
MATERIAL DESIGN FOR A ROBOTIC ARTS STUDIO

by

Casey Wayne Smith

B.S. Physics
Montana State University

Bozeman, MT
1999

SUBMITTED TO THE PROGRAM IN MEDIA ARTS & SCIENCES, SCHOOL OF
ARCHITECTURE & PLANNING, IN PARTIAL FULLFILLMENT OF THE

REQUIREMENTS OF THE DEGREE OF

MASTER OF SCIENCE
IN

MEDIA ARTS AND SCIENCES
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

JUNE 2002

@ Massachusetts Institute of Technology 2002
All Rights Reserved

Author - Casey Smith
Sciences
"h, 2002

Certified by - Mitchel Resnick
A ssneint Professor of Learning Research

Thesis Supervisor

gy - Andrew B. Lippman
Chairperson

Departmental Committee on Graduate Students

/

i~p

approach to design is limited to materials that readily support experimenta-

tion or to people already fluent in the use of the materials.

This challenge can be overcome by offering people many different levels at

which they engage with the material. This is particularly important with

complex materials such as electronics and computers. For instance, some

users may want control over the lower-level details of the system and are

willing to learn the technical skills needed to have control over these

details. Others might be more interested in exploring the potential of elec-

tronics and programming in art. These users should engage with the mate-

rials at a higher level.

Figure 1.2: The
Cricket.

Figure 1.3: A Cricket
with Display Bus
Device and Distance
Bus Device.

This thesis documents a course designed to provide a higher-level entry

point into the materials of robotic art. While many courses exist that focus

on the lower-level, technical skills needed to manipulate and build with

these materials, such as Carnegie Mellon University's Robotic Art Studio

and New York University's Physical Computing, this course hinges on a

toolkit that scaffolds the technical details of electronics and programming.

Scaffolding, in this instance, refers to the masking of certain details of the

materials from users so that they can explore more relevant aspects. In this

way, "students have a chance to apply a set of skills in constructing an

interesting problem solution before they are required to generate or remem-

ber those skills" (Collins, Brown, Newman, 1989 p.485). The Cricket

System (figure 1.2) previously developed at the MIT Media Lab serves as

the base kit for this course, although I created many new devices specifi-

Figure 1 The Bus
Device to Think With.

cally for the creation of large-scale and interactive artwork. This system

requires no electronics or programming knowledge to begin using. Cre-

ations built with it are easily changed and modified. Syntax is minimized

so that when accidents occur they are more often logical errors that might

lead to something interesting than syntactical errors that cause a program

not to run. The Cricket has the ability to communicate with other special

devices, known as Bus Devices, that extends its capabilities. For example,

by plugging in the Display Bus Device into the Cricket a user can display

sensor values or other numbers (figure 1.3). More details of the Cricket

and its Bus Devices will be discussed later.

1.4 Changing Levels

Whenever scaffolding is used in educational settings, one must be very

clear about what is being hidden and how to unravel the scaffolding to see

the underlying details. In this manner, users wishing to explore the lower

level details of the system may do so. To this end, I developed the Bus

Device to Think With, a Cricket Bus Device that allows the user to gain

understanding of electronics, lower-level microcontroller programming,

and the underlying details of the Cricket System. Through a series of activ-

ities designed around this device, students can introduce themselves to

these concepts within the familiarity of the Cricket System, allowing their

skills to progress to lower-level electronic and programming concepts.

These skills will allow students to move on to materials that allow them to

escape the constraints of the Cricket System, use the Cricket System in

unexpected and unsupported ways, or become a developer of the Cricket

System itself

Chapter Two - Extended Example

Figure 2.1: Bronze
acorns made my Jen.
It was modeled and
unfolded in 3D soft-
ware, cut on flat
bronze, then re-folded
by hand.

In this section, in order to better illustrate the nature of the class, I will dis-

cuss the experience of one student in An Introduction to Robotic Art, Jen.

Jen is a visiting lecturer at MassArt and an accomplished artist. The course

was designed for undergraduates at MassArt, so while Jen does not repre-

sent a typical student in the class, I feel that her experience represents the

ideas of the course well.

Jen works mostly with metal, specifically bronze, but in the last 3 years has

begun to experiment with a new form of sculpture that has arisen due to

advances in 3D modeling and printing technology (figure 2.1). In this

field, sculpture is designed on a computer using 3D modeling software then

'printed', layer-by-layer, in plastic using a machine known as a 3D printer.

While Jen almost failed a programming course as an undergraduate and

claims to have "sworn off" computers since, she says that the visual nature

of 3D modeling attracted her to the field: "The software has become so

visual, so user friendly, that I've had renewed interest and successes; a

smoother learning experience." Jen says that she has become "bored with

[her] perceived limitations of the medium" and found that the sculpture

was more interesting in terms of the process that she used to create it than

as an object itself. She desired to "integrate the computer part of the work

more directly with the studio work." This was her motivation for taking An

Introduction to Robotic Art.

Figure 2.2: Ludicrum
v.1.

Figure 2.3: Ludicrum
v.3.

Figure 2.4: Ludicrum
v. 2.

Jen spent most of the course time writing programs for the Cricket. Each

new Bus Device that I brought in or new concept that we discussed

prompted Jen to write new programs to explore their use. Gradually, Jen's

programming became more directly, focusing on stepper motors, optical

distance sensors, and LED controllers. While I knew that she had begun to

integrate these things into her metal work, I was very surprised when Jen

told me of her upcoming exhibit of these pieces at the Montserrat College

of Art! The show, titled Ludicrum: naturalia, artificialia, scientifica v.1-5,

was a series of five different works, all relating to the presentation of the

natural world of insects that her young son is fascinated by but often unno-

ticed by adults. Three of the five contained Crickets: Two of the pieces

consisted of brass microscopes and rotary tables, on which different insects

and objects were mounted. These pieces used optical distance sensors to

detect a viewer and reacted by presenting them with different objects to

view through the microscopes by rotating the table with a stepper motor

(figures 2.2 & 2.3). The third piece consisted of a brass telescope with a

large group of LEDs mounted on a far wall that invoked the image of a

swarm of insects. As the viewer looked through the telescope, the LEDs

would become active and display different patterns (figure 2.4).

Jen is currently using the Bus Device to Think With to further her knowl-

edge and skills in microcontroller programming and electronics. As these

skills develop, she hopes to build projects with more advanced microcon-

trollers and possibly re-design the LED Bus Device she used in Ludicrum

to better meet her needs. She also plans on continuing to use the Cricket in

her work. She summarized the experience of the course in a recent letter to

me:

"I've seen a whole lot of really uninteresting artwork made
under the umbrella of the digital, and I think this is because
people get so caught up in the technology, the technical
details, that the artistry suffers. Or perhaps I am less

impressed by technical feats than I am with a beautifully
drawn simple black line.
"What impresses me about the Cricket, and the effort to
make it somewhat user friendly, is that the device bridged a
gap for me; the gap between the physical object, and the
computer. So much of the programming involves a tactile
experience. I mean, once you write your program, then you
immediately go to the Cricket and turn it on, plug it in,
download, and see if it works. I know I would have been
scared off of the idea of using sensors and LEDs at first if I

had had to have a good grasp of V = I*Rl. Yeah, after some
hands-on experimenting at the end of th class I see how it
works, but I think having to learn minutiae about electronics
would have been a big turn off. Not that I'm not interested,
but my brain gets hit with a paralyzing wave of anxiety
when overwhelmed by the abstract. Having the hands-on
devices to play with allowed the trickier concepts to have a
visual aid, and allowed me to understand some things at a
superficial level before I really understood [the technical
details] as far as I understand [them] right now."

1. V = I*R, voltage is equal to current multiplied by resistance, is a canonical
equation in electronics. It is often the first major topic presented in an intro-
ductory electronics course and forms the basis for much of the later topics.

Chapter Three - Background and Context

Figure 3.1: CYSP 1.

3.1 Origins and History of Robotic Art

This section describes the origins and history of robotic art. It is provided

to familiarize the reader with the concepts, materials, and techniques

unique to this form of art. After briefly discussing its origins, I will pro-

vide selected foundational and contemporary works. More detailed

accounts can be found in Jack Burnham's book Beyond Modem Sculpture

(Burnham, 1967) or in Eduardo Kac's article Towards a Chronology of

Robotic Art (Kac, 2001b).

3.1.1 Foundational Work
In 1955, a show titled Le Mouvement opened at the Gallerie Denise Rene in

Paris. It was one of the first events showcasing movement as a fundamen-

tal means of expression. Marcel Duchamp and Alexander Calder, artists

known for their early experiments in motion, were featured in this show.

In 1966, Bell Labs physicist Billy KlUver organized 9 Evenings, a public

exhibit of collaborative performances created by teams of artists and engi-

neers. In 1968, Jasia Reichhart organized Cybernetic Serendipity at Lon-

don's Institute of Contemporary Arts. This show featured art from Nam

June Paik, Nicholas Sch6ffer, and Jean Tinguely, among many others.

CYSP 1 - Nicholas Schoffer (1956)

Kinetic art, a field that started and grew rapidly starting in the 1950's,

attempted to incorporate movement into what was previously static sculp-

Figure 3.2: K-456.

Figure 3.3: The Sen-
ster.

ture and reintroduced technology into the debate. In 1956, Nicholas

Sch6ffer built CYSP 1 (Cybernetic Spatiodynamic Sculpture) (figure 3.1).

The sculpture, held by a stationary base, contained sensors and analog elec-

tronics that produced different types of movements in response to the pres-

ence of viewers. The complexity of the intelligence or behavior was a

landmark for the field, as the only previous work was mechanically con-

trolled. This work is often regarded as the first example of cybernetic art.

This work was made possible through the large technical and monetary

support of the Philips Corporation.

K-456 - Nam June Paik and Shuya Abe (1964)

A 21 channel, remotely controlled robot, K-456 had rough human form,

recited JFK's inaugural address, and excreted beans as it was guided

through its performance space (figure 3.2). While intended to be a political

piece, this work raised further questions in reactivity, remote control and

audience interaction. It parodied the popular fear of robots displacing

workers as it required constant attention by a large number of people. This

work was also the result of a collaboration between an artist (Paik) and

engineer (Abe).

The Senster - Edward Ihnatowicz (1970)

This large creature exhibited a very shy behavior, nodding its head to qui-

eter viewers while moving away from louder ones (figure 3.3). The piece

was commissioned by the Phillips Corporation and utilized a Philips digital

microcomputer. Many different sensors were used, including microphones

and motion-detectors, and the body contained six hydraulic servos to actu-

ate its limbs. Its sensual behavior contrasted its stark appearance and pro-

vided the first example of behavior created by a computer in robotic art.

Minage - Norman White (1974)

MATERIAL DESIGN FOR A ROBOTIC ARTS STUDIO

by

Casey Wayne Smith

SUBMITTED TO THE PROGRAM IN MEDIA ARTS & SCIENCES, SCHOOL OF
ARCHITECTURE & PLANNING, ON MAY 10TH, 2002, IN PARTIAL FULLFILLMENT OF THE

REQUIREMENTS OF THE DEGREE OF

MASTER OF SCIENCE
IN

MEDIA ARTS AND SCIENCES
AT THE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ABSTRACT

A growing number of artists are using new electronic and computational
technologies for the creation of interactive, kinetic, and behavior-based art.
However, users without technical backgrounds often find that there is no
simple way to begin creating with these new materials without first learning
a wide range of programming and electronic skills. This thesis discusses a
set of technologies and activities designed for an introductory robotic art
course that enable art students with little technical background to experiment
with computation as a medium. The thesis presents case studies to highlight
how students engaged with these technologies and discusses how the ideas
represented in the course make possible a new model for artist/engineer col-
laboration.

Thesis Supervisor: Mitchel Resnick
Title: Associate Professor, MIT Media Lab

This work was supported in part by:

The LEGO Company
The National Science Foundation (NSF Grant # ESI-0087813)
Learning Lab Denmark
Things That Think consortium, MIT Media Lab
Digital Life consortium, MIT Media Lab

Figure 3.4: Minage.

Figure 3.5: Flock.

Figure 3.6: Petite
Mal.

Figure 3.7: Rearm-
ing the Spineless
Opuntia.

In 1974, Norman White created four ceiling-mounted robots and a fifth

robot on the floor. Each robot contained a light source and light scanner.

The light scanning apparatus would point itself in the direction of light

sources and as a result the robots would point at one another (figure 3.4).

However, more complex movements occurred as the robots were pulled

away from each other by their own motors. The seemingly simple organi-

zation created very dynamic interactions, providing an early example one

of emergent behavior in robotic art.

3.1.2 Contempory Work
Flock - Kenneth Rinaldo (1993)

The Flock consists of three robots that communicate their individual posi-

tions via audible telephone tones (figure 3.4). Each robot reacts to the

presences of viewers but also to the positions and movements of the other

robots. As a result, emergent and self-organizing behaviors are observed.

Complex and organic motions are seen as well. This piece alludes to a col-

lective intelligence posed by the robots that is reinforced by the audible

language with which they communicated.

Petite Mal - Simon Penny (1993)

Petite Mal is an autonomous and mobile robot (figure 3.6). It contains

ultrasonic and body-heat sensors that allow it to detect humans and some-

time pursue them. It contains no non-functional parts, save a flowered

tablecloth that wraps its metal beams, giving it a primitive aesthetic. It gets

its mobility from a pair of motor-driven bicycle wheels. It is meant to por-

tray an intelligent machine but not an anthropomorphic one. This is

achieved through its bare appearance and shape that does not resemble

human nor animal form.

Rearming the Spineless Opuntia - Amy Young (1999)

Figure 3.8: Rover:

This work attempts to give the opuntia plant back its spiny armor that evo-

lution took from it many years ago (figure 3.7). Sonar sensors detect an

approaching human, and raises large spiny leaves to shield the plant from

the person approaching. As the person steps back, the shields lower again.

This work ironically places technology in the position of a defense for

nature, where it is usually seen as an attacker.

Rover - Alan Rath (1998)

Rover is a small, wheeled robot that sits quietly on a recharging dock until

it senses activity (figure 3.8). It then seeks out visitors and inspects them

with its video camera. While sometimes comical, it can also seem intru-

sive or menacing. David Ebony of Art in America describes Rath's work

as, "not aggressive monsters, nor are they passive or subservient beasts.

While their movements hint at human behavior and social interactions,

they are not anthropomorphic" (Rath, 1999 p.43).

3.2 Constructionism and Constructionist Tools

Constructionism is an epistemological theory that builds on Piaget's Con-

structivism (Piaget, 1963) by adding the idea that knowledge is constructed

"especially felicitously" while engaged in the creation of a personally

meaningful or public object (Papert and Harel, 1991). This idea places

faith in people's ability to learn skills and ideas in natural ways given the

right motivation, environment, and materials. "Better learning will not

come from finding better ways for the teacher to instruct but from giving

the learner better opportunities to construct" (Papert, 1990, p.3). The chal-

lenge for educators is then developing tools, materials, and activities to

support these opportunities.

Figure 3.9: The
LogoBlocks program-
ming environment.

Figure 3.10: The
Jackal programming
environment.

One project intended to extend what children can build and what ideas can

be learned in the process is the Programmable Bricks project at the MIT

Media Lab (Resnick et al., 1996). The Programmable Brick is a small

computer programmed on a desktop, but then free of the desktop in all

ways. It can read sensors, collect and store data, and control small motors.

The Programmable Brick allows children to build a wide variety of cre-

ations from a rollerblade odometer to an automated hamster cage (Resnick

et al., 2000).

While this project has foundations that are almost two decades old, the

Media Lab continues to improve the Programmable Brick. The Cricket,

the latest Programmable Brick, is much smaller than previous versions

(about the size of a 9V battery), has built-in infrared communication sup-

port, and is extensible via an open bus line. Many 'extension devices',

once known as X-Gadgets but now most commonly called 'Bus Devices',

enable the Cricket with new functionality to support specific purposes or

activities. Examples of Bus Devices are radio frequency communication

devices, four-digit number displays, distance sensors, and LED controllers.

The Cricket is programmed in a number of environments. The easiest is

LogoBlocks (figure 3.9), a graphical programming environment that

allows the user to snap together primitives and control structures as if they

were LEGO bricks (Begel, 1996). While this language is very simple to

use, the more advanced user might find constructing programs slower than

typing them and large programs hard to understand and manipulate. A few

text-based environments exist, the newest being the Jackal programming

environment, created by Rahul Bhargava (figure 3.10). Jackal simplifies

the use of Bus Devices in procedures and allows advanced users to add

their own primitives to those the Cricket 'knows'. As the blocks in LogoB-

locks are marked with their text representation, the transition from LogoB-

locks to a text-based environment is easy for most users and the syntax

highlighting of Jackal helps further.

While Constructionism is often a radical departure from pedagogy

embraced by primary schools today, it might not seem radical at all within

an arts context, as most studio courses are structured in exactly that man-

ner. In fact, one of the original goals of Seymour Papert's use of Logo in

schools was to make math classrooms look more like art classrooms (Pap-

ert, 1980, Papert and Harel, 1991). However, the success of the studio

method in art is often a result of the materials; they simply lend themselves

well to experimentation within the context of the activity. An Introduction

to Robotic Art is an attempt to bring those qualities to the materials of pro-

gramming and electronics.

3.3 Discipline-Based Art Education

The Discipline-Based Arts Education (DBAE) approach to studio art

courses incorporates art history, art criticism, and aesthetics into a studio

arts course (Smith, 1987). While this approach to studio arts has long,

informal traditions, the Discipline-Based Arts Education pedagogy was

formalized in the 1960's for many different reasons. One goal was to pro-

vide a structured way for teachers to go beyond the skills approach and

allow the studio to introduce discussions of art history, critique, and aes-

thetics. It also helped schools justify arts programs and secure funding, as

this approach allowed for testable results and core curriculum (Anderson,

1992). This unfortunate byproduct has resulted in a much more rigid

approach to DBAE, forcing time allocations for each domain and demand-

ing very specific, testable subjects covered in a systematic way. The cen-

tral focus of artmaking as means of understanding art is also lost, instead

replaced with compartmentalized and isolated sections focusing on history,

critique, aesthetics, and technical skills. However the instances of DBAE

may fail, the foundations of DBAE are still admirable: The creation of art

can anchor and promote discussion of art conceptually, aesthetically, and his-

torically. This idea serves as the basis for An Introduction to Robotic Art.

3.4 Successful Scaffalding in Practice

In this section, I will summarize four courses that utilize technology for

learning and expression. These courses are important to my approach as they

depend on scaffolding to emphasize process and conceptual development

through the construction of meaningful and expressive objects. Although

very different from each other, each course described here has influenced the

development of An Introduction to Robotic Art.

3.4.1 6.270 (Electrical Engineering and Computer Science Dept.), MIT

6.270 (The Robot Design Competition) is a one month long, intensive robot

design course originally organized by MIT undergraduate Michael Parker

but further developed by Fred Martin and Randy Sargent. It is offered during

MIT's January Independent Activity Period. The course attempts to provide

authentic design experience in a curriculum that has become increasingly

focused on mathematics and theory and less on design (Martin, 1994). Mar-

tin thought the existing design courses within the Course 6 curriculum

focused on learning about design and not necessarily about learning how to

design. Much inspiration for 6.270 came from Professor Woody Flower's

Introduction to Design course offered in the Mechanical Engineering Depart-

ment, 2.70. Students are given a bag of scrap materials and specifications for

a task to be preformed by a machine. They then spend most of the semester

building the machine, which will then compete with others in a contest at the

end of the semester. Fred wanted to develop a similar course, but one that

Figure 3.11: A 6.270
fobot.

focused on computational design in addition to the mechanical design. Stu-

dents participating in 6.270 are given a bag of materials, including batter-

ies, motors, sensors, and LEGO pieces, and a pre-built microcontroller.

They are also given documentation that describes the use of the materials

and the specifications for the competition. Lectures and recitations are held

to describe and discuss various ideas relevant to designing, building, and

programming mobile, autonomous robots (figure 3.11). However, Martin

considers the most important learning aspect of the course to be the work

that happens in small groups, as students build, debug, and redesign their

robots (Martin, 1994).

Martin developed special technology for 6.270. This development was

based on three criteria:

" - Level of Abstraction Any educational technology hides
or isolates the user from certain phenomena while revealing
or highlighting others. In developing tools to facilitate the
design of robots, we paid special attention to the sort of
technological ideas we were exposing. Since a robot is a
system comprised of a variety of media- electronics, pro-
gramming, and mechanics- it was necessary to be clear on
which concepts we expected students to master and which
others they could simply use.

-Transparency Even if a certain idea is encapsulated by the
layer of abstraction, it should be easily accessible to stu-
dents who are interested. For example, we determined that
students should not need to have a deep understanding of
digital electronics in order to build their robots. But we did
not want to prevent or discourage students from exploring
this topic as part of their robot-building. Quite the contrary,
we hoped to invite them to do so through the design of our
materials, while simultaneously taking pains not to intimi-
date students who might not be interested in this topic.

-Interactivity Central to our project pedagogy was the belief
that people learn best by exploring ideas in a playful man-
ner. This was the modus operandi of our technology devel-
opment, and a key concern was creating materials that

would encourage this behavior in students" (Martin, 1994)

The technology currently used is the Handyboard, a powerful microcon-

troller programmed in Interactive C. Martin was also one of the chief

designers of the Cricket System, and the above design criteria heavily

influenced its design as well.

Figure 3.12: The
Monkey Zipline robot
from the 2002
Robotic Design Stu-
dio

Figure 3.13: The
Whack-A-Mole robot
from the 2002
Robotic Design Stu-
dio

6.270 represents a successful use of scaffolding within the engineering

domain. Martin was more concerned with allowing students to encounter

design problems and conceptual approaches to engineering than the techni-

cal skills themselves, and the qualities of the materials used allowed the

course to be structured to represent this focus.

3.4.2 Robotic Design Studio (Wellesley College)

The Robotic Design Studio at Wellesley College was developed to give

liberal arts students access to the important aspects of engineering without

the emphasis on technical skills that usually accompanies engineering cur-

riculum (Turbak & Berg, 2001). Turbak and Berg describe their motivation

for offering an engineering course at a liberal arts school as fourfold:

- To provide designing and building activities that challenge students so
that they are forced to reflect on their own learning and problem solv-
ing processes.

- To provide insight into the 'big ideas' in engineering so that students
might better understand engineered systems but also social and natural
systems as well.

- To have students cross disciplines and make connections between
them.

- To make technology more understandable and less intimidating

The Robotic Design Studio is an explicit attempt to adapt the approach of

6.270 to a different audience. Instead of competition robots, student

projects in the Robotic Design Studio typically involve storytelling and

narrative robots (figures 3.12 & 3.13). The specifications of the final

project are intentionally free of constraints, allowing for students to build

projects of interest to them. This course uses Crickets and Handyboards as

the main materials, although projects usually involve many art and craft

materials as well.

Similarly to 6.270, this course represents the use of scaffolding in order to

allow the focus of the course to be about engineering as afield and not

about specific techniques or skills. However, the course also shows the

expressive abilities of these materials and provides examples of students

from diverse backgrounds to become interested and engaged in engineer-

ing.

Figure 3.14: The
Design By Numbers
programming envi-
ronment.

Figure 3.15: An
example of a DBN
program.

3.4.3 Design By Numbers (ACG, MIT Media Lab)
John Maeda and his Aesthetics and Computation Group (ACG) at the MIT

Media Lab have developed a software tool and course curriculum to give

graphic designers an introductory experience in computer programming.

The system consists of an interpreted programming language that is simple

in syntax and structure and a very small (100 by 100 pixel) design area.

By removing the difficulty of syntax and the long development time asso-

ciated with most graphics languages, Design By Numbers (DBN) allows

students to explore the techniques and constraints associated with using the

computer as a design tool. Also, the constraints of the 100 pixel-per-side

graphics area and 100 shades of gray color domain provide structure for

their designs in what might otherwise be an overwhelming or intimidating

space (figures 3.14 & 3.15). While the programming language is unique to

DBN, programming skills learned within its confines transfer to other lan-

guages, including C, Logo, and Java. In his book, also called Design By

Numbers, Maeda warns, "Do not assume that fluency in the system

described in this book will guarantee an easy transition to mainstream lan-

guages. Nevertheless, you will find yourself well prepared to create in

whichever language you ultimately choose" (Maeda, 1999). More impor-

tantly, users learn about computer-aided graphic design conceptually with-

out the overhead of learning complex programming languages. Users

interested in learning more and wanting to escape the limitations of the sys-

tem will appreciate the background that Design By Numbers has given

them.

Design By Numbers provides an example of using scaffolding to introduce

users to the expressive abilities and constraints of the computer as a design

tool without concerning themselves with the technical details of syntax or

compilers. It provides a motivation for users fluent in DBN to learn other,

more powerful graphics languages such as C++, OpenGL, and Java.

Design By Numbers is an excellent example of a course created to give stu-

dents an opportunity to design in order to learn how to design, while pro-

viding them with general programming skills that will serve them in future.

Figure 3.16: A design
project created by a
student in Digitally
Mediated Design.

3.4.4 Digitally Mediated Design (Architecture Department, MIT)

This course, developed by Megan Yakeley in the MIT Architecture Depart-

ment, is based on the idea that "the development of ideas through iterative,

experimental, incremental exploration" (Yakeley, 2000) will lead to greater

understanding of the designer's own creative process. The course depends

on instructors willing to decrease the importance of the end product that is

typically stressed in a studio course and also on design tools that are flexi-

ble and capable enough to allow students to iterate and experiment. It

stresses the Constructionist notion that the creation of tangible artifacts that

are meaningful to the creator will bring about a greater understanding of

their creative and learning processes and also serve as a starting point for

discussion and reflection among peers (figure 3.16).

This course takes advantage of the qualities that a computer brings to the

design process by allowing students to engage in design in ways that they

normally cannot with paper. For example, a student wanting to experiment

or take a risk with a design can save the design under a new file name

before altering it so that the original design is left unchanged. With paper, a

student would start from scratch in the creation of the new design. Revi-

sions to a design can be saved so that students can review the history of

their design to better understand the processes they use and the influences

of different sources in their design. The act of designing through program-

ming is also significant, as it "permits the important step of drawing the

students attention to the procedural nature of the design process" and

focuses the students' attention to "one small step at a time" (Yakely, 2000).

It can also encourage exploration of design in new ways through the intro-

duction of selective randomness that the computer allows.

While the tools of this course do not necessarily fit within the definition of

scaffolding, his course demonstrates how the experimental and iterative

abilities of a tool can affect a user's acknowledgement and reflection of

their personal process. This tenant is an important aspect An Introduction

to Robotic Art.

MATERIAL DESIGN FOR A ROBOTIC ARTS STUDIO

by

Casey Wayne Smith

Thesis Committee

Thesis Advisor - Mitchel Resnick
r Lifelong Kindergarten Group

MIT Media Lab

Thesis Reader - Bakhtiar Mikhak
Research Scientist, Learning Webs Group

MIT Media Lab

2/, Thesis Reader - Chris Csikszentmihilyi
Assistant Professor, Computing Culture Group

MIT Media Lab

Thesis Reader - Arthur Ganson
Artist

Chapter Four - Design of the Tools and Curriculum

4.1 Overview

In this section I will discuss the design and implementation of both the

technological tools and course curriculum and structure. These designs

draw on Constructionism, concepts in robotic art, Discipline-Based Art

Education, and the courses mentioned previously. While designed specifi-

cally for use within a semester-long course taught at the Massachusetts

College of Art, they are applicable elsewhere and would appeal to anyone

interested in learning about the creation of interactive or behavioral art-

work.

An Introduction to Robotic Art is based on the creation of art as a focal

point for the practice and discussion of technique, aesthetics, history, and

concepts. This course uses experimentation and iteration to draw students

into a reflection on their process with these materials. This is accomplished

through the encouragement of prototyping and iteration, as well as by con-

versations with students regarding their approach to these materials versus

the materials they normally create with. Technical skills, such as program-

ming, soldering, and simple electronics, are introduced within the context

of specific activities centered on the creation of art.

The Cricket System provides the scaffolding needed to allow this approach

to be successful. Below, I discuss the features of these tools and the exten-

sions I created for these tools to better support robotic art and future learn-

ing.

4.2 Tools

I believe that the toolkit used in An Introduction to Robotic Art should:

- Offer a Low Entry Point: Allow students to immediately begin author-
ing movements, communications, interactions, and behaviors. This is
important so that students are not intimidated by the materials or activi-
ties

- Enable Rapid Iteration: Allow for fluid modification in movement,
interaction, and behavior to allow students to better understand the
medium and to better benefit from peer review and critique. A playful
approach is fostered by tools that allow for rapid iteration, flexibility,
and experimentation. This feature also allows the work to be fine-tuned
to meet exact desires.

- Support Interest-Centered Learning: Allow students to independently
explore areas of their own interest. This describes a tool that has very
different abilities that support many different possibilities. A good tool
should interest many different people and support the creation of very
different art. At any time, a student should be able to leave a general
approach and focus in on a specific quality of the material.

- Be Extensible: Prepare students for future explorations in technology,
programming, and robotic art as they move to tools with greater levels
of user control. Ideally, a system would support users to de-layer the
tool to reach more and more complex, and usually flexible, abilities.
The metaphor of an onion is appropriate here, where students can pull
off a layer as their understanding of it grows. Eventually the students
might approach the inner layer of the onion, or they also may find an
outer layer satisfactory to them. In any case, a good tool supports
growth within it and transfer of knowledge to systems outside it.

Below I will describe the Cricket System and the extensions to it that I

made to help it meet these ideals.

4.2.1 The Cricket System

The Cricket System consists of the Cricket, Cricket Bus Devices, and the

programming environment. The Cricket itself is not much larger than a 9

Volt battery, contains two motor outputs, two sensor inputs, infrared input

and output, and a piezo beeper that can play notes or 'beep'. Programs are

written on a desktop computer, which is responsible for the compiling of

the program and transferring it to the Cricket via an infrared interface con-

nected to the serial port of the desktop. Once programmed, the Cricket no

longer needs the desktop computer for operation.

As mentioned earlier, the Cricket can be programmed in two different envi-

ronments, LogoBlocks and Jackal. Transferring from LogoBlocks to

Jackal is made easier by using the CricketLogo keywords on the blocks of

LogoBlocks, and while CricketLogo is a unique language, it provides users

with necessary concepts that apply to popular programming languages

such as BASIC, C, or Java. Both environments require no compiling,

meaning that code can be executed as soon as it is written, providing for

rapid iterations.

The Cricket has an open bus line which allows for other devices to plug

into and be controlled by the Cricket. The current collection of these

devices, referred to as 'Bus Devices', includes accelerometers, radio-fre-

quency communication devices, and LCD displays. The large number of

Bus Devices available for the Cricket (more than thirty have been devel-

oped) makes the Cricket System suitable for a diverse set of projects. Mul-

tiple Bus Devices can be connected to the Cricket at the same time.

Figure 4.1: The
MicroChip PIC
microcontroller.

The Cricket and its Bus Devices are built with the MicroChip Peripheral

Interface Controller (PIC) series of microcontrollers (figure 4.1). These

devices, whose name still reflects their original role in industry control, are

flexible and economic devices suited for a large number of tasks. The PIC

on the Cricket runs a program known as the Cricket Core, which is respon-

sible for interpreting and running the users program.

The Cricket, while meeting most of the design criteria, needed additional

devices for its role in this course. First, the toolkit must be capable of creat-

ing large-scale, interactive artwork. I designed many hardware devices to

meet the needs specific to robotic art. These devices are outlined below.

Secondly, I will discuss a device intended to provide students an environ-

ment to explore concepts in electronics and microcontroller programming

within the familiarity of the Cricket system.

4.2.2 Extensions to the Cricket Toolkit

I created the devices to better equip the Cricket system for the construction

of large-scale, interactive artwork:

Relay Bus Device: The first focus for expanding the Cricket set was the

ability to drive larger motors. As a first pass, a Relay Bus Device was cre-

ated to allow for the use of any AC or DC motor with the Cricket (figure

4.2). It was set up so that the user could plug in any power supply desired

and easily connect the leads of motors. Two relays were used with each

motor so that the direction of DC motors could be changed. However, the

lack of speed control was a drawback of this device, and the Big Motor Bus

Device was created. The Relay Bus Device still proves useful for AC

motors.

Figure 4.2: The Relay
Bus Device.

Figure 4.3: The Big
Motor Bus Device.

Figure 4.4: The
Clock and Calender
Bus Device.

Figure 4.5: The
Capacitive Touch
Sensor aboard a
Cricket.

Big Motor Bus Device: This device allows users to connect a DC motor

and power supply (3-44V, <3Amps) and control the motors with 100 dif-

ferent power settings (figure 4.3). This ability is important for avoiding

complex gearings.

Clock and Calendar: My own curiosities in art often involve concepts in

time. The clock of the Long Now Foundationi and the work of Bruce Can-

non2 are two examples of art in this area that I find fascinating. I created a

real time Clock and Calendar to give the Cricket the ability to create time-

based pieces. It contains a small battery to keep the time while the Cricket

is turned off.

Capacitive Touch Sensor: Many interactive works depend on the ability

to sense human presence. An optical distance sensor exists to detect pres-

ence at a distance; the ability to detect touch through materials was needed.

Drawing on the recent release of single-chip, capacitive touch-sensing cir-

cuits, I created a simple board that gives the Cricket the ability to detect

human touch through paper, plastic, or wood or on any metal object.

Stepper Motor Bus Device: Stepper motors are useful components that

allow for precise stepping of the motor shaft. This is useful as it provides

for precise positioning, like a servomotor, but can also turn around continu-

ously. The Stepper Motor Bus Device allows the Cricket to control two

stepper motors. It allows for the stepping speed and direction of the motor

to be set, as well as discrete or continuous stepping.

Multi-sensor Input Bus Device: This device allows users to take readings

from 5 additional sensors. Many of the aevices can be used together to

allow the Cricket to use as many as 22 sensors simultaneously.

1. www.longnow.org
2. Bruce Cannon's work can be seen at http://home.attbi.com/-brucecannon/

4.2.3 The Bus Device To Think With

Figure 4.6: The Step-
per Motor Bus
Device.

Figure 4.7: The
Multi-sensor Input
Bus Device.

Whenever scaffolding is used in an educational environment, in tools or

curriculum, ways must be provided to allow the user to reveal the concepts,

techniques, and complexities behind the scaffolding. For instance, users of

Web page development tools such as Dreamweaver can view the HTML

and JavaScript source that is created in order to learn the details of author-

ing in those languages directly. The complexities of these languages are

scaffolded so the user can instead focus on the design of the page, but inter-

ested users can view and understand the lower-level details.

Users knowledgeable with the underlying details of the Cricket system

would be able to create new devices to better suit their individual needs.

The ideal of user-designed Cricket peripherals is discussed in a paper by

Martin, Mikhak, and Silverman:

"In this paper, we introduce MetaCricket, a hardware and
software construction kit for building computational
devices. MetaCricket has two crucial properties. First, it
allows designers of all backgrounds, not just engineers, to
create working prototypes of their ideas, ready for honest
critique, analysis, and feedback. Second, the MetaCricket
system is itself easily extensible. It is growing continuously,
and is customizable by designers who have modest hard-
ware and software backgrounds." (Martin et al., 2000)

However, 'modest' in this case means having experience with digital elec-

tronics, designing digital circuits, and assembly or C programming; skills

that most often only learned in engineering curriculums. The Cricket sys-

tem, no maer how many Bus Devices are created or how well the design-

ers of them consider their audience in designing them, will probably not

meet the user's needs for every project. A bridge is needed to provide

expert users with experience in the areas necessary for them to become cre-

ators themselves.

Figure 4.8: The Bus
Device to Think With.

Figure 4.9: An exten-
sion of Jackal to pro-
gram the BDTW.

A first attempt at this bridge is the Bus Device to Think With (BDTW). I

created this device with a very different goal in mind than most Bus

Devices. Instead of giving the Cricket a new sensing or output ability, its

purpose is to serve as an entry point to the basics of microcontroller pro-

gramming and electronics. With it, users can explore the concepts neces-

sary to understand lower-level microcontroller programming and basic

electronics within the familiarity of the Cricket system and CricketLogo

language (figures 4.8 & 4.9).

It was created for the 'expert' Cricket user, who is comfortable with

Cricket programming to the point that it no longer provides much diffi-

culty. Ideally, the user has also experimented with building their own sen-

sors, motors, or power supply for the Cricket, although this is by no means

a requirement. Mostly, the user should have confidence in using the

Cricket. The ideal user also has a strong interest but no background in

electronics and microcontroller programming.

The Bus Device To Think With is named in regard to Papert's concept of

the 'object to think with' (Papert, 1980). It provides activities that result in

the creation of an interesting object whose behavior incorporates or repre-

sents an interesting or important idea in microcontroller programming or

electronics. These activities are meant to not only provide users with expe-

rience and skills in these fields, but also to orient them to the literature and

documentation common to the field of engineers and hobbyists so that they

may progress past the activities supplied.

The native functionality of most microcontrollers usually includes one or

more of the following: digital I/O, analog-to-digital conversion, serial com-

munication, pulse-width modulation, and various timers and program inter-

rupts. These microcontrollers are usually programmed with either the C or

assembly programming languages, although more exist. They also almost

always require external circuitry to run. Thus, the difficulty in learning to

use these devices is threefold: Understanding its native functionality,

understanding the language used to program it, and understanding basic

electronics. The Bus Device to Think With allows users to detangle these

three problems and attack them one at a time. This aspect of the device will

be discussed in the section titled The Bus Device to Think With in Use.

The Bus Device to Think With is intended to allow students to explore

electronics, microcontrollers, and the C programming language. The C pro-

gramming language was chosen because of the large community of users,

tools, and documentation centered on this language. This language is also

the simplest and best documented way of developing new Bus Devices.

While C does not have the ease of Logo or the power of assembly, it can be

used to program many different types of microcontrollers, desktop applica-

tions, and computer graphics. The Bus Device to Think With is not meant

as a tool to use in the creation of art. It is only an intermediary tool to

bridge the gap between programming a Cricket in CricketLogo and pro-

gramming a microcontroller in C.

The BDTW is similar in some ways to the LogoChip, a new microcontrol-

ler being developed by Bakhtiar Mikhak, Brian Silverman, and Robbie

Berg. This microcontroller is programmed in Logo, allowing Cricket users

to encounter the concepts behind microcontrollers with the flexibility and

familiarity of this language. This device was developed to introduce col-

lege students to microcontroller programming. However, part of the goal of

the BDTW is to allow students to move from Logo to C in order to gain the

immense resources, documentation, and assistance available from the large

community of C programmers. The LogoChip does not support this need as

it was developed with different goals and for a different audience.

4.2.3 The Bus Device to Think With in Use
The first step in using the BDTW requires it to be plugged into a Cricket.

With the CricketLogo programming language, users can execute the native

functions of the PIC microcontroller aboard the BDTW. For example, the

following CricketLogo program utilizes the digital 1/0 capabilities of the

PIC to cause one pin on it to alternate between a high state (5 Volts) and a

low state (0 Volts) repeatedly, with a 1 second wait in between:

to turnoffandon ;the name of program

bitclear $A2 ;set the pin as output

Mr -loop[

pin-set $A2 ;set the pin 'A2' high

wait 10 ;wait 1 second
Figure 4.10: LED cir- pin clear $A2 ;set the pin 'A2' low
cuit firm BDTW tuto- wait 10
rial.

end ;end of program

After constructing the circuit (figures 4.10 & 4.11) with a LED and resis-

tor, this program will cause the LED to blink.

In the example above, users are introduced to the concepts of pins, ports,

and digital inputs and outputs. The electronic concepts of voltage, resis-
Figure 4.11: The cir-
cuit built on the tance, and current are briefly covered as well.
BDTW

During the second step in using the BDTW, the user directly programs the

PIC of the BDTW with the program below, written in C (the 'setup' por-

tion of this program omitted for clarity):

void main(){ //the 'main' program

//set pin 'A2' as output

bitclear(PORTADDR, 2);

//loop

while(1) {

bitset(PORTA, 2); //set pin 'A2' high

delayms(1000); //wait 1 second

bitclear(PORTA, 2); //set pin 'A2' low

delay._ms(1000); //wait 1 second

}

This program, running directly on the PIC, will behave just as the earlier

CricketLogo program did. Because of this feature, users can understand the

C program based on their knowledge of CricketLogo. For instance, the

structure 'loop' in CricketLogo does not exist in C; instead we use the

'while' structure with a condition that is always true.

In this manner, users can focus on understanding the functionality of the

PIC or on the electronics because the programming language is scaffolded,

but remove the scaffolding and focus on language once they are comfort-

able with the electronics and functionality of the microcontroller. This abil-

ity represents the design ideal of 'tearing down the scaffolding.'

The activities included in the Bus Device to Think With Manual (see

Appendix B) include additional digital input and output exercises, tech-

niques for controlling motors, using sensors and analog-to-digital conver-

sion, and communicating with a desktop computer via serial

communication. Each activity introduces new concepts in electronics and

microcontroller functionality.

Acknowledgements

I would like to thank Mitchel Resnick for the opportunity to study under him at the
Media Laboratory. I am extremely grateful for this experience and am honored have
been a member of his group.

Bakhtiar Mikhak has been an enormous influence in my own educational and per-
sonal philosophy and will continue to influence my direction in the future. I would
also like to thank his gracious family for their support and friendship.

Gretchen Skogerson deserves much credit for the creation of this research project
and her constant energy, humor, and always interesting art.

Thanks to Lisa Frasier for everything she has done for my life.

Mark Givens, Joe Robb, and Alexis Foreman deserve credit for keeping me
grounded in the important things in life.

My family continues to amaze me with their constant love and support. Only now
am I beginning to fully recognize and appreciate the things that they have done for
me and the ideals they stand for.

Finally, to Rahul Bhargava, Daniel Komhauser, Tim Hirzel, and Nell Bryer for being
the best friends an Ugly Duckling could ever have.

Lastly, the BDTW can serve as a platform for developing PIC programs

and peripheral circuitry for prototyping for users comfortable with both.

Users ready to start writing their own programs and constructing their own

circuitry can reuse the BDTW for this purpose.

4.3 Curriculum and Structure

An Introduction to Robotic Art was structured around two weekly sessions,

one consisting of an activity meant to draw out an interesting aspect of

robotic art and the other was an open studio time in which students could

continue to build on previous activities or create something of their own

interest. The activities are drawn from a document I wrote, titled Creating

Behavior with Crickets (see Appendix A), that highlights what I consider to

be the most interesting possibilities of the use of Crickets in art. I chose to

focus on the behavioral aspects of robotic art because this potential is nor-

mally not encountered when working with traditional materials. The man-

ual begins with a clear definition of its purpose and expectation of the

user's commitment:

This document has two goals. One is to provide the user
with activities to provoke thinking and discussion around
the field of robotic art. The second is to provide the user
with useful programming skills that will serve as a starting
point forfuture explorations. The user should be prepared
to conduct research in both fields outside of this document
as well as working on a long-term project outside of these
activities in order for the concepts introduced here to
become clear

It is organized into six different activities, each focusing on an interesting

ability of the Cricket. These activities are meant to introduce the student to

the qualities of the Cricket and aspects of robotic art that I find most inter-

esting. These activities are summarized below:

Activity One: Actuation - Create a machine that provides movement to a

found object in a way that suggests life, intelligence, or irony.

Activity Two: Sensing - Construct an object to provide an ambient dis-

play of an environmental factor

Activity Three: Time - Create a work whose behavior changes by date or

time, evolves, or ages.

Activity Four: Communication - As a group, create a 'cascaded' series

of behaviors. Each person's work should wait until an infrared signal is

received, respond to that message through movement or sound, and then

pass the message on.

Activity Five: Organism and Machine - Construct two separate works,

one that attempts to mimic organism-like interactions and one that behaves

in a machine-like way.

Activity Six: Connecting to the Computer - Send sensor values to a

computer to manipulate on-screen images.

Each activity includes an explanation of the activity and a sample Cricket-

Logo program to get started with. Links to artists' works relevant to the

activity are also included.

During the first session of the week, we discussed the activity at hand and

then worked to build a prototype. Related work in the field was discussed if

applicable to the activity or to a student's ideas. Gretchen's extensive

knowledge of work in this area was useful to students as they began to

understand its history and potential. The activities also served to launch

discussion of principles of electronics and programming. For example, the

'communication' activity was followed by a discussion of digital serial

communication, the basis for the Cricket infrared and bus communication.

The 'sensing' course had a follow-up discussion during the studio time in

which we soldered together our own sensors and discussed the electronics

concepts of resistance, analog-digital conversion, and voltage dividers. In

another class, we discussed the concept of pulse-width modulation that the

Cricket uses to control the speed of motors and the electrical property of

motors known as inductance.

The second session served as studio time, in which students were encour-

aged to experiment with the materials outside of the scope of the activity or

work on a longer-term project. Many times, the activity would spill over

into the studio time. As students developed ideas for projects outside the

activities, they would discuss their ideas with Gretchen and myself, along

with other students if desired. Gretchen and I would provide feedback on

the idea, provide references regarding related work, and encourage them to

construct a prototype. Prototypes were shown during class and used to

prompt discussion. Many students took home the materials and worked

outside of class.

At the middle of the semester, students were asked to propose a final

project. These proposals were discussed with Gretchen and myself; we pro-

vided feedback conceptually and technically. These projects provided a

focus for the remaining studio sessions.

Almost thirty students and faculty attended the initial meeting. Due to time

constraints and misconceptions regarding the nature of the course, this

number dropped to approximately fifteen by the second meeting. As this

course was voluntary and no credits were awarded, it often was given low-

est priority for students who had to worry about their for-credit courses.

Four or five of the remaining fifteen students would attend occasionally

(approximately every third session), and three others came approximately

every other session. Six students, however, were very dedicated to the

course and attended almost every session. The work and reflections of

some of these students will be discussed in the evaluation section that follows.

Chapter Five - Evaluation

In this section, I discuss the methodology used for the evaluation, the

aspects of student engagement that point to successes in the course, and

lastly its failures.

5.1 Evaluation Methodology

The evaluation was conducted using recorded interviews and conversations

with students before, during, and after the course, students' notebooks and

the art they created during and after the course, and in informal and formal

questionnaires. The analysis of this data was focused on the evolution of

students' approaches to the materials throughout the duration of the course,

the ways in which their conceptual framework of robotic art changed, and

their reflection of their own learning and artistic processes. Through this

analysis, five distinct aspects of student engagement stood out. These

aspects represent approaches and processes of the students indicative of a

successful engagement with the materials, concepts, and/or technique of

the field. These are discussed below in the following case studies. These

studies point to approaches and processes found in student's engagement

with the materials that contributed to their understanding of the materials,

concepts, and techniques of robotic art.

5.2 Aspects of Student Engagement

Figure 5.1: Copper
'carapaces' made by
Nathan.

Figure 5.2: Nathan's
glass and cardboard
prototype.

Figure 5.3: Copper
leaf prototype. The
leaf is actuated by a
pull on the string.

5.2.1 Experimentation and Iteration

Nathan is a sophomore in the fine metals program at MassArt. Nathan's

work has primarily focused on jewelry and knives, although he admits that

is still too new to metalsmithing to have explored many of its possibilities.

He recently exhibited some of his work at a student gallery at MassArt.

Nathan describes his process as an explorative one:

"It seems like a lot of the stuff that I make comes together as
a result of lots of different experiments. I will become inter-
ested in certain kinds of processes or even a certain type of
shape. I won't usually have a particular vision for it when I
first start. For example, these (small paper 'carapaces')
were a result of a lot of messing around. Then later, after I
actually made some of them (out of metal), I will imagine
them integrated into things and build ideas into them. It's an
explorative process; one things leads to another and I com-
bine them all" (figure 5.1)

Clearly, the creation of prototypes is fundamental to Nathan's approach as

they spark new directions and serve to focus his ideas. Midway through the

Introduction to Robotic Art, Nathan explained how he thought this related

to the Cricket:

"This prototyping process is very important. The Cricket; I
guess it's a bit different than 'prototyping', but it serves the
same role in a way. Just by playing with these things; I
didn't even know things like distance sensors existed, but
the ability to play with them and see how they can relate to
other attributes of a piece; that has started very different
thoughts about what is possible. While I haven't really
focused on building working things with the Cricket, just
playing around with different behaviors and different mod-
ules...very small programs and simple things, but it has
given me a few ideas that I could follow up on."

Nathan's final project is a copper and glass flower that provides an individ-

ual viewer with a different experience than a viewer within a crowded gal-

lery. He wants the flower to monitor the activity level in the room with

motion and sounds sensors. If the gallery is busy, he wants the flower to

remain fairly static and be "just another decoration" within the room. How-

Figure 5.4: An early
drawing of Nathan's
final project.

Figure 5.5: Drawing
of rings with movable
parts.

Figure 5.6: Another
concept drawing of
movable rings.

ever, when the room is quiet and an individual viewer is seeing the flower,

the flower opens its petals and the bulb changes color. He says that the idea

for this project grew out of many small Cricket constructions that he made,

while the shape of the flower grew out of his experiments making insect

carapaces from metal. This similarity means that the experimental qualities

of the Cricket fit within Nathan's well-developed process of working with

metal and allowed him to approach artmaking with computation in a simi-

lar way. In other words, he was able to use the same experimental process

that he uses for creating with metal in authoring behaviors with the Cricket.

Nathan is a very talented illustrator and originally wanted to attend art

school for drawing. However, a summer session at the Rhode Island

School of Design in metalsmithing made him immediately change his

mind. However, his drawing skills benefit him greatly in his design process

as his drawings serve as the first step in the prototyping sequence. From his

drawings he creates paper and cardboard models for designs requiring flat

layers or clay for objects require casting. Much of this need for prototyping

is due to the difficulty of working with metal; so much time is needed to

create a finished work that Nathan wants to have a clear picture of the piece

before he begins. He works with paper and cardboard until feels like he is

ready to start fabricating parts from metal. Even after creating parts with

metal, he chooses to use metal pins instead of rivets so that it can be easily

disassembled. Rivets replace the pins when the piece is considered fin-

ished. For Nathan's final project, he considers the behavior of the object as

important as the aesthetic and is confident that the Cricket will give him the

ability to "fine tune" the behavior. He knows that the quality of interaction

he is looking for is subtle and hard to achieve, but remains hopeful that

with enough time he can achieve "this very personal interaction". He

believes that he can iterate on his program in ways similar to how he iter-

ates in metal.

Figure 5.7: Early
drawing of player
piano.

Nathan says that working with these materials has given him new ideas

with for use within his traditional materials. Nathan says that some faculty

had encouraged him to incorporate moving pieces into some of his cre-

ations, yet he felt that "it felt like a lot of work just to make something with

a hinge" and that the aesthetic value of his work was his primary focus.

Working with motors has made him think about objects whose shape could

change (figures 5.5 & 5.6). For an assignment in a different course, he

designed "rings and bracelets that have the pieces that swing out; I guess in

some way I had never thought about motion in my work, and just working

with motors and controlling things with them has focused me on motion

much more."

5.2.2 Conceptual Engagement
David is junior in the 2D department at MassArt where he focuses on

painting and drawing. He describes his approach to art as one that relies on

chance and unexpected properties:

"I usually just start with making ideas in my sketchbook. If I
like one, I will pursue. I like to draw a lot of characters and
people. I will be on the T (Boston's subway system) and I
will draw random people. If they spark my imagination I
will go further with that sketch and develop them in carica-
tures of the original."

Early in the course, David built a system that mapped a distance value, read

by the Cricket, to a series of musical notes played by the MIDI Bus Device.

At first, these distances were mapped directly to the MIDI device, but he

later changed the code so that only a subset of the possible notes would be

played, allowing the system to stay within a key or song. This object then

served as the focus of his thoughts for the rest of the semester. He liked the

idea that holes in a card represented notes on a player piano and that this

representation was very arbitrary. He wanted to build a similar system that

drew upon the idea of arbitrary representation. His first sketch involved a

"piano" that was played by arranging playing cards in different positions

-- ---------

Figure 5.8: Rotary
player piano.

Figure 5.9: Slide con-
taining the different
color slots.

Figure 5.10: Unfin-
ished player piano.

(figure 5.7). A small, wheeled component containing the distance sensor

would move across the rows of playing cards and play a note representing

the distance between it and the card. While the viewer might hypothesize

on the relationship between the cards and music because of the many uses

of playing cards and the symbols that they contain, the relationship was as

arbitrary as punch cards to a player piano.

His next revision to this idea was to change the linear arrangement of cards

to a rotary one, where the distance sensor remained fixed but the table con-

taining the cards could be rotated, either by hand or by a motor (figure 5.8).

David thought that this might be a more aesthetically pleasing solution.

Later, David drew a piano that consisted of a cutting board, crackers, and

slices and cheese and meat. This design was similar to the original playing

card design that contained a small movable component that moved back

and forth relative to the crackers and slices of meat and cheese. This design

extended the arbitrary relationship of the playing cards to a more ridiculous

relationship between musical notes and hors d'oeuvres.

The last revision to this idea was to map colors to musical notes. He built

long slides that contained small squares of colored film (figure 5.9). By

sliding these slides into a box containing a light, photocell, Cricket, and

MIDI board, the user could play different songs (figure 5.10). David was

trying to illustrate the arbitrary representation of color and sound percep-

tion in humans by building a machine where these two phenomenon repre-

sent each other.

The playing card piano and the cheese and crackers piano were never con-

structed. These ideas remained sketches in David's notebook. The original

system that David constructed stayed very similar to its original form until

his final creation where he replaced the distance sensor with a light sensor.

This construction served as an object to think with for David and motivated

1W" WWI$

him to explore many different conceptual ideas. Representing ideas with

objects is the essence of artmaking and thus the ability to develop concepts

based on objects or create objects based on concepts is foundational. The

prototype that David first built would have been very difficult for him to

build without the scaffolding of the Cricket. If the course had been focused

on providing the necessary skills, David would have lost the experience of

conceptual development that centered on his early creation.

0.4'. *ft C*;

Figure 5.11: Draw-
ing of dung beetle on
tilting platform.

Figure 5.12: Carved
wood dung beetle.

5.2.3 Entry Point
Dawn is a student in the 3D department at MassArt. She is in her mid-for-

ties and has limited experience working with computers. She works mostly

with wood, clay, and metal. Dawn described one of her interests in art as

being "visual puns." The Cricket interested her because she felt that in

most her work, the pun was obvious at first glance. With the Cricket, she

could reveal the "punch line" of her pun to the viewer in ways of her own

design. She explained,

"The whole process of having a Cricket is exciting to me
because I like mechanical things, and by having the Cricket
it adds a whole other dimension. It adds an element to sur-
prise; instead of walking up to something and turning a
crank, it turns on as you walk up! The opportunity to use
those things and to be able to use.. .it's the whole thing with
the element of surprise. It's one more way that I can make
my pieces utilize that element of surprise. One pun I wanted
to explore was an a refrigerator that contained a cock-
roach.. .when you opened the door, the light turned on and
the cockroach moved around, but in a way that made you
wonder what he did when the light was off. It's playing to
the whole 'does the light turn off when the refrigerator door
closed'."

Dawn's final project consists of a carved, wooden dung beetle on a tilting

platform (figures 5.11 and 5.12). The dung beetle pushes a ball of dung up

the slope of the platform until it reaches the top, where the platform tilts

back the other way. The beetle then turns around and pushes the dung back

Table of Contents

Chapter One - Introduction ... 6
1.1 M otivation 6
1.2 Problem s with Artist/Engineer Collaborations ... 8
1.3 Approaching M aterials at M ultiple Levels .. 10
1.4 Changing Levels . .. 13

Chapter Two - Extended Exam ple .. 15

Chapter Three - Background and Context .. 18
3.1 Origins and H istory of Robotic Art .. 18

3.1.1 Foundational W ork ... 18
3.1.2 Contem pory W ork ... 20

3.2 Constructionism and Constructionist Tools .. 21
3.3 Discipline-Based Art Education ... 23
3.4 Successful Scaffalding in Practice .. 24

3.4.1 6.270 (Electrical Engineering and Computer Science Dept.), MIT 24
3.4.2 Robotic Design Studio (W ellesley College) ... 26
3.4.3 Design By Numbers (ACG, MIT Media Lab) 27
3.4.4 Digitally Mediated Design (Architecture Department, MIT) 28

Chapter Four - Design of the Tools and Curriculum 30
4.1 Overview 30
4.2 Tools 31

4.2.1 The Cricket System .. 32
4.2.2 Extensions to the Cricket Toolkit ... 33
4.2.3 The Bus Device To Think W ith .. 35
4.2.3 The Bus Device to Think W ith in U se ... 38

4.3 Curriculum and Structure ... 40

Chapter Five - Evaluation .. 44
5.1 Evaluation M ethodology .. 44
5.2 Aspects of Student Engagem ent 44

5.2.1 Experim entation and Iteration .. 45
5.2.2 Conceptual Engagem ent .. 47
5.2.3 Entry Point 49
5.2.4 M ateriality 51
5.2.5 Extensible 53

5.3 W hat Didn't W ork .. 54

Chapter Six - Conclusion ... 57

References 59

Appendix A 60

Appendix B 80

up the other side. The idea is based on the Greek legend of Sisyphus, who

was fated to forever push stones up a large mountain, which would soon

roll back down. Although the piece is not yet finished, she plans on titling

it Sisyphus Meets the Dung Beetle.

I commented to her that a similar motion could be achieved with a motor

and gear chain that synchronized the movement of the beetle and the tilting

of the platform and that a Cricket was not needed. Dawn was aware of this

and said that the mechanics of such a setup would be hard to build. Instead,

a light sensor could be used to determine the position of the beetle and the

Cricket could move the platform accordingly. This represents the idea of

feedback, a powerful idea in computer science. We then discussed what the

CricketLogo program would look like.

Dawn was concerned that the course would be too complex for her, but

decided to come to the first class after the introductory meeting. She

describes her thoughts after the first class:

"The thing for me was, the first class, I made the cardboard
cricket. It was very simple, just some wheels and motors. I
would say that I am computer illiterate. I am very illiterate.
Being able to program something, no matter how simple,
was like understanding the speed of light! Doing that was
amazing. I remember telling my friend, 'I programmed!'
Granted it was very easy, but that was always scary to me
before. I realized that feeling limits my ability to under-
stand; it's why I have remained computer illiterate for so
long."

The simple act of exerting control over the computer in a comfortable envi-

ronment provided the confidence to continue on in the course. After com-

pleting her project with the dung beetle, Dawn admitted she might explore

a few more "simple ideas," but is unsure as to what they might be. Most

importantly, Dawn felt that computers are approachable:

"I don't think I ever thought of using computers before,
because I am so anxious about them. But now, it's doable.

It's not so far beyond me. If anything, I left this class think-
ing this might be a tool that I could incorporate into my
work. That's been real helpful for me. It's made another
tool approachable, accessible. That's why the Cricket is
good. It makes the tools approachable to those outside of the
field. I'm in my forties; I remember when the first liquid
crystal watch came out! I was in my thirties when I first
used a computer; just to spell-check my thesis!"

5.2.4 Materiality
Near the end of the course, I asked Jen to describe her thoughts on the

Cricket. Being an art educator, she responded in terms of its role as a learn-

ing tool.

"I like that the possibilities seem to be endless. Each new
thing seems really simple, the ideas each seem really sim-
ple, but that doesn't mean that they can't be profound. I like
that. It seems like there are a lot of doors it could open. I
also love it as a learning tool. I don't think there is any bet-
ter way to talk about or show people how a computer can
respond to a human being, how you can have a dialog, an
interaction, I don't think there is a better way than this
instant thing; it's right here, that you feel like you have con-
trol of. It's this little device ...that you are actually 'collabo-
rating' with. I think there is something very poetic right
there about that. Outside of that, as a learning device or
teaching device, I think it is very empowering for anyone
who thinks about interactions."

Later in that interview, I asked her to describe other ways in which she

would categorize computers as tools. She immediately thought of her work

in 3D modeling: "The computer is a tool, for drawing or plans or design.

Especially if I am going to be doing something that is going to be fabri-

cated." Jen initially though of the Cricket in similar ways: The Cricket was

a tool that you used in order to achieve an idea. In later interviews, how-

ever, Jen began to describe the Cricket and Bus Devices as materials.

"In the beginning of the course I was completely confused
by all the options. The more you would bring in; there is a
clock, a touch sensor, then in that same kind of intuitive
'wouldn't it be cool if' way that is all about... [my] process
when I work at my bench in metal, 'wouldn't it be cool if I

did this with this metal.' You would add an ingredient (a
new concept or device) and it would spark an idea in a simi-
lar way. 'Let's make that, that would be cool.' It tapped
into, being exposed to possibilities, tapped into the same
intuitive process. You are not designing an idea, then find-
ing the support materials to make it happen; you are
responding to the materials. The class allowed us to respond
to the materials."

She described one instance of her response to these materials:

"My favorite moment was when you brought in the touch
sensor. I wasn't planning on doing that whole piece of the
LED's, but it sparked a ton of ideas that there is a way of
gentle interactivity. I am really interested in touch, you
make an object, somebody touches it, and how they interact
with it is interesting to me. [The touch sensor] changed my
thinking entirely. Initially, I was thinking that you motorize
something and [a viewer's] presence makes something hap-
pen. What I like about a lot of the work I make is that it has
to do with you turning something by hand, a crank or some-
thing, touching something, making something happen; it
was another entry into it that was softer. That really affected
the design of the work and I am still thinking about it for
other projects."

She then described her use of the materials in the work Ludicrum.

"The motors ended up being part of the [piece]. They give
the piece the behavior, it gives it its life, it makes them
respond to it in a totally different way; I don't know if I can
categorize it as a tool anymore. The Cricket is kind of a
facilitator, I think. It just becomes part of the vocabulary
that you reach for."

I believe the change in Jen's categorization of the Cricket from a tool to a

material signifies a successful experience in the course and has two under-

lying factors:

Understanding of expressive potential: Through the process of creating

many different works with the materials, Jen understands what potential

they have for her own work. She understands the conceptual and aesthetic

qualities of the materials of robotic art.

Fluency with the materials: Early in the course, Jen described artmaking

as, "this thing about an idea that you chase, the more fluid you are with the

idea, the more fluid you are with materials, the more able you are to chase

an idea in a way that you are OK with not catching it in the end." Jen's pro-

gramming skills have reached a level where she is fluent with the materials,

allowing her to accommodate these materials into the process she describes

here. Her confidence in the materials allows her to use them in natural

ways.

5.2.5 Extensible
Jen was the only student of the six who chose to explore lower-level micro-

controller programming and electronics with the Bus Device to Think

With. (One student started working independently with electronics halfway

through the semester after buying some books from Radio Shack. He is

now in the process of creating an installation using contact microphones

that he built.)

Jen's desire to learn more was driven partially by some of the limitations of

the Cricket. At one point during the construction of Ludicrum, she asked

me for help debugging a Bus Device intended to control 16 sets of LEDs,

which appeared to be malfunctioning. During the debugging session, I

mentioned that creating the effect she desired would be very simple with a

PIC and that it would allow her to control 60 or more LEDs instead of 16.

This comment sparked a new interest in learning more about PIC program-

ming and electronics. She describes this interest:

"I think I have the 'bug' now for it. I would really like to
understand it. One of the most exciting things about this is
that it provided easy access into programming. Maybe not
easy, even if it is 'false' easy, it makes it accessible. I love
learning new stuff, and I think this is the next thing I want to
delve into."

The Bus Device to Think With provided Jen with a comfortable environ-

ment to begin the often-uncomfortable process of learning something new.

While the birth of a son understandably interrupted her progress, Jen is

now ready to begin PIC programming, using the Bus Device to Think With

as her platform.

5.3 What Didn't Work

The large number of people that dropped out of the course through the

semester is a concern. The course was not-for-credit and the majority of

students that left certainly did so in order to focus on their other classes. A

challenge for educators wishing to provide a free environment is to find

ways of constraining certain aspects of the experience while leaving stu-

dents free to explore their own interests. I would find ways of doing this in

future courses based on these materials.

There were a few 'bugs' encountered during the course with the Cricket.

Many students were working with these materials at home or at their own

studio and these bugs were very frustrating, as they did not know if it was

their fault or a flaw in the Cricket or programming environment. After the

proper documentation of these issues, students did not necessarily mind

them. They mostly wanted to know if it was their fault or whether they

should move on or try to find a way around the bug. While it is unreason-

able to expect learning tools to be flawless, it is completely necessary for

them to be fully documented. The Cricket, its Bus Devices, and program-

ming environments need further documentation at all levels.

Most people took a relatively long time to begin creating with the materi-

als. While the scaffolding of the Cricket allowed students to begin creating

in order to understand what they need to learn, the artist must still design in

order to learn how to design (Schon, 1985). The qualities of the material

take experience working with to understand, but students were slow to get

started because they felt they didn't properly understand the qualities of the

material. More examples of art made with Crickets or related projects

would have been valuable to help students get started. A database of

projects in this area would be beneficial.

One student, John, attended class sessions only for the first half of the

semester. He had a fairly knowledgeable background in electronics and

was a recent graduate from MassArt. During the first session, he created a

sophisticated 'clock' that consisted of a large wheel that oscillated back

and forth. The oscillations were caused by feedback from light and mag-

netic sensors. While John's enthusiasm during the first few sessions was

undeniable, he lost interest in the course after he realized that he knew most

of the concepts (in art, programming, and electronics) covered. Clearly, a

course more focused on technical skills would have better suited John.

The Bus Device to Think With is an explicit attempt to make the Cricket

system deconstructable and understandable. While I feel that it is success-

ful in this regard, it is far from ideal. Instead, the Cricket itself should be

designed with this goal in mind. The Cricket virtual machine is a program

written in a unique mnemonic of assembly language. Not only is assembly

language a difficult one to master, this unique mnemonic lacks good exam-

ple code and documentation. I believe that this core program should itself

be written in C so that it is understandable by interested users. This would

also help communities with specific needs modify the Cricket itself.

Additional future work in this area would include the creation for a friendly

C programming environment for the Cricket. This environment could also

be used to program PIC microcontrollers. It would contain features that

make it easier for users to develop their own Bus Devices. In this manner,

the Cricket system could be customized by the Cricket experts within the

community for use by others within that community. The Bus Devices built

within the community would reflect the needs and desires of the collective

users.

An alternative to learning C or another language to program microcontrol-

lers would be to use the LogoChip being developed by Mikhak, Berg, and

Silverman. This device, however, is still in development. It will be a valu-

able addition to the Cricket System.

Chapter Six - Conclusion

This thesis documents the design and implementation of a course intended

to allow art students to explore electronics and programming through the

authoring and creation of behavior-based robotic art. This course provides

an entry point into the technical requirements of these materials but also

provides students with design experience. This is important in order for

them to develop concepts and processes regarding the use of these materi-

als. The scaffolding of the complexities of these materials by the Cricket

allows for students to approach the creation of art in an experimental and

iterative way. A process and tool for removing this scaffolding as needed

and desired is discussed.

One outcome of this work is a description of course materials designed to

provide students experience with a new mode of expression in the context

of an arts college. However, the approach outlined in this document will be

relevant to anyone interested in introducing themselves to programming or

electronics without first learning the technical complexities.

A second outcome is the development of an alternative relationship

between artists and engineers. In artistic collaborations, the artist usually

provides artistic vision and the engineer implements it within the con-

straints of her skills and materials. Another method would call for the engi-

neer to scaffold the materials the artist is interested in using, provisionally

hiding the technical complexities of the materials but allow for the behav-

ioral programming to be done by the artist. In this manner, the artist is not

Figure 6.1: An exam-
ple program writen in
MAX/MSP.

burdened with unwanted complexity but is able to make the subtle deci-

sions that ultimately affect the outcome of the work. The artist would

describe the overall guidelines needed for the piece and the amount of

complexity the artist wants to control. The engineer then develops the hard-

ware (one board or suite of connecting boards) and programming environ-

ment (software library, interpreter, or compiler) that satisfies these needs.

The engineer is no longer trying to implement the artist's vision but rather

scaffolding the technical details to a level the artist is comfortable with.

The artist regains control over the implementation and has the ability to

experiment with the materials at hand.

Some limited examples of this approach exist, but only for software tools.

MAX/MSP 1 is a popular music and multimedia graphical programming

environment originally developed by Miller Puckette (figure 6.1). It is

often used in the creation of interactive music and video and live perfor-

mance art. Users knowledgeable in C can add 'modules' to MAX for spe-

cific purposes. These modules are represented graphically for use within

the normal graphical programming environment. The most successful

modules are often bundled in future releases of MAX/MSP. An artist in

need of a specific tool or algorithm in MAX can recruit a programmer to

create it.

A similar system could exist for microcontroller hardware; an artist would

list performance guidelines and an engineer would create the hardware and

programming environment for the artist. This approach requires a dedica-

tion by the artist to program and commitment from the engineer to create

tools that others can create with. While these needs may require more effort

for both engineer and artist, the arguments contained in this thesis suggest

that this model of collaboration could lead to a more satisfying relationship

between the two.

1. For more information, see http://www.opcode.comiproducts/max.

References

Anderson, Albert A. (1992) Discipline-Based Art Education, American Craft, V.

52 April/May 1992

Begel, Andrew (1996) LogoBlocks: A Graphical Programming Language for

Interacting with the World. Advanced Undergraduate Paper in Electrical Engineer-
ing and Computer Science. MIT, Cambridge, MA.

Brown, J. S., Collins, A., and Duguid, P. (1989). Situated cognition and the culture

of learning, Educational Researcher, 18(1): 32-42.

Burnham, Jack (1967) Beyond Modern Sculpture. George Braziller.

Collins, A., Brown, J. S., & Newman, S. E. (1989). Cognitive apprenticeship:
Teaching the crafts of reading, writing, and mathematics. In L. B. Resnick (Ed.),

Knowing, learning, and instruction: Essays in honour of Robert Glasser, (pp.

453-494). Hillsdale, NJ: Lawrence Erlbaum Associates.

Kac, Eduardo (2001 a) The Origin and Development of Robotic Art (p.76-86) Con-

vergence:The Journal of Research into New Media Technologies (Vol. 7, No. 1).

Kac, Eduardo (2001b) Towards a Chronology of Robotic Art. (p. 87 - 1 11) Conver-

gence:The Journal of Research into New Media Technologies (Vol. 7, No. 1).

Maeda, John (1998) The South Face of the Mountain, Technology Review. July/

August. 1998

Maeda, John (1999) Design by Numbers, MIT Press, Cambridge, MA.

Martin, Fred (2000) Robotic Explorations: A Hands-On Introduction to Engineering.
Prentice Hall, Upper Saddle River, NJ.

Martin, Fred (1994) Circuits to Control: Learning Engineering by De-signing
LEGO Robots, Ph.D. thesis, MIT, Cambridge, MA.

Martin, F, Mikhak, B, and Silverman, B (2000) MetaCricket: A designer's kitfor

making computational devices. IBM Systems Journal (Vol. 39, Nos. 3 & 4)

Papert, Seymour (1980) Mindstorms: Children, Computers, and Powerful Ideas.

Basic Books, New York.

Chapter One - Introduction

1.1 Motivation

Educators of the studio arts recognize the value of the creation of objects.

Not only does this process serve to develop technical skills, but the object

created serves as an artifact to anchor discussion regarding art history, cri-

tique, aesthetics, and the artist's individual process and approach regarding

the concepts and materials of their work. This approach to art pedagogy

forms the basis for most studio arts courses. However, certain materials

demand a level of technical ability that makes this approach difficult as the

acquisition of these skills overshadows the creation of art.

Many courses designed to serve as an entry point into the field of robotic

art' borrow their tools and curriculum directly from the engineering con-

text in which these materials are most often found. The complexity of the

materials of this field, namely electronics and programming, demand that

many technical skills are needed before students can begin creating. As a

result, the approach of these courses is often centered on problem solving

and the acquisition of technical skills needed to work with the materials.

1. The name 'robotic art' may be problematic. It is often used to describe art
whose conceptual premise is robotics. I use it more broadly, to describe art
that incorporates the materials of robotics (microcontrollers, sensors, motors,
etc.) but doesn't necessarily use it as its conceptual basis. My use encom-
passes interactive sculpture, behavioral sculpture, and the more typical defini-
tion of robotic art. Eduardo Kac loosely defines the field by 'the principle of
giving precedence to behaviour over form.' (Kac, 2001 a)

Papert, Seymour and Harel, Idit (1991) Constructionism Ablex Publishing Corpo-
ration

Papert, Seymour. (1991). Situating Constructionism. Constructionism, eds. Idit
Harel and Seymour Papert.

Piaget, Jean. (1963) The Psychology of Intelligence (Paterson, N.J, Littlefield,
Adams)

Rath, Alan (1999) Robotics. Smart Art Press, Santa Fe.
Catalog of an exhibition held at Site Santa Fe, Oct. 21, 1998-Jan.24, 1999

Reas, Casey (2001) Behavioral Kinetic Sculpture, Master's Thesis, MIT, Cam-
bridge, MA
Resnick, M, Martin, F, Sargent, R, and Silverman, B. (1996). Programmable
Bricks: Toys to Think With. IBM Systems Journal (Vol. 35, No. 3-4, p. 443-452).

Resnick, M., Martin, F., Sargent, R., and Silverman, B. (1996). Programmable
Bricks: Toys to Think With. IBM Systems Journal, vol. 35, no. 3-4, pp. 443-452.

Resnick, M, Berg, R, and Eisenberg, M (2000). Beyond Black Boxes: Bringing
Transparency and Aesthetics Back to Scientific Investigation. Journal of the Learn-
ing Sciences (Vol. 9, No. 1, pp. 7-30).

Schon, D.A. (1992) Designing as Reflective Converation with the Materials of a
Design Situation, Research in Engineering Design, 3, pp.13 1-14 7

Schon, D.A. (1983) The Reflective Practitioner: How professionals think in action
(New York, Basic Books Inc.).

Smith, Ralph (1987) The Changing Image of Art Education: Theoretical Anteced-
ents of Discipline-Based Art Education. The Journal of Aesthetic Education, Vol.
21, No. 2, 1987

Stern, Andrew (2001) Deeper Conversations with Interactive Art Or Why Artists
Must Program. (p.17-24) Convergence:The Journal of Research into New Media
Technologies (Vol. 7, No. 1).

Turbak, Franklyn, and Berg, Robbie (2001) Robotic Design Studio: Exploring the
Big Ideas

of Engineering In a Liberal Arts Environment. Submitted to the Journal of Sci-

ence Education and Technology.

Yakeley, M (2000) Digitally Mediated Design: Using Computer Programming to
Develop a Personal Design Process. Ph.D. thesis, MIT, Cambridge, MA.

Web References:

Robotic Art Studio - http://www-2.cs.cmu.edu/afs/cs/usr/mai/www/course/15-493.html

Physical Computing - http://fargo.itp.tsoa.nyu.edu/-tigoe/pcomp/index.shtml

Appendix A

This document has two goals. One is to provide the user with activities to provoke
thinking and discussion around the field of robotic art. The second is to provide the user
with useful programming skills that will serve as a starting point for future explorations.
The user should be prepared to conduct research in both fields outside of this document
as well as working on a long-term project outside of these activities in order for the
concepts introduced here to become clear.

Accompaniments to this document include the CricketLogo language reference (attached)
and the Jackal programming environment.

Ceating Behavior
with Crickets

Parts List:
1. Cricket
2. Interface Cricket
3. Light, temperature, touch sensors
4. Motors and motor cables
5. Distance, Clock, Tr-color LED, Big Motor, Stepper Motor, ??? Bus Devices
6. AC to DC power adapter (outside barrel positive)

Setting up:
1. Install Jackal.
2. Plug serial cable into computer serial port, Interface Cricket.
3. In Jackal, select Edit/Preferences and choose the serial port you are using.
4. Point the infra-red parts of the Interface Cricket and the Cricket towards each other.
5. In the Command Center in Jackal, type 'beep' and press return. The Cricket should
beep.

Your first CricketLogo program:

Jackal has three windows- Procedures, Command Center, and Run This. The
Command Center is for trying out single lines of instructions: type the instruction here
and press return. Your programs will be written in the Procedures window. You can
write as many procedures as you want in this window, each starting with 'to' and
finishing with 'end', as shown below.

to test
repeat 10 [note random 5 wait 2]

end

Now, in order for the Cricket to know what procedure to run when the white 'run' button
is pushed, we must write the name of the procedure in the Run This window. Now, a
few other points:

Primitives and Flow
Write a program to build a peanut butter and jelly sandwich. Here is part of mine (this
isn't real, of course):

to make-believe-peanut-butter-sandwich
grab-knife
open-jar (peanut)
if (jar-open) [

repeat 10 [dip-knife spread-substance]]
close-jar (peanut)
open-jar (jelly)
if(jar-open)[

repeat 10 [dip-knife spread-substance]]
close-jar (jelly)

end

to grab-knife

end

to open-jar :n

end

What are the primitives (the native commands that the program is built out of, such as
repeat)? What are the procedures (blocks of code starting with to ending with end)? For
example, make-believe-peanut-butter-sandwich is one, the others are grab-knife, open-
jar. etc, although they are not shown here. The procedure make-believe-peanut-butter-
sandwich calls the other procedures, which do their thing and return. Are there
collections of primitives that often get reused? What is theflow (how does the Cricket
step through the program)? Does any process get interrupted by another? What are the
conditionals (what conditions are checked, then acted upon)?

Apply the same questions to this CricketLogo programs. These will work on your
Cricket, so plug in some motors, type the code in the Procedures window, type dance
into the Download This window, and download them!

to dance
step-forward
step-back
repeat 2 [step-forward]
repeat 2 [step-back]

end

to step-forward
note 20 10
thisway
ab, onfor 5

end

to step-back
note 30 10
thatway
ab, onfor 5

end

Bus
A bus is a communication method that allows computers to talk to other devices. In
Crickets, using the bus is as simple as plugging in a device and remembering the right
primitive that controls the device. For instance, plug in a digital display bus device and
run the following program:

to test
display 99

end

The primitive display tells the digital display to display a number, in this case 99.

Syntax
Computer languages have syntax just as written languages do. Syntax is a burden we just
have to deal with. Luckily, CricketLogo has little.

Procedures must start with 'to' followed by a procedure name of your choosing and end
with 'end'. Math operations must be spaced and brackets and parenthesis are used in
many primitives.

Consider:

to blah
if (sensora * 2 > 100) [beep]

end

Input/Output
Computers can have both inputs and outputs, such as the mouse or monitor that we are all
familiar with The Cricket has three 'primitive' outputs (motors, speaker, and infra-red.)
and two inputs: (sensors and infra-red).

Sensora values are read with the primitives 'sensora' or sensorb'. Sensor values read from
0 to 255. Crickets can also use bus devices as an input or output device.

Please read through the attached CricketLogo reference to get a better understanding of
the syntax and commands of CricketLogo. Through the following activities, take some
time to lookup the commands used in the sample programs and also try to understand the
structure of the programs. Analyze each sample program line-by-line to understand their
flow. At anytime, break away from these activities to explore something in-depth.

Activity One: Actuation and Motors

Movement is the first quality we will explore that alludes to behavior. This activity
focuses on animating a found object in ways that suggest life, intelligence, or irony it its
movement. Please read the below choices, play with each, then build something,
focusing on one quality of movement.

Built-in Motor Ports: The Cricket allows us to control the duration, direction, and speed
of motors. Try this program after plugging in a motor to Motor Port A (see Cricket
Diagram) on the Cricket:

to motor-test
a, on
wait 10
a, rd
wait 10
a, setpower 2
wait 10
a, setpower 8
wait 10

end

;turn motor a on
; wait one second
;reverse the motor direction

;set the power lower, to 2 out of 8

;bump it back up to 8

Motor port B works the same way. Another motor command is a, onfor. This command
turns on a motor for a given amount of time. However, the Cricket will move on to the
next command while the motor is still on, waiting to be turned off. This is different than
the wait command, which pauses the execution of the program for the duration of the
wait. For example, the two below programs function very differently.

to motor-one

a, onfor 30
rd

end

to motor-two

turns on motor a, quickly changes its
direction, after
3 seconds shuts it off

;turns on motor
;its direction

a, waits 3 seconds, changes

a, on
wait 30
rd

end

Gearing is still sometimes necessary, as are mechanisms for converting a motor's circular
motion to linear motion. Fred Martin's The Art ofLEGO Design

(http://handyboard.com/techdocs/artoflego.pdf)is a good introduction to prototyping
mechanisms with LEGO.

Also, as a motor's turning rate is unreliable, we will also want to incorporate feedback to
ensure precise positioning. This could be accomplished by having the moving object, or
some part of the mechanism in motion, trip a touch sensor to stop the motion, change the
speed or direction, or start a completely different behavior as well. Suppose we have a
motor turning a lever of some sort, which at some point will run into a switch. Code for
this situation might look like the following:

to motor-feedback
a, on ;turn motor a on
loop [if(switcha)

[a,off]
] ;continually check the state

;of switch a- if
end ; pressed, turn off the motor

Servo Motors: Some motors have this feedback ability built into them- these motors are
called 'servo' motors. The Cricket has a special board (bus device) that can control servo
motors. Instead of turning them on or off (the servo motors used with this board cannot
turn in full circles), we tell them what position to go to. The is accomplished with the
command turn-servo, which we pass the servo motor number (labeled on the device)
first, followed by the position we want it to go to. This position number must be
experimented with in order to obtain the position you want. With the Servo Motor bus
device connected to the Cricket and a servo motor plugged into it (black wire should be
closest to edge), run the following program:

to servo-test
turn-servo 1 20 ;turn servo 1 to position 20
wait 5
turn-servo 1 50
wait 5
turn-servo 1 90
wait 5
turn-servo 0

end

Stepper Motors: Stepper motors are another type of motor that can be quite useful.
Stepper motors turn in angular steps, allowing the precise positioning of servo motors but
can also turn all of the way around. The Stepper Motor bus device can control two
steppers with the following commands:

a-step-speed :n ;set the speed of stepper
;a 0-100

a-step-forward
a-step-off
a-step-brake

a-step-back
a-step-forwardfor :n

a-step-backwardfor :n

;step forward forever
;stop stepping

;lock up motor so
;turn

it won't

;step backward forever
;step forward of :n number
;of steps 0-255
;step backward for :n

;number of steps 0-255

Note: Match up the color abbreviations on the Stepper Motor bus device when
connecting a stepper motor.

Big Motors: One more actuation option is the use of big DC motors. While the Cricket
can run DC motors on its own, you are limited to motors that run on less than 9V and
draw less than .4 Amps. For people interested in controlling larger DC motors (needed
for more power), the Big Motor bus device is needed. This device needs its own power
supply, which needs have a connector with the outside barrel the positive supply, and
inside barrel ground. The power supply can be anywhere from 5V to 40V. Once this and
the motor are connected, the following commands can be used:

a- setpower
a- thisway
a - thatway
a-brake
a-off
b- setpower
b- thisway
b- thatway
b-brake
b-off

See the appendix for places to find cheap DC motors.

Artists and their work to view and discuss:
Marc Bohlen - http://www.contrib.andrew.cmu.edu/~bohlen/salt.htm

http://www.contrib.andrew.cmu.edu/-bohlen/alarm.htm
Gregory Barsamian - http://www.concentric.net/-Venial/sculptur.html

James Seawright - http://www.seawright.net/jamesseawright/motionhtml

While these skills are certainly necessary for success in the field of robotic

art, I will argue that with properly designed tools and curriculum a course

can be created that better matches the traditions of studio arts education.

Such a course will allow novices to immediately create and experiment

with these materials, acquiring technical skills in the process. The objects

created in this course can then be used to ground reflection and discussion

of the unique aspects of this field of art. I developed such a course, titled

An Introduction to Robotic Art, and co-taught it at the Massachusetts Col-

lege of Art (MassArt) in the fall of 2001. This thesis documents the tools,

curriculum, approach, and results of that course.

This course relies on technological tools that temporarily hide the technical

details of the materials so that users may more readily experiment and iter-

ate with them. These tools allow novices to readily create interactive and

behavioral sculpture, support increasingly complex designs as the user's

knowledge grows, and develop a good foundation for continued explora-

tion of the robotic art in the future.

It might be misconstrued that this approach is masking the technical details

of technology because of a lack of faith in artists to learn them. However,

quite the opposite is true. I believe that anyone, artist or engineer, can learn

these skills given the right motivation. This course is intended to give peo-

ple more interested in creating with these materials an opportunity to

explore the expressive potential of this new media and give them motiva-
tion to learn the technical skills they will need in the future.

In the fall of 2001, I began helping a fine arts student at Rensselaer Poly-

Figure 1: Gretchen technic Institute, Gretchen Skogerson, learn to use Media Lab's current
Skogerson's Lash..

Programmable Brick technology (Resnick, Martin, Sargent, Silverman

1996), the Cricket (Martin et al., 2000). The Cricket is a small micro-con-

troller that allows the user to author simple programs using sensors, infra-

Activity Two: Sensing

Another interesting aspect of the Cricket is its ability to sense conditions of the physical
world. In this activity, we will build an ambient display of an environmental factor. Four
sensors plug directly into the sensor ports on the Cricket- they are light, temperature,
touch (switch), and capacitive touch. These sensor values are accessed by the sensora or
sensorb command. The values range from 0 to 255. Try the following program after
plugging in a sensor to Sensor Port A and a digital display.

to sensor-test
loop[display sensora]

end

Try out each sensor to get an idea of its range. For details of using the capacitive touch
sensor, please see the appendix. Other sensors are bus devices, such as the distance
sensor and the clap sensor. Plug in the optical distance sensor and try the following
program:

to distance-test
loop[display ods-get-distance]

end

Strange results? Probably. These sensors have a point at which the number displayed
will reverse- one nice way around this problem is to make them into a motion sensor with
a simple algorithm. It looks like this:

global [dist1 dist2]

to motion-sensor
loop[

setdistl ods-get-distance
setdist2 ods-get-distance
if (dist1 > 30)[

if (((dist1 - dist2) > 10) or ((dist2 - dist1) >
10)) [beep]

]
end

It uses global variables to store two different distance readings at slightly different times.
It then checks to see if they are different by 10 or more. If so, motion has been 'detected'
and it will beep. See the attached CricketLogo reference for the details of global
variables.

Now, attach the clap sensor and a motor and try the following program:

to clap-test
when[clap?] [a, onfor 5]

end

Play with the dial to adjust the sensitivity of the device.

Now, design a way to display sensor information in a way suggestive of the information
itself or another quality related to measured factor. Feel free to use the MIDI board here,
as there is a long heritage of mapping sensor information to music. See the list of bus-
device commands for the MIDI commands.

Here is one to get you started: It uses the Tn-color LED bus device and two sensors
control the red and blue values of the LED.

to sensor-display
loop[cLED sensora 255 sensorb]

end

(The function cLED controls the Tn-color LED, with three arguments- the red, green,
and blue value to display).

Artists and their work to view and discuss:
Amy Young - http://www.ylem.org/artists/ayoungs/index.html
Rania Ho -
http://www.ok-centrum.at/english/ausstellungen/cyberartsOO/ho.html

Activity Three: Time

An interesting ability of the Cricket is its ability to keep track and respond to the date and
time. This ability gives us the opportunity to create work whose behavior changes by
date or time, evolves, or ages. This activity centers on a creation whose behavior changes
during the course of the day. The clock needs to have constant power in order to keep the
time, so make sure the backup battery is in place. The following functiorm are used to
control the clock:

clock-init
to
set-time :hr :min
set-date :day :mth :year
and day of week

get-day
get-mth
get-year
get-dow
get-hr
get-min
get-sec

For example:

to time-test
clock-init
set-time 12 30
set-date 8 3 02 1
do-something

end

to do-something
loop[

if ((get-time = 24)

;get the clock ready to write

;set the time
:dow ;set the day, month, year,

;returns the day

and (get-dow = 4))[a, onfor 20]

end

Notice that the first program, time-test, is used to initialize the clock. That program then
calls another program, do-something, that constantly checks the time and reacts at
midnight on Wednesdays.

Artists and their work to view and discuss:
Bruce Cannon - http://home.attbi.com/~brucecannon/

Ken Feingold - http://www.kenfeingold.com/docs/KF_01_2002.pdf

Activity Four: Communication

A unique ability of the Cricket is its ability to communicate to other Crickets via infra-red
light. The primitive send sends a number (0-255), while the primitive newir? returns true
if there has been a new IR reception, and the primitive ir returns the number received
(and also sets newer? back to false). With only two Crickets talking back and forth, you
do not have to be too concerned with protocol. One Cricket sends a number that
represents a command to the other Cricket, which is expecting the number and knows
what to do when it gets it. However, in order to take full advantage of this ability with
many Crickets, we need to come up with a protocol to provide a bit more order.

Master/Slave
One possible protocol relies on having one Cricket being the 'master' and every other
Cricket taking commands from it (the slave). A slight variation of this has each Cricket
receive, execute, and pass on commands.. .acting at first like a slave and then like a
master. For each of these protocols, a Cricket needs a unique identity and each command
also needs a unique ID.

A sample program:

;setup variables to store
global [identity commandl

to setup
setidentity 1
setcommandl 101 ;arbi

00:

setcommand2 102
receive command ;jump

end

ID, command
command2 ir_val]

;set identity to 1
trarily assign 101
mmand 1

to new procedure

to receive-command
when [newir?] [;interu

if (ir = identity) [;are th
waituntil [newir?]
setirval ir

if irval = command1
if irval = command2
send identity + 1
wait 5
send ir val

pt
ey

to

on new ir
talking to us?
;get the next ir

;save it
[do this]
[do-that]

;pass it on

end

Who starts this process? What happens at the end? Can you get it to repeat itself?

We will now use the first protocol to create a collaborative work. Each person is
responsible for creating a surprising or dramatic behavior for their particular piece that
happens when their identity is received. Using the above example of code as the basis,
everyone must choose an identity (no repeats!) and write two procedures (do-this and do-
that) that will execute depending on whether the person before you sends you a 101 or a
102. The person with identity 1 will start the process. Make sure that the person after
you in within the line of sight so that the IR signal will be received successfully.

Tips:
The primitive newir? reports a 'true' if there has been a new ir value come in since the

last time you checked the value of ir, in a statement such as if(ir = 2). In other words,
checking the value of ir clears the state of newir?. Store the value of 'ir' into a global if
you want to uses it value more than once, as it might change if another Cricket is sending
you more numbers.

Here is another master/slave example- figure out what it does!

global [identity irval]

to master
send 63
wait 5
if (newir?)

setir val ir
repeat irval [beep wait 5]

]
end

to slave
when[newir?][

if (ir = 63)[send identity]
]

setidentity 5
end

Artists and their work to view and discuss:
Simon Penny - http://www.telefonica.es/fat/vida2/alife/apenny.html

Eduardo Kac http://www.ekac.org/dialogical.html

Activity Five: Organism and Machine

In this activity, we will explore two modes of interaction: organism- like and machine-
like. We will construct two separate works, one that attempts to mimic organism- like
interactions and one that behaves in a machine-like way. This area is difficult as there
are many complexities to grapple with. Artist Alan Rath, on the topic of behavioral
sculpture, said, "what is 'interesting' behavior lies between doing nothing and
randomness." Here is a very simple example of something machine- like that takes
advantage of the computers ability to store and recall information quickly.

The Cricket can store 2500 points of data. There are 1440 minutes in a day- lets keep
track of the light level once a minute all day long, then play it back in less than a minute!

to record-light
erase 2500 ;erase all data
repeat 1440 [record sensora wait 600] ;record light

values
end

to play-light
resetdp
repeat 1440 [cLED 0 0 recall]

end

(To try this out, use a light sensor in sensor port A and a Tri-Color LED for playback.
Remove the wait 600 and run record-light. Then run play-light.)

Artists and their work to view and discuss:
Jenn Hall - http://www.dowhile.org/physical/projects/acupuncture/index.html
Simon Penny -

http://www-art.cfa.cmu.edu/Penny/works/stupidrobot/stupidrobotcode.html
Edward Ihnatowicz -

http://members.lycos.co.uk/zivanovic/senster/index.htm#The%20Senster

Activity Six: Connecting to a Computer

The Serial Bus Device allows us to send and receive information with a computer. This
allows us to send sensor values to control onscreen graphics or have the computer send
commands to control the Cricket. Plug in the serial board to the Cricket, and connect it to
the computer via a serial cable. In the below example we will use the Proce55ing
graphics environment to receive sensor values from the Cricket and manipulate graphics
based on these numbers. However, various other applications like Director (video) and
Max MSP (sound) can receive and handle serial data as well.

Run this program on your Cricket:

to serial-test
loop[
send-serial sensora
]

end

Now, shut down CricketLogo open up Proce55ing, click run, and open up
Sketchbook/Standard/SimpleSerialDemo.pde. Press the right triangle to run this
program. If all is successful, the square onscreen should change its hue based on the
sensor values.

Artists and their work to view and discuss:
Kenneth Rinaldo - http://www.ylem.org/artists/krinaldo/index.html

Odds and Ends

Where to get motors:
http://www.goldmine-elec.com/
http://www.allelectronics.com/
http://www.mpja.com/
http://www.sciplus.com/

Old washing machines, dryers, coffee grinders, disk drives, toys, computer fans.. .try
running them from the Cricket at first, then from the Big Motor Bus Device. Look on the
motor for voltage and current ratings printed on the motor. Also, the Cricket can control
AC motors with the use of a relay. Buy one, and read about it. Use the motor port at full
power (setpower 8) to flip the relay. Be careful with AC, and only work with someone
who has done something similar before.

Look for 'gearhead' motors for slow, powerful DC performance.

A little about Analog and Digital:

At the simplest level, analog means a system that uses continuously variable voltages to
relay information, while digital means that voltages are 'rounded off to a high level and a
low level (in the Cricket and a lot of other systems, this is OV for low and 5V for high).
As said before, the sensor ports on the Cricket measure an analog voltage. The Cricket
then converts this analog voltage to a number value (the familiar 0-255). This process is
called A/D conversion (for amlog to digital).

Digital systems pass information by codes consisting of highs and lows. Remember high
school math, when you learned about base-2 numbers? That is finally important!
Numbers in base two (binary) are represented by l's and O's. This is the core of digital
systems; numbers are passed around in base two, where the zero's are the low (OV) and
the ones are the high (5V). The Cricket speaks digitally to the bus devices. The Cricket
communication system is based on codes consisting of 8 ones or zeros. The ones and
zeros are referred to as bits, and 8 bits is called a byte. Back in decimal representation, 8
bits (1 byte) are capable of representing a number between 0 and 255. Aha! The
explanation of the mysterious 255!

Powering a Cricket from the wall socket:

To rid yourself of the need for batteries, you can build a power adapter for your Cricket.
Go to Radio Shack and buy a 5V to 12V AC-to-DC adapter and a 9V battery clip (looks
like the top of a 9V battery with a red and black leads coming from it. With the adaptor
unplugged, cut the end off and strip the leads. With the leads separated as not to touch
each other, plug the adaptor in and figure out with lead is positive and which is negative
with a voltmeter. (Ask someone to help you here, especially if they own a voltmeter!).

Solder the negative end to the lead from the clip that is connected to the flanged side of
the 9V connector. (It is probably the red one, although don't trust me here. Why red?
The 9V battery clips are usually meant to clip a 9V into, not to take the place of a 9V!
So, what we expect to be black (negative) is red (positive).) Solder the other lead of the
adaptor to the lead connected to the smooth connector on the clip. Now, with the
mulitmeter, make sure that the connector is the same as a 9V battery (flanged connector
is negative, smooth one positive)! Be careful here, as a mixup here might kill your
Cricket. With that confirmed, tape up your solder joints and plug it in!

Making your own sensors:

The Cricket can read a value between OV and 5V. If you have a sensor that puts out an
analog voltage between these values, you can plug it directly into the Cricket. The first
slot up from the edge on the sensor port is the input. The second one is the ground. Plug
ground from your sensor into ground of the sensor port (2 "d slot up), and signal from your
sensor into the input (1st slot up). However, many sensors are resistive sensors, which
means that their resistance changes with environmental factors. The light sensor is an
example of this, as its resistance changes with the amount of light hitting it (try it with an
ohmmeter). For these types of sensors, we plug one end of the sensor into the 3rd slot on
the sensor port, which is held stead at 5V. The other end then goes into the input (the 1 4t

slot). The sensor port has a built in voltage divider that converts a variable resistance to a
variable voltage when wired in this fashion. Try finding aforce sensitive resistor or bend
sensor at Radio Shack and using in this manner.

Things you know already:

This section provides analogies in CricketLogo to words you might come across in other
programming languages:

- Procedures, functions, methods
These are segments of code that perform some function We have been calling them
procedures.. .anything that starts with a to and finishes in end.

-Variables
A variable allows for storage and manipulation of numbers in an abstract form. In
CricketLogo, these are: global [variable] variable2] where variable1 and variable2 are
variables, of course.

-Recursion
Recursion is the method of calling a procedure from inside that same procedure.

to test
beep
test

end

Or better, but slightly more complicated:

global [variablel]

to test2
recurse 1

end

to recurse :n
setvariablel :n + 1
display variablel

recurse variablel
end

-Arguments
A procedure can take one or more arguments as inputs or output one argument. Below,
:n is the argument.

to beep-thismany :n
repeat :n [beep wait 2]

end

To use this procedure, we write:

to test
beep-thismany 12

end

- Conditionals or Condition checking
Checks a Boolean condition. Allows events to be conditional.

to check1
loop [if (switcha) [beep]]

end

or:

to check2
loop[if (sensora > 200) [beep]]

end

- Commenting and Reuse of Code
Commenting (text that isn't part of the code, but explains what a piece does) allows for
other people to understand what your code does. Compartmentalizing code and using

red communication, and motor control as primitives. Having basic

programming skills already, Gretchen took immediately to Crickets, even-

tually using them in her Master of Fine Arts thesis project, Lash (figure

1.1). The process was rewarding for both of us; she improved her pro-

gramming skills and I gained interest in the field of robotic art. One year

later, Gretchen accepted a faculty position at the Massachusetts College of

Art. Through this collaboration the ideas represented here were developed.

Gretchen co-taught An Introduction to Robotic Art with me, bringing her

considerable knowledge of the field to the course.

1.2 Problems with Artist/Engineer Collaborations

As computer based art grows, art schools are offering more computer-

related classes. As the community of practitioners grows, so will the

sophistication of technical, critical, and aesthetic discourses in the field.

Filmmaker and software engineer Andrew Stern explains this trend:

"There is no escaping the fact that to make an artwork inter-
active is fundamentally to build a machine with processes;
anything less would simply be a reactive work without
autonomy-'push button' art. Artists must think procedurally
to create truly interactive art, and fashion these procedures
to express their artistic intentions. This requires the artist to
have a firm foothold in both artistic practice and computer
science. The most precocious 'new media' academic depart-
ments are requiring their students to become equally profi-
cient in both disciplines" (Stern, 2001).

One approach for artists wanting to use technological materials but not

wanting to spend the time learning their use is to collaborate with a tech-

nologist. The Experiments in Art and Technology (E.A.T) foundation, in

fact, was established to match technologists with artists to meet this need.

However, in complex applications of technology the technologist must

make many decisions that will ultimately affect the outcome of the work.

arguments helps make your code reusable. In CricketLo go, comments are started with
the ';'.

- Threads/Multitasking
Multitasking allows the computer to perform several tasks simultaneously. In

CricketLogo, our only multitasking ability is the when command.

to thread ;interrupts the loop to beep when condition
is true
when [switcha] [beep]
loop[a, on wait 4 a, off wait 5 rd]

end

Useful books for going further in electronics, robotics, and sensors:

Robotic Explorations: A Hands-on Introduction to Engineering
Fred Martin
Addison-Wesley
ISBN: 0130895687

Electronic Circuit Guidebook: Sensors
Joseph J. Carr
PROMT Publications
ISBN: 070610981

McGraw-Hill Benchtop Electronics Handbook
Victor Veley
McGraw-HIll
ISBN: 0070674965

TAB Electronics Guide to Understanding Electricity and Electronics
G. Randy Stone
Tab Books
ISBN: 0070582165

The Art of Electronics
Paul Horowitz, T. Hayes
Cambridge University Press
ISBN: 0521377099

Handbook of Modem Sensors
Jacob Fraden
Springer
ISBN:1563965380

Interesting reads regarding interactive sculpture:

Beyond Modem Sculpture
Burnham, Jack
George Braziller, New York

Art of the Electronic Age
Popper, Frank
Thames and Hudson
ISBN 0-500-27918-7

Appendix B

The following activities are designed to provide an intermediate or expert Cricket user
with useful concepts in electronics and microcontroller programming. An introductory
text of electronics is a necessary companion to this guide, such as the McGraw-Hill
Benchtop Electronics Handbook or Practical Electronics for Inventors. Use these books
to fill in the gaps or to learn more about a particular subject. A Bus-Device to Think With
is needed, of course, along with a copy of the BDTTW Edition of Jackal. A digital
mulitmeter is very useful and can be purchased cheaply at www.mpia.com For users
that push further into microcontroller programming, a few more resources are needed: A
basic text of the C programming language, a CCS C compiler, and a Microchip PIC Start
programmer. Users committed to the exercises presented here and willing to spend many
hours hovering over solder fumes or in front of glaring CRTs may find themselves soon
programming microcontrollers and even designing their own Bus Devices for the Cricket
system.

Modem microcontrollers are quite capable and flexible devices. The MicroChip
PIC16F876, used in the Bus-Device to Think With, has 22 I/O pins, two PWM modules,
three timers, a RS-232 port, and five analog-to-digital converters. The following
exercises will discuss each of these capabilities and guide the user through their use. The
goal is to provide enough experience with the basic concepts in microcontrollers and
electronics' to let the user begin playing with ideas and to initiate them into the
enormously helpful community of artists and engineers using these materials in their
work. This is a heavy document that glances off many complex topics. Do not expect to
understand all of it, but do not underestimate the time and commitment that these topics
deserve. Most of all, build something fun with these exercises. It makes it all
worthwhile.

Depending on your experience level, you may want to read up on the basic concepts in
electricity and electronics (try to understand the concepts of voltage, current, resistance,
circuits, capacitors, and the relationships between them). The activities that follow

1 One important skill to master is the ability to read electronics specification sheets. One must wade
through endless technical nonsense when all one really wants is a simple explanation. Included with this
manual are spec. sheets for almost every comp onent used. For some circuits in this manual, you might
even have to read them.

assume little previous knowledge, but they also assume that you haw some outside

assume little previous knowledge, but they also assume that you haw some outside
resources and motivation to seek out additional ones as needed.

The Bus Device to Think With

Breakouisfr f
FP Cno BrekcQfrr

5V VolT

The Bus-Device to Think With is a device that allows you to play with the functionality
of a PIC microcontroller through the familiar Cricket Logo language. The code running
on the PIC 16F876 is written in C for the CCS compiler (http://www.ccsinfo.com/picc-
referall.shtml). It should be studied and tinkered with once you are comfortable with the
basic functionality of the PIC. It contains two functions to handle communications with
the Cricket, and a large table of commands. It compares the instruction sent from the
Cricket to this table, then executes that function. Whenever possible, the CricketLogo
commands are named and used similarly to the C commands, hopefully making the C
code more understandable for the Cricket user.

The board itself contains only parts needed for the PIC to run (clock, MCLR resistor) ,
for power (5 volt regulator, bypass capacitor), and for Cricket communication (bus
headers). The PIC is powered off of the power supplied by the Cricket Bus line. The 5V
regulator cuts the 9V of the Cricket down to a safe 5V, and the bypass capacitor reduces
the noise in the power supply. The bus headers contain the 9V power, ground, and the
bus signal line. This signal line is connected to the RBO (discussed later) on the PIC.

The board schematic is included in this document for your use. Take notice to the
breakout plugs on the bottom, labeled +5 and GND. These are your sources of 5V and
ground whenever a circuit diagram calls for them. The external supply plug is not
connected to anything other than the other two breakout plugs on the lower right side of
the board. These are useful ifyou want to use a different voltage supply for the circuit
you build, such as 9V, 12V, or 24V

Parts:

All parts and data sheets from www.digikey.com.

Additional parts included: 9V motor, slide switch, multiple stripped wires of different
lengths

Common symbols used in electronic schematics:

MOSF T

M MOTOR

TRANSISTO (NPN)

RELAY

C--

INDUCTOR

ZENER DIODE

PHOTORES ISTOR
POTENTIOMETER

These parts can be found at any Radio Shack or online at www.digikev.com

BATTERY

-- I -
C AP ACITOR

DIODE

GROUND
-'-

RESISTOR

LED

.JFE

Activity One: LED array!

The PIC 16F876 has 22 pins available for use as an input or an output (I/O), divided
among three ports. A port is a group of pins, intended to give the user control over an
entire collection of pins at a time. These ports are names A, B, C. For instance, pin 5 of
the PIC16F876 is named RA4, meaning pin 4 of the A port, while pin 12 is named RCl,
meaning pin 1 of the C port. Don't think too hard about this, its simply an imposed
order. Before a pin can be used, we must tell the microcontroller whether it is an input or
an output. We will start by making the pin RA2 an output with the function bitclear
$A22. The name bitclear has origins that we will discuss later, but now is not the time.
For now, understand that bitclear makes a pin an output (capable of producing 0 Volts
or 5 Volts) and bitset makes a pin an input (capable of reading 0 Volts or 5 Volts).
Once the pin is set as an output, we can set its value low (0 volts) or high (5 Volts). This
is accomplished with the function pinset, which makes the pin high, and pin-clear,
which makes the pin low. The simplest function looks like:

to turn_a_pin_on_briefly
bitclear $A2
pinset $A2
wait 10
pinclear $A2

end

Lets add a LED to make this more visually exciting. We know that pin A2 will be set at
5 Volts. Most LED's will draw too much current at this voltage, so we will add a resistor
to our circuit that will act as a current limiter. This will bring us to the first equation of
the activity, the famous Ohm's Law:

Voltage = Current * Resistance (V = I * R) (Units: V = Volts, I = Amps, R = Ohms)

We know that pin A2 will be at 5 Volts. This forms the left hand side of the equation.
LED's are rated by the amount of current they can draw so that they don't bum out. The
included LED's are rated at 20 mA. This is the current term. Then, we can assume that
the LED itself has negligible resistance and solve for R.

5 V = 20 mA * R
R = 250 Ohms

2 What's the $ sign all about? See appendix on Hex numbers.

The schematic of the circuit you will build looks like the following:

Now, to turn this schematic into a circuit: On the prototyping area (known as a
breadboard), use the small segments of wire included in you kit to connect pin on the PIC
(A2 in this case) to the long lead (positive side, called the anode) on the LED. The take
the resistor (in this case, 250 Ohms) and connect to short side of the LED (negative side,
called the cathode) to the ground (Ground can be found on the bottom left corner of the
board. One header is 5V, the other ground. If you look closely, they are labeled as such).
After building this circuit, run the CricketLogo program. For more information on using
a breadboard and creating circuits from schematics, please see the appendix on this topic.

Next, we will add a slide switch that will signal the microcontroller to turn on this LED.
To do this, we will make pin A3 an input to check the state of our switch. We also will
choose an input of OV to be off and an input of 5V to be on, but this could flipped.
Once configured, the status of an input pin is checked using the pin-test function. This
function returns a 1 at 5V and a 0 and OV. This is the convention used in most digital
systems (1 = high voltage level, 0 = low voltage level). Before wiring the below circuit,
use the multimeter 3 to probe the pins of the switch. To do this, use the resistance
measuring function of the multimeter (called an ohmmeter, because it measures in ohms)
to check which pins are connected with the switch in a given position, and which ones are
connected when the switch is in the other position. Drawing a diagram of the switch
might help. The pin that gets connected in either case will go to the PIC (probably the
center pin). One of the remaining pins will go through a resistor to 5V, the other to
ground.

+5Y

Mlc

3 See appendix for more details of using a multimeter

We write this function:

to lilswitch program
bitset $A3 ;set A3 as an input
bitclear $A2 ;set A2 as an output for LED
loop[

ifelse ((pin-test $A3) = 1)
[pinset $A2]
[pinclear $A2]

]
end

Try it out!

As a challenge, figure out how to safely use the push button to turn on the LED. Hints:
There should be a resistor between 5V and any given path to ground or the PIC. Probe
the switch.. .unlike the slide switch, you only have two pins which get connected on push,
and nothing which is connected otherwise. This circuit is included in the appendix .

Now you are own your own. Go crazy- you have 20 pins on 3 ports to use any way you
wish. Warning: Four pins on the PIC 16F876 are special: 1. Pin A4 doesn't have the
ability to go high by itself. We must 'tie it high', as they say. Here is how it works: We
place a large resistor (-10 kiloOhm) between the pin and 5V. This will allow the pin to
go into its high state. However, when the pin is set low at OV, the resistor is large enough
that not much current flows. In fact:

5V =I* 10 kOhm
I= .0005 amps

2. Pin BO has been designated to serve at the communication line between the PIC 1 6F876
and the Cricket. In fact, every Cricket and Bus Device use pin BO as the communication
pin. It is more than just protocol, however. Pin BO is an 'interrupt' pin, which means
that a change of voltage level will cause the microcontroller to pause the process that it is
currently doing and execute some other functions. For instance, when a Cricket sends a
command to a Bus-Device, the microcontroller on the Bus-Device pauses what it is doing
to listen to the Cricket. It then either carries out a different task or continues on doing
what it was doing before, depending on what the Cricket told it to do. This interrupt
ability is a special trait of BO. Note that if you set BO as an output, it can no longer listen
to the Cricket and the microcontroller will no longer respond to the Cricket. You must
then turn off the Cricket to reset pin B0's state, as it needs to be an input. Try it.. .I dare
you. 3&4. I have reserved RC4 and RC5 for serial communication. Normally, these
pins are fully functional; however, the code residing on the PIC right now reserves these
for the RS-232 exercise later on. These pins may not function properly fr normal I/O as
a result and should be avoided.

In these instances "the programmer becomes less of a technician and more

of a fellow artist" (Stern, 2001). The artist is then in danger of losing his

vision of the project. However, collaborations can lead to interesting art

but also to a better understanding of the medium for both artist and technol-

ogist. In the best possible case, the technologist has an understanding of art

and the artist has an understanding of technology, leading to a shared lan-

guage and process and perhaps to a new type of knowledge. This knowl-

edge can be formed by the technologist and artist each practicing in the

medium and process of the other.

However, these relationships can be problematic. MIT professor John

Maeda explains:

"Although such collaborations can produce respectable art-
work, they rarely lead to works of real power and inspira-
tion. What is more, the situation is getting worse because
relentless progress in information technology has widened
the gap between artist and engineer: The artist has little
understanding of the computer as a medium, and the engi-
neer (who has no artistic training) is not allowed to unlock
his creative potential in using the medium he has mastered"
(Maeda, 1998).

Casey Reas, a graduate of Maeda's Aesthetics and Computation Group at

MIT, is an artist by training and self-taught in many skills of the engineer-

ing domain. He calls for ways to make technology more approachable by

artists:

"[U]ntil the technologies required for the production of this
art become as ubiquitous as video cameras, there will not be
a generation of artists who have an intuitive understanding
of this medium. It is also necessary to develop tools to
enable the manipulation of the raw materials at a higher
level than the current practice of intricately machining cus-
tom parts and writing programs in C and assembly code1 "
(Reas, 2001).

88

Activity Two: Relays!

Try the below circuit to turn on and off a motor with a relay. A relay is a switch turned
on and off by a voltage applied to the coil of the relay. Basically, current flowing
through the coil produces a magnetic field that closes two pieces of metal together, thus
completing a separate circuit. This separate circuit contains the load to be switched, in
our case a motor, and a power supply. The battery in the diagram can be any direct
current source, the motor can be any load that falls within the specifications of the relay
used. Remember, a PIC pin can only source 20mA, so choose you relay to fit within that
specification. Also, make sure that the motor and power supply are compatible. The
diagram below may be a bit confusing. Lets divide it into two parts: The first is the coil,
the little loop-dee-loop thing. Find this part on the relay spec. sheet. Wire one side to the
PIC, and one to ground. When you run the program below, you should here the 'click'
sound of the switch flipping over.

to turn-on and off
bitclear $A2
pin-set $A2
wait 20
pin-clear $A2

end

Now, lets look at the other part of the schematic, which is the switch. Your relay has on
pin that is the lead, one pin that is normally open, and may have one pin that is normally
closed. Without current through the coil, the lead is connected to the normally closed.
With current flowing through the coil, the lead is connected to the normally open. With
schematic in-hand and mulitmeter fired up, verify this. Then wire up the rest of the
circuit as shown below. The pins shown in the diagram are the lead (with the little arrow)
and the normally open.

MOT1

PlC

The diode that bridges the motor is to protect the components from harmful voltage that
builds up when the motor switches off. This is because motors have a high inductance.

Relays are just a switch, making them useless if you want to control the speed of a motor
or dim a light. Howewr, the are very useful at switching AC loads or very large DC
loads. We will control the speed of a motor in activity 4.

+5YV

Activity Three: Another way to control pins!

For those new to binary numbers, please read the appendix regarding that topic first.

Imagine an array that looks like the following:

PORTA

0 0 o0 11 0 1 0i

Bit A4 (Pin N BitA1(Pin 3) BitAO(Pin2)

This array contains the I/O state of the pins on Port A. The ones represent inputs, zeros
represent outputs. In the array above, AO, A2, and A6 are inputs, while Al, A3, and A4
are outputs4. This array is contained within the PIC and written to when setting up I/O
pins on the PIC. It is possible to write to this register directly. We use the function
settrisa to do this, giving us a big boost in speed as we only need one function to set up
the eight pins, instead of setting each up individually. To do this, take the binary
representation, starting with the high pin number on the right and low and the left, and
convert this number to decimal or hex. The converted number is then used in the set tris
function. For example, 00011010 is 26 in decimal or $1A in hex. This step would not be
necessary if we could send binary numbers with the Cricket. However, we are limited to
sending numbers in decimal format (no pre-fix) or hexadecimal ($ as a prefix), so we
much convert our port configuration from binary to decimal or hexadecimal.

We set-up Port A in the configuration above by simply writing set trisa 52. Another
very similar register exists (it looks just like the diagram above) for controlling the output
state of the pins (either OV or 5V). To write to this register directly, we use the function
outputa. This function works the same way as settrisx, except that instead of setting
up inputs or outputs, we are setting the output state of the pins. We will use both of these
functions to setup and turn on certain pins of the PIC, just as we did in the first LED
activity. First, lets make all pins on C outputs. Then we turn the even ones on and the
odd ones off:

to even-odd
settrisc 0 ;set up all pins as outputs

4 4 You may have notice that the array has 8 slots, but Port A only has 6 pins. The highest two slots (bits)
are unused in this port and do not effect its state. There are eight slots because 8 bits (slots) equals 1 byte, a
common unit used in computer memories.

;(111111111 in binary, $FF in hex)
output_c 85 ;turn on even pin numbers, odds off

;(01010101 bin, $55 hex)
end

Hook up the bi-color LED, through a resistor between pins AO and Al. (That is, run a
wire from AO to the bi-color LED, then a resistor from the other pin on the LED to Al.)
Then try this program:

to tris_example
set tris a 0
outputa 1
wait 10
output_a 2
wait 10
loop [output_a 1 outputa 2]

end

This concept takes a while to fully wrap your head around. It is a trick, mostly. It takes
advantage of a way of representing numbers and uses that representation for a completely
different reason, like setting up pins. There is no reason that tricks like that should make
sense- you just accept them at first and then appreciate them later.

Activity Four: Motors and MOSFETS!

In this activity, we will use one of two available Pulse Width Modulation (PWM)
modules to power and control a DC motor. Later, we will also use this module to
produce a continuously variable DC analog signal (from 0-5V).

Pulse Width Modulation refers to a continuous series of square pulses produced by a pin
on the PIC. The width of the pulses is variable, as illustrated below. The duty cycle of a
PWM signal is the amount of time the pin is held high in each cycle. For instance, a duty
cycle of 50% means the pin is low for the same amount of time as it is high, while a 10%
duty cycle means that the pin is high for 10% of the time. A PWM signal also has a
frequency, which is the number of high- low cycles per second. This frequency is not
important in our examples. A PWM signal fed into a motor effectively turns the motor
on and off. However, this is happening very fast when compared to how long the spindle
of the motor takes to slow down. In the end, the motor 'averages' the highs and lows of
the PWM signal, and its speed is proportional.

45% duty cycle

20% duty cycle

J~fLiED
DC motors of reasonable size (big enough to do something useful with) are power-
hungry devices. They draw anywhere from 100 mA to 10 A or more. A pin on our PIC
can only source 20 mA. While the relays used in Exercise 1.5 can turn a motor of this
type on, the mechanical switching action of the relay is not fast enough to keep up with
the high-speed PWM signal. For this exercise, we will use a high-current MOSFET
(metal oxide field effect transistor, not that it matters) that acts just like a relay, but can
switch faster since it does not use moving parts to switch. The amount of current that can
run through a MOSFET depends on the MOSFET, but we will use .4 A devices. Note
that the pins of the MOSFET are labeled as D,G,S (in the spec. sheet). These stand for
Drain, Gate, and Source, respectively. The Drain is the drain of electrons, or where the
electrons flow to, which is the positive voltage supply. The source is the source of
electrons, which is the ground. This is confusing! Current flows from positive voltage to
ground, right? Yes, but only because current was defined wrong by Benjamin Franklin
way back when. Current does flow from higher voltage to lower voltage (by definition),
but what is actually flowing are electrons (from lower voltage (or ground) to higher
voltage). To avoid confusion, always think of current flowing from high to low, except
when reading spec. sheets and seeing the terms drain (or Vdd, which is the drain voltage)

and source (Vss, source voltage). Don't blame Ben. He knew something was flowing
and guessed wrong. He did bring us bifocals and chimneys, after all.

The PWM module on the PIC16F876 relies on an internal timer, specifically Timer2.
The first step in using the PWM module is setting up this timer. We use to the function
setup_timer2 with a 1,2 or 3 passed as an argument. Passing a 1 will setup the timer near
its fastest rate and 3 slowest, with 2 somewhere in between. Verify this with an
oscilloscope once the PWM module is running. The next step is turning the PWM
module on. The PIC16F876 had two modules, PWM1 on RC2 (pin 13) and PWM 2 on
RC1 (pin 12). The functions to call are setup-pwml or setuppwm2. Then, we set the
duty cycle of the module. The function is set_pwmlduty or set.pwm2_duty followed by
an argument 0-255. One would imagine that the duty cycle should be 0-100. I would
think that too. Microchip doesn't. Use 0-255. The circuit is sketched below:

+5V

M

D

PIc

6 s

to motorprogram
setup pwm2
setup-timer2 1
setpwm2_duty 10
wait 10
setpwm2_duty 50
wait 10
set-pwm2_duty 150
wait 10
setpwm2_duty 200

end

After successfully driving the motor, remove it and the MOSFET. Place a 100 uF
capacitor (mind the polarity) in its place, with the positive side of the cap on the PWM

line and the negative side to ground. Write a CricketLogo program to sweep the duty
cycle from 0 to 255 repeatedly. While running this program, measure the voltage level of
the positive side of the capacitor5 with a voltmeter or oscilloscope. Analog out! Neat
trick, although it turns out it isn't necessarily useful in most circuit designs. Some
interesting things might be possible, as there are voltage-controlled amplifiers and filters
used in musical synthesizers that might be interfaced to a PIC using this technique. One
more PWM trick: Replace the capacitor with an LED (wire a resistor and LED from the
PWM pin to ground). Change your CricketLogo program to ramp from 0% duty to 30%
and back down again. You should see a nice 'hearbeat' from the LED.

5 The value of the capacitor here should be played with. Too small of a capacitor and you will still be able
to see individual spikes of the PWM signal with an oscilloscope. Too big, and it will take a mighty long
time to discharge itself. You can also place a resistor in series from the PIC to the capacitor and see what
effect it has. Watch the difference on an oscilloscope.

Activity Five: Analog to Digital (A/D) Conversion:

Digital systems have many advantages and have led to many great advances. However,
the sensors used to sense or detect an aspect of the physical world measure an analog
signal, and we are forced to convert an analog signal to a digital one for it to be useful.
Fortunately, this is largely done for us in the PIC. It contains 5 pins (AO, Al, A2, A3,
A5) that can be configured to perform direct AD conversion on a signal between OV and
5V. The functions we will use are adc_setup and adcread. The function adcsetup gets
passed a number (0,1,2,3,5) for the pin of Port A to perform the conversion on. The
function adcread returns a 1-byte number (0-255) proportionally to the signal, with 0
representing OV and 255 representing 5V.

to sample-adc
adcsetup 0
loop[display adc_read]

end

Many sensors use environmental factors to change the sensor's resistance, such as
thermistors (temperature effects resistance), photoresistors (light effects resistance), or
force-sensitive resistors (FSRs). To create an analog voltage signal from these devices,
we create a voltage divider with the sensor and an ordinary resistor, as shown below.

SPIC
+5Y

Lets analyze this circuit. The total resistance from 5V to Ground is the resistance of the
sensor (R) plus the resistance of the resistor (R) 6, in our case we will use a 30-50 k
resistor. The current flowing through both of these resistors is I = 5V / (R + R). Now,
since current cannot flow into the PIC (it has very high resistance, or impedance), the
current flowing through the sensor is equal to the current flowing through the resistor
(where else would it go?). We use this fact to see that:

6 How do you pick the value of this resistor? You should match this resistor to the change of resistance of
your sensor in the conditions you are most interested in detecting. Just be certain that the total resistance at
any time is bigger than a kiloOhm or more so that the current flow is small.

(5V - Vpic)= I * Rz

Solving this for Vpjc gives us Vpic = 5V - 5V*Rs/(Rs + R)

Note that the voltage at the PIC (Vpic) is proportional to the resistance of the
photoresistor (Rs). Just what we wanted! We have our analog voltage signal for the PIC
to measure!

There are devices known as variable resistors that have a knob or slider that is used to
vary the resistance of the device. Many of these devices are set up in a voltage divider
configuration for easy AD conversion. These devices are known as a potentiometer. We
use one below with the same AD functions.

+5VPI PIC

The center pin of a potentiometer is usually the wiper, or the point of variable resistance.
This pin will be connected to the PIC, and the outer two pins to 5V and ground.

Regardless of whether the artist chooses to work with an engineer or learn

the necessary skills themselves, the success of their work depends on their

understanding of the computer as a medium. This understanding only

comes with the experience of using it artistically.

1.3 Approaching Materials at Multiple Levels

Most students wanting to gain experience with computers and electronics

must learn the necessary skills on their own or enroll in an engineering

course that covers these topics. The "skills-based approach" found in most

engineering courses may be favorable to students already familiar with the

capabilities and limitations of the materials, and possessing a clear idea of

the types of work they wish to create. They have the proper motivation to

benefit greatly from a course of this nature. Without this background, stu-

dents may find themselves wondering if the things they are learning are rel-

evant to the creation of art. How the circuit they just built or program they

wrote can be used expressively? Even if the course is rooted in art, which

many good educators in this field do, students will likely not have the time

to build interesting objects as they must move on to the next, harder con-

cept. In these courses, the dominant process is often one of problem solv-

ing and debugging as the goal of a specific activity is a working circuit or

program.

One difficulty of learning a skill very far outside of a learner's domain of

knowledge is known as 'Schan's paradox.' It is summarized as follows:

1. The C language and assembly code are two very common computer program-
ming languages.

Exercise Six: Serial I/O

(Note: this exercise requires the installation of the Proce55ing program included on the
CD)

Serial communication is a method of communicating between electronic devices. It
refers to the passing of information bit-by-bit in time, in contrast to parallel
communication, in which many bits are passed simultaneously. Many different protocols
exist for this serial exchange. One very useful and ubiquitous protocol is known as RS-
232 and it is used, amongst other things, for communication between computers and their
peripherals (although this use is being rapidly replaces by USB protocol). The nice
feature of RS-232 is that most of the work is done for us, either in the PIC itself of in the
C compiler. We will be using RC4 and RC5 to send and receive. 7

(Backside of the female D connector)

Setup the photoresistor circuit shown in Exercise Five. Connect pin two of the 9-pin D
connector to RC4, pin three to RC5, and pin five to ground. Run the following program
on the Cricket.

to send-data
adcsetup 0
loop [
sendserial (adcread) ;send the result of the

A/D conversion up the serial line

end

Once this is running, run Sketchbook/Standard/SimpleSerialDemo.pde within the
Proce55ing environment and connect the serial cable to the computer. Proce55ing is a
environment and libraries made specifically for graphics programming in Java. Once you
have opened SimpleSerialDemo, click on the right arrow button to start. A small square
should appear and change from black to white as the light level on the photoresistor
changes. Serial data from the PIC might also be used for controlling graphics in Java,

7 The PIC 876 has a 'hardware' serial port built in, called a USART (universal synchronous/asynchronous
receiver/transmitter built in. However, this feature was meant to work with a level converter, which
converts the 0-5V signal to -12 to 12V (most computers these days don't need these levels...0-5 works
fine). These level converters also invert the signal, which means that the signal coming from the hardware
USART is inverted to what the computer wants to see... thus we are forced to not use the hardware
USART, unless we want to wire up a level converter. However, this only means slightly larger and slower
code on the PIC, and nothing more.

video in Director, or sound in Max. Much information regarding this can be found on the
Internet.

We can also receive serial on the PIC from the computer. There are two functions for
this, newserial?, which returns a one if there is new serial data and a zero if not, and
get-serial which returns the new serial data and clears the newserial? flag. An example
might look like:

global [serial-data]

to serial-test
bitclear $A1

when [new serial? = 1][
setserial-data get-serial
if (serial-data = 64) [pinset $Al]

if(serial-data = 65) [pin-clear $A1]
]

end

Moving to Other Microcontrollers

Take some time to build a few things with the BDTTW. Use these projects as excuses to
try out some new circuits you have dug up, as well understanding further the
functionality of a microcortroller. Dig for information regarding the various
microcontrollers on the market, like the Basic Stamp, PIC, OOPIC, etc. Find the one that
looks right for you. For those interested in using a Basic Stamp, see the web page
cricket.media.mit.edu/basicstamp regarding the use of Bus Devices with the Basic Stamp.
For those interested in the PIC, the BDTTW also serves as a development platform for
programming and using the PICF876. The section below will take you through that
process.

The BDTTW as PIC Development Platform

The first step in this direction is obtain the PICSTART Plus programmer, MPLAB and
the CCS PICC compiler. The PICSTART Plus and MPLAB are available at
http://www.microchip.com/. The CCS PICC compiler is available at
http://www.ccsinfo.com/ccscorder.html.

Installing MPLAB and the CCS compiler and Using Activitesl-6

1. After installing MPLAB on your computer and unzipping the CCS files into their own
folder on your hard drive (put the unzipped folder on c:/, so that the path is simply c:/picc
), open MPLAB. Choose Project/Install Language Tool. Now, choose CCS and the C-
Compiler and then choose the executable PICC\CCSC.EXE (this is in the folder you
unzipped, wherever you put it) You also want it Windowed and not Command Line.

2. Now we must tell the computer where to find the header files (the header files are the
files specific to the type of PIC we are using that come included with the compiler). To
do this (in Windows 2000), we click on the Start Menu and choose Settings/Control
Panel. In Control Panel, choose System/Advanced/Environment Variables. Edit the
System Variables section labeled Path and add the line c:/picc/EXAMPLES (yes, case
matters). Do not erase or change any of the other variables. Now, restart your computer.

3.After copying the folder picc -examples (available on the BDTTW website) to you hard
drive, select Project, New. Now find the picc -example folder, and create a new project
with the name led.pjt in that folder (the project name should be the same as the source
file, in this case 'led' (the source file is 'led.c'). Hit OK. The Edit Project window
should pop up. The Target File name should be led.hex. You can leave the other boxes
within the Project heading blank. If the Development Mode box does not read Editor
Onlyl6F876, click on the Change button. Click the check box labled None (Editor

100

Only), and find the PIC16F876 in the Processor field. Hit OK. Now, change the
Language Tool Suite to read CCS. A box will pop up to warn you that you will lose your
'target command line options'. That's quite fine, so hit OK. Now, highlight the temp
[.hex] file in the Project File box. The Node Properties button should now be available.
Click on this. Click on the box labeled PCM. It should now be checked. Hit OK. Now,
one last step. Click Add Node. Find the file led.c and add it. Hit OK, then back in the
Edit Project dialog box, hit OK.

4. Now, we need to enable the PICSTART programming board. Click on the Menu item
PICSTART Plus. With the programming board plugged into your serial port, click on
Enable PICSTART PLUS.

5. To compile the file led.c, we choose Project/Build All. The program has compiled
successfully if the resulting window reads 'Build Completed Successfully'. If there are
errors in our code, the window will contain the line number of our error (or perhaps the
line before it) and some cryptic error message. The reference for the CCS compiler will
explain these error messages a bit better, but not great. Also, since the compilers only
good clue to what is wrong with your program is the line number, we must use a text
editor that includes the line numbers. I use the EditPlus text editor, available as
shareware. Note: After we change anything to the source file, led.c, we must save it and
compile it again.

6. After placing the PIC to program in the programmer (depressed dot on the PIC should
be at the top of the programmer), we hit Program. The yellow light on the programmer
will light up, and a dialog box should read 'success' after the programming is finished.
You are ready to rock and roll. Place the PIC back in the BDTTW and power it up (the
Cricket powers the BDTTW, so just turn on the Cricket)

7. Now, wire up the LED just as in Activity One. You should see the familiar blink.
Note: The Cricket is just powering the BDTTW. We could easily make our own cable to
power the BDDTW without the Cricket, but the Cricket is handy so what the heck. Note
that in Activities 1-6, the Cricket was running the show, telling the BDTTW what to do.
Now the tables have turned, and the PIC is the star.

8. Go through all of the example PIC code provided (Activities 1-6). These programs
should function similarly to the CricketLogo versions in the original activities. All of the
wiring and circuitry is the same as the original activities. Pay close attention to the adc.c
file, as in this example we run the Display Bus Device right from the PIC!

There are many web pages and discussion groups devoted to PIC's that you should utilize
as you progress. Again, pick a project to focus your efforts and to make all of the
frustration worthwhile. Good luck!

101

Building a Cricket Bus Device
For those interested in building their own bus device, open the lib. txt file in the Support
folder of the BDTTW Edition of Jackal. Look at the various functions that the BDTTW
uses, like pinset or output-a. You will notice the function bsend. This function sends a
number over the bus line. The first number it sends is $1998. This is the address of the
BDTTW. Upon receiving this number, the BDTTW knows the Cricket is talking to it
and then listens for more numbers. The next numbers it receives are instructions to do
something else, like make a pin an input or set a pin high. This number-passing scheme
is how all bus-devices work. Now open up the file BDTTW.c with a text editor such as
EditPlus. Find the functions with names similar to the CricketLogo functions (they near
the very bottom). These functions are what get executed with the similarly named
CricketLogo function is run. Notice that there are a few extra steps in some cases, but are
very similar none-the-less. Use this file as a guide to how to structure your bus device
code.

8 $199 is bigger than one byte! Ok, there is some slight of hand going on here. The Cricket actually sends
9 bits, not eight, with the extra bit signifying whether the other eight bits should be treated as instructions or
data. In this case, the Cricket sends $99 as an instruction. If we had written bsend $99, it would send a $99
as data.

102

Appendix:

Binary and Hexadecimal numbers:

We use the decimal representation of numbers in ordinary math. However, computers
operate with a binary representation. At some point, people realized that a hexadecimal
representation was a good compromise between the two, allowing humans to better
visualize numbers as the computer might see them, but not make them stare at ones and
zeros either. We will briefly cover all three and how to convert between them.

In the decimal system, we count from 0 to 9, then add a place holder in the next space
over to represent 10. We then continue counting from 0 to 9 again. In binary, we count
from 0 to 1, placing a 1 in the next space over when we hit one in the first. In
hexadecimal, we count from 0 to 15 before marking the next space. However, the
number 15 takes two spaces! To solve this, we start counting in with letters after nine..ie,
count from zero to F, going through 9 to A, then B, and so on.

Decimal: 0,1,2,3,4,5,6,7,8,9
Binary: 0,1
Hexadecimal: 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F

Binary is denoted by a lower-case b, hexadecimal by a '$' or 'Ox' prefix or a 'h' postfix.

To convert, its best to use calculator! In time, you will be able to convert back and forth
in your head. For now, try out Marin Steen's Hex Calculator at http://www.martin-
steen.de/hexcalc.html or use a scientific calculator.

Pinout for 9-pin D connector

Pin No. Function

1 DCD (Data Carrier Detect)

2 RX (Receive Data)

3 TX (Transmit Data)

4 DTR (Data Terminal Ready)

Pin No. Function

6 DSR (Data Set Ready)

7 RTS (Request To Send)

8 CTS (Clear To Send)

9 RI (Ring Indicator)

5 GND (Signal Ground)

103

Multimeters

Mulitmeters are many measuring instruments packaged in one device. These instruments
are usually a ohmmeter (measures resistance), a voltmeter (measures voltage), an
ampmeter (measures current), and sometimes a faradmeter (measures capacitance). Also,
some have a continuity tester, which beeps when a connection exists between the leads.
This is a handy feature. The leads of the mulimeter may or may not have different plugs
for the different functions. This is important to remember. Also, the ampmeter will
certainly have a maximum input current it can accept. Do not ignore this. Also, there
might be a switch for AC/DC coupling. Use DC for all purposes in this manual. For
probing a switch, use the continuity tester (if possible) or ohmmeter on lowest setting.
For measuring voltage, connect the black lead to ground and the red lead to the voltage
being measured. For measuring amperage, connect the device in series with the circuit,
so that current is flowing in the red lead and out the black. For measuring capacitors,
make sure that you discharge them by touching their leads together before inserting them
into the faradmeter.

Using Breadboards and Building Cicuits

A breadboard (or solderless breadboard) is a device that allows for rapid creation
of electronic circuits. Notice that there are two different types of hole patterns. The
holes in the center area of the board are electrically connect horizontally. The holes the
run down the edges of the board are connected vertically, as shown in the picture below.

S
a

The outer edge holes (sometimes called rails) are usually used for 5V and ground (OV).
By plugging in a wire to the 5V header and plugging in the other end to the left hand rail,

104

we can now connect 5V into any circuit by utilizing the fact that all of its holes are
connected vertically. Do a similar thing for ground. Now, plug a wire into the left hand
rail (5V), and insert the other end into an arbitrary hole in the center area. Since these
holes are connected horizonatally, we will now plug the long end of an LED (the anode,
or positive voltage side) into any hole in that row. This lead will now be at 5V. Insert
the short end of the LED into another arbitrary hole (anyone except one in the same
horizontal row as the first!) Now plug one end of a 100 Ohm-lkOhm resistor into a hole
in the same horizontal row as the short end of the LED. The other end of this resistor
should now be plugged into the ground rail. Your circuit should look like this:

The schematic of this circuit looks like:

+5V

I

105

The schematic pictured in Activity One looks like this on the protoboard:

106

Schematic of BDTTW

107

" The paradox of learning a really new competence is this:
that a student cannot at first really understand what he needs
to learn, can only learn it by educating himself, and can only
educate himself by beginning to do what he does not yet
understand" (Schan, 1987).

As electronics and programming are often outside of an art student's

domain of expertise, an introductory course in these subjects should serve

to allow students to explore the potential of the field while providing them

with an understanding of what they would need to learn to pursue what

they want to build. Only when students understand what they want to pur-

sue (the art they want to build) and what they need to learn should the

learning of technical skills be the priority.

The act of designing is a "kind of experimentation that consists in reflec-

tive 'conversation' with the materials of a design situation." (Sch6n, 1992

p. 135) In robotic art, designing then requires experimentation and iteration

with electronics and microcontrollers , materials that do not necessarily

lend themselves well to this approach as electronics usually only work or

do not work, and while interesting accidents can happen due to 'logical'

mistakes, more often a program will simply not work at all due to syntacti-

cal mistakes. Experimentation is often not rewarded and iteration is made

difficult by the long revision times often needed for electronics and micro-

controller programming. Designing is often a matter of appreciating and

using qualities of materials as they emerge (Schun, 1992 p.138), but this

1. Microcontrollers contain a central processing unit combined with peripherals
such as input/output (I/O) devices, memory, and timing references. They are
packaged on a single chip and can be programmed by the user with a set of
instructions loaded into their memory.

Simplest Circuit Needed to Run the PIC16F876

108

Button Schematic

-5V

Pic
I

A__

109

1'

