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Abstract

Unmanned aerial vehicles are used extensively in persistent surveillance, search and
track, border patrol, and environment monitoring applications. Each of these appli-
cations requires the obtainment of information using a dynamic observer equipped
with a constrained sensor. Information can only be gained when visibility exists be-
tween the sensor and a number of targets in a cluttered environment. Maximizing
visibility is therefore essential for acquiring as much information about targets as
possible, to subsequently enable informed decision making. Proposed is an algorithm
that can design a maximum visibility path given models of the vehicle, target, sensor,
environment, and visibility. An approximate visibility, finite-horizon dynamic pro-
gramming approach is used to find flyable, maximum visibility paths. This algorithm
is compared against a state-of-the-art optimal control solver for validation. Complex
scenarios involving multiple stationary or moving targets are considered, leading to
loiter patterns or pursuit paths which negotiate planar, three-dimensional, or eleva-
tion environment models. Robustness to disturbances is addressed by treating targets
as regions instead of points, to improve visibility performance in the presence of un-
certainty. A testbed implementation validates the algorithm in a hardware setting
with a quadrotor observer, multiple moving ground vehicle targets, and an urban-like
setting providing occlusions to visibility.

Thesis Supervisor: Jonathan P. How
Title: Richard C. Maclaurin Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Importance of Unmanned Aerial Vehicles

Unmanned aerial vehicles (UAVs) encompass a broad category of aircraft which do

not have onboard flight crews, and can participate in a variety of missions requiring

endurance and survivability such as persistent surveillance, precision strike, border

patrol, search and rescue, and environment monitoring missions [1]. UAV aircraft

include fixed-wing airplanes, helicopters, and balloons. One way to classify UAVs

is according to operating domain [1]. Some operating domains include battle space

awareness, force application, logistics, target/decoy, research, and civil and commer-

cial UAVs. Battle space aware UAVs provide intelligence of the surrounding environ-

ment and troop movements; high-speed, high-altitude UAVs such as the RQ-4 Global

Hawk [2] and RQ-7 Shadow [3] provide wide coverage, whereas troop-launched mi-

cro air vehicles (MAVs) provide local area surveillance [1]. Force application and

combat UAVs, such as the MQ-1 Predator and MQ-9 Reaper, operate in high risk

environments, serve also as surveillance platforms, and are equipped with weaponry

to engage and eliminate hostile forces at safe range. Logistic UAVs are used for cargo

delivery, including leaflets, fuel, and other supplies; their use is envisioned for the

near future [1]. Target/decoy UAVs simulate enemy aircraft or missiles for human

pilot combat training. Research UAVs act as testbeds for new aircraft designs and

control/planning algorithms. Civil and commercial UAV applications, including bor-

17



(a) RQ-4 Global Hawk (Source: [7]) (b) RQ-7 Shadow (Source: [8])

Figure 1-1: Examples of UAVs used in intelligence, surveillance, and reconnaissance
(ISR) missions.

der patrol, search and rescue, fire and environment monitoring (e.g. Aerosonde [4]),

live aerial video feeds and photography (e.g. FULMAR UAV [5]), and even personal

entertainment (e.g. AR.Drone [6]), are on the rise.

Alongside the growth of UAV applications, UAV operations continue a trend to-

wards increased autonomy that will enable UAVs to fly with less supervision, less

downtime, and more intelligent behavior [1]. Currently, UAVs are far from intel-

ligent, but they do possess degrees of autonomy such as automatic piloting which

enable UAVs to stay aloft with very little operator intervention [1, 9]. To further

automate UAV systems, computers need to play an increasing role in higher-level

decision making for UAVs, such as automatic UAV task assignment and flight route

planning.

Current and future research in the worldwide UAV community is focused on bring-

ing greater levels of autonomy into operational context, with many recent publications

in this field [10–13]. The next section discusses autonomy in the context of UAVs,

which will lead into the problem definition which is addressed in this thesis.

1.2 Autonomy in UAV Applications

Autonomous behaviors are typically decomposed into a hierarchy [14, 15]. Each layer

in the hierarchy contains subsystems which enable a specific level of autonomy, often

18



labeled as “low-level control”, “high-level control”, or some intermediate level. The

levels of autonomy refer to the separation between computation of commands and

the actuation of the physical system.

“Low” levels deal directly with electro-mechanical actuation and sensing. Actua-

tion influences the reference-tracking and stability properties of the physical system,

while sensing provides feedback. Meanwhile, “high” levels deal with concepts less

concerned with actuation and sensing, such as task selection, path planning, and

human-machine interfaces, and are more mission-oriented in general. Intermediate

control levels deal with converting high-level commands to low-level actuation, and

relaying low-level sensing data to high-level planners.

Persistent Surveillance as a Motivating Example

An important application of autonomy is persistent surveillance using UAVs. Auton-

omy enables computers onboard surveillance UAVs to automatically calculate tra-

jectories which provide sensor coverage of targets and account for given terrain and

weather information, and to execute the flight maneuvers to follow the trajectory.

To enable autonomy in a persistent surveillance application, tools from control

theory and artificial intelligence are explored. The next section describes the problem

statement for persistent surveillance addressed in this thesis.

1.3 Visibility Motion Planning Problem

Maximizing visibility of targets by an aerial observer presently remains a pervasive

problem. Whether in the pursuit of hostile agents, or ensuring that line of sight com-

munication to a friendly agent is maintained, visibility problems have been studied

extensively in the literature from geometry [16–18], control [19], estimation [20–23],

and pursuit-evasion [24] perspectives. Visibility problems continue to attract atten-

tion due to the complexity of the optimization problem and the demand for faster,

near real-time implementations.

This thesis addresses the visibility maximization motion planning problem. This

19



problem will be referred to as the Visibility Maximization Problem: Given an aerial

vehicle, maximize the fraction of time spent observing a number of stationary or

moving targets, in an obstacle-rich environment and subject to constraints in sensing

and line-of-sight visibility.

1.4 Contributions of Thesis

Even with the large body of prior work mentioned earlier, there are many significant

challenges still left to address. One limitation of the prior work is that only a subset of

the full problem specification is investigated at a time. The combination of observer

dynamics, multiple moving targets, sensor limits, 3-D and digital elevation model

environments, a near-optimal path, and robustness is not considered. The work in

this thesis proposes an approximate solution which incorporates the full set of models

as well as empirically showing results that are intuitive, close to optimal for cases

that can be readily verified, and robust to model errors.

This thesis provides a thorough introduction to the visibility maximization prob-

lem, a literature review of past work, details of modeling assumptions used to solve

the problem, a new solver for the visibility maximization problem, comparisons with

a state-of-the-art solver, and results of complex scenarios from simulation and a hard-

ware in the loop testbed implementation.

Chapter 2 provides a background of the visibility maximization problem. It dis-

cusses models of the visibility system inputs, including targets, sensor, observer, en-

vironment, and visibility models that are used in the literature. It also provides a

review of prior work related to the visibility maximization problem.

Chapter 3 details the new visibility maximization solver, including a formalization

of the approximation scheme and the path planning optimization. The new solver

is compared against an existing, state-of-the-art solver, using simple test cases as

validation. More advanced cases, in particular static targets in complex environments,

will show the merits of the proposed solver for addressing the visibility maximization

problem.

20



Chapter 4 discusses multiple target visibility. It introduces different objective

functions which lead to observation of multiple targets, including objectives that

ensure sightings of difficult-to-see targets. It discusses two parametric analyses of

multiple targets: the effect of changing weightings on targets for the weighted visibil-

ity objective function, and the effect of increasing the time horizon. It also describes

a parametric optimization which can find simple flight contours such as circles, el-

lipses, and racetracks for maximizing visibility along those contours, which serve as

a baseline to compare the performance of the new solver in complex environments.

It presents performance results for different metaheuristic searches over the different

contours, performance comparisons between the new solver and the parametric opti-

mization, and shows performance-computation results as a function of the visibility

approximation accuracy for the parametric solver.

Chapter 5 considers extensions of the new solver to moving targets and targets

with uncertain motion. It considers the effect of the speed ratio between the target and

observer. It also explores the effect of multiple moving targets, when their motions

either diverge or move together. In addition it discusses a robust formulation for

the visibility of targets with uncertain motion. It presents performance between the

robust versus nominal formulations in the presence of target motion stochasticity.

Chapter 6 documents testbed implementation results in hardware. It describes

the hardware and software architectures that enable a scale demonstration of the

visibility maximization path planner. It shows that the algorithms developed in this

thesis are valid. Actual camera measurements are taken and compared against the

expected measurement from the algorithm for static and dynamic targets in complex

3-D environments.

Chapter 7 concludes the thesis, providing a summary of the results, and also

outlines future work to advance the scope and performance of the new solver in the

context of visibility maximization.
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Chapter 2

Background

This chapter presents the visibility maximization problem and provides a description

of the methods and assumptions in the visibility maximization problem. Section

2.1 provides an overview of visibility maximization motion planning. Section 2.2

defines the visibility optimization problem in general mathematical form. Section

2.3 decomposes the problem into its constituent features. Section 2.4 presents the

modeling assumptions and methods, including descriptions of the models for the

target, observer, sensor, environment, and visibility. Section 2.5 reviews the relevant

literature of the visibility maximization problem, including some of the assumptions,

solution methods, and limitations of previous work.

2.1 Visibility Maximization Motion Planning

Visibility maximization motion planning is a problem where an observer’s trajectory

needs to be computed such that the trajectory maximizes visibility of a target. Figure

2-1 shows an example of a helicopter (an aerial observer) with a camera pursuing a

car driving along city streets. The helicopter pilot is trying to maximize visibility by

applying a sequence of control actions to maneuver the aircraft so that it follows a

trajectory which maximizes the amount of time the car is kept in view.

This thesis adopts the following naming conventions relating to the visibility max-

imization motion planning problem. Other names and terminologies will be defined
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Figure 2-1: Visibility maximization planning problem for an aerial observer monitor-
ing a ground target in an urban setting. Photo source: [25], [26]

in the rest of this chapter, or as they appear in the remaining chapters.

• Actions are the commands given to a vehicle. When actions are taken, a vehicle

will change position, orientation, or some other state. A sequence of actions

causes the vehicle to move along along a trajectory.

• States are variables which define the properties about a system, such as position

and orientation.

• Trajectories or paths are a sequence of points which can be followed by the

vehicle. When the trajectory or actions need to be found, motion planning

is used to find a feasible path or list of actions. Motion planning can also

be used to design paths or actions that minimize or maximize some objective,

which might be the shortest time to a destination, or the greatest visibility of

a target.

• Visibility of a target refers to the ability of a sensor to detect some property

about the target. This property could be a picture or a video of the target

acquired by a camera, or it could be a communications link, and others.

To find a maximum visibility path or actions, the problem is posed in an optimal
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control framework. Optimal control returns the best sequence of control actions and

a path for the vehicle to optimize some objective. The next section describes the

optimal control problem for visibility in mathematical form.

2.2 Optimal Control Formulation

Optimal control is a general mathematical formulation for precisely stating an opti-

mization problem with the goal of finding control actions or trajectories for a dynamic

system. For the visibility maximization motion planning problem, the goal is to find

control actions or a path of the observer that maximizes the accumulated visibility

of targets.

Optimal control problems in general depend on time, t. Properties of the opti-

mization, including the location of targets and the observer, are represented using

states in vector form x(t) which define position and orientation for example and may

also vary with time. The visibility maximization problem consists of targets with

state vector xT , a sensor model S, an observer with state xA, and an environment

description T , all of which may be time-varying. The state space contains all per-

missible values for the states. As an example, the observer’s state in general 3-D

coordinates is

xA(t) = [xA(t), yA(t), zA(t), φA(t), θA(t), ψA(t)]T (2.1)

where (x, y, z) represents the position and (φ, θ, ψ) the orientation in Euclidean space

which vary with time.

The goal of visibility maximization motion planning, also known as the Visibility

Maximization Problem (VMP) problem, is defined as follows: find the optimal control

policy u∗(t) for the observer which maximizes a visibility reward JV subject to a set
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of constraints

VMP :



max
u(t)

JV =
1

T

∫ T

0

V [xA(t),xT (t), T (t),S(xA(t),xT (t))] dt

s.t. ẋA(t) = f (xA(t),u(t))

C(xA(t), ẋA(t),xT (t), ẋT (t),u(t), T (t)) ≤ 0

xA(0) = XA,0,xT (0) = XT,0, ẋA(0) = ẊA,0, ẋT (0) = ẊT,0

(2.2)

Here V(·), which will be explained further in Section 2.4.5, is the instantaneous vis-

ibility as a function of the observer state xA(t), target state xT (t), the environment

model T (t), and the sensor model S(xA(t),xT (t)) which are functions of time t. The

observer dynamics are in the form of a time derivative ẋA. Initial conditions for the

observer and target are specified by XA,0, XT,0, ẊA,0, and ẊT,0. The problem is finite

horizon (tf = T ), which can represent the endurance limit of the aircraft for example.

The visibility reward is normalized by 1/T and takes on values JV ∈ [0, 1], to ensure

that different trajectories can be compared fairly between each other. A finite horizon

must be considered otherwise the computation will not terminate.

An intuitive, systems-based model is presented in the next section. This systems-

based model will prepare a discussion for the types of modeling that occur in the

visibility maximization problem.

2.3 Visibility Maximization Systems View

Figure 2-2 shows a decomposed, input-output systems view of the visibility maxi-

mization motion planning problem. The figure places the inputs, the solver, and the

outputs in order from left to right. This particular layout shows that five inputs need

to be modeled before the problem solver can produce the desired outputs. The inputs

are the target, sensor, observer, environment, and visibility models, and the outputs

are the optimal control sequence and trajectory for the observer which maximizes

visibility. The center block represents the visibility maximization problem solver or

VMP solver. This module, much like a black box in model-based problem solving,
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Figure 2-2: VMP system diagram, showing the flow of inputs to outputs through
the problem solver.

encapsulates the complexities associated with the visibility maximization problem

and can be reused for many variations on the inputs. This center block is concerned

with two main questions: how to solve the problem, and how to solve it tractably.

The remainder of this chapter discusses the input models, some assumptions about

each model, as well as the prior art which have addressed the visibility maximization

motion planning problem. Chapter 3 describes the visibility maximization problem

solver in detail.

2.4 Modeling and Assumptions

This section focuses on the five input models shown in Figure 2-3: target, sensor,

vehicle, environment, and visibility. Each model captures assumptions that are made

regarding each input, and need to be discussed individually. Once the models are

known, they can be provided as input into the problem solver.

Figure 2-3 also shows the relations between the different inputs. The environ-

ment defines the possible locations for the targets and observer. The targets and

observer determine if there is sensor visibility. All four determine if there is line-of-

sight visibility between the targets and observer in the presence of occlusions and

sensor limits.

27



Sensor

Environment Visibility

Targets

Observer

Figure 2-3: Input models for visibility calculation.

2.4.1 Target Motion Models

Targets include vehicles that are being pursued by a follower vehicle, buildings which

need to be monitored from the air, landmarks that need to be captured in an aerial

video, or wildlife whose movements need to be studied. Targets are characterized

using the state space representation, xT (t). The target state for an individual target

in 3-D Euclidean space is

xT (t) = [xT (t), yT (t), zT (t), φT (t), θT (t), ψT (t)]T (2.3)

Target motion models describe the movement of the target. Ref. [27] provides a dis-

cussion of deterministic target motion models which capture different assumptions on

the target motion. Examples include constant velocity (linear function for position)

described in continuous and discrete forms in Equation 2.4, constant acceleration

(quadratic function for position), and constant change in acceleration (cubic polyno-

mial for position) models.

Continuous time form :

 ẋ(t)

v̇(t)

 =

 0 1

0 0

 x(t)

v(t)

+

 0

1

u(t) (2.4a)

Discrete time form :

 xk+1

vk+1

 =

 1 ∆T

0 1

 xk

vk

+

 ∆T 2/2

∆T

uk (2.4b)
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Coordinated turns, with constant speed and constant angular rate Ω, can also be

specified in continuous and discrete forms:

Continuous time form :


ẋ(t)

v̇x(t)

ẏ(t)

v̇y(t)

 =


0 1 0 0

0 0 0 −Ω

0 0 0 1

0 Ω 0 0




x(t)

vx(t)

y(t)

vy(t)

 (2.5a)

Discrete time form :


xk+1

vx,k+1

yk+1

vy,k+1

 =


1 ∆t 0 0

0 1 0 −Ω∆t

0 0 1 ∆t

0 Ω∆t 0 1




xk

vx,k

yk

vy,k

 (2.5b)

These target motion models, in differential equation form, are required in the optimal

control formulation in Eq. 2.2 to calculate visibility of a moving target with known

motion.

The surveys [28] also describe common target models used to predict the trajec-

tory and estimate the position of an aircraft. Aircraft flight paths including turns

and wind effects are modeled. These trajectories are relevant for a ground observer

monitoring an aircraft, such as a radar tracking application. They do not consider

optimal observer trajectories for mobile observers. Ref. [16] considers two target mo-

tion models for a visibility maximization problem in the plane. The first model is a

fully known, time-parameterized target trajectory. The second is an evader model,

where the target is assumed to take actions which escape observation in the shortest

amount of time. They do not consider uncertainty explicitly in the motion model.

Ref. [17] assumes worst-case target behavior in a UAV-based target tracking prob-

lem in an urban environment. This worst-case model is a planar diffusion model

under a bounded speed assumption with known initial location. In their paper, the

target’s diffusion area under sensor coverage is to be maximized over the duration

of the mission. This diffusion model may be conservative however, in that it could

under-perform when the target trajectory is known. Ref. [24] uses a two-dimensional
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occupancy grid map to represent the probability of a target being present at a par-

ticular state. The probabilities are updated with sensor measurements, and the map

is used in a search and capture problem. Targets are treated as evaders whose pre-

dicted paths are assumed to be adversarial, meaning targets will minimize the time

to escape the observer’s sensor view. Their planning strategy is greedy with respect

to maximizing the one-step probability of capturing the evader; their approach is

suboptimal but they provide an upper bound for the expected time to capture.

Ref. [29] considers target motion with bounded but unknown speed and unknown

direction of movement for a 3-D target tracking motion planning problem. Target

actions are modeled as probabilities, but their true actions are adversarial and at-

tempt to minimize time to escape observation. Ref. [19] consider target motion along

a planar circular arc for the visibility maintenance problem, for a follower vehicle

keeping sight of a leader vehicle. The follower treats the leader as an unknown but

bounded disturbance for a reference-tracking controller. They provide guarantees for

maintaining visibility for benign target motions such as a smooth arc. However, their

approach may not be general enough if the target motion were more complex.

In this thesis, target motions are initially assumed to be fully deterministic and

parameterized by time. This is a valid assumption for a wide range of applications,

including vehicles moving along a road network at known speed, as well as stationary

targets.

2.4.2 Sensing Tasks and Sensor Models

The second input model is the sensor S. The sensor provides information about the

target by taking measurements. Sensors include visible light cameras and radars. It is

modeled using states xS . Sensor models are concerned with constraints on the ability

to take measurements, and are treated in a set-theoretic manner. The constraints

are the set boundaries which define range and field-of-view limits, if and when such

bounds are considered in the model.

The pinhole camera is a popular model for cameras [30, 31]. The pinhole camera

model is simple: it provides an intuitive geometric description of a light ray’s bearing
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Figure 2-4: Range-limited, field-of-view limited planar sensor.

relative to the position and orientation of the sensor—the bearing measurements being

determined from the set of pixels illuminated on the image sensor. The geometric

model is a useful approximation that has been used successfully for applications such

as vision-based navigation [32–34].

In this thesis, the sensor model is a variant of the pinhole camera, with fixed range

and field of view limits. A 2-D projection is shown in Figure 2-4. Physically the sensor

is not gimbaled, meaning it is fixed to the body of the observer: examples of such

sensors include front-mounted cameras on a dashboard or a side-looking synthetic

aperture radar on a surveillance UAV. The sensor constraints model optical sensors,

which generally have directionality, field of view limits, resolution and range limits.

For a planar sensor, the range limits are [dmin, dmax] and the field of view limits are

[θS,min, θS,max]. A 3-D sensor has both horizontal and vertical field of view limits.

The noisy measurement process is not considered in this thesis for two main rea-

sons: first, there is a broad literature addressing the sensing problem in other domains

(such as search) which leads to significantly different kinds of optimizations.1 Sec-

ondly, the main goal of this work is to maintain the target in the sensor field of view,

which requires only a geometric description of the sensor.

1Considerable attention has been paid to studying measurement processes in the context of target
tracking. Some examples include [35–39].
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Figure 2-5: Dubins vehicle reachability set with constant speed and turn rate con-
straint.

2.4.3 Observer Models

The observer is a vehicle which carries the sensor. The vehicle can be a fixed-wing

UAV, with constant speed and turn rate constraints, or it can be ground-based.

Dynamics in general affect the transitions between the observer’s states, xA. Many

vehicles such as fixed-wing aircraft are dynamically constrained, so it is necessary to

model the dynamics. In state space, dynamics are represented by a vector of ordinary

differential equations.

Examples of ground vehicle models include skid-steer, unicycle, and bicycle models

[40]. Examples of aircraft models include the Dubins model [41] and more complicated

models [42]. Vehicles can be holonomic or non-holonomic [15]. Holonomic vehicles

can be actuated directly over every degree of freedom. Non-holonomic vehicles are

underactuated and do not have full control over its degrees of freedom. Limited steer-

ing automobiles and fixed-wing, fixed-engine aircraft are examples of non-holonomic

vehicles.

For this thesis, the observer is assumed to be a fixed-wing UAV. A fixed-wing

UAV can be modeled using a planar Dubins model [41]. This model is popular and

widely used due to its simplicity for modeling fixed-wing aircraft.
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A Dubins model is a vehicle with constant speed VA, and a bounded control input

u which changes the vehicle’s heading angle, u = ψ̇. The instantaneous heading ψ

determines the change in position, ẋ and ẏ. The dynamics are represented in vector

form,

ẋA(t) = f (xA(t),u(t), VA) =



ẋ(t)

ẏ(t)

ż(t)

φ̇(t)

θ̇(t)

ψ̇(t)


=



VA cosψ(t)

VA sinψ(t)

0

0

0

u(t)


(2.6)

The altitude z, roll (bank angle φ), and pitch (nose up, nose down angle θ) of the

aircraft are assumed to be constant, so their rate of change is zero for all time.

The turn rate constraint ωmax as a function of the minimum turning radius Rmin

and speed is given by

ωmax =
V

Rmin

(2.7)

The turn rate constraint limits the control action. The turn rate constraint is the

same in both turn directions.

C (xA(t),u(t)) =

 u(t)− ωmax

−u(t)− ωmax

 ≤ 0, ∀t (2.8)

2.4.4 Environment Models

The fourth input model is an abstraction of the environment. The environment affects

the targets, sensor, and observer each in at least one way, and so it must be modeled.

The specific effects are as follows:

• For targets, the environment defines the targets’ possible locations and move-

ments.

33



• For the sensor, the environment determines if visibility exists between the tar-

gets and sensor.

• For the observer, the environment is a set of inadmissible states. Observer states

are infeasible because they result in a collision, a violation of controlled space,

a safety risk, and other factors.

Environments are modeled using geometric features. Other representations in-

cluding 3-D scanning may be more accurate, but require more time to make visibility

calculations. Therefore, environments are modeled with as few geometric features

as possible to decrease computation time. In this thesis, the environment model is

assumed to be known a priori. This is a realistic assumption for buildings, mountains,

forests, and certain no-fly zones such as controlled airspaces over population centers

or habitat protected areas; these are modeled and stored in Geographic Information

Systems (GIS) databases. Several environment models have been considered in the

literature. Ref. [16] uses a planar model of the environment to model obstacles and

occlusions for planning visibility-rich paths. Obstacles are represented as polygons.

The interior of these polygons deny passage, and the boundaries disrupt line of sight.

Ref. [18] uses a 3-D model of an urban environment for visibility-based path planning

for a UAV. 3-D polyhedrons, representing buildings in a city, obstruct passage of the

UAV and occlude targets from sensors.

Figure 2-6 shows examples of 2-D, 3-D, and elevation models for environments. In

this thesis, all three environment models are considered. In all three cases, the envi-

ronments are modeled geometrically. Computational geometry provides mathematical

definitions of boundaries of obstacles using vertices, edges, surfaces, and sets.

Unknown environments that are mapped as the observer is maneuvering through

the environment are not considered in this thesis. The fact that the environment is

unknown means that the observer must worry about exploration and mapping instead

of solely maximizing visibility. Unknown environments can be mapped online using

frameworks such as simultaneous localization and mapping (SLAM) [43]. Models are

generated online from sensor data, such as LIDAR or optical cameras and pattern
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(a) Planar obstacle field (b) 3-D polyhedral obstacle field

(c) Digital Elevation Model (DEM)

Figure 2-6: Obstacle representations in 2-D and 3-D.

recognition techniques. For example, Ref. [44] uses 3-D scanning LIDAR to map

the surfaces of roads, curbs, obstacles, and other vehicles from a perception-driven

autonomous vehicle.

The next section describes the combination of the four models discussed so far,

namely the target, sensor, observer, and environment, and how they relate together

in the context of visibility.

2.4.5 Visibility Models

The fifth input model is visibility. Visibility, V , is a binary variable which specifies

whether the sensor can detect the target and is the objective to be maximized in

the VMP. The visibility model considered in this thesis is complex, and a complete

treatment is left in Appendix A. Described below are visibility models used in the
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literature, as well as their applications. The model used in this thesis, its computa-

tional complexity, and the need for approximations to the visibility function are also

discussed.

Ref. [45] considers visibility of a point-and-shoot sensor such as a laser range finder

in cluttered environments. They model visibility as line of sight between the sensor

and a polygonal target. They use visibility to define the set of sensor configurations

which have a partial view of the target. They only consider placement and not dy-

namic movement of a sensor. Ref. [46] considers the Art Gallery Problem formulated

by Klee, which asks the minimum number of omnidirectional, infinite range sensors

and their positions required to cover a closed, planar environment with holes. They

model two types of visibility: one is visibility of the workspace by each guard, and the

other is visibility amongst the guards themselves. Visibility is treated as a constraint.

There is no consideration of a dynamically-constrained observer. Ref. [47] considers

the level sets of the volume of space visible to an observer, for determining the best

placement of a sensor which covers the maximum volume. A gradient-based method

is used, so their solution can be suboptimal if the level set function is non-convex. Ve-

hicle dynamics, sensors, and targets are not considered, which are major limitations

of their method, because the path planning problem is completely neglected. Ref. [48]

investigates visibility maintenance and maximization from a UAV to track adversarial

targets using iterative prediction. They assume a perfect information model, mean-

ing they have full state knowledge of target and no-fly zone positions. They use a

range-limited, field-of-view limited sensor to determine line-of-sight visibility to the

target. Visibility is treated as a reward, but they also penalize large gaps in visibility.

They use two methods, a greedy potential field and an A∗ informed search to find the

best UAV path, where the best path considers multiple objectives including reducing

loss of sight and maintaining an ideal separation. The primary limitation is the full

state knowledge assumed about the target; no estimation is involved. Ref. [18] also

treats visibility as a reward to be maximized along a trajectory flown by a UAV.

They use a detailed line-of-sight visibility model accounting for atmospheric effects

and probabilities of detection due to rasterization effects of the sensing array and
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(a) Obstructed line-of-sight visibility (b) Unobstructed line-of-sight visibility

Figure 2-7: Visibility model with line-of-sight.

errors due to the image recognition process. The best UAV trajectory is determined

using a probabilistic roadmap. However, probabilistic roadmap planners do not have

any optimality guarantees.

Line-of-Sight Model

The visibility model chosen for this thesis is the line-of-sight model. Line-of-sight is

an unbroken line segment joining the target and the sensor. Interruptions to line

of sight are caused by obstructions which are treated as perfect absorbers of light

waves. Maximizing visibility is the same as maximizing line-of-sight. Atmospheric

effects and reflections are not considered. Figure 2-7 shows examples of obstructed

and unobstructed line-of-sight visibility between a sensor and a target. The equation

VLOS =
[
xA ∈ Z̄(xT )

]
(2.9)

VS = [xT ∈ S(xA)] (2.10)

V(xA,xT , T ,S) = VLOS

⋂
VS (2.11)
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states two conditions that need to be satisfied for visibility. The first is the inclusion

of the observer’s state xA in the line-of-sight visibility region of the target, Z̄. The

second is the inclusion of the target’s state xT in the sensor footprint, S(xA). The

complexity in the equation lies in determining the boundaries of the line-of-sight

visibility set.

Complexity of Visibility Calculations

Computational complexity is a measure of the tractability of an algorithm. A tractable

algorithm is one that can be computed using a “small” number of operations. Fewer

operations are desirable, because the number of operations is proportional to the

computation time. Simple computations in each operation are also desirable.

As mentioned earlier, visibility is an involved calculation requiring a non-trivial

amount of computation for even a single query. The computational complexity of

one visibility calculation V is proportional to the number of geometric features in the

environment. In planar environments, a single call evaluating visibility has an upper-

bound or worst-case time complexity (denoted by big-O notation) in the number of

occluding edges, O(nedge) [49]. In three-dimensional environments, the number of

calculations is related to the number of planar surfaces, O(nsurf ). More efficient data

structures (e.g. kD-trees) can be used to reduce complexity by lowering the number

of surfaces checked in each visibility query [50, 51].

For digital elevation models sampled in a uniform grid, the linear-time computa-

tion for visibility proposed by Ref. [52] has time complexity which is a function of the

number of grid points separating the two points of interest, O(mx + my). However,

for non-uniform altitude maps, such as longitude-latitude maps, triangle patches can

be used to fill the surface, and time complexity becomes approximately O(mxmy)

in a näıve implementation. The remainder of this chapter discusses the visibility

maximization problem solver.
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2.5 Literature Review of Visibility Maximization

Motion Planning

The VMP continues to receive attention because it has many real-life applications,

such as reconnaissance and patrol, and because of the difficulty of finding maximum

visibility paths in the presence of sensor, observer, and environment constraints. Few

attempts however have been made to solve the complete VMP with all modeling

aspects fully considered. The literature shows that the problem of multiple moving

targets, range-limited and field-of-view-limited sensors, dynamically-constrained ob-

servers, and 3-D and digital elevation model environments, has not been considered

altogether at once, and their methods are not easily extended to capture this rich

problem.

Approaches related to the VMP include visual servoing and visibility-based mo-

tion planning. These approaches were introduced in the previous sections ([16–

19, 24, 29, 47]). The following presents more examples of existing solution methods

that are relevant to the VMP. Ref. [53] treats visibility in the context of line-of-

sight communications between a planetary rover and multiple airborne or orbiting

observers, in a 3-D environment. They discuss efficient representations of the environ-

ment, using a non-uniform lattice to model mountainous terrain. The best trajectory

is calculated using an A∗ graph search along adjacent nodes which are the centers of

safe volumes. They do not consider sensor range or field of view limits, and they do

not consider the dynamics of the observer, both of which increase the complexity of

the problem significantly. Ref. [54] considers the polygon-visiting Dubins traveling

salesman problem. Visibility is modeled as a constraint, where the observer must

visit each target for at least an infinitesimal duration. Visibility is occluded by a 3-D

environment representing buildings in an urban setting. The sets of states where the

vehicle can see each target are represented as polygons. The shortest Dubins path

which visits all polygons is desired. A genetic algorithm is used to determine the

timing and sequence of alphabets consisting of left turns, right turns, and straight

segments, resulting in the shortest path. The author does not consider field of view
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limited sensors, which breaks the polygon assumption and changes the problem defi-

nition. Also, the traveling salesman formulation only ensures brief glances of targets

if a solution is found, and does not maximize visibility of the targets.

Ref. [55] considers the optimal control formulation of the visibility maintenance

problem for a static target and a field-of-view constrained sensor. Extremal paths

are generated using Pontryagin’s Maximum Principle. They do not consider path

obstacles or occlusions, which would add a significant number of constraints to their

problem. Also, they consider a static target only, which is a major simplifying as-

sumption used in their method. Ref. [56] considers the visibility maximization for an

eye-in-hand articulated manipulator with multiple degrees of freedom. They use a

field-of-view constrained optical camera model for visual tracking of a stationary fea-

ture in the environment. A probabilistic roadmap approach is taken to find a feasible

yet suboptimal trajectory for the manipulator. The major limitations are the lack of

observer dynamics and a suboptimal path.

As seen above, many of these methods are incomplete in terms of the VMP for a

UAV tracking targets in dense environments. Either the models are simplified, mean-

ing the sensor model is not range-limited and field-of-view-limited, the environment

is not modeled, or the solution method is not optimal. The remainder of the thesis

addresses the proposed solution to the full VMP problem.

2.6 Chapter Summary

This chapter introduced the Visibility Maximization Problem (VMP). A systems-

level decomposition of the visibility maximization was presented. The chapter also

discussed models for the targets, sensor, observer, environment, and visibility, along

with examples used in the literature. Approaches to the visibility maximization mo-

tion planning problem considered in the literature were also presented. The next

chapter proposes a solution to the VMP including an evaluation against a state-of-

the-art optimal control solver for stationary targets.
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Chapter 3

Optimal Control for Visibility

Maximization

This chapter presents the proposed solution method for the visibility maximization

problem (VMP). Section 3.1 introduces the optimal control based visibility maxi-

mization dynamic programming solver, or VMDP, in the form of a block diagram.

Section 3.2 describes in detail the methods used in the proposed solver. Section 3.3

presents comparison results between the new solver and a state-of-the-art optimal

control solver, the General Pseudospectral Optimization Software (GPOPS) package,

for simplified map geometries. Section 3.4 shows numerical results using the new

solver for more complex scenarios that cannot be solved using GPOPS, including

3-D maps and digital elevation models, demonstrating its effectiveness in real-world

problems.

3.1 Block Diagram of Proposed Solution

Figure 3-1 shows the block diagram of the Visibility Maximization Dynamic Pro-

gramming solver, or VMDP, which is the proposed solution to the VMP. The

solver addresses the limitations of previous work: it considers multiple targets, con-

strained sensors, dynamic observers, complex map geometries, optimality of the re-

sulting flight path, and computational efficiency. Given the inputs described in Chap-
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Figure 3-1: Visibility maximization problem solver block diagram.

ter 2, the VMDP generates a visibility table, which is used to compute a tractable

approximation to the visibility function. Then, given the approximation, a dynamic

programming path planner calculates optimal waypoints for the dynamic observer in

the discrete graph. The waypoints are used for a waypoint-following control simulator

which uses the same controller as the actual observer. The calculated waypoints are

fed through a trajectory optimizer to find a feasible continuous path.

3.2 Visibility Maximization Dynamic Programming

Solver

This section provides a complete description of the visibility maximization problem

solver presented in Fig. 3-1, which is the main contribution of this thesis. The two

sub-modules address the VMP question: how to find a path which maximizes vis-

ibility, and how to perform the computation tractably. Section 3.2.1 presents the

Visibility Approximation Module which provides the path planner with a tractable

visibility calculation. Section 3.2.2 presents the Path Planner, which uses the visibility

approximation to determine optimal paths with respect to the approximation.

The main benefit of decomposition is to decouple the visibility objective from the
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path planner, so that the individual problems can be solved more quickly. These

benefits are explained in more detail in the following sections.

3.2.1 Visibility Approximation Module

To find the optimal trajectory in a multidimensional search space, the quantity in

the cost function of Eq. 2.2, V(xA,xT , T ,S), must be called thousands if not millions

of times. This computation is expensive, however an approximation can be used to

reduce computation significantly. The Visibility Approximation Module calculates an

approximation to the visibility function,

Vapprox(xA(t)) ≈ V(xA(t),xT (t), T ,S) (3.1)

in the VMP. It will be shown that the most complex inputs to the visibility calcu-

lation, including the sensor model S and environment model T , no longer appear in

the call to Vapprox, making the approximation considerably more tractable.

The Visibility Approximation Module provides the infrastructure to compute such

an approximation Vapprox. It consists of two subcomponents. The first is a visibility

table generated from exact visibility calculations. The second is a function approxi-

mation of visibility calculated using the visibility table.

The following sections detail the two subcomponents, as well providing an analysis

of the computation speed and error between the visibility approximation and exact

visibility to justify the use of the former.

Visibility Table

As mentioned in Section 2.4.5, the complexity of individual visibility calculations is

dependent on the complexity of the map, such as the number of edges defining the

environment. In addition to this complexity, the complexity of path planning over a

forward search graph is exponential in the branching factor [15], making the combined

complexity very high.
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A visibility table VT 1 is an array of uniformly spaced points spanning the contin-

uous state space of the observer.

VT (t) =
{
V(x[ix], y[iy ], ψ[iψ ],xT (t), T (t),S(t))

}
,

ix ∈ {1, . . . , Nix} , iy ∈
{

1, . . . , Niy

}
, iψ ∈

{
1, . . . , Niψ

}
(3.2)

A VT provides a deterministic bound on the number of function calls to V . It is also

the resolution of the visibility table.

NVT = NixNiyNiψ (3.3)

This bound on the number of calls is the primary advantage of using the visibility ta-

ble. The bound can be selected based on the desired error, or the allowed computation

time. The table is subsequently used for approximating visibility using inexpensive

calculations. The visibility table in Eq. 3.2 is valid for a Dubins observer with three

variable states2 (x, y, ψ), where (Nix , Niy , Niψ) are the number of discretizations in

each dimension.

Figure 3-2 shows the construction of the visibility table over the state space of the

observer. Visibility is computed exactly over a discrete set of observer positions and

headings. The figure depicts visibility values with:

• the observer’s positions (x[ix], y[iy ]) at the centers of each octagon,

• the sensor’s orientations, as a function of the observer orientation (ψ[iψ ]), aimed

in the same directions as each triangle, and

• the colors denoting the binary visibility value (light = visible, dark = not visible)

given the observer position and sensor direction.

1The visibility table will sometimes be referred to as a Skymap. One can imagine points in the
sky from which an aerial observer peers into the environment. Each of these points, along with the
observer’s orientation, is used to perform the geometric visibility calculation.

2Recall that although the state space of a vehicle in general 3-D coordinates contains
(x, y, z, φ, θ, ψ), three quantities (z, φ, θ) are constant over time (see Equation 2.6) and therefore
do not need to be subsampled.
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Visibility calculation Visibility table

Figure 3-2: Visibility table construction, providing a look-up table for pre-computed
visibility values between observer and target at a discrete set of observer positions
and headings.

The visibility table has a drawback of discretization error. Any subsequent ap-

proximation utilizing the discrete table must interpolate values at the continuous

states. In the VMP, the approximation affects the path planning stage, yielding

solutions which are optimal to the approximation but not the exact visibility.

Visibility Function Approximation

In this section, interpolation over the visibility table is described. Interpolation pro-

vides an essential, time-saving feature for the VMDP solver. A function approxima-

tion Vapprox can yield computational savings necessary for time-critical implementa-

tions.

Several interpolation schemes for Vapprox are considered, such as nearest neighbor,

polynomial, and spline interpolation [57]. Linear interpolation is used because it is

simple, and it provides smooth transitions between visible and not visible points in

space. The smoothness discourages states that are near visibility boundaries. Since

the table of data is three-dimensional, trilinear interpolation is used. More complex

interpolations are not necessary in this particular application, or are not suitable

because the interpolation can exceed the [0, 1] bounds on visibility.

The next section describes the computation time versus error tradeoff in using the
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visibility approximation.

Analysis of Visibility Approximation

This section provides two evaluations of the visibility approximation. The first as-

sessment is the complexity of calculating the visibility table. The table provides a

computation benefit only when the number of calls to Vapprox exceeds NVT . In other

words, a table is not needed if more effort is required to build the table than to com-

pute visibility directly. By evaluating the complexity of calculating visibility, it will

be apparent that the table will be needed in almost every case.

The second consideration is the computation versus error analysis. To evaluate

the error of the visibility approximation, the mean absolute error (MAE) is used:

eV,MAE = E|Vapprox − V| (3.4)

where the expectation is taken over a large number of Monte Carlo runs. The best

discretization in x, y, and ψ are plotted3 for each NVT . Figure 3-3 plots the histogram

and mean of the MAE over 100 target initial locations, versus total resolution NVT .

The figure also plots computation time for the corresponding NVT . The horizontal line

is the average time using the exact calculation. This error analysis shows that reducing

error requires increased computation, as expected. However, increasing computation

leads to diminishing reductions in error since error decreases asymptotically. A good

trade-off point can be selected which balances computation with error reduction.

In this example 2 × 105 exact visibility calls appears to show good computation

performance, and 4× 105 shows the beginning of diminishing reduction in error. The

resolution can be specified according to error tolerance.

3The best discretization means the best ratio of Nx, Ny, and Nψ given a maximum number of
calls NVT . The best ratios are determined in a separate analysis.
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Figure 3-3: Visibility table mean absolute error and computation versus resolution
selection. As resolution increases, the mean absolute error decreases asymptotically.

3.2.2 Path Planning Optimization Module

This section describes the path planner in the VMDP. Given that the nature of the

VMP is an optimization problem, the solver incorporates an optimization module

which is used to find the path which maximizes visibility. Two subcomponents make

up the Path Planning Optimization Module. The first is a coarse search, using a

dynamic programming waypoint generator. The second is a refined search using

trajectory optimization. The coarse search is needed for tractable optimization. The

refined search ensures feasibility. An extension considers parametric flight paths,

which are simpler, more natural flight paths which can also be computed more quickly.

Dynamic Programming Waypoint Generator

The coarse search employs a method known as dynamic programming (DP) [58]. Dy-

namic programming has been used to solve discrete optimal control problems. Dy-

namic programming uses the Bellman principle of optimality to perform an exhaus-

tive search over the state space, but is less expensive than a näıve uniform search. At

each iteration, the best control actions are selected, by maximizing over the cost to
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go values of all paths that reach a given state. The Bellman equation is stated below:

J∗ (x[k]) = max
x[k],u[k]

[J∗(x[k + 1]) + g (x[k],u[k], k)] , k ∈ {0, 1, . . . , N} (3.5)

where at stage k, the optimal cost to go J∗ (x[k]) is the cost to go J∗ (x[k + 1]) of the

future subsequence, plus the stage cost g (x[k],u[k]) in performing the transition. In

the VMP, the cost to go is the visibility accumulated between x[k+1] and x[N ], the

stage cost is the visibility accrued by executing an action u[k], and the transitions are

the observer’s dynamics. The stages are taken from the final time k = N backwards

to the initial time k = 0, since the cost to go is known at the terminal time. This is

possible if the goal state x[N ] is known. Since the terminal state of a VMP is not

known, it makes sense to start from the initial condition. A version of the principle

of optimality holds for the forward search [59], known as the reversed principle of

optimality. The resulting DP, known as a forward DP, replaces costs-to-go by costs-

to-arrive, and future states by the state history.

The cost function must satisfy the monotonicity and contraction properties [60].

A function f is monotonic if ∀x,∀y, s.t. x ≤ y, then f(x) ≤ f(y). The visibility

reward JV is monotonic because it is an integral (or sum) of values of Vdt
T

, where V

lies between 0 and 1. A function f is a contraction if for some metric d and ∀x, ∀y

in the same metric space, then ∃k s.t. d · (f(x), f(y)) ≤ k · d(x, y). The contraction

property ensures the cost function is bounded. JV is clearly bounded because it is

normalized to values of [0, 1] for all t. An additional memoryless assumption, in which

past states and past actions cannot affect future rewards, must also hold [59]. The

reward JV is calculated only as a function of the current state and action, so this

requirement also holds.

The most important feature of a DP path planner is its ability to find the optimal

path in a discrete graph with dynamic constraints. Given a description of observer

dynamics, constraints, and the visibility function, a DP solver finds the set of discrete

controls which maximize the visibility objective. Thus, a discrete approximation

to the VMP is solved using the dynamic programming path planner. Stochastic
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(a) Coarse path generated by DP (b) Trajectory-optimized path

Figure 3-4: Discrete graph versus trajectory-optimized paths.

problems can also be handled by maximizing the expected instead of a deterministic

reward. The output is a set of discrete control actions and states. The controls can be

directly executed, or the state trajectory can be used as a list of reference waypoints.

However, the control actions and states may be too coarse. The coarseness means it

is possible to violate state constraints if the control actions are executed open-loop

or if the state trajectory is tracked using a waypoint following controller. Hence, a

trajectory optimization phase is proposed and is discussed next.

Trajectory Optimizer

The refined search reconsiders feasibility of the actual flight path. Figure 3-4 shows

a DP-generated path and a trajectory optimizer path. There is a possibility of state

constraint violations when the DP control or DP state trajectory is directly imple-

mented. An additional optimization phase can be used for feasibility evaluation.

The trajectory optimizer poses the VMP directly. The VMP is a nonlinear op-

timization over the discrete control sequence {u1, . . . ,uN},∀uk ∈ R or the sequence

of waypoints {x1, . . . ,xN},∀xk ∈ R2, at N time intervals. The optimization per-

turbs the control or waypoint sequence to find a feasible sequence that satisfies the
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VMP constraints. The optimization can be solved using a nonlinear optimization

solver.

Trajectory optimization can be slow because the number of decision variables N

is large. Either the entire set of control actions or the entire waypoint list must

be passed to the optimization. Each time a variable changes, the path needs to be

simulated to ensure feasibility. The initial DP phase can accelerate the process by

providing a good initial guess upon which to make improvements.

The actual flight trajectory is simulated using a low-level controller, given the

control commands or reference waypoints.

Low-Level Control Simulator

The low-level control simulator returns a finer discretization of the action and state

trajectories. This refinement is a much more accurate representation of the true flight

path than the coarse path generated by the DP path planner.

Different controllers can be used to track a trajectory [61]. An open-loop controller

will execute a smoothing of the set of controls provided by the DP. Alternatively, a

waypoint-following controller will track the DP state trajectory by computing a new

set of controls. In this thesis, the second type of controller is used.

One type of waypoint-following controller is the pure pursuit controller, with vari-

ants for aerial vehicles [62, 63] and ground vehicles [64]. It is an excellent controller

for staying on paths. Figure 3-5 illustrates the pure pursuit controller geometry. The

variant considered in this thesis uses a proportional steering controller on the heading

error eψ. This heading error is measured with respect to a radial line segment PxAPL1

with length L1 which extends towards the reference line segment PAPB. The reference

line segment connects the previous and current waypoints, PA and PB, respectively.

Once the observer is within L1 of the current waypoint, the waypoint list is shifted

so that the current waypoint becomes PC and the previous waypoint is PB.
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Figure 3-5: Pure pursuit controller geometry.

3.2.3 Summary of VMDP

This section described the proposed optimal control solver, the Visibility Maximiza-

tion Dynamic Programming (VMDP) solver, for the visibility maximization problem.

The next section discusses the performance of VMDP compared to a state-of-the-art

optimal control solver.

3.3 VMDP Versus Optimal Control Solver

This section describes a state-of-the-art optimal control solver, the General Pseu-

dospectral OPtimization Software (GPOPS), which can solve the VMP. This sec-

tion presents GPOPS solutions to problems of increasing complexity. This section

also compares the GPOPS solutions with the VMDP solutions.

3.3.1 General Pseudospectral Optimization Software

GPOPS, or General Pseudospectral OPtimization Software, is a MATLAB R© package

[65] for the Gauss pseudospectral method (GPM) [66] which can solve multi-phase

optimal control problems with a general objective function and constraints, shown

below. The software interfaces with a nonlinear optimization solver and solves for the
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optimal control actions u. State and control constraints are satisfied by the solution

if one is found. For more information on GPOPS, see [65].

min J =
P∑
p=1

[
Φ(p)

(
x(p)(t0), t

(p)
0 ,x(p)(tf ), t

(p)
f ; q(p)

)
+ g(p)

]
s.t. g(p) =

∫ t
(p)
f

t
(p)
0

L(p)
(
x(p)(t),u(p)(t), t; q(p)

)
dt

ẋ(p) = f (p)
(
x(p),u(p), t; q(p)

)
C

(p)
min ≤ C(p)

(
x(p)(t),u(p)(t), t; q(p)

)
≤ C(p)

max

φ
(p)
min ≤ φ(p)

(
x(p)(t0), t

(p)
0 ,x(p)(tf ), t

(p)
f ; q(p)

)
≤ φ(p)

max

L
(s)
min ≤ L(s)

(
x(psl )(tf ), t

(psl )

f ,x(psr)(t0), t
(psr)
0 ; q(psr)

)
≤ L(s)

max

(p = 1, . . . , P ), (pl, pr ∈ [1, . . . , P ]), (s = 1, . . . , L) (3.6)

The GPOPS interface accepts handles to MATLAB functions: these functions de-

scribe the cost, cost gradients, state/control dynamics, constraints, phases, and events.

It also accepts an initial guess. The inputs are mapped to a nonlinear programming

(NLP) problem which can be solved using a NLP optimization package. GPOPS

uses the SNOPT NLP solver [67] to calculate the optimal control trajectory. satu-

rated systems: [65] discuss examples of bioreactor control and multiple-stage rocket

maximum ascent. In these situations, the resulting control sequences are typically ex-

ecuted in open-loop fashion, which is reasonable if the dynamic models are accurate.

However, for the VMP, GPOPS is not a real-time implementation due to its compu-

tational requirements. Each call to GPOPS requires many iterations with SNOPT.

Also, GPOPS can terminate without finding a solution in more complex scenarios.

The next section describes the use of GPOPS to solve simplified versions of the

target tracking problem in 2-D. Initially, no obstacles are considered. Then, the prob-

lem increases in complexity by considering occlusions (visibility-only constraints, not

state constraints). Finally, the occlusions also behave as state constraints, obstructing

the path of the observer.
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3.3.2 Visibility Maximization in GPOPS

This section describes GPOPS solutions to the VMP in planar environments. The

first problem is an obstacle-free environment with a constrained sensor. The second

problem adds occlusions, but does not include obstructions.

Logistic Curve Representation of Sensor

The simplest VMP posed in GPOPS models only a dynamic observer and a con-

strained sensor. The target is stationary and there are no obstacles or occlusions.

Maximizing visibility in this scenario corresponds to maximizing the time the range

d(t) = d(xA(t),xT (t)) and bearing θ(t) = θ(xA(t),xT (t)) (both scalar functions of

time) between observer and target lie within the sensor boundaries,

max
u(t)

JV =
1

T

∫ T

0

V(xA(t),xT (t),S) dt (3.7)

s.t. (constraints in Equation 2.2)

where visibility is defined by the sensor boundaries:

V(xA(t),xT (t),S) = LG (d(t), dmin, dmax)LG (θ(t), θmin, θmax) (3.8)

Each LG is the product of two univariate logistic functions forming a continuous,

smoothed mapping of R to [0, 1], and was proposed for modeling binary constraints

such as path planning obstacles in [68]:

LG(x, xmin, xmax) =
[
1 + e−M(x−xmin)

]−1 [
1 + eM(x−xmax)

]−1
(3.9)

Figure 3-6 depicts the visibility V at different positions inside and outside the

boundaries of the sensor. While the sensor visibility is intended to be binary, logistic

or sigmoid functions remove discontinuities from the objective function, so that gra-

dients exist everywhere in the state space except at the sensor origin. The logistic

functions blur the sensor boundary, which can coarsely model spectral attenuation
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Figure 3-6: Logistic sensor model, range 60, FOV 36◦

(for example, vignetting) or degradation (for example, chromatic aberration) at the

edges of camera view [69], and model preferences to have targets centered in the

sensor view.

Figure 3-7 shows GPOPS results for two scenarios. The first is a forward-looking

sensor, and the second is a left-looking sensor. In both cases, the observer tracks a

stationary target at (0, 0). The path of the forward-looking sensor in Figure 3-7(a)

takes the observer directly towards the target, after making a right and left turn

subject to the turn rate constraints. The path of the left-looking sensor in Figure 3-

7(c) keeps the sensor pointed inwards while the observer orbits the target. The control

actions u(t) = ψ̇(t) are also shown. One observed issue with GPOPS is twitching or

chatter in the controls caused by numerical errors; from an execution standpoint these

can be smoothed with a low-pass filter before being commanded to the controller.
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Figure 3-7: GPOPS solution for forward versus left facing sensor, 40 nodes, x0 =
[50, 0, π/2]T , V = 2.5 [m/s], T = 25 [s]. In (b) and (d), the twitching is a result of
numerical integration issues.

Logistic Sensor in the Presence of Occlusions

A more challenging visibility maximization scenario for GPOPS considers both the

effect of sensor visibility and occlusions to the observer,

max
u(t)

JV =
1

T

∫ T

0

V(xA(t),xT (t), T ,S) dt (3.10)

s.t. (constraints in Equation 2.2)

where V(xA(t),xT (t), T ,S) is defined in Appendix A.

Figure 3-8 shows the paths for two scenarios: the first contains one occlusion
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Figure 3-8: GPOPS solutions for forward-facing sensor with occlusions.

region, and the second contains two occlusion regions. In both cases, the sensor is

forward-facing and the occlusions do not act as state constraints.4 The best path

is one which exits the occluded regions as quickly as possible, and maximizes the

remaining time the target is visible.

4Examples of occlusions which do not act as obstructions include light cloud cover, fog, and
low-lying buildings or geographic features.
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Logistic Sensor, Occlusions, and Obstructions

The most complex 2-D scenario in GPOPS involves obstructions which do not allow

the observer’s path to cross inside them.

max
u(t)

JV =
1

T

∫ T

0

[V(xA(t),xT (t), T ,S)− C(xA(t), T )] dt (3.11)

s.t. (constraints in Equation 2.2)

These obstructions are state constraints which can be modeled as hard or soft con-

straints. A hard constraint cannot be violated by a feasible path. A soft constraint

C(xA(t), T ) places a very high or even infinite penalty in the cost function for any

state violations.

Figure 3-9 shows examples of GPOPS with occlusions and obstructions. The

observer has a forward-looking sensor. The paths suggest that the observer should

reach the visible region as quickly as possible while avoiding the obstructions.

3.3.3 VMDP Versus GPOPS in Simple 2-D Environments

This section compares GPOPS and VMDP results in 2-D environments. The results

validate the VMDP for complex 2-D and 3-D environments. They also show signifi-

cant computational savings by using the VMDP solver compared to GPOPS, while

incurring a small penalty in performance. Finally, they show that GPOPS produces

suboptimal or infeasible plans in more advanced scenarios, making it inadequate for

the VMP.

Figure 3-10 shows the obstacle-free scenario with forward and left-looking sen-

sors. Figure 3-11 shows a single obstacle scenario with a forward-looking sensor. The

GPOPS solutions for the obstacle-free, occlusion-present, and obstacle-present envi-

ronments, where found, appear intuitively to maximize visibility by aiming the sensor

directly at the target. The VMDP paths likewise maneuver the sensor to face the

target, but appear to be sensitive in observer position.
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Figure 3-9: GPOPS solutions for forward-facing sensor with obstructions; note
GPOPS appears to be failing in the first VMP scenario, and has failed in the second
VMP scenario.

Table 3.15 shows the VMDP solution is calculated faster, over an order or mag-

nitude more quickly for more complex scenarios. Because of approximation error,

there is an optimality gap present in the DP solutions. The optimality gap can be re-

duced by increasing the DP discretization resolution. The effects of DP discretization

resolution are studied in Section 3.3.4.

Tables 3.2 and 3.3 show 200 total trials with random initial conditions, target

locations, and obstacle fields in a 2-D environment. The initial condition is drawn

in the upper right of the environment, the target in the lower left, and obstacles in

5In the table, DP resolution refers to (nix , niy , niψ , niu , NDP ), and GPOPS resolution to (NPS
pseudospectral points)
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Figure 3-10: GPOPS versus DP comparison without obstacles.

the center. The planning horizon is T = 60 [s]. GPOPS is given an initial guess of

[xA(0),xT (T )] each trial. These tables show that GPOPS performs poorly compared

to DP in these constrained environments. GPOPS requires increasing amounts of

computation as environments become more complex due to the number of constraints

checked. DP, on the other hand, remains almost constant because this computation

is performed once only over the entire discrete graph. Performance also decreases

as the number of obstacles increases, as expected. While some GPOPS paths are

feasible, these are mostly suboptimal because GPOPS terminates prematurely, often

due to infeasibility. DP, on the other hand, finds solutions for almost every scenario.

The few DP failures are caused by the initial condition being too close to an obstacle.

In these cases it was impossible to avoid the obstacle due to the speed and turn

rate constraints of the observer. The rightmost column in Table 3.3 also highlights

the discrepancy between the discrete path returned during the planning phase, and

the continuous approximation generated after running the dynamic simulation of the
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Figure 3-11: GPOPS versus DP comparison with obstacles.

observer. This discrepancy leads on average to 2 to 10 percent underperformance.

Most importantly at this point, GPOPS was unable to find adequate solutions,

including many infeasible solutions, and therefore must be considered inadequate for

the VMP. One cause is that GPOPS depends heavily on the initial guess. When the

guess is not close enough to the solution, it will lead to suboptimal and infeasible solu-

tions; and the solution obviously is not known in advance. The sensitivity increases as

scenarios become increasingly complex, such as multiple obstacle environments. The

initial guess sensitivity and other issues with the GPM were also observed in [70].

3.3.4 Performance and Computation Versus Resolution

This section discusses the effect of varying resolution on performance and computa-

tion time. Increasing resolution generally improves performance and increases com-

putation time. The tricky aspect of discretization is that it may not necessarily be

complete [15], meaning a feasible solution might not be found because discretization
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Table 3.1: Computation time and performance for DP versus GPOPS.
Scenario Solver Resolution Computation [s] Visibility

No obstacles, forward
DP (60,60,24,11,2) 4.3 0.72
DP (80,80,24,11,2) 7.2 0.76

GPOPS (40) 44.5 0.77

No obstacles, left
DP (40,40,32,11,2) 3.2 1.00
DP (65,65,32,11,2) 7.0 1.00

GPOPS (40) 35.7 1.00

1 obstacle
DP (80,80,32,11,2) 7.3 0.65

GPOPS (40) 232.7 0.47

2 obstacles
DP (80,80,32,11,2) 23.4 0.36

GPOPS (40) 279.1 0.00

Table 3.2: Performance and computation (GPOPS) over 200 trials (50 trials per
number of obstacles).

Scenario Performance Time [s] % Feasible

1 obstacle 0.043± 0.027 47.8± 49.8 52
2 obstacles 0.029± 0.026 83.7± 82.7 30
3 obstacles 0.035± 0.025 97.8± 101.6 22
4 obstacles 0.033± 0.030 153.6± 158.1 12

Table 3.3: Performance and computation (DP) over 200 trials (50 trials per number
of obstacles). Visibility table resolution is nx = 75, ny = 75, nψ = 32. DP resolution
is 3 times finer in the x and y dimensions.

Scenario Performance Time % Feasible Error (actual vs. expected)

1 obstacle 0.49± 0.29 39.5 98 −0.009± 0.040
2 obstacles 0.42± 0.04 39.8 100 −0.023± 0.052
3 obstacles 0.42± 0.04 39.8 96 −0.013± 0.042
4 obstacles 0.34± 0.04 39.8 96 −0.022± 0.041
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fails to capture any feasible transitions, or the transitions are suboptimal. Hence,

resolution cannot be perfectly mapped to performance.

Figure 3-12 shows the effect of changing resolution on performance and com-

putation time. Figure 3-12(a) shows a general performance-resolution correlation

suggesting too low of a resolution impairs performance. Figure 3-12(b) verifies that

increasing the resolution of one observer state affects computation linearly, and in-

creasing it for two or three states has a multiplicative effect. A general rule-of-thumb

is to choose a resolution that is sufficiently high and that does not significantly de-

grade computation. These results suggest that the problem can be solved multiple

times using different resolutions and the best trajectory selected out of these trials.

3.4 Results for A Single Stationary Target

This section presents results of paths generated by the VMDP for more complex

environments, including cluttered 2-D environments, as well as 3-D and digital eleva-

tion models. These more complex scenarios represent real-world environments more

accurately and assume a single stationary target in the environment.

3.4.1 Complex Scenarios in 2-D Environments

This section presents numerical examples of single stationary target visibility maxi-

mization in complex 2-D environments. Figure 3-13 shows examples of complex 2-D

environments. The resulting paths maneuver around obstacles and move into a loiter

pattern around the target. The paths appear to maximize the time the sensor faces

the target, in regions of the state space which are free of occlusions. Since the ob-

server does not need to reach a goal state, the paths continue to loiter for as long as

the planning horizon allows.

Mathematically, the loiter behavior appears to be an extremal behavior linked to

the gradient of the visibility function. On short time scales, the observer moves in the

direction which minimizes any decline in visibility: if the sensor model is smoothed

using sigmoid functions, this direction vector will be tangent to the observer’s present
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Figure 3-13: Stationary target DP solutions in 2-D environments with left-facing
sensor.

orbit around the target, or towards a different orbit depending on the reward scaling

with distance to target. However, over longer time scales, because of occlusions

and path constraints the solution can experience singular arcs. These arcs provide

transitions from non-extremal states to extremal loiter sequences, or between two

extremal loiter sequences. Figure 3-14 shows examples of forward-facing sensor paths.

The resulting paths are multiple fly-bys, since the observer must maintain a constant

speed. Each fly-by aims the vehicle (and the sensor) directly toward the target,

then away from the target as quickly as possible to repeat another fly-by. The turns

naturally satisfy turn rate constraints. For finite-horizon plans, the observer always

ends very close to the target, since this approach maximizes the time the sensor sees
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Figure 3-14: Stationary target DP solutions in 2-D environments with forward-facing
sensor.

the target.

3.4.2 Scenarios in 3-D and DEM Environments

This section shows numerical examples for complex 3-D environments. These cases

represent an aerial observer equipped with a left-looking sensor with range and field

of view constraints. The sensor is left-facing because this allows paths which orbit

the target, leading to greater visibility fractions than a forward-facing sensor. The

results are very similar to those on planar environments with the left-facing sensor.

The observer enters into a loiter behavior about the stationary target while avoiding

flight obstacles.
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Figure 3-15: Stationary target DP solutions in 3-D environments with left-facing
sensor.

Figure 3-15 shows examples in 3-D urban environments. Each of these paths

maximize visibility while performing obstacle avoidance. Figure 3-16 shows examples

using digital elevation model environments. The observer navigates around flight

obstacles and occlusions to orient the sensor towards the target. Again, the loiter

behavior emerges.

3.5 Chapter Summary

This chapter presented the Visibility Maximization Dynamic Programming (VMDP)

solver for the VMP. This chapter also presented a comparison with the General
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Figure 3-16: Stationary target DP solutions in DEM environments with left-facing
sensor

Pseudospectral Optimization Software (GPOPS), an optimal control solver that is

able to solve elementary cases of the VMP. This chapter then provided examples of

solutions generated by the VMDP for complex environments, including cluttered 2-

D, 3-D, and digital elevation model scenarios. The next chapter discusses the multiple

target formulation and the parametric VMP solver.
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Chapter 4

Multiple Targets and Parametric

Optimization

This chapter discusses extensions of the VMP to multiple target visibility maxi-

mization. Section 4.1 presents formulations for target importance weighting and rare

target visibility. It also discusses the effects of changing the trajectory design pa-

rameters such as the importance weights and the planning horizon on multiple target

visibility. This chapter also introduces parametric optimization for finding closed

contours. Section 4.2 describes how these contours are related to the steady-state

trajectories from the non-parametric solution, and can be computed more quickly

and are even desirable from a flight execution standpoint. This section also presents

results comparing different parametric contours, parametric optimizers, and objective

functions.

4.1 Multiple Target Formulation

While the previous chapter considered the single target visibility maximization prob-

lem, many real-life situations require that an observer maintain multiple targets in

view. For example, a surveillance UAV may need to maximize visibility of two ships

docked in separate regions of a harbor. This chapter considers the multiple target

visibility maximization problem.
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This section describes formulations for the multiple-target visibility maximization

problem (MT-VMP). For multiple targets, where NT > 1 denotes the number of

targets, the multi-target visibility metric JVMT can be posed several ways. These

methods are presented below.

4.1.1 Weights and Weighted Sum of Per-Target Visibilities

The most basic multiple target formulation is to implement a weighted (visibility)

sum JVMT,WS, which simply weights the individual visibilities. Summing over the

individual visibility metrics JVm , the weighted visibility metric takes the form

max
u(t)

JVMT,WS =

NT∑
m=1

(wmJVm)

=

NT∑
m=1

(
wm ·

1

T

∫ T

0

Vm(t) dt

)
(4.1)

The weights wm denote the relative importance of viewing target m. A higher weight-

ing on a target places greater significance on the visibility reward from that particular

target. The weightings can also be used to encourage harder-to-view targets to be

visited by the observer, but there are no guarantees that every target will be visited.

Visiting all targets cannot be guaranteed because it is not part of the constraints. On

the other hand, if this constraint is specified, the problem might become infeasible.

The per-target weightings should satisfy

wm ∈ [0, 1] and

NT∑
m=1

wm = 1, ∀m = 1, . . . , NT (4.2)

to ensure the visibility metric JVMT remains between [0, 1], to facilitate a fair com-

parison between trajectories.
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4.1.2 Maximizing the Minimum Per-Target Visibility

While the weighted sum is a simple linear combination of per-target visibilities, it

does not ensure that every target is visited. A nonlinear combination will not neces-

sarily ensure every target is visited either. The choice of objective function needs to

model the requirement of visiting every target at least once. To visit every target at

least once, each target must be visible at some point given the constraints of the ob-

server trajectory. If such a trajectory exists, one objective, the max-min formulation,

assuming the optimization is able to find this trajectory, will automatically ensure

that every target is visited. The set of visited targets will match the set of specified

targets because the max-min formulation maximizes the minimum cumulative visibil-

ity of a target; if the minimum is greater than zero, this implies all targets will have

a cumulative visibility greater than zero. However, a limitation exists in that if such

a trajectory does not exist, or because the optimization fails to find it due to sam-

pling incompleteness, then all feasible solutions become degenerate, having the same

cost. When this happens, the target that cannot be seen should be removed from

the optimization. Given this minor limitation, the worst individual-target cumulative

visibility is formulated as:

J∗VMT,maxmin = max
u(t)

{
min

∀m=1,...,NT

(
wm ·

1

T

∫ T

0

Vm(t) dt

)}
(4.3)

This objective function considers the worst visibility, and not the visibility of the

other targets. This function does not seek to maximize the remaining visibility as

long as they exceed the worst visibility. In this sense, the objective function will

under-perform if the desire is to simultaneously maximize visibility of all targets.

The DP framework, however, does not permit the max-min formulation. Consider

the following example, without loss of generality: a graph has three nodes (start S,

intermediate I, and goal G), and there are two transitions from start S to intermediate

I with rewards (0.6,0.6) and (0.4,0.8), where (J1[k = 1], J2[k = 1]) are the rewards

for viewing two targets. The one-step maximization would declare the transition

(0.6,0.6) optimal, since it maximized the minimum of the per-target visibilities after
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Table 4.1: Decision matrix for DP in max-min formulation. If one chooses (0.6,0.6)
from S to I because it has a higher minimum after step 1, the result after step 2 will
be worse than if one chose (0.4,0.8) instead. This example demonstrates the principle
of optimality does not hold for the max-min formulation.

S to I min[k = 1] I to G J [k = 2] min[k = 2]

J1[k = 1](0.6, 0.6) 0.6 J1[k = 2](0.8, 0.4) (1.2,1.0) 1.0
J2[k = 1](0.4, 0.8) 0.4 J1[k = 2](0.8, 0.4) (1.2,1.2) 1.2

the first step. However, say the final edge from I to goal G is J1[k = 2](0.8, 0.4).

The result of taking the first choice is (1.2, 1.0) while the second is (1.2, 1.2). Clearly

taking the first option reduces possible reward in the future. This example shows the

memory effect which holds. If one were to apply the principle of optimality to the

max-min objective, the result will be suboptimal. Despite this, the minimum will still

be greater than zero, but it will not necessarily be the maximum achievable score.

Table 4.1 summarizes the decision combinations and rewards of the above example.

4.1.3 Diminishing Returns on Per-Target Visibility

A different method which motivates paths that visit as many targets as possible is

to use the notion of diminishing returns. Diminishing returns, in the context of eco-

nomics, states that while additional effort can provide added reward, the marginal

returns resulting from increasing effort becomes smaller and smaller, which suggests

it makes more sense to allocate this effort elsewhere. In the context of multiple

target visibility, the available effort (the observer’s control actions) should be spent

visiting all targets during a mission. And while this behavior is already seen in the

max-min formulation, diminishing returns can be superior because it considers the

marginal benefit of added visibility, whereas max-min is only concerned with max-

imizing the worst visibility. The diminishing returns metric JVMT,dim accomplishes

the distribution of observer effort across multiple targets through the re-mapping of
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the cumulative per-target visibilities:

max
u(t)

JVMT,dim =

NT∑
m=1

2wm

{[
1 + exp

(
−M · 1

T

∫ T

0

Vm dt

)]−1
− 1

2

}
(4.4)

The sigmoid function [1 + exp (−MJVm)]−1 maps the cumulative visibility of a target,

which corresponds to the amount of effort spent by the observer seeing the target, to

a marginal or diminishing returns reward. The derivative of the sigmoid, representing

the change in reward as a result of increased effort, is greatest when the cumulative

visibility is zero. The tuning parameter M > 0 can be increased to raise the slope at

zero cumulative visibility and emphasize visibility across many targets, or decreased

to lower the slope to re-approximate the weighted sum formulation.

By an argument similar to max-min, the principle of optimality does not hold for

the diminishing returns objective.

4.1.4 Receding Horizon Approach for Complex Objectives

To use the max-min and diminishing returns objectives, a receding horizon exhaustive

search, known as visibility maximization with receding horizon (VMRH) is proposed.

The benefits of a receding horizon approach is that the planning horizon can be re-

duced, enabling a brute-force exhaustive search to remain tractable, and the range

of cost functions that can be used is expanded. Importantly, the VMRH can be

used with objective functions that do not satisfy the principle of optimality. The

receding horizon framework is stated in Algorithms 1 and 2. Algorithm 1 shows the

receding horizon one-step (RHOS) planner. All plans X [k] for time step k, deter-

mined by executing Nu[k] actions for each plan which then reach the set of states

{X[k+1]}, are enumerated along with the costs JV [k+1] to form a finite reachability

graph. The transitions {dX([k] → [k + 1])} are constructed using Euler integration

and is a function of the control action u[k]. The cost can encode a terminal state

metric to alleviate the myopic nature of the receding horizon plan. While the opti-

mal terminal penalty is the cost-to-go, this cannot be calculated since the terminal

73



Algorithm 1 Receding Horizon One-Step (RHOS): pseudocode for receding-horizon
visibility maximization over a single time window.

1: INITIALIZE k ← 1, X[k = 1]
2: while k < N (receding horizon window) do
3: EXPAND set of states {X[k + 1]} = {X[k]}+ {dX([k]→ [k + 1])}
4: EVALUATE JV [k + 1] ({X[k + 1]})
5: k ← k + 1
6: end while
7: return X ∗[N ] = arg max

X [N ]

{JV [N ] ({X[N ]})}

Algorithm 2 Receding Horizon Multiple Window (RHMW): pseudocode for
receding-horizon visibility maximization over multiple windows.

1: INITIALIZE XI,1

2: while r < NR (number of receding horizons) do
3: X ∗r+1 = RHOS(XI,r)
4: ASSEMBLE X1→r+1

5: SELECT XI,r+1 = X ∗r+1[Kr+1]
6: r ← r + 1
7: end while
8: return X ∗1→NR

state is unknown. Some possible heuristics include a repulsive field to guide paths

away from obstacles, and attractive fields towards targets. The best plan X ∗[N ] is

returned by the RHOS planner. Algorithm 2 shows the receding horizon multiple

window (RHMW) planner. Each window r requires a call to the RHOS planner to

generate one-step optimal plan X ∗r . Window r uses an intermediate state XI,r at time

Kr along the one-step optimal path as its initial condition, and each X ∗r is assembled

to the full receding horizon plan X ∗1→r. This process repeats NR − 1 times, building

the multi-window plan X ∗1→NR until the entire plan reaches the desired time horizon.

4.1.5 Multiple Target VMDP Numerical Results

This section presents results for multiple targets, in 2-D, 3-D, and DEM environments.

Figure 4-1 shows results for multiple target scenarios in 2-D environments. Figure

4-2 shows results for multiple target scenarios in 3-D environments. Figure 4-3 shows

results for multiple target scenarios using digital elevation model environments. The
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observer behavior becomes complex in multiple stationary target scenarios. However,

these trajectories can still be understood intuitively. All cases show the observer

proceeding towards the most valuable target, or the most valuable cluster of targets.

The observer will sometimes sacrifice high immediate visibility for visibility in the

future horizon, when it is beneficial to do so. The importance weighting affects this

behavior, so targets that are farther from the observer’s initial condition but have

sufficiently high weightings will still be visible along the observer’s trajectory. Since

the sensor is left-facing, the trajectories resemble loiter patterns similar to the patterns

for individual target observation. The loiter patterns appear to conform around

individual targets for parts of the trajectory to maximize the view of that particular

target, but when targets are close enough together the loiter patterns will encompass

the entire group of targets. Obstacles will occasionally affect the desirability of visiting

particular targets. The desirability is reduced because occlusions remove portions of

the observer’s traversable space that provide line-of-sight visibility. Therefore, less

time can be spent viewing these targets, making them undesirable to visit from a

visibility maximization point of view. Visibility occlusions are less restricting: even

though they obstruct visibility, the observer will still travel through no visibility

occlusions to reach high visibility areas more quickly.

Computation time increases are the result of a number of factors, such as the num-

ber of obstacle edges and surfaces, the DP resolution, the planning horizon selection,

and the number of targets in the environment. In general, 3-D environments with the

same number of surfaces as 2-D edges will be more complex. The DEM models have

the most edges and are therefore the most complex to solve. Another driving factor

is the DP resolution, as shown earlier in Section 3.3.4.

When the time horizon and weights change, different behaviors emerge. These

parameters can be chosen as needed. The next section describes the effects of changing

the time horizon and weighting parameters.
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(d) 16 obstacles (8 occlusions), 4 targets

Figure 4-1: DP solutions in 2-D environments, multiple stationary targets, left-facing
sensor. In (d), the lightly-shaded obstacles are visibility occlusions only, and do not
obstruct entry by the observer.

Varying Target Weights

Figure 4-4 shows the effect of varying the weights for a two target scenario. The

weights represent the relative importance of viewing a target, and changing the

weights can cause the observer behavior to switch from initially visiting only one

target to visiting both targets. Also, the amount of time that a target is seen can be

changed by increasing or decreasing the weights. Due to the number of variables of

any particular problem, such as the initial conditions for the observer, the targets,

the sensor, and the environment geometry, the effect of the weighting is not appar-

ent. Also, while weights affect the resulting observer trajectory, the weights are not
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Figure 4-2: DP solutions in 3-D environments, multiple stationary targets, left-facing
sensor.

easily specified from the outset to achieve any particular behavior. From the exam-

ple in Figure 4-4, several switching behaviors occur once particular weight ratios are

reached. These switches can be identified in the figure when the visibilities of the

targets jump discontinuously. The changes coincide with when the global optimum

of the problem switches. The optimum switches because a previously suboptimal lo-

cal optimum increases beyond the value of the prior optimum, once the weights have

changed sufficiently. The presence of multiple switches reflects the potential existence

of multiple local optimal in the observer action space. There also appear to be regions

where the visibility of each target changes in a continuous fashion. These continuous

changes correspond to the region around the global optimum growing, shrinking, or
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(a) Environment 1, 3 targets (b) Environment 2, 4 targets

(c) Environment 3, 4 targets (d) Environment 4, 5 targets

Figure 4-3: DP solutions in DEM environments, multiple stationary targets, left-
facing sensor.
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moving at the same time, but remains more valuable than other local optima.

Varying Planning Horizon

Figure 4-5 shows the effect of varying the planning horizon. Time horizons can be

specified if the exact execution time is known, or if computation time and memory

need to be kept within limits. However, changing the planning horizon gives rise to

different behaviors. The figure shows planning horizons of 40, 80, 120, 160, and 200

[s] in a 2-D environment with four targets. Short planning horizons yield paths which

attempt to gain as much visibility in the limited near-term as possible, which is seen

as a myopic and greedy behavior. Long planning horizons on the other hand exhibit

periodicity or steady-state behavior: these plans repeat segments of the trajectory

that are clearly favorable to the objective function, such as loitering around groups of

targets with the highest visibility reward. Intermediate-length plans characterize the

transition between myopic and steady state behavior. In this example, the transition

phase emerges between time horizons of 80 to 180 [s]. During the transition, the

trajectories may evolve to possess completely different time sequence behaviors. Also,

in this example, at 200 [s] the path appears to repeat a large portion of its initial

trajectory, signifying the onset of steady state paths.

The closed contours which have emerged as a result of increasing the planning

horizon suggests a new type of optimization can be considered. The next section

describes parametric optimization for visibility maximization, which models simple

shapes with relatively few parameters that can be quickly optimized.

4.2 Comparison Against Baseline Parametric Paths

While GPOPS was unable to solve somewhat hard instances of the VMP, parametric

optimization is capable of solving the VMP. Parametric optimization finds near-

optimal solutions under restrictions on the types of paths that can be optimized.

This class of paths includes parametric paths which have few parameters defining

the path. Parametric paths can be closed contours which can be readily represented
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Figure 4-4: DP solutions, comparing target weightings for 3-D environment.
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Figure 4-5: DP solutions, comparing planning horizons for 2-D environment.
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Table 4.2: Parameters for parametric paths. Note these parametric descriptions are
not unique for these paths.

Path Type Parameters Description

Circle (xc, yc), r Center, radius
Ellipse (xc, yc), a, b, φ Center, semi-major/minor axes, orientation

Line Segment (xc, yc), L, φ Center, length, orientation
Racetrack (xc, yc), r, L, φ Center, radius, length, orientation

in closed form. Parametric paths typically have simple geometries that are suitable

for flying, and are designed from the outset to be dynamically feasible. However,

a disadvantage is that the resulting path generated by parametric optimization can

only be optimal in the same family of contours.

This section describes parametric paths in more detail. Later, it provides com-

parison analyses amongst multiple solvers and the VMDP solver.

Parametric Paths

This section describes a new solution approach, and a baseline for validating the

VMDP planner. Parametric visibility maximization or VM-Par finds parametric

paths which maximize visibility. Figure 4-6 shows examples of parametric paths.

Parametric paths include circles, ellipses, line segments, racetrack patterns, and arcs.

These paths are fully described by a relatively small vector of parameters x, such

as the center and radius for a circle, or the start and end points for a line segment.

Table 4.2 shows a list of parameters for the four parametric paths in Figure 4-6. In

contrast, finding the optimal free-form path requires optimizing a parameter vector

that is the size of the entire sequence of actions, which can have at least as many

parameters as the number of time discretizations in a discrete approximation frame-

work. Parametric optimization can be applied to the discrete action sequence using

trajectory optimization as discussed in Section 3.2.2, but it is very difficult to obtain

the optimal path in this manner without a good initial guess.

The parametric optimization formulation is posed as follows: the maximization of
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(a) Circle (b) Ellipse

(c) Line segment (d) Racetrack

Figure 4-6: Parametric path shape and parameter examples.

visibility occurs with respect to x instead of u(t),

max
x

JV =
1

T

∫ T

0

V(xA(t),xT (t), T ,S) dt

s.t. xA(θ) = A(x, θ), θ ∈ [0, 2π] (4.5)

(plus constraints in Equation 2.2)

where θ denotes a path parameter (and not an angular state), and A(x, θ) is a transfor-

mation matrix. It is possible to design classes of paths which subsume other classes,

for example the superellipse [71] includes the circle, ellipse, two-way line segment, and

racetrack. These “superclasses” typically have more parameters over which to opti-

mize. If the initial condition is fixed, additional parameters may need to be specified.

A full description of the path parameterization method is given in Appendix B.

Parameter-based optimization of a nonlinear, non-convex objective function such
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Table 4.3: Parameters for cross entropy visibility maximization. Parameters corre-
spond to ellipse optimization.

Variable Symbol Value

Sample min xmin [0.2W, 0.2H, 0.2 min(W,H), 0.0, 0.0]T

Sample max xmax [0.8W, 0.8H, max(W,H)√
2

, max(W,H)√
2

, π
2
]T

Initial sample mean xµ[k = 1] 1
2
(xmin + xmax)

Initial sample stdev. xσ[k = 1] 1
6
(xmax − xmin)

Number of samples n 100
Update fraction α 1.0

Best fraction ρ 0.1
Converge tolerance xσ,tol 0.001xσ[k = 1]
Path discretization Nθ 40

Execution time texecution 0.5, 1.0, · · · , 3 [s]

as that of the VMP can be solved using the general class of algorithms known as

metaheuristic searches. Metaheuristic search methods include simulated annealing

(SA) [72], genetic algorithms (GA) [73], cross entropy (CE) [74], ant colony optimiza-

tion (ACO) [75], and tabu search [76], each utilizing a unique set of heuristics to

guide the improvement of initial guesses towards local or global optima. Appendix

B.2 provides a more detailed description of these metaheuristic search methods.

4.2.1 Comparisons Between Parametric Optimizations

Figures 4-7 and 4-8 show comparison results between genetic algorithm, simulated an-

nealing, and cross entropy parametric optimizers, using different parametric paths in-

cluding circles, ellipses, one-way line segments, and racetracks. The MATLAB Global

Optimization Toolbox Genetic Algorithm and Simulated Annealing implementations

[77] were used, while a custom cross entropy implementation was developed, see Ap-

pendix B.3 for a thorough discussion on the method and implementation. The default

values for the two MATLAB toolbox implementations were chosen. The computation

time for every optimization trial is capped at increasing upper limits to ensure as fair

a comparison as possible. 10 trials are run for each optimization, each time cap, and

each parametric path type. Table 4.3 lists the parameters in Appendix B.3 selected

for the cross entropy optimization for ellipses.
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The results show that that cross entropy and genetic algorithms perform similarly,

with the greatest average performance. Increasing computation time does not improve

the results considerably, suggesting that both algorithms can consistently find a local

optimum. Also, the performance scatter is small for both cross entropy and the

genetic algorithm. The scatter is higher when computation time is low, as expected

because the algorithm terminates before adequate improvement on the initial guesses

have been made. On the other hand, simulated annealing performs poorly given the

optimization time limit. Among the different path types, line segments and ellipses

appear to perform the best. Note that the line segment is evaluated in one direction

only, giving it higher scores. Ellipses provide additional degrees of freedom over the

circle and racetrack, thus resulting in better performance. The next section shows

the effect of relaxing the shape constraint to allow even more degrees of freedom to

the path.

4.2.2 Comparisons Against Non-Parametric Optimization

This section describes comparisons between the non-parametric VMDP optimization

with the parametric optimization. For this comparison, cross entropy is used to

compute the performance baseline, using three different closed contours. Since closed

means the start and end states are the same, to ensure a fair comparison between the

parametric and DP paths, a terminal penalty on the DP solution is imposed so that

the DP paths will also be closed. Also, similar to the parametric path design, the

initial condition is no longer pre-specified. Figure 4-9 shows examples of closed DP

contours under a terminal state penalty.

Figure 4-10 shows examples of maximum visibility paths in DEM environments

for multiple stationary targets with equal weights, generated by the DP and CE opti-

mization routines using the weighted sum metric. Table 4.4 shows this optimization

performed over 400 sets of randomized target locations and 3 environments. As ex-

pected, the highest degree of freedom DP trajectory provides the highest visibility.

In the first environment, the free DP on average performs 10% better than the circle,

6% over the ellipse, and 17% over the racetrack. The closed DP performs 2% better
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0 0.5 1 1.5 2 2.5 3 3.5
0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13
Performance vs. computation time, environment S5−1, trackandfield

Computation time [s]

P
er

fo
rm

an
ce

 (
av

er
ag

e 
vi

si
bl

e 
tim

e)

 

 

CE
GA
SA

(d) Racetrack, 3 targets

Figure 4-7: Comparison of parametric optimization routines for different curves (3
targets in DEM).

than the circle, 2% worse than the ellipse, and 8% over the racetrack. The results are

similar in environments 2 and 3, except the closed DP path outperforms the ellipse

on average. The ellipse shows similarities to the closed DP contour, and so it has

similar performance. The circle and racetrack perform slightly worse than the other

patterns because they are more constrained paths that cannot take advantage of the

specific environment features.

While the parametric paths underperform versus DP paths, one benefit is that

the computation is faster. It is faster because there are fewer parameters to optimize.

Another reason to consider parametric paths is the repetitive structure of long DP

plans: as the planning horizon increases, these paths resemble closed contours. The
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(b) Ellipse, 10 targets
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(c) Line segment, 10 targets
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(d) Racetrack, 10 targets

Figure 4-8: Comparison of parametric optimization routines for different curves (10
targets in DEM).
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Figure 4-9: Examples of terminal penalties imposed on DP paths for path closure
with free initial condition.
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Table 4.4: DP versus CE performance statistics over 400 trials, using the weighted
sum metric.

Performance
Optimization (Env’t 1) (200 runs) (Env’t 2) (100 runs) (Env’t 3) (100 runs)

DP, open 0.512± 0.235 0.470± 0.141 0.485± 0.139
DP, closed 0.474± 0.238 0.453± 0.135 0.465± 0.135
CE, circle 0.464± 0.223 0.422± 0.161 0.443± 0.160
CE, ellipse 0.485± 0.232 0.443± 0.161 0.464± 0.160

CE, racetrack 0.438± 0.215 0.391± 0.157 0.422± 0.170

parametric paths provide a heuristic for designing these closed paths, and are useful

if computation is limited. Also, note that the choice of terminal penalty should be

such that it is sufficiently high so the penalty acts as a constraint.

4.2.3 Comparisons of Objective Functions

This section compares the weighted sum, max-min, and diminishing returns objectives

in Eqs. 4.1, 4.3, and 4.4 for visibility maximization using the cross entropy solver.

The purpose of the max-min and diminishing returns objectives is to elevate the

importance of hard-to-see targets, so that every target can be seen in one pass of the

observer’s trajectory. One of the advantages of the parametric optimization is the

ability to formulate objective functions which have the memory property, such as the

diminishing returns objective.

Figure 4-11 shows the differences between the objective functions in DEM envi-

ronments. Target 1 lies at the side of a mountain ridge and is therefore very difficult

for the observer to see; target 2 is at the top of a mountain and is highly observable;

and target 3 is moderately difficult to observe. Whereas the weighted sum metric

does not make any attempt to ensure all targets are visible, both the max-min and

diminishing returns metrics trade off substantial visibility of the easily-observed tar-

gets for marginal visibility of the most concealed target, by taking more sweeping and

encompassing paths.

Figure 4-12 shows examples of the max-min and diminishing returns objectives

using the receding horizon planner for a fixed initial condition. In the receding hori-
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Figure 4-10: Multiple stationary target closed contour visibility using DP versus CE.
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(a) Weighted sum metric (b) Max-min metric

(c) Diminishing returns metric
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(d) Per-target visibility for different objectives

Figure 4-11: Examples of per-target visibility for different objective functions; note
that target 1 is very difficult to see.

zon framework, the terminal state cost encapsulates the anticipated cost left over the

remaining time of the full plan. In the forward search visibility problem, the search

space has dimensions in the number of time step discretizations and it is not possible

to compute the cost exactly, and an approximation is hard to compute. One approxi-

mation is to project each branch forward maintaining the last heading and evaluating

the visibility along this projected path, using the max-min or diminishing returns ob-

jective function. The results show that degeneracy in the max-min objective over a

single time window (target 1 is not visible amongst any of the initial branches) results

in indecision in the plan, because every path has a cost of zero even after applying

the terminal cost. On the other hand, the diminishing returns objective still makes
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(a) Max-min metric (b) Diminishing returns metric

Figure 4-12: Receding horizon examples using max-min and diminishing returns met-
rics.

the best of the remainder of targets because it is not degenerate unless all targets

are not visible during a receding horizon window, in which case the planner requires

added guidance from the terminal cost to break the tie.

4.2.4 Effects of Visibility Approximation Error on Optimiza-

tion

Figures 4-13–4-15 show three digital elevation model environments and Skymap /

cross entropy optimization to find the best parametric path. For each environ-

ment, (a) shows an example path and (b) the difference in visibility between the

best path computed using Skymaps and the online visibility computation. Figure

4-13(c) shows an example performance-computation plot, which is similar across en-

vironments. Four parametric flight paths (circles, ellipses, line segments, and arcs)

are assessed. 100 random target locations are evaluated for each resolution and flight

path combination.

Figure 4-13(c) shows that increasing the Skymap resolution reduces the optimal-

ity gap on average, and that online visibility calculation performs best on average as

expected. The environment has little effect on the optimality gap. Consistent with

Section 3.2.1, it takes more computation to reduce the error and optimality gap. Be-
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cause the optimality gap shrinks asymptotically, a much lower resolution can provide

the desired error tolerance.

Figures 4-13(b), 4-14(b), and 4-15(b) show the performance difference with respect

to the solution using online visibility computations. The performance difference ∆V

for two trials with the same initial conditions, is defined as ∆V = VVT −V and it shows

the optimality gap between the approximation and the online visibility computation.

A red or negative delta shows the trials that perform worse, and a blue or positive delta

represents an improvement. Each row of histograms in these figures corresponds to

one VT resolution. The columns show different parametric paths. Descending rows

show that as resolution increases, the performance difference improves on average.

There is little relation between performance difference and the type of parametric

path. These plots show the performance difference average moves towards zero as

resolution increases, suggesting that at sufficiently high resolutions, there is little

distinguishable performance from online computation. The scatter in performance

can be attributed to the sampling nature of the optimization.

4.3 Chapter Summary

This chapter formulated the multiple target visibility maximization problem (MT-

VMP), including the weighted sum, max-min, and diminishing returns metric, and

results for multiple targets.

A variant of the VMDP was presented. This extension handled parametric paths

which are more easily-described contours such as circles and ellipses. Faster compu-

tation and objective functions which were dependent on the state history could be ac-

commodated. A comparison between VMDP and VM-Par showed the constrained

paths produced less visibility than paths with more degrees of freedom. DP paths

provided 10% more visibility than circles and 17% over racetracks in one environ-

ment over 200 random trials. An assessment of the different objectives showed that

difficult-to-observe targets can be forced to be viewed without tuning weights.

The next chapter discusses an extension of the VMDP to moving targets. It
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Figure 4-13: Performance and computation versus resolution.

(a) Environment and path example
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Figure 4-14: Performance and computation versus resolution.
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(a) Environment and path example
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Figure 4-15: Performance and computation versus resolution.

provides methods and results for multiple moving target visibility maximization, for

both deterministic and uncertain target motions.

94



Chapter 5

Moving Targets and Uncertainty in

Motion Models

This chapter considers visibility maximization of moving targets and uncertainty in

target motion models. Section 5.1 discusses the extension of the stationary target

VMDP to moving targets. Section 5.2 considers robustness and uncertain target

motion using target uncertainty regions.

5.1 Extension of VMDP to Moving Targets

This section describes the extension of the VMDP to moving target trajectories.

Moving targets represent a rich class of objects in the VMP that need to be kept

visible, such as a car chased down a highway, ships monitored inside a bay, or wildlife

pursued over hills and plains.

From the perspective of solving the VMP, moving targets add an additional

dimension to the visibility model. Instead of a single time-invariant position for each

target, the targets now execute a continuous trajectory where the position xT varies

with time, and so now visibility is a function of target positions which evolve with

time.
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5.1.1 VMDP Revision for Moving Targets

Recall the VMDP consists of a visibility approximation, followed by a path opti-

mization phase. The extension of the VMDP to moving targets requires revisiting

the visibility approximation, which had previously assumed that the target was sta-

tionary.

The most straightforward approach is to parameterize the approximation with

time. This time parameterization means a new approximation is generated for each

time step. If the approximations are created at discrete time intervals, the complexity

of the moving target VMP becomes a constant multiple of a stationary target VMP.

The first step of the visibility approximation is to generate a visibility table. This

table must now be constructed for each discrete time step.

5.1.2 Time-Dependent Visibility Table

Figure 5-1 shows the concept of the time-dependent visibility table. Recall that

before, a visibility table was constructed for a stationary target. Now, one table is

constructed for each position at each time step for the target.

The time-dependent visibility table VT [k] is a set of values of V evaluated by

discretizing the target trajectory over finite intervals in time. The target trajectory

is discretized over time, steps k = 0, . . . , K.

VT [k] =
{
V(x[ix], y[iy ], ψ[iψ ], t[k],xT [k],S[k], T [k])

}
,

ix ∈ {1, . . . , Nix} , iy ∈
{

1, . . . , Niy

}
, iψ ∈

{
1, . . . , Niψ

}
k ∈ {0, . . . , K} (5.1)

The number of function calls to V is

NVT ,K = NixNiyNiψ(K + 1) (5.2)

These tables can now be indexed by time k in addition to the discrete observer

state indices. Also, these tables can now be used to construct the visibility function
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Figure 5-1: Time-dependent visibility table.
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approximation Vapprox(t).

The next section discusses results of implementing the time-varying visibility ap-

proximation for maximizing visibility of targets along known trajectories.

5.1.3 Results for Known Target Trajectories

This section shows results of the moving target VMDP where the target motion is

known a priori. Section 2.4.1 described target motion models. Results for single and

multiple moving targets are presented below.

Single Moving Target

This section shows an observer tracking a single moving target. Figure 5-2 shows

examples of a moving target observed using a left-facing sensor. Figure 5-3 shows

moving target examples in 3-D scenarios. Whereas in the stationary target case, the

behavior was typically a loiter pattern, the behavior for maximizing the visibility of

a moving target is a mixture of loitering and pursuit phases. A loiter phase will be

defined as the part of the trajectory where the target is visible and the observer is

making a substantial turn. A pursuit phase is defined as the part of the trajectory

where the target is still visible but the observer is not making a substantial turn,

say ψ̇ < 0.2umax. Parts of the trajectory which do not provide visibility are course-

correcting phases, which might occur as a result of initial conditions or the presence

of occlusions and obstacles. The loiter phase is present when the target is slower than

the observer. The loiter patterns are much closer to the target than the stationary

loiter patterns because a part of the observer trajectory now has to be used to follow

the target. The shape of the loiter pattern and pursuit pattern change when the

speed ratio and the shape of the target’s trajectory changes. Slower targets lead

to larger loiter patterns and shorter pursuit phases, and faster targets cause the

opposite to occur. When the target motion is curved, the loiter and pursuit portions

of the observer trajectory also move in that direction. Figure 5-4 shows example

trajectories where the speed ratios of the target to observer are varied. The target
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Figure 5-2: DP solutions in 2-D environments, moving target, left-facing sensor.
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Figure 5-3: DP solutions in 3-D environments, moving target, left-facing sensor.

moves in a straight line in a 2-D environment. When the target-to-observer speed

ratio is small, as in Figures 5-4(a) and 5-4(b), the observer path approximately loiters

around the target, as if the target were stationary. Over a long time horizon there will

be a translation in the center of the loiter pattern, reflecting the motion of the target.

As the target speed increases, the observer path must unwind more and more along

the direction of the target’s motion. The loiter circles begin to compress in size, and

start to resemble tear drop shapes. Figure 5-4(d) shows that at a speed ratio of 80%

the loiter phases have shrunk and given way to increasingly longer pursuit phases.

Figure 5-4(f) shows that when the speed ratio is 160%, the observer no longer loiters
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Table 5.1: Percentage of time in loiter versus pursuit phases (approximate). A switch
between mostly loiter to mostly pursuit occurs somewhere between a speed ratio of
0.5 and 0.8.

Speed ratio VT/VA Loiter (%) Pursuit (%) Course Correction (%)

0.04 78 6 16
0.20 77 12 11
0.50 61 16 23
0.80 32 50 18
1.20 23 50 27
1.60 0 68 32

and instead executes a rendezvous or interception-like behavior. On the approach,

the observer takes a line which gradually converges towards the interception point,

which occurs around (0, 40). Upon interception, the observer slingshots about 135

degrees to its right and prepares to watch the target as it moves away. Since the

observer is slower than the target, the observer trajectory diverges in a manner such

that the sensor line of sight can track the target for as long as possible, until the target

disappears beyond the sensor’s view. Table 5.1 shows an approximate percentage of

time in the loiter, pursuit, and course correction phases.

Multiple Moving Targets

This section shows results for multiple moving targets. This is the most challenging

case because if the targets move away from each other, the observer can only keep

sight of one or the other. Multiple moving target plans are influenced by the reward

of seeing, or opportunity cost of not seeing a particular target.

Figure 5-5 shows examples of multiple moving targets in 2-D. In these examples,

the targets depart away from one another, making observation very difficult. Since

the targets diverge, the observer can only see one of the targets for any amount of

time. Thus, the observer executes two patterns. First, when the targets are still close,

the observer performs a loiter-pursuit combination with the target cluster. Once the

targets move sufficiently far apart, the observer switches to its second behavior which

is the same behavior seen for the single moving target visibility maximization. The
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(d) VT = 2.0 m/s (80% speed ratio)
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Figure 5-4: DP solutions for different target speeds; VA = 2.5 [m/s].
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Figure 5-5: DP solutions in 2-D environments, multiple moving targets.

second behavior is again a combination of loiter and pursuit phases. The observer

chooses only one target in both examples; this target in general will likely has the

greatest importance or is the least occluded among all the targets. Figure 5-6 shows

examples of targets moving together in the same direction and moving away from

each other. The first case, where the targets move in unison, results in a tendency

of the observer to keep the as many of the targets in view, with the area between

the two targets constantly in view. This behavior is important for the robustness

formulation considered later. The second case again shows the two-part behavior

seen earlier for diverging targets. The first portion resembles the cluster observation

pattern, while the second phase, when the observer sees the second target for the

last time, is again a display of single moving target loiter-pursuit. It also appears

that the first target can be seen relatively well throughout the first phase before

reaching the second phase. As well, the initial conditions play a role in breaking the

equal weight tie and the observer decides it is best to track the first target, which

more favorably moves initially towards the observer. When more than one moving

target is present, the observer must allocate its time between monitoring each target,

depending on its relative importance in the objective function. When the targets are

located close together and move in the same direction, the observer can monitor the

targets simultaneously. However, when the targets move away from each other, the
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Figure 5-6: DP solutions for targets moving together, away from each other.

observer will have to spend time pursuing the targets individually. Sometimes it is

too difficult or less rewarding to observe particular targets, in which case the observer

will maneuver the sensor to the more easily viewed targets.

5.2 Robust Target Observation

This section investigates robust visibility trajectories. When a target’s trajectory

is not known exactly, or there can be disturbances in the observer’s motion, a ro-

bust approach attempts to quantify these uncertainties. Doing so should make the

observation sequence less susceptible to both forms of noise.

Figure 5-7 shows an example of an extremal and non-extremal path. Less extremal

observer paths means the target will be kept closer to the center of the sensor’s range

and field of view, instead of the edges of view. A less extremal path is more robust

to perturbations and to inaccuracies in modeling. In other words, disturbances to

either the observer or the target trajectory do not affect the visibility along the path

as severely as when a target is assumed to be just a single point.

In a sense, a target region can also capture the uncertainty about the target’s

position. The size of the uncertainty can be predetermined at the start of the plan,

or updated using estimation and prediction techniques. Since the goal of this thesis
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Figure 5-7: Extremal versus non-extremal paths.

is not to perform estimation, uncertainty will be predetermined and allowed to grow

according to the process noise of the target’s motion, but cannot be reduced by

measurement.

Target regions are also applicable to static targets, to generate less extremal paths,

which tend to be sensitive to perturbations as will be seen in the following sections.

5.2.1 Robust Formulations

This section considers robust formulations to moving target trajectories whose tra-

jectories are known, or unknown, possibly provided by a prediction mechanism.

Several robust formulations are possible, from the perspective of the target or

the observer uncertainty. These include target regions and observer regions. The

robustness factor is considered because optimal control tends to generate extremal

paths which are sensitive to model uncertainty.

The robust formulation maximizes the integral of expected visibility. Expected

visibility can be modeled using probabilistic distributions for the inputs.

max
u(t)

JV,robust =

∫ T

0

E [V(xA,xT ,S, T )] dt (5.3)
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Figure 5-8: Sampling methods for uncertain moving targets.

The target region approach directly quantifies the uncertainty in target position

as a function of time. The uncertainty can evolve with time, by assuming a particular

target motion model (such as interacting multiple models, adversarial motions, and

pop-up targets). The expected visibility is a function of an uncertain target position.

The multiple-target formulation, the MT-VMDP, is used to model target regions.

There are two approaches: one represents the region using fixed weight samples whose

spatial density represents the likelihood, or variable-weight samples; the other is to

represent the likelihood at fixed locations in the environment.

The first method requires drawing new samples at each time step, in a manner

similar to particle filtering [78]. Few samples are required to represent the probable

area of detection. The complexity is Nsamples × Ntimesteps. Figure 5-8(a) shows the

translating samples. Further details are provided in Appendix A.3.

The second method requires updating the weights of the fixed target positions.

Once this grid is specified, weights of each point on the grid can be assigned using a

probabilistic model of the target being in the grid point. The complexity is Ngrid,x ×

Ngrid,y. Figure 5-8(b) shows uniformly-spaced samples whose weights are updated

with time.
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5.2.2 Analysis and Numerical Results for Robust Visibility

This section shows results for robust visibility maximization. This section compares

visibility along paths designed to track point versus region target trajectories, as

well as point and region observer trajectories. The robust approach demonstrates

its usefulness when observer or target trajectories are off-nominal. The sensor now

maximizes its ability to detect an area rather than a point.

Figure 5-9 shows performance of the nominal and robust paths versus target un-

certainty. The target uncertainty wT (t) is modeled as a Wiener process [79] in the x

position with standard deviation σT , and a constant velocity in y of VT = 1.0 [m/s].

 ẋ

ẏ

 =

 0

VT

+ wT (t) (5.4)

wT (t) ∼

 N (0, σ2
T )

0

 (5.5)

In the robust trajectory, the uncertainty region is approximated using 20 samples

which are re-sampled every time step. Fewer samples decreases computation time,

but also decreases accuracy, especially as the noise increases. Figure 5-10 shows that

as target uncertainty σT increases, the observer takes broader paths to keep sight of

the growing uncertainty region. The result is improved average performance and a

reduction in performance variability.

Figure 5-11 shows the sensitivity of the robust plan to the number of samples

used to approximate the target’s uncertain motion. Thirty trials are run for each

number of samples at three target uncertainty sizes, σT = 0.25 to 0.35 [m/s], over a

time horizon of T = 65 [s]. From the figure, there appears to be little discernable

improvement with increasing the number of samples from 4 to 32. The scatter is

similar to the robust performance seen in Figure 5-9(d).
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Figure 5-9: Nominal versus robust visibility with target noise.

5.3 Chapter Summary

This chapter introduced the moving target formulation using time-varying visibility

tables. It also presented numerical results for single and multiple moving target

trajectories. It discussed an extension for robust target tracking using target region

and observer neighborhood modeling, and empirically showed performance benefits

in the presence of uncertainty.

The next chapter describes hardware implementations of the stationary and mov-

ing target visibility maximization algorithm.
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Figure 5-10: Evolution of robust trajectory with increasing noise.
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Chapter 6

Testbed Implementation

This chapter describes the hardware implementation of the visibility maximization

algorithms presented in Chapters 3 and 5. Hardware results validate the modeling

assumptions applied in a real-world setting. Section 6.1 discusses the hardware and

software infrastructure which enables scale experiments in visibility maximization

missions. Section 6.2 presents experimental results with multiple moving targets, in

the presence of disturbances, for hardware demonstrations of target visibility maxi-

mization scenarios.

6.1 Testbed Modules

This section describes the testbed environment and modules. The testbed is a com-

plete hardware and software setup that enables experimentation of algorithms on

physical platforms. A testbed implementation and results are necessary to verify the

applicability of algorithms in actual hardware.

Figure 6-1 shows the primary modules and data flow for the visibility maximization

experimentation setup. There are three major modules: the VMDP algorithm, the

hardware, and the hardware-software interface.

The three major components are described in the following subsections. Section

6.1.1 describes the RAVEN testbed. Section 6.1.2 describes the environments. Section

6.1.3 describes the target tracking module adopted from the algorithms in this thesis.
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Figure 6-1: Testbed module diagram.

6.1.1 RAVEN Module

The MIT Aerospace Controls Laboratory has developed an indoor testing environ-

ment for teams of autonomous aerial and ground vehicles. The Real-time Indoor

Autonomous Vehicle Testbed ENvironment (RAVEN) [80–82] allows researchers to

validate autonomous control and planning algorithms beyond a simulation environ-

ment, and provides a subset of some real-world effects such as wind disturbances,

communications limitations, and noise in measurement data. RAVEN also provides

a standardized, reusable interface between custom software algorithms and common

hardware platforms.

The RAVEN architecture can be subdivided into four major components. These

include vehicle state estimation, vehicle control, sensor data processing, and network-

ing.
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Figure 6-2: State estimation using a motion capture system.

State Estimation

Figure 6-2 shows the RAVEN state estimation system. State estimation provides

state data on vehicles and other objects in the environment. Motion capture provides

state information about vehicles, targets, and environment features. The motion

capture system consists of infrared cameras, image processing software, and a state

estimator. This off-board state estimator mimics an indoor GPS, providing accurate

state information which can be used for high performance vehicle control, planning,

and data collection.

Vehicle Control Computers and Software

RAVEN provides off-board computation for vehicle control. This allows much greater

computation power, weight savings, and protection against damage from collisions.

Figure 6-3 shows the off-board computers which run the vehicle control algorithms.

All vehicles are wireless and radio-controlled. Commands to vehicles are communi-

cated over XBee serial modems. Only low-level actuation is performed on the vehicle

microprocessor.
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Figure 6-3: Vehicle control computers

Image Processing Software

Image processing is performed using RAVEN camera code. This software can perform

color tracking for target recognition. It uses the OpenCV libraries [83] to access and

process the camera images. Figure 6-4 shows a view of the color tracking software

performing real-time thresholding computations. Figure 6-5 shows an example of

using the histogram of hue, saturation, and value (HSV) from an image to determine

the threshold. To achieve fewer missed readings, the thresholds should be increased.

To achieve fewer false alarms, the thresholds should be decreased.

Network

A high-speed local area network carries packets containing formatted messages with

state information from the estimator. It also carries formatted high-level command

packets such as take-off, landing, and fly to waypoint, which are received by the

vehicle controllers.

The low-level commands are sent over IEEE 802.15.4 (ZigBee) protocol [84]. XBee

modems use the ZigBee protocol to provide low-power serial communications. The

lower bandwidth is a necessary tradeoff to keep power consumption low, as required
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(a) Actual view from camera (b) Thresholded image

Figure 6-4: Color recognition by image processing software.

in lightweight embedded applications. Figure 6-6 shows the XBee modems.

6.1.2 Test Environment

The Aerospace Controls Laboratory’s RAVEN environment is situated in an indoor

facility. The flight volume1 is approximately 10× 5× 3 [m], which can accommodate

over a dozen vehicles simultaneously. Below are a short descriptions of each hardware

component, in particular the ground vehicles, aerial vehicles, network cameras, and

obstacles.

Ground vehicles

The RAVEN ground vehicles are iRobot R© Create R© [85] platforms, which are mod-

ified Roomba robots, shown in Figure 6-8. These are two wheel, differential drive

platforms which can travel between 0.05 to 0.5 [m/s]. They can also accommodate

about 1 [kg] of payload. With the Create Command Module add-on, onboard process-

ing capability is available for small applications such as path planning and actuating

additional motors. Each vehicle is fitted with reflective spheres that can be detected

by the motion capture system. Each vehicle has a distinct livery to allow color de-

tection to recognize each vehicle individually.

1This is a new flight volume completed in 2010.
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Figure 6-5: Hue, saturation, and value (HSV) thresholds for a blue object in one
lighting setting. Multiple samples provide an improved estimate of the color thresh-
olds.

Aerial vehicles

The RAVEN quadrotors are unmanned helicopters with four counter-rotating propellers[86].

Onboard stabilization provides stability to the airborne platform. The quadrotors

are adapted to accept a desired pose for position and orientation control. The small

quadrotors used in the test environment can fly for 6 minutes on a 3200 mAh 20C

lithium ion battery with a network camera onboard. These are also equipped with

reflective tape for motion capture to provide state feedback. Figure 6-9 shows a

quadrotor used in RAVEN.

114



Figure 6-6: RAVEN XBee modem.

Network cameras

Wireless network cameras provide real-time visual feedback. The camera internally

hosts the captured images. The image processing software can query the camera

server to access the images. A slight delay can be observed between the upload and

download process.

The particular camera model is the Panasonic BL-C131a pan-and-tilt wireless

network camera [87], with 49 degrees of horizontal field-of-view, 35 degrees of vertical

field-of-view, and a CMOS sensor with 640 by 480 pixel resolution. The pan and

tilt mechanism is not used. The actual image resolution used is 320 by 240 pixels to

speed up image processing calculations and lower network bandwidth. Figure 6-10

shows the camera and an example video capture frame.

The pan and tilt mechanism is disassembled for the quadrotor camera to lower

weight and to allow the camera to be placed near the undercarriage between the

rotors.
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Figure 6-7: RAVEN indoor test environment.

Obstacles

Obstacles in RAVEN are scale models of urban or mountainous environments, such

as buildings and cliffs which obstruct movement and occlude sensors. These obstacles

are fitted with an arrangement of reflective spheres to determine their pose. CAD

models describe the vertices and surfaces of each obstacle.

6.1.3 Visibility Planner Module and Real-Time Visibility Feed-

back

This section describes the visibility planning software module. The visibility planning

software module converts an internal model of the world, including targets, observer,

sensor, and environment, into actions for the observer.

The VMDP is initialized with RAVEN state information about targets, obstacles,

and the observer. Once initialized, the VMDP computes the maximum visibility

plan. Once the plan is computed, the operator can activates the hardware. When

activated, the planner continuously broadcasts commands to RAVEN to control the

hardware. The planner also monitors the states of the observer and target using

motion capture feedback, and sends updated commands to direct the hardware to

116



Figure 6-8: Create ground robot.

follow the desired trajectory.

In addition to state feedback, the planner receives feedback on the visibility of

targets using the color recognition software. The GUI displays the real-time detection

threshold pass of the target. Detection is a binary flag which represents whether the

number of detected pixels passes a threshold. The model for the world-to-camera

projection is the pinhole camera model, which means objects in the plane normal to

the medial axis of the camera appear the same size on the image. Figure 6-11 shows

that objects in the plane do not appear distorted, which means that the projection is

approximately rectilinear. By this rectilinear assumption, objects in the image appear

according to the pinhole camera model projection shown in Figure 6-12. Then, the

expected number of pixels seen by the camera can be calculated as follows. Equation

6.1d is the approximate area of the planar surface visible in the camera field of view,

subject to any errors from the rectilinear projection process.

d =
√
x2T,A + y2T,A + z2T,A (6.1a)

sx(d) = 2d · tan

(
θFOV

2

)
(6.1b)

sy(d) = 2d · tan
(ηFOV

2

)
(6.1c)
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Figure 6-9: RAVEN quadrotor.

AFOV(d) ≈ sx(d) · sy(d)

= 4d2 tan

(
θFOV

2

)
tan
(ηFOV

2

)
(6.1d)

Equation 6.2 is the fraction of the frontal area of the target’s livery in view, AT,frontal.

This area is roughly approximated by a rectangle with dimensions lx and ly which,

for the purpose of simplifying the calculation, is always orthogonal and upright in

the image plane. Only a fraction of this rectangle can be viewed, and this fraction

is approximated using slx and sly . Alternatively, to improve the accuracy of the

projected area calculation, one can approximate the object using a discrete set of

points around the surface of a convex object. A cylinder for example can have 2n

points on its surface, coinciding with the vertices of an n-sided prism approximating

the cylinder. The projected area will be the convex hull of those points in the image

coordinate frame which overlaps the image area.

∆θ = arctan

(
yT,A
xT,A

)
(6.2)

∆η = arctan

 zT,A√
x2T,A + y2T,A

 (6.3)
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(a) Camera (b) View from camera onboard moving ground observer

Figure 6-10: Panasonic wireless network camera and onboard view.

slx ≈ min

(
max

(
sx
2
− d tan (∆θ) +

lx
2
, 0

)
, lx

)
(6.4)

sly ≈ min

(
max

(
sy
2
− d tan (∆η) +

ly
2
, 0

)
, ly

)
(6.5)

AT,frontal ≈ slx · sly (6.6)

Equation 6.7 states that the number of pixels P (d) is the area fraction of the object

with respect to the field of view, times the number of pixels of the camera sensor. The

total resolution is Psensor = 320× 240 = 76800. The area fraction is approximated by

the areas calculated above. The target area fraction constant KT,m for target m can

be pre-computed given the dimensions of the livery and the horizontal and vertical

field of view of the sensor.

P (d) =

(
AT,frontal
AFOV

)
Psensor (6.7)

≈

(
AT,frontal

4d2 tan
(
θFOV

2

)
tan
(
ηFOV

2

))Psensor (6.8)

= KT,mAT,frontal · d−2 (6.9)

KT,m =

(
1

4 tan
(
θFOV

2

)
tan
(
ηFOV

2

))Psensor (6.10)
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Figure 6-11: Approximate rectilinear projection in camera image. The lower half of
the image shows a tiled floor, while the upper half shows a wall 4 feet away and normal
to the camera’s medial axis. The upper center of the image shows a white letter-sized
sheet of paper flush against the wall. The minimal pincushioning or barrel distortion
in the image (in other words, straight edges remain straight) can be verified using
the overlay. The distortion-free image means that the projection is approximately
rectilinear.

6.2 Experimental Results

This section presents experimental results of the VMDP. The experiments include

ground and aerial observers in 3-D environments.

6.2.1 Ground Observer

This section shows an example ground observer experiment. Figure 6-13 shows a

sequence of GUI snapshots and onboard camera video frames from a ground-based

observer, with two targets and 2 obstacles for an 80-second run. The environment is

constrained between -2 to 6 [m] in x (west-to-east) and -2.25 to 2.25 in y (south-to-

north). The observer (GP04) is equipped with a rightward-looking sensor mounted

slightly to the right and above the center of the vehicle, and has a speed of 0.15
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Figure 6-12: Pinhole camera projection. Dimensions are relative to the camera coor-
dinate frame. For simplicity, the frontal area of the target livery is assumed to be a
rectangle which always remains upright in the image.

[m/s]. One target (GP05) moves back and forth along a straight line trajectory at

a speed of 0.075 [m/s] and the other (GP06) is stationary. The observer begins to

the east of the two targets, and is initially oriented eastward away from the targets.

The planner determines that the observer should move clockwise to orient the sensor

towards the two targets, out of the obstructed view of the north obstacle (OB01),

while completing a short 180-degree turn that ends at 20 [s]. It then avoids the

obstacle (OB02) by making a gentle S-curve for about 10 [s], then proceeds into a

wide loiter pattern around the two targets until the end of the planning horizon at

80 [s]. The sequence of onboard camera views show the target vehicles and their

color-tracking livery – green for the first target and blue for the second. The GUI

also shows the orientation and position of the sensor in the planner view. Figure 6-14

shows the actual measurement sequence in the form of number of pixels registered by

the color threshold program. Figure 6-14(a) shows the pixel threshold (dashed line)

as a function of distance, and the planner’s prediction applied over the threshold
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(thick solid line). The actual measurements are shown as noisy dots over the thin

line. Figure 6-14(b) shows the result of applying the threshold to achieve binary

visibility. The overall trend shows that the predicted and actual pixel counts are

similar most of the time. Note the threshold exceeds the prediction to reject low

amounts of noise, but also to account for partial visibility that the planner ignores

due to the point target assumption. After applying the thresholding, the visibility is

0.55 and 0.59, while the prediction is 0.64 and 0.74 for the first and second targets

respectively. There are several sources of measurement error causing the discrepancy

between the actual and predicted measurements. There is a small time error between

the actual and planned trajectories, causing targets to be out of view during the

transition from visible to not visible. Figure 6-15 shows image blur and overlap

between targets. Motion blur causes a ghosting effect, where part of the background

blends with the foreground, resulting in loss of color uniformity. The motion blurs

when the observer makes sudden heading adjustments or when the vehicle encounters

a sharp disturbance from an uneven ground surface. Occasional downward spikes in

measurement can be attributed to motion blur. Targets can also obstruct one another

in view; in the experiment, the first target obstructs the second target between 54

and 57 [s]. To account for occlusion by targets, each target needs to be treated as

an occlusion. These occlusions have time-varying positions if the targets are moving.

Non-uniformity of lighting and livery materials also adds high-frequency noise to

the measurement. Other factors include the camera’s automatic adjustments for

dynamic range and white balance. The color-based effects mentioned so far ultimately

lead to individual pixels falling outside the specified hue, saturation, and value color

thresholds. Figure 6-4(b) shows noise speckles scattered in between the green pixels.

There can also be false readings. The color thresholds may allow parts of the image

which do not belong to the target livery to register as a measurement, causing small

upward spikes to appear. This is despite the selection of colors for targets that stand

out in the noisy color background. The noise from false readings is relatively little in

this environment.
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Figure 6-13: Moving target with ground observer in RAVEN, 2 obstacles, 2 targets.
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Figure 6-14: Color threshold detection, ground observer, 2 obstacles, 2 targets.
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(a) Motion blur (b) Target overlap

Figure 6-15: Measurement error sources. (a) shows ghosting or motion blur causing
colors to lose uniformity. (b) shows two targets, but the livery of the second target is
not visible due to occlusion by the first target.

6.2.2 Aerial Observer

This section shows an example aerial observer experiment. Figure 6-16 shows a se-

quence of snapshots of an aerial observer, three targets, and two obstacles simulating a

small urban environment for an 80-second run. The aerial observer moves at 0.1 [m/s],

and the sensor is right-facing and angled 35 degrees downward from the horizontal

plane. Two targets move at 0.05 [m/s] and a third is stationary. One obstacle can

be cleared by the quadrotor and only obstructs visibility. The other obstacle is taller

and imposes a path constraint. The targets do not obstruct the aerial observer since

they are well beneath the quadrotor’s altitude, so the planner can plan trajectories

directly over the targets. In this example, the observer starts east of the targets and

is facing westward. The plan takes the observer first over the low obstacle (OB01),

but close enough to the target such that it can peer over the obstacle. It performs

a wide loiter pattern around the blue target (GP10) for about 30 [s], starting at 12

[s] into the plan. After the first loiter, the observer almost immediately enters into a

second loiter, this time around the green target (GP05). The target plans its loiter

pattern to avoid the tall obstacle (OB02) to obtain line of sight to the green target.

As the observer rounds the turn the observer achieves visibility of all three targets

from approximately 60 [s] to the end. Figure 6-17 shows the measurement sequence
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for the aerial observer. There is generally good agreement between the predicted

and actual measurements. The quadrotor uses a waypoint-tracking controller which

does not hold a constant speed during yaw (heading) actions, and so the quadrotor

starts to fall behind at about 55 [s]. This gives additional visibility of the red target

(GP04), but the delay also causes the green target to disappear out of view after 72

[s], resulting in a loss of measurement.

6.3 Chapter Summary

This chapter described the hardware implementation of the visibility maximization

algorithm. This chapter described the core hardware and software modules that en-

able visibility demonstrations for ground and aerial observers, with multiple targets

and cluttered environments. This chapter also presented experimental results for vis-

ibility maximization in the hardware setting. Two demonstrations, one for a ground

observer and the another for an aerial observer with multiple targets and obstacles,

show generally good agreement between the predicted and actual measurements from

real-time onboard camera feedback. Errors which caused discrepancies between the

predicted and actual were primarily position errors in the observer trajectory, as well

as noise in the measurement due to motion blur, target occlusions, and various opti-

cal effects. The final chapter presents conclusions of the thesis and future work and

extensions beyond this thesis.
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Figure 6-16: Moving target with aerial observer in RAVEN, 2 obstacles, 3 targets.
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Figure 6-17: Color threshold detection, aerial observer, 2 obstacles, 3 targets.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis described the visibility maximization problem, which is relevant to in-

telligence, surveillance, and reconnaissance (ISR) missions, police and border patrol,

teleoperation in robotic surgery, and environment monitoring. In these scenarios,

visibility enables information gathering by a dynamically-constrained observer. The

observer keeps stationary or moving targets in a constrained sensor’s view and in a

complex environment. The goal of the visibility maximization problem is to design

the observer trajectory to maximize visibility for execution by a human operator or

autonomous agent.

Many authors have considered the visibility maximization problem of designing

visibility-rich trajectories. However, none have addressed the scope covered in this

thesis, which considers dynamic vehicles, view-constrained sensors, 3-D environments

and digital elevation models, multiple moving targets, and robustness. Also, the

problem remains challenging because visibility and path planning are both compu-

tationally intensive. This thesis explains the visibility path planning challenges and

provides a novel, approximate solution that addresses the complexities of the problem.

The proposed solution to the visibility maximization problem is a two-step de-

composition, which decouples the visibility computation from the path planning op-

timization. First, visibility is approximated by discrete sampling and interpolation.
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Second, the visibility approximation is input to a dynamic programming path planner

and trajectory optimizer to determine the maximum visibility path.

Comparisons against a state-of-the-art optimal control solver validate the perfor-

mance of the new algorithm. The new algorithm is capable of providing computation

time as great as an order of magnitude, while retaining near optimality. In general,

performance can be improved by increasing discretization resolution at the cost of

computation time; the performance asymptotes towards optimality as computation

increases. While high resolution searches still can exhibit noisy performance with

respect to the choice of resolution (due to grid sensitivity and graph completeness

resulting from discrete sampling), this new method provides a good approximation

to the optimal solution. In fact, one of the key benefits is that a solution is still

returned even for more complex scenarios, whereas the optimal control solver has to

be abandoned because it fails to return a result. When visibility is binary, there are

non-unique optimal solutions. To reduce the number of non-unique optimal solutions,

sensor attenuation can be modeled.

While the optimal control solver can have difficulty with complex constraints,

failing to return a feasible solution in these situations, the new solver handles them

readily for cluttered 2-D, 3-D and DEM environments. Intuitively the solver produces

loiter patterns when the sensor is sideways-looking, and fly-by patterns when the

sensor faces forward.

The new solver can also address multiple target visibility. The solver uses a

weighted visibility metric which accounts for the importance of individual targets,

and the selection of weights and time horizons is studied. At certain weight ratios, a

switching behavior occurs, whereupon the observer spends a majority of time focusing

on the target with the greatest importance. Increasing the time horizon for multiple

targets beyond a transition time horizon leads to periodic trajectories which retrace

portions of paths which yield the maximum recurring visibility reward.

However, weighting targets in a weighted sum does not guarantee that all targets

are visited, even if difficult-to-see targets are weighted very highly. To ensure visi-

bility of every target, two techniques are used to artificially elevate the importance
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of rare sightings. The max-min and diminishing returns metrics both amplify the

rare sighting value using either a reward saturation of the minimum target visibility

or a reward boost from initial target sighting. However these cost functions cannot

be used in a dynamic programming (DP) framework because DP they do not satisfy

the requirements of the Bellman equation. Instead, parametric optimization provides

an alternative path planning method, enabling a wide range of cost functions such

as the rare sighting objectives. Parametric optimization can find visibility maximal

paths that are parameterized by a small vector of variables, such as circles, ellipses,

and racetrack patterns. This kind of non-convex optimization requires metaheuristic

optimization methods such as cross entropy and genetic algorithms. Parametric op-

timization sacrifices path intricacy and their associated visibility-maximal plans, for

objective function complexity and at the same time gaining computation time ben-

efits. Results show that DP paths outperform parametric optimization as expected

from a visibility maximization standpoint. However there is no comparison for the

max-min and diminishing returns metric. For these cost functions, the parametric op-

timization captures the rare sighting event very effectively, suggesting that parametric

optimization is useful for achieving rare sighting visibility among other reasons.

Realistically, moving targets also need to be considered. The proposed solver can

readily handle time-varying problems by a time parameterization extension, and it is

shown that single moving targets lead to paths which pursue the target. The path

for sideways-facing sensors consists of loiter and pursuit phases. The loiter phase is a

tear drop pattern which repeats periodically. The pursuit phase allows the observer

to catch up with the target. Targets which travel at a fraction of the observer speed

lead to large tear drops corresponding to long loiter phases. Increasing the speed

ratio leads to smaller tear drops, representing shorter loiter phases. Once the speed

ratio is equal, the tear drops shrink completely and the path only pursues the target.

When the speed ratio exceeds 1, the observer performs a rendezvous maneuver which

intercepts the target at a point before being outrun by the target. The maneuvers can

be influenced by the initial condition and the layout of the environment, for example

if the observer starts too far away from a target and the target moves faster, then it
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might not possible for the observer to catch up.

When multiple moving targets are considered, the solver reveals that complex

behavior emerges, and these depend heavily on the speed ratios and the target im-

portance factors. When targets diverge in position, the observer pursues the target

which results in the greatest returns, through a combination of visibility and impor-

tance weighting. When targets move in unison, a large fraction of space enclosed by

the target cluster is maintained in view. This latter result highlights an important

outcome that is used later: if a point target is treated as a cloud of spatially offset

targets, robust visibility behavior is observed.

Naturally, robust visibility is an important consideration because there can be

uncertainty in modeling, and trajectories can be subject to disturbances. When

target motion is uncertain, targets can be represented as regions. However, when the

observer trajectory is uncertain, the notion of observer state neighborhoods provides

a similar benefit to robust performance. As noise increases, the robust plan maintains

consistent performance while the nominal plan underperforms.

This thesis also explores the validity of the developed algorithms by validating

their implementation in hardware. Experimental results are obtained using the MIT

Aerospace Controls Laboratory testbed for autonomous indoor vehicles. The hard-

ware demonstrations show that visibility-rich paths can be designed while accounting

for complex observer dynamics, 3-D environments, and multiple moving targets in

the presence of uncertainty. These paths show some correspondence between the

predicted and actual measurement, and that target and observer motion uncertainty

plays a large role in affecting whether targets are visible to the sensor or not.

7.2 Future Work

Future work in the direction of improving the theoretical understanding of the vis-

ibility maximization problem, includes studying the conditions for optimality and

sensitivity in the visibility cost function. One interesting theoretical area may be the

relation between the gradients in the visibility function and the action sequences of
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the observer; smooth loiter patterns appear to follow the direction which minimizes

losses in visibility. Another theoretical consideration may be the mathematical char-

acterization of loiter and pursuit patterns in moving target visibility for simple target

trajectories.

Future work should also address the current limitations of the proposed solver in

solving the visibility maximization problem, by considering extensions to accommo-

date richer objective functions that are useful for generating behaviors more suited for

multiple target and rare target visibility, pursuit-evasion visibility, information max-

imization. Other visibility-related work involves using multiple observers to increase

the amount of visibility, or to reduce the amount of gaps in coverage. Performance

and computation improvements may benefit from a deeper theoretical understanding

of the visibility maximization problem.

From a modeling perspective, improvements to environment representations can

alleviate computation requirements. From a path planning perspective, in both the

DP and receding horizon plans, the terminal state should be part of an invariant safe

set, which ensures if no new plan is found, the vehicle can remain in the safe set

of states under certain assumptions. Also, in the receding horizon framework, the

choice of path after completing one window should balance the immediate reward

with exploring unvisited parts of the state space; this balance might be formulated in

the terminal cost. Learning these weights as the mission progresses may also provide

better guidance to the planner.

From a practical perspective, a formal model of uncertainty should be considered

in the visibility maximization problem, since targets in real-life situations do not have

well-known behaviors. Robustness to disturbances in observer trajectories should also

be considered.

Additional improvements to hardware implementations include more accurate

color thresholding and pixel area approximations. As well, updated low-level con-

trol wrappers will be useful for approximating fixed-speed aircraft using quadrotors.
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Appendix A

Visibility Formulation

The first component in the target tracking solver black box shown in Figure 2-2 is

visibility, which is the objective quantity to be maximized and can be calculated as

a result of the interaction of the four input models. In this section, the interactions

are formalized. Recall the functional dependence of visibility on these models, shown

below again mathematically.

V = f [xA(t),xT (t), T (t),S(xA(t),xT (t))]

A.1 Definition of Visibility, and Necessary and Suf-

ficient Conditions

Visibility in the context of a light-based sensor is the line of sight between a sensor

S coupled to a vehicle with state xA(t), and one or more point targets with states

xTm(t), subject to constraints by the environment T . The line of sight regions can

be thought as being illuminated by a light source representing either the observer or

the target. Figure A-1 shows the line of sight visible region of the target.

The visibility metric V is the Boolean intersection of two necessary and suffi-

cient conditions for visibility:

1. The target state lies inside the visibility region of the observer (line-of-sight
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Figure A-1: Line-of-sight visible region of the target.

visibility condition):

xT ∈ Z̄(xA) , {x : ∃ line of sight from x to xA} (A.1)

An equivalent condition is for the observer’s state to lie inside the target’s visible

region:

xA ∈ Z̄(xT ) , {x : ∃ line of sight from x to xT} (A.2)

2. Target point lies inside the sensor set (sensor footprint condition):

xT ∈ S(xA) , {x : d(x,xA) ∈ D, θ(x,xA) ∈ Θ, η(x,xA) ∈ E} (A.3)

The methods used to calculate these regions are described in Section A.2. Visibility
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is thus defined as

V(xA,xT , T ,S) = [xA ∈ Z̄(xT )] ∩ [xT ∈ S(xA)] (A.4)

A careful distinction between occlusions and obstructions is made here. In the

visibility problem, occlusions refer specifically to parts of the environment which

block line of sight but not vehicle passage; and obstructions exactly the reverse –

parts of the environment which obstruct vehicle passage but do not hinder line of

sight. Transparent solids such as clear glass, and no-fly zone boundaries are non-

occluding but obstructing; opaque gases such as smoke and clouds are occluding but

non-obstructing. Most physical objects are simultaneously occluding and obstructing;

these will simply be referred to as obstacles, if necessary the distinctions visibility

obstacle and path obstacle to represent occlusions and obstructions respectively will

be used. Large terrain features such as mountains, tall forests, and buildings are all

obstacles to surveillance aircraft.

A.2 Visibility Models

A.2.1 Planar Visibility Model with Point Target

• Condition 1: Line-of-sight visibility

The line of sight visibility condition can be calculated in a number of ways.

Several methods are listed below [49]:

1. Visibility polygons

In Condition A.1, observe that the line of sight visible region of the observer

Z̄(xA) is also equivalent to the visibility polygon VP(x) of a light source

at the same position x as the observer, in other words Z̄(xA) ≡ VP(xA).

This polygon may be non-convex. Once the visibility polygon is calculated,

a check for whether the target state xT lies inside this polygon yields the

result of the first condition.
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Alternatively one can evaluate Condition A.2. In fact, it makes sense to

calculate the visibility polygon of the target instead of the observer, in

anticipation of the optimization phase of the target tracking problem. A

visibility polygon must be computed either for every observer location or

every target location. Since the optimization is a search over the observer

location, with fixed (even time varying) target positions, it is computa-

tionally cheaper to evaluate visibility polygons for the targets.

The VisiLibity library [88] is an open source C++ toolbox that accepts

a list of vertices defining edges of the occluders, and returns the visibility

polygon of a light source at x.

2. Visibility shadow regions

The negative region to the visibility polygon is known as the visibility

shadow region, Z(x). Line-of-sight visibility exists if [xT /∈ Z(xA)] ≡[
xT ∈ Z̄(xA)

]
, or identically [xA /∈ Z(xT )] ≡

[
xA ∈ Z̄(xT )

]
. This region

can be disjoint and unbounded: it is the union of the shadow regions of

individual convex occluders. The shadow region of a convex occluder is

the interior of a shadow frontier and exactly two extreme rays.

The procedure to calculate the visibility shadow region of xT is:

(a) Calculate j shadow regions. First, find the extreme vertices of the

obstacle, which have the maximum and minimum angles measured

in polar coordinates with the origin at the target location. Then,

all vertices between the maximum and minimum extreme vertices,

counted in the counterclockwise direction, form the shadow frontier.

Then, the shadow region is formed by extending rays from the extreme

vertices of the shadow frontier out to infinity, with the lines collinear

with the rays crossing through the origin.

(b) Given the jth shadow region, determining whether a point lies in the

convex unbounded shadow region requires evaluating cross products

against all edges. An edge is defined by the line through the edge
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Figure A-2: Visibility shadow region.

vertices, Pj,mPj,m+1. Assume a convention of vertices stored in coun-

terclockwise order. Positive cross products indicate x lies inside the

half-space of the edges. Negative cross products indicates the opposite,

and zero corresponds to coinciding with the edge. Optionally, map the

negative and positive reals of the cross product into the binary vari-

able {0,1} respectively, denoting whether x is inside or outside this

region. All half-space checks must be true to be inside.

(c) Repeat for all j = 1, · · · , Nocc occluders. Perform a union of all indi-

vidual shadow regions to create the total shadow region Z.

Invert the total visibility shadow region Z to obtain the LOS visibility

region Z̄.

Z̄ = (1−Z) = 1−
Nocc⋃
j=1


Mj⋂
m=1

[
(Pj,mPj,m+1 × Pj,mxA) > 0

] (A.5)

• Condition 2: Sensor footprint
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For a simple range-limited, field-of-view-limited sensor as shown in Figure 2-4,

the range d and bearing θ between the target and sensor are checked against

the limits [dmin, dmax] and [θmin, θmax]. Range and bearing are given by the first

three elements of the aircraft and target states (namely x, y, z):

d(xA,xT ) = ‖xA − xT‖2 (A.6a)

ψLOS(xA) = ψA + θcenter (A.6b)

x̂LOS(xA) = [cosψLOS, sinψLOS, 0]T (A.6c)

θ(xA,xT ) = cos−1
(

(xA − xT )× x̂LOS

‖xA‖‖xT‖

)
(A.6d)

A.2.2 Planar Visibility Model with Target Region

• Condition 1: Line-of-sight visibility

One metric is to evaluate the line-of-sight visible overlap of the visibility region

with the target region. This represents a situation where the sensor is slightly

elevated above the plane of the target region. This is also an example of ro-

bustness consideration in the tracking algorithm. To find the area of overlap,

the visibility polygon of the observer must be used to intersect with the target

region. Note that the visibility polygon for a target region is not used because

its definition is not straightforward1.

Other models that represent sensors in the plane, such as a planar LIDAR,

should involve a frontal area calculation instead of a region overlap.

• Condition 2: Sensor footprint Using the first metric (area of overlap), this area

must be intersected with the sensor footprint to calculate the sensor visibility

overlap. The sensor visibility overlap can be disjoint regions depending on the

positions of the obstacles and targets.

1One would have to specify, for example, level set visibility polygons which define the contour at
which a specific fraction of the target region is visible.

140



Figure A-3: Line-of-sight visible overlap region.

Target region Target region
overlap

Observer

Sensor
footprint

Figure A-4: Sensor visibility overlap region.
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A.2.3 3-D Visibility Model

• Condition 1: Line-of-sight visibility

The method in this section is used to construct the visibility shadow region of a

target Z(xT ) in three dimensions. A visibility shadow region is shown in Figure

A-5.

Line of sight is again evaluated by checking against the occluding surfaces in

the environment. A 3-D environment can be represented by triangular patches,

where each triangle is specified as three points (P1, P2, P3) in R3. The shadow

region of the triangular occluder is the shadow volume.

Figure A-5: Visibility and shadow regions in 3-D.

To calculate shadow volumes, light normals and half-space intersections are

used:

1. Light normals:

A light normal is the normal vector of the plane spanned by the vectors

of the triangular patch. It is called a light normal because the direction
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points towards the half-space containing the light source. In visibility, the

light source is the target.

2. Shadow volume half-spaces:

Each triangular patch creates three additional surfaces which enclose the

shadow volume. To form a shadow surface, take two of three triangle

points and the target point. The volume is shown in Figure A-6.

Occluding triangle patch

Light source

Shadow volume

Shadow rays

Figure A-6: Light normal and shadow volume.

3. Visibility shadow region:

The visibility shadow is the union of the shadow volumes.

• Condition 2: Sensor footprint

In R3, a sensor has range dmax, horizontal field-of-view θFOV, and vertical field-

of-view ηFOV, as shown in Figure A-7. The sensor has a bearing angle ψLOS

offset from the vehicle heading, and an inclination angle ηLOS offset from the

vehicle bank angle.

ψLOS = ψ + θcenter (A.7a)

ηLOS = γ + ηcenter (A.7b)
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The relative azimuth and elevation bearings of the target from the sensor are

θ(xA,xT ) and η(xA,xT ).

(a) 3-D sensor model

Sensor 
cross-sectionObserver

Target
Terrain

(b) Vertical (side) cross section of sensor model

Figure A-7: 3-D sensor model with limited range, horizontal FOV, and vertical FOV.

A.2.4 Elevation Model in Visibility

Elevation models are a specific instance of the 3-D environment. The same methods

can be applied. However, more efficient routines are available when the model is

uniformly gridded.

• Condition 1: Line-of-sight visibility

1. Ray tracing and terrain model

The altitude map can be treated as a triangular mesh, but this is unnec-

essary. A linear-time algorithm by [52] can evaluate visibility between two

points on the grid efficiently.

• Condition 2: Sensor footprint

The same 3-D sensor footprint model used in the 3-D visibility scenario can be

used for elevation models.
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A.3 Target Region Intersection Calculation

A.3.1 Translating Target Samples

The robust treatment uses a fuzzier notion of visibility by maximizing the sensor

overlap with a target region. Instead of maximizing the time integral of a binary

visibility metric, the region overlap optimization is posed according to Eq. 5.3. Figure

A-8 shows a target region evolving over time. The intersection area or volume between

Target region

Figure A-8: Moving target region.

sensor and target can be calculated using exact or numerical integration. However,

the intersection computation is considerably more expensive compared to calculating

the visibility of a single point target.

Instead, a sampling approach can be taken, approximating the 2-D or 3-D target

region using a cloud of samples. Then, each sample is treated as a separate point

target in the multiple-target visibility maximization formulation. Figure A-9 shows

samples taken from the target region.

This approach can be much faster than calculating exact intersection areas and

volumes. The number of samples must be small to maintain tractability. The total

number of samples is NTNS, compared to the original moving target formulation

which requires NT visibility table evaluations. Samples can be drawn from a uniform
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Target region 
samples

Figure A-9: Sampling over the target region.

distribution or other density function. They can also be deterministically generated.

A.3.2 Uniformly Spaced Samples

Uniformly spaced samples are analogous to occupancy grids. The visibility maximiza-

tion solver can also represent the target in an occupancy grid manner. This section

presents preliminary results for this implementation.

Figure A-10 shows visibility maximization using static target samples, where the

target position uncertainty translation and growth versus time is captured in an

importance weighting update process. In this example, the target is moving to the

left, and the observer attempts to move in the same direction.

Future work will compare the performance versus computation of the occupancy

grid method versus the particle method which was analyzed in Section 5.2.2.
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Figure A-10: Visibility maximization with static targets and weight evolution.
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Appendix B

Path Parameterization and

Parametric Optimization

B.1 Path Parameterization

If the path is constrained to be a closed contour in the plane, e.g. a circle or ellipse

at fixed altitude, and the path is independent of time, the optimization can be posed

as a search over the parameter space x of the path. Assuming a sensor with sufficient

vertical field of view FOVη, the aircraft state can further be simplified so that roll

and pitch are constant. Recall that the original objective function is normalized by

the total flight time T . The objective function is no longer dependent on time but

rather a path parameter θ ∈ [0, 2π], which represents the polar coordinate of the

position on the path, with respect to the path center. The states along the path are

xA(θ) = [xA(θ), yA(θ), ψA(θ)]T . Assuming a vehicle that travels at constant speed,

an equivalent normalization is to use distance s instead of time, and the integration

takes place over ds instead of dt. To relate ds to dθ, an arc length integral L(r(θ), θ)

(the polar coordinate transformation of L(xA(θ)), where r(θ) =
√
x(θ)2 + y(θ)2) is
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taken and then differentiated with respect to θ:

s = L(xA(θ)) =

∫ 2π

0

√
r(θ)2 +

(
dr(θ)

dθ

)2

dθ (B.1a)

ds

dθ
(θ) = ṡ(θ) =

√
r(θ)2 +

(
dr(θ)

dθ

)2

(B.1b)

ds = ṡ(θ)dθ (B.1c)

After the coordinate transformation, the objective function becomes:

max JV =
1

s

NT∑
m=1

wm

∫ 2π

0

Vm(xA(θ),xT (θ), T ,S(θ))ṡ(θ)dθ (B.2)

Two approximations to the objective function are used: the first converts the

visibility integral into a discrete sum over Nθ segments, and the second uses the

visibility function approximation (i.e. interpolation) at each state along the path for

each θk.

max JV,discrete =

(
1∑Nθ

k=1 ṡ(θk)∆θk

)
NT∑
m=1

wm

Nθ∑
k=1

Vm(θk)ṡ(θk)∆θk (B.3)

The state equation xA(θ) can be replaced by the parameter vector x. The aircraft

state xA can be recovered via the parametric transformation

xA(θ) = A(x, θ) (B.4)

where A is a vector of nonlinear transformation equations depending on the type of

path. For a circle, the parameter vector xcircle is [xc, yc, r]
T and the transformation

vector is

Acircle(xcircle, θ) =


xc + r cos(θ)

yc + r sin(θ)

θ + π/2

 (B.5)
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For an ellipse, the parameter vector xellipse is [xc, yc, a, b, φ]T and the transformation

vector is

Aellipse(xellipse, θ) =


xc + a cos(θ) cos(φ)− b sin(θ) sin(φ)

yc + b cos(θ) sin(φ) + b sin(θ) cos(φ)

tan−1
(
− b2xA(θ)
a2yA(θ)

)
 (B.6)

Examples of parametric paths are shown pictorially in Figure 4-6. A special case

of the ellipse is the circle, when a = b. The domains of each parameter are restricted,

so that dynamic constraints are respected. Appendix B.2 outlines the implementation

of parametric path optimization.

B.2 Parametric Optimization Methods

For nonlinear and non-convex objective functions, the family of metaheuristic search

algorithms including cross entropy, genetic algorithms, and simulated annealing can

be applied [89]. Metaheuristic optimization attempts to search a complex objective

for the global optimum and almost always returns a local optimum when a limited

time budget is given. In this paper, the cross entropy method [74] is chosen because of

its straightforward implementation and empirically-observed fast rate of convergence

to good local optima, and validated via Monte Carlo simulations. Details of the

algorithm are provided below.

B.2.1 Simulated Annealing

An initial candidate solution is randomly selected. A neighborhood of solutions

around the candidate is assigned probabilities of selection based on their value. A

temperature function determines the probability of selecting candidates with lower

value. The temperature “cools” with time, lowering the probability of selecting lower

value candidates. The process repeats until to some terminating condition, such as

sufficient cooling or after a specified number of iterations.
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B.2.2 Genetic Algorithm

An initial population of samples is selected randomly. The value, or “fitness” of each

sample is evaluated. Those with the best fitness have increased probability of survival

during the selection phase. A reproduction phase inherits properties (“genes”) from

the entire set of properties (“chromosomes”) of the mating samples to generate new

samples known as offspring. Termination occurs after a fixed number of generations

are bred, or when the fitness reaches an equilibrium.

B.2.3 Cross Entropy

Parameters are represented as probability distributions. Samples are drawn randomly

at the start. The best fraction are used to form new distributions. These distribu-

tions are used to generate new samples. The process repeats until some convergence

tolerance is reached, or after some number of iterations.

B.2.4 Tabu Search

Tabu search evaluates a single candidate solution and chooses its best neighbors;

however when no improvement is seen, a restart occurs; if values improve after restart,

the lower values are marked as taboo and will not be revisited.

B.2.5 Ant Colony Optimization

An initial population of random samples is chosen. Each sample leaves behind

“pheromones” representing a probability that a similar sample will be drawn on a

subsequent examination. Better samples leave behind more pheromones, because the

same sample will be traversed more often (as in a shorter path towards food sources).

The greater the pheromone intensity, the higher the probability of future samples

that follow the same path.
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B.3 Cross Entropy Implementation

In cross entropy (CE), the parameter vector x is represented as a vector of probability

distributions f [k] with parameters (xµ,xσ) at each iteration k. The goal is to draw n

random samples xi[k], i ∈ [1, . . . , n] from these distributions, choose the best samples

to update the distributions, and iterate until the distributions converge on a single

point in the parameters, i.e. (xσ < xσ,tol).

Figure B-1 illustrates the evolution of the sampling parameters with each iteration.

The pseudocode for the CE method is presented in Algorithm 3. A detailed outline

of the algorithm is shown in Algorithm 4.

Figure B-1: Illustration of sampling parameter evolution in 1-D cross entropy opti-
mization example.

Algorithm 3 Pseudocode for cross entropy optimization.

1: INITIALIZE f [k = 1](xµ,xσ)
2: while (xσ > xσ,tol) and (iteration limit not exceeded) do
3: DRAW n random samples from f [k](xµ,xσ); reject samples which violate con-

straints
4: EVALUATE JV,discrete(xi[k]), i ∈ {1, . . . , n}
5: SORT JV (xi)
6: UPDATE f [k + 1](xµ,xσ) from best samples
7: Update counter: k ← k + 1
8: end while
9: return xbest
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Algorithm 4 Algorithm: using cross entropy for visibility maximization.

1: INITIALIZE f [k = 1](xµ,xσ)

xµ[k = 1] =
1

2
(xmin + xmax)

xσ[k = 1] =
1

6
(xmax − xmin)

2: while (xσ > xσ,tol) and (iteration limit not exceeded) do
3: DRAW n random samples from f [k](xµ,xσ); reject samples which violate con-

straints

x[k] = RandomNumberFromGaussian(xµ,xσ)

4: EVALUATE JV,discrete(xi[k]), i ∈ {1, . . . , n}

JV,discrete =

(
1∑Nθ

k=1 ṡ(θk)∆θk

)
NT∑
m=1

wm

Nθ∑
k=1

Vm(θk)ṡ(θk)∆θk

xA(θ) = A(x, θ)

Vinterp = {[V1(1− ix) + V2(ix)](1− iy) + [V3(1− ix) + V4(ix)](iy)} (1− iz)

+ {[V5(1− ix) + V6(ix)](1− iy) + [V7(1− ix) + V8(ix)](iy)} (iz)

5: SORT JV (xi)

Call SortingRoutine(JV (xi)) to order values from best to worst

6: UPDATE f [k + 1](xµ,xσ) from best samples

xµ[k′] =

∑ρn
j=1 xsort,j[k]

ρn

xσ[k′] =

√∑ρn
j=1(xsort,j[k]− xµ[k′])2

ρn

xµ[k + 1] = αxµ[k′] + (1− α)xµ[k], α ∈ [0, 1]

xσ[k + 1] = αxσ[k′] + (1− α)xσ[k], α ∈ [0, 1]

7: Update counter: k ← k + 1
8: end while
9: return xbest
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• In line 1, the distributions f [k = 1] are instantiated as either uniform distribu-

tions or as Gaussian distributions. For Gaussian distributions, the initial mean

can be the center of the domain of each parameter. The standard deviation of

the Gaussian should be such that 6σ covers the domain of each parameter, to

minimize the number of rejected samples.

• In line 3, samples are drawn from the distributions f [k]. A random number

generator is used to create samples from either the uniform or Gaussian distri-

butions given the distributions’ parameters. The samples are rejected if they

lie outside certain bounds, in other words, re-sample if the following does not

hold:

xmin ≤ xi[k] ≤ xmax, for each i (B.7)

The samples must also be rejected if the resulting path xA(θ) does not satisfy

the constraints in Eq. 2.2.

• In line 4, the objective function JV,discrete(xi[k]) from Eq. B.3 is evaluated for

every sample of the population.

• In line 5, the samples are sorted by their objective values using a standard

sorting routine. Sorting is optional, as described at the end of this section.

• In line 6, the best fraction ρ of samples (ρ ≈ 0.1–0.2) is used to update the

probability distribution vector. The equations for calculating xµ[k′] and xσ[k′]

are as follows:

xµ[k′] =

∑ρn
j=1 xsort,j[k]

ρn
(B.8a)

xσ[k′] =

√∑ρn
j=1(xsort,j[k]− xµ[k′])2

ρn
(B.8b)

The distribution parameters at [k + 1] are updated with a weighting α on the
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new values at [k′] and (1− α) on the old values at [k], according to the rule:

xµ[k + 1] = αxµ[k′] + (1− α)xµ[k], α ∈ [0, 1] (B.9a)

xσ[k + 1] = αxσ[k′] + (1− α)xσ[k], α ∈ [0, 1] (B.9b)

The value for α is typically between 0.95 and 1.00, with smaller values reducing

the rate of convergence, with the benefit of possibly sampling better values. α

does not need to be scheduled with the iteration number.

• In line 7, the iterations counter is incremented by one.

Upon the next iteration k+1, the old samples are discarded, new ones are drawn

from the new distributions, and the process repeats until (xσ < xσ,tol) which

is checked in Line 2. In certain not-well-behaved cases, it may be necessary to

terminate if either (i) the distribution standard deviations diverge, or (ii) the

time or number of iterations exceeds a limit in Line 2 of the algorithm. This

should be incorporated into the optimization loop to ensure termination of the

algorithm. On the other hand, if the algorithm terminates before the allotted

run time, it is possible to run multiple instances of the algorithm and select the

best result from the instances.

• In Line 9, the final path is returned by applying the transformation of the best

parameters xbest into the aircraft state.

A variation of the CE method replaces ρ by all samples with an objective value

within 10% or some fraction of the best sample. The latter is an alternative to sorting:

an indicator function is used instead. Other simple variations involve changing the

CE parameters so that the algorithm converges more quickly (for example, a larger

xσ,tol, smaller ρ, or smaller α), typically resulting in poorer results, or more slowly

(changing the parameters in the other direction), resulting in better results at the

cost of execution time.
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[56] M. Baumann, S. Léonard, E. Croft, and J. Little, “Path planning for im-

proved visibility using a probabilistic road map,” IEEE Transactions on Robotics,

vol. 26, no. 1, pp. 195–200, 2010.

[57] G. Phillips, Interpolation and Approximation by Polynomials. Springer Verlag,

2003.

[58] R. Bellman and S. Dreyfus, “Functional approximations and dynamic program-

ming,” Mathematical Tables and Other Aids to Computation, vol. 13, no. 68,

pp. 247–251, 1959.

[59] S. Dreyfus and A. Law, The art and theory of dynamic programming. Academic

Pr, 1977.

[60] D. Bertsekas and J. Tsitsiklis, Neuro-Dynamic Programming. Belmont, MA:

Athena Scientific, 1996.

161



[61] G. Franklin, J. Powell, and S. Emami-Naeini, Feedback Control of Dynamic Sys-

tems. Prentice Hall, 2006.

[62] S. Park, J. Deyst, and J. How, “A new nonlinear guidance logic for trajectory

tracking,” in Proceedings of the AIAA Guidance, Navigation and Control Con-

ference, 2004 (AIAA 2004–4900).

[63] S. Park, J. Deyst, and J. P. How, “Performance and lyapunov stability of a

nonlinear path-following guidance method,” Journal of Guidance, Control, and

Dynamics, vol. 30, pp. 1718–1728, November-December 2007.

[64] Y. Kuwata, J. Teo, S. Karaman, G. Fiore, E. Frazzoli, and J. How, “Motion

planning in complex environments using closed-loop prediction,” in Proc. of the

AIAA Guidance, Navigation, and Control Conference and Exhibit, Honolulu, HI,

Aug. 2008, p. 7166, 2008.

[65] A. Rao, D. Benson, C. Darby, C. Francolin, M. Patterson, I. Sanders, and

G. Huntington, “Algorithm 902: GPOPS, a MATLAB Software for Solving

Multiple-Phase Optimal Control Problems Using the Gauss Pseudospectral

Method,” ACM Trans. Math. Softw, 2009.

[66] D. Benson, A Gauss pseudospectral transcription for optimal control. PhD thesis,

Massachusetts Institute of Technology, 2005.

[67] P. Gill, W. Murray, and M. Saunders, “SNOPT: An SQP algorithm for large-

scale constrained optimization,” SIAM Journal on Optimization, vol. 12, no. 4,

pp. 979–1006, 2002.

[68] J. Ren, K. McIsaac, R. Patel, and T. Peters, “A potential field model using

generalized sigmoid functions,” IEEE Transactions on Systems, Man, and Cy-

bernetics, Part B, vol. 37, no. 2, pp. 477–484, 2007.

[69] C. Kolb, D. Mitchell, and P. Hanrahan, “A realistic camera model for computer

graphics,” in Proceedings of the 22nd annual conference on Computer graphics

and interactive techniques, pp. 317–324, ACM, 1995.

[70] G. S. Aoude, J. P. How, and I. M. Garcia, “Two-stage path planning approach

for solving multiple spacecraft reconfiguration maneuvers,” Journal of the As-

tronautical Sciences, vol. 56, pp. 515–544, Oct-Dec 2008.

162



[71] N. Leonard, D. Paley, F. Lekien, R. Sepulchre, D. Fratantoni, and R. Davis,

“Collective motion, sensor networks, and ocean sampling,” Proceedings of the

IEEE, vol. 95, no. 1, pp. 48–74, 2007.

[72] S. Kirkpatrick, C. Gelatt Jr, and M. Vecchi, “Optimization by simulated anneal-

ing,” Science, vol. 220, no. 4598, p. 671, 1983.

[73] D. Goldberg et al., Genetic algorithms in search, optimization, and machine

learning. Addison-wesley Reading Menlo Park, 1989.

[74] P. De Boer, D. Kroese, S. Mannor, and R. Rubinstein, “A tutorial on the cross-

entropy method,” Annals of Operations Research, vol. 134, no. 1, pp. 19–67,

2005.

[75] M. Dorigo, M. Birattari, and T. Stutzle, “Ant colony optimization,” IEEE Com-

putational Intelligence Magazine, vol. 1, no. 4, pp. 28–39, 2006.

[76] F. Glover and R. Marti, “Tabu search,” Metaheuristic Procedures for Training

Neutral Networks, pp. 53–69, 2006.

[77] T. Mathworks, “Global Optimization Toolbox,” 2009.

[78] S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A tutorial on particle

filters for on-line non-linear/non-gaussianbayesian tracking,” IEEE Transactions

on Signal Processing, vol. 50, pp. 174–188, 2001.

[79] R. Brown and P. Hwang, Introduction to Random Signals and Applied Kalman

Filtering (3rd ed.). John Wiley, 2005.

[80] M. Valenti, B. Bethke, G. Fiore, J. How, and E. Feron, “Indoor Multi-Vehicle

Flight Testbed for Fault Detection, Isolation, and Recovery,” in AIAA Guidance,

Navigation, and Control Conference (GNC), (Keystone, CO), August 2006.

[81] M. Valenti, B. Bethke, D. Dale, A. Frank, J. McGrew, S. Ahrens, J. How, and

J. Vian, “The MIT Indoor Multi-Vehicle Flight Testbed,” in IEEE International

Conference on Robotics and Automation, pp. 2758–2759, 10–14 April 2007.

[82] J. P. How, B. Bethke, A. Frank, D. Dale, and J. Vian, “Real-time indoor au-

tonomous vehicle test environment,” IEEE Control System Magazine, vol. 28,

pp. 51–64, April 2008.

163



[83] G. Bradski, “The OpenCV Library,” Doctor Dobb’s Journal of Software Tools,

vol. 25, no. 11, pp. 120–126, 2000.

[84] P. Kinney et al., “ZigBee Technology: Wireless Control that Simply Works,” in

Communications Design Conference, vol. 2, 2003.

[85] iRobot Corporation, “iRobot Create Programmable Robot,” 2010.

[86] D. Gurdan, J. Stumpf, M. Achtelik, K. M. Doth, G. Hirzinger, and D. Rus,

“Energy-efficient autonomous four-rotor flying robot controlled at 1 khz,” in

IEEE International Conference on Robotics and Automation, pp. 361–366, 10-14

April 2007.

[87] Panasonic Corporation, “BL-C131A Wireless Pan/Tilt MPEG-4 PetCam Net-

work Camera,” 2009.

[88] K. J. Obermeyer and Contributors, “The VisiLibity library,” 2008. R-1.

[89] M. Zlochin, M. Birattari, N. Meuleau, and M. Dorigo, “Model-based search for

combinatorial optimization: A critical survey,” Annals of Operations Research,

vol. 131, no. 1, pp. 373–395, 2004.

164


	Introduction
	Importance of Unmanned Aerial Vehicles
	Autonomy in UAV Applications
	Visibility Motion Planning Problem
	Contributions of Thesis

	Background
	Visibility Maximization Motion Planning
	Optimal Control Formulation
	Visibility Maximization Systems View
	Modeling and Assumptions
	Target Motion Models
	Sensing Tasks and Sensor Models
	Observer Models
	Environment Models
	Visibility Models

	Literature Review of Visibility Maximization Motion Planning
	Chapter Summary

	Optimal Control for Visibility Maximization
	Block Diagram of Proposed Solution
	Visibility Maximization Dynamic Programming Solver
	Visibility Approximation Module
	Path Planning Optimization Module
	Summary of VMDP

	VMDP Versus Optimal Control Solver
	General Pseudospectral Optimization Software 
	Visibility Maximization in GPOPS
	VMDP Versus GPOPS in Simple 2-D Environments
	Performance and Computation Versus Resolution

	Results for A Single Stationary Target
	Complex Scenarios in 2-D Environments
	Scenarios in 3-D and DEM Environments

	Chapter Summary

	Multiple Targets and Parametric Optimization
	Multiple Target Formulation
	Weights and Weighted Sum of Per-Target Visibilities
	Maximizing the Minimum Per-Target Visibility
	Diminishing Returns on Per-Target Visibility
	Receding Horizon Approach for Complex Objectives
	Multiple Target VMDP Numerical Results

	Comparison Against Baseline Parametric Paths
	Comparisons Between Parametric Optimizations
	Comparisons Against Non-Parametric Optimization
	Comparisons of Objective Functions
	Effects of Visibility Approximation Error on Optimization

	Chapter Summary

	Moving Targets and Uncertainty in Motion Models
	Extension of VMDP to Moving Targets
	VMDP Revision for Moving Targets
	Time-Dependent Visibility Table
	Results for Known Target Trajectories

	Robust Target Observation
	Robust Formulations
	Analysis and Numerical Results for Robust Visibility

	Chapter Summary

	Testbed Implementation
	Testbed Modules
	RAVEN Module
	Test Environment
	Visibility Planner Module and Real-Time Visibility Feedback

	Experimental Results
	Ground Observer
	Aerial Observer

	Chapter Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	Visibility Formulation
	Definition of Visibility, and Necessary and Sufficient Conditions
	Visibility Models
	Planar Visibility Model with Point Target
	Planar Visibility Model with Target Region
	3-D Visibility Model
	Elevation Model in Visibility

	Target Region Intersection Calculation
	Translating Target Samples
	Uniformly Spaced Samples


	Path Parameterization and Parametric Optimization
	Path Parameterization
	Parametric Optimization Methods
	Simulated Annealing
	Genetic Algorithm
	Cross Entropy
	Tabu Search
	Ant Colony Optimization

	Cross Entropy Implementation

	References

