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Abstract

Adaptive control is considered to be one of the key enabling technologies for future
high-performance, safety-critical systems such as air-breathing hypersonic vehicles.
Adaptive flight control systems offer improved performance and increased robustness
to uncertainties by virtue of their ability to adjust control parameters as a function of
online measurements. Extensive research in the field of adaptive control theory has
enabled the design, analysis, and synthesis of stable adaptive systems. We are now
entering the stage in which adaptive flight control systems have reached the requisite
level of maturity for application to hardware flight platforms.

Unmanned aerial systems (UAS) provide a unique opportunity for the transition
of adaptive controllers from theory to practice. The small, unmanned aerial vehicles
(UAVs) examined in this thesis offer a low-cost, low-risk stepping stone between
simulation and application to higher-risk systems in which safety is a critical concern.
Unmanned aircraft also offer several benefits over their manned counterparts including
extreme persistence, maneuverability, lower weight and smaller size. Furthermore,
several missions such as surveillance, exploration, search-and-track, and lifting of
heavy loads are best accomplished by a UAS consisting of multiple UAVs. This
thesis addresses some of the challenges involved with the application of adaptive
flight control systems to UAS.

Novel adaptive control architectures are developed to overcome performance limi-
tations of UAS, the most significant of which is a large time delay due to communica-
tion and limited onboard processing. Analytical tools that allow the calculation of a
theoretically justified time delay limit are also developed. These tools in turn lead to
an estimate of the time-delay margin of the closed-loop system which is an essential
part of the validation and verification methodology for intelligent flight control sys-
tems. These approaches are validated numerically using a series of simulation studies.
These controllers and analytical methods are then applied to the UAV, demonstrat-
ing improved performance and increased robustness to time delays. Also introduced
in this thesis is a novel adaptive methodology for coordinated adaptive control of a
multi-vehicle UAS. Including two distinct classes of adaptive algorithms at both the
local and global levels was found to result, both in simulation and in actual flight
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tests, in decreased tracking error for individual vehicles, decreased errors in inter-
vehicle distances, and reduced likelihood of collisions with other vehicles or obstacles
in the environment.

Thesis Supervisor: Anuradha M. Annaswamy
Title: Senior Research Scientist
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Lesson 1: Thank You!
감사합니다!

LESSON NOTES

In Korea there are numerous ways to say thank you. The level of respect differs according to
relationship. First we'll take a look at the phrase used towards strangers and to those that you
wish to respect. The first "thank you" is "gamsahamnida" (감사합니다 ). It's respectful, commonly
heard, quick and easy. This one you will probably hear most frequently.

Next is "gomapseumnida" (고맙습니다). This is respectful and can be used towards strangers as
well. It isn't used quite as frequently as "gamsahamnida," but it's still very common. The two that
we have covered so far are nearly identical in terms of respect. But the first "gamsahamnida" is a
tiny bit more respectful than "gomapseumnida," but it's only a very slight difference.

This next one is not used everyday; it should be used for special occasions when someone has
really broken their backs to do you a favor. This has the highest level of gratitude. This "thank
you" is "daedanhi gamsahamnida" (대단히 감사합니다). Literally this means "great, thanks."

Last is the informal "thank you," which is only to be used with close and intimate friends and
family (an uncle you are meeting for the first time doesn't cut it!). The informal is "gomawo"
(고마워). There are a few relationships with which the informal language is acceptable to use.
For more on that check out quicktip 1.

It is important to be as polite and respectful as possible. So if ever in doubt, use the formal "thank
you" or "gamsahamnida / gomapseumnida" (감사합니다/고맙습니다).

VOCABULARY

Hangul Romanized English
감​사​합​니​다. gamsahamnida. Thank you. (The most formal)
고​맙​습​니​다. gomapseumnida. Thank you. (Formal)
고​마​워. gomawo. Thanks. (Informal)
대​단​히 ​감​사​합​니​다. daedanhi gamsahamnida. Thank you. (great thanks)

. Teşekkür ederim.
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Chapter 1

Introduction

1.1 Motivation

Ever-increasing demands on safety and performance have necessitated the develop-

ment of more and more sophisticated flight control systems. Adaptive control is

considered to be one of the key enabling technologies for future high-performance,

safety-critical systems such as air-breathing hypersonic vehicles. Adaptive flight con-

trol systems also offer numerous benefits over their fixed-gain counterparts, including

improved performance, increased robustness to uncertainties, deceased design cycle

time, as well as lower weight and lower cost. They are able to achieve these by virtue

of their ability to adjust control parameters as a function of online measurements.

Early attempts at adaptive flight control used controllers with unproven stability

properties, sometimes with disastrous consequences; for example the fatal crash of

the NASA X–15 in November, 1967 [1]. Since that time, extensive research in the

field of adaptive control theory has enabled the design, analysis, and synthesis of sta-

ble adaptive systems. We are now entering the stage in which adaptive flight control

systems have reached the requisite level of maturity for application to hardware flight

platforms.

The aviation industry is in general slow to adopt new control algorithms, partly

because of the sobering lessons learned from programs such as the X–15. Promising

new technologies are often transitioned from theory to practice along a series of ap-
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plication platforms with increasingly stringent demands on safety. The starting point

and proving ground for many potentially useful control approaches is therefore guided

munitions. Successful technologies from that stage are subsequently applied to un-

manned aerial vehicles, military vehicles such as fighter jets, cargo transport aircraft

and finally civilian transport aircraft. In the more recent past, adaptive control has

successfully navigated this path, proving itself on the laser-guided joint direct attack

munition [2, 3], and has recently begun to find its way towards UAV applications such

as The Boeing Company’s Phantom Ray autonomous aircraft.

In addition to providing a stepping stone for the smooth transition of adaptive

flight control from theory to practice, unmanned aerial systems (UAS) are themselves

an important platform and an area of considerable research interest. Unmanned

aircraft offer several benefits over manned systems and have an impressive track record

[4]. Chief among these benefits are extreme persistence, maneuverability, ability to

operate in dangerous environments without risking safety of a crew, smaller size and

lower cost [5]. Furthermore, several missions such as surveillance, exploration, search-

and-track, and lifting of heavy loads are best accomplished by multiple UAVs, leading

to further savings in both time and money. Another important advantage to utilizing

multiple vehicles is a further reduction in the risk to successful completion of a mission

due to the loss of a single vehicle. When a single vehicle malfunctions, neighboring

vehicles can adjust their configuration to compensate. This increased robustness can

lead to a commensurate decrease in vehicle specifications and cost, further improving

the argument for swarm operations.

1.2 Research objectives

The primary research objective for this thesis is to examine the efficacy of adaptive

flight control for UAS, particularly in the presence of parametric uncertainties and

time delays. During the course of this examination we will address the following

specific problems:

20



• Application of adaptive flight control to a single UAV

Many tasks once accomplished using a single large, expensive vehicle can be

accomplished more effectively by using many small, inexpensive UAVs. Conse-

quently, each individual UAV is more prone to uncertainties due to electrical

or mechanical failures, such as actuator failures. Furthermore, many UAVs

operate in dangerous or cluttered environments, increasing the risk of uncer-

tainties due to battle damage or collisions with the environment. It is therefore

desirable to design a sophisticated controller capable of accommodating these

various uncertainties without sacrificing guarantees on stability. The first prob-

lem examined in this thesis is the application of an existing theory-based model

reference adaptive control (MRAC) approach to the UAV flight control prob-

lem. Implementation issues such as dealing with sensor noise, parameter drift,

and proper tuning of adaptive gains will be addressed.

• Adaptive control of general systems with time delays

One of the largest outstanding questions that must be addressed before the

widespread adoption of adaptive flight control is how to certify the performance

and stability of an adaptive controller for systems with (possibly large) time

delays. Time delays are an especially important issue for UAS, which often

have considerable delays due to communication with ground-based operators

and limited onboard computational power. Novel tools for analyzing existing

adaptive control strategies in systems with time delays will be explored. Novel

adaptive controllers that offer numerous benefits over existing technologies, in-

cluding increased performance and analytically justified time delay margins,

will also be considered.

• Generating improved performance for adaptive control of a single UAV

Traditionally, the performance of adaptive control for time delay systems has

been limited by a trade-off between performance and robustness to the time

delay. In the MRAC structure, for example, adaptive gains must be lowered
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to avoid exciting high frequencies and inducing instabilities in the closed-loop

system. This results in decreased tracking performance and slower convergence

of parameter estimates. Using a subset of the techniques discussed for general

time delay systems, the above shortcomings are alleviated by designing an adap-

tive controller that can generate improved performance while remaining robust

to time delay and this approach is successfully demonstrated on a single UAV.

• Adaptive control of multiple UAVs

Multiple UAVs executing a mission often need to act in a cooperative or co-

ordinated manner. It is therefore essential that control strategies implemented

for multi-vehicle UAS can accommodate uncertainties not only at the single-

vehicle level, but also on a global level. A novel adaptive configuration control

structure that addresses the problem of coordinated path planning of multiple

vehicles in the presence of uncertainties will be examined.

1.3 Research approach

This thesis involves the full spectrum from conception of novel adaptive approaches,

through rigorous theoretical explorations, implementation in simulation with varying

levels of fidelity, and finally validation using flight tests. Furthermore, the process

is iterative in the sense that lessons learned from flight tests of one particular tech-

nology are used to conceive of novel approaches to overcome performance limitations

or drawbacks of a particular approach. These novel approaches are then validated

numerically in the MATLAB environment using a series of simulation studies before

being applied to the UAS. Flight testing is accomplished in collaboration with the

Aerospace Controls Laboratory within an indoor autonomous vehicle test facility at

MIT. The UAV platform used in these studies is a modified version of the four rotor

helicopter (“quadrotor”) UAV known as the Draganflyer V Ti. This vehicle, shown

in figure 1-1, can be purchased from RC hobbyist sites.
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Figure 1-1: Draganflyer V Ti four rotor helicopter UAV.

1.4 Organization

This thesis is divided into seven chapters. The contents of each chapter can be

summarized as follows:

• Chapter 1, Introduction, motivates the research effort, introduces the objectives

of the work, and details the specific approach taken. It also provides a detailed

roadmap for the thesis.

• Chapter 2, Background, discusses the previous work in four major categories:

adaptive control theory and applications to flight control, selected extensions to

the MRAC approach, flight control of quadrotor UAVs, and cooperative control

of multiple vehicles.

• Chapter 3, Adaptive Control of UAVs with parametric uncertainties, details the

application of MRAC to a quadrotor UAV with the goal of increasing robustness

to parametric uncertainties. Details on some of the implementation roadblocks

and how they were overcome are discussed as well.
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• Chapter 4, General systems with parametric uncertainty and time delay, de-

scribes two methods for analysis and synthesis of adaptive controllers in general

systems with time delays. A describing functions approach is used to approx-

imate an adaptive system with a linear one, enabling the use of linear tools.

Additionally, a novel adaptive architecture designed to explicitly account for

known time delays is presented.

• Chapter 5, Combined / Composite Adaptive control of UAVs with parametric

uncertainties, presents the application of a subset of the techniques discussed

in chapter 4 to the quadrotor UAV discussed in chapter 3.

• Chapter 6, Adaptive configuration control of multi-vehicle UAS, addresses the

problem of adaptive outer-loop control of a UAS consisting of multiple UAVs.

The approach can be combined with inner-loop approaches described in previous

chapters, leading to further improvements.

• Chapter 7, Summary and Future Work, summarizes the main contributions of

the thesis and describes some of the future applications and extensions.
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Chapter 2

Background

In this chapter we discuss some of the previous work in the following four areas of re-

search: adaptive control theory and applications to flight control, selected extensions

to the MRAC approach, flight control of quadrotor UAVs, and cooperative control of

multiple vehicles.

2.1 Adaptive control theory and applications to

flight control

The field of adaptive control began with the motivation that a controller able to adjust

its parameters online could generate improved performance over a fixed-parameter

counterpart. One of the earliest examples of such a controller was the Minneapolis

Honeywell MH-96 “self-adaptive” controller. This controller was flown as part of

the NASA X–15 program, which recorded nearly 200 successful flights from 1959-

1968. However, the MH-96 lacked an analytically-based proof of stability, which was

highlighted by the fatal accident that occurred on November 15, 1967 [1, 6]. Since

that time, the evolution of the field of adaptive control was directed toward the

design, analysis, and synthesis of stable adaptive systems. Various adaptive control

methods have been developed for controlling linear and nonlinear dynamic systems

with parametric and dynamic uncertainties [7–31].
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These techniques have been extended and applied to the problem of aircraft con-

trol [32–39], showing promising results in simulation. There have also recently been

examples of successful adaptive control flight tests for both manned and unmanned

test vehicles. In [40], a modified sequential least squares algorithm was designed

to make online parameter estimates in a computationally efficient manner. This al-

gorithm was then implemented and flight tested on a VISTA F-16 fighter aircraft

equipped with a vehicle integrity monitor that would turn off the adaptive feature if

it violated predetermined flight envelope or structural safety limits. Using this ap-

proach, the vehicle was flown under a number of simulated failure scenarios, including

landing with a missing elevon in a strong crosswind.

An existing dynamic inversion baseline controller on the X-36 tailless fighter air-

craft was augmented by an adaptive neural network reconfigurable flight control sys-

tem in [41]. The X-36 is a remote-piloted aircraft with a wingspan of approximately

10.4 feet. The adaptive and baseline controllers were compared for a number of flight

conditions and a number of failure scenarios, including severe failures such as locking

of control surfaces at their maximum deflection. The adaptive controller was shown

to provide improved handling response and resistance to departures as compared with

the baseline controller.

In [42], a single hidden layer neural network adaptive controller was applied to a

modified autonomous Yamaha R-Max helicopter. An adaptive anti-windup strategy

known as pseudo-control hedging was used to prevent the adaptive controller from

adapting to errors due to input saturation and other selected system input char-

acteristics. The inner- and outer-loop were combined to allow for higher outer-loop

bandwidth, resulting in improved path-following capabilities over a baseline approach.

Parametric uncertainty due to actuator failure or damage was not considered.

Finally, [2] describes the application of an augmented model reference adaptive

controller to the sensor-guided joint direct attack munition (JDAM). The baseline

JDAM uses a gain-scheduled LQR-based linear controller and relies on GPS-aided

inertial measurement units for accuracy. However, it was desired to add a laser-

guided capability in order to track targets that were either moving or had unknown
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GPS coordinates. This modification required the addition of a sensor package to

the nose of the JDAM, causing significant changes to the aerodynamics. MRAC was

used as a retrofit to the existing linear controller in order to accommodate the change

in aerodynamics without extensive wind-tunnel testing or expensive redesign of the

flight control system. The Laser JDAM is an example of a flight-proven adaptive

control system that is currently used in a production model.

The strong theoretical foundation of adaptive control and promises of improved

performance, robustness, and reduced design cycle time has prompted the application

of several adaptive strategies to several aerial vehicles. Adaptive control has been

proven to be effective at handling changes in the aerodynamics of a guided munition

and is currently part of the Laser JDAM system. Adaptive approaches have also

made some forays into the realm of flight control for manned and unmanned aerial

vehicles, both fixed- and rotary-wing. However, the rotary-wing application in [42]

does not examine uncertainties in the inner-loop, instead adapting to changes in the

slower, outer-loop system. In the fixed-wing applications, actuator failures and other

uncertainties were examined. However, none of these approaches address the issue of

time delay, which can place severe limitations on the speed of adaptation and thus the

benefit of including adaptive features. Further, almost all research to-date in the field

of adaptive control pertains to the control of a single-vehicle, in particular pertaining

to command following [3, 43]. Scant attention has been paid to adaptive coordinated

control of multiple vehicles.

2.2 Selected extensions to the MRAC approach

In addition to these advances in the theory of stable adaptive systems, a number of

modifications to the standard MRAC approach have been presented. These exten-

sions are designed to improve performance, robustness, or to generate other desirable

qualities and far too many variations exist to be covered in detail. Interested readers

are referred to the recent Transactions on Automatic Control, Automatica, and the

proceedings of the CDC, ACC, and GNC conferences. Rather than compiling an
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exhaustive list, we focus on a small number of modifications to the MRAC approach

which are relevant to the exploration of adaptive time delay systems presented in chap-

ter 4. The first of these modifications involves the combination of direct and indirect

adaptive control, which is known as Combined or Composite MRAC (CMRAC). By

adapting to both estimation and tracking errors, it has been observed that CMRAC

systems have smoother transient performance than MRAC systems for a wide variety

of problems [44–47].

Another such modification is the use of time-varying adaptive gains. In particular,

a bounded-gain forgetting (BGF) law for adjusting adaptive gains based on least-

squares estimation was applied to the problem of robotic manipulation [48]. This

modification has the benefits of faster parameter convergence and smoother parameter

estimates. While not specifically designed for systems with time delay, these two

modifications share a common feature in that they both lead to smooth transients in

the adaptive and estimation parameters. It could therefore be argued that the same

modifications can lead to an improved time-delay margin by virtue of a reduction in

the high-frequency content of the signals in the system. Therefore, we propose that

these modifications to MRAC may be useful tools in designing controllers for systems

with time delay as well.

One final modification to MRAC relevant to control of time delay systems is the

recently developed Adaptive Posicast Controller (APC) approach detailed in [49]. The

APC approach is an adaptive extension of the Smith Predictor, which uses a plant

model to predict the future outputs of the plant, and then uses this prediction to

cancel the effect of delay on the system. This approach has been successfully applied

to the automotive problems of idle-speed control and fuel-air ratio control and, as

opposed to the CMRAC and BGF modifications, explicitly accounts for known time

delay in the system.
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2.3 Flight control of quadrotor UAVs

The first known quadrotor flight was in the 1920’s [50], but due to the difficulty of

controlling four motors simultaneously with sufficient bandwidth, the project was

abandoned. In 1963, the Curtiss-Wright X-19A became the first (and only) manned

quadrotor to leave the ground effect. Due to a lack of stability augmentation sys-

tem, stationary hover was nearly impossible [51]. In recent years, smaller, unmanned

quadrotor helicopters have been an increasingly popular research platform. Their

simple design and relatively low cost make them attractive candidates for swarm

operations, a field of ongoing research in the UAV community. These quadrotor heli-

copters typically consist of two pairs of counter-rotating blades mounted on a carbon

fiber frame as shown in Figure 1-1. The dynamics of quadrotor helicopters have been

studied in detail by several groups [52–54]. In designing a controller for these air-

craft, there are several important vehicle-specific considerations. There are numerous

sources of uncertainties in the system, for example, actuator degradation, external

disturbances, and potentially uncertain time delays in processing or communication.

Additionally, the dynamics of quadrotors are nonlinear and multivariate. There are

several effects to which a potential controller must be robust: the aerodynamics of

the rotor blades (propeller and blade flapping), inertial anti-torques (asymmetric an-

gular speed of propellers), as well as gyroscopic effects (change in orientation of the

quadrotor and the plane of the propeller).

A variety of approaches to quadrotor flight control have been applied to a variety

of problems. The Aerospace Controls Laboratory at MIT uses a Vicon motion capture

system to enable rapid prototyping of aerobatic flight controllers for quadrotors and

other aerial vehicles; robust coordination algorithms for multiple quadrotors; and

vision-based sensing algorithms for indoor flight [55–57]. A linear, ground-based

controller augments an onboard rate feedback controller to allow for autonomy and

waypoint-following. In [58], a dynamic programming approach was used to generate a

policy to allow for persistent surveillance for a fleet of vehicles with stochastic failure

and fuel burn rates.
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The Stanford Testbed of Autonomous Rotorcraft for Multi-Agent Control (STAR-

MAC) quadrotor helicopter is described in [53]. The STARMAC II quadrotor heli-

copter features onboard measurement, communication, and processing. Along with

appropriate vehicle configuration, a PID controller was designed to give robustness

to nonlinear aerodynamic effects such as thrust changes due to vehicle translation,

blade flapping, and vortex impingement. Flight test results show that the approach

allows for autonomous tracking and regulation in indoor and outdoor settings.

In [59], a feedback linearization-based controller was augmented with a high-order

sliding mode observer and applied to a simulated quadrotor system. The fourth-order

sliding mode observer estimates the effects of external disturbances due to wind or

noise, and allows for control with a minimal number of sensors. Simulation results

show that the approach provides stability and robustness, significantly reducing chat-

ter due to noise and other external disturbances.

Recent work at the GRASP laboratory at the University of Pennsylvania [60] has

shown cooperative manipulation using several quadrotors to lift and manipulate a

lightweight object with 6 degrees-of-freedom. This approach uses a Vicon motion

capture system for sensing and a PID controller to generate the forces and moments

necessary to achieve the desired manipulation behavior. Oscillations in the under-

damped system limited the trajectory following to slow maneuvers. Sensing and

actuator uncertainties were not considered.

The approach described in [61] allows for autonomous flight in unknown indoor

environments. The quadrotor UAVs are equipped with onboard sensing of the vehicle

state as well as laser scanners for sensing of the environment. A modified 2D SLAM

algorithm that accounts for the 3D motion of the vehicle was employed to allow for

mapping while flying through the unknown operating environment. The quadrotor

dynamics are approximated by a double integrator and LQR control design is used

to provide stable hover. The vehicle was able to successfully explore and map several

indoor environments both with the guidance of a human operator and autonomously.

While most of the above approaches acknowledge the significant uncertainties

present in the system and the potential for additional uncertainty due to failures,
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none of the approaches explicitly accounts for these uncertainties in the controller

design. Typical control laws consist of linear, PID control or LQR-based design,

which offer some measure of robustness to uncertainties but may not be sufficient

for severe uncertainties such as those that result from actuator failure or structural

damage. This thesis will examine severe failures for which a linear control design may

not be adequate.

2.4 Cooperative control of multiple vehicles

Cooperative, multi-agent control is currently an area of intense research activity with

notable contributions made by several groups [62–67]. We briefly discuss a few of the

main approaches below.

In [62], the authors describe an agile and stable control method for distributed

stochastic systems based on the theory of stochastic dynamic programming (SDP).

Their rollout algorithm includes a model of the feedback mechanism, increasing per-

formance and enabling the ability to react to possible future events. Since the stan-

dard SDP approach scales badly with the number of vehicles, approximate approaches

which yield near-optimal control laws are discussed.

The approach in [63] relates the problem of formation flight to moving the vehicles

to points on a virtual rigid body that can rotate, translate, expand, and contract in

space. This centralized approach assumes the vehicles are point masses with fully

actuated dynamics, and the goal is to minimize a set of virtual potentials, which

accomplishes formation keeping and collision avoidance. These results are extended

further in [64] to the case of steered particles in a plane and limited communication

between vehicles.

A geodesic control law that allows for flocking and velocity alignment of several

nonholonomic vehicles in 2 and 3 dimensions is proposed in [65]. This method allows

for decentralized control and guarantees flocking will occur under certain assumptions

on the underlying proximity graphs that determine which vehicles can communicate

with one another. In [66], a routing algorithm for moving a number of fully-actuated,
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point-mass vehicles to target destinations in a plane is presented. These destina-

tions are generated over time by a stochastic process. The control strategies aim to

minimize the expected time that a target is unvisited by one of the vehicles. This ap-

proach makes no explicit assumptions on the communication ability of the individual

vehicles.

A decentralized approach is proposed in [67] which takes ideas from both control

theory and graph theory to make a formal analysis of the stability of the formation.

The notion of stability is decomposed into the stability of the formation given the

graph of connections between vehicles and the stability of individual vehicles given

their controllers. The results in [67] only apply to vehicles with linear dynamics, but

some possible extensions to vehicles with nonlinear dynamics are proposed as well.

In [68], an L1 adaptive output feedback controller is added to an existing outer-

loop path-planning algorithm with no change to the inner-loop controller. The L1

adaptive augmentation takes the form of a integral disturbance rejection controller

and allows for smoother command generation. The velocity profiles of multiple vehi-

cles can be adjusted so that multiple vehicles arrive at a goal simultaneously or at a

fixed arrival interval.

These results represent a wide variety of approaches in terms of the assumptions

made on the ability of the individual vehicles to communicate with each other and

with a centralized entity. However, there are also a number of similarities. Most of the

results in [62–67] are either pure theory or simulation results using relatively simplistic

models of vehicle dynamics, such as fully-actuated point masses. Most propose some

cost function, based on either virtual potential fields or task completion, and seek to

minimize this cost function through computation of a near-optimal control strategy

either on or off-line. Additionally, the above approaches claim robustness to vehicle

failures by virtue of the fact that they allow for many vehicles with no explicit leader-

follower structure. That is, even if one vehicle becomes disabled, the other vehicles

can carry on indifferently. None of the above discusses the case of a partial failure

wherein some technical capabilities of a vehicle are diminished, but the vehicle is still

flyable. In the case of these partial failures it may be possible, through adapting to the
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changes on-line, to complete the mission with all vehicles returning safely. In the case

of partial failures the full, possibly nonlinear vehicle dynamics become important in

determining how the failure affects the performance of the damaged vehicle. In turn,

the degraded vehicle performance has an effect on the overall formation and the cost

functions and mission objectives may have to be adjusted online. The algorithms

described in [62–68] cannot fully utilize the capabilities of all vehicles when those

capabilities are uncertain and dynamic.

Most of the approaches described above side-step the vehicle control problem by

either assuming that the vehicle dynamics are extremely simple, or by assuming that

an inner-loop controller that solves the problem exists. As UAV designs become

smaller, lighter, and more agile, these assumptions no longer hold. While the ap-

proach described in [68] includes adaptation in the outer-loop control of the vehicle

kinematics, this approach does not accommodate local errors in the vehicle dynamics,

or global errors, such as error in the overall configuration of the vehicles. This thesis

will address the problem of control of a multi-vehicle UAS in the presence of uncer-

tainty by including adaptation in the inner- and outer- control loops and adapting to

both local and global errors.
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Chapter 3

Adaptive Control of UAVs with

parametric uncertainties

This chapter describes the application of model reference adaptive control to a light-

weight, low-cost quadrotor UAV platform. An adaptive controller was designed to

augment an existing linear controller that provides autonomy and waypoint following.

The design of the adaptive controller is driven by Lyapunov stability arguments and

thus has a proof of stability grounded in a nonlinear framework. The approach was

validated using simulations and flight tested in an indoor test facility. The adaptive

controller was found to offer increased robustness to parametric uncertainties. In

particular, it was found to be effective in mitigating the effects of a loss of thrust

anomaly, which may occur due to component failure or physical damage. The design

of the adaptive controller is presented, followed by a comparison of flight test results

using the existing linear and augmented adaptive controllers.

3.1 Introduction

Quadrotor helicopters have been an increasingly popular research platform in recent

years. Their simple design and relatively low cost also make them attractive candi-

dates for swarm operations, a field of ongoing research in the UAV community. In

designing a controller for these aircraft, there are several important considerations.
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There are numerous sources of uncertainties in the system—actuator degradation,

external disturbances, and potentially uncertain time delays in processing or commu-

nication. These problems are only amplified in the case of actuator failures, where

the aircraft has lost some of its control effectiveness. Additionally, the dynamics of

quadrotors are nonlinear and multivariate. There are several effects to which a po-

tential controller must be robust: the aerodynamics of the rotor blades (propeller

and blade flapping), inertial anti-torques (asymmetric angular speed of propellers),

as well as gyroscopic effects (change in orientation of the quadrotor and the plane of

the propeller).

The redundancy in the actuators of a quadrotor makes them robust towards a set

of partial failures. Though the performance and maneuverability will most likely be

reduced in the case of such a failure, it is desirable for a controller to stabilize the

system and allow for reduced mode operations such as a safe return, stable hover,

etc. Adaptive control is an attractive candidate for this aircraft because of its ability

to generate high performance tracking in the presence of parametric uncertainties.

This chapter is organized as follows. Section 3.2 describes the dynamics of the

quadrotor and the development of the adaptive controller. Section 3.3 shows prelimi-

nary simulation results that suggest adaptive control may be effective for this problem.

Section 3.4 describes the experimental setup and existing control architecture. Some

of the finer points of the implementation, including robustness modifications to deal

with noisy signals and selection of the adaptation rates are described in section 3.5.

Flight test results are shown in section 3.6 and conclusions are given in section 3.7.

3.2 Adaptive controller design for quadrotor

helicopters

In this section we examine the dynamics of the quadrotor helicopter in order to gain

the insight necessary for the adaptive control design. In particular, the reference

model used by the model reference adaptive control approach is generated using lin-
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earized quadrotor dynamics and a linear baseline controller. The adaptive controller

is then formulated for the problem of command tracking in the presence of parametric

uncertainties in the form of actuator failures, where one or more of the four propellers

loses a portion of its thrust. This type of uncertainty can be attributed to electrical

component failure or physical damage.

3.2.1 Quadrotor dynamics

The dynamics of quadrotor helicopters have been studied in detail by several groups

[52, 53]. A simple, rigid-body model of the quadrotor which assumes low speeds is

given by:

ẍ = (cosφ sin θ cosψ + sinφ sinψ)
U1

m
,

ÿ = (cosφ sin θ sinψ − sinφ cosψ)
U1

m
,

z̈ = −g + (cosφ cos θ)
U1

m
,

φ̈ = θ̇ψ̇

(
Iy − Iz
Ix

)
− JR

Ix
θ̇ΩR +

L

Ix
U2,

θ̈ = φ̇ψ̇

(
Iz − Ix
Iy

)
+
JR

Iy
φ̇ΩR +

L

Iy
U3,

ψ̈ = φ̇θ̇

(
Ix − Iy
Iz

)
+

1

Iz
U4,

(3.1)

where x, y, and z are the position of the center of mass in the inertial frame; φ, θ, and

ψ are the Euler angles which describe the orientation of the body-fixed frame with

respect to the inertial frame; m, Ix, Iy, and Iz are the mass and moments of inertia

of the quadrotor respectively; and JR and ΩR are the moment of inertia and angular

velocity of the propeller blades. U1, U2, U3, and U4 are the collective, roll, pitch, and

yaw forces generated by the four propellers. Since the quadrotor typically operates

very near the hover position, we can make small angle approximations, neglect higher
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order terms and let U1 = mg + ∆U1, resulting in the linear dynamics

ẍ = gθ,

ÿ = −gφ,

z̈ =
∆U1

m
,

φ̈ =
L

Ix
U2,

θ̈ =
L

Iy
U3,

ψ̈ =
1

Iz
U4.

(3.2)

Although this system is quite a bit more simple than the nonlinear dynamics in

(3.1), it still captures the dominant features of the quadrotor, and is accurate near

the hover position. As expected, the roll, pitch and yaw inputs command moments

about their respective axes and the collective input commands acceleration in the

positive z-direction. Accelerations in the x- and y-directions are achieved primarily

through vectoring the collective thrust. This simplified model also sheds some light

on a time-scale separation present in the system. It can be seen that the dynamics

of z, φ, θ, and ψ are double integrators, while the dynamics of x and y are quadruple

integrators. The former group can be thought of as “fast” states, or as the vehicle

dynamics while the latter group can be thought of as “slow” states, or the vehicle

kinematics. For the purposes of control design, we can use the linear dynamics given

by (3.2).

3.2.2 Problem statement

The primary function of the adaptive controller is to accommodate any uncertainties

which mat arise in the dynamics (3.2). We can write the equations of motion in (3.2)

along with these uncertainties as

ẋp = Apxp +BpΛu, (3.3)
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where Bp ∈ <nxm is constant and known, Ap ∈ <nxn is constant and unknown,

xp ∈ <n
p , u ∈ <m, Λ ∈ <mxm is an unknown diagonal positive definite constant

matrix with diagonal elements < ∈ (0, 1]. The goal is to track a reference command

r(t) in the presence of the unknown Ap, and Λ. We define the system output as

yp = Cpxp. (3.4)

In the case of the quadrotor, the output states are x, y, z, and ψ. The output tracking

error is then given by

ey = yp − r. (3.5)

Augmenting (3.3) with the integrated output tracking error

ėyI
= ey, (3.6)

leads to the extended open loop dynamics

ẋt = Atxt +BtΛu+Bcr, (3.7)

where xt =
[
xT

p eT
yI

]T
is the extended system state vector. The extended open-loop

system matrices are given by

At =

Ap 0

Cp 0

 , Bt =

Bp

0

 , Bc =

 0

−I

 , (3.8)

and the extended system output

yt =
[
Cp 0

]
xt = Ctxt. (3.9)

3.2.3 Reference model

A baseline controller

ubl = Kxxt, (3.10)
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can be designed for the system in (3.7) in the case where there is no uncertainty, that

is Λ = Inxn. The feedback gains Kx can be selected using LQR or classical design

techniques. The reference model used by MRAC is the closed loop system given by

(3.7), again in the case of no uncertainty, along with the control input in (3.10)

ẋm = Atxm +Btubl +Bcr = Amxm +Bcr. (3.11)

3.2.4 Adaptive controller

An adaptive control input is added to the baseline controller as

uad = K̂T
x xt + θ̂T

r r + θ̂d = θ̂Tω, (3.12)

where θ̂T =
[
K̂T

x θ̂T
r θ̂T

d

]
are time-varying adaptive parameters that will be ad-

justed in the adaptive law given in (3.14) below and ωT =
[
xT

t rT 1
]
is the regressor

vector. The overall control input is thus

u = uad + unom = θ̂Tω +Kxxt + r. (3.13)

The canonical adaptive law is given by

˙̂
θ = −ΓωeTPBt, (3.14)

where Γ is a diagonal positive definite matrix of adaptive gains, e = x − xm is the

model tracking error, and P is the unique symmetric positive definite solution of the

Lyapunov equation,

AT
mP + PAm = −Q, (3.15)

where Q is also symmetric positive definite. This adaptive controller is based on

nonlinear stability theory, the details of which have been touched on by many au-

thors throughout the years [7, 8, 17, 25, 69, 70]. The augmented structure of the

adaptive controller implies that in the nominal case, that is the case with no param-
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eter uncertainty, the overall system is equivalent to the baseline control. However,

when failures or other uncertainties arise, the adaptive controller works to assist the

baseline controller in maintaining stability and performance.

With the Lyapunov function candidate given by

V = eTPe+ Tr
(
θ̃T Γ−1θ̃

)
, (3.16)

where θ̃ = θ̂ − θ is the parameter estimation error, it can be shown [7] that the

derivative of the Lyapunov function candidate is given by

V̇ = −eTQe ≤ 0. (3.17)

The system is globally asymptotically stable by Barbalat’s lemma and the tracking

error asymptotically converges to 0, that is

lim
t→∞

e(t) = 0. (3.18)

3.3 Simulation results

A quadrotor simulation was used to judge the efficacy of the adaptive approach be-

fore transitioning to hardware. The simulated dynamics is chosen as the nonlinear

quadrotor dynamics given in (3.1). Actuator saturation limits are also included.

Sensor dynamics, sensor noise, and time delay are neglected for this preliminary sim-

ulation study. In this series of tests, the quadrotor is commanded to take off and

climb to an altitude of 5 m while simultaneously translating 1 m in the x-direction.

Figure 3-1 shows the position and orientation of the simulated quadrotor executing

the maneuver in the nominal case, that is, in the case of no uncertainty.

We now include uncertainty in the form of the loss of control effectiveness Λ. The

type of failure, the time at which the failure occurs, and the extent of the failure

are unknown to the controller. For this simulation we arbitrarily select an 80% loss-

of-control-effectiveness failure that is initiated in one actuator at t = 15 sec. The
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Figure 3-1: Simulated quadrotor (a) position and (b) orientation for the nominal case.
Dashed lines represent the commanded positions.

tracking performance of the baseline controller described in (3.10) and the adaptive

controller described in (3.12)-(3.15) is compared in figure 3-2. Figure 3-2(a)-(b) shows

the position and orientation for the baseline controller and figure 3-2(c)-(d) shows the

position and orientation for the adaptive controller in the failure case.
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Figure 3-2: Simulated quadrotor (a) position and (b) orientation for the baseline
controller and (c) position and (d) orientation for the adaptive controller. An 80%
loss-of-control-effectiveness failure occurs in one actuator at t = 15 sec.

The adaptive controller responds quickly and effectively to the change in dynamics,

keeping the roll and pitch angles less than 2◦ from the hover position. On the other
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hand, the baseline controller experiences excursions of over 6◦ in pitch angle and 4◦ in

roll angle. These rotations vector the collective thrust, causing the vehicle to deviate

nearly 2 m from the commanded position. Both controllers retain stability and the

baseline controller does eventually return to the commanded position. However, the

large departure from the desired position seen in figure 3-2(a) may be undesirable,

especially if the quadrotor is operating in a cluttered environment with many walls,

obstacles, or other UAVs.

These results suggest that the adaptive controller may be effective in mitigating

the effects of partial failures such as a sudden loss of control effectiveness. The

following sections detail the application of a similar adaptive control design to the

hardware platform.

3.4 Experimental setup

Flight testing was done in collaboration with the Aerospace Controls Laboratory at

MIT, which utilizes a UAV testbed facility known as RAVEN (Real-time indoor Au-

tonomous Vehicle test ENvironment). RAVEN uses a Vicon motion capture system

to enable rapid prototyping of aerobatic flight controllers for helicopters and aircraft;

robust coordination algorithms for multiple helicopters; and vision-based sensing al-

gorithms for indoor flight [55–57]. The Aerospace Controls Laboratory also operates

several Draganflyer quadrotors autonomously using a simple, ground-based controller.

The RAVEN system essentially consists of a vision-based motion capture system that

provides 6DoF pose parameters at fixed frequency of 100Hz. Commands are sent to

the quadrotors using a USB wireless remote-control module. The system operates on

a cluster of Linux workstations, with each node assigned to the control of an individual

UAV. This system is used to run the vehicle flight controller and other path planning

algorithms. The adaptive controller described in section 3.2 is then implemented in

C++ and run alongside the fixed-gain controller. This system allows for flight testing

of the quadrotor using both baseline (fixed-gain) and adaptive controllers.
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Figure 3-3: Draganflyer four rotor helicopter UAVs in the Real-time indoor Au-
tonomous Vehicle test ENvironment (RAVEN).

3.5 Implementation issues

With the capabilities and limitations of RAVEN in mind, a number of modifications

need to be made to the typical model reference adaptive approach. Due to sensor and

process noise in the system, it was found that a dead-zone modification was required

to avoid parameter drift. Instead of adapting to the error e, we adapt to the modified

error edz, which is given by

edz =


e+ dz, if e < −dz,

0, if − dz < e < dz,

e− dz, if e > dz.

(3.19)

After examining several minutes worth of flight data, the size of the dead-zones dz

was selected to be just larger than the maximum noise value present in the system.

This approach mitigates parameter drift without having significant effect on the per-

formance of the adaptive controller.

The adaptive law given in (3.14) was also modified to include the projection
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operator, which provides bounds on the adaptive parameters. The projection operator

is defined column-wise for the jth column as

Proj(θ̂j, yj) =

yj −
∇f(θ̂j)(∇f(θ̂j))

T

||∇f(θ̂j)||2
yjf(θ̂j), if f(θ̂j) > 0, yT

j ∇f(θ̂j) > 0,

yj, otherwise,

(3.20)

where the convex function f is given as

f(θ̂j) =
||θ̂j||2 −

(
θmax

j

)2
εj
(
θmax

j

)2 , (3.21)

where εj is a projection tolerance. The new adaptive law is then given column-wise

by

˙̂
θj = −ΓProj(θ̂j, (ωe

T
dzPB)j). (3.22)

This ensures that the adaptive parameters θ̂ are less than some prescribed bound

θmax. Along with the dead-zone modification, this changes the stability result for the

adaptive controller from a global to a semi-global result.

It was also found that frame misalignment could result in measured error terms

being centered around a non-zero value, even in the nominal (no-failure) case. This

results in the dead-zones mentioned above to be slightly off-center themselves, which

can cause parameters to drift. A 10 sec period of hover is sufficient to determine

the actual hover attitude, which is then used to adjust the error terms so that they

are centered at 0. This is equivalent to slightly adjusting the point about which the

system is linearized, and does not have any effect on the stability result.

Another important implementation issue is the selection of the adaptive gains. Ac-

cording to the theory described in section 3.2.4, any choice of adaptive gains results

in the same stability result. In practice, however, it was found that nonlinearities,

unmodeled dynamics, actuator saturation, and particularly time delay caused insta-

bilities at higher adaptive gains such as the one shown in figure 3-4. Figure 3-4(a)

shows flight-recorded data of the response of the roll rate and roll command with a

45% loss of actuator effectiveness in one motor. Figure 3-4(b) shows the same re-
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sponse, only with adaptive gains increased by 25%. Through some combination of

actuator saturation and time delay, the signals become completely out-of-phase and

the system becomes unstable, causing an eventual crash.
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Figure 3-4: Flight-recorded response to a 45% loss of actuator effectiveness for the
adaptive controller with (a) nominal adaptive gains, (b) adaptive gains increased 25%
over nominal.

To select the adaptive gains, we employed the following empirical formula, which

arises from inspection of the structure of the adaptive laws [11]

Γ =

∣∣∣∣ diag(ϑ)

τminprmax

∣∣∣∣+ Γ0, (3.23)

where

i. ϑ ∈ <n is vector given by the sum of the columns of θ̄∗ where θ̄∗ corresponds to

the uncertainty Λ = Λ̄ for which the plant has the most unstable eigenvalues.
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The components of θ̄∗ are given by

K̄∗
x = −KxΛ̄

−1,

θ̄∗r = Λ̄−1,

θ̄∗d = 11xm.

(3.24)

ii. τmin is the smallest time constant of the reference model,

iii. p is the norm of BTP ,

iv. rmax is the maximum amplitude of the reference input signal,

v. Γ0 is a small positive definite diagonal matrix which ensures that Γ remains

positive definite.

The resulting adaptive gains were then manually tuned to achieve desired response

in each axis.

3.6 Flight test results

In the following series of flight tests, the quadrotor UAV is commanded to hover

in a fixed position. A simulated loss of control effectiveness is then injected into the

system and the resulting performance is compared using both the baseline (fixed-gain)

controller and the augmented adaptive controller.

Figure 3-5 shows a birds-eye view of the trajectory traced by each controller and

the deviation from the commanded hover position, here marked as (0,0). As the rotor

in the positive x-direction loses 45% of its thrust, the resulting moment about the

y-axis causes the quadrotor to increase its pitch angle. This has the effect of vectoring

the collective thrust, causing the UAV to accelerate in the positive x-direction. This

failure also results in a loss of altitude as well as a yaw moment. All four rotors

must work quickly and effectively to overcome the sudden change in the dynamics

due to the loss of thrust. Because the baseline controller contains integrators on the

x- and y-axes, it eventually does return to the commanded position. The adaptive
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(a)

(b)

Figure 3-5: Birds-eye view of the quadrotor trajectory tracking for the (a) adaptive
and (b) baseline controllers following a 45% loss of thrust in one actuator. The
initial position of the quadrotor is with the failed actuator pointing in the positive
x-direction. The red circles denote the quadrotor position at the end of the test
period.

(a)

(b)

Figure 3-6: Birds-eye view of the quadrotor trajectory tracking for the (a) adaptive
and (b) baseline controllers following a 50% loss of thrust in one actuator. The initial
position of the quadrotor is again with the failed actuator pointing in the positive x-
direction. In the adaptive control case, the red circle denotes the quadrotor position
at the end of the test period. In the baseline control case, the red × denotes the
quadrotor position at the time when the vehicle kill switch was thrown to prevent
collision with the wall.
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controller is faster to react to the change in dynamics and returns to within 15 cm of

the commanded position in 20% less time than the baseline controller. The maximal

radius of departure for the adaptive controller is 46% less than that of the baseline

controller. This can be a critical difference in the case of formation flying, swarm

operations, or when operating in a cluttered environment.
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Figure 3-7: Pitch angle comparison of baseline and adaptive controllers. A 45% loss
of thrust failure occurs in one propeller at t = 4. The adaptive controller exhibits
significantly less deviation from level flight.

In figure 3-6, the same flight test is performed with a more severe, 50% loss of

thrust failure. In this example, the baseline controller was not sufficient to prevent

a crash. The UAV was accelerating toward the wall of the indoor testbed when the

kill switch was thrown. If the quadrotor had sufficient time and space, it is possible

that it may have recovered from this particular failure. However, a departure radius

of over 3 meters is unacceptable for many applications.

Figure 3-7 shows the pitch angle for the maneuver shown in figure 3-5. The

adaptive controller quickly corrects for the change in dynamics before the pitch angle

becomes excessive, thus staying closer to the linear operating condition for which the

baseline controller is designed.

However, the improved performance comes at a cost of increased control effort.

In particular, if we examine the FFT of the control signals for both the baseline and
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Figure 3-8: FFT of baseline and baseline+adaptive control signals during the 4 second
interval after the failure occurs.

adaptive controllers during the first second after the failure occurs, we can see that the

adaptive controller is using significantly more control power. Figure 3-8 shows this

comparison. For this application, this level of control usage is acceptable. However,

under a different set of constraints, this level of controller operation may be excessive.

Excessive control effort may cause increased battery drain, leading to shorter flight

times, and additional wear on the actuator, leading to premature failure.

A further set of tests involved a demonstration of a “real-world” failure. These

flight tests were performed at the Boeing Vehicle Swarm Technology Laboratory in a

setup similar to that of RAVEN. Instead of injecting the failure through artificially

reducing the thrust of one propeller, the propeller itself was cut mid-flight. To ac-

complish this, a propeller was modified pre-flight by slicing both tips (approximately

25% of the propeller radius on each side) and then taping them back together using

masking tape. During flight a small razor blade, mounted to a radio-controlled servo

motor and attached to the quadrotor frame, can be remotely actuated into the path

of the spinning blade, cutting the tape. This results in approximately a 40% loss of

thrust. This experimental setup is shown in figure 3-9.

This approach allows for repeatable experiments as the blade tips can be collected

and reattached to the propeller. Thus baseline and adaptive controllers can be com-
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Figure 3-9: Photo of the modified propeller blade (white) with tips removed. The
razor blade and servo motor can be seen attached to the quadrotor frame.

Figure 3-10: Screen captures of the blade-cutting flight test with the linear baseline
controller. Time indices are given in the bottom right corner of each frame. The
failure occurs between t = 1.0 sec and t = 1.5 sec.
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pared easily. Videos of the flight test results have been posted online [71]. Screen

captures of these videos can be seen in figures 3-10 and 3-11.

Figure 3-11: Screen captures of the blade-cutting flight test with the adaptive con-
troller. Time indices are given in the bottom right corner of each frame. At t = 1.2
sec and t = 1.6 sec the liberated propeller tips are highlighted as they move quickly
out of frame.

The goal of the maneuver shown in figures 3-10 and 3-11 is to remain in a hover

position. The baseline controller is a well-designed, robust linear controller, however,

it is unable to recover from the sudden change in dynamics and the vehicle crashes

into the floor and a nearby wall. On the other hand, the adaptive controller quickly

accounts for the loss of thrust and adjusts online, allowing for safe return to hover

and safe landing. Figure 3-11 also shows the precise moments when the two propeller

tips fly off screen.
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3.7 Summary

In this chapter, a description of an adaptive controller based on Lyapunov stability

and its application to a quadrotor UAV was presented. Flight testing was carried out

in an indoor test facility using both baseline and model reference adaptive controllers.

It was shown that the adaptive controller offers several benefits over the existing fixed-

gain approach, particularly in the case of actuator failures. For less severe failures,

the adaptive controller was faster in reacting to changes in dynamics, resulting in

a decreased radius of departure. For more severe failures, the adaptive controller

prevented a crash and allowed for safe operation and landing. It was found that the

adaptive controller used more control effort during the period directly following the

insertion of the failure. It was also found that increasing adaptive gains beyond a

certain value resulted in undesirable oscillations and even instability. In the following

chapters, methods for getting increased performance without increasing control power

and without undesirable oscillations will be examined.
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Chapter 4

General systems with parametric

uncertainty and time delay

In this chapter, we temporarily turn away from particular application platforms and

towards general systems. In particular, systems which have both parametric un-

certainties that necessitate a nonlinear approach such as adaptive control and time

delays. The adaptive system is intentionally nonlinear and therefore classical notions

of gain and phase margins do not apply. Furthermore, since the verification and val-

idation processes typically used by the aerospace community were designed around

linear principles, a new set of tools must be developed to certify adaptive controllers,

especially in the presence of time delays.

This chapter is divided into two sections. In the first section we examine a de-

scribing functions approach for approximating a nonlinear adaptive controller with a

linear system. This allows for the use of linear tools such as gain and phase margins.

The second section details the development of a novel adaptive controller designed

specifically to deal with known time delay in a system. The approach has a proof

of signal boundedness using a Lyapunov approach and a time delay margin that is

bounded away from 0. The controller is validated using a simulation of F-16 short-

period dynamics.
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4.1 Describing functions approach

This section describes an alternate approach to determining time delay margin for

an adaptive system whereby we approximate linear-in-state terms in MRAC by a

series of step functions [72]. In this way, the nonlinear adaptive system is estimated

by a closed-loop system that is linear at any given time-instant. The overall dy-

namics, however, remain nonlinear. The nonlinearities have merely been encoded

in the form of switching. The resulting switched linear system can then be further

approximated using the describing functions method [9, 48]. The resulting closed-

loop system is then a linear approximation of the adaptive system. Linear tools such

as the extended Nyquist criterion can then be used to examine the behavior of the

approximate system.

4.1.1 Problem statement

Consider a scalar plant of the form

ẋ = amx+ θπ

(
x− C

σ

)
+ u, (4.1)

where x ∈ < is the system state, u ∈ < is the control input, am < 0 is the known

plant, is θ is an unknown constant parameter, and π(x) is the so-called π – function,

centered at the origin and with unity width.

π

(
x− C

σ

)
=

1, |
(

x−C
σ

)
| ≤ 0.5,

0, |
(

x−C
σ

)
| > 0.5.

(4.2)

Since the π-function is discontinuous in x and hence not Lipschitz, the existence of a

solution for the ordinary differential equation (4.1) is not guaranteed in the classical

sense. Therefore we will assume that solutions of (4.1) do exist and are defined in

the sense of Filipov [? ]. We define the reference model to be

ẋm = amx+ bmr. (4.3)
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We can then generate an approximate model reference adaptive controller with

the linear-in-state terms replaced by these π-functions. Let the control input be

u = −θ̂π
(
x− C

σ

)
+ bmr, (4.4)

where the parameter estimate θ̂ is adjusted online according to the adaptive law

θ̂ = γ

∫ t

t0

[
π

(
x(τ)− C

σ

)
(x(τ)− xm(τ))

]
dτ, (4.5)

where γ > 0 is an adaptation rate. Let the model reference tracking error e = x−xm

and the parameter error be θ̃ = θ̂ − θ. We can then write the error dynamics for the

system as

ė = ame− θ̃π

(
x− C

σ

)
. (4.6)

Consider the Lyapunov function candidate

V =
1

2

(
e2 +

1

γ
θ̃2

)
. (4.7)

Substituting (4.6) and (4.5), the derivative of the Lyapunov function candidate is

then

V̇ = ame
2 − θ̃π

(
x(τ)− C

σ

)
e+ θ̃π

(
x(τ)− C

σ

)
e. (4.8)

Therefore

V̇ = ame
2 ≤ 0. (4.9)

Using Barbalat’s lemma one can show global, asymptotic convergence of the tracking

error to 0, that is

lim
t→∞

e(t) = 0. (4.10)

The controller described in (4.4)-(4.5) is thus an approximation of the MRAC ap-

proach, with a global, asymptotic stability result identical to that of MRAC. Although

the treatment above only considers the single π-function case, the same proof applies

to a system with arbitrarily many π-functions with widths and centers selected to
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Figure 4-1: Block diagram for the single π-function scalar problem.

cover some region of interest. As the number of π-functions increases, this system

becomes a step-wise approximation of MRAC. However the resulting system is still a

nonlinear system and further approximations must be made in order to use classical

design tools such as gain and phase margins.

4.1.2 Describing function approximation

In the following sections, we aim to use the describing functions approach to approx-

imate the nonlinear system, thereby enabling the use of linear analysis techniques

such as the extended Nyquist criterion to determine margins of the system. We only

consider the single π-function case; extensions to the multiple π-function case are left

as future work.

A block diagram of the closed-loop system described in (4.1)-(4.5) is shown in

figure 4-1. It should be noted that the π(x) blocks do not represent π-functions

operating on the input to the block, but instead multiplication of the input with

π(x). For this example, we are considering a single π-function centered at 0, that

is C = 0. For the purposes of the margins discussion we can ignore the input as

well as the θ∗ term, which appears in the block diagram as a disturbance. A block

diagram containing those simplifications is shown in figure 4-2 It can be seen that all

58



Figure 4-2: Simplified block diagram for the single π-function scalar problem.

the nonlinearity is contained within the leftmost three blocks. We can now attempt

to approximate these blocks using the describing function approach. First assume

that x is of the form −A sin(ωt), and hence the input to the forward path is of the

form A sin(ωt) as shown in figure 4-3(a).

Noting that π(−x) = π(x), it is clear that the π-function will be unity between

the dotted lines and zero otherwise in figure 4-3(a). If A ≤ σ
2
, there is no nonlinearity

and the system is stable with easily determinable margins. However, if A > σ
2
, then

w1 will take the form shown in figure 4-3(b). The w1 signal is then integrated, leading

to the signal w2, shown in figure 4-3(c). Finally, the signal is multiplied by the π(x)

once again, resulting in the signal w3, shown in figure 4-3(d).

The output of the nonlinearity can be written as

w3(t) =


− γ

ω
(A cos(ωt)− δ) , if π(2k + 1)− ω̄ ≤ ωt ≤ π(2k + 1) + ω̄,

− γ
ω

(A cos(ωt) + δ) , if 2πk − ω̄ ≤ ωt ≤ 2πk + ω̄,

0, otherwise,

(4.11)

where ω̄ = sin−1
(

σ/2
A

)
and the bias term δ is given by

δ =

∫ π/2

ω̄

A sin(ωt)d(ωt) =

√
A2 +

σ2

4
. (4.12)

It should be noted that w3 is an even function, not odd as required by the de-

scribing function approach. Therefore, we introduce a derivative and integrator pair

into the block diagram as shown in figure 4-4. The signal w4 is thus odd, and given
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Figure 4-3: Signals in the forward path: (a) −x, input to the nonlinearity, (b) w1,
input to the integrator, (c) w2, input to the second π-function, (d) w3, output of the
nonlinearity.
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Figure 4-4: Simplified block diagram for the single π-function scalar problem, includ-
ing an extra derivative / integrator pair.

by

w4(t) =



γ (A sin(ωt)) , πk − ω̄ < ωt < πk + ω̄,

−∞, ωt = πk − ω̄,

∞, ωt = πk + ω̄,

0, otherwise.

(4.13)

We can therefore continue with the describing functions approach by calculating the

first Fourier coefficient

b1 =
2

π

∫ π

0

w4(t) sin(ωt)d(ωt)

=
2

π

[∫ ω̄

0

γ

ω2
A sin2(ωt)d(ωt)− σ/2

A
+
σ/2

A
+

∫ π

π−ω̄

γ

ω2
A sin2(ωt)d(ωt)

]

=
4

π

∫ ω̄

0

γ

ω2
A sin2(ωt)d(ωt) =

2γA

π

ω̄ − σ/2

A

√
1−

(
σ/2

A

)2
 .

(4.14)

The describing function for the nonlinearity is thus

N(A) =
b1
A

=
2γ

π

sin−1

(
σ/2

A

)
− σ/2

A

√
1−

(
σ/2

A

)2
 . (4.15)

Note that for A > σ/2, N(A) is real and positive for all positive γ and N → 0

as A → ∞. The existence and stability of any limit cycles is determined by the

intersections of and −1/N(A) and G(jω) on the complex plane where

G(s) =
1

s (s− am)
. (4.16)
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Figure 4-5: Nyquist diagram for the open-loop system G(jω) and −1/N(A) with
am = −4 and γ = 20.

The Nyquist plot of G(jω) is shown in figure 4-5.

Since the nonlinearity is only present for A > σ/2, −1/N(A) ∈ (−1/γ,−∞). The

curve lies entirely on the negative real axis, the two curves never intersect and there-

fore there are no limit cycles present. Furthermore, −1/N(A) is never encircled by

G(jω). By the Extended Nyquist Criterion the system is therefore stable everywhere

and the amplitude of oscillations in the loop will always decrease. It is clear that

the gain margin of the system is ∞, however, it can be seen that increasing γ can

make the phase margin arbitrarily small. This result agrees with empirical results

on simulation of MRAC systems that suggest high adaptation rate can significantly

reduce the system’s time delay margin.

4.1.3 Summary

In this section, we developed a describing function approach for approximating a

switched linear system, itself an approximation of the adaptive system, with a linear

closed loop system. An examination of a scalar problem with a single π-function

led to a result for the margins of the approximate system. Although the concept
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of gain margins do not apply to the adaptive controller, it has been shown [7] that

the MRAC architecture can accommodate any sign-definite loop gain, corresponding

to an infinite gain margin. The phase margin is also not applicable to adaptive

systems, but simulation results [73, 74] show that increasing the rate of adaptation

reduces time-delay margin significantly. Both of these results are captured by the

approximate linear system described.

The methods used are also applicable to the arbitrary many π-function case. This

is important because as the number of π-functions covering some region of interest

becomes large, the switched linear system approaches MRAC over that region. This

may allow for the use of linear tools such as the extended Nyquist criterion to gain

more insight about the margins of adaptive systems.

4.2 Time delay resistant adaptive control

In this section we take a different approach by using a nonlinear controller design

which explicitly accounts for known time delay, and which has a proof of stability

using nonlinear analysis tools. Many potential applications of adaptive control, such

as adaptive flight control systems, require that the controller have high performance,

stability guarantees, and robustness to time delays. These requirements typically lead

to engineering trade-offs, such as a trade-off between performance and robustness.

In this section, a new Time Delay Resistant (TDR) adaptive control framework is

proposed using a combination of several modifications to the typical direct model

reference adaptive control (MRAC) approach. The benefits of the TDR approach

are explored with a simulation of the longitudinal dynamics of a fixed-wing aircraft.

Comparison studies are presented for 80 ms and 250 ms delay cases.

4.2.1 Problem statement

Consider a MIMO, state variables accessible system of the form

ẋp(t) = Apxp(t) +BpΛu(t− τ), (4.17)
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where Bp ∈ <nxm is constant and known, Ap ∈ <nxn is constant and unknown,

xp ∈ <n, u ∈ <m, Λ ∈ <mxm is an unknown diagonal positive definite constant

matrix with diagonal elements < ∈ (0, 1], and τ is a known time delay. The goal is

to track a reference command r(t) in the presence of the unknown Ap, Λ, and the

known τ . The system output is given by

y(t) = Cpxp(t), (4.18)

and the output tracking error is given by

ey(t) = y(t)− r(t− τ). (4.19)

Augmenting (4.17) with the integrated output tracking error

ėyI
(t) = ey(t) = y(t)− r(t− τ), (4.20)

leads to the extended open loop dynamics

ẋ(t) = Ax(t) +BΛu(t− τ) +Bcr(t− τ), (4.21)

where x(t) =
[
xT

p (t) eT
yI

(t)
]T

is the extended system state vector. The extended

open-loop system matrices are given by

A =

Ap 0

Cp 0

 , B =

Bp

0

 , Bc =

 0

−I

 , (4.22)

and the extended system output

y(t) =
[
Cp 0

]
x(t) = Cx(t). (4.23)

We assume that there exists a constant, possibly unknown gain matrix θk such

that Am = A + BΛθT
k where Am is the known model dynamics. Then the system
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dynamics can be rewritten as

ẋ(t) = Amx(t) +BΛ
(
u(t− τ) + θT

k x(t)
)

+Bcr(t− τ). (4.24)

The goal is then to design a suitable control input u(t) so that the system described

in (4.24) tracks the reference signal r(t).

4.2.2 Modifications to MRAC

The TDR adaptive controller is comprised of several modifications to a standard

MRAC approach. The overall control structure is that of a LQR baseline controller

augmented by a direct adaptive posicast controller as well as an indirect adaptive

controller. In both the direct and indirect adaptive parts, time-varying adaptive gains

are utilized. In this section, the design of each of these modifications is described in

detail.

Direct adaptive posicast controller

The adaptive posicast controller (APC) is essentially an adaptive extension of the

smith predictor, an approach originated as a method to deal with systems with large

delays. The APC method also brings in ideas from finite spectrum assignment [75].

The main idea in this approach is to predict the future output of the plant using a

plant model, and then use this prediction to cancel the effect of the time delay on

the system. It does this by adding an additional set of adaptive parameters, which

in turn adds an additional term to the control law.

Through examination of the plant in (4.24), it is clear that in order to eliminate

the effects of the uncertainty, one possible choice is a control input of the form

u(t) = −θ̂T
k (t)x(t+ τ), (4.25)

where θ̂k(t) are time-varying adaptive parameter estimates, and x(t+τ) is the system

state positively forecasted (hence “posicast”) into the future by τ seconds. This
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control input can be made causal by writing the future state x(t+ τ) in terms of the

general solution of the differential equation (4.24)

x(t+ τ) = eθAτx(t) +

∫ 0

−τ

e−θAηBΛu(t+ η)dη +

∫ 0

−τ

e−θAηBcr(t+ η)dη, (4.26)

where θA = Am +BΛθT
k , for simplicity of notation.

We can therefore write the control input (4.25) as

u(t) = −θ̂T
x (t)x(t)−

∫ 0

−τ

θ̂u(t, η)u(t+ η)dη −
∫ 0

−τ

θ̂r(t, η)r(t+ η)dη, (4.27)

where θx = θT
k e

θAτ , θu(η) = θT
k e
−θAηBΛ, and θr(η) = θT

k e
−θAηBc. In the discrete time

implementation of the control law in (4.27), the integrals become sums and (4.27)

can be rewritten as

u(t) = −θ̂T (t)φ(t), (4.28)

where θ̂(t) =
[
θ̂T

x (t) θ̂u(t− τ) ... θ̂u(t) θ̂r(t− τ) ... θ̂r(t)
]

and the regressor

φ(t) =
[
x(t) u(t− τ) ... u(t) r(t− τ) ... r(t)

]
. The new regressor φ(t) there-

fore consists of the state x(t), as well as τ/dT delayed versions of the control input

u(t) and the reference command r(t). It is assumed that the time delay τ is a multi-

ple of the time step dT . Note that as dT → 0 the control input in (4.28) becomes a

stepwise approximation of that in (4.27) .

Examining (4.25), (4.26), and (4.28), we note that the unknown parameter θT

satisfies the following relation

θTφ(t) = θT
k x(t+ τ). (4.29)

Using (4.29), the plant (4.24) can be written as

ẋ(t) = Amx(t) +BΛ
(
u(t− τ) + θTφ(t− τ)

)
+Bcr(t− τ). (4.30)

Substituting (4.28) into (4.30) and doing some algebraic manipulation, we can
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write

ẋ(t) = Amx(t)−BΛ̃(t− τ)u(t− τ)−BΛ̃θ
T
(t− τ)φ(t− τ) +Bcr(t− τ). (4.31)

The parameters Λ̂(t) and Λ̂θ
T
(t) are then adjusted in response to the model refer-

ence tracking error e(t) = x(t) − xm(t) where the reference model is the closed loop

system given by (4.21) in feedback with a linear baseline controller in the case of no

uncertainty or failures. Note the slight abuse of notation

ΛθT − Λ̂θ
T
(t)︸ ︷︷ ︸

=Λ̂(t)θ̂T (t)

= Λ̃θ
T
(t)︸ ︷︷ ︸

6=Λ̃(t)θ̃T (t)

.
(4.32)

This reference model is given by

ẋm(t) = Amxm(t) +Bcr(t− τ). (4.33)

Note that the known time delay is included in the reference model.

Subtracting (4.33) from (4.31) yields the tracking error dynamics

ė(t) = Ame(t)−BΛ̃(t− τ)u(t− τ)−BΛ̃θ
T
(t− τ)φ(t− τ). (4.34)

The adaptive laws

˙̂
Λ(t) = ΓΛu(t− τ)eT (t)PB,

˙̂
Λθ

T

(t) = Γθφ(t− τ)eT (t)PB,

(4.35)

can be shown to lead to semi-global signal boundedness through the Lyapunov-

Krasovskii functional [49]. Note that to generate the control input in (4.28), we must

calculate θ̂(t) = Λ̂−1(t)Λ̂θ(t), for which we must assume that Λ̂(t) has an inverse. To
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ensure this is the case, we modify the adaptive laws as

˙̂
Λ(t) = ΓΛδij

(
u(t− τ)eT (t)PB

)
+ f(Λ̂(t)),

˙̂
Λθ

T

(t) = Γθφ(t− τ)eT (t)PB,

(4.36)

where δij is the Kronecker delta and f
(
Λ̂(t)

)
is defined element-wise as

f
(
λ̂ij(t)

)
=


1

λ̂ij(t)
− 1

ε
, λ̂(t) < ε,

0, otherwise.

(4.37)

The purpose of the function f
(
λ̂ii(t)

)
is to keep the diagonal elements of Λ̂ matrix

bounded away from 0, ensuring that the matrix remains non-singular. This can be

thought of as the converse of the projection algorithm.

Indirect adaptive controller

The so-called CMRAC conjecture [76], states that better transient characteristics can

be obtained by using prediction errors in addition to tracking errors in the design of

adaptive controllers. Thus a combined composite MRAC structure was developed

by combining aspects of direct and indirect adaptive control. Numerous simulation

studies have been reported over the years for various models, all of them confirming

the fact that indeed CMRAC systems had transient performance better than that of

direct MRAC alone [44–47]. The CMRAC conjecture, however, remains unproven.

The particular version of CMRAC used in these studies differs from some previous

formulations [46, 48, 77] in that: a) it is applicable to a generic class of MIMO

dynamical systems, b) online measurements of the system state derivative are not

required, and c) the system is designed to augment a baseline linear controller [78].

To generate the prediction error signal required for indirect adaptation, we first
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rewrite the dynamics of (4.30) as

ẋ(t) + λfx(t) = λfx(t) + Amx(t) +Bcr(t− τ)

+BΛ
(
u(t− τ) + θTφ(t− τ)

)
,

(4.38)

and introduce a stable filter

G(s) =
λf

s+ λf

, (4.39)

where λf > 0 is the filter inverse constant. The filtered version of x(t) is denoted

xf (t) and is described by the dynamics

ẋf (t) + λfxf (t) = λfx(t). (4.40)

Substituting (4.40) into (4.38) and letting z(t) = x(t)− xf (t) we have

ż(t) + λfz(t) = Amx(t) +Bcr(t− τ) +BΛ
(
u(t− τ) + θTφ(t− τ)

)
, (4.41)

and, consequently

z(t) = z(t0)e
−λf t0 +

∫ t

t0

e−λf (t−η) [Amx(η)

+Bcr(η − τ) +BΛ
(
u(t− τ) + θTφ(t− τ)

)]
dη.

(4.42)

We can assume without loss of generality that the filter dynamics (4.39) and the plant

dynamics (4.41) have the same initial conditions, that is, z(t0) = 0 [78]. Noting that

the integral in (4.42) represents the application of the filter (4.39), we can rewrite

(4.42) as

x(t)− xf (t) = Am
xf (t)

λf

−Bc
rf (t− τ)

λf

+BΛ
uf (t− τ)

λf

+BΛθT φf (t− τ)

λf

, (4.43)

where rf (t), uf (t), and φf (t) are filtered versions of r(t), u(t), and φ(t), respectively.

Assuming that B is full rank, we can write the Moore-Penrose pseudoinverse [79] as

69



B+ =
(
BTB

)−1
BT and

(
BTB

)
is invertible. We can therefore rearrange (4.43) as

B+ [λf (x(t)− xf (t)) −Amxf (t)−Bcrf (t− τ)]

= Λuf (t− τ) + ΛθTφf (t− τ).
(4.44)

We now denote the left-hand side of (4.44) as Y (t) ∈ <m and note that the value of

Y (t) can be computed online at every time instant t using the current state x(t), the

filtered state xf (t) and a stored value of the command input r(t− τ). The right-hand

side of (4.44) contains the unknown parameters Λ and θ, which can be estimated

using the predictor model

Ŷ (t) = Λ̂(t− τ)uf (t− τ) + Λ̂θT (t− τ)φf (t− τ). (4.45)

The predictor error eY (t) = Ŷ (t)− Y (t) can thus be written as

eY (t) = Λ̃(t− τ)uf (t− τ) + Λ̃θT (t− τ)φf (t− τ). (4.46)

Including the indirect adaptation is accomplished by simply adding indirect adaptive

terms to the direct adaptive laws (4.36)

˙̂
Λ(t) = ΓΛδij

(
u(t− τ)eT (t)PB −uf (t− τ)γce

T
Y (t)

)
+ f(Λ̂(t)),

˙̂
ΛθT (t) = Γθ

(
φ(t− τ)eT (t)PB −φf (t− τ)γce

T
Y (t)

)
,

(4.47)

where γc > 0 is a gain on the indirect part. We can write ˙̃ΘT (t) =
[

˙̃Λ(t)
˙̃

ΛθT (t)
]

and also note that the adaptive law can be broken into direct and indirect parts as

˙̃Θ(t) = ˙̃Θd(t) + ˙̃Θi(t) + F
(
Λ̂(t)

)
, (4.48)

where ˙̃Θd(t) consists of the term containing the tracking error e and ˙̃Θi(t) consists of

the term containing the prediction error eY and F
(
Λ̂(t)

)T

=
[
f
(
Λ̂(t)

)
0
]
. It is

clear that in the case where γc = 0, the ˙̃Θi(t) term vanishes and the above adaptive

control laws reduce to those of (4.36).
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Variable adaptive gains

Allowing time-varying adaptive gains allows for the faster convergence of parameter

estimates as well as improved noise sensitivity. In particular, the bounded-gain-

forgetting (BGF) gain adjustment allows for fast convergence and smooth parameter

estimates [44]. The rules for adjusting the adaptive gains are chosen as

Γ̇−1(t) = −ρ(t)Γ−1(t) + ωf (t− τ)γcω
T
f (t− τ), (4.49)

where Γ(t) =

ΓΛ(t) 0

0 Γθ(t)

, ωT
f (t) =

[
uT

f (t) φT
f (t)

]
, and ρ(t) is a positive scalar

forgetting factor given by

ρ(t) = ρ0

(
1− ||ΓT (t)Γ(t)||

γ2
0

)
, (4.50)

where ρ0 is the positive constant maximum forgetting rate and γ0 is the positive

constant bound on the adaptive gain matrix magnitude. The inverse gain adjustment

law in (4.49) has several important properties. First, it ensures that Γ(t) remains

positive definite. Second, the data forgetting feature allows for parameter tracking,

and is only activated when ωf is persistently exciting [48].

In implementation, we avoid taking computationally expensive inverses by using

the equivalent gain adjustment law

Γ̇(t) = ρ(t)Γ(t)− Γ(t)ωf (t− τ)γcω
T
f (t− τ)Γ(t). (4.51)

Time delay resistant adaptive control

We can now combine the modifications discussed previously into one coherent struc-

ture, the time delay resistant (TDR) adaptive controller. The control law is of the
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form (4.25) and the parameters Θ̂ are adjusted according to the adaptive laws

˙̂
Θ(t) = Γ(t)∆ijω(t− τ)eT (t)PB︸ ︷︷ ︸

˙̂
Θd(t)

−Γ(t)∆ijωf (t− τ)γce
T
Y (t)︸ ︷︷ ︸

˙̂
Θi(t)

+F (Λ̂(t)), (4.52)

where ∆T
ij =

[
δij I

]
and ωT (t) =

[
−uT (t) φT (t)

]
. The adaptive gains are adjusted

according to (4.51). Using this nomenclature, the prediction error can be written

compactly as

eY (t) = Θ̃(t− τ)ωf (t− τ), (4.53)

and the error dynamics in (4.34) can be written as

ė(t) = Ame(t)−BΘ̃T (t)ω(t− τ) +B
[
Θ̃T (t)− Θ̃T (t− τ)

]
ω(t− τ). (4.54)

Using the Leibniz-Newton formula, we have:

Θ̃T (t)− Θ̃T (t− τ) =

∫ 0

−τ

˙̃ΘT (t+ ν)dν

=

(∫ 0

−τ

[
Γ(t+ ν)∆ij

(
ω(t− τ + ν)eT (t+ ν)PB

− ωf (t− τ + ν)γce
T
Y (t+ ν)

)
+ F

(
Λ̂(t+ ν)

)]
dν
)T

.

(4.55)

Using (4.55), we can write the error dynamics (4.54) as

ė(t) = Ame(t)−BΘ̃T (t)ω(t− τ)

+B

(∫ 0

−τ

[
Γ(t+ ν)∆ij

(
ω(t− τ + ν)eT (t+ ν)PB

− ωf (t− τ + ν)γce
T
Y (t+ ν)

)
+ F

(
Λ̂(t+ ν)

)]
dν
)T

ω(t− τ).

(4.56)

Equations (4.25) and (4.50)-(4.52) fully describe the TDR adaptive controller.

Theorem 1. For the closed-loop system given by the dynamics (4.24) and the adap-

tive controller given in (4.25) and (4.50)-(4.52), given initial conditions on adaptive

parameters Θ(0) and regressor vector ω(ξ) where ξ ∈ [−τ, 0], there exists a τ ∗ > 0
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such that for all τ ∈ [0, τ ∗], the signals in the closed-loop system are uniformly ulti-

mately bounded. Furthermore, both errors e(t) and eY (t) tend to 0 asymptotically as

t→∞.

Proof. In the delay-free case, that is τ ≡ 0, a Lyapunov function that proves global

asymptotic stability of the system is given by

V1(e, Θ̃) = eT (t)Pe(t) + Tr
(
Θ̃T (t)Γ−1(t)Θ̃(t)

)
, (4.57)

where P is the unique symmetric positive definite solution of the Lyapunov equation,

AT
mP + PAm = −Q, (4.58)

where Q is also symmetric positive definite. Based on the Lyapunov function given

in (4.57), we now introduce the Lyapunov-Krasovskii functional

V (e, Θ̃, ˙̃Θ) = V1(e, Θ̃) + V2(
˙̃Θd) + V3(

˙̃Θi), (4.59)

where the additional terms are given by:

V2(
˙̃Θd) = 2Tr

(∫ 0

−τ

(∫ t

t+ν

˙̃Θd(ξ)
˙̃Θd(ξ)

Tdξ

)
dν

)
,

V3(
˙̃Θi) = Tr

(∫ 0

−τ

(∫ t

t+ν

˙̃Θi(ξ)
˙̃Θi(ξ)

Tdξ

)
dν

)
.

(4.60)

Using (4.58) and (4.54), the derivative of V1 can be computed as

V̇1(t) = −eT (t)Qe(t)− 2eT (t)PBΘ̃(t)ω(t− τ)

+ 2eT (t)PB

(∫ 0

−τ

Γ(t+ ν)∆ij

[
ω(t− τ + ν)eT (t+ ν)PB

− ωf (t− τ + ν)γce
T
Y (t+ ν) + F

(
Λ̂(t+ ν)

)]
dν
)T

ω(t− τ)

+ 2Tr
(
Θ̃T (t)Γ−1(t) ˙̃Θ(t)

)
+ Tr

(
Θ̃T (t)Γ̇−1(t)Θ̃(t)

)
.

(4.61)
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We now note that

Tr
(
Θ̃T (t)Γ−1(t) ˙̃Θ(t)

)
≤ Tr

(
Θ̃T (t)Γ−1(t) ˙̃Θd(t)

)
+ Tr

(
Θ̃T (t)Γ−1(t) ˙̃Θi(t)

)
, (4.62)

since by the definition of the function f
(
Λ̂(t)

)
given in (4.37),

Tr
(
Λ̃T (t)Γ−1

Λ (t)F (Λ̂)(t)
)

=
n∑
i

λ̃ii(t)

γΛi
(t)
f
(
λ̂ii(t)

)
≥ 0, (4.63)

for λii > ε. By making ε arbitrarily small, we can ensure the above relation holds.

In reality, applying this approach with very small ε may cause numerical problems,

which necessitates the use of a stronger assumption on Λ, such as λii ∈ (0.1 1].

Using (4.49), (4.52), and (4.62), the derivative of the Lyapunov function in (4.61)

becomes

V̇1(t) ≤ −eT (t)Qe(t)

+ 2eT (t)PB

(∫ 0

−τ

Γ(t+ ν)∆ij

[
ω(t− τ + ν)eT (t+ ν)PB

− ωf (t− τ + ν)γce
T
Y (t+ ν) + F

(
Λ̂(t+ ν)

)]
dν
)T

ω(t− τ)

− 2Tr
(
Θ̃T (t)ωf (t− τ)γce

T
Y (t)

)
− Tr

(
Θ̃T (t)ρ(t)Γ−1(t)Θ̃(t)

)
+ Tr

(
Θ̃T (t)ωf (t− τ)γcω

T
f (t− τ)Θ̃(t)

)
.

(4.64)

Using (4.53), this becomes

V̇1(t) ≤ −eT (t)Qe(t)− Tr
(
eY γce

T
Y (t)

)
− Tr

(
Θ̃T (t)ρ(t)Γ−1(t)Θ̃(t)

)
+ 2eT (t)PB

(∫ 0

−τ

Γ(t+ ν)∆ij

[
ω(t− τ + ν)eT (t+ ν)PB

− ωf (t− τ + ν)γce
T
Y (t+ ν) + F

(
Λ̂(t+ ν)

)]
dν
)T

ω(t− τ).

(4.65)

Using the trace identity, aT b = Tr
(
baT
)

for codimensional vectors a and b, we can

74



write (4.65) as

V̇1(t) ≤ −eT (t)Qe(t)− eT
Y γceY (t)− Tr

(
Θ̃T (t)ρ(t)Γ−1(t)Θ̃(t)

)
+ 2Tr

(
ω(t− τ)eT (t)PB

(∫ 0

−τ

Γ(t+ ν)
[
ω(t− τ + ν)eT (t+ ν)PB

−ωf (t− τ + ν)γce
T
Y (t+ ν) + F

(
Λ̂(t+ ν)

)]
dν
)T
)
.

(4.66)

The derivative of V2 can be calculated as

V̇2 = 2τTr
(
Γ(t)ω(t− τ)eT (t)PB

(
Γ(t)ω(t− τ)eT (t)PB

)T)
− 2Tr

(∫ 0

−τ

Γ(t+ ν)ω(t− τ + ν)eT (t+ ν)PB(
Γ(t+ ν)ω(t− τ + ν)eT (t+ ν)PB

)T
dν
)
,

(4.67)

and the derivative of V3 can be calculated as

V̇3 = τTr
(
Γ(t)ωf (t− τ)γce

T
Y (t)

(
Γ(t)ωf (t− τ)γce

T
Y (t)

)T)
− Tr

(∫ 0

−τ

Γ(t+ ν)ωf (t− τ + ν)γce
T
Y (t+ ν)(

Γ(t+ ν)ωf (t− τ + ν)γce
T
Y (t+ ν)

)T
dν
)
.

(4.68)

We can now write the derivative of the Lyapunov-Krasovskii functional V as

V̇ ≤− eT (t)Qe(t)− eT
Y (t)γceY (t)− Tr

(
Θ̃T (t)ρ(t)Γ−1(t)Θ̃(t)

)
+ Tr

(∫ 0

−τ

[
2āT b̄+ āT ΓT (t)Γ(t)ā− b̄T b̄

]
dν

)
+ Tr

(∫ 0

−τ

[
2āT d̄+ āT ΓT (t)Γ(t)ā− d̄T d̄

]
dν

)
− Tr

(∫ 0

−τ

b̄T b̄dν

)
+ Tr

(
τ c̄T ΓT (t)Γ(t)c̄

)
+ 2Tr

(
eT (t)PBω(t− τ)

∫ 0

−τ

F
(
Λ̂(t+ ν)

)
dν

)
,

(4.69)

where

āT = ω(t− τ)eT (t)PB, b̄T = Γ(t+ ν)ω(t− τ + ν)eT (t+ ν)PB,

c̄T = −ωf (t− τ)γce
T
Y (t), d̄T = −Γ(t+ ν)ωf (t− τ + ν)γce

T
Y (t+ ν).

(4.70)
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If we require Λ̂ > ε ∀t ∈ (−τ, 0), the final term in (4.69) vanishes. After completing

the square and removing some negative semidefinite terms, we have

V̇ ≤− eT (t)Qe(t)− eT
Y (t)γceY (t)

+ 2τTr
(
āT
(
ΓT (t)Γ(t) + I

)
ā
)

+ τTr
(
c̄T ΓT (t)Γ(t)c̄

)
≤− eT (t)Qe(t)− eT

Y (t)γceY (t)− Tr
(
Θ̃T (t)ρ(t)Γ−1(t)Θ̃(t)

)
+ 2τTr

(
ω(t− τ)eT (t)PB

(
ΓT (t)Γ(t) + I

)
BTPe(t)ωT (t− τ)

)
+ τTr

(
ωf (t− τ)γce

T
Y (t)ΓT (t)Γ(t)eY (t)γcω

T
f (t− τ)

)
.

(4.71)

Using the trace identity Tr (abc) = Tr (bca), and after some algebraic manipulation

(4.71) becomes

V̇ ≤− eT (t)Qe(t)− eT
Y (t)γceY (t)

+ 2τeT (t)PB
(
ΓT (t)Γ(t) + I

)
BTPe(t)ωT (t− τ)ω(t− τ)

+ τγce
T
Y (t)ΓT (t)Γ(t)eY (t)γcω

T
f (t− τ)ωf (t− τ).

(4.72)

After taking some norms and applying the triangle inequality,

V̇ ≤− eT (t)Qe(t)− eT
Y (t)γceY (t)

+ 2τ
(
||ΓT (t)Γ(t)||+ ||I||

)
||ω(t− τ)||2eT (t)PBBTPe(t)

+ τγ2
c ||ΓT (t)Γ(t)||||ωf (t− τ)||2eT

Y (t)eY (t).

(4.73)

Finally, combining the quadratic terms in e and eY ,

V̇ ≤− eT (t)
[
Q− 2τ

(
γ2

0 + 1
)
||ω(t− τ)||2PBBTP

]
e(t)

− eT
Y (t)

[
γc − τγ2

cγ
2
0 ||ωf (t− τ)||2

]
eY (t).

(4.74)

Therefore, there are 2 conditions that must hold for V̇ to be negative definite:

i. Q− 2τ (γ2
0 + 1) ||ω(t− τ)||2PBBTP > 0,

ii. γc − τγ2
0γ

2
c ||ωf (t− τ)||2 > 0.
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From here the proof follows that of previous work [49, 80]. The rest of the proof

involves putting bounds on ||ω|| and ||ωf ||. Given a bound on ||ω|| and ||ωf ||, it is

clear that the above two relations will hold for all τ < τ ∗ where τ ∗ is a time-delay

margin, and is bounded away from zero by virtue of the fact that Q is positive definite

and γc is positive, thus proving theorem 1.

4.2.3 Simulation results

In this section, we compare the performance of an LQR baseline to a series of six

adaptive controllers which consist of various combinations of the modifications dis-

cussed in 4.2.2, including the TDR adaptive controller itself. The performance of the

various controllers will be examined using a simulation model of the F-16 short period

longitudinal dynamics. Neglecting the effects of gravity and thrust, the short period

dynamics are α̇
q̇

 =

 Zα

V
1 + Zq

V

Mα Mq

α
q

+

 Zδe

V

Mδe

 δe, (4.75)

where α is the aircraft angle of attack, q is the pitch rate, δe is the elevator deflec-

tion, and V is the trimmed (constant) air speed [81]. The partial derivatives of the

aerodynamic vertical force Z with respect to α, q, and δe, are given by Zα, Zq, and

Zδe respectively. Similarly, the partial derivatives of the pitching moment M with

respect to α, q, and δe, are given by Mα, Mq, and Mδe respectively. The numerical

values for these aerodynamic derivatives can be found in [81], Example 5.5-3, Table

3.4.-3. These particular values correspond to an F-16 aircraft trimmed at sea level,

with VT = 502 ft/sec, Q̄ = 300 lb/ft2, and CG = 0.35c̄.

With α in units of radians, q in radians/second, and δe in degrees, the resulting

open-loop system matrices are given by

A =

−1.0189 .9051

0.8223 −1.0774

 , B =

−0.0022

−0.1756

 . (4.76)
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Matched uncertainty in the form of a linear-in-state uncertainty KT
xp,pertx, and a

constant loss of control effectiveness Λ > 0 were included in the system. Numerical

values for these uncertainties are given by

KT
xp,pert =

[
−4.6839 −9.8197

]
, Λ = 0.5. (4.77)

The values of the uncertainties given in (4.77) are equivalent to a 50% increase in Mα,

an 80% decrease in Mq, and a 50% decrease in the elevator effectiveness Mδe . Thus,

the vehicle has become 50% more statically unstable, lost 80% of its pitch damping

ability, and the aircraft controllability has decreased by 50%. Time delays tested

ranged from 0-250 ms. The extent of the uncertainties and the size of time delays

tested are quite drastic and perhaps even unrealistic. These choices were motivated

by the intent to demonstrate the effectiveness of the proposed TDR design, and to

highlight the differences between the various modifications to the MRAC approach.

The full aircraft dynamics, along with the uncertainties described above, now take

the form of (4.17), where xp =
[
α q

]T
is the state vector, Λ > 0 is the uncertainty in

the elevator effectiveness. The controlled output state y was chosen to be the angle of

attack α. Thus, the control goal becomes tracking of a bounded, time-varying angle

of attack command r = αcmd in the presence of the uncertainties and the time delay τ .

To ensure steady state tracking performance, integrated α tracking error dynamics,

ėyI
(t) = α(t)− αcmd(t− τ), (4.78)

are included as well. The resulting extended open-loop dynamics then takes the form

of (4.24).

The reference matrix Am was defined as in (3.10)-(3.11) with the baseline feedback

gains selected using the LQR method [81], with Qlqr = diag
([

0 0 100
])

and Rlqr =

1. This resulted in LQR feedback gains Kx =
[
10.8786 6.0589 10

]
. The reference

model angle-of-attack is given by αref . A direct MRAC controller was then designed

for the system described in section 4.2.1 and adaptive gains were selected to give a

good balance of tracking performance and control effort.
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Figure 4-6: LQR (a) α command following and (b) corresponding elevator deflection,
as well as MRAC (c) α command following and (d) corresponding elevator deflection
for the failure case with τ = 0 ms.

The first simulation study consists of the closed-loop system with the two types

of uncertainties mentioned previously, but with no time delay, that is τ ≡ 0. Figure

4-6(c)-(d) shows that the MRAC approach solves the tracking problem, while it can

be seen in figure 4-6(a)-(b) that the LQR approach is unable to accommodate the un-

certainties and has very poor tracking performance. This result is unsurprising given

that adaptive control has been shown to be very effective in dealing with parametric

uncertainty and MRAC has a global asymptotic proof of stability for the simulated

system.

However, when even a small amount of time delay (40 ms, in this case) is added

to the system, the performance of the well-tuned adaptive controller deteriorates dra-

matically. In Figure 4-7 (a), the MRAC approach displays undesirable oscillations.

Figure 4-7 (b) shows that the elevator deflection is unreasonably large. One possi-

ble solution to this problem is to reduce the adaptive gains. For this motivational

example, a single scaling factor across all adaptive gains is sufficient. Reducing the
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Figure 4-7: MRAC (a) α command following and (b) corresponding elevator deflection
for the failure case with τ = 40 ms.

gains by a factor of 100 eliminates the undesirable oscillations. However, it can be

seen by comparing figure 4-6(c) to figure 4-8(a) that reducing adaptive gains has a

detrimental effect on transient performance.
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Figure 4-8: Low-gain MRAC (a) α command following and (b) corresponding elevator
deflection for the failure case with τ = 40 ms.

It is therefore desirable to develop a modified MRAC approach that allows high

performance and high robustness to time delays simultaneously. In the following

simulation studies, we examine the performance of every reasonable combination of

the MRAC modifications described in section 4.2.2 for the τ = 80 ms (nominal time

delay value) and the τ = 250 ms (large time delay value) case. The features of the

seven controllers examined are summarized in table 4.1. The table culminates with

the TDR adaptive controller, which is the combination of all the modifications.

The performance of the various controllers depends heavily on the selection of

the free parameters, particularly the choices of the adaptive gains. To ensure a fair
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LQR Direct Posicast Indirect Variable
baseline Adaptation Control Adaptation Ad. Gains

Baseline ×
MRAC × ×

APC × × ×
CMRAC × × ×

BGF × × × ×
CAPC × × × ×
TDR × × × × ×

Table 4.1: Features of the baseline controller, model reference adaptive con-
troller (MRAC), adaptive posicast controller (APC), combined / composite MRAC
(CMRAC), CMRAC with bounded-gain-forgetting adaptive gains (BGF), combined
/ composite adaptive posicast controller (CAPC), and time delay resistant adaptive
controller (TDR).

comparison, all free parameters were selected to minimize the cost function

J =
1

3

(
ēT ē+ δ̄T

e δ̄e + ˙̄δT
e

˙̄δe

)
, (4.79)

where ē, δ̄e, and ˙̄δe are non-dimensionalized tracking error, control usage, and control

rate usage, respectively. These signals are non-dimensionalized as

ē =
||e||

||eLQR∗||
, δ̄e =

||δe||
||δeLQR∗ ||

, ˙̄δe =
||δ̇e||

||δ̄eLQR∗ ||
, (4.80)

where eLQR∗ , δeLQR∗ , and δ̇eLQR∗ are the tracking error, control usage, and control rate

usage of an LQR baseline controller with perfect knowledge of the uncertainty. This

fictional “LQR∗” controller is the best possible without explicitly accounting for the

delay in the system. This controller performs equally well regardless of the severity

of the failure and is of course infeasible in practice as the uncertainties encountered

are not known a priori.

80 ms time delay case

The first case under consideration is that of an 80 ms time delay. This is a fairly

reasonable estimate for the actual delay in the loop for an aircraft such as the F-16.

Seven controllers were designed using the modifications described in table 4.1 and

81



free parameters were selected to minimize the cost function given in (4.79). The non-

dimensionalized errors, control usage, and control rate usage of the various controllers

can be found in table 4.2 and the cost associated with each controller is shown in

figure 4-9. A comparison of the tracking performance and control usage for the

controllers is shown in figure 4-10.

Baseline MRAC APC CMRAC BGF CAPC TDR LQR∗

ē 45.6 5.44 2.56 1.62 1.47 1.06 0.921 1.00
δ̄e 2.14 1.04 1.02 1.01 1.01 1.00 0.976 1.00
˙̄δe 2.32 1.05 1.44 1.25 1.34 1.21 0.976 1.00

Table 4.2: Comparison of tracking error and control effort for the τ = 80 ms case.

Baseline MRAC APC CMRAC BGF CAPC TDR

1

3

5

7

9

11

J

Figure 4-9: Comparison of the cost associated with each of the seven controllers for
the τ = 80 ms case. Note the y-axis is cropped, the baseline controller cost is well off
the chart at about 700.
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Figure 4-10: Comparison of α command following and corresponding elevator deflec-
tion, for (a)-(b) Baseline control, (c)-(d) MRAC, (e)-(f) APC, (g)-(h) CMRAC, (i)-(j)
BGF, (k)-(l) CAPC, (m)-(n) TDR adaptive control with τ = 80 ms.

The results in table 4.2, figure 4-9 and figure 4-10 show that as each of the ad-

ditional features is added to the Baseline controller, performance increases and cost

decreases. The TDR adaptive controller has the best overall performance, even im-

proving on the LQR∗ controller in terms of both tracking error and control usage. In

the absence of any optimal control design techniques for systems with time delay, the

LQR∗ controller is for the plant given by (4.75) without the time delay. Since there

is indeed delay in the system, the LQR∗ is no longer optimal. The TDR controller

explicitly accounts for the known time delay in the system, allowing it to achieve

better performance than that of the LQR∗ controller.

250 ms time delay case

The second case under consideration is that of a 250 ms time delay. This amount of

delay is possibly unreasonable for the F-16 case, as military specifications place tight

restrictions on the allowable time delay in the loop. Nevertheless, it was selected

in order to demonstrate the effectiveness of the proposed modifications for general

systems with large time delays. The free parameters of the six adaptive controllers

were redesigned for the larger time delay, again minimizing the cost function in (4.79).

For the most part, this redesign consisted of reducing the adaptive gains to avoid

exciting high-frequencies in the system. The adaptive gains for the 250 ms case are

5-10 times smaller than those of the 80 ms case. Non-dimensionalized errors, control
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usage, and control rate usage for the 250ms case can be found in table 4.3 and the

cost associated with each of the seven controllers is shown in figure 4-11. Tracking

performance and control usage for the controllers is shown in figure 4-12.

Baseline MRAC APC CMRAC BGF CAPC TDR LQR∗

ē 198 2.75 2.04 1.69 1.43 1.47 1.12 1.00
δ̄e 31.6 1.05 1.12 1.06 1.07 1.03 1.00 1.00
˙̄δe 28.8 1.11 1.22 1.30 1.18 1.22 1.08 1.00

Table 4.3: Comparison of tracking error and control effort for the τ = 250 ms case.

The addition of features to MRAC improves performance for the 250 ms case as

well. In the 250 ms case, the relative difference between the various modifications

seems to be diminished with the exception of the baseline controller,which is unstable

for the 250 ms case.

Baseline MRAC APC CMRAC BGF CAPC TDR
0
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4

J

Figure 4-11: Comparison of the cost associated with each of the seven controllers
for the τ = 250 ms case. Note that the y-axis is cropped, the cost of the Baseline
controller is well of the chart at about 14000 due to the instability.
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Figure 4-12: Comparison of α command following and corresponding elevator deflec-
tion, for (a)-(b) Baseline control, (c)-(d) MRAC, (e)-(f) APC, (g)-(h) CMRAC, (i)-(j)
BGF, (k)-(l) CAPC, and (m)-(n) TDR adaptive control with τ = 250 ms.

It should be noted that this improved performance does come at a cost in terms

of computational efficiency. Table 4.4 shows how the number of differential equations

for each of the seven controllers considered scales with system state n, number of

control inputs m, and the number of posicast parameters p = τ/dT .

# of diff. eqs.
Baseline O(n)
MRAC O(nm)

APC O(nm+mp)
CMRAC O(nm+m2)

BGF O(nm+m2 + n2)
CAPC O(nm+m2 +mp)
TDR O(nm+m2 +mp+ n2 + p2)

Table 4.4: Number of differential equations required for simulation of each of the
seven controllers.

It may be possible to make optimizations to improve how well the various con-

trollers scales, but adding additional features will always increase complexity and CPU

time. In particular, the BGF modification adds terms of O(n2) and O(p2) which may

be large for systems with many states, large delays, or fast sampling rates. Of the

modifications to MRAC presented, the CMRAC approach is notable in that it offers

a large increase in performance at very little additional computational cost.
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4.2.4 Theory-driven design of TDR

Up until this point we have only discussed the selection of free parameters such as

adaptive gains so as to minimize some cost function. The cost function given in (4.79)

focuses predominately on performance. In this section, we utilize (4.74) to design the

TDR adaptive controller with robustness to time delay in mind. In particular, we

make some reasonable assumptions on the bound on ω and use the expressions in

(4.72) to estimate the time delay margin τ ∗. We then use the simulation model to

experimentally calculate the true time delay margin by increasing the time delay in

the system until instability is reached.

The regressor vector ω contains the state x, control inputs u, reference commands

r, and τ/dT delayed versions of the control inputs and the reference commands.

If we assume the aircraft remains in some region (the “flight envelope”), the state

x is bounded. The control inputs are bounded due to actuator saturation and the

reference commands are assumed to be bounded. Therefore ω can be assumed to be

bounded using suitable values for the above components. It should be noted that

since there are no guarantees on transient performance of the system, it is possible

that the vehicle will move outside the pre-determined bounds on the flight envelope.

Therefore this approach is only an approximate time delay margin.

Given a bound on ||ω|| and ||ωf || it is clear that through selection of the various

free parameters in (4.72), the TDR adaptive controller can be designed to yield any

approximate time delay margin. To examine the usefulness of this tool, a series of 8

sets of parameter choices were chosen to generate 8 TDR controller candidates with

approximate time delay margins of τdesign = 5, 10, 20, 30, 40, 60, 80, and 100 ms.

These controller candidates were then simulated using the F-16 simulations described

above, for the τ = 80 ms case. Each controller candidate successfully performed the

maneuver and it was verified that the bounds on ω were satisfied at all times. Each

of the candidates were then pushed harder by increasing the true time delay in the

system with no redesign of the controller to determine the critical time delay τcrit for

which the system becomes unstable.
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A new cost function which includes the approximate time delay margin is given

by

J2 =
1

3

(
ēT ē+ δ̄T

e δ̄e + ˙̄δT
e

˙̄δe

)
+

1

τ̄ 2
, (4.81)

where τ̄ is the approximate time delay margin as calculated above divided by some

normalizing factor τgoal. Through adjustment of τgoal, one can make the trade-offs

between performance and robustness to time delays explicit.

Figure 4-13 shows the 8 controller candidates, plotted against the cost function J2.

These points represent the best possible selection of free parameters given the τdesign of

each controller candidate. For small values of τ̄ , the robustness term dominates J2. As

the control designs become more and more conservative, the decrease in performance

begins to dominate the cost function. The resulting cost function allows for selection

of one of the candidate controllers based on the trade-off between performance and

robustness. In the example shown in figure 4-13, controller candidate 4 minimizes

the cost function and is therefore the appropriate choice.
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Figure 4-13: Cost associated with each of the 8 controller candidates plotted against
τdesign with values of 5 ms to 100 ms. Cost is calculated using simulation with 80 ms
time delay in the loop.

However, this tool is only useful if the approximate time delay margin accurately

predicts the trend of the true time delay margin. Figure 4-14 shows a comparison of

the theory-based margin τdesign and the simulation-based margin τcrit for the controller

candidates 1-8. The theory-based margins are smaller than their simulation-based
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counterparts, which is expected as the theory is conservative. It should also be noted

that the simulation-based margin represents an upper bound on the true time delay

margin since another set of initial conditions, reference commands, and uncertainties

present may result in a smaller critical time delay.
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Figure 4-14: Comparison of theory-based margins τdesign and simulation-based mar-
gins τcrit for controller candidates 1-8.

Figure 4-14 shows that the controller candidates 1-8 designed with increasing

robustness to time delay as predicted by the theory are indeed increasingly robust to

delays in the simulation.

4.2.5 Extensions to noisy systems and applications of the

TDR approach

The simulation and theory described above neglects the contributions of sensor and

process noise in the system. There are several methods for accommodating this

noise. If the noise is uniform, bounded, white noise, a dead-zone approach similar

to that described in section 3.5 can be employed, with similar implications on the

theory. There have also been a number of papers on stochastic adaptive control

[82–84], in which the Lyapunov functions described above are replaced by expected

values of Lyapunov functions. For systems with high frequency noise that may excite
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unmodeled dynamics, a low-pass filter can be included in the system. A variety of

filters exist for this purpose. Figure 4-15 shows the gain of several 4th order low-pass

filters. The inclusion of these filters introduces an additional phase lag, which has
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Figure 4-15: Amplitude of 4th order Butterworth, Chebyshev Type I, Chebyshev Type
II, and Elliptic low-pass filters.

a detrimental effect on the time delay margins of the system. Figure 4-16 shows

the group delay associated with the each of the 4th order low-pass filters shown in

figure 4-16. Since the group delay associated with each of these filters depends on the

frequency of the input signals, we select τf as the supremum of the group delay shown

in figure 4-16. For example, a 4th order Butterworth filter with a corner frequency

of 20 Hz will introduce an additional delay τf = 50 ms. The proof of stability for the

TDR adaptive controller still holds if τ + τf < τ ∗. Thus, the free parameters of the

adaptive system may need to be redesigned to accommodate the additional delay due

to the filter.

The simulation example discussed in this chapter and the hardware test platforms

in subsequent chapters are both flight platforms. However, the TDR adaptive ap-

proach is general in nature and can be applied to other systems of the form (4.24).

There are many applications of this form that are subject to parametric uncertain-
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Figure 4-16: Group delay of 4th order Butterworth, Chebyshev Type I, Chebyshev
Type II, and Elliptic low-pass filters.

ties and potentially large time delays. Some examples include underwater robotics,

automotive systems, teleoperated robotics, and space applications.

4.2.6 Summary

Several modifications to the typical MRAC approach were examined with applica-

tion to systems with time delay. The modifications presented were either designed

specifically to counter the effect of time delays, or had the effect of smoothing the

adaptive or estimated parameters. The proposed TDR approach integrates all of these

modifications into a coherent control structure which offers increased performance in

simulation of an F-16 short period dynamics model. Typically in control systems

there is a design trade-off between tracking performance and control power used.

However, by utilizing these modifications to MRAC, it is possible to both increase

tracking performance and decrease control effort as compared with MRAC. Further-

more, the TDR approach also has a proof of stability and an analytically justifiable

time delay margin, which is bounded away from 0. It was shown that by making
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some assumptions on the system, an approximate time delay margin can be used to

understand the robustness of the adaptive system and make informed decisions about

the free parameters.
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Chapter 5

Combined / composite adaptive

control of UAVs with parametric

uncertainties

In this chapter we build on the results in chapter 3 by transitioning a subset of the

technologies examined in section 4.2 to flight test. In particular, the CMRAC ap-

proach showed several benefits in simulation, namely, smoother parameter estimates,

improved parameter convergence, higher adaptive gains, and increased performance.

Furthermore, CMRAC accomplished this while adding minimal computational cost,

which is an important consideration for UAVs with embedded processors or limited

onboard computation. The aim of the following study is to reproduce the benefits of

CMRAC observed in simulation on a hardware system with a time delay in the loop.

Robustness to losses of control effectiveness in regulation and tracking tasks will be

examined.

This chapter is organized as follows. Section 5.1 describes the design of CMRAC

for the quadrotor UAV. Section 5.2 discusses some of the unique features of the

CMRAC approach with examples from flight recorded data. In section 5.3, we vali-

date the CMRAC design through flight testing of a quadrotor UAV. Regulation and

tracking problems are examined. Section 5.4 summarizes the results and gives some

conclusions.
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5.1 CMRAC design

The direct adaptive controller described in section 3.2 uses the error between the

plant state, given by (3.7), and the reference model, given by (3.11) to adjust its

parameters. To add the indirect adaptive components, we must start by generating

a suitable prediction error eY (t) = Ŷ (t)− Y (t). Following the procedure outlined in

4.2.2, we generate the signal Y (t) as

Y (t) =
(
BT

t Bt

)−1
BT

t

(
λf (xt(t)− xtf (t))− Amxtf (t)−Bcrf (t− τ)

)
. (5.1)

Note that the value of Y (t) can be computed at any time t using the state xt(t),

the filtered state xtf (t), and the reference signal delayed by τ seconds r(t− τ). The

bilinear predictor model is given by

Ŷ (t) = Λ̂(t)
(
uf (t− τ) + θ̂T (t)ωf (t)

)
. (5.2)

Also note that the time-shifted signals in equations (5.1) and (5.2) require that the

time delay τ be known. For the quadrotor system, this time delay has been measured

to be 40 ms.

The indirect adaptive part is then added to the adaptive laws in (3.14), resulting

in the CMRAC laws

˙̂
θ(t) = Γθ

(
ω(t)eT (t)PBt − ωf (t)γce

T
Y (t)

)
,

˙̂
ΛT (t) = −ΓΛ

(
uf (t) + θ̂T (t)ωf (t)

)
γce

T
Y (t).

(5.3)

Note that the parameters are now adjusted according to the tracking error e, as in

the MRAC case, as well as the prediction error eY . Additionally, the parameters

Λ̂ provide an estimate of the vehicle health. It can be seen that if the gain on the

indirect part γc is set to 0, the above equations reduce to those of (3.14).
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5.2 Properties of the CMRAC approach

Before comparing performance of the baseline, MRAC, and CMRAC approaches, it

is useful to note some of the unique properties of the CMRAC system. First, it uses

two sources of error information. Figure 5-1 shows flight-recorded error signals for

the CMRAC system undergoing a sudden loss of thrust. A peak can be observed in

both signals after the loss of thrust is initiated at t = 4 sec. Both error signals are

then driven to 0 as the quadrotor stabilizes and returns to its hover position.
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Figure 5-1: The two sources of error information: (a) tracking error and (b) prediction
error with CMRAC in the loop. A loss-of-thrust failure occurs at t = 4 sec.

Although a similar trend is captured in the two sources of error signals, there is

unique information in the prediction error that is not contained in the tracking error

signal. An illustrative example of this is shown in figure 5-2. This figure shows both

tracking and prediction error signals for the MRAC and CMRAC approaches. The

small spikes at intervals of 5 sec are caused by a series of step commands. The larger

spikes around t = 26 sec are caused by a loss of collective thrust failure. Both the

MRAC and CMRAC approaches drive tracking error back to the pre-failure values,

as expected. However, MRAC is not able to drive prediction error back to 0 after the

failure.

This implies that CMRAC has moved its parameters to different location than

MRAC, one that simultaneously drives both tracking error and prediction error to

0. This is possible because the mapping from adaptive parameters to control inputs

is a many-to-few mapping. For the quadrotor problem, there are 84 parameters and
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Figure 5-2: Comparison of MRAC and CMRAC (a) tracking errors and (b) pre-
diction errors during a series of step commands. A loss-of-thrust failure occurs at
approximately t = 26 seconds.

only 4 control inputs. It is therefore possible to achieve similar command-following

performance with a variety of parameter estimates.
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Figure 5-3: Collective health estimates for MRAC and CMRAC. The dashed line
denotes the true collective health Λ11.

Although MRAC does not provide an explicit estimate of the actuator effectiveness

Λ, the value can be implicitly calculated from the parameter estimates θ̂. Figure 5-3

shows a comparison of the MRAC and CMRAC estimates for the collective health Λ̂11.

The dashed line shows the true value of Λ11, which is unknown to the controllers. Note

the 25% reduction at approximately t = 26 sec, corresponding to the loss of collective

thrust. Also note the slow decline of Λ11 both before and after the failure due to

battery discharge. The CMRAC approach more accurately approximates the extent
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of the loss of control effectiveness.

Another feature of CMRAC observed in simulation of time delay systems was the

ability to increase adaptive gains higher than those of MRAC without exciting high

frequencies. Figure 5-4 shows flight recorded control input data from the MRAC

and CMRAC approaches for a 25% collective failure with the same adaptive gains.

Adaptive gains on z and ż for both controllers were selected as γz = 3 and γż = 37.5.
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Figure 5-4: Control inputs for (a) MRAC and (b) CMRAC with the same adaptive
gains. A 25% loss of collective control effectiveness occurs at t = 4 sec.

Both MRAC and CMRAC increase their collective control inputs appropriately

after the loss of thrust failure is injected at t = 4 sec. However, the MRAC ap-

proach exhibits undesirable oscillations which are not damped, eventually leading to

instability.
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Figure 5-5: Fourier transform of the control inputs for the baseline, MRAC, and
CMRAC approaches after a 25% loss of thrust.
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Figure 5-5 shows the Fourier transform of the control inputs after the 25% loss

of control effectiveness discussed previously. It can be seen that CMRAC offers a

70% power reduction over MRAC at 10 Hz, and has a control power usage similar to

that of the baseline controller. This reduction of high frequency content in the control

inputs can be attributed to the low-pass filtering effect of the indirect adaptive part of

CMRAC. This effect can be clearly seen by rewriting the indirect part of the adaptive

law as

˙̃Θ(t) = −
(
Γω2(t)γcω

T
2 (t)

)
Θ̃, (5.4)

where the parameter error Θ̃T (t) =
[
Λ̃(t) ˜ΛθT (t)

]
, the adaptive gains Γ =

ΓΛ 0

0 Γθ

.

The indirect adaptive laws therefore take the form of a time-varying low-pass filter.

Overall, it was observed that the CMRAC system was able to be tuned to 25-50%

higher adaptive gains without exciting high frequencies.

5.3 Flight test results

Flight tests were again conducted in the RAVEN testbed as described in section 3.4

using the baseline controller, MRAC design, and CMRAC design. The CMRAC

controller was implemented in C and run alongside the baseline controller. Using this

setup, it is possible to compare baseline, MRAC, and CMRAC. Adaptive gains were

selected for the MRAC and the CMRAC approaches individually to give maximum

performance without exciting high frequencies in the loop, as in the case of figure 5-

4(a). The total delay in the loop, including computation and communication delays,

is 40ms.

Two test scenarios were considered: a regulation problem and a tracking problem.

The regulation problem involves maintaining hover at a desired altitude while the

tracking problem involves the execution of a maneuver consisting of a series of altitude

step commands. During each test, an actuator anomaly is injected into the system
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in the form of a loss of collective thrust, that is, a simultaneous loss of thrust in all

four propellers. This is representative of a sudden change in mass, or alternatively a

battery failure or electrical fault. The extent of the simulated failure corresponds to

a 25% reduction in thrust. More severe failures would more effectively highlight the

advantages of the MRAC and CMRAC approaches. However, thrust loss of more than

25% is not possible with this vehicle because it does not have the payload capacity

to maintain hover with less than 75% of nominal thrust.

5.3.1 Regulation problem

Figure 5-6 shows flight recorded data of altitude regulation performance in the pres-

ence of a loss of collective thrust and 40 ms time delay in the loop. The three

controllers being compared are the baseline controller, the MRAC approach, and the

CMRAC approach. The reference command is to hover at an altitude of 1.1 m. A

25% loss of collective thrust occurs at t = 4 sec, unknown to the controllers.
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Figure 5-6: Altitude regulation performance in the presence of 40ms time delay and
a sudden 25% loss of thrust at t = 4 sec. (a) Altitude, (b) collective control input.

It can be seen in figure 5-6(a) that the CMRAC approach recovers most quickly

from the failure, followed by the MRAC approach and finally by the LQR controller.

The norm of the tracking errors for the MRAC approach is 21% less than that of the

baseline controller, and the norm of the tracking errors for the CMRAC approach

is 29% less than that of the baseline. Figure 5-6(b) shows that all three controllers

hit the actuator limits, but CMRAC is first to come off the limit, followed closely
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by MRAC, then later by the baseline controller. Because the baseline controller is

slower at responding to the failure, it has to work significantly harder to reverse

its downwards velocity and return to hover. Consequently, the baseline controller

spends about twice as long at the actuator limits than the MRAC and CMRAC

approaches. It should be noted that with all 4 motors spinning at their maximum

angular velocity, the onboard rate damping signals and other stability augmentation

loops are ineffective. Therefore, it is desirable to avoid saturating the actuators for

extended periods of time.

(a) (b) (c)

Figure 5-7: Snapshot of altitude regulation performance for (a) baseline control, (b)
MRAC, and (c) CMRAC in the presence of 40ms time delay and a sudden 25% loss
of thrust. The instant shown corresponds to the time at which the baseline controller
reaches its minimum altitude. The dashed line represents the commanded altitude.

Figure 5-7 shows a screen capture of flight test videos [85] with side-by-side com-

parisons of the three controllers. The 3 flight tests depicted in figure 5-7 (a),(b),

and (c) are synchronized so that the failure occurs in all three vehicles at the same

instant in time. The moment shown in figure 5-7 represents the moment in which the

baseline controller has reached its minimum altitude, or maximum departure from the
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commanded position. The MRAC and CMRAC vehicles have already begun climbing

back to the commanded altitude, denoted by the dashed line. The baseline controller

exhibits an altitude drop of approximately 38 cm, while the MRAC and CMRAC

approaches drop in altitude by 27 cm, and 22 cm, respectively. When operating in

cluttered or confined environments or flying in formation with other vehicles, these

10-20 cm can be the difference between colliding with an obstacle or another vehicle

and safely avoiding any collisions.

5.3.2 Tracking problem

In the following set of flight tests the goal is command tracking, in this case to track

a series of aggressive altitude step commands. During the course of the maneuver,

a sudden loss of thrust in all four propellers occurs and the vehicles must recover

and continue to track the commands. This approach provides insight about tracking

performance and learning ability of the baseline, MRAC and CMRAC approaches.
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Figure 5-8: Altitude tracking performance of the baseline, MRAC, and CMRAC
controllers. Loss of thrust uncertainty occurs at approximately t = 26 sec (denoted
by the asterisk).
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Figure 5-8 shows flight recorded altitude tracking data for the baseline, MRAC,

and CMRAC approaches. The failure occurs at around t = 26 sec during an aggressive

upwards step command. MRAC and CMRAC quickly accommodate the failure and

continue to climb to the desired altitude. Even the baseline controller, which contains

integral action on the altitude state, is able to complete the climb eventually.

However, the difference in performance of the three approaches is made clearer

in the subsequent downwards step command. The spike in the baseline controller

altitude at around t = 33 sec corresponds to the vehicle bouncing off the ground.

Due to plastic feet on the bottom of the vehicle, it was not permanently damaged and

was able to complete the maneuver. Both MRAC and CMRAC experience significant

overshoot as well, with CMRAC being the lesser of the two. This suggests that neither

adaptive controller had sufficiently learned the extent of the parameter uncertainty

during the climb after the failure is inserted. This is unsurprising given that the

constant altitude command is not persistently exciting and parameter convergence is

therefore not guaranteed [7].

Baseline MRAC CMRAC
Before Failure 63.03 62.47 56.21

Transient 82.68 68.27 59.52
After Failure 123.4 83.92 71.96

Table 5.1: Comparison of tracking error for the tracking problem with a 25% loss of
collective control effectiveness.

To further analyze the wealth of information contained within the flight data

shown in figure 5-8, we break up the time history into three flight conditions: be-

fore failure (t =0-25 sec), transient (t =25-35 sec), and after failure (t =35-60 sec).

Table 5.1 shows the tracking performance of the three controllers in each of these

three sections. CMRAC displays improved performance over all three flight condi-

tions. The improvement in tracking performance even before the failure occurs can

be attributed to the fact that the reference model is, in reality, slightly faster than

the baseline system. The performance increases of CMRAC during the transient and

after the failure can be attributed to the improved learning of the CMRAC approach,

as well as the 25%-50% higher adaptive gains that are possible with CMRAC.
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Baseline MRAC CMRAC

Before Failure
Upwards 2.02 sec 1.86 sec 1.82 sec

Downwards 1.95 sec 1.91 sec 1.80 sec

Transient
Upwards 4.11 sec 3.27 sec 2.89 sec

Downwards 1.75 sec 1.64 sec 1.56 sec

After Failure
Upwards 3.19 sec 2.55 sec 2.28 sec

Downwards 1.71 sec 2.03 sec 1.99 sec

Table 5.2: Comparison of rise time for the tracking problem with a 25% loss of
collective control effectiveness.

Rise time and overshoot are shown in tables 5.2 and 5.3 respectively. In these

tables, the flight is further broken down into upward steps and downward steps to

highlight some of the differences between the three approaches. Table 5.2 shows that

CMRAC generally has the lowest rise times. The only exception being the baseline

controller during downward steps after the failure occurs. Note that the baseline

controller also exhibits unacceptable overshoot for the downward steps, as seen in

table 5.3.

In addition to examining the magnitude of these rise times, it is also informa-

tional to examine the difference between upward and downward steps for the various

controllers. Before the failure occurs, all three controllers have similar rise times and

“fall times.” This is the expected result for a linear system. However, after the failure

occurs, a disparity develops between the rise and fall times. For the baseline con-

troller, this disparity is 1.48 sec in the after failure flight condition. For the MRAC

controller it is 0.52 sec, and for CMRAC, 0.29 sec. CMRAC is able to learn the true

values of the parameters better than MRAC, and it is therefore able to render the

performance of the closed-loop adaptive system closer to that of the reference model

(for which no distinction exists between upwards and downwards steps). The baseline

controller, which has no learning capability outside of the integrator in the altitude

loop, exhibits the largest disparity between rise times and fall times.

Table 5.3 shows the overshoot of the various controllers broken down in a similar

fashion. CMRAC has the lowest overshoot with the exception of the climb portion of

the transient flight condition, which is caused by a small oscillation at around t = 28

sec. Again, when comparing the disparity between upward overshoot and downward
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Baseline MRAC CMRAC

Before Failure
Upwards 7.78% 4.26% 1.17%

Downwards 4.13% 5.39% 1.07%

Transient
Upwards 1.93% 1.32% 5.82%

Downwards 96.9% 73.8% 58.5%

After Failure
Upwards 5.19% 6.55% 4.46%

Downwards 56.9% 10.2% 4.36%

Table 5.3: Comparison of overshoot for the tracking problem with a 25% loss of
collective control effectiveness.

overshoot (“undershoot”) that exists in the after failure section, CMRAC appears

to behave more closely to the linear reference system than MRAC and the baseline

controller. Since the baseline controller has very limited learning, it continues to

exhibit very large undershoots, particularly noticeable around t = 57 sec on figure 5-8.

Of the three controllers compared, the CMRAC approach displays improved tracking

error, decreased rise times, and decreased overshoot over all three flight conditions.

5.4 Summary

In this chapter, the application of CMRAC to a quadrotor UAV with time delay in the

loop was presented. It was shown that, similar to the simulation results of previous

chapters, the CMRAC approach delivered smoother parameter estimates, allowed for

higher adaptive gains, and increased performance over that of MRAC alone. It was

shown that CMRAC was more effective than MRAC in learning the true value of

uncertain parameters in the system, offering numerous benefits in terms of tracking

performance.
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Chapter 6

Adaptive configuration control of

multi-vehicle UAS

Several missions such as surveillance, exploration, search-and-track, and lifting of

heavy loads are best accomplished by multiple UAVs. Another important advantage

to utilizing multiple vehicles is a reduction in the risk to successful completion of

a mission due to the loss of a single vehicle. When a single vehicle malfunctions,

neighboring vehicles can adjust their configuration to compensate. This increased

robustness can lead to a commensurate decrease in vehicle specifications and cost,

further improving the argument for swarm operations. The methodology discussed in

previous chapters is concerned with the stability and performance of a single plant. In

this chapter, we address the question of how one can ensure that vehicles, with each

vehicle prescribed a specific position (and possibly orientation) maintain those posi-

tions (and orientations) with respect to other vehicles in the presence of parametric

uncertainty and time delay.

Malfunction in a vehicle represents a wide range of scenarios. And many of these

scenarios include instances where the vehicle failure is partial. That is, a vehicle

fails or is damaged, but is still able to contribute to the mission in some reduced

capacity and possibly return and land safely for repairs. This chapter discusses the

development of an adaptive configuration control approach that accommodates par-

tial failures and carries out the requisite mission with multiple UAVs satisfactorily.
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Distinguishing features of this architecture are that it fully retains an advanced inner-

loop control structure and performs coordinated control actions using information

from distributed sources, using local and global performance measures. By including

adaptation at both the vehicle level and the collective level, we ensure that any un-

certainties have minimal effect on vehicle performance and significantly enhance the

ability of the collective group to accomplish the overall mission goals.

This chapter is organized as follows. Section 6.1 describes the class of multi-UAV

problems being addressed in this chapter. In section 6.2 describes the novel adaptive

configuration controller developed to solve the class of multi-UAV missions in general

and for the specific problem of planar, circular motion of a fleet of UAVs. Section 6.3

describes a series of simulation results for the multi-UAV problem that motivate the

application of the adaptive configuration control approach to the hardware UAS. In

section 6.4, we validate the adaptive configuration control using flight tests of a UAS

consisting of several quadrotor UAVs. Section 6.5 summarizes the results and gives

some conclusions.

6.1 Problem statement

As the number of vehicles participating in a multi-UAV mission increases, the com-

plexity of coordinated motion through space increases as well. The overall multi-UAV

control objectives can be broken down into four nested levels of increasing order of

scope that can be described thusly: 1) control of the individual vehicle dynamics, or

inner-loop control, which is typically performed by an onboard controller or autopilot;

2) control of the individual vehicle kinematics, commonly referred to as outer-loop

control and often accomplished by a ground-based path-planner that provides way-

points for the vehicle; 3) coordinated control of the configuration of the collective of

vehicles, enabling specific behaviors on the global level such as formation flight; and fi-

nally 4) mission management, focusing on questions of refueling, allocating resources,

and how to best achieve overall mission objectives. These four levels of control are

summarized in figure 6-1.
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Overview of Multi-UAV control

27

Vehicle 1

Dynamics

Vehicle 1

Kinematics

Inner-loop 

Controller 

(Level 1)

++

Outer-loop 

Controller 

(Level 2)

Coordinated Controller

(Level 3)

Mission 

Manager

(Level 4)

Vehicle 1

Figure 6-1: Schematic diagram of several nested control loops in a multi-vehicle UAS.
Vehicle 1 (shown within in the dotted line) consists of an inner-loop controller, which
stabilizes the vehicle dynamics, and an outer-loop controller which allows the vehicle
kinematics to follow waypoint commands. Vehicles 2 through N are omitted for
clarity.

The inner-loop adaptive controller developed in previous chapters addresses level

1, while the outer-loop controller discussed in this chapter focuses on levels 2 and

3. The specific objectives are to carry out coordinated control for a UAS consisting

of a fleet of several UAVs so as to maintain a desired configuration in the presence

of individual vehicle uncertainties in level 1. We will address this problem using an

adaptive approach which suitably utilizes local and global information to carry out

trajectory control, path planning, and configuration control.

We assume there are N vehicles flying in formation, and each vehicle has an inner

loop controller that stabilizes the vehicle dynamics. This inner loop controller can

be adaptive, such as the adaptive inner-loop controllers discussed in chapters 3 and

5, or linear, such as the baseline approaches also discussed in those chapters. The

main task of the inner loop controller is provide stabilization and reject disturbances.

The vehicles are also assumed to have some sort of outer-loop controller that allows

for tracking of waypoints in <n. The waypoints commanded for each vehicle are
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then Xi,cmd ∈ <n for i = 1...N . Waypoints may consist of positions and attitude,

also know as the vehicle “pose”. These waypoints are generated by the outer-loop

and coordinated controller (levels 2 and 3 in figure 6-1). The primary control goals

for the formation-flying problem, in order of priority, are to reduce the likelihood of

collisions, complete the mission successfully, reduce inter-vehicle distance errors, and

reduce individual vehicle tracking errors. The problem at hand is thus generation

of waypoint commands for all vehicles which accomplish the aforementioned goals in

the presence of uncertainties such as actuator failures or battle damage.

6.2 Adaptive configuration control

In this section we develop the adaptive configuration control approach to suitably

generate waypoint commands for all vehicles in the UAS. Analogous to the design

approach for adaptive control of a single vehicle, using MRAC for example, we first

generate a suitable error signal. We then determine a parametrization of the un-

certainty and its effect on the system. Next, we determine an algorithm for the

adjustment of control parameters using online measurements of the error signals. We

begin by presenting the algorithm for the general problem involving formation flight

of multiple UAVs. We then discuss the specific problem of planar, circular formation

flight of multiple quadrotor UAVs circling a central point. We then follow up the

specific case with a simulation study and flight tests in the RAVEN testbed.

6.2.1 General approach

We first address the general problem of waypoint generation for multiple vehicles

executing a coordinated maneuver through space. Consider a waypoint generation

law of the form

Xi,cmd(t) = f (eform) +Xi,des (η(t)) ,

η̇(t) = 1− g(etrack),
(6.1)
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where the function f (eform) acts as a position bias term and the function g(etrack) ∈

[0, 1] determines the velocity profile of the vehicle along some prescribed trajectory

Xi,des(t) through adjustment of the temporal coordinate η(t). The two distinct errors

eform and etrack encapsulate the effect of uncertainties on both path planning and for-

mation keeping. The former is global in nature, and addresses the effects of vehicular

uncertainty on distances between neighboring vehicles, while the latter concerns the

effects of failures on the individual vehicle and is therefore more local in character.

To generate the global formation-keeping error term eform, we first must encode

the desired formation shape and size in the form of desired relative distances between

vehicle i and vehicle i+ 1 as a function of time. Let

Xi,form(t) = Xi,des(η(t))−Xi+1,des(η(t)), for i = 1...N − 1,

XN,form(t) = XN,des(η(t))−X1,des(η(t)).
(6.2)

The formation error contribution from each vehicle ei,form can then be written as

ei,form(t) = (Xi(t)−Xi+1(t))−Xi,form(t), for i = 1...N − 1,

eN,form(t) = (XN(t)−X1(t))−XN,form(t),
(6.3)

where Xi(t) is the pose of the ith vehicle. To develop the function f (eform), we first

calculate a position bias term Xbias that minimizes the largest ei,form over all vehicles,

that is

Xbias = argmin
X

(
max

i
(ei,form −X)

)
. (6.4)

The position adjustment function f(eform) is then given by

f(eform) =

Xbias, for ||Xbias|| ≤ Xmax,

Xmax

||Xbias||
Xbias otherwise,

(6.5)

whereXmax is a positive constant bound on the region of interest within the controlled

space. This function has two important properties. First, the function is bounded by

Xmax. Second, within the region of interest this adjustment law minimizes the maxi-
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mum inter-vehicle distance error. Assuming all vehicles move in all directions equally

quickly, this adjustment also guarantees that all vehicles will return to formation in

minimum time.

We now develop the local error term etrack, which can be viewed as the tracking

error of the vehicle kinematics, and the function g(etrack), which adjusts the vehicle’s

velocity profiles. It can be seen from the waypoint law (6.1) that if g(etrack) = 0,

the temporal scaling factor η̇(t) = 1, meaning that the commanded trajectory Xi,des

is followed at nominal speed. However, as g(etrack) → 1, η̇(t) goes to 0, meaning

the commanded velocities go to 0 as well. In this way, the velocity of the vehicles is

decreased when the tracking performance becomes poor. We can write the local error

term etrack for each vehicle as

ei,track(t) = Xi(t)−Xi,cmd(t), for i = 1...N, (6.6)

where Xi,cmd(t) is the commanded waypoint at time t. One possible choice of the

velocity adjustment function g(etrack) is

g(etrack) =
1

2

[
tanh

(
2α

(
N∑
i

eT
i,trackQiei,track − β

))
+ 1

]
, (6.7)

where α, β, and Qi are free parameters. This is a tunable sigmoid function with values

bounded between 0 and 1, as shown in figure 6-2. The parameter β determines the
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g
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t
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k
)

β/2 β 3β/2 2β

Figure 6-2: Tunable sigmoid function with parameter β determining the 0.5 crossing
and α determining the slope at the 0.5 crossing.
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distinction between acceptable and unacceptable tracking errors. The parameter α

determines the slope at g(β). For large α, g(etrack) becomes closer to a binary-valued

function. Smaller values of α result in a smoother adjustment of the vehicle velocity

profiles. The parameter Qi weights individual error states on a per vehicle basis.

It should be noted that both f(eform) and g(etrack) are bounded functions, and

therefore the waypoints generated by (6.1) are bounded as well. If the inner-loop

controller stabilizes the vehicle dynamics, the overall closed-loop system is then guar-

anteed to be stable.

6.2.2 Specific approach

The previous discussions represent a very general multi-vehicle task. In this section we

present one potential example of the adaptive configuration control methodology. The

following example involves planar, collective motion of a UAS consisting of multiple

quadrotor UAVs. The goal is for a formation of vehicles to circle a central pole while

keeping a constant heading angle as shown in figure 6-3. For quadrotor helicopters,

this maneuver involves constant adjustment of the thrust of each of the four propellers

to achieve the necessary pitch and roll moments. We only consider the case of constant

radius r and constant height h, hence the quadrotor waypoint commands are of the

form 
xi,cmd

yi,cmd

zi,cmd

ψi,cmd

 =


r cos θi,cmd

r sin θi,cmd

h

0

 , for i = 1...N. (6.8)

Therefore the commanded space is Xi,cmd ≡ θi,cmd in this case.

The desired trajectory for this maneuver is given by

θi,des(t) = ωt+ θi,0, (6.9)

where θi,0 = i2π
N

. This corresponds to circular motion with constant angular velocity

ω and an equal spacing between vehicles. The formation error is then a measure of
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1

Pillar
q

Figure 6-3: Planar circular formation of four quadrotor UAVs. The direction of
motion is counter-clockwise when viewed from above.

the differences in phase angles of the vehicles and is given by

ei,form(t) = (θi(t)− θi+1(t)) +
2π

N
, for i = 1...N − 1,

eN,form(t) = (θN(t)− θ1(t)) +
2π

N
.

(6.10)

The tracking error for the ith vehicle is given by

ei,track = θi − θi,cmd, (6.11)

and the waypoints θi,cmd are generated according to the waypoint generation law

Xi,cmd(t) = f (eform) + θi,des(η(t)),

η̇(t) = 1− g(etrack),
(6.12)

where the function f (eform) is given by

f(eform) =

θbias, for ||θbias|| ≤ θmax,

||θmax||
||θbias||

θbias, otherwise,

(6.13)
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where θmax = π, since θ ∈ [−π, π], and θbias is given by

θbias = argmax
θ

(
max

i
(ei,form − θ)

)
. (6.14)

The function g (etrack) is given by

g(etrack) =
1

2

[
tanh

(
2α(

N∑
i

eT
i,trackQiei,track − β)

)
+ 1

]
, (6.15)

with Qi selected as unity for all i, meaning all vehicles are given equal weight in

determining whether or not tracking errors are acceptable.

6.3 Simulation results

We now discuss a series of simulation results using the linear quadrotor model given

by (3.2), the inner-loop MRAC approach described in section 3.2 and the adaptive

configuration controller described in section 6.2.2. The decision to use the linearized

quadrotor model as opposed to a fully nonlinear approach was made to decrease

computational complexity. In this section we use a large number of these simulations,

which each contain multiple vehicles and obstacles, to describe the behavior of the

UAS over a range of potential failure scenarios.

As a yardstick to which we can compare the adaptive outer-loop approach, we

generate a baseline outer-loop controller by taking f(eform) ≡ 0 and g(etrack) ≡ 0.

Waypoints are therefore generated according to θi,des(t), with no modification. Since

the inner-loop controller can be either baseline or adaptive as well, there are four

possible controller combinations. Each of these combinations will be simulated for

the task described in 6.2.2, with a 75% loss of thrust failure inserted into the left-

most propeller of one of the vehicles at θfail = −2.06 rad, shown in figure 6-4 as the

red-tinted propeller.

Tables 6.1 and 6.2 show tracking errors and formation error for the four possible

controller combinations discussed. All values are normalized by those of the baseline
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Pillar

qfail

Figure 6-4: Planar circular formation of four quadrotor UAVs. A loss of thrust failure
occurs in the left-most propeller at θfail.

inner-loop/baseline outer-loop case. Adaptation in the inner-loop appears to decrease

tracking error, while both inner- and outer-loop adaptation decrease the formation

error. This is expected since the primary function of the inner-loop adaptive controller

is to reduce model reference error in the presence of failures. Since the model dynamics

track the waypoint commands closely, the this has the effect of reducing etrack as well.

Outer loop

Baseline Adaptive

Inner loop
Baseline 1.00 0.99

Adaptive 0.72 0.73

Table 6.1: Tracking error for the simulated four-UAV circular motion problem. A
75% loss of thrust failure is inserted into the left-most propeller at θfail = −2.06 rad.
Adaptation in the inner-loop reduces tracking error in this case.

Besides reducing tracking and formation errors, another important goal of includ-

ing adaptation in the outer-loop is to reduce the likelihood of collisions with other

vehicles and with obstacles in the environment. In the next series of tests, we execute

the same circular motion task, this time initiating the failure at values of θfail ranging

from −π to π. Since vehicles are commanded to remain at a constant heading, the
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Outer loop

Baseline Adaptive

Inner loop
Baseline 1.00 0.55

Adaptive 0.48 0.45

Table 6.2: Formation error for the simulated four-UAV circular motion problem. A
75% loss of thrust failure is inserted into the left-most propeller at θfail = −2.06 rad.
Adaptation in both the inner- and outer-loop reduces formation error.

failed actuator is always in the negative x-direction (the left-most propeller, when

viewed from above). Thus, different values of θfail will generate different behaviors,

and the potential for different collisions (or combinations of collisions) with the pillar,

the trailing, leading, or opposite quadrotors. Collision dynamics are not included, and

vehicles involved in collisions are not removed from the remainder of the simulation.

It is therefore possible for one vehicle experience several collisions over the course of

one test.
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Figure 6-5: Dependence of collisions on θfail for the 75% loss of controller effectiveness
case. Regions of θfail for which collisions occur are denoted by the colored arcs as
described in the legend at right.

Using a sufficiently large number of simulations, we explore the all possible angles

at which the uncertainty is initiated, θfail ∈. Figure 6-5 shows the dependance of
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collisions on θfail. Colored arcs here represent the region in which a particular collision

occurs, and the arc lengths correspond to the size of each region. The baseline inner-

loop/baseline outer-loop approach has the largest region in which collisions occur,

46% of the entire space. This implies that were an actuator failure to occur at a

random time instant while this task is taking place, there is a 46% chance that a

collision between vehicles or with obstacles would occur. Including adaptation in the

inner- or outer-loop reduces the size of this region, and including adaptation in both

loops erases it completely.
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Figure 6-6: Dependence of collisions on θfail for the 80% loss of controller effectiveness
case. Regions of θfail for which collisions occur are denoted by the colored arcs as
described in the legend at right.

With a more severe 80% loss of control effectiveness, we can observe the same

trend in figure 6-6. Because of the more severe failure, the vehicle experiences larger

departures from the commanded positions and the likelihood of collisions increases

for each of the four controller combinations. For the baseline inner-loop/baseline

outer-loop combination, the region is 58% of the total space. There is also small

region around −3π/4 in which the failed vehicle collides with every obstacle in the

space. For the adaptive inner-loop/adaptive outer-loop approach, collisions with all
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other vehicles are eliminated, and the likelihood of collision with the pillar is 20%.

These simulation results show that including adaptation in the outer-loop has the

potential for increasing performance in terms of tracking error and formation error,

and also decreasing the likelihood of collisions.

6.4 Flight test results

We now aim to reproduce the simulation results from the previous section on a flight

test platform with a hardware UAS that includes all nonlinearities as well as a time

delay of 40 ms in the loop. In these tests, three vehicles were used to execute the

mission described in section 6.2.2. A loss of collective control effectiveness of one

vehicle’s propellers will then be injected during the course of the task.

Tables 6.3 and 6.4 show tracking error and formation error results from the flight

recorded data. Again, all values are normalized by those of the baseline inner-

loop/baseline outer-loop case. As in the simulations, including adaptation in the

inner-loop significantly reduces tracking error. In the flight tests it appears that outer-

loop adaptation also decreases tracking error somewhat, with the adaptive inner-

loop/adaptive outer-loop approach having 37% less tracking error than the baseline

inner-loop/baseline outer-loop approach.

Outer loop

Baseline Adaptive

Inner loop
Baseline 1.00 0.82

Adaptive 0.69 0.63

Table 6.3: Tracking error for the three UAV circular motion flight test. A 50% loss of
thrust failure is inserted into the left-most propeller at θfail = −0.79 rad. Adaptation
in both in inner- and outer-loops decreased the tracking error in this case.

The formation error flight test results line up similarly to those of the simulation,

with the adaptive inner-loop/adaptive outer-loop approach reducing formation error

by 62%.

Flight test videos for the baseline inner-loop/baseline outer-loop and adaptive

inner-loop/adaptive outer-loop cases have been posted online [86]. Screen captures
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Figure 6-7: Screen captures from flight test video of the three quadrotor circular
motion problem with baseline inner- and outer-loops. Time indices are given in the
bottom right corner of each frame.

120



Outer loop

Baseline Adaptive

Inner loop
Baseline 1.00 0.49

Adaptive 0.56 0.38

Table 6.4: Formation error for the three UAV circular motion flight test. A 50%
loss of thrust failure is inserted into the left-most propeller at θfail = −0.79 rad.
Adaptation in both in inner- and outer-loops decreased the formation error as well.

of baseline case are shown in figure 6-7. A 50% loss of controller effectiveness in

the left-most propeller at θfail = −0.79 rad, just before t = 0.8 sec. This causes

the vehicle to pitch down, and begin accelerating in the negative x-direction (from

right to left across the frame). The failed quadrotor passes directly underneath the

trailing quadrotor, avoiding one potential collision. At t = 2.4 sec, the failed vehicle

can be seen almost out of the frame, but the integrators in the baseline controller are

beginning to recover stable flight. At t = 3.2, the failed vehicle attempts to return to

its commanded waypoint, which has now moved around the circle. To do this it moves

towards oncoming traffic, suffering a minor collision with the leading quadrotor.

Figure 6-8 shows the same test scenario using adaptive inner- and outer-loops.

Again, the failure occurs just before t = 0.8 sec, and causes the quadrotor to pitch

down. However, the adaptive inner-loop more quickly accounts for the loss of thrust

and adjusts to compensate. Furthermore, the velocity profiles of the commanded

waypoints are slowed, and the position adjustment actually forces the other vehicles

to take evasive action. By t = 1.6 sec, the failed vehicle is returning to its commanded

waypoint, while the other vehicles wait for the tracking errors to decrease to an

acceptable value. At t = 2.4 sec, normal operation has resumed with no collisions or

near misses.

Figure 6-9 shows a birds-eye view of the trajectories of the three quadrotors for the

flight tests shown in figures 6-7 and 6-8, as well as the baseline inner-loop/adaptive

outer-loop and adaptive inner-loop/baseline outer-loop cases. For clarity, each vehi-

cle is assigned a color: blue corresponding to the failed vehicle, red for the trailing

vehicle, and green for the leading vehicle. Each vehicle traces out its trajectory in

the corresponding color. Figure 6-9(a) shows the trajectories in the baseline inner-

121



Figure 6-8: Screen captures from flight test video of the three quadrotor circular
motion problem with adaptive inner- and outer-loops. Time indices are given in the
bottom right corner of each frame.
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loop/baseline outer-loop case, with the blue trajectory corresponding to the failed

quadrotor. Comparing figure 6-9(a) with figure 6-9(b) highlights the effect of includ-

ing adaptation in the outer-loop. Since neither of these two cases include adaptation
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Figure 6-9: Birds-eye projection of flight test data for the (a) baseline inner-
loop/baseline outer-loop (b) baseline inner-loop/adaptive outer-loop, (c) adaptive
inner-loop/baseline outer-loop, and (d) adaptive inner-loop/adaptive outer-loop test
cases.

in the inner-loop, the loss of control effectiveness causes large excursions in the failed

vehicle’s position. In the case of the baseline outer-loop controller, the trailing quadro-

tor continues to move in the counter-clockwise direction around the circle, causing it
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to move its propeller wash directly above the failed quadrotor. As the failed vehicle

moves into the propeller wash, not only does it lose altitude, but it also experiences a

negative pitch moment, causing it to move further in the negative x-direction. As the

failed quadrotor exits the wash, it experiences a positive pitch moment which actu-

ally helps it recover; note the sharp point in the trajectory at the left of figure 6-9(a).

Also note that the path taken by the failed quadrotor to return to its commanded

waypoint takes it in a clockwise direction, against the flow of oncoming traffic. On the

other hand, in the adaptive outer-loop case, the trailing vehicle slows down and even

moves temporarily in the opposite direction (clockwise). Thus, the failed quadrotor

avoids any negative effect of the propeller wash of the trailing quadrotor. Although

the tracking performance is still poor, no collisions between vehicles occur.
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Figure 6-10: Flight recorded data of the minimum distance between vehicles. The
dashed line corresponds to the maximum diameter of the quadrotors, i.e. the distance
below which collisions may occur.

Figures 6-9(c) and (d) show that including adaptation in the inner-loop dramat-
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ically decreases the departure radius, the maximal distance from the commanded

waypoint. Note that in the adaptive inner-loop/baseline outer-loop case, shown in

figure 6-9(c), the failed vehicle takes a spiraling arc outward, back to its commanded

position. The reason for this is that the commanded waypoint continues to move

counter-clockwise around the circle. In the adaptive outer-loop case, shown in fig-

ure 6-9(d), the commanded waypoint stops until the failed quadrotor can return,

allowing it to take the short path almost directly in the positive x-direction to return

to formation.

The preceding flight tests results show that including adaptation in either the

inner- or outer-loop reduces the likelihood of collisions in this specific example. To

make a more general conclusion, we can examine the minimum distance between

vehicles dmin over the course of the mission, shown in figure 6-10. The dashed line

represents the diameter of the quadrotor at its largest. Thus, values of dmin less than

the dotted line represent possible collisions. There are two valleys in the baseline

inner-loop/baseline outer-loop that pass below this line. The first valley corresponds

to the failed quadrotor passing directly underneath the trailing quadrotor. No collision

occurs here because the quadrotors are thinner in the z-direction than in the x- and

y-directions. The second valley corresponds to the collision that occurred between

the failed quadrotor and the leading quadrotor. In the baseline inner-loop/adaptive

outer-loop case, the minimum distance momentarily passes below the dashed line,

but again no collisions occur. It is clear that the adaptive inner-loop/adaptive outer-

loop does the best job of maintaining inter-vehicle distances, and has the largest

minimum value of dmin. For scenarios with less spacing between vehicles, higher

angular velocities, or more severe uncertainties, it is therefore expected that the

adaptive inner-loop/adaptive outer-loop approach will have the least likelihood of

collisions.
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6.5 Summary

An adaptive configuration controller for multi-vehicle UAS was presented. The con-

troller uses local and global error information to adjust its waypoint generation law.

The two primary features of this adjustment are a position bias term, which allows

vehicles to return to formation quickly, and a velocity shaping term, which slows

down the commanded trajectory as tracking performance degrades. The approach

described is independent of the inner-loop controller design, and can be combined

with the adaptive inner-loop controllers discussed in previous chapters.

A specific example involving quadrotor UAV planar circular motion about a cen-

tral point in the presence of unknown actuator failures was presented. Simulation

results showed that including adaptation in the outer-loop decreases formation error

and decreases the likelihood of collisions. Follow-up studies on a multi-vehicle hard-

ware UAS system consisting of several quadrotor UAVs with time delay in the loop

was also presented, similarly showing that inclusion of adaptation in the outer-loop

allows for lower tracking error, lower formation-keeping error, and higher minimum

inter-vehicle distances, reducing the likelihood of collisions between vehicles.
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Chapter 7

Summary and future work

7.1 Summary

Adaptive control is considered to be one of the key enabling technologies for future

high-performance, safety-critical systems such as air-breathing hypersonic vehicles.

Adaptive flight control systems offer improved performance and increased robustness

to uncertainties by virtue of their ability to adjust control parameters as a function of

online measurements. Extensive research in the field of adaptive control theory has

laid the foundation for application of adaptive flight control to hardware platforms.

Unmanned aerial systems (UAS) provide a unique opportunity for the transition of

adaptive controllers from theory to practice. Motivated by performance goals of

extreme persistence, maneuverability, ability to operate in dangerous environments

without risking safety of the crew, stealth, and lower cost, several missions such

as surveillance, exploration, search-and-track, and lifting of heavy loads are best

accomplished by a UAS consisting of multiple unmanned aerial vehicles (UAVs). In

this thesis we have addressed some of the challenges involved with the design and

implementation of an adaptive flight control systems for UAS.

We began in chapter 3 by presenting an adaptive controller based on Lyapunov

stability and validated the design using simulation and flight test of a quadrotor

UAV. Flight testing was carried out in an indoor test facility using both baseline

and model reference adaptive controllers (MRAC). It was shown that the adaptive
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controller offers several benefits over the existing fixed-gain approach, particularly in

the case of actuator failures. For less severe failures, the adaptive controller was faster

in reacting to the change in dynamics, resulting in a decreased radius of departure.

For more severe failures, the adaptive controller prevented a crash and allowed for

safe operation and landing. Methods for accommodating potential implementation

roadblocks such as sensor noise, parameter drift, and adaptive gain selection were

discussed.

In chapter 4 we discussed several modifications to the typical MRAC approach

with application to general time delay systems. The modifications presented were

either designed specifically to counter the effect time delays, or had the effect of

smoothing the adaptive or estimated parameters. A novel time delay resistant (TDR)

adaptive control approach that integrates all of the modifications into a coherent con-

trol structure was presented. The TDR adaptive controller demonstrated increased

performance in simulation of an F-16 short period dynamics model with time delay

in the loop. Typically in control systems there is a design trade-off between tracking

performance and control power used. However, by utilizing these modifications to

MRAC, it is possible to both increase tracking performance and decrease control ef-

fort as compared with MRAC alone. Furthermore, the TDR approach has a proof of

signal boundedness and an analytically justifiable time delay margin that is bounded

away from 0. It was shown that by making some assumptions on the system, this

time delay margin can be used to understand the robustness of the adaptive system

and make informed selections of adaptive gains and other free parameters.

It was found that one modification in particular, the combined / composite model

reference adaptive control (CMRAC) approach offered an impressive increase in per-

formance with little additional computational cost. Therefore, in chapter 5 a CMRAC

design was generated for the quadrotor system and the approach was validated with

flight tests of the quadrotor UAV in the presence of actuator uncertainties and a 40 ms

time delay in the loop. All of the benefits displayed in simulation were reproduced in

the flight tests. In particular, the CMRAC approach demonstrated improved regula-

tion and tracking performance. Additionally, it was found that the CMRAC approach
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allows for higher adaptive gains than MRAC alone without exciting high frequencies.

Including indirect adaptation to MRAC also generated smoother parameter estimates

and demonstrated improved parameter convergence. It was also shown that CMRAC

was more effective than MRAC in learning the true value of uncertain parameters in

the system, offering numerous benefits in terms of tracking performance.

Finally, in chapter 6 a novel adaptive configuration controller for multi-vehicle

UAS was presented. The controller uses local and global error information to adjust

its waypoint generation law. The two primary features of this adjustment are a

position bias term, which allows vehicles to return to formation quickly, and a velocity

shaping term, which slows down the commanded trajectory as tracking performance

degrades. The approach described is independent of the inner-loop controller design,

and can be combined with the adaptive inner-loop controllers discussed in previous

chapters. A specific example involving planar, circular motion of a formation of

quadrotor UAVs about a central point in the presence of unknown actuator failures

was presented. Simulation results showed that including adaptation in the outer-

loop decreases formation error and decreases the likelihood of collisions. Follow-up

flight testing on a multi-vehicle UAS consisting of several quadrotor UAVs with time

delay in the loop were also presented, similarly showing that inclusion of adaptation

in the outer-loop allows for reduced tracking error, reduced formation-keeping error,

and increased minimum inter-vehicle distances, reducing the likelihood of collisions

between vehicles.

7.2 Future work

In this section we introduce possible future extensions and applications of the re-

search presented in this thesis. The main areas of potential future work are as fol-

lows: improvements to the adaptive algorithms used for flight tests, applications to

new vehicles, further explorations and extensions for adaptive time delay systems, ad-

ditional analysis of CMRAC and applications to mission management, and adaptive

configuration control for vehicles with limited communication.
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One potentially useful addition to the adaptive controller presented in chapter 3 is

a magnitude saturation accommodating feature in the adaptive laws [10, 42]. Actua-

tor saturation is a nonlinearity, but the nature of the nonlinearity is well-understood

and typically known a priori. Therefore it is possible to remove error due to actuator

saturation from the error signal used to train the adaptive controller. This would

allow for sustained operation at or near the saturation limits with no adverse effects

on the adaptation process. Additionally, more of the features presented in section 4.2

could be transitioned to the quadrotor problem. The adaptive posicast feature, in

particular, could be added with relatively little computational overhead.

The adaptive controller discussed in chapter 3, either with or without these addi-

tional features, is quite general in nature and could be applied to a variety of UAVs.

One example of a potential application platform is an agile fixed-wing aircraft such

as the modified Twinstar II model airplane known as the “Extreme Star” [87], shown

in figure 7-1. This aircraft features 16 control inputs and a suite of sensors, including

GPS, accelerometers, gyroscopes, and a magnetometer. The vehicle is equipped with

an Intel Atom processor for running flight control code and is capable of wireless

communication with other vehicles or with a ground-based centralized control. The

large number of redundant actuators allows for testing of various failure scenarios

such as missing ailerons or flaps. This platform is more challenging than that of

the quadrotor due to its faster dynamics, onboard sensing and control, and limited

communication capabilities.

The time delay results in chapter 4 could also be extended in several ways. The

describing functions approach for approximating the closed-loop adaptive system

could be extended to the multiple π-function case, and to more general, higher-order

plants. These extensions will bring the describing functions approximation closer to

the MRAC structures typically seen in practice, increasing the usefulness of the tool.

Extensions to the TDR approach include examining additional methods for dealing

with time delays such as wave variables, as well as an extending the theoretical re-

sults to a more general regressor vector, such as one composed of a series of radial

basis functions (RBFs). RBFs have proven useful in parameterizing some nonlinear
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Figure 7-1: Extreme Star model aircraft. Control inputs consist of 9 control surfaces
(labeled), variable thrust of the three motors, and 4 thrust vectoring inputs: one for
each of the wing-mounted motors and two for the rear motor.

aerodynamic phenomenon such as the pitch break and rolling shock phenomena.

Future directions involving the CMRAC approach include a closer examination

as to how exactly the controller is able to adapt and learn so quickly and effectively.

It is also worth exploring how the prediction error differs from the tracking error

used in an MRAC approach. A theoretical justification for why CMRAC systems

exhibit better transient performance and smoother parameter estimates also remains

an open problem. Another possible future direction for CMRAC is the combination

with a health-aware mission manager [58]. The online health estimates provided by

the CMRAC approach could be passed to the mission manager, allowing it to decide

which vehicles can perform certain tasks or which vehicles need to come in for repairs.

There are many potential extensions to the adaptive configuration control ap-

proach presented in chapter 6, including extensions to more and different types of

vehicles, more complex 3D trajectories, obstacle-filled environments, and more ag-

gressive maneuvers. The approach presented could also be extended to address prob-

lems of task allocation and stochastic environments [62]. The results presented in

chapter 6 represent a proof-of-concept and make a compelling case for the inclusion

of adaptation in the outer-loop. However, a more systematic analysis of the stability

of the overall system should be explored. Another important direction of future work
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is the extension of the approach to the case of limited intra-UAV communication.

The approach described in chapter 6 is based on an all-to-all communication scheme,

which is not always possible in practice due to limited onboard communication range,

for example. Extending the adaptive configuration controller to the case of limited

communication case would increase the power and applicability of the approach.

The work presented in this thesis represents one step along the path of transi-

tioning adaptive flight control from theory to practice. However, the path is long.

There are many obstacles and roadblocks; many open problems and opportunities.

The future work discussed above represents a few of the next steps along this path.

As these topics are investigated, new avenues will undoubtedly open up for future

scientists, researchers, and engineers. Subsequent research will enable the widespread

application of adaptive control to manned and unmanned aerial vehicles, ushering in

a new era of stability, reliability, and performance.
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[25] K. J. Åström and B. Wittenmark, Adaptive Control. Boston, MA: Addison-
Wesley Longman Publishing Co., Inc., 1995.

134



[26] E. Lavretsky and N. Hovakimyan, “Stable adaptation in the presence of actuator
constraints with flight control applications,” Journal of Guidance, Control, and
Dynamics, vol. 30, no. 2, p. 337, 2007.

[27] J. Jang, A. M. Annaswamy, and E. Lavretsky, “Adaptive control of time-varying
systems with gain-scheduling,” in Proc. of the American Control Conference,
Seattle, Washington, June 2008.

[28] G. Tao and P. V. Kokotovic, “Adaptive control of plants with unknown hys-
tereses,” IEEE Transactions on Automatic Control, vol. 40, no. 2, pp. 200–212,
February 1995.

[29] R. T. Anderson, G. Chowdhary, and E. N. Johnson, “Comparison of RBF and
SHL neural network based adaptive control,” Journal of Intelligent and Robotic
Systems, vol. 54, no. 1-3, pp. 183–199, March 2009.

[30] N. Nguyen, K. Krishnakumar, J. Kaneshige, and P. Nespeca, “Flight dynamics
and hybrid adaptive control of damaged aircraft,” Journal of Guidance, Control,
and Dynamics, vol. 31, no. 6, pp. 1837–1838, November-December 2008.

[31] Y. Shin, A. J. Calise, and M. D. Johnson, “Adaptive control of advanced fighter
aircraft in nonlinear flight regimes,” Journal of Guidance, Control, and Dynam-
ics, vol. 31, no. 5, pp. 1464–1477, September-October 2008.
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