convective fluxes act to redistribute entropy changes through

the entire eyewall as saturation is maintained. Moreover, setting γ = 0 is necessary

in order to prevent a double counting of surface fluxes, dissipation, and dissipative

heating in the subcloud layer. The midlevel ventilation pathway is therefore a special

case of the more general framework.

As is done in BE98, it is assumed that Th ≈ Ts and vm ≈ |um|. Upon expanding

∆s and rearranging (2.25) in to a cubic polynomial in |um|,

[(
Ts − To
Ts

)
Ck(α− 1)γ2

α
+
To
Ts
CD(1 + αγ3)

]

|um|3

+ (Ts − To)Ck (s
∗
SST − sa)

[

−(1 + αγ) +
Ck(α− 1)

CDα

]

|um|

+ (Ts − To)

[

−Ck(α− 1)

CDαγ
+ α

]

V = 0. (2.26)

For the trivial case where there is no ventilation (V = 0), the steady-state intensity

is simply equal to the potential intensity:
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∣
∣uIPI

∣
∣
2
=

(Ts − To)Ck (s
∗
SST − sa)

[

(1 + αγ)− Ck(α−1)
CDα

]

(
Ts−To
Ts

)
Ck(α−1)γ2

α
+ To

Ts
CD(1 + αγ3)

, (2.27)

which looks different from the expression in BE98. However, superposing the inner

and outer regions by setting α = 1 and γ = 0 collapses the current framework in to

that used by BE98 and results in their expression for the potential intensity:

∣
∣uIIPI

∣
∣
2
=
Ts(Ts − To)

To

Ck
CD

(s∗SST − sa) . (2.28)

The difference between the potential intensities using (2.27) and (2.28) turns out to be

quite small (< 10%) for plausible combinations of α and γ, implying that the balance

between surface fluxes and dissipation solely near the radius of maximum wind is

sufficient for potential intensity estimates versus needing to consider the balance over

a larger region of the TC.

Using (2.27) or (2.28), two expressions for the steady-state intensity are presented

when V 6= 0. First, the steady-state intensity for the low-level pathway whereby the

boundary layer is flushed with low-entropy air from downdrafts outside the eyewall is

|um|3 =
∣
∣uIPI

∣
∣
2 |um| −

(Ts − To)
[

−Ck(α−1)
CDαγ

+ α
]

(
Ts−To
Ts

)
Ck(α−1)γ2

α
+ To

Ts
CD(1 + αγ3)

V . (2.29)

Second, the steady-state intensity for the midlevel pathway whereby the eyewall is

directly ventilated can be represented by letting α = 1 and γ → 0, and (2.26) reduces

to

|um|3 =
∣
∣uIIPI

∣
∣
2 |um| −

Ts(Ts − To)

To

1

CD
V . (2.30)

2.4 Behavior of a ventilated TC

Along with the heuristic picture presented in section 2, a quantitative framework for

assessing midlevel ventilation’s constraint on the maximum achievable steady-state
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gradient wind has been devised in the form of (2.29) and (2.30). To evaluate the

behavior of both equations, it is convenient to nondimensionalize the wind speed by

the potential intensity, as given by (2.27) or (2.28) depending on the pathway of

interest, and the ventilation by the value of V where the discriminant of the cubic

polynomial vanishes:

Vthresh =
2

3
√
3

∣
∣uIorIIPI

∣
∣
3

|ξ| , (2.31)

where ξ is the coefficient in front of V in (2.29) or (2.30). The resulting nondimen-

sionalization,

|um| →
∣
∣uIorIIPI

∣
∣ u†

V → VthreshV†, (2.32)

when substituted into either (2.29) or (2.30) results in

u†3 = u† − 2

3
√
3
V†, (2.33)

where the dagger denotes a nondimensional variable.

Solving (2.33) results in up to three steady-state intensities for a ventilated TC,

but only positive, real solutions are shown in Fig. 2-5. The first solution branch

is given by the solid line. It begins at a normalized intensity of one (the potential

intensity) and decreases monotonically as the ventilation increases, with the intensity

decrease accelerating for larger values of ventilation. The second branch is given

by the dashed line starting at 0 m s−1 and increases in intensity as the ventilation

increases.

The physicality of these equilibrium solutions can be elucidated by considering the

stability of each branch. Evaluating the residual of (2.25) as a function of |um| and
V for an arbitrary set of parameters and then nondimensionalizing gives a stability
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Figure 2-5: Normalized equilibrium solutions (solid and dashed lines) for the steady-
state intensity of a ventilated TC. Arrows denote intensifying and weakening TCs for
off-equilibrium values of nondimensional ventilation and intensity.

diagram as depicted by the arrows in Fig. 2-5. Arrows pointing up indicate net

energy generation and a strengthening TC while those pointing down indicate net

energy dissipation and a weakening TC. Along the equilibria branches, the net energy

generation must of course vanish. The arrows converge toward the first, solid solution

branch indicating that it is a stable equilibrium. Conversely, the arrows diverge from

the second, dashed solution branch indicating that it is an unstable equilibrium so

that it is, in fact, an unobservable solution. Consequently, the only steady-state

solution that may be observed is given by the first branch.

However, the unstable branch is useful in that it delineates intensifying and weak-

ening regions in the V† and u† phase space. Thus, the unstable equilibrium can be

interpreted as the initial amplitude a TC needs in order to survive and grow in the

face of ventilation. For large values of ventilation, the initial amplitude can exceed

half the potential intensity.

For a normalized ventilation equal to one, representing the threshold ventilation

value, the steady-state intensity is reduced to 58% of the potential intensity. Beyond

this, the ventilation exceeds Vthresh, and no steady tropical cyclone can exist. Hence,
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Figure 2-6: Power generation and dissipation in the subcloud layer due to the com-
bination of surface entropy fluxes, dissipative heating, and convective entropy fluxes
(G) and friction (D). Subscript ‘i’ refers to inner region while ‘o’ refers to outer
region.

Vthresh marks the boundary between potential growth and absolute decay of a TC.

2.4.1 Energy budget

The monotonic decrease in intensity with increasing ventilation and threshold behav-

ior noted in Fig. 2-5 can be explained further by examining the energy generation

budget within the subcloud layer as shown in Fig. 2-6 for the more general low-level

ventilation pathway. In this calculation, |uPI | = 100 m s−1, Ts = 28◦C, To = −70◦C,

Ck = CD = 3 × 10−3, α = 1.5, and γ = 0.8. The power generation due to sur-

face entropy fluxes, dissipative heating, and convective entropy fluxes (terms in curly

braces in (2.25)) are grouped together and denoted as Gx while the power loss due to

frictional dissipation (final term in (2.25)) is denoted as Dx, where x = i corresponds

to the inner region and x = o to the outer region.

For low values of ventilation, convective entropy fluxes in the outer region are weak

and surface fluxes dominate the budget, yielding positive power generation to balance

out the frictional dissipation in both regions. As ventilation increases, Go decreases
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quickly as downdrafts flush the subcloud layer with greater amounts of low entropy

leaving Gi to bear more of the burden in maintaining the TC’s winds against dissipa-

tion. Once the normalized ventilation approaches one, Go actually becomes negative

as downdrafts completely overwhelm surface entropy fluxes and dissipative heating in

the outer region. Now, only Gi can sustain the mechanical energy generation combat-

ing both the power dissipation due to friction and downdrafts. Ultimately, increasing

the ventilation beyond the threshold level overwhelms Gi leading to absolute decay.

A key component of Gi is the recovery of downdraft air due to the increased

air-sea thermodynamic disequilibrium. Examining (2.29) reveals that the recovery of

downdraft air reduces the ventilation term by a factor of Ck(α−1)/(CDαγ). Increasing

Ck or α increases the magnitude and area over which surface fluxes act to restore the

downdraft-modified air back to unperturbed values. On the other hand, increasing CD

or γ increases the frictionally driven inflow and reduces the time available for surface

fluxes to act. The available recovery time is an important variable also highlighted

by Powell (1990) where the short trajectories of downdraft-modified boundary layer

parcels in Hurricane Floyd (1981) contributed to the incomplete recovery of parcels

as they spiraled in toward the radius of maximum wind.

In contrast to the low-level pathway, the midlevel pathway is more deleterious as

there is no possibility of modification of the low-entropy air by surface fluxes before

reaching the eyewall. One way of seeing this effect is to eliminate the recovery term

in (2.29) by removing −Ck(α − 1)/(CDαγ) from the numerator of the ventilation

coefficient. Since this factor is negative definite, its elimination will increase the

magnitude of the ventilation term. In terms of energetics, this corresponds to a more

severe reduction of Gi as the power generation in the inner region must now battle

both dissipation and ventilation directly leading to more than a 40% decrease in the

ventilation threshold compared to that of the low-level pathway.

2.4.2 Midlevel pathway in Hurricane Bonnie (1998)

Cram et al. (2007) studied Lagrangian back trajectories of parcels from an origin

point in the eyewall of a numerical simulation of Hurricane Bonnie (1998), which
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at the time was subjected to approximately 12 m s−1 of deep layer environmental

vertical shear4 and had a fairly steady intensity. An estimate of the ventilation can

be obtained by examining the characteristics of their “class IV,” midlevel ventilation

parcels. Trajectories show that parcels had a radial velocity of approximately -2 to

-4 m s−1 while the entropy perturbations were approximately -10 to -12 J (kg K)−1.

From their figures, it is deduced that rm ≈ 40 km, δr ≈ 10 km, ρ ≈ 1 kg m−3 at

cloud base, ρ ≈ 0.75 kg m−3 in the ventilating layer, the radius at which ventilation

occurs is about 50 km, and the depth of the ventilation layer is about 2 km. Assuming

the effect of the slope of the angular momentum surface is small, plugging all these

values into (2.21) and setting α = 1 yields an estimate of the ventilation, V , of

3.7− 9 m s−1 J (kg K)−1. However, ventilation only occurs in the upshear semicircle

of the storm, hence the effective ventilation is estimated to be half this range, or

between 1.8− 4.5 m s−1 J (kg K)−1.

Ideally, the next step would be to calculate a ventilation modified steady-state

intensity using (2.30) to compare to the simulated maximum intensity of about

55 m s−1. However, this requires knowledge of themodel’s potential intensity, which is

not only a function of the background thermodynamic state but also the configuration

of the model itself including its resolution and turbulence parameterization (Rotunno

et al., 2009). Using the background state only, the potential intensity in the simulation

of Bonnie is estimated to range anywhere from 27− 74 m s−1 depending on the ratio

of exchange coefficients, the relative humidity in the boundary layer, and the back-

ground sounding. The lower end of the potential intensity range is estimated using a

surface relative humidity of 90% and a ratio of Ck to CD of 0.35. The upper end of the

potential intensity range is estimated using a pre-storm sounding from NCEP/NCAR

reanalysis data at Bonnie’s position on Aug. 23, 1998 at 12Z, pseudoadiabatic as-

sumptions, and a ratio of Ck to CD of 0.65. For instance, using the upper limit of

the potential intensity range along with Ts = 30◦C, To = −63◦C, and CD = 2× 10−3

would yield a ventilation modified steady-state intensity of 47− 65 m s−1, which en-

4The metric for vertical shear is the magnitude of the vector difference between the environmental
winds at upper- and low-levels of the troposphere, usually 200 hPa and 850 hPa.
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compasses the simulated intensity of Bonnie5. On the other hand, using the lower half

of the potential intensity range would yield no steady TC as the ventilation threshold

would be exceeded.

It should be emphasized that even with knowledge of the model’s potential inten-

sity, there remain a few caveats which must be highlighted. The ventilation calculation

assumes that eddies and convective motions are 100% efficient at transferring the low

entropy through a deep layer in the eyewall. If evaporation of rain in subsaturated

air does not occur, the low-entropy air may simply enter and exit the eyewall region

without much modification, leading to a reduction in the eddy entropy flux efficiency.

Also, given that the standard deviation of the entropy perturbations is quite large

in the Cram et al. (2007) study, the actual covariance between u′ and s′ may be

significantly different from simply using the means of each to get a ballpark estimate.

More precise accounting of parcels would be needed to obtain an accurate value of

the ventilation parameter V . Lastly, since the theory only accounts for the maximum

gradient wind, unbalanced forces may play a role in allowing the storm to survive

even though the theoretical ventilation-modified intensity suggests otherwise, i.e. the

ventilation threshold may be significantly higher for a superintense storm.

2.4.3 Interactive thermodynamic efficiency

In the analysis up to this point, the thermodynamic efficiency was held fixed, but

ventilation acts to reduce the buoyancy of eyewall parcels relative to the environment

causing the outflow temperature to increase. Such shallowing of the TC structure

is supported by composited satellite derived analyses of sheared TCs (Knaff et al.,

2004).

The outflow temperature is defined as the entropy-weighted temperature along

surfaces of angular momentum or saturation entropy where they flare out to large

radii:

5Dissipative heating is excluded from the model and the ventilation modified stead-state intensity
calculation. This effectively causes To in the denominator of the thermodynamic efficiency in second
term on the right hand side of (2.30) to be replaced by Ts
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To =
1

smax − smin

∫ smax

smin

Tods (2.34)

where smin and smax are the minimum and maximum entropy in the TC’s subcloud

layer. The methodology for applying (2.34) to a sounding is elaborated upon in

appendix B.

Using the Jordan hurricane season mean sounding (Jordan, 1958), the outflow

temperature and height as a function of the normalized ventilation is shown in Fig. 2-7

for the low-level pathway. The same figure for the midlevel pathway is nearly identical.

For no ventilation, the average outflow temperature is about −68◦C corresponding to

a thermodynamic efficiency, (Ts−To)/To, of 0.46. As ventilation increases, the outflow

temperature warms and the outflow height lowers. As the ventilation threshold is

neared, the outflow temperature increases more rapidly as smin decreases below sa

and less buoyant parcels are included in the calculation of To. Consequently, the

efficiency is reduced to 0.42 at the ventilation threshold. Knaff et al. (2004) noted

the height of the balanced vortex is approximately 1 km shallower in high-shear storms

compared to low-shear storms, which is consistent with the change in outflow height

between relatively low and high amounts of ventilation.

In comparison with fixed thermodynamic efficiency, the normalized intensity when

the thermodynamic efficiency interacts with ventilation is depicted in Fig. 2-8. For

most values of ventilation, the efficiency change contributes approximately 5 - 10%

to the total intensity decrease from the potential intensity, but once the ventilation

becomes large, the percentage becomes much more significant. Once V† > 0.9, the

contribution increases from 10% to 25% in exponential fashion.

The decreased thermodynamic efficiency is also responsible for increasing the equi-

librium values along the unstable branch (not shown), which corresponds to a higher

minimum intensity needed for sustainability. This change is more pronounced for

larger values of ventilation. Moreover, the decrease in efficiency reduces the ventila-

tion threshold value by a small margin over the threshold when the thermodynamic

efficiency is held fixed.
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Figure 2-7: Outflow temperature (solid) and height (dashed) for a ventilated TC
using the Jordan hurricane season mean sounding.
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2.5 Sensitivity to parameters

2.5.1 Potential intensity

The nondimensional form of the steady-state intensity of a ventilated tropical cyclone

lacks any reference to the potential intensity, implying that the nondimensional for-

mulation is invariant across all background thermodynamic states. This arises due to

the normalization of the ventilation by the cube of the potential intensity in (2.32)

via (2.31). Differing degrees of feedback between the thermodynamic efficiency and

the ventilation introduces a nominal amount of variance in the normalized intensity

between thermodynamic states, especially as the ventilation approaches the threshold

value, but this effect can mostly be ignored.

It is important to keep in mind the actual ventilation can affect tropical cyclones

embedded in different thermodynamic states quite differently, as shown in Fig. 2-9

for a range of mean tropical maritime soundings binned by sea surface temperature.

The soundings are composited using 15 years of northern hemisphere July-October

NCEP/NCAR reanalysis data (Kalnay et al., 1996). The same value of ventilation can

conceivably yield a strong TC in the more favorable thermodynamic environment and

no steady TC in the other, depending on whether the respective ventilation threshold

has been exceeded. To observe the invariance across the environments, one must

scale the intensity by the potential intensity and the ventilation by the ventilation

threshold, transforming the family of curves in Fig. 2-9 to the single curve in Fig.

2-5.

2.5.2 Alpha and gamma

The sensitivity of the framework to the two parameters, α and γ, is now assessed.

Recall that α controls the ratio of the width of the eyewall and downdraft regions to

the radius of maximum wind, and γ controls the radial decay of the wind velocity from

the inner to outer regions. Given that the potential intensity only varies slightly over

the plausible range of α and γ, the sensitivity can be assessed by simply examining
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Figure 2-9: Steady-state intensity curves with interactive efficiency for various ther-
modynamic environments binned by SST.

the coefficient in front of V in (2.29) as a function of α and γ while holding Ts = 28◦C,

To = −70◦C, and Ck = CD = 3× 10−3 as shown in Fig. 2-10. Combinations of α and

γ that yield inertially unstable configurations are blacked out.

Increasing α allows a greater amount of low-entropy air to infiltrate the subcloud

layer. However, increasing α also allows for greater surface fluxes and recovery of

downdraft air. For relatively high values of γ, these effects offset one another and

there are only modest changes to the ventilation coefficient as α varies. For smaller

values of γ, the sensitivity of the ventilation coefficient to α increases as smaller surface

fluxes in the outer region are unable to promote as much recovery of downdraft air.

Over most of the parameter phase space, the ventilation coefficient is more sen-

sitive to γ. As previously mentioned, γ controls the recovery of downdraft air with

larger values of γ diluting the detrimental effects of downdrafts. Additionally, the fric-

tionally induced inflow, and hence the inverse of the advective timescale (δr/ < u >),

is also directly proportional to γ. For relatively large α, decreasing γ beyond a cer-

tain value results in a decrease in the ventilation coefficient as the large advective

timescale more than compensates the small surface fluxes in the outer region.

The above results are somewhat sensitive to the ratio of Ck to CD. Reducing the
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Figure 2-10: Ventilation coefficient in (2.29) as a function of α and γ. Values are
divided by 104. Inertially unstable combinations of α and γ are blacked out.

ratio to 0.5 results in an increase in the ventilation coefficient by roughly a factor

of two through all the parameter space in Fig. 2-10 (not shown). Surface fluxes are

unable to increase the entropy of downdraft-modified air as rapidly in the amount

of time it takes a parcel to reach the eyewall, which makes the TC more sensitive

to the ventilation. Moreover, at large α and small γ, the ventilation coefficient does

not show a pronounced maximum axis because the entropy recovery timescale is still

large relative to the advective timescale.

Note that the nondimensional formulation is independent of α, γ, Ck, and CD.

Therefore, none of these parameters affect the shape of the steady-state intensity

curve in nondimensional space.

2.6 Conclusions

In the Carnot heat engine analogue of a tropical cyclone, ventilation acts to reduce the

maximum entropy obtained in the eyewall of the TC and reduces the thermodynamic

efficiency, resulting in a decrease in the total amount of work that can be performed

by the TC to combat frictional dissipation. We developed an idealized framework for
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analyzing the consequences of ventilation via two pathways. The first is a low-level

pathway where rain evaporating into dry air aloft produces low-entropy downdrafts

that are swept inwards by the radial inflow in the subcloud layer, and the second is

a midlevel pathway where eddies flux low-entropy air directly into the eyewall.

Qualitatively, the behavior captured by the solutions of the analytical formula-

tion mimics some of the gross behavioral aspects of sheared TCs. The most apparent

aspect is that the maximum attainable intensity is reduced up to 58% of the poten-

tial intensity as the ventilation becomes stronger. Secondly, there is a theoretical

ventilation threshold beyond which a steady tropical cyclone cannot be maintained

and only a trivial solution is possible (i.e. one with no tropical cyclone at all). This

is analogous to cases when the vertical wind shear overwhelms a tropical cyclone,

resulting in its quick demise. Additionally, this may also explain why there are very

few TCs observed for vertical wind shears greater than 20 m s−1 (Zeng et al., 2007,

2008). Lastly, for nonprohibitive magnitudes of ventilation, there is an unstable equi-

librium intensity separating growing and decaying TCs, which may be a reason why

stronger and weaker storms respond differently to comparatively similar magnitudes

of vertical wind shear (DeMaria et al., 2005).

The outflow temperature is affected by a shallowing of the TC’s eyewall convection,

as its buoyancy relative to the background environment is reduced due to ventilation.

This results in a reduction in the thermodynamic efficiency, which serves to compound

the effects of ventilation. This is especially severe for large values of ventilation, where

10 - 25% of the total weakening relative to the potential intensity can be attributed

to ventilation’s feedback on the thermodynamic efficiency.

TCs in environments with more favorable thermodynamic profiles, i.e. with higher

potential intensities, are able to withstand ventilation better as the steady-state in-

tensity and threshold ventilation both increase while the minimum intensity needed

for sustainability decreases with increasing potential intensity. Hence, the same mag-

nitude of vertical wind shear may have quite different effects in different thermody-

namic environments, allowing a fairly strong TC to be maintained in a high potential

intensity environment while dissipating another TC in a low potential intensity envi-
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ronment.

Normalizing the steady-state intensity by the potential intensity and the venti-

lation by the threshold ventilation for each respective thermodynamic environment

collapses the framework into a single curve that is invariant across all thermodynamic

states. It would be interesting to see if, observationally, nature also follows this law.

The difficulty in doing this arises in estimating the actual ventilation with observa-

tions, as it would require high density time and space observations of radial flow and

entropy at lower to middle levels in the inner core. A possible field experiment to

assess these variables would involve a circular flight at midlevels just radially outside

the eyewall with preferably more than one plane or combination of unmanned aerial

vehicles using dropsondes to gather thermodynamic data and dual Doppler radar to

assess the flow.

In the meantime, it may be possible to relate the ventilation to larger scale, more

easily observed features such as the magnitude of the vertical wind shear and internal

parameters related to the TC structure, such as done in Emanuel et al. (2004). The

ventilation calculated over a larger domain from coarse gridded data, such as done

in Marin et al. (2009) with the Global Forecast System model, may be sufficient for

capturing some of the variance associated with ventilation induced intensity changes.

Ideally, the ventilation should be calculated as close to the inner core as possible.

A sensible approach to carry out this calculation and to test the theoretical char-

acteristics of ventilated TCs is to use numerical simulations of ventilated or sheared

TCs. An axisymmetric TC model with parameterized eddy fluxes at midlevels would

be an efficient way to assess the behavior and intensity of a ventilated TC over a wide

array of ventilation values and thermodynamic environments. Moreover, it would

be interesting to see if the gross properties of this formulation also carry over to

3D, high-resolution simulations of sheared TCs. In particular, the connection be-

tween ventilation and resulting downdrafts needs to be examined along with the

energy and entropy budgets at different annuli, specifically around the eyewall and

any widespread downdrafts.

Lastly, it has been noted that changes in vertical wind shear may be an important
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factor in future changes in TC activity (Vecchi and Soden, 2007b). With an increase in

potential intensity, the same amount of ventilation does comparatively less. However,

as elaborated upon in Emanuel et al. (2008), the entropy deficit between the boundary

layer and midlevels should increase with global warming under the assumption of

constant relative humidity. Since ventilation is a function of this entropy deficit,

the ventilation should correspondingly increase, leading to an increase in the entropy

eddy flux and downdraft convective available potential energy even in the event that

eddy velocities are invariant with time (Nolan and Rappin, 2008). Whether this

corresponds to a change in the normalized ventilation, which is the relevant quantity

to consider, depends largely on how the combination of vertical wind shear, entropy

deficit, and potential intensity evolve with climate change.
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Chapter 3

A Ventilation Index for Tropical

Cyclones: Climatology and

Projections

3.1 Introduction

A number of environmental factors control tropical cyclogenesis and tropical cyclone

(TC) intensity, contributing to the challenge of TC prediction. Among these envi-

ronmental controls is the interaction of TCs with environmental vertical wind shear

associated with upper tropospheric troughs (Hanley et al., 2001), midlevel jets such

as that associated with the Saharan air layer (Dunion and Velden, 2004), and out-

flow from other TCs and monsoon depressions (Elsberry and Jeffries, 1996). Since

environmental vertical wind shear is always present in varying amounts during the

course of any TC’s life, it is important to understand how wind shear affects TCs to

improve intensity and genesis forecasts and to assess how TC statistics may change

with climate.
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3.1.1 Genesis and Intensity

Environmental vertical wind shear is generally thought to be detrimental to tropical

cyclogenesis. Based on analysis of developing and nondeveloping systems in both

the Northwest Pacific and North Atlantic, McBride and Zehr (1981) and Zehr (1992)

concluded that the vertical wind shear must be close to zero near the system’s center

for genesis to occur. These empirical observations led to the development of regional

and global genesis indices for the North Atlantic and globe in which the inclusion

of vertical wind shear is necessary to produce skillful indices (Gray, 1979; DeMaria

et al., 2001; Emanuel and Nolan, 2004). In addition to the case studies and statistics,

a numerical modeling study by Nolan and Rappin (2008) found that vertical wind

shear slows the development of an incipient vortex. In experiments where the shear

is very strong, weak vortices do not develop at all.

Vertical wind shear may discourage genesis by ventilating the incipient disturbance

with low-entropy or moist static energy air. Gray (1968) hypothesized that differential

advection by the environmental flow removes the “condensation heat” from a vortex

preventing it from deepening. Ventilation also occurs as drier air is advected into the

disturbance, disrupting the formation of a deep, moist column which is postulated to

be imperative for genesis (Emanuel, 1989; Bister and Emanuel, 1997). However, there

are some studies that also hypothesize that modest shear, which induces synoptic-

scale ascent on the downshear side of the system, may help organize convection in

a developing system as well (Bracken and Bosart, 2000; Davis and Bosart, 2003;

Musgrave et al., 2008).

Environmental vertical wind shear is also observed to be an impediment to TC

intensification. Intensity changes at various time intervals are strongly and negatively

correlated with the vertical wind shear (DeMaria, 1996; Gallina and Velden, 2002),

and thus, vertical wind shear is one of the most important predictors in statistical-

dynamical intensity models (DeMaria et al., 2005) and simplified dynamical intensity

models (Emanuel et al., 2004; DeMaria, 2009). Zeng et al. (2007, 2008) found that

most TCs in the Northwest Pacific and the North Atlantic achieve their maximum

74



lifetime intensity when the vertical wind shear is less than 20 m s−1. A number of

3D numerical modeling studies of TCs in idealized shear environments also simulate

decreases in intensity, but there are a number of hypotheses as to what causes the

weakening, including outward eddy fluxes of entropy and potential vorticity that erode

the TC from the top down (Frank and Ritchie, 2001), stabilization caused by midlevel

warming (DeMaria, 1996), reversal of the secondary circulation on the upshear side

allowing shear-induced entrainment of environmental air at upper levels (Wong and

Chan, 2004), and eddy momentum fluxes that weaken the mean tangential winds (Wu

and Braun, 2004).

Another hypothesis is that vertical wind shear may act to decrease the efficiency of

the hurricane heat engine by exciting inner-core asymmetries that can then ventilate

the TC inner core with low-entropy air at midlevels (Simpson and Riehl, 1958; Cram

et al., 2007) or induce convective downdrafts by evaporative cooling, which are then

swept inward by the radial inflow in the boundary layer (Powell, 1990; Riemer et al.,

2010). In Ch. 2, a simple framework was developed to study ventilation’s constraint

on a TC’s steady-state intensity. Ventilation weakens the TC because it siphons

power away from the TC that would otherwise to be used to power the TC’s winds

against dissipation.

If ventilation is an important environmental control for both tropical cyclogenesis

and TC intensity, then such a signal should be detectable in observations. The diffi-

culty in performing such an analysis is that an accurate calculation of the ventilation

requires high spatial and temporal observations of the TC’s kinematic and thermo-

dynamic structure, which is quite an onerous dataset to obtain given the limited re-

sources available for in situ observations. Instead, numerical models have been used

to study ventilation by investigating Lagrangian back trajectories of parcels (Cram

et al., 2007) and budget analysis from gridded numerical weather prediction models

(Marin et al., 2009). The latter study showed that TC intensification in the Global

Forecast System model is correlated to the ventilation calculated over a 4◦ × 4◦ area

around the TC, implying that large scale environmental fields, rather than mesoscale

features that aren’t resolved by the model, capture at least a portion of ventilation’s
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effects on TCs.

The lack of high resolution observations and high computational expense to run

3D TC simulations has limited ventilation studies to only a handful of cases. By

using a result from Ch. 2, a ventilation index (VI) is proposed in section 3.2 that

scales with the actual ventilation and can be easily calculated from reanalysis fields.

In section 3.3, the VI is then used to assess the degree to which ventilation controls

global TC genesis and intensity statistics.

3.1.2 Changes with Climate

Climate models indicate changes in the large-scale circulation along with warming

of the SSTs and the thermal profile over the tropics. As such, robust discussion

continues as to how global and regional TC statistics will respond to these large scale

changes. Two main approaches have been used to study this problem: examining TC-

like vortices in GCM output (Bengtsson et al., 1996; Oouchi et al., 2006; Yoshimura

et al., 2006; Bengtsson et al., 2007; Zhao et al., 2009) and downscaling GCM fields

using a higher resolution regional or TC model (Knutson and Tuleya, 2004; Emanuel

et al., 2008; Knutson et al., 2008; Garner et al., 2009; Bender et al., 2010). A review of

the studies performed to date indicates a global decrease in TC frequency by 6−34%

and an increase in intensity by 2 − 11% by 2100 under the Intergovernmental Panel

on Climate Change’s A1B scenario (Knutson et al., 2010). However, there is large

variability in individual TC basins and between different GCMs.

The shifts in TC frequency and intensity noted in GCMs are driven in part by

changes in the distributions of environmental variables that control TCs. For example,

Vecchi and Soden (2007b) and Garner et al. (2009) noted that the consensus of GCMs

project an increase in vertical wind shear stretching from the Caribbean to the central

North Atlantic. Such a pattern would result in more hostile conditions for TCs in

these regions. However, most GCMs also project a small increase in potential intensity

over most of the tropics, which would make thermodynamic conditions more favorable.

Hence, there exist a multitude of competing factors and it is unclear which effects

dominate.
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One way to approach this problem is to regress different environmental factors on

to the spatial and temporal distribution of tropical cyclogenesis events or accumu-

lated statistics of TC intensity. For example, Emanuel and Nolan (2004) formulated a

genesis potential index (GPI) with four environmental variables: the potential inten-

sity (uPI), low-level absolute vorticity (η), deep layer vertical wind shear (ushear), and

nondimensional entropy deficit (χm). The most recent form of the GPI is (Emanuel,

2010)

GPI =
|η|3 MAX(uPI − 35, 0)2

χ
4/3
m (ushear + 25)4

. (3.1)

The nondimensional entropy deficit is defined as

χm =
s∗m − sm
s∗SST − sb

, (3.2)

where sm is the midlevel entropy, sb is the boundary layer entropy, and s∗ is the

saturation entropy. Evaluation of the GPI and similar seasonal genesis parameters

in GCM simulations of the present climate reveals that they are capable of capturing

the seasonality of TC activity along with the main regions of genesis (Camargo et al.,

2007; Caron and Jones, 2008). A natural extension is to use the genesis indices as

proxies for assessing possible long-term changes in genesis locations and numbers

(McDonald et al., 2005). Similarly, Emanuel (2007) found that the low-level absolute

vorticity, potential intensity, and vertical wind shear are all important predictors of

the seasonal power dissipation index1, and that subsequent changes in seasonal power

dissipation in the future may strongly depend on these environmental factors.

Although the empirical indices work well for describing current TC climatology,

there is always some subjectivity when it comes to choosing the statistical model and

environmental variables to include. Increased understanding of physical pathways

by which environmental factors affect genesis and intensity will lead to more refined

variables or the consideration of new variables. One possible candidate for such a

1The seasonal power dissipation index is the cube of the maximum wind speed integrated over
the lifetime of all TCs in a season.
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refinement lies in the ventilation hypothesis and theoretical framework of Ch. 2.

After a suitable normalization, the nondimensional ventilation is invariant across all

thermodynamic states (potential intensities). Thus, the nondimensional ventilation

serves as a more complete metric to explain projected changes in TC climatology

versus simply looking at changes in vertical wind shear alone.

In section 3.4, the ventilation is calculated using output from GCMs over two

periods: 1981-2000 and 2181-2200. First, the GCMs are compared to a reanalysis in

order to assess how well they represent spatial patterns of ventilation from 1981-2000.

Second, changes in the ventilation between the two twenty-year periods are calculated

and implications for shifts in future TC climatology are discussed. Conclusions follow

in section 3.5.

3.2 Ventilation Index

Under the assumptions of axisymmetry, steadiness, and slantwise neutrality, an ex-

pression for the ventilation-modified steady-state intensity is derived in Ch. 2. Upon

nondimensionalizing the maximum wind speed (um) by the potential intensity and

the ventilation (V) by the ventilation threshold2, the intensity equation takes the

simple form

u†3 = u† − 2

3
√
3
V†, (3.3)

where u† is the nondimensional maximum wind speed and V† is the nondimensional

ventilation. The advantage of such a nondimensionalization is that the interaction

between the potential intensity and vertical wind shear is effectively merged into

a single term, making V† a convenient metric for assessing how future changes in

environmental vertical wind shear may affect TC climatology.

The ventilation itself can be interpreted as the radial flux of entropy through a

control volume above the boundary layer surrounding the eyewall of a TC, scaled by

2The ventilation threshold is defined to be the maximum ventilation at which a steady TC can
exist.

78



a characteristic convective width. Assuming that the ventilation occurs at midlevels

where the entropy deficit is the largest, the ventilation can be approximated as

V ≈ u′(s∗m − sm), (3.4)

where u′ is the radial velocity associated with inner-core asymmetries. Inner-core

asymmetries, such as vortex Rossby waves, are excited by environmental vertical wind

shear. This occurs as the vortex becomes tilted by differential advection, inducing a

wavenumber one discrete mode of the vortex core (Schecter et al., 2002). Additionally,

strong convection that preferentially forms in the downshear sector of the vortex

will diabatically form low-wavenumber asymmetries (Reasor et al., 2000; Corbosiero

et al., 2006). Reasor et al. (2004) derived an expression relating the environmental

vertical wind shear forcing to the perturbation potential vorticity of vortex Rossby

waves in a linearized primitive equation framework. Since vortex Rossby waves are

quasi-balanced phenomena (Wang, 2002a), one should then be able to relate the flow

associated with the perturbation PV in terms of the environmental vertical wind

shear forcing as well, though such an exercise is left to future work. As a first step,

this complication is avoided by assuming a linear relationship between u′ and ushear.

Applying this to (3.4),

V = kushear(s
∗
m − sm). (3.5)

Next, the ventilation threshold (2.31) can be expressed as

Vthresh =
2

3
√
3
uPICk (s

∗
SST − sb) , (3.6)

where Ck is the enthalpy exchange coefficient. Dividing (3.5) by (3.6), results in an

expression for the nondimensional ventilation:

V† =
kushear(s

∗
m − sm)

2
3
√
3
uPICk (s∗SST − sb)

. (3.7)

Based on (3.7), a ventilation index is defined:
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VI =
ushearχm
uPI

, (3.8)

where (3.2) has been substituted. The ventilation index increases with increasing

environmental vertical wind shear and midlevel drying. However, increasing potential

intensity will decrease the VI. In essence, it is the interaction of these three parameters

that is important to TCs in this framework.

Comparing (3.1) and (3.8) reveals that there is a common link between the GPI

and VI. Specifically, the GPI is proportional to some negative power of the VI, with

the best fit using a power between -1 and -2. Hence, a portion of the variability

of the spatial and temporal climatology of tropical cyclogenesis can be explained by

ventilation. Since the GPI is a purely empirically derived quantity, some theoretical

underpinning is garnered by the similarity to the VI.

However, it should also be remembered that the theoretical framework used to de-

rive the VI is most applicable to mature TCs, so although ventilation is hypothesized

to be important to all TCs in a broad sense, the exact processes by which low-entropy

air is fluxed into the TC are likely quite different in the genesis versus mature stage.

The high sensitivity of genesis to vertical wind shear, given by its quartic power in

the GPI, may be due to the increased efficiency by which environmental air can in-

trude into the nascent disturbance due to lack of a large stagnation radius associated

with a strong vortex (Dunkerton et al., 2009). Moreover, the terms that comprise

the GPI can influence genesis in other ways besides ventilation. For example, verti-

cal wind shear may discourage genesis by promoting linear versus circular convective

organization (Robe and Emanuel, 2001; Dunkerton et al., 2009).

3.3 Ventilation Climatology

Daily ERA-40 reanalysis data (Uppala et al., 2005) from 1981-2000 is used to calculate

the VI. The environmental vertical wind shear is defined to be the magnitude of the

vector difference between the winds at 850 mb and 200 mb. For the nondimensional

entropy deficit calculation, the reversible formulation of entropy (Emanuel (1994) pg.
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120) is used, ignoring the liquid water heat capacity term. The 600 mb fields are

used to calculate the (saturation) entropy at midlevels and the SST fields from the

reanalysis are used to calculate s∗SST assuming a surface pressure of 1015 mb. In

lieu of using the 1000 mb ERA-40 fields for sb, a relative humidity of 80% and a

temperature that is 1 K less than the SST are assumed, which are typical values in

Tropical Atmospheric Ocean buoy data. The motivation for doing this lies in the

comparison with GCM data in the next section, in which the same approximation is

made because the 1000 mb fields are not internally archived on disk. A comparison

of sb calculated using this approximation versus using the actual 1000 mb ERA-40

data reveals small differences equatorward of 25◦. Lastly, the potential intensity is

calculated using a reversible formulation, dissipative heating, and a ratio of enthalpy

to drag coefficients of 0.9, which is the same configuration used in the Emanuel et al.

(2008) study, hereafter E08.

It is important to note that TCs themselves have an influence on the VI as the

TC’s circulation increases the vertical wind shear around the storm, decreases the

midlevel entropy deficit close to the center, and decreases the potential intensity.

Since we wish to isolate the environment in which TCs are embedded, it is necessary

to filter out any data contaminated by TCs. Therefore, any data within a 10◦ × 10◦

box around a TC’s best track position is removed3.

After filtering TCs out of the data, the VI is calculated over the peak four months

of each hemisphere’s TC season (Jul.-Oct. for the Northern Hemisphere and Dec.-

Mar. in the Southern Hemisphere) and averaged from 1981-2000, as shown in figure

3-1. Results are shown as log10(VI) in order to resolve detail in the tropics. In

areas frequented by tropical cyclones in the tropics, the seasonally averaged VI is less

than 0.1 and demarcates regions of high potential intensity, moist midlevels, and low

vertical wind shear. The tongues of higher VI in the subtropics on the eastern side of

the ocean basins are due to axes of higher vertical wind shear coinciding with dry air

at midlevels despite fairly high potential intensity. Poleward of 30◦N in the Northern

3The reanalysis TC positions can sometimes differ from the best track positions, but the area
removed is large enough such that this should not be a problem.
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Figure 3-1: (a) Jul.-Oct. ventilation index for the Northern Hemisphere and (b)
Dec.-Mar. ventilation index for the Southern Hemisphere averaged over 1981-2000.
Results are shown as the log10(VI).

Hemisphere and 20◦S in the Southern Hemisphere, the VI increases quickly due to

increasing upper level westerlies and a sharp decrease in potential intensity.

3.3.1 Genesis

For individual tropical cyclogenesis events, the ventilation index on daily time scales

is a more relevant metric to examine. Using daily ERA-40 data, two distributions

of VI are constructed. The first distribution is called the “daily VI” and is defined

to be the climatological distribution of daily VI accumulated over each point in the

main genesis regions (MGR) of the tropics from 1981 to 2000. The MGR is defined in

Tab. 3.1, and TC contaminated points have been eliminated using the same process

outlined in the previous section. The second distribution is called the “genesis VI”

and is defined to be the daily VI at genesis locations in the MGR one day before
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Figure 3-2: Normalized distribution of the climatological daily VI (blue bars) and
genesis VI (red bars) in the main genesis regions (see Tab. 3.1 for definition). See
text for precise definitions of each distribution. Daily VI data from 1981-2000 is used
to construct both histograms.

genesis occurs. Thus, the genesis VI is simply a subset of the daily VI distribution

isolated for tropical cyclogenesis events only. Both distributions are normalized and

plotted in Fig. 3-2 on a logarithmic VI scale. Clearly, a significant portion of the

genesis VI distribution, which has a median of 0.02, is comprised from the lower half

of the daily VI distribution, which has a median of 0.07. Genesis is often associated

with extremely low values of ventilation. Additionally, the genesis VI has a much

sharper falloff to the right of its mode than the daily VI. Approximately 95% of all

global tropical cyclogenesis events occur at a VI that is less than 0.1 with no events

occurring above a VI of 0.4.

The 95th percentile for the genesis VI serves as a useful threshold for delineating

global genesis regions. Figure 3-3 shows the percentage of days in each hemisphere’s

TC season when the daily VI is below the threshold value of 0.1. Approximately 98%

of tropical cyclogenesis events occur at locations where more than 30% of the days

in the TC season are below the VI threshold. A notable exception to this pattern

is near the equator where there is a dearth of genesis events due to the low Coriolis
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Table 3.1: TC basin and season definitions. All land areas within each basin are
excluded.

Basin Abbreviation Season Area

Main Genesis Regions MGR

{
Jul.-Oct.
Dec.-Mar.

5-25N, 60-340E
5-25S, 40-200E

North Atlantic NATL Jul.-Oct. 10-30N, 30-87.5W
Northeast Pacific EPAC Jul.-Oct. 10-25N, 95-140W
Northwest Pacific WPAC Jul.-Oct. 5-30N, 100-170E
North Indian NIND Jul.-Oct. 10-25N, 60-100E

Southern Hemisphere SHEM Dec.-Mar. 5-25S, 40-200E

parameter despite the high percentage of days with a VI below 0.1. There are no

tropical cyclogenesis events at any location where less than 10% of the days are below

the VI threshold, such as the area around Hawaii. In other words, tropical cyclogenesis

is precluded from occurring where the VI is seasonally high, and a sufficiently low VI

appears to be a necessary condition for tropical cyclogenesis.

3.3.2 Intensity

In addition to genesis, the normalized intensity, defined to be the TC’s maximum,

symmetric wind speed divided by the local potential intensity, is constrained by ven-

tilation. The maximum, symmetric wind speed is estimated by subtracting 70% of

the TC’s translation speed from the best track maximum wind speed, with the 70%

factor chosen to best correspond to observations (K. Emanuel, personal communica-

tion). To minimize the inclusion of hybrid storms or TCs undergoing extratropical

transition, the analysis is confined to the MGR over the peak TC season. To mini-

mize contamination by the TCs themselves, the VI is calculated by taking an average

along a 10◦ × 10◦ perimeter surrounding the TC center. Since the potential intensity

is slowly varying, the potential intensity at a 3 day lead is used. Additionally, the

potential intensity is then multiplied by 80% to account for the reduction of winds

from the top of the boundary layer to 10 m in order to conform to the best track

data before calculating the normalized intensity. The grayscale shading in Fig. 3-4
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Figure 3-3: Percentage of days with a VI below 0.1 for (a) the Northern Hemisphere
TC season and (b) the Southern Hemisphere TC season (shaded with contours every
10%). TC genesis points for the same period are denoted by black dots.
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Figure 3-4: Grayscale shading indicates the number of daily TC observations in the
MGR as a function of the VI and normalized intensity, i.e. the maximum, symmetric
wind speed divided by the local potential intensity. Arrows signify the mean 24 hour
normalized intensity change for TCs in each bin with green and red arrows indicating
normalized strengthening and weakening, respectively. The maximum arrow length
corresponds to a normalized intensity change of 0.4 over 24 hours.

shows the number of daily TC observations in the MGR as a function of both the

VI and normalized intensity. Darker shading indicates a larger number of daily TC

observations within each joint VI and normalized intensity bin. For low values of

ventilation, TCs are observed with intensities from tropical depression strength to

just above the potential intensity with the largest concentration of TC observations

around 20% the potential intensity. As the VI increases, the overall number of TC

observations decreases, but most starkly for high normalized intensities where there

are only a few instances of TCs with normalized intensities above 0.6 for a VI greater

than 0.4. This supports the conclusions from Ch. 2 and Zeng et al. (2008) that

increasing ventilation or vertical wind shear acts to decrease the upper bound on a

TC’s intensity.

More intriguing is the relationship between the ventilation and normalized in-
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tensification, defined to be the change in normalized intensity over a given period

of time. It is important to remember that the normalized intensification is usually

different from the raw intensification as the potential intensity along the TC’s track

changes. For instance, one could have normalized strengthening despite a decrease

in intensity if the potential intensity along the TC’s track is dropping faster than

the intensity. For the TCs in each joint bin in Fig. 3-4, the mean 24-hour normal-

ized intensification is given by the arrows. Upward pointing green arrows indicate a

mean normalized strengthening while downward pointing red arrows indicate a mean

normalized weakening. The length of the arrow is reflective of the magnitude of the

mean 24-hour normalized intensity change. Unless otherwise stated, all subsequent

mentions of strengthening and weakening will be in the normalized sense.

There is a clear delineation between strengthening and weakening TCs in Fig.

3-4. TCs at low VIs and normalized intensities (lower left region of Fig. 3-4) tend

to strengthen while TCs at high VIs and normalized intensities (upper right region

of Fig. 3-4) tend to weaken. Additionally, there exists a fairly narrow region where

the arrows converge, implying an equilibrium boundary. The boundary appears to be

horizontal around a normalized intensity of 0.7 for the lowest few VI bins and then

bends downward as the VI increases to 0.2. This behavior is qualitatively similar

to the stable equilibrium solution of the theoretical framework, given by the solid

curve in Fig. 2-5, where the steady-state intensity decreases more rapidly as the

normalized ventilation increases. However, the observed equilibrium boundary does

not extend all the way to the potential intensity. This may be due to uncertainties

in the potential intensity, uncertainties in the best track intensities, and the fact that

ventilation is not the only mechanism that controls intensity.

The greatest strengthening tends to occur at the lowest values of ventilation and

normalized intensities around 0.4, while the greatest weakening tends to occur at high

normalized intensities combined with intermediate to large VIs. The similarity with

the stability analysis in Ch. 2, shown by the arrows in Fig. 2-5, is quite striking,

particularly in the upper half of the figure. TCs far away from equilibrium tend to

have a much larger normalized intensification. However, in the lower part of Fig.
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3-4, the results are much less clear. There does not seem to be an unstable equilib-

rium separating strengthening and weakening TCs at low normalized intensities. One

would expect the assumptions used in the theoretical framework would not apply as

well to weaker storms due to the lack of axisymmetry and slantwise neutrality. The

intensification of moderately sheared or ventilated TCs may be more dependent on

mesoscale features such as transient bursts of convection (Nolan and Montgomery,

2002; Molinari et al., 2006). This would lead to much more variance in the intensi-

fication statistics, which may be responsible for the varied mean intensifications in

bins with a VI between 0.2 and 0.4 and normalized intensities less than 0.4. Further-

more, it is also possible that there is a positive intensification bias at low normalized

intensities in Fig. 3-4 because TCs that weaken below 15-20 knots are not included

in the best track data and, therefore, are excluded from the sample.

While weakening can occur at all VIs, there appears to be an approximate upper

bound on the VI for strengthening TCs. To assess where this upper bound may lie,

the normalized VI distribution for strengthening TCs is shown in Fig. 3-5 by the

green bars. Additionally, the distributions of the VI for weakening TCs and the daily

VI in the MGR are added for comparison. As expected from the previous figure,

the VI distribution for strengthening TCs is shifted to the left of the distribution for

weakening TCs. The 95th percentile VI for strengthening TCs is 0.17 and corresponds

closely to the transition zone in Fig. 3-4 where the mean normalized intensification

becomes predominately negative. No TC is observed to strengthen when the VI is

greater than 0.46, and the preponderance of those TCs that do strengthen in between

a VI of 0.2 and 0.4 are at low normalized intensities, as mentioned previously.

There are several possibilities as to why there are few strengthening TCs observed

at VI values below 0.01 whereas a significant portion of genesis events occur at VIs

below 0.01. First, TCs tend to be steered away from genesis regions where the lowest

VI is climatologically found, resulting in a predisposition to higher VIs. Second, some

of the vertical wind shear associated with the TC circulation itself may be inflating

the VI statistics, particularly if the storm is large and strong. A more sophisticated

filter may be needed in order to filter out the TC’s circulation to obtain a better
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estimate of the environmental vertical wind shear and VI (see Appendix A for an

example of such a filter). Finally, taking a 10◦×10◦ perimeter average covers a rather

large area and is likely canceling out some of the lowest values of VI around a TC,

especially if the TC is embedded in an area with a large VI gradient. Despite these

limitations, there is still a strong signal that appears in the statistics that supports a

number of the results from Ch. 2, including a decrease in the maximum normalized

intensity with increasing VI, the presence of a stable equilibrium boundary separating

strengthening and weakening TCs, larger intensification rates for TCs located far from

equilibrium, and an upper VI bound for strengthening TCs.

3.4 Ventilation in Global Climate Models

Monthly mean data from six GCMs are used to calculate the seasonal VI over two

twenty year periods: 1981-2000 and 2181-2200. The six GCMs chosen are listed in

Tab. 3.2 with their selection based on what was processed and archived internally on

disk from the E08 study. Each variable in the VI is calculated in the same manner
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Table 3.2: Models used in the VI comparison. Adapted from Emanuel et al. (2008)

Model Institution

CNRM-CM3
Centre National de Recherches Meteorologiques,

Meteo-France

CSIRO-Mk3.0
Australian Commonwealth Scientific

and Research Organization
ECHAM5 Max Planck Institution

GFDL-CM2.0 NOAA Geophysical Fluid Dynamics Laboratory
MIROC3.2 CCSR/NIES/FRCGC, Japan

MRI-CGCM2.3.2a Meteorological Research Institute Japan

as elaborated upon in the previous section. Additionally, it is assumed that

V I ≈ ushear χm
uPI

, (3.9)

where ( ) denotes a seasonal mean. This is tantamount to assuming the covariance

between ushear and χm along with the variance of uPI are small. Comparing (3.9) to

the full seasonal VI using ERA-40 data suggests that over the vast majority of the

tropics, (3.9) is a good approximation.

3.4.1 1981-2000

The spatial pattern of the seasonal VI calculated from GCM data shows broad agree-

ment in the tropics but larger variations in the subtropics. Like the reanalysis, the

GCMs show very low seasonal VI in the primary tropical cyclogenesis regions. More-

over, there is a sharp increase in the VI as one moves toward the midlatitudes, with

the largest VI consistently on the eastern side of ocean basins and the upwelling

regions of the equatorial Pacific. The GCMs differ primarily in the extent and mag-

nitude of the tongues of high VI that extend down through the subtropics on the

eastern side of ocean basins. In the North Atlantic, for example, the CNRM has an

extensive area of high VI extending down in to the main development region while

ECHAM and GFDL models do not (not shown). Additionally, the magnitude of the

local extrema of VI differ from model to model.
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Compared to the reanalysis VI, the GCM VI has substantial errors, as shown in

Fig. 3-6 for the Northern Hemisphere and Fig. 3-7 for the Southern Hemisphere. In

the Northern Hemisphere, the bias is predominately positive in the CNRM, CSIRO,

and MIROC, especially off the west coast of Africa and in the equatorial Pacific where

the VI is more than three times that of the ERA-40’s VI. The ECHAM, GFDL, and

MRI show less extreme and more varied differences in the TC basins, but still show

VI errors of upwards of ±50%. In the Southern Hemisphere, the CNRM, CSIRO,

and MIROC have a predominately positive bias in the South Indian and the South

Pacific Convergence Zone. On the other hand, the GFDL has a VI that is too low

over almost all of the Southern Hemisphere, while the ECHAM and MRI are mixed.

One caveat to keep in mind are uncertainties in the reanalysis itself, particularly

in data void regions. This is particularly true with the midlevel moisture or χm over

the tropical oceans where there are very few observations to constrain the reanalysis.

Therefore, it is impossible to equate the true VI to the reanalysis. Errors, especially

small ones, should be viewed with caution. Nevertheless, there are clear differences

amongst the GCMs themselves in their representation of the seasonal VI during the

last twenty years of the 20th century.

Errors in the potential intensity, midlevel entropy deficit, and vertical wind shear

all contribute to errors in the seasonal GCM VI, but there is a general latitudinal

dependence on the partition of the error among the three variables. Poleward of 20◦,

potential intensity differences dominate the error. For instance, the large positive

biases in the CNRM and CSIRO in the northern Pacific and in the northeastern

Atlantic are caused by too sharp of a falloff of the potential intensity with latitude in

these regions, which is likely a product of a cold bias in the SSTs (Yu et al., 2010).

Equatorward of 20◦, the GCMs estimate the potential intensity to a much better

degree and the errors in the VI are caused more by disagreement in midlevel entropy

deficit and vertical wind shear. Since these two variables are typically quite small in

the tropics, small absolute differences between the GCMs and ERA-40 can translate

to large percent errors in the VI.

Fig. 3-8 shows the distributions of the seasonal VI in the MGR for all six GCMs,
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Figure 3-6: Percent difference between each GCM and ERA-40 seasonal VI in the
Northern Hemisphere for 1981-2000. Blue (red) areas denote where the GCM has a
seasonal VI that is lower (higher) than the ERA-40.

92



0
0 0

0

0

0

00

0

50

50

50

50

50

50
50

50

50

50

50

100
100

100 100
100

100100
150

150 150

150

15
0

150

150

200

20
0

−5
0CNRM

40S

20S

0

0 0 0
0

0

0
0

0

0

0

0

0
0050

50

50
50

50

50
50

50

50

50

50100

100
100

100

100100
150

CSIRO

40S

20S

0

0

0 0

0
0

0 0

0

0 0

0

00

50
50 50

50

50

50100

100

100

100

100

150

150150 15
0

−50

−50
−50ECHAM

40S

20S

0

0

0

0

0

00 0

00

0

0

0

−50

−50

−50
−50

GFDL

40S

20S

0

0
0

0 0

0

0

0

0

0

0

0

0 0

0

0

0

50
50

50

50

50
50

50
50

50

50

50

50

100

100
100

100
100

100100

15
0200

−50 −5
0

−50

MIROC

40S

20S

0

0

0 0

0

0

0

0

0
0

0

0

0

0 0

0

0

50

50

100

100

15
0200

MRI

0 90E 180 90W
40S

20S

0

Figure 3-7: Similar to Fig. 3-6 but for the Southern Hemisphere.
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the mean of the GCMs, and the ERA-40. As alluded to in the previous two figures,

the CNRM and CSIRO both have positive biases with the mode at a value slightly

greater than 0.1 compared to about 0.05 for the ERA-40. Additionally, the CNRM

has a particularly long tail stretching to the largest VI bins. While the MIROC and

consensus VI distributions do not appear to be as extreme as the former two models,

they are also biased to larger values when compared to the ERA-40. On the flip side,

the GFDL is biased too low, having about 14% of its grid points in the MGR in the

lowest bin compared to under 5% in the ERA-40. While the ECHAM model shows

little bias, it underestimates the spatial variance over the MGR. Overall, the MRI

compares most favorably to the ERA-40.

Comparing the distributions of the daily VI in Fig. 3-5 to the seasonal VI in

Fig. 3-8 for the ERA-40, it is apparent the seasonal VI lacks much of the left side

of the distribution present in the daily VI. About 20-25% of the daily VI falls below

10−1.5 whereas almost none of the seasonal VI does. Hence, points where the VI stays

very low do so for only for a limited duration. In contrast, there is no such drastic

change between the daily and seasonal distributions at higher VI bins. The daily VI

distributions for the GCMs should also have higher variances and may also show the
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same preference as the ERA-40 to extend to the left of the seasonal VI distribution;

however, it is impossible to be sure without examining the daily VI distributions from

each model, which is left as future work.

3.4.2 2181-2200

The sensitivity of both TC genesis and normalized intensity to the VI gives reason

to believe that changes in the temporal and spatial distribution of the VI will lead to

future changes in TC climatology. To ascertain possible changes, the seasonal VI is

examined from 2181-2200 for the same six GCMs.

Figure 3-9 shows the percent change in seasonal (Jul.-Oct.) VI between 2181-2200

and 1981-2000 for the Northern Hemisphere. In each TC basin, the percent change

is quite varied across the GCMs. In the North Atlantic, for instance, the CNRM and

MIROC show increases in the western portion of the basin while the ECHAM and

CSIRO show increases across the Caribbean and main development region. On the

contrary, the GFDL shows decreases throughout most of the tropical North Atlantic

while the MRI shows little change basin wide. In the Northeast Pacific, most of the

models show an increase in the VI off the coast of Mexico, albeit to varying degrees.

With the exception of the MIROC and MRI, the remainder of the GCMs show 0-30%

increases in the seasonal VI in the Northwest Pacific from the Phillipines to just west

of the dateline. In the North Indian, the results are just as varied, with half of the

models showing upwards of a 40% decrease in the VI in the Arabian Sea and four of

the models showing small increses in the Bay of Bengal.

Similarly, Fig. 3-10 shows the percent change in seasonal (Dec.-Mar.) VI between

2181-2200 and 1981-2000 for the Southern Hemisphere. Compared to the Northern

Hemisphere, the changes are quite a bit stronger but still show regional variability

across the GCMs. The most striking feature is a strong increase in the VI in portions

of the South Pacific, particularly off the coast of South America. Additionally, the

GCMs also decrease the ventilation over the equatorial Pacific, but since these regions

of the Pacific are void of TCs in the current climate, changes in the VI here may be

irrelevant unless there is a drastic change in the areas TCs populate, as is conjectured
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Figure 3-9: Percent change between the 2181-2200 and 1981-2000 Northern Hemi-
sphere seasonal VI for all six GCMs.
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Figure 3-10: Similar to Fig. 3-9 but for the Southern Hemisphere.
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to have occurred in the Pliocene (Fedorov et al., 2010). The changes in VI are

weaker in regions frequented by TCs in today’s climate. The models generally have a

slight increase in the VI along 20◦S with the exception of the MIROC, which shows

considerable decreases in the South Indian and increases around Micronesia. Poleward

of 20◦S, the models generally increase the VI between 20-60%, and equatorward of

20◦S, the models generally show little change.

Although there do appear to be pockets of agreement when one looks at the sign

of the model changes, a better test is to rigorously assess the statistical significance of

the seasonal VI change of the consensus of the six GCMs. An overwhelming portion

of the oceans show no significant change in the VI at the 95% confidence level using

a one sample t-test. It is possible that a more comprehensive examination of the the

entire suite of CMIP3 model data would change this, but the six models chosen for

in this study do not support the conclusion that there will be robust changes in the

seasonal VI by the end of the 22nd century. However, the models individually show

large changes, and if any realization is correct, there may be significant shifts in the

VI climatology and thus the TC climatology in the future.

Despite the lack of statistical significance in changes in the GCM consensus of

seasonal VI, it is still worthwhile to look at what is driving changes in the individual

models. In a region from the Northeast Pacific stretching into the central North

Atlantic, the VI increase is largely driven by an increase in vertical wind shear as

noted in Vecchi and Soden (2007b). On the flip side, the GFDL has substantial

decreases in vertical wind shear through most of the North Atlantic contributing to

its decrease in the VI there. Elsewhere in both hemispheres, the spatial pattern

of changes in vertical wind shear tend to be loosely correlated with changes in the

seasonal VI, but clearly vertical wind shear does not provide the complete picture.

For example, the GFDL model projects a small region in the Northeast Pacific to have

a > 60% increase in seasonal VI despite a slight decrease in vertical wind shear in

the same location. In other regions, especially the Southern Hemisphere, the percent

change of the VI is quite a bit larger than would be implied by changes in vertical

wind shear alone.
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In addition to the vertical wind shear, the contribution of the nondimensional

midlevel entropy deficit largely leads to an increase in the VI across much of the trop-

ics. The reason for this, as explained in E08, is the fact that the numerator of (3.2)

increases faster than the denominator with increasing tropospheric temperatures. As-

suming constant relative humidity (Soden and Held, 2006), the numerator increases

exponentially with increasing midtropospheric temperatures due to its dependence

on the saturation mixing ratio. On the other hand, the denominator is proportional

to surface evaporation and thus should not increase as quickly, due to energy balance

constraints at the sea surface. Consequently, χm should increase nearly everywhere

and this is supported by the six GCMs, which show an increase of 0-20% through

most of the tropics except in central and eastern portions of the equatorial Pacific

where there is a decrease. This decrease is associated with a weakening of the Walker

circulation and a subsequent moistening in this region due to less large scale descent

(Vecchi and Soden, 2007a). In the Southern Hemisphere, there is a poleward increase

in χm, implying greater midlevel drying relative to the local air-sea disequilibrium.

The GFDL model is a notable outlier, showing decreases in χm through most of the

North Atlantic, near Hawaii, and in the Southern Hemisphere between 20◦S and 40◦S.

However, the large VI increase in the GFDL over the Northeast Pacific mentioned

previously can be mostly explained by a > 50% increase in χm. Where the vertical

wind shear and midlevel entropy deficit both increase, such as in the MIROC in the

Northeast Pacific and North Atlantic, the percent change in the VI can be quite a bit

larger than the change in either component, making such regions potentially much

more unfavorable to TCs in the seasonal mean.

Changes in potential intensity must also be taken into account since increases in

the potential intensity will mitigate any increase in vertical wind shear and midlevel

entropy deficit. The largest percent increases and decreases in potential intensity

occur just off the western side of continents in both hemispheres, mostly between 20◦

and 40◦ due to the low present day potential intensities. However, these are regions

rarely, if at all, visited by TCs and the seasonal VI would likely still be too large to

allow anything but an isolated TC to enter these regions. Elsewhere in the tropics,
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the potential intensity increases modestly by about 0-10%. An exception to this is

in the Arabian Sea where the models that decrease the VI by up to 40% show an

increase in the potential intensity by up to the same percentage. On the flip side, the

sharp increase in the VI in the MRI southwest of Baja California in the Northeast

Pacific is due to a decrease of up to 40% in the potential intensity there. Curiously,

there is also a large and broad decrease in potential intensity south of 20◦S in the

CNRM and ECHAM, which dominates the spatial structure of VI changes in the

Southern Hemisphere between 20◦S and 40◦S. This, coupled with a broad increase in

χm, is largely responsible for the large increase in the ventilation over the same area.

Since vertical wind shear is already climatologically high in this region, one might

speculate that the TC activity will be confined further equatorward in the Southern

Hemisphere if these even more hostile conditions come to fruition.

Figure 3-11 shows the distributions of seasonal VI for 1981-2000 and 2181-2200

in the MGR. Five of the models shift the median of the seasonal VI distributions to

larger values, while the MRI is the only hold out with a decrease. An increase in

the median of the seasonal VI over the MGR implies that conditions that are most

conducive to tropical cyclogenesis or normalized intensification would be observed

a smaller percentage of the time and/or over a smaller region than what exists in

today’s climate. This would imply a global decrease in tropical cyclogenesis events

over the peak seasons in each hemisphere, since genesis appears especially sensitive

to the VI. An increase in the VI would also shift more TCs to the right in Fig. 3-5,

making conditions less conducive for TCs to strengthen on average. On the other

hand, the MRI would imply the opposite given that more locations will experience

a lower seasonal VI and more hospitable conditions for tropical cyclogenesis and

strengthening.

A summary of the change in the seasonal VI and the three components that

comprise it for individual TC basins (listed in Tab. 3.1) is shown in Fig. 3-12. The

percent change in the median over each basin is shown instead of the mean because

it is less sensitive to outliers that disproportionately influence changes in the mean.

Regionally, there is quite a bit of spread, as expected from previous figures. In the
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Figure 3-12: Percent change in the median of the seasonal vertical wind shear, nondi-
mensional midlevel entropy deficit, potential intensity, and VI from 1981-2000 to
2181-2200 for each of the main TC basins listed in Tab. 3.1.

North Atlantic, the percent change in seasonal VI varies from approximately −30% in

the GFDL to a little over 20% in the CSIRO. In the Northeast Pacific, the ECHAM

shows slight decreases in the median VI while the remainder of the models show

increases from 15% − 40%. A similar medley of changes is seen in the remainder of

the basins. In fact, there is not a single basin where all six models even agree on the

sign of the change in the median of the seasonal VI!

The change in basin VI in each model is not dominated by any one of its com-

ponents. The largest changes in the seasonal VI clearly occur where the change in

vertical wind shear and χm are the same sign and the change in potential intensity is
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the opposite sign, such as the Northeast Pacific in the CSIRO and the North Atlantic

in the GFDL. Also noteworthy is the near universal agreement that χm will increase

in each basin, with the exception of the GFDL in the North Atlantic. There is also

near unanimity that the potential intensity increases by a small amount in every TC

basin, which acts to decrease the VI. Given that the percent increase in χm tends

to be larger than the percent increase in the potential intensity, changes in χm have

more influence on changes in basin VI. In some cases, the increase in χm causes the

VI to increase despite a decrease in the vertical wind shear such as in the GFDL for

every basin except the North Atlantic. Thus, once again it is emphasized that solely

looking at changes in vertical wind shear is an imperfect metric for understanding

changes in ventilation and potential TC activity.

3.4.3 Comparison with Emanuel et al. (2008) (E08)

A comparison of the percent changes in seasonal VI with the change in genesis density

in E08’s Fig. 9 reveals quite a few similarities. In general, where the VI increases,

the genesis density decreases and vice versa. The decrease in genesis density is most

pronounced in the Southern Hemisphere, especially in the GFDL and MIROC, where

the VI is projected to increase by a significant percentage. As noted in E08, the

regional variability of the genesis density amongst the models is quite large, which is

expected because of the variability of VI in the GCMs.

Is is harder to discern whether changes in intensity are correlated with changes in

the VI in each TC basin. There are plenty of examples of basins and models where

the mean intensity4 or power dissipation in E08’s Fig. 8 increases, and yet the VI

also increases. However, the appropriate variable to consider in this framework is the

normalized intensity. The sign of the change in the normalized intensity depends on

whether the potential intensity change outpaces the mean intensity change. Nonethe-

less, the largest increases in basin-mean intensity in E08 tend to be associated with

decreases in the VI, such as in the North Atlantic in the GFDL, the Northwest Pacific

4The mean intensity in E08 is defined as the cube of the maximum wind speed integrated over
all synthetic TC tracks divided by the number of TCs and their duration.

103



in the MRI, and the North Indian in the MIROC. One complication is that the VI

may be going opposite ways in different parts of the basin, such as is seen in the

Arabian Sea and Bay of Bengal in some of the GCMs, and therefore the intrabasin

distribution of TC activity becomes an important factor to consider.

3.5 Conclusions

Vertical wind shear is generally thought to be unfavorable for both tropical cycloge-

nesis and TC intensification. One hypothesized way vertical wind shear affects TCs

is by ventilating the TC with low-entropy air from the environment. Based on an

idealized ventilation framework, a ventilation index is derived that scales with the

nondimensional ventilation. Advantages of the VI are that it can be calculated from

large scale gridded fields and that it scales with the nondimensional ventilation from

Ch. 2, which absorbs the dependence on the background thermodynamic state. Both

of these qualities make it useful for evaluating whether ventilation plays a detectable

role in current TC climatology and for evaluating possible changes in TC statistics

in different climates.

The seasonal distribution of tropical cyclogenesis is confined to regions of low

seasonal VI. Furthermore, the VI is shown to explain a portion of the variance in

empirical seasonal genesis indices such as the GPI. On shorter timescales, it is shown

that tropical cyclogenesis is most favored when the VI is in the lower half of the

climatological daily VI distribution in the global main genesis regions. Approximately

30% of TCs form when the daily VI is below 0.01, and 95% of TCs form when the

daily VI is below 0.1.

Ventilation also constrains a TC’s normalized intensity. The maximum normalized

intensity for TCs in the MGR decreases with ventilation. Moreover, there appears to

be an equilibrium boundary in VI and normalized intensity space to which TCs tend

to strengthen or weaken toward, especially for TCs with normalized intensities greater

than 0.4. Away from the equilibrium boundary, TCs at small ventilation (< 0.1) and

intermediate normalized intensities (0.3-0.5) tend to have the greatest strengthening,
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while TCs at higher ventilation (> 0.2) and high normalized intensities (> 0.5) tend

to have the greatest weakening. Lastly, approximately 95% of strengthening TCs

have a VI less than 0.17. All of these results support the findings of Ch. 2, with

the exception of weak storms at moderate ventilation, which show a more varied

response. This may be due to transient, asymmetric features playing a greater role

in determining the intensification in these type of systems.

Next, the VI is examined in GCM output from 1981-2000 to assess the ability

of GCMs to reproduce the current climatological seasonal VI. While all the GCMs

show the same broad pattern of low seasonal VI in the MGR as the ERA-40, there

are substantial relative differences between the GCMs and ERA-40 VI. The causes

of these differences vary from model to model but generally can be pinpointed to

potential intensity errors poleward of 20◦ and nondimensional midlevel entropy deficit

and vertical wind shear errors equatorward of 20◦.

Projected changes in the seasonal VI due to climate change are examined in GCM

output from 2181-2200. Regionally, there is quite a bit of variability among the

GCM projections. The large variability causes the consensus of the six GCMs to

predominately lack any statistically significant changes in regions that are frequented

by TCs in today’s climate, and one cannot conclude with any high confidence that

the seasonal VI will change at any given location. However, individual models do

show large VI changes and any single realization indicates potential regional shifts in

preferred locations of tropical cyclogenesis and changes in TC intensity statistics. It is

possible that some of the variability in the GCMs may be caused by natural variability,

such as the Atlantic Multidecadal Mode (Delworth and Mann, 2000; Goldenberg et al.,

2001). To see whether natural variability is influencing the GCMs, one would need

to examine the seasonal VI over a longer period of time or over different twenty year

intervals.

It is evident that vertical wind shear changes only play a portion of the role

in ventilation changes. The nondimensional midlevel entropy deficit and potential

intensity increase nearly everywhere in the tropics. The former acts to augment

increases in vertical wind shear while the latter serves to mitigate the effects of vertical
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wind shear. Since the GCMs tend to show χm increasing faster than the potential

intensity in most of the TC basins, the former alone will increase the ventilation even

in the absence of any changes in vertical wind shear.

A range of of GCM and downscaling experiments shows global TC frequency either

decreasing or remaining approximately the same by 2100 under the A1B scenario

(Knutson et al., 2010). Since tropical cyclogenesis appears to be quite sensitive to

the VI in today’s climate, the VI is a good candidate for an environmental factor

by itself or as part of a genesis index that can be used to attribute changes in TC

frequency in GCMs. A decrease in global TC frequency is consistent with an upward

shift in the distribution of the seasonal VI in all but one of the GCMs examined in

this study. However, the large variability in VI changes among different TC basins

implies the possibility of larger regional shifts, albeit with a much higher degree of

uncertainty.

Likewise, the VI can be used to infer potential changes in the normalized intensity.

However, TC climate change studies have mostly looked at changes in intensity or

integrated measures of it. Since the GCMs project on average small increases in both

intensity and potential intensity, it is hard to say without further analysis whether

the GCMs show a change in the distribution of normalized intensities. Increasing

seasonal ventilation would tend to cause the upper percentiles of the normalized

intensity distribution to decrease, but wouldn’t necessary preclude a higher mean raw

intensity upon redimensionalizing since the entire distribution would be “stretched”

out to a higher upper limit. As is the case with genesis, larger but uncertain regional

changes in the VI suggest the possibility of more complex changes in the normalized

intensity distribution in individual TC basins.

In addition to the seasonal VI, the change in the daily VI distribution from the

GCMs should be examined, since changes in the variance of the distribution are at

least as, if not more, important for TC genesis and intensity. This is especially true

for genesis, given the threshold-like behavior that occurs as the daily VI increases to

around 0.1. Any curtailing of the extent of the left side of the distribution below a VI

of 0.1 may be especially detrimental to TC genesis and would reduce the probability

106



that any given TC encounters conditions favorable for rapid normalized strengthening.
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Chapter 4

Ventilation in an Axisymmetric

Tropical Cyclone Model

4.1 Introduction

Tropical cyclones (TCs) are often approximated as axisymmetric phenomena to first

order, but asymmetric features are undoubtedly a fundamental part of a TC’s struc-

ture. Although there is good understanding the types of waves a TC supports, there

is high uncertainty how these convectively coupled waves interact dynamically and

thermodynamically with the mean vortex to affect the intensity. This part of my

thesis seeks to understand a possible thermodynamic pathway by which asymmetries

can modulate a TC’s intensity.

A particular subset of waves, called vortex Rossby waves, comprise much of the

low-wavenumber power in the inner core of the TC, particularly along the sharp ra-

dial gradient of potential vorticity just outside the radius of maximum winds. Vortex

Rossby waves are hypothesized to be excited by internal mechanisms, such as the

breakdown of a high potential vorticity ring (Schubert et al., 1999), and external

mechanisms, such as environmental vertical wind shear (Reasor et al., 2000; Cor-

bosiero et al., 2006). Differential advection by environmental vertical wind shear tilts

the high potential vorticity column of the vortex inducing a “quasi-mode,” which

is a wavenumber one discrete mode describing the precession of the vortex (Reasor
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and Montgomery, 2001; Schecter et al., 2002; Reasor et al., 2004). Another source

of excitation of vortex Rossby waves is asymmetric diabatic heating (Wang, 2002a),

which is prominent in sheared TCs due to large convective asymmetries.

The effect of vortex Rossby waves on the intensity of TCs has mainly been studied

through eddy momentum fluxes. Montgomery and Kallenbach (1997) first proposed

that sheared vortex Rossby waves could accelerate the mean tangential winds of the

TC. This finding was confirmed in a barotropic and baroclinic models for initially pre-

scribed positive potential vorticity perturbations near the radius of maximum wind.

These perturbations project onto sheared vortex Rossby waves, and their axisym-

metrization causes the TC’s winds to be accelerated inside the critical radius and

decelerated further outward (Moller and Montgomery, 1999, 2000). In a nonhydro-

static mesoscale model, Eliassen-Palm flux diagnostics for a strengthening TC also

show that eddy momentum and heat fluxes accelerate and contract the maximum

tangential winds in the lower troposphere (Chen et al., 2003). On the contrary, grow-

ing discrete vortex Rossby wave modes, such as induced by barotropic instability, will

extract energy from the mean state weakening the intensity (Kwon and Frank, 2005).

In addition to eddy momentum fluxes, eddies affect the entropy distribution and

budget of the inner core. Peng et al. (1999) proposed that large wavenumber one

asymmetries in the inner core can lead to the maximum moisture convergence being

out of phase with the maximum surface flux, limiting intensification. Riemer et al.

(2010) proposed that a standing wavenumber one vortex Rossby wave, caused by the

tilt of outer portions of the vortex, forces vertical velocity and convective asymme-

tries. These asymmetries, particularly convective downdrafts, lead to a pronounced

wavenumber one asymmetry in the entropy field.

Eddy entropy fluxes are important to consider because fluxes of low-entropy air

into the TC’s inner core can frustrate the heat engine and constrain the intensity

(Simpson and Riehl, 1958). In Ch. 2, an axisymmetric, steady-state, and slantwise

neutral framework is used to show that ventilation acts to decrease the mechanical

energy generation available to drive the TC’s winds. The main findings from Ch. 2

are: (1) increasing ventilation nonlinearly reduces the steady-state intensity below the
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potential intensity, (2) ventilation acts to increase the initial intensity needed for a

TC to intensify, and (3) there is a ventilation threshold beyond which only weakening

TCs are possible. Additionally, ventilation acts to increase the outflow temperature,

or equivalently, decrease the thermodynamic efficiency.

A handful of 3D, moist numerical simulations have looked at ventilation in sheared

TCs, but the studies vary with the proposed “flavor” of the ventilation pathway. The

first flavor is the upper-level pathway. Frank and Ritchie (2001) and Kwon and

Frank (2008) found that vertical wind shear acts to excite asymmetries through both

barotropic and baroclinic processes in the upper part of the vortex. They hypoth-

esized that the asymmetries descend with time, weakening the vortex from the top

down. Weakening occurs as the upper-level warm core is eroded by positive eddy heat

fluxes resulting in a hydrostatic increase in central minimum pressure. The second

flavor is the midlevel pathway. Lagrangian back trajectory analysis of a sheared TC

reveals that the eyewall is ventilated by parcels originating at midlevels. The midlevel

ventilation results in a reduction of the eyewall equivalent potential temperature by

about 1 K (Cram et al., 2007). The third flavor is the low-level pathway. Downdrafts

from convection outside the eyewall may provide a way for low-entropy air to access

the inner-core of the TC via the secondary circulation (Riemer et al., 2010), albeit

boundary layer processes may modify the low-entropy air substantially by the time it

reaches the eyewall (Powell, 1990). It is unclear which pathways are most detrimen-

tal to the TC. Eddy kinetic energy may be higher at upper-levels, but the entropy

gradient is weak and eddy motions may lie along isentropes. On the contrary, eddy

kinetic energy may not be as large at midlevels, but the entropy gradient is much

more pronounced.

To address this conundrum, the sensitivity of TC intensity to the amplitude and

location of the ventilation and to downdraft activity is assessed in an axisymmetric,

nonhydrostatic, and finite volume TC model, which is described in section 4.2. After a

control run is presented in section 4.3, a suite of experiments and intensity diagnostics

are used to assess the sensitivity of TC intensity to spatially fixed ventilation in section

4.4. Spatially varying ventilation is then used to evaluate the findings of Ch. 2 in
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section 4.5. Conclusions follow in section 4.6.

4.2 Model Description

The initial motivation for the design of the current TC model arises from diagnosing

a large residual in the mass budget of the Rotunno and Emanuel (1987), hereafter

RE87, model. This problem is detailed in Appendix C. Since entropy and energy

budgets are powerful diagnostic tools for analyzing TCs, it is ideal that the model be

designed such that mass, energy, and entropy are rigorously conserved in the absence

of sources or sinks. Another aim is to retain the simple nature of the RE87 model,

which makes it useful for studying axisymmetric TC processes.

4.2.1 Governing Equations

Like the RE87 model, the current model is phrased in cylindrical coordinates (r,φ,z)

on an f -plane, is nonhydrostatic, compressible, and axisymmetric. The prognostic

variables chosen in this model are the radial, tangential, and vertical momentum per

unit volume (U = ρdu, V = ρdv, W = ρdw); the psuedoadiabatic entropy per unit

volume (Sp = ρdsp); and the densities of dry air, water vapor, and liquid water (ρd,

ρv = ρdqv, ρl = ρdql), where qv is the water vapor mixing ratio and ql is the liquid

water mixing ratio. The governing equations for these variables in flux form are:
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∂U

∂t
= −∇ · (uU) + ρd

[

v
(

f +
v

r

)

− cpdθv
∂Π

∂r

]

+DU , (4.1)

∂V

∂t
= −∇ · (uV ) + ρd

[

−u
(

f +
v

r

)]

+DV , (4.2)

∂W

∂t
= −∇ · (uW ) + ρd

[

−g(1 + ql)− cpdθv
∂Π

∂z

]

+DW , (4.3)

∂Sp
∂t

= −∇ · (uSp) + ρd

[cpd
θ

(R +H)
]

+DSp , (4.4)

∂ρd
∂t

= −∇ · (uρd), (4.5)

∂ρv
∂t

= −∇ · (uρv)− ρdMql +Dρv , (4.6)

∂ρl
∂t

= −∇ · (uρl)−
∂

∂z
(vTρl) + ρdMql +Dρl . (4.7)

The remaining variables are the Coriolis parameter (f), gravitational acceleration

(g), specific heat of dry air at constant pressure (cpd), Exner function (Π), potential

temperature (θ), virtual potential temperature (θv), and terminal velocity of rain-

drops (vT ). D, R, H, and M refer to turbulent, radiative, dissipative heating, and

microphysics terms, respectively.

The virtual potential temperature is defined as

θv = θ
1 + (Rvqv)/Rd

1 + qv
≈ θ(1 + 0.608qv), (4.8)

where Rv is the gas constant of water vapor and Rd is the gas constant of dry air.

Additionally, the Exner function is now a diagnostic variable. Upon using the ideal

gas law (p = ρd(1 + qv)RdθvΠ),

Π =

(
p

po

)Rd/cpd

=

(
Rd

po
ρd(1 + qv)θv

)Rd/cvd

, (4.9)

where p is the pressure, po is the base state pressure at the surface, and cvd is the

specific heat of dry air at constant volume.

Summing (4.5)-(4.7) yields a conservation equation for the total mass:
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∂ρt
∂t

= −∇ · (uρt)−
∂

∂z
(vTρl) +Dρv +Dρl , (4.10)

where ρt = ρd+ρv+ρl is the total density. The second term on the right hand side of

(4.10) reflects the the effect of falling precipitation on the mass budget. As studied in

Qiu et al. (1993) and Lackmann and Yablonsky (2004), this effect is not negligible in

heavily precipitating systems, such as tropical cyclones. The latter study found that

including the precipitation term leads to higher intensities in TC simulations.

Entropy Equation

A number of cloud models have used moist entropy as a prognostic variable in or-

der to take advantage of the fact that it is conserved for reversible moist adiabatic

processes and absolves one from having to explicitly compute diabatic heating due

to phase changes. For example, Ooyama (1990) and Ooyama (2001) proposed a dual

state entropy formulation for moist numerical models depending on the presence of

condensate, and Zeng et al. (2005) developed a model with a comprehensive moist

entropy equation to study the interaction between clouds and large-scale circulations.

Commonly, approximations to the full entropy equation are made in order to ar-

rive at a more tractable expression and to save computational costs. Such expressions

can be generated by ignoring the effects of liquid water and ice on the total entropy

and/or the dependence of the latent heat of vaporization on temperature (Lipps and

Hemler, 1980). The RE87 model neglects the change in condensation temperature1

to form an entropy expression. Similarly, Tripoli and Cotton (1981) and Bryan and

Fritsch (2004) developed various approximations of the ice-liquid water potential tem-

perature, which is also conserved for reversible moist-adiabatic processes, for use in

atmospheric models simulating deep convection.

Precipitation and evaporation lead to sources of moist entropy or ice-liquid water

potential temperature necessitating a unwieldy amount of accounting of microphysical

processes. To avoid this, the pseudoadiabatic entropy (sp) is derived by neglecting

1The condensation temperature is the temperature at the lifting condensation level for an unsat-
urated parcel and is equal to the temperature for a saturated parcel.
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the heat capacity of liquid water and ice or removing all condensate upon formation.

However, the full form of the pseudoadiabatic entropy is not useful in that it contains

a term that must be numerically integrated (cf. Emanuel (1994) pg. 132). As a

result, empirical and analytical approximations have been developed approximating

the pseudoadiabatic entropy (Bolton, 1980; Bryan, 2008; Davies-Jones, 2009). Of

course, reality lies somewhere between the pseudoadiabatic and reversible extremes.

In arriving at an entropy equation for this TC model, the goal is to keep it as

simple as possible so that budgets may be calculated both easily and accurately.

Simplicity can be achieved through the psuedoadibatic approach, which will be used

to derive the model’s entropy conservation equation. It should be emphasized that the

model’s handling of moist entropy doesn’t apply strictly to reality, but is close enough

to be able to tractably study TC processes and probably other heavily precipitating

phenomena.

The model’s entropy equation, given by (4.4), is now derived. Upon ignoring the

contribution of liquid water, the first law of thermodynamics for moist air can be

expressed as

dsp = (cpd + qvcl) d ln(T ) + d

(
Lvqv
T

)

−Rdd ln(pd)−Rvd (qv lnH) , (4.11)

where cl is the specific heat of liquid water, Lv is the latent heat of vaporization, T

is the temperature, pd is the dry pressure, and H is the relative humidity. Bryan

(2008) noted that the qvcld lnT term can be ignored for a wide range of atmospheric

conditions by compensating it with a fixed, inflated value of Lv = Lvo. Following this

approach, (4.11) becomes

dsp = cpdd ln(T ) + Lvod
(qv
T

)

−Rdd ln(pd)−Rvd (qv lnH) , (4.12)

which results in an integrable expression. For convenience, the reference state is

defined to be at a temperature of 1 K, a water vapor mixing ratio of 0 kg kg−1, and

a dry pressure of 1 Pa. Integrating (4.12) from a reference state to saturation (lifting

115



condensation level), as done in Bolton (1980), results in

sp = cpd ln(TL) +
LvoqvL
TL

−Rd ln(pdL), (4.13)

where variables with subscripts of “L” are evaluated at the saturation level. Express-

ing (4.13) in terms of a dry potential temperature at the saturation level (θdL),

sp = cpd ln(θdL) +
LvoqvL
TL

−Rd ln(po), (4.14)

where θdL can be related to θ by (Davies-Jones, 2009)

θdL = θ

[(
θ

TL

)0.28qv (

1 +
Rvqv
Rd

)Rd/cpd
]

≈ θ. (4.15)

Since qv is small, the term in brackets is nearly one and θ usually differs from θdL by

less than 1%. As a result, θ is subsitutued in place of θdL to simplify (4.14).

The final simplification to (4.14) is to substitute in an empirical relationship for

TL, since a simple analytical formula for TL does not exist. TL is a function of both θ

and qv but is most sensitive to qv for the range of atmospheric conditions of interest,

namely the mean tropics. To demonstrate this, Fig. 4-1 shows TL curves as a function

of qv. Each curve is for a different pair of approximate temperatures and pressures

from the Jordan mean hurricane season sounding (Jordan, 1958), but with the relative

humidity varying from 10% to 100%. TL is calculated using the empirical formula

from Bolton (1980):

TL =
2840

3.5 ln(T )− ln(e)− 4.805
+ 55, (4.16)

where e is the vapor pressure. To a reasonable degree, the curves fall on top of

one another indicating little sensitivity of TL to combinations of mean temperature

and pressure found in the tropics. Therefore, TL can be approximated solely by qv.

Applying a logarithmic fit to the data in a least squares sense results in the following

empirical parameterization for TL, which is defined as T̂L:
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Figure 4-1: The saturation temperature, TL, as a function of the water vapor mixing
ratio, qv, where each curve is for a fixed combination of temperature and pressure.
The endpoints of each curve are at 10% and 100% relative humidity. The empirical
fit for TL is given by the dashed, black line.

T̂L = MAX(A ln(qv) +B,A), (4.17)

where A = 17.23 and B = 362.48. The empirical curve representing T̂L is plotted in

Fig. 4-1 as the dashed, black line. It will be clear later why T̂L cannot be allowed

drop below A. Additionally, it should be emphasized that (4.17) is calibrated for a

mean tropical environment and would need to be recalibrated for other purposes.

Using (4.15) and (4.17) results in a simplified expression for sp:

sp = cpd ln(θ) +
Lvoqv

T̂L
−Rd ln(po), (4.18)

or in terms of an pseudoequivalent potential temperature (θep),

θep = θexp

(

Lvoqv

cpdT̂L

)

, (4.19)

such that sp = cpd ln(θep) − Rd ln(po). Solving for θ in (4.18) results in a diagnostic

equation for the potential temperature:
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θ = exp

[
1

cpd

(

sp +Rd ln(po)−
Lvoqv

T̂L

)]

. (4.20)

There is a clear advantage in expressing TL only in terms of qv, as it makes the

second term on the right hand side of (4.18) or the exponent in (4.19) only a function

of qv. This simple dependence on qv allows for an equally simple conservation equation

for sp that can be derived by taking the total derivative of (4.18):

dsp
dt

=
cpd
θ

dθ

dt
+
Lvo(T̂L − A)

T̂L
2

dqv
dt
. (4.21)

Clearly, T̂L cannot be allowed to be less than A, as this would correspond to a

negative latent energy. For unsaturated adiabatic displacements, both θ and qv are

conserved resulting in the desired property that sp is also conserved. For saturated

adiabatic displacements, condensation (evaporation) and latent heating (cooling) are

constrained to conserve sp. The procedure for satisfying this is elaborated upon the

microphysics section.

The fixed value of the latent heat of vaporization is the remaining parameter that

must be calibrated. Bryan (2008) and Davies-Jones (2009) both optimized approxi-

mations of sp using inflated values of Lvo in order minimize the error in sp. A similar

approach is taken here by comparing (4.19) with a highly accurate formula devised by

Davies-Jones (2009)2. Similar to TL, the optimization is performed for temperature

profiles that are ±5 K around the Jordan mean hurricane season sounding along with

the full range of relative humidity. The root mean square error (RMSE) for different

values of Lvo are shown in Fig. 4-2. The optimal value of Lvo is 2.678 × 106 J kg−1

with a minimum RMSE of 0.24, which is comparable to other approximations of

θep. Note that the optimal value of Lvo will differ slightly when considering different

atmospheric states other than a mean tropical sounding.

Using the optimized value of Lvo, the difference in temperature and water vapor

mixing ratio profiles between two initially identical parcels (T = 28◦C, H = 75%,

2See equation (6.5) in Davies-Jones (2009) for a θep formula that is accurate to within 0.095 K
for wet-bulb potential temperatures less than 40◦C.
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Figure 4-2: The root mean squared error of the pseudoequivalent potential tempera-
ture, θep, as a function of fixed values of the latent heat of vaporization, Lvo.

and p = 1015 hPa) lifted using (4.21) and (4.11) is shown in Fig. 4-3. Errors are

small below the lifting condensation level. Above the lifting condensation level, the

parcel tends to be slightly too warm and moist. The temperature error is largest in

the middle to upper troposphere, while the water vapor mixing ratio error is largest

at midlevels.

Although effort is taken to make the current formulation of pseudoadiabatic en-

tropy behave as closely as possible to the numerical equivalent, the exact value of Lvo

is not imperative to the formulation of the model itself as long as it does not differ

wildly from the reasonable range of Lv. What is imperative is that the microphysics,

radiation, and turbulence parameterizations, along with the initial conditions, are

consistent with the entropy formulation.

4.2.2 Microphysics

As done in the RE87 model, cloud water and rain water are not considered separately.

When ql ≤ 1g kg−1, all liquid water is in the form of cloud droplets with a terminal

velocity of zero. On the other hand, when ql > 1g kg−1, all liquid water is converted
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Figure 4-3: The difference in (a) temperature and (b) water vapor mixing ratio be-
tween two initially identical parcels lifted pseudoadiabatically using the current for-
mulation (4.21) and the full formulation (4.11).

to rainwater and falls at a terminal velocity of -7 m s−1. Although this is a drastic

simplification, it eliminates a prognostic variable and the need to include a micro-

physics parameterization that converts cloud to rain water and vice versa. Thus, all

condensation and evaporation occurs at the grid scale. The condensation algorithm

is similar to that outlined in Klemp and Wilhelmson (1978), with the requirement

that sp be conserved.

The saturation vapor pressure (e∗) is approximated using Tetens’ formula, given

by

e∗ = 6.112exp

[
17.67(T − 273.15)

T − 29.65

]

. (4.22)

Equation (4.22) is linearized about the initial temperature, T i, before any phase

change takes place. Upon keeping the first two terms in the Taylor expansion and

evaluating at the final state after the phase change, given by the superscript “f”,

e∗f = e∗i
[

1 +
4302.645

(T i − 29.65)2
(
T f − T i

)
]

. (4.23)
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Assuming the phase change occurs isobarically, δT = Πδθ. Additionally, q∗v can be

substituted wherever e∗ appears:

q∗fv = q∗iv

[

1 +
4302.645

(θiΠ− 29.65)2
Π
(
θf − θi

)
]

. (4.24)

Next, the change in potential temperature can be related to the change in water

vapor mixing ratio by using (4.21) for constant sp:

θf − θi =
−Lvoθ(T̂L − A)

cpdT̂L
2

(
q∗fv − qiv

)
. (4.25)

Substituting (4.25) into (4.24) and rearranging results in an expression for the con-

densation/evaporation, Mql∆t = qiv − q∗fv :

Mql∆t =







qiv−q∗iv
(1+χq∗iv )

if H > 1

MAX
(

qiv−q∗iv
(1+χq∗iv )

,−qil
)

if H < 1 and 0 < ql ≤ 1× 10−3

∆t
τ̂evap

MAX
(

qiv−q∗iv
(1+χq∗iv )

,−qil
)

if H < 1 and ql > 1× 10−3

, (4.26)

where

χ =
4302.645θΠLvo(T̂L − A)

cpdT̂L
2
(θΠ− 29.65)2

(4.27)

and ∆t is the model time step. The physical effect of (4.26) is to form liquid water at

supersaturated locations and evaporate rain in unsaturated air. In doing so, sensible

heat is added to or subtracted from the local environment in order to conserve sp.

In the RE87 model, evaporation is assumed to occur just as rapidly as condensation

and is limited only by the amount of liquid water present, i.e. the relative humidity

is constrained to be 100% in the presence of liquid water. While this assumption is

good for cloud droplets, it overestimates the rate of evaporation of raindrops falling

through unsaturated air, which can have an evaporation timescale on the order of

tens of minutes.

As a correction to the evaporation overestimation, an evaporation limiter (∆t/τ̂evap)
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is included when ql exceeds 1 g kg−1. The evaporation limiter can be derived by con-

sidering the change in mass of a raindrop falling freely through the air, which is

governed by the equation

1

m

dm

dt
= −3cvD∆ρv

a2ρw
, (4.28)

where m is the mass of the droplet, cv is the “ventilation coefficient” that takes into

account air moving around the drop3, D is the diffusion coefficient, ∆ρv is the change

in water vapor density from the surface of the drop to the surrounding environment,

a is the radius of the drop, and ρw is the density of liquid water (Kinzer and Gunn,

1951). By assuming a homogeneous number of drops per unit volume and constant dry

density of the local environment during the evaporation process, m can be replaced

by ql. Moreover, if one assumes the right hand side of (4.28) is constant, then its

inverse represents an e-folding timescale for the change in ql due to evaporation:

τevap =
a2ρw

3cvD∆ρv
. (4.29)

The parameters in (4.29) are empirically estimated in Tab. 1 and Tab. 2 of Kinzer

and Gunn (1951). Assuming a rain drop diameter of 2.2 mm, corresponding roughly

to a terminal velocity of -7 m s−1 (Gunn and Kinzer, 1949), and a temperature of

20◦C, τevap becomes only a function of the relative humidity, as shown in Fig. 4-4 by

the crosses. The evaporation timescale increases with relative humidity, especially as

the environment approaches saturation. For a relative humidity of 10%, the timescale

is about 6 minutes and increases to about an hour when the relative humidity is 90%.

Hence, it becomes progressively harder to saturate the atmosphere solely from the

evaporation of rain unless it is raining in the same location for a long period of time.

Since the data from Kinzer and Gunn (1951) is discrete, it is fitted to a tangent

curve, as shown by the blue line in Fig. 4-4, with the equation of the tangent curve

being

3This is not to be confused with the ventilation (V) defined in previous chapters.
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Figure 4-4: The evaporation timescale, τevap, as a function of the relative humidity.
The timescale is derived from Kinzer and Gunn (1951) data for a drop diameter of
22 mm and a temperature of 20◦C (crosses). The least squares tangent curve fit to
the data is given by the blue line.

τ̂evap = 519.59tan

(
πH

2

)

+ 231.83. (4.30)

This timescale is used to reduce the evaporation rate to more reasonable levels in

(4.26) when rain falls through unsaturated air. The main effect of the evaporation

limiter is to reduce the evaporation in the boundary layer below the eyewall, thereby

increasing rain rates and decreasing relative humidities, as inflow is not instanta-

neously saturated as it crosses into the heavily precipitating eyewall annulus.

In practice, the condensation/evaporation algorithm should be iterated because

(4.27) is modified by phase changes. Condensation, for instance, results in an increase

in the temperature and a corresponding small decrease in χ. However, only a few

iterations are needed to achieve convergence. The evaporation limiter should only be

applied once after the iteration is complete.

Rain falling and evaporating in to unsaturated air is an irreversible process, and

in reality, there should be a slight increase in entropy. If evaporation is required to

conserve enthalpy, instead of entropy, it can be shown that the change in entropy due
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to evaporation is

dsp|evap ≈ Lvo

(

T − T̂L

T T̂L

)

dqv|evap , (4.31)

as long as T̂L >> A. Since T ≥ T̂L, the right hand side of (4.31) must be ≥ 0 resulting

in a gain of entropy as evaporation takes place. The model ignores the contribution of

this irreversible source of entropy (along with other irreversible sources) in order to be

consistent with the complimenting theoretical framework. The effect of irreversible

sources of entropy on TC evolution in this model will be looked at in the future.

4.2.3 Turbulence

TCs contain a full spectrum of nonaxisymmetric phenomena that an axisymmetric

model cannot represent. Consequently, their effects must be parameterized. The

turbulence parameterization follows RE87’s parameterization closely, but must be

adjusted so that saturated mixing conserves sp. Moreover, the dry, compressible

equations are used instead of the incompressible equations to formulate the turbulence

parameterization. This allows the resulting turbulence terms to fit in more neatly with

the numerical scheme presented below. The resulting turbulent terms in (4.1)-(4.7)

are

DU =
1

r

∂rτrr
∂r

+
∂τrz
∂z

− τφφ
r

(4.32)

DV =
1

r2
∂r2τrφ
∂r

+
∂τφz
∂z

(4.33)

DW =
1

r

∂rτrz
∂r

+
∂τzz
∂z

(4.34)

DX = −1

r

∂rF x
r

∂r
− ∂F x

z

∂z
, (4.35)

where X ∈ {Sp, ρv, ρl} and x ∈ {sp, qv, ql}. The components of the stress tensor are
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τrr τrφ τrz

τφφ τφz

τzz








=








2µh
(
∂u
∂r

− 1
3
∇ · u

)
µhr

∂
∂r

(
v
r

)
µ
(
∂u
∂z

+ ∂w
∂r

)

2µh
(
u
r
− 1

3
∇ · u

)
µ
(
∂v
∂z

)

2µ
(
∂w
∂z

− 1
3
∇ · u

)







,

(4.36)

where only the upper right part of the tensor is shown because it is symmetric. These

equations are similar to those used in the RE87 and Bryan and Rotunno (2009b)

models, with the exception of the added divergence in the diagonal terms of the stress

tensor and the replacement of the kinematic viscosity with the dynamic viscosity. The

turbulent fluxes of the remaining scalar variables are

(F x
r , F

x
z ) = −

(

µh
∂x

∂r
, µ
∂x

∂z

)

. (4.37)

At the lower boundary, the tangential stress and turbulent fluxes are given by the

bulk aerodynamic formulas:

τrz(z = 0) = CDρdu
√
u2 + v2 (4.38)

τrφ(z = 0) = CDρdv
√
u2 + v2 (4.39)

F sp
z (z = 0) = Ckρd

√
u2 + v2(s∗p

∣
∣
SST

− sp) (4.40)

F qv
z (z = 0) = Ckρd

√
u2 + v2(q∗v |SST − qv), (4.41)

where CD is the drag coefficient, Ck is the enthalpy exchange coefficient, and the

variables are evaluated at the lowest model level. CD is given by a modified Deacon’s

formula:

CD = MIN
(

1.1× 10−3 + 4× 10−5
√
u2 + v2, 3.0× 10−3

)

, (4.42)

which assumes a linear increase in CD with wind speed. CD is capped at a maximum

value of 3.0× 10−3, which is simple way of taking in to account that CD flattens and

decreases at high wind speeds (Powell et al., 2003). The value of the cap is chosen
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to be quite high given uncertainties in the exact values of CD at high wind speeds.

For the intensity, the ratio of the enthalpy exchange coefficient to the drag coefficient

is much more critical. Coupled Boundary Layer Air-Sea Transfer (CBLAST) data

indicates that the ratio of Ck to CD tends to decrease from a value of 1 at low winds

speeds to about 0.7 for wind speeds just shy of hurricane strength (Edson et al., 2007;

Black et al., 2007). For winds stronger than hurricane force, there is little knowledge

of how the ratio behaves. Setting the ratio to the lowest values of the CBLAST

data prevents storms from intensifying in the RE87 model (Emanuel, 1995). On the

contrary, the intensity in 3D simulations appears to show little sensitivity to the ratio

of Ck to CD (Montgomery et al., 2010). For the purposes of this study, Ck is set equal

to CD to prevent the introduction of another degree of freedom that would make it

harder to compare the model results to the steady-state theory.

The viscosity is derived in a same manner as in Lilly (1962) and Klemp and

Wilhelmson (1978), but care must be taken to ensure that the buoyancy flux satisfies

entropy conservation. In equilibrium conditions, the turbulent kinetic energy satisfies

the relationship:

νσ2 + F b
z = ǫ, (4.43)

where ν is the kinematic viscosity, σ is the deformation, F b
z is the buoyancy flux,

and ǫ is the dissipation. The contribution of the horizontal deformation (σh) and

dissipation (ǫh) is isolated and solved separately to reflect the anisotropic nature of

the mixing due to the model having a much larger radial grid spacing compared to

vertical grid spacing (Mason and Sykes, 1982; Bryan and Rotunno, 2009b):

νhσ
2
h = ǫh, (4.44)

The deformation is defined as
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σ2
h = 2

(
∂u

∂r

)2

+ 2
(u

r

)2

+

(
∂v

∂r
− v

r

)2

,

σ2 = σ2
h + 2

(
∂w

∂z

)2

+

(
∂u

∂z
+
∂w

∂r

)2

+

(
∂v

∂z

)2

. (4.45)

The buoyancy flux is defined as

F b
z = g

(
w′θ′v
θv

− w′q′l

)

, (4.46)

where the contribution of liquid water is included because it exists in both saturated

and unsaturated conditions. For saturated conditions, (4.46) must be reexpressed in

order to conserve entropy. Using the approximation that

θ′v
θv

≈ θ′

θ
+ 0.608q′v (4.47)

and a relationship between turbulent vertical fluxes of water vapor and temperature

with the help of the Clausius-Clapeyron equation:

w′q′v ≈
Lvoqv
RvθT

w′θ′, (4.48)

(4.46) becomes

F b
z = g

[(
1

θ
+ 0.608

Lvoqv
RvθT

)

w′θ′ − w′q′l

]

. (4.49)

Conservation of entropy requires

w′s′p =
cpd
θ
w′θ′ + Lvo

(

T̂L − A

T̂L
2

)

w′q′v. (4.50)

Upon using (4.48) and solving for w′θ′,

w′θ′ =
w′s′p

cpd
θ
+ L2

voqv
RvθT

T̂L−A
T̂L

2

. (4.51)
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Substituting (4.51) into (4.49) results in an expression for the buoyancy flux in satu-

rated air:

F b
z = g

(
γw′s′p − w′q′l

)
(4.52)

where

γ =

(

1 + 0.608Lvoqv
RvT

)

cpd +
L2
voqv
RvT

T̂L−A
T̂L

2

(4.53)

Lastly, the Reynold’s fluxes are eliminated using a first order closure:

F b
z =







−νg
(

1
θv
∂θv
∂z

− ∂ql
∂z

)

if unsaturated

−νg
(

γ ∂sp
∂z

− ∂ql
∂z

)

if saturated
, (4.54)

In order to combine the two expressions for buoyancy flux in to a single expression,

a weighting function is used in order to shift between the two expressions in (4.54)

quickly when saturation is approached:

F b
z = −ν g

[

(1− ω)

(
1

θv

∂θv
∂z

− ∂ql
∂z

)

+ ω

(

γ
∂sp
∂z

− ∂ql
∂z

)]

︸ ︷︷ ︸

bz

, (4.55)

where

ω = 0.5tanh [50(H − 0.95)] + 0.5. (4.56)

A transition between unsaturated and saturated states is more natural than a switch-

like effect implied by strictly using (4.54). As the average relative humidity within

a grid box gets close to saturation, it becomes increasingly likely that a growing

proportion of the grid box is already saturated. Hence, (4.55) attempts to account

for possible inhomogeneities through a weighted average of unsaturated and saturated

buoyancy fluxes.

Based on dimensional grounds,

128



ǫ =
ν3

l4
, ǫh =

ν3h
l4h

(4.57)

where l(h) is the length scale of the most energetic eddies. Using (4.45), (4.55), and

(4.57) in (4.43) and (4.44) and multiplying by ρd results in expressions for µ and µh:

µ = ρdl
2
√

σ2 − bz = ρdl
2σ
√
1− Ri (4.58)

µh = ρdl
2
hσh, (4.59)

where Ri is the (flux) Richardson number. If Ri>1, then the flow is dynamically

stable and µ is set to zero. For locations where µ exceeds µh, µh is set to the value

of µ, such that the mixing is isotropic.

TC intensity in numerical models is sensitive to the values of l and particularly lh

(Bryan and Rotunno, 2009b). In the limit of vanishing lh, frontogenesis collapses the

eyewall entropy front to the radial resolution of the model yielding extremely intense

storms at high resolution. On the other hand, setting lh to a value greater than 3000

km causes the entropy gradient at the eyewall to become quite diffuse resulting in

weak intensities. Based on the findings in the Bryan and Rotunno (2009b) study,

l is set to 100 m and lh is set to 1500 m. These eddy length scales seem to yield

reasonable representations of the intensity evolution in the current model.

4.2.4 Dissipative Heating

Dissipative heating has been shown to be an important component of the TC’s energy

budget. Dissipative heating in the surface layer recycles heat into the warm reservoir

of the TC heat engine leading to an increase in wind speed and a decrease in pressure

(Bister and Emanuel, 1998). Jin et al. (2007) also found that the heating caused by

internal dissipation of turbulent kinetic energy is important for TC intensity.

Following the approach of Bister and Emanuel (1998), the dissipation is calcu-

lated by collecting terms of the form µ (∇ui)2 from the kinetic energy equation. The
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dissipative heating is then calculated by dividing the sum of the terms by cpdΠρd. In

the interior,

H =
1

cpdΠρd

{

µh

[

4

3

(
∂u

∂r

)2

+

(
∂v

∂r

)2
]

+µ

[(
∂u

∂z

)2

+

(
∂v

∂z

)2

+

(
∂w

∂r

)2

+
4

3

(
∂w

∂z

)2
]}

, (4.60)

and at the lowest model level,

H(z = ∆z/2) =
1

cpdΠρd

{

µh

[

4

3

(
∂u

∂r

)2

+

(
∂v

∂r

)2
]

+µ

[(
∂w

∂r

)2

+
4

3

(
∂w

∂z

)2
]

+
2CDρd
∆z

(u2 + v2)3/2

}

, (4.61)

where ∆z is the vertical grid size. The dissipative heating is dominated by (4.61) due

to the large surface stress term proportional to the cube of the wind speed.

4.2.5 Radiation

Radiation is a necessary part of a TC’s thermodynamic cycle. Radiation balances

subsidence due to the secondary circulation and also helps maintain a reservoir of

available potential energy to power the TC. The radiation is prescribed through New-

tonian cooling,

R = −θ − θ

τR
. (4.62)

where θ is the initial potential temperature profile and τR is a relaxation time scale.

The effect of the parameterization is to maintain the far field away from the inner core

of the TC at some initial, neutral thermal profile. The relaxation time scale is chosen

to be 12 hours, which is the same value used in RE87. To prevent excessive cooling

of the TC’s warm core, it is required that |R| < 2 K day−1, which is an approximate
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upper bound on the radiative cooling in clear-sky conditions in the tropics (Hartmann

et al., 2001). The effect of clouds on the radiation budget is not considered.

4.2.6 Numerical Methods

The prognostic variables are staggered using an Arakawa-C grid (Arakawa and Lamb,

1977) with a radial grid spacing of 2 km and a vertical grid spacing of 300 m. For each

grid box, U is located at the radial faces, W is located at the vertical faces, and the

remainder of the variables are located at the center of the grid box. This structured

grid lends itself readily to the governing equations discretized using a finite volume

method. The basic principal of finite volume methods is to apply a volume average

to a partial differential equation and then use the divergence theorem to express flux

and diffusion terms as fluxes through the sides of each grid cell. As a consequence,

conservation of momentum, mass, and entropy is guaranteed to numerical precision

when there are neither fluxes at the boundaries of the computational domain nor

internal sources.

The flux terms are calculated using a high resolution corner transport method,

which accounts for fluxes between boxes that share faces or corners (LeVeque, 2002).

This allows better accuracy especially if flow occurs along diagonals of grid cells, such

as what might occur in the slantwise flow of a TC. High resolution schemes are hybrid

first-order upwind and second-order centered (Lax-Wendroff) schemes. The second-

order part of the scheme has more weight near large gradients such as fronts in order to

prevent excessive diffusion inherent in the upwind scheme. However, the second-order

scheme produces spurious oscillations since it is not “total variation diminishing.” To

prevent this, a monotonized central flux limiter is used, which makes the scheme total

variation diminishing and conservative. Details of finite volume schemes, flux limiters,

and an algorithm for application of the high resolution corner transport method in

curvilinear coordinates are given in Ch. 5 of Durran (1999).

Time stepping is performed using an explicit third-order Runge-Kutta (RK3)

method with a split time-step (Wicker and Skamarock, 2002; Klemp et al., 2007).

The method splits the time integration into short time steps (∆ts) and long time
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steps (∆tl). At the beginning of each long time step, the forcings for the prognostic

variables are calculated except for terms that support acoustic and gravity waves.

Terms that support acoustic and gravity waves - the pressure gradient, the buoyancy,

and dry density flux terms - are integrated on the short time step using the forward-

backward scheme of Mesinger (1977), with the long time step forcing terms held

constant. For each iteration of the RK3 method, the small time step integration is

carried out to a successively increasing fraction of the long time step (∆tl/3, ∆tl/2,

∆tl). After each iteration, the long time step forcing terms are recalculated using

the intermediate values of the prognostic variables, and the state is reset back to the

beginning of the long time step for the next iteration. The main advantage of the

RK3 method is its generous Courant numbers, which allows a larger time step than

other explicit schemes. Further details on the scheme can be found in Wicker and

Skamarock (2002).

The model is still somewhat unstable to acoustic modes. In order to preferentially

damp acoustic modes, the Exner function is modified to be

Π⋆ = Π(to) + β (Π(to)− Π(to −∆ts)) (4.63)

where β is the acoustic damping coefficient and the second term is the change in Π

over the previous small time step. Following Klemp et al. (2007), β is set to 0.1. The

effect of (4.63) can be seen by forming a divergence equation from the momentum

equations. Substituting Π⋆ into the divergence equation yields a term that effectively

damps the divergence of high frequency modes. Furthermore, using Π⋆ in the pressure

gradient terms in lieu of adding divergence damping terms to each of the momentum

equations (Skamarock and Klemp, 1992) is much more computationally efficient.

Reflection of gravity waves at the outer boundary (r=1000 km) is prevented by

specifying an “outflow” boundary condition, following Klemp and Wilhelmson (1978)

and RE87 modified for the finite volume framework. The radial momentum in the

outermost grid box is fluxed out of the domain with a radial velocity of u+ c, where

c is an intrinsic gravity wave phase velocity (30 m s−1). If u + c < 0, then the flux
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of radial momentum out of the domain is set to zero. The vertical momentum in the

outermost grid box is also fluxed out of the domain if u > 0 and set to zero if u < 0.

It appears that applying the boundary condition to these two variables is sufficient

to allow gravity wave energy to exit. For the remainder of the prognostic variables, a

Dirichlet condition is used for the radial flux terms, as an outflow boundary condition

causes the mass and pressure in the computational domain to slowly drift.

At the top of the domain (z=24 km), a sponge layer is used with implicit Rayleigh

damping (Klemp et al., 2008). After the vertical momentum is integrated forward in

the small time step, W is adjusted by

W → W

1 + λ∆ts
, (4.64)

where

λ =







αdsin
2
[
π
2

(

1− ztop−z
zsponge

)]

if z ≥ (ztop − zsponge)

0 if z < (ztop − zsponge)
, (4.65)

where αd is the implicit damping coefficient, ztop is the height of the computational

domain, and zsponge is the height of the sponge layer. Implicit Rayleigh damping

effectively absorbs gravity waves without the requirement of an initial state to relax

back to, as done in traditional sponge layers. This is advantageous because it allows

upper portions of the domain to evolve more freely. Setting αd to 0.2 appears to be

sufficient for preventing gravity waves from reflecting back down. The sponge layer

is well above the tropopause, with a thickness that is approximately 20% the height

of the computational domain. Additionally, W is set to zero at the upper boundary.

4.3 Initialization and Spin Up

The model is initialized with a sounding, shown in Fig. 4-5, that is neutral to undilute

ascent of subcloud layer parcels. In this study, the sounding is derived from a surface

parcel with an initial pressure of 1015 mb, an initial temperature of 28◦C, and an

initial relative humidity of 75%. The parcel is lifted such that it conserves sp. In order
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Figure 4-5: An initial, neutral sounding derived from a surface temperature of 28◦C
and surface relative humidity of 75%. The pseudoadiabats (red lines) are calculated
using (4.19).

to have a tropopause and stratosphere, the Jordan mean hurricane season temperature

profile is used above the height where the lifted parcel first becomes cooler than the

Jordan sounding. The water vapor mixing ratio below the parcel’s lifting condensation

level is retained. Above the lifting condensation level, the relative humidity is set at

50% so that evaporation and downdrafts can occur.

A tropical-storm strength vortex is inserted into the domain, with a radial tan-

gential wind profile from the parametric formula of Emanuel (2004). A maximum

tangential wind of 20 m s−1 at a radius of 100 km is used, and the constants in the

parametric formula are the default ones given in App. B of Emanuel et al. (2006).

The vortex is assumed to decay with height as the square root of a quarter-cosine

profile, such that the maximum tangential wind is initially at the surface and decays

to zero at the tropopause.

The temperature and mass fields are then adjusted to be in thermal wind balance
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with the initial vortex following the anelastic approximation from Smith (2006). The

anelastic form of the equation for gradient wind balance, given by

∂Π

∂r
=

1

cpdθv

(

fv +
v2

r

)

, (4.66)

is integrated inward from the outer boundary in order to initialize the Exner function.

θv is the virtual potential temperature of the initial sounding and is only a function of

height. Subsequently, θv is initialized to be in hydrostatic balance with the pressure

field:

θv = − g

cpd
∂Π
∂z

. (4.67)

The potential temperature and water vapor mixing ratio are then calculated such

that the relative humidity and θv remain constant. Thereafter, sp can be calculated

from (4.18), and ρd can be calculated from the ideal gas law.

The TC is spun up from its initial state until it reaches a steady state, as shown in

Fig. 4-6 at seven days. The maximum tangential winds are 67 m s−1 at a height of 1

km, with the radius of maximum winds sloping outward with height. In comparison,

the theoretical potential intensity, which is calculated from an algorithm using the

initial sounding and the model’s surface exchange coefficients, is 85-93 m s−1. It

is important to emphasize that the model’s potential intensity and the theoretical

potential intensity are like two different species of the same genus. Differences between

the two may arise due to differences in the model’s definition of entropy with the exact

pseudoadiabatic or reversible form. Additionally, the model intensity’s sensitivity to

resolution and the turbulence parameterization, particularly the horizontal mixing

length (lh), plays a role. One could possibly tune lh in order to match the theoretical

potential intensity more closely, but this would be ad-hoc. In lieu of any tuning, the

model’s potential intensity is treated as the baseline that will be used to compare to

additional experiments.

The secondary circulation, outlined by the mass streamfunction in Fig. 4-6a, con-

sists of 20-25 m s−1 inflow in the boundary layer just radially outward from the radius
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of maximum wind, 3-5 m s−1 vertical motion through the eyewall, and 15-20 m s−1

outflow around a height of 15 km. The waviness of the flow as it rises up the eyewall

is indicative of an inertial oscillation caused by unbalanced flow. Additionally, the

eyewall is characterized by slantwise neutrality, as indicated by the congruence of an-

gular momentum, streamfunction, and entropy contours (not shown). At low levels,

the entropy increases with decreasing radius. In the eyewall, there exists a column of

high, nearly constant entropy. Much lower values of entropy are found at midlevels

outside the eyewall, with the lowest values occurring at a height of 2-3 km. At this

level, relatively dry air from aloft has subsided and cooled radiatively. Low-entropy

air at midlevels does impinge a bit on the eyewall, especially as it begins to flare out

above 5 km, causing evaporation and a downdraft of approximately 0.5-1 m s−1. This

downdraft is hinted at by the closed contour in the mass streamfunction just inside

a radius of 50 km. However, the downdraft is too spatially limited and weak to have

much of an effect on the TC energy budget. Elsewhere, there is shallow convection

occurring outside the eyewall, but the general subsidence from the secondary circu-

lation and lack of convective available potential energy inhibits deep convection from

forming.

4.4 Spatially Fixed Ventilation Experiments

After the TC reaches a steady state, ventilation is introduced by adding a term to the

turbulent entropy flux parameterization to reflect a fixed area of enhanced mixing:

F sp
r = . . .− L(r, z)ρdνe

∂sp
∂r

, (4.68)

where L(r, z) is a localization function that limits the areal extent of the ventilation

and νe is a fixed effective eddy viscosity. The localization function is chosen to be a

piecewise linear function in radius, such that the enhanced mixing vanishes inside a

radius of 20 km and outside a radius of 60 km and obtains a maximum value of unity

at 30 km, just outside the initial radius of maximum wind. In the vertical direction,

the localization function is a top hat function, such that the mixing is limited to a 2 km
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Figure 4-6: Radius-height section of (a) the tangential velocity (shaded in m s−1)
and mass streamfunction (contoured in kg s−1) and (b) the pseudoadiabatic entropy
(shaded in J kg−1 K−1) and liquid water mixing ratio (contoured) seven days after
initialization. For the liquid water mixing ratio, the gray contour is 0 g kg−1 and the
black contour is 1 g kg−1, which is the threshold for rain. Only the inner 200 km and
the lowest 17 km are shown.
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Table 4.1: Tropical cyclone ventilation experiments.

Experiment νe (m
2 s−1) Height (km)

Ctrl 0 NA
A01 1.0× 104 3.0
A05 5.0× 104 3.0
A10 1.0× 105 3.0
A30 3.0× 105 3.0
A50 5.0× 105 3.0
H01 5.0× 105 1.0
H03 5.0× 105 3.0
H06 5.0× 105 6.0
H09 5.0× 105 9.0
H12 5.0× 105 12.0
H15 5.0× 105 15.0

vertical layer. The effective eddy viscosity accounts for the ability of mesoscale eddies,

such as vortex Rossby waves, to transport tracers finite distances before diffusive

effects cause irreversible mixing. Hendricks and Schubert (2009) found that breaking

vortex Rossby waves are capable of mixing tracers across large horizontal distances,

with effective eddy viscosities upwards of O(104) m2 s−1 for barotropic breakdown of

vorticity rings.

A suite of experiments, listed in Tab. 4.1, is used to assess the TC’s sensitivity to

both the amplitude of the effective eddy viscosity and height of the ventilation.

4.4.1 Ventilation Amplitude

In the first set of experiments, the amplitude of the eddy viscosity is varied from

1.0× 104 m2 s−1 to 5.0× 105 m2 s−1. The mixing occurs between a height of 2-4 km

and is initially concentrated along the large radial entropy gradient of the eyewall’s

outer edge. Subsequently, the TC undergoes substantial intensity and structural

changes if the ventilation is sufficiently strong.

Differences in the 24-48 hour averaged entropy and secondary circulation fields

between the A50 and control experiments are shown in Fig. 4-7. The direct effect

of the ventilation is to redistribute entropy within the bounds of the localization
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Figure 4-7: Differences in entropy (shaded in J kg−1 K−1) and the secondary circula-
tion (vectors in m s−1) between the A50 and control experiments averaged over 24-48
hours.

function, such that there is a decrease in entropy in the eyewall and an increase in

the near-inner core region at midlevels. Additionally, there are differences in entropy

elsewhere including a decrease in entropy through a deep layer in the eyewall, a

large decrease in entropy in the eye at upper levels associated with a degradation of

the upper-level warm core, and an increase in entropy in a thin strip at a height of

16 km associated with a warming of the convective cold top (Holloway and Neelin,

2007). The vectors in Fig. 4-7 indicate differences in the secondary circulation of the

TC between the A50 and control experiments. Flow in a counterclockwise direction

indicates where the A50 experiment has a weaker secondary circulation, as seen in

the boundary layer, through much of the original eyewall, and in the outflow layer

above 14 km. On the contrary, flow in a clockwise direction indicates where the

secondary circulation is stronger in the A50 experiment, as seen around a radius

of 50 km flaring out to a height of 12-14 km. This pattern indicates a shift in

the secondary circulation radially outward and vertically downward aloft. Difference

plots for the other experiments show similar patterns, albeit to a lesser degree. Hence,

strong localized mixing over a small region across the eyewall can induce system-wide

changes in the TC’s thermodynamic and kinematic structure.
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Figure 4-8: The maximum tangential winds ( m s−1) in the ‘A’ ventilation experi-
ments listed in Tab. 4.1.

As may be inferred from the structural changes, there is a corresponding decrease

in TC intensity to increasing ventilation amplitude, as shown in Fig. 4-8. For the A01

experiment, the weakening of the maximum tangential winds compared to the control

run is barely discernible, whereas the TCs in the A30 and A50 experiments weaken

approximately 15 m s−1 in the first ten hours. Thereafter, there are two starkly

different intensity regimes: a quasi-steady regime and an oscillatory regime. All the

experiments are quasi-steady through about 40 hours. The A30 and A50 experiment

then abruptly transition to a high frequency oscillatory regime, where the intensity

rapidly changes by 5-12 m s−1 in a few hours. Furthermore, the mean intensity during

the oscillatory regime is lower than the intensity during the quasi-steady regime.

Differences in the quasi-steady intensity can be explained by examining the frac-

tional Carnot efficiency (η) of the inner core, defined by

η =

∫
DρddV

∫ T−Tref
T

(
F
sp
z=0 +D

)
ρddV

, (4.69)

where D is the dissipation rate, Tref is the state dependent reference temperature,

and F
sp
z=0 is the surface flux of entropy. The reference temperature for each point in
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the domain can be estimated by calculating each parcel’s temperature at the level of

neutral buoyancy in the sounding used to initialize the model. By construction, the

neutral sounding has zero available potential energy and is thus the model’s reference

state. If considering only the fractional Carnot efficiency of the surface layer, the

reference temperature becomes the outflow temperature, and the integrals in (4.69)

are only calculated in the radial direction (cf. Emanuel (1997)). However, since

interior dissipation and dissipative heating are not negligible when integrated over

the entire free troposphere of the inner core, they are included for completeness.

For a perfect Carnot engine, η would be equal to one. This is approximately

true in the eyewall of a TC at its potential intensity. However, when considering the

fractional Carnot efficiency over the entire TC, the efficiency is much less than one.

Surface fluxes and dissipative heating outside the inner core predominately go toward

moistening and heating the environment. Hence, it is reasonable to expect that

ventilation will cause a similar reduction in efficiency as available potential energy is

used to moisten the inner core instead of powering the TC’s winds.

The fractional Carnot efficiency of the innermost 60 km and lowermost 17 km

averaged over 24-48 hours is shown in Fig. 4-9a for the ‘A’ ventilation experiments.

For increasing ventilation amplitude, the efficiency monotonically decreases from 73%

in the control run to 56% in the A50 experiment. Hence, an increasing fraction of the

available potential energy generation goes in to moistening or heating the atmosphere

in order to counter the effects of turbulent mixing due to ventilation. Fig. 4-9b shows

the power lost due to entropy mixing, normalized by the control run’s value, in the

inner core above a height of 2 km. The power lost is composed of the direct contri-

bution of ventilation via (4.68) and the model’s turbulence parameterization. Both

represent a sink of available potential energy, which can be estimated by integrating

the product of the divergence of the turbulent entropy flux and the difference between

the parcels’ temperature and reference temperature (Pauluis, 2007):

∫

(T − Tref )DSpdV . (4.70)
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Figure 4-9: (a) Fractional Carnot efficiency for the ’A’ ventilation experiments and
(b) the normalized power loss due to turbulent entropy mixing above a height of 2
km. Both quantities are calculated for the innermost 60 km and averaged over 24-48
hours.

As the ventilation increases, the power loss due to diffusion of entropy increases

steadily and becomes comparable to the power dissipated by friction. In the A10

experiment, the power loss due to turbulent entropy mixing is about twice that of the

control experiment. In the A50 experiment, the power dissipated due to entropy mix-

ing is about half the magnitude of the power dissipated by friction, which implies that

a large percentage of the available potential energy generation from surface fluxes and

dissipative heating in the inner core is being destroyed by turbulent entropy mixing

above the boundary layer. This necessitates a lower fractional Carnot efficiency.

The fractional Carnot efficiency is related to the mechanical efficiency described

by Pauluis and Held (2002). Tropical cyclones differ from other moist tropical cir-

culations in that they are characterized by uncharacteristically high mechanical effi-

ciencies that make the strong TC’s winds possible. These high mechanical efficiencies

are made possible by the TC’s saturated inner core and resistance to radial intrusions

of dry air (in the absence of asymmetric processes). Ventilation can be viewed as a

hindrance to high mechanical efficiencies as an irreversible diffusion of water vapor

leads to a reduction in the maximum work that can be achieved by the TC heat
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Figure 4-10: Maximum tangential winds ( m s−1) in the ‘H’ ventilation experiments
listed in Tab. 4.1.

engine (Goody, 2003).

4.4.2 Ventilation Height

In the second set of experiments, the ventilation height is varied from 1 km to 15 km,

while the amplitude is held at 5.0 × 105 m2 s−1. This set of experiments tests the

weakening efficacy of ventilation located at various heights in the inner core. The TC

intensity time series for these experiments are shown in Fig. 4-10.

Ventilation is most effective when it occurs at middle to low levels. Initially,

the greatest weakening occurs for the H03 and H06 experiments, with notably less

weakening occurring as the ventilation layer is moved upward. The H01 experiment

weakens less in the first 24 hours compared to the H03 and H06 experiments, but

continues to weaken and becomes approximately as weak as the H03 experiment after

40 hours. For upper-level ventilation (H12 and H15 experiments), the TC intensity

shows very little difference from the control run. Hence, upper-level ventilation does

not appear to be a mechanism that can substantially weaken a TC in this idealized

setting.

The degree to which ventilation affects the TC is largely determined by the degree
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to which eddy mixing induces frontolysis in the eyewall entropy front. At midlevels,

this potential is maximized because there exists a large low-entropy reservoir of rela-

tively dry air in the near-inner core region that eddies can access. At upper-levels, the

radial gradient of entropy is very weak reducing the ventilation potential. Moreover,

ventilating the upper-level warm core does not result in a large hydrostatic pressure

response due to compensating warming above the tropopause, which appears to be a

balanced response to the eddy forcing. Thus, eddy kinetic energy can be very large

at upper-levels, but has little to no avail in thermodynamically inducing weakening.

Thermal wind balance provides a simple way of explaining how changing the

ventilation height affects the quasi-steady intensity. Combining the expressions for

hydrostatic balance and gradient wind balance by cross differentiating and using the

definition of the angular momentum, M = rv+0.5fr2, the thermal wind relationship

is (Emanuel, 1986)

1

r3
∂M2

∂p

∣
∣
∣
∣
r

= − ∂α

∂r

∣
∣
∣
∣
p

, (4.71)

where α is the specific volume. Since α can be expressed as a function of s∗p and p,

using the Maxwell relationship,

∂T

∂p

∣
∣
∣
∣
s∗p

=
∂α

∂s∗p

∣
∣
∣
∣
p

, (4.72)

results in (4.71) becoming

2M

r3
∂r

∂p

∣
∣
∣
∣
M

=
∂T

∂p

∣
∣
∣
∣
s∗p

∂s∗p
∂M

∣
∣
∣
∣
p

. (4.73)

An expression for the maximum tangential wind speed can be derived by inte-

grating (4.73) down the angular momentum surface passing through the radius of

maximum wind, rm, at the top of the boundary layer, zh. In order to arrive at

a simple expression, the two layer system sketched in Fig. 4-11 is used. Assume

the ventilation only occurs at a single level, ze. Parcels rising through the eyewall

from region I to region II are instantaneously mixed as they cross the ventilation
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Figure 4-11: Schematic of the simplified model that is used to derive the ventilation
modified thermal wind equation. The ventilation occurs at a single level, ze. Region
I, the layer below the ventilation, lies between the top of the boundary layer, zh,
and ze. Region II, the layer above the ventilation, lies between ze and the outflow
layer, zo. Two angular momentum surfaces (M1 < M2) and two saturation entropy
surfaces (s1 > s2) are shown, where there is a jump in the entropy gradient across
the ventilation level.

level resulting in an instantaneous reduction in the magnitude of the entropy gradi-

ent across the eyewall. Additionally, assume that neutrality holds above and below

the ventilation level, such that angular momentum and saturation entropy surfaces

are congruent to one another in each separate region. As a result, the gradient of

saturation entropy with respect to angular momentum can be expressed as

∂s∗p
∂M

= cI + H(pe − p) (cII − cI)
︸ ︷︷ ︸

∆c

, (4.74)

where cI and cII are the (constant) entropy gradients across the eyewall in region I

and region II, H(pe− p) is the Heaviside step function centered at the pressure of the
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ventilation level, pe.

Under this set of assumptions, (4.73) can be integrated down the angular momen-

tum surface passing through the radius of maximum wind in a piecewise manner:

M

(

− 1

r2m
+

1

r2o

)

= lim
δ→0

∫ pe−δ

po

∂T

∂p

∣
∣
∣
∣
s∗p

(cI +∆c) dp+ lim
δ→0

∫ ph

pe+δ

∂T

∂p

∣
∣
∣
∣
s∗p

cIdp, (4.75)

where ro is the outer radius, po is the pressure of the outflow level, and ph is the

pressure at the top of the boundary layer. Upon evaluating the integrals and assuming

ro >> rm,

−M
r2m

= lim
δ→0

[(cI +∆c) (Te−δ − To) + cI (Th − Te+δ)] . (4.76)

Furthermore, since Te−δ ≈ Te+δ, (4.76) can be further simplified to

−M
r2m

= cI (Th − To) + ∆c (Te − To) . (4.77)

However, (4.77) does not take into account unbalanced effects that cause the

tangential winds to be supergradient at the top of the boundary layer. Bryan and

Rotunno (2009a) introduced a modification to the thermal wind relationship to ac-

count for unbalanced effects. Applying their modification and letting M ≈ rv, (4.77)

becomes

v2m = −Mm [cI (Th − To) + ∆c (Te − To)] + rmζmwm, (4.78)

where ζ is the relative vorticity. Any variable with a subscript ‘m’ is evaluated at

the radius of maximum wind at the top of the boundary layer. The first term on the

right hand side is the classical expression from Emanuel (1986), where the maximum

tangential wind speed is proportional to the constant entropy gradient in the eyewall.

The second term represents a correction due to ventilation. Increasing ∆c, i.e. pulling

entropy contours apart across the ventilation level, acts to decrease the magnitude

of the term in brackets resulting in a decrease in vm. Increasing the temperature at
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Figure 4-12: The maximum tangential wind speed ( m s−1) at a height of 1 km for the
‘H’ experiments (black) and the theoretical maximum tangential wind speed using a
modified thermal wind equation in the eyewall (blue) averaged over 24-48 hours.

which ventilation occurs weights the second term more and also results in a decrease

in vm. Lastly, the final term on the right hand side is the contribution of unbalanced

effects.

The theoretical maximum tangential wind speed at the top of the boundary layer

in the ‘H’ ventilation experiments, save the H01 experiment since cI is undefined,

is calculated using (4.78). cI and ∆c are computed using the vertically averaged

saturation entropy gradients evaluated along Mm above and below the ventilation

layer. It should be kept in mind that Mm is a dynamic surface, such that the thermal

wind calculation varies in both space and time. The theoretical maximum tangential

wind along with the actual value at a height of 1 km both averaged over 24-48

hours is shown in Fig. 4-12. The modified thermal wind equation does quite well at

estimating the model’s maximum tangential wind speed, with a slight overestimation

for the H15 and control experiments and a slight underestimation for the H03 and

H06 experiments.

Due to the good agreement between the theoretical and actual vm in Fig. 4-

12, (4.78) can be used to explain the behavior of the ’H’ experiments. Placing the
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ventilation at midlevels results in a large ∆c, as very low entropy air is mixed into

the eyewall resulting in a sharp jump in the entropy gradient across the ventilation

layer. Moreover, Te − To is larger when the ventilation occurs lower in the eyewall,

which increases the effect of the ventilation. The combination of these two effects

results in a substantial decrease in the maximum tangential wind speed at the top

of the boundary layer. As the storm weakens, a positive feedback results as cI also

decreases in magnitude due to weaker boundary layer inflow and surface fluxes both

reducing the frontogenesis at lower levels. On the other hand, when the ventilation

is moved upwards, the background radial entropy gradient weakens resulting in less

of a jump in the entropy gradient across the ventilation layer. This is especially true

when the ventilation is placed above 10 km, which explains why the H12 and H15

experiments differ little from the control experiment. Additionally, as Te approaches

To, the second term in (4.78) vanishes, and thus ventilation in the outflow layer has

no bearing on the maximum tangential winds.

It should be noted that the fractional Carnot efficiency and thermal wind diagnos-

tics lead to the same conclusions for both sets of sensitivity experiments. Increasing

the amplitude of the effective eddy viscosity leads to a greater jump in ∆c, which

by the modified thermal wind equation corresponds to a decrease in the intensity.

Moving the ventilation to upper levels results in a higher fractional Carnot efficiency

because the power lost to entropy diffusion at upper levels is insignificant.

4.4.3 Oscillatory Intensity Regime

The quasi-steady intensity regime is described by the two diagnostics above fairly

well since there aren’t large time tendencies in the entropy or energy budget. Addi-

tionally, the eyewall remains predominately slantwise neutral. This is not true during

the oscillatory regime in the A30 and A50 experiments, which is characterized by

rapid shifts in the axisymmetric structure of the storm. Each oscillation in the in-

tensity is governed by the life cycle of a convective burst. At first, strong mixing

deposits high-entropy air into the near-inner core environment resulting in potential

slantwise instability. Subsequently, elevated slantwise convection occurs, and precipi-
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tation falling from the convective burst evaporates in to the dry air below inducing an

intense downdraft of 2-3 m s−1. The downdrafts transport a pocket of low-entropy

air down into the boundary layer and induce compensating inflow through the middle

troposphere resulting in an additional inward flux of low-entropy environmental air.

The low-entropy air in the boundary layer is then swept inwards by the radial inflow,

stabilizing the atmospheric column, and causing convection to temporarily cease until

surface fluxes restore the boundary layer entropy. The process repeats itself with a

period of about 5-8 hours.

The life cycle of several of these convective bursts from the A50 experiment is

shown in the Hovmoller plot in Fig. 4-13a. The gray shading is the entropy at the

lowest model level (z=150 m), while the cyan outlines denote significant downdraft

entropy fluxes at a height of 1.5 km. Each downdraft transports a large amount low

entropy into the boundary layer, which is then advected inward. Surface fluxes act

to restore the entropy, but not completely before the downdraft modified air reaches

the radius of maximum wind around 30 km. The result is a decrease in the radial

entropy gradient through a deep layer in the eyewall. In response, the intensity

decreases sharply, as seen by the dips in tangential wind speed after each downdraft

event in Fig. 4-13b.

The cumulative effect of the downdrafts also decreases the mean intensity of the

storm. Compared to a parallel A50 experiment, in which evaporation is turned off

precluding downdraft formation, the A50 experiment is about 5-10 m s−1 weaker on

average during the oscillatory regime. The downdrafts occur frequently enough to

significantly affect the entropy budget of the inner core boundary layer and intensity

of the storm, as hypothesized in Ch. 2 and by Riemer et al. (2010). Only after these

large downdraft events cease after 100 hours does the TC begin to recover to a higher

mean intensity.
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Figure 4-13: (a) Hovmoller plot of the entropy at the lowest model level (shaded
in J kg−1 K−1) and significant downdraft entropy fluxes at 1.5 km (cyan outline at
−2 m s−1 J kg−1 K−1), and (b) the time series of maximum tangential wind speed
(m s−1) at the lowest model level from the A50 experiment.
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4.5 Spatially Varying Ventilation Experiments

In the previous experiments, the enhanced eddy entropy fluxes are fixed in space but

vary in time. In the following experiments, the enhanced eddy entropy fluxes move

with the radius of maximum wind but are constant in time. The maximum eddy

entropy flux is specified to occur through the angular momentum surface (Mo) 10 km

radially outward from the radius of maximum wind between height of 2 km to 6km.

This angular momentum surface roughly demarcates the outer edge of the eyewall

initially. The magnitude of the entropy flux at Mo is held constant between a value

of 0 to 30 J K−1 s−1 m−2 and decreases linearly on either side, such that it vanishes

at the radius of maximum wind and at the outer boundary of the domain. Although

the entropy mixing is highly idealized and can even cause up gradient transport, this

setup allows a much more controlled set of experiments that can be used to test the

findings of Ch. 2.

The ventilation (V) is calculated using the following formula from Ch. 2:

V =
1

2πρmrmδr

∫

Mo

Fsp · ndξ ≈ 1

ρmrmδr

∫ 6 km

2 km

F sp
r r|Mo

dz, (4.79)

where ρm is the density at the top of the boundary layer and radius of maximum

wind, δr is a characteristic width of the eyewall, n is the unit normal vector along

Mo, and dξ is a surface area element. The last step in (4.79) approximates the integral

in cylindrical coordinates. δr is set to 20 km, which is the approximate width of the 1

m s−1 updraft region of the eyewall initially. An accurate estimate of (4.79) requires

there to be a well defined rm and Mo, which can be problematic if the storm becomes

weak and disorganized. For those experiments in which the storm weakens rapidly,

(4.79) is calculated in the 12 hours before rapid weakening commences.

The experiments are run out 10 days, and Fig. 4-14 shows the final 12 hour av-

eraged maximum tangential winds and maximum gradient wind as a function of the

ventilation. Additionally, the steady-state intensity curves from the theoretical frame-

work are also plotted using the maximum gradient wind speed in the control experi-

ment as the potential intensity and a ventilation threshold of 9.6 m s−1 J (kg K)−1.
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Figure 4-14: The maximum tangential wind (blue x’s) and the maximum gradient
wind (red x’s) as a function of the ventilation for the spatially varying ventilation
experiments. The theoretical steady-state intensity (see Ch. 2) most closely fitting
the maximum gradient wind data is shown by the gray lines. The solid gray line
denotes the stable equilibrium intensity, and the dashed gray line denotes the unstable
equilibrium intensity.

The solid line is the stable equilibrium intensity and the dashed line is the unstable

equilibrium intensity. In order to simplify the comparison with the theory, the ventila-

tion threshold is held fixed for all experiments, although it should be remembered that

the ventilation threshold is a function of the potential intensity and state-dependent

storm structure.

The first postulate from the ventilation theory is that increasing ventilation causes

a monotonic decrease in steady-state intensity. Clearly, this is also the case in the ex-

periments for both the maximum tangential wind and gradient wind. The lowest four

ventilation experiments appear to be quasi-steady. However, the three experiments

between a ventilation of 8 and 9.5 m s−1 J (kg K)−1 are still weakening at the end of

the 10 day simulation, so it is likely that the intensities for these three experiments

in Fig. 4-14 have not yet converged.

The second postulate is that there is a ventilation threshold beyond which only

a weakening solution is possible. Once the ventilation exceeds 9.6 m s−1 J (kg K)−1,
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the experiments have a precipitous drop in intensity indicating that a threshold has

been crossed. The experiments above the ventilation threshold are very weak, and

their structures are highly disorganized with no well defined radius of maximum wind

and no coherent secondary circulation.

Absolute decay of the TC intensity is reasoned to be caused by downdrafts fluxing

overwhelming quantities of low-entropy air into the boundary layer, such that the

generation of available mechanical energy by surface fluxes is unable to sustain the

TC’s winds against both dissipation and downdrafts. To see whether this applies

in the model, the surface entropy flux is compared to the downdraft entropy flux in

the near-inner core region for the run with the largest ventilation around the time of

rapid weakening. The downdraft entropy flux is defined as

∫

W ′
H(−W )s′prdr, (4.80)

where the Heaviside function, H(−W ), ensures only downdrafts are included in the

integrand. The primes refer to perturbations from a slowly varying mean, which

is determined by running a low-pass filter through W and sp at each point in the

domain. This is necessarily because the mean structure of the TC is changing during

the period of interest and deriving the perturbation quantities form a strict time

average would cause there to be an undesirable trend in the perturbations.

Fig. 4-15 shows the integrated downdraft entropy flux at a height of 1.5 km

and the integrated surface entropy flux, where both quantities are evaluated over an

annulus between 20 to 60 km. Before 140 hours, there is little downdraft activity

and consequently little weakening due to the ventilation. After 140 hours, there is

a slight increase in downdraft entropy fluxes before a very large downdraft event

occurs around 150 hours. The downdraft entropy flux exceeds the surface entropy

flux for a brief period of time, and concurrently, the intensity precipitously drops.

Note that there is a temporary increase in surface fluxes despite the decrease in wind

speed. This increase is a consequence of greater air-sea disequilibrium enhancing the

surface fluxes, which mitigates the effects of downdrafts to a small degree. Another
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Figure 4-15: The downdraft entropy flux at a height of 1.5 km (blue line) and the
surface entropy flux (red line) integrated over an annulus between 20 and 60 km over
a period of rapid weakening for the experiment with the largest ventilation. Entropy
fluxes are multiplied by 10−9. The black line is the maximum tangential wind speed.

large downdraft event occurs around 160 hours followed by a succession of moderate

downdraft events, with the greatest weakening lagging the downdraft events by a few

hours. The elevated mean downdraft entropy flux through the period, coupled with

a significant drop in surface fluxes, causes the TC to continuously decay.

Despite constant ventilation occurring above the boundary layer, the TC does

not weaken until the ventilation is communicated down to the boundary layer via

downdrafts, which can take a substantial amount of time to materialize in the idealized

experiments. There is some diffusion of entropy across the eyewall in the spatially

varying ventilation experiments, but since the ventilation is always radially outward

of the radius of maximum wind, there is not nearly as much entropy mixing across

the eyewall as in the spatially fixed ventilation experiments. Therefore, an important

finding arises concerning the ability of ventilation to weaken the TC. If ventilation is

not communicated across the entire eyewall, as to affect the radial entropy gradient

over a deep layer, or communicated down to the boundary layer, where it can affect
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the energy budget in the TC’s boundary layer, then ventilation only has a minor effect

on the intensity. Additionally, a parallel simulation where evaporation is turned off

shows no significant change in intensity from the control run, which illustrates the

important role of downdraft modification of the boundary layer (Riemer et al., 2010).

The third postulate from the ventilation theory is that ventilation will affect TCs of

varying initial intensities differently. This is due to the unstable equilibrium intensity

branch, as illustrated in Fig. 4-14. TCs with initial intensities below the unstable

branch will decay, while TCs with initial intensities above it will grow to the stable

equilibrium intensity. In this set of experiments, the ventilation is initiated at different

times during the intensification stage of the control run. The ventilation is set to a

value of approximately 8 m s−1 J (kg K)−1 for all experiments, which corresponds to

an unstable equilibrium intensity of 23 m s−1. Fig. 4-16 shows the intensity time

series from this suite of experiments. As predicted from the theory, the storm with

an initial intensity of 20 m s−1 fails to strengthen. Downdrafts continuously plague

the inner-core preventing the TC from spinning up. For all other initial intensities,

the TC strengthens and converges to approximately the same intensity. However, the

ventilation does increase the time it takes for the TC to strengthen, which is also a

behavior noted in the theoretical framework. For example, the TC with an initial

intensity of 30 m s−1 doesn’t begin to rapidly strengthen until after 80 hours and

takes about twice as long to reach its peak intensity compared to the control run.

4.6 Conclusions

One possible pathway by which environmental vertical wind shear constraints a TC’s

intensity is by ventilating the inner core of a TC with low-entropy environmental

air. A few flavors of the ventilation hypothesis include: upper-level ventilation of the

warm core (Frank and Ritchie, 2001; Kwon and Frank, 2008), midlevel ventilation of

the eyewall (Simpson and Riehl, 1958; Cram et al., 2007), and downdraft modification

of the boundary layer due to the ventilation of near-inner core convection (Powell,

1990; Riemer et al., 2010). A simple model is devised in order to assess the sensitivity
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Figure 4-16: The maximum tangential winds for the set of experiments where the
ventilation is initiated at different intensities.

of TC intensity to these possible ventilation pathways.

The model is based off the Rotunno and Emanuel (1987) model, but has some no-

table differences and improvements. Some of these differences include: a much more

rigorously conserved mass budget, the use of pseudoadiabatic entropy as a prognos-

tic variable, the use of an evaporation limiter that prevents excessive evaporation

of rainwater, the inclusion of internal dissipative heating, and improved numerical

methods.

Ventilation is prescribed in the model using a simple, down-gradient diffusive flux

of entropy. Starting from a mature TC, ventilation is applied over a fixed area at

midlevels across the eyewall with varying strength. For strong ventilation, there is

significant cooling of the upper-level warm core and a shift in the secondary circulation

radially outward. Additionally, strong ventilation quickly weakens the TC leading to

a lower quasi-steady intensity, as the fractional Carnot efficiency is reduced in the

inner core due to diffusion of entropy above the boundary layer. The weakening

can also be viewed as a consequence of a reduction in mechanical efficiency due to

irreversible mixing of entropy (Pauluis and Held, 2002; Goody, 2003). After a period

of time, the simulations with strong ventilation transition into a oscillatory regime
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characterized by rapid swings in the intensity of up to 12 m s−1 with a period of 5-8

hours. These swings are shown to be associated with bursts of slantwise convection

followed by a flux of low-entropy air down into the boundary layer by downdrafts.

The cumulative effect of the downdrafts lowers the mean intensity further.

The sensitivity of the TC intensity to the ventilation height is also assessed. As the

ventilation is moved upwards along the eyewall, the TC intensity decreases less. This

behavior is explained using a modified thermal wind relationship. As the ventilation

is moved upward, the jump in the radial entropy gradient across the ventilation layer

decreases in magnitude resulting in less of an effect on the tangential wind speed at

the top of the boundary layer. Furthermore, as the temperature difference between

the ventilation layer and the outflow layer decreases, ventilation becomes less effective

at inducing weakening. The greatest weakening occurs when the ventilation occurs

at midlevels, where the entropy difference between the eyewall and environment is

greatest and the temperature difference between the ventilation layer and outflow

layer is also relatively large.

Based on these findings, ventilation at midlevels appears to be an efficient mecha-

nism by which a reduction in maximum intensity can occur. Additionally, downdraft

modification of the boundary layer is also effective at reducing the efficiency of the

hurricane heat engine and weakening the storm. However, upper-level ventilation

does not appear to be an effective weakening mechanism.

The key aspects of the theoretical formulation from Ch. 2 are also tested using

the axisymmetric model with spatially varying, but constant entropy flux magnitude.

Three components of the ventilation theory are supported: a monotonic reduction in

intensity with increasing ventilation; the presence of a ventilation threshold, beyond

which a TC cannot exist; and a bifurcation of TC intensity based on the strength of the

initial vortex. An analysis of the entropy budget of the near-inner core region indicates

that the TC rapidly weakens when the downdraft entropy flux becomes comparable to

surface entropy fluxes, such that the mechanical energy generation by surface fluxes

cannot maintain the TC’s winds against both dissipation and downdrafts.

The setup of these experiments is highly idealized, as the complicated details of
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how eddy entropy mixing actually occurs have been avoided in this study. First,

the ventilation parameterization does not reflect the possibility of non-local mixing,

where entropy can be carried large distances before being irreversibly mixed at smaller

scales. Second, the values of the eddy viscosities used are much higher than the effec-

tive viscosities determined by Hendricks and Schubert (2009). Third, the region that

is ventilated is only loosely based on the stagnation radius for vortex Rossby waves,

which is roughly 2-3 times the radius of maximum wind (Montgomery and Kallen-

bach, 1997; Corbosiero et al., 2006), versus some interactive calculation. Finally, the

handling of microphysics in this model is quite simplified, and the details of evapora-

tion and the melting of ice influence downdraft characteristics critically (Srivastava,

1987). Thus, there is uncertainty as to how much of the results carry over to 3D

simulations or reality. At the very least, the results from these idealized experiments

show the need to evaluate the upper-level ventilation hypothesis more carefully and

provide a basis for investigations of ventilation in more complex models.

The efficacy to which shear-excited vortex Rossby waves are able to bring in low-

entropy air into the inner core of the TC also needs to be studied in 3D models.

The idealized experiments in this study show that having the low-entropy air simply

get close to the inner core has little effect. To affect the energy budget of the TC

and significantly weaken the storm, there must be substantial irreversible mixing of

low-entropy environmental air with the high-entropy highway of the secondary circu-

lation by either formation of downdrafts or direct mixing across the entire eyewall.

Additional investigations of the behavior of vortex Rossby waves in moist, 3D models

of vertically sheared TCs is critical to addressing this issue.
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Chapter 5

Conclusions and Future Work

5.1 Summary of Work

Environmental vertical wind shear is observed to reduce the maximum intensity of

tropical cyclones below the potential intensity, but the physical pathway by which

this occurs is uncertain. One hypothesized pathway is midlevel ventilation - the flux

of low-entropy air into the inner core of a tropical cyclone. The low-entropy air acts

as “anti-fuel” disrupting the hurricane heat engine.

Two possible pathways are hypothesized by which ventilation occurs. The first

pathway is direct injection of the low-entropy air into the TC’s eyewall leading to a

decrease in the eyewall entropy through deep layer. The second pathway is convective

downdraft fluxes of low-entropy air into the boundary layer by shear-induced asym-

metric convection in the near-inner core region. Once the TC begins to weaken, a

positive feedback can then occur where reduced surface fluxes allows ventilation to de-

press the entropy even further causing more weakening. The hypothesis is evaluated

theoretically, observationally, and numerically.

The two ventilation pathways are investigated by modifying the axisymmetric,

slantwise neutral, steady-state theory of Emanuel (1986) to account for ventilation.

In this framework, eddy fluxes of entropy in the free troposphere are instantaneously

communicated down to the boundary layer through convective downdrafts. Ventila-

tion is noted to constrain the intensity in several ways. The difference between the
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potential intensity and the ventilation modified steady-state intensity is a monotonic

increasing, nonlinear function of the ventilation. Furthermore, there exists minimum

steady-state intensity of approximately 58% of the potential intensity at the ventila-

tion threshold. Beyond the ventilation threshold, a steady tropical cyclone cannot be

maintained, and only a trivial solution is possible (i.e. one with no tropical cyclone

at all). For nonprohibitive magnitudes of ventilation, there is a dividing intensity

separating growing and decaying TCs, implying that ventilation kills off weaker ini-

tial vortices. Experiments using an axisymmetric model with prescribed ventilation

confirm these theoretical findings.

A secondary effect on intensity is caused by an increase in the outflow temperature.

As ventilation increases, the buoyancy of the TC’s eyewall relative to the background

environment is reduced resulting in a shallowing of the storm structure, in agreement

with composited analyses of vertically sheared TCs. This results in a reduction in

the thermodynamic efficiency, which serves to compound the effects of ventilation.

The effect of ventilation on the TC’s energy generation budget in the boundary

layer is also examined. As ventilation increases, the net energy generation decreases

quickly as downdrafts flush the boundary layer with greater amounts of low-entropy

air. If the ventilation is strong enough, the net energy generation becomes negative in

the downdraft region overwhelming surface fluxes, which have already been weakened

due to a decrease in surface wind speed. This process represents the feedback respon-

sible for the nonlinear behavior noted in the steady-state equilibrium solution. Once

ventilation passes the threshold value, sources of mechanical energy cannot balance

the sink due to dissipation and downdrafts. Additionally, the threshold value is lower

for the first ventilation pathway compared to the second pathway. In the latter case,

downdraft air is modified by surface fluxes along its trajectory in toward the radius

of maximum wind.

Normalizing the steady-state intensity by the potential intensity and the venti-

lation by the ventilation threshold for each respective thermodynamic environment

collapses the framework into a single curve that is invariant across all thermodynamic

states. Thus, the normalized ventilation serves as a powerful metric for assessing
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whether ventilation plays a detectable role in current TC climatology and for evalu-

ating possible changes in TC statistics in different climates. Based on the normalized

ventilation, a ventilation index is defined as the product of the vertical wind shear

and the nondimensional entropy deficit divided by the potential intensity. The venti-

lation index can be calculated from large-scale gridded analyses after a suitable filter

is applied to remove TCs from the data.

The spatial and temporal distribution of the ventilation index is shown to be

tied closely with global tropical cyclogenesis and normalized intensification statistics.

The spatial distribution of tropical cyclogenesis is confined to regions of low seasonal

ventilation index, which shares substantial overlap with the genesis potential index

(Emanuel, 2010). On daily timescales, tropical cyclogenesis is most favored when the

ventilation index is in the lower half of its climatological daily distribution in the

global main genesis regions during the peak months of the hurricane season. Addi-

tionally, the maximum normalized intensity for TCs decreases with ventilation. The

distribution of normalized intensification as a function of normalized ventilation indi-

cates the possibility of a steady-state equilibrium intensity separating decaying and

strengthening TCs. TCs located far from equilibrium tend to show greater normal-

ized intensity changes. These findings provide observational evidence for the stable

equilibrium solution from the theoretical framework.

The ventilation index can be used as a proxy to assess potential changes in TC

climatology in GCM simulations between the late 20th and 22nd centuries. Overall, it

is hard to draw any robust conclusions, as there is large variance among the GCMs,

especially regionally. However, individual models do show large ventilation index

changes, and any single realization indicates potential regional shifts in the preferred

locations of tropical cyclogenesis and changes in TC intensity statistics. In every GCM

examined, vertical wind shear changes only contribute to a portion of the ventilation

changes. The nondimensional midlevel entropy deficit and potential intensity increase

nearly everywhere in the tropics. Since the GCMs tend to show the nondimensional

midlevel entropy deficit increasing faster than the potential intensity in most TC

basins, the former alone will increase the mean ventilation even in the absence of any
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changes in the vertical wind shear.

Finally, the sensitivity of TC intensity to parameterized ventilation in an ax-

isymmetric model is examined. The primary differences between the Rotunno and

Emanuel (1987) model and the current model is that it uses pseudoadiabatic en-

tropy as its prognostic variable and has much more rigorously conserved mass and

entropy budgets, which make using integrated entropy diagnostics to evaluate inten-

sity changes less prone to large residuals. Ventilation is imposed using a first order,

down-gradient diffusive flux of entropy (and water vapor mixing ratio).

The TC generally weakens much more for larger ventilation amplitude and when

the ventilation is located at midlevels near the largest radial entropy difference be-

tween the eyewall and environment. This behavior can be examined by diagnosing

either the fractional Carnot efficiency of the inner core or thermal wind balance in

the eyewall. The fractional Carnot efficiency decreases with increasing diffusion of

entropy above the boundary layer. A modified thermal wind relationship shows that

the greater the decrease in entropy gradient across the ventilation layer and/or the

higher temperature at which ventilation occurs in the eyewall, the greater the de-

crease in the tangential wind speed at the top of the boundary layer. Both of these

diagnostics indicate that midlevel ventilation has much more potential to weaken a

TC than upper-level ventilation.

Additionally, downdraft modification of the boundary layer occurs in some of the

experiments. Strong convective bursts lead to large downdrafts that flush the bound-

ary layer with low-entropy air. As the low-entropy air is advected inwards by the

radial inflow, convection quickly dies and the storm weakens dramatically. Energeti-

cally, the reason for this weakening can be seen by calculating the downdraft entropy

flux at the top of the boundary layer and surface fluxes in the inner core. In agreement

with the theoretical framework, when the downdraft entropy flux becomes compara-

ble in magnitude to surface fluxes, the mechanical energy generation by surface fluxes

in the inner core cannot maintain the TC’s winds against dissipation. This results in

rapid weakening of the storm.

In summary, the findings of the three chapters presented within this thesis support
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the ventilation hypothesis. Midlevel ventilation and downdraft modification of the

boundary layer both appear to be viable ways by which environmental vertical wind

shear can significantly affect TC intensity. This work lays the foundation for more

detailed studies of the ventilation hypothesis in 3D numerical models of sheared TCs

and upcoming field campaigns. Some ideas are proposed in the next section.

5.2 Future Work

5.2.1 Case Study: Hurricane Bill (2009)

A precise calculation of ventilation requires high resolution spatial and temporal data.

An observational dataset does not exist to the author’s knowledge that would allow

such a calculation. However, there are some case studies that indicate the possibility

that ventilation may be taking place. Once such example is Hurricane Claudette,

which weakened from a hurricane to a weak tropical storm in about six hours (Shel-

ton and Molinari, 2009). Inflow of dry air on the northwest side of the storm is

hypothesized to have ventilated the eyewall leading to the hurricane’s quick demise.

Another more recent case study is Hurricane Bill (2009). Hurricane Bill was stud-

ied as part of the Saharan Air Layer Experiment. The Saharan air layer is character-

ized as an elevated mixed layer with an associated midlevel jet and is hypothesized to

inhibit tropical cyclogenesis and TC intensification, as it periodically sweeps across

large portions of the tropical Atlantic (Dunion and Velden, 2004). The combination

of dry air (low entropy) at midlevels along with increased shear makes TCs affected

by the Saharan air layer prime candidates for collecting data to study the ventilation

hypothesis.

Multiple missions were flown into Hurricane Bill on 8/20/09. From 8/20/09 at 03Z

to 8/20/09 at 15Z, Bill weakened from 115 knots to 105 knots as the storm began

to take on a more asymmetric appearance, and the eye began to look somewhat

ragged. Thereafter, Bill held a quasi-steady intensity until more rapid weakening

began later the following day. Total precipitable water analysis indicates that Bill
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was surrounding by two Saharan air layer masses to the east and west. A tongue of

drier air can be seen wrapping in toward the center of the storm on 8/20/09 right

around the time weakening begins (Jason Dunion, pers. communication). The deep

layer vertical wind shear on 8/20/09, as estimated from the Cooperative Institute for

Meteorological Satellite Studies, was from the SE at 6-7 m s−1 and increased to 8

m s−1 as the day progressed. Is it possible that the combination of vertical shear and

dry air at midlevels halted the strengthening of Hurricane Bill and subsequently led

to weakening thereafter?

Preliminary analysis from the Gulfstream-IV dropsonde data from 8/20/09 09Z to

14Z provides possible evidence for ventilation. Figure 5-1 shows the θe and radial wind

in a frame of reference moving with the TC. The TC center and motion is deduced

from a combination of vortex center fixes from a concurrent reconnaissance mission

supplemented with best-track positions. Only data at and below 500 mb is shown in

order to search for possible ventilation signals, namely, inflow coupled with negative

entropy anomalies relative to the azimuthal mean. The azimuthal mean is a bit hard

to deduce given the sparse data, but there does appear to be an area to the northeast

of the center of anomalously low θe along with 7.5-10 m s−1 of relative inflow between

700-800 mb. At 700mb, the θe is especially low with values between 325-330 K. Total

precipitable water analysis at 12Z indicates that the dropsondes likely sampled a piece

of the Saharan air layer getting wrapped into the storm. Granted, these observations

are about 200-300 km from the storm center and closer to an outer rainband than the

inner core. It would interesting to see if this inflow of low-θe air extends closer into the

inner core, possibly by examining the flight-level data from the other reconnaissance

mission.

Shortly after the flight, a large band of arc clouds was observed to emanate from

a rainband on the west and north sides of the circulation. The arc clouds are the

visual manifestation of a large cold pool that had been generated by downdrafts along

the rainband. The outflow from these cold pools appears to have been captured in

Fig. 5-1 at 800 mb and below to the northwest of Bill’s center. At 800 mb, there

is one observation of 15 m s−1 radial outflow with a θe of 330-335 K. Lower down,
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Figure 5-1: Dropsonde observations at 500, 600, 700, 800, 900, and 1000 mb from
Hurricane Bill taken on 8/20/09 from 09-14Z. Colored dots indicate the value of θe
(K), and wind barbs are the relative radial flow (m s−1). The axes are the zonal and
meridional distances (km) from the TC center.
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there is weaker outflow coinciding with anomalously low θe values in the same region

associated with a low-level cold pool propagating outward.

A vertical profile of the relative radial and tangential wind, the vertical wind, and

the θe are given in Fig. 5-2 for the dropsonde that is about 170 km north of the TC’s

center. There are clearly strong downdrafts below 800 mb, which would flux the low-

θe air observed above 950 mb downward. The profile of relative radial flow consists

of inflow below 820 mb and weak outflow above. Hence, this dropsonde snapshot

indicates at least the possibility of low-θe air being transported down into inflow layer

of the storm, where it can then be advected toward the radius of maximum wind.

However, the large downdraft in the northwest region of the storm appears to be

dominated by outflow at low-levels, so it is unclear how much low-θe air is getting

drawn in toward the center.

Obviously, there are many gaps in the data that would allow one to get a better

sense of what’s going on, but there are pieces of interesting evidence that appear to

point to the possibility that midlevel ventilation and downdraft modification of the

boundary layer affected the intensity of Hurricane Bill. It may be that the current

observational platform is too limited to yield a more thorough dataset, but perhaps

that will change in the near future with unmanned aerial vehicles and advances in

dropsonde technology that will allow data to be collected in regions that are too

risky to sample with conventional aircraft. Until then, there are probably a number

of datasets that can be examined from past reconnaissance missions that may yield

better evidence for ventilation.

5.2.2 Ventilation of Mature Tropical Cyclones in 3D Models

A set of 3D simulations for TCs embedded in varying amounts of vertical wind shear

used by Riemer et al. (2010) serves as a good dataset for evaluating the assumptions

and findings of the theoretical and axisymmetric modeling portions in this study. The

first assumption used implicitly throughout this study is that a large low-entropy

reservoir of air located at midlevels can be efficiently drawn close enough to the

center of the TC to ventilate the inner core. First, the source of the low-entropy air
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Figure 5-2: (a) A vertical sounding of the relative radial winds (blue line) and tangen-
tial winds (red line), (b) vertical velocity, (c) and equivalent potential temperature
for a dropsonde released approximately 170 km north of the Hurricane Bill’s center
at 8/29/09 11:25Z.
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must be determined. Cram et al. (2007) made progress on this front by looking at

Lagrangian back trajectories of eyewall parcels. A back-of-the-envelope calculation

performed in Ch. 2 using properties of their “class-IV” trajectories showed that the

ventilation could indeed be responsible for limiting the intensity of the simulated

storm. By performing a more careful calculation, examining additional cases for

varying magnitudes of vertical wind shear, and also extending the trajectories further

back in time, further insights in to the sources and effects of the low-entropy air will

hopefully be obtained. Additionally, it would also be interesting to see the same

back trajectory analysis performed for downdraft parcels to see if the air originating

from cold pools originates from a different source than those parcels entering the

eyewall directly. Second, the mechanism that is drawing in the low-entropy air must

be identified. The standing hypothesis is that vortex Rossby waves are acting as

the ventilation intermediary. It should be straightforward to evaluate the covariance

of relative radial inflow and entropy, perhaps through an azimuthal wavenumber

decomposition, to see if there are discernible patterns that emerge that would link

vortex Rossby waves to the ventilation. Additionally, this would allow one to assess

which sector(s) of the TC are preferentially ventilated.

Another major assumption in the theoretical framework is that there is an in-

stantaneous communication between the lateral entropy flux in the free troposphere

and convective flux through the top of the boundary layer in order to maintain strict

equilibrium and steadiness in convectively active regions. However, the time tendency

of entropy can be important, and there is likely a short lag between ventilation and

the appearance of downdrafts. Moreover, the downdrafts may not extend down to

the surface if the negative buoyancy generated by evaporation of rain is small. Using

the 3D simulations, entropy budgets for select control volumes above the boundary

layer (e.g. a half-annulus encompassing the upshear side of the eyewall) would be

useful to assess the lag along with how efficiently low-entropy air is carried down into

the boundary layer. However, a major challenge would be calculating such a budget

with fidelity in a frame of reference moving with the TC. Additionally, it would be

interesting to see if there is a feedback where acceleration of downdrafts into the
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boundary layer cause an unbalanced response that leads to even more low (or lower)

entropy air being drawn inward to take its place.

The two diagnostics - modified thermal wind balance and fractional Carnot effi-

ciency - that proved very useful in assessing the sensitivity of TC intensity to ventila-

tion in the axisymmetric framework can also be applied in 3D simulations to see the

extent to which they carry over. The azimuthal average of the gradient of entropy in

the eyewall of the storm should scale with the azimuthally averaged tangential winds

at the top of the boundary layer. Ventilation at midlevels should lead to a reduction

in the entropy gradient with height, thereby affecting the intensity. The fractional

Carnot efficiency or mechanical efficiency should be straightforward to apply since it

can be easily calculated over the inner core of the storm. Diffusion of entropy (water

vapor) due to ventilation should cause a decrease in the efficiency (Pauluis and Held,

2002) and reduce the rate of mechanical energy generation available to power the

TC’s winds.

Strong downdrafts are noted in the simulations in Riemer et al. (2010) and are

hypothesized to have weakened the storm temporarily. Fig. 5-3 is a snapshot at 4.8

hours of the θe averaged through the lowest 1 km of the domain for the simulation with

15 m s−1 of easterly vertical wind shear. The large banded area of low entropy to the

south is the product of a widespread area of persistent convective downdrafts. The

streamlines indicate that the broad area of low-entropy air has to spiral about three-

quarters of the way around before entering the eyewall. By the time this happens,

enough time has passed to allow surface fluxes to substantially modify the downdraft

air. This could be the reason why the TC’s intensity does not weaken drastically even

though there is a large area of low-entropy air lurking just outside the inner core. Of

potentially greater significance are hints of undulations in the θe field in the eyewall

from what appear to be pockets of low-entropy air produced by downdrafts very near

the radius of maximum wind. One such downdraft is seen in Fig. 5-3 along the

northeast edge of the eyewall. These downdraft parcels almost immediately enter the

eyewall and, thus, have little time for modification by surface fluxes. Trajectories of

inflowing parcels of air are needed to better assess how much of the low-θe downdraft

169



x [km]

y 
[k

m
]

 

 

1550 1600 1650 1700 1750
300

320

340

360

380

400

420

440

460

480

500

335

340

345

350

355

360

365

370

Figure 5-3: A 4.8 hour snapshot of the equivalent potential temperature (K) averaged
over the lowest 1 km (shaded), streamlines of the average flow in the lowest 1 km (blue
contours), and downdrafts at a height of 1 km with a magnitude greater than 1 m s−1

(black contour) for a 3D simulation of a TC embedded in 15 m s−1 of vertical wind
shear. The data is courtesy Michael Riemer, Mike Montgomery, and Mel Nicholls.

air reaches the eyewall. An analysis of the θe along the trajectories would also give

an indication of how quickly the θe recovers as it spirals inward.

The evolution of the downdraft convective available potential energy (DCAPE)

(Emanuel, 1994) may be useful for determining the downdraft potential in sheared

TCs. Dry air intrusions at midlevels would locally decrease the wet-bulb potential

temperature and possibly increase the DCAPE. Although the DCAPE is not a con-

served tracer, it may be useful for identifying the source region of the ventilation,

much like CAPE is used to identify source regions of potential instability.

A secondary item of interest noted in the axisymmetric simulations is that down-

drafts tend to follow slantwise paths. It would be interesting to see if this also applies

in 3D models. This may be important because it would cause the cold pool to form

slightly radially inward of the downdraft initiation radius and would thereby reduce

the time it takes the low-entropy air to reach the eyewall, but it is unknown whether

this effect is trivial. Perhaps “slantwise downdrafts” play a more important role
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when initiated very close to the radius of maximum wind where the surface fluxes are

largest.

5.2.3 Ventilation Effects on Tropical Cyclogenesis

The role of environmental controls on tropical cyclogenesis is especially uncertain.

Although there are a handful of large-scale conditions that serve as necessary condi-

tions for tropical cyclogenesis, the role of mesoscale processes is much less understood.

How a large-scale control, such as vertical wind shear, interacts with the mesoscale

convective features of a nascent tropical disturbance and influences upscale growth

is an interesting problem. In the context of the work presented here, how does ven-

tilation affect tropical cyclogenesis? Even though the assumptions used to derive

the ventilation framework do not apply well to the genesis phase, it was shown in

Ch. 3 that ventilation still controls the spatial and temporal distribution of tropical

cyclogenesis to a significant degree.

The Dunkerton et al. (2009) “marsupial paradigm” for tropical cyclogenesis postu-

lates that the tropical wave’s critical layer provides a protective pouch for convection

to continuously moisten the troposphere, which has been hypothesized to be imper-

ative for tropical cyclogenesis. However, the formation of a deep moist column is

retarded by a preexisting dry airmass, vertical wind shear, or a combination of both.

The axisymmetric spinup of a TC in the axisymmetric model developed in Ch. 4

is delayed significantly if the relative humidity above the boundary layer is reduced

to 25%. There are numerous bursts of convection, but each produces a convective

downdraft that is followed by a quiescent period as the boundary layer “reloads.”

This occurs for approximately seven days until the inner core becomes moist enough

to consolidate convection in to an eyewall. The storm then rapidly intensifies as the

eyewall contracts inward. In contrast, if the relative humidity is set to 75% in the

entire domain, the TC begins to rapidly intensify in about half the time.

A useful approach to assess the ventilation hypothesis is to calculate the moist

entropy or moist static energy budget of the pouch using flight level and dropsonde

data from the upcoming PRE-Depression Investigation of Cloud-systems in the Trop-
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ics field campaign. For instance, consider a hypothetical disturbance embedded in a

dry Saharan air layer and vertical wind shear. Similar to the simulation using a dry

initial sounding, evaporative cooling due to precipitation falling into the dry air leads

to the formation of convective downdrafts that depress the entropy in the low levels

of the critical layer, which suppresses further convection and delays genesis. The

addition of vertical wind shear implies the existence of non-zero relative flow above

and below the steering level of the tropical wave, which allows a continuous replen-

ishment of relatively low-entropy air into the column to prime further downdrafts.

As a result, there exists a periodic but significant entropy sink in the critical layer.

However, vertical wind shear may not be completely inimical to tropical cyclogenesis

since upward motion is enhanced on the downshear side of the vortex preferentially

increasing convection and column moistening there. If the resulting increase in con-

vection remains contained in the original pouch or there is a temporal shift in the

pouch itself toward the convection, tropical cyclogenesis may be accelerated (Molinari

et al., 2004; Musgrave et al., 2008).

In addition to the field campaign observations, high resolution model output can

also be used to calculate the moist entropy budget. One approach is to assimilate

the data gathered from the field into a mesoscale model using an ensemble Kalman

filter or three-dimensional variational scheme. This would allow more careful diag-

nosis of the critical layer and entropy fluxes through the lateral boundaries. Another

approach is to compare entropy budgets from a set of simulations using idealized ini-

tial environments, preferably for combinations of low, medium, or high vertical shear

along with a dry or moist free troposphere.

It can be shown upon integrating the entropy equation over a control volume

around the storm that the divergence of the entropy flux is related to a form of

the gross moist stability, summarized in Raymond et al. (2009). A normalized form

of the gross moist stability is used to assess the large-scale forcing of precipitation

and spin up of tropical depressions (Raymond et al., 2007). As convection in a

developing disturbance saturates the atmosphere and reduces the negative vertical

gradient of entropy in the lower atmosphere, the normalized gross moist stability
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decreases. A lower gross moist stability allows surface fluxes to have a correspondingly

larger influence on increasing precipitation and spinning up the TC. Ventilation would

cause the opposite to happen by increasing the normalized gross moist stability.

Instead of normalizing the gross moist stability by the moisture flux, it may also be

enlightening to normalize the gross moist stability by the surface entropy flux. This

would yield a ratio of the large-scale entropy forcing to the in situ entropy generation,

and would be very similar to the normalized ventilation derived in Ch. 2. Assessing

changes in this form of the gross moist stability may be a convenient diagnostic for

both TC intensity and tropical cyclogenesis studies.

An important operational implication of the proposed research is the degree to

which a proper initialization of the environment around TCs is imperative for trop-

ical cyclogenesis and TC intensity predictions. Thus far, the predominate focus of

TC initialization or bogussing for numerical weather prediction has been on getting

the kinematics of the vortex correct. However, if there are significant differences in

simulated TC evolution due to changes in the near-TC environment in an idealized

setting, then better observations and initialization of environmental vertical wind

shear and moisture profiles will likely need to be a part of a comprehensive approach

to improving tropical cyclone prediction.
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Appendix A

Tropical Cyclone Filter

In order to diagnose the environmental flow in large-scale analyses or reanalyses, the

flow associated with the TCs must first be removed. This is not a straightforward

process since the TC is oftentimes poorly resolved and not in the same location as

the best-track position.

TC bogusing schemes require the analyzed vortex to be extracted from the analysis

in numerical weather prediction models. Some methods include an iterative three-

point smoothing algorithm (Kurihara et al., 1993), inversion of Laplace’s equation

over the circle (DeMaria and Kaplan, 1999), and piecewise potential vorticity inversion

(Wu and Emanuel, 1995). However, these methods all require the outer radius of

the filter to be specified a priori. Additionally, Kurihara et al.’s method is applied

barotropically despite the decay of the vortex with height. The goal is to develop a

filter with variable outer radius that can be applied quickly to a large sample size of

TCs. The first step is to objectively diagnose the outer radius of the TC as a function

of height.

A.1 Filtering Function

In natural coordinates, the vertical component of the relative vorticity is defined as

ζ =
|u|
Rcurv

+
∂u

∂n
(A.1)
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where u is the wind velocity, Rcurv is the local radius of curvature of the streamfunc-

tion, and n is the direction normal to the flow. Rcurv is positive for cyclonic flow

and negative for anticyclonic flow. The radius of curvature in geocentric (longitude,

latitude) coordinates is given by

Rcurv =
a cos(φ)(u2ψ + v2ψ)

3/2

u2ψ
∂vψ
∂λ

− 2uψvψ
∂uψ
∂λ

− cos(φ)v2ψ
∂uψ
∂φ

, (A.2)

where

uψ = −1

a

∂ψ

∂φ
, (A.3)

vψ =
1

a cos(φ)

∂ψ

∂λ
, (A.4)

and a is the radius of the Earth, φ is the latitude, λ is the longitude, and ψ is the

streamfunction.

The basis of the filter is the first term on the right hand side of (A.1), which is

simply the local angular velocity or curvature vorticity, ζcurv. The curvature vorticity

is positive definite wherever the flow is cyclonic, so it can be used to delineate the area

of influence of the TC. However, to simply filter the winds based on some threshold

of ζcurv would be too broad, since other portions of the domain not associated with

the TC’s circulation can have positive ζcurv. Examples of such scenarios include other

nearby TCs and upper-level troughs, which contribute to the environmental vertical

wind shear, and thus, should not to be filtered. To partially remedy this, ζcurv is

multiplied by a Gaussian localization factor in order to arrive at a filtering function,

F :

F = ζcurv exp

[

−
( |x− xTC |

σ

)2
]

, (A.5)

where the numerator of the exponent is the distance from the reanalysis TC center,

xTC , and σ is the characteristic e-folding ζcurv scale. After some experimentation, σ

is set at a value of 675 km below 500 mb. Higher up, σ decreases linearly by 50 km
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per 100 mb above 500mb to reflect the baroclinicity of the TC. Although the radial

extent of positive ζcurv for most TCs decreases much faster with height, σ must be

conservatively decreased to account for the small subset of intense TCs that have

broad cyclonic circulations extending to upper levels. Small and ill-defined TCs in

the reanalysis are mainly limited by ζcurv.

The filtering function is calculated separately at each level in the reanalysis under

the constraint that xTC doesn’t deviate by more than the 800 km from the 850 mb

TC center. When this condition is violated, no filtering at that level occurs. The

large tolerance is not meant to represent the possible range of the tilt of the vertical

structure of the TC, but is rather chosen to prevent the algorithm from wandering to

an unrelated local relative vorticity maximum.

Any u and v value at a grid point where F has a value greater than 5 × 10−7

is removed. This threshold value for F is arbitrary, but represents a reasonable

value arrived at by trial and error. The filtering of the actual winds proceeds in a

manner similar to the method used by DeMaria and Kaplan (1999). The process is

summarized by the following set of equations:

u(λ, φ) =







u where F < 5× 10−7

uf where F > 5× 10−7,
(A.6)

where uf , the filtered zonal winds, are found by inverting Laplace’s equation,

∇2uf = 0, (A.7)

with Dirichlet boundary conditions,

uf = u where F = 5× 10−7 , (A.8)

and similarly for v to get the complete filtered wind field. Note that the domain in

which Laplace’s equation is solved is almost always irregular.
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A.2 Examples

Figures A-1 and A-2 illustrate two examples of the filter applied to the NCEP-NCAR

reanalysis (Kalnay et al., 1996) 850 mb and 200 mb winds, respectively. The left

columns represent Super Typhoon Chaba (2004), which is well defined in the re-

analysis, and the right columns represent Hurricane Darby, which is much less well

defined. The dashed line represents the boundary of the TC’s area of influence as

determined by the threshold value of F . The unfiltered fields are given in the top

row, the filtered fields in the middle row, and the difference between the unfiltered

and filtered winds in the bottom row. Chaba’s cyclonic circulation at 850 mb is fairly

well extracted, and even the weakly represented circulation associated with Darby is

identified by the filter. At upper levels, the filter adjusts the filtering area to account

for the decreased extent of the area of positive ζcurv. For Darby, the filter doesn’t

alter the winds appreciably at 200 mb. In essence, the filter only removes what the

reanalysis represents, whether it reflects reality or not.
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Figure A-1: The filtering algorithm applied at 850 mb for Super Typhoon Chaba
(left column) and Hurricane Darby (right column). Color contours are the filtering
function (×107 s−1) and the dashed line is the threshold for the outer radius. The
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Figure A-2: Similar to Fig. A-1 except the filter is applied at 200 mb.
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Appendix B

Outflow Temperature

Emanuel (1986) proposed a method for estimating the outflow temperature from a

sounding by taking smin to be the ambient boundary layer entropy and smax to be the

saturation entropy at the sea surface temperature. By lifting parcels with different

entropies from smin to smax and calculating the temperature at their levels of neutral

buoyancy, the outflow temperature To, defined in (2.34), can be calculated.

In the ventilation framework, downdrafts can depress the sub-cloud layer entropy

below the ambient value, reducing smin while the entropy difference across the inner

and outer regions can be used to determine smax.

The change in entropy across both regions, given by (2.12), requires an expression

for ψ:

ψ = −ρhr < u >, (B.1)

and after using (2.18) in place of < u > and averaging over the inner and outer

regions,

ψ ≈ ρCD |um| r2m
(
1 + α2γ

2

)

. (B.2)

Using (B.2) and the identity δr/rm = α− 1, (2.12) becomes
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δs = − 2(α− 1)

CD |um| (1 + α2γ)

{

Ck |um| [(1 + αγ)(s∗SST − sa)−∆s]

+
CD
Ts

(1 + αγ3) |um|3 − αw′s′
}

. (B.3)

Given a sounding and sea surface temperature, equation (B.3) must be applied

in an iterative manner as follows. As a first guess, smin is set to the average entropy

of the lowest 100 hPa of the sounding and smax is set to s∗SST . Then, an estimate of

the outflow temperature can be calculated using (2.34) where To is the temperature

at the level of neutral buoyancy. With the outflow temperature estimate, the steady

state intensity is evaluated using (2.29), which can then be used to assess the entropy

change across the outer region using (2.19) and the entire region using (B.3). If (2.19)

is negative, then smin is adjusted down to reflect the fact that downdrafts have lowered

the entropy below sa. Otherwise, smin is unchanged. Likewise, (B.3) is used to adjust

smax, which should be greater than sa. A new outflow temperature is calculated and

the entire procedure is repeated until convergence occurs, usually in a few iterations.

A drawback of this method is that as α approaches 1, the entropy jump vanishes

as the radial region over which fluxes act approaches a delta function. This precludes

the ability of the algorithm to estimate the outflow temperature correctly and leads

to an underestimate of the thermodynamic efficiency. It is recommended that α ≥ 1.5

when calculating the outflow temperature in order to avoid this deficiency.
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Appendix C

Mass Sink in RE87 Model

The RE87 model is based off the Klemp and Wilhelmson (1978) 3D nonhydrostatic

cloud model. In lieu of using the compressible continuity equation directly, a pressure

equation is derived by taking the total derivative of the Exner function, defined by

(4.9).

Subsequently, a truncation of the full pressure equation is taken that is consistent

with the anelastic continuity equation (see (2.7) in Klemp and Wilhelmson (1978)).

Justification for this approximation was given by comparing convective storm simula-

tions using both the truncated and untruncated forms of the pressure equation in the

Klemp and Wilhelmson (1978) model. The primary effect of the truncated pressure

equation only appeared to be a constant offset in surface pressure, with little effect

on convective storm characteristics.

The same approximation is carried forward in the RE87 model, but a key feature

of TCs makes using the truncated pressure equation a poor choice. The key term

in the truncated portion of the pressure equation is the total derivative of virtual

potential temperature, θv, which includes diabatic heating. When this truncated

term is large, it is equivalent to having large residuals in the continuity equation

(Klemp et al., 2007). In a TC, the eyewall is a region of continuous and strong

diabatic heating. This leads to a very large, persistent mass sink in the eyewall

region, as shown in Fig. C-1 where the minimum mass budget residual is less than

-2 kg m−3 s−1! Consequently, there is not only a large pressure drift in the model due
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Figure C-1: The mass budget residual (kg m−3 s−1) averaged over 12 hours for a
mature TC in the RE87 model.

to this persistent mass sink, but the budget of every extensive variable is affected.

For example, the vertically integrated entropy flux at a radius outside the eyewall is

negative due to enhanced inflow at lower levels and reduced outflow at upper levels.

This is opposite of what is expected in steady, intense TCs, which should have a net

export of entropy from the inner core.

A simple workaround is to add the advection of θv back in to the pressure equation.

This reduces the mass sink in the eyewall by a substantial fraction and makes the TC

entropy export the proper sign. However, there still remains a large enough residual

such that accurate entropy or energy budgets are still difficult to achieve. In light of

this, the compressible continuity equation is used directly in the current model.
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