
Complete VLSI Implementation of Improved Low

Complexity Chase Reed-Solomon Decoders

by

Wei An

B.S., Shanghai Jiao Tong University (1993)
M.S., University of Delaware (2000)

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

OCT 3 5 2010

LIBRARIES

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Electrical Engineer

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARCHVES

September 2010

@ Massachusetts Institute of Technology 2010. All rights reserved.

Author .
Department

Certified by.......

of Electrical Engmeering and Computer Science
' September 3, 2010

// U / Vladimir M. Stojanovid
Associate Professor

Thesis Supervisor
~1 ~

Accepted by...................
Terry P. Orlando

Chairman, Department Committee on Graduate Theses

2

Complete VLSI Implementation of Improved Low

Complexity Chase Reed-Solomon Decoders

by

Wei An

Submitted to the Department of Electrical Engineering and Computer Science
on September 3, 2010, in partial fulfillment of the

requirements for the degree of
Electrical Engineer

Abstract

This thesis presents a complete VLSI design of improved low complexity chase (LCC)
decoders for Reed-Solomon (RS) codes. This is the first attempt in published research
that implements LCC decoders at the circuit level.

Based on the joint algorithm research with University of Hawaii, we propose sev-
eral new techniques for complexity reduction in LCC decoders and apply them in the
VLSI design for RS [255, 239,17] (LCC255) and RS [31, 25, 7] (LCC31) codes. The
major algorithm improvement is that the interpolation is performed over a subset of
test vectors to avoid redundant decoding. Also the factorization formula is reshaped
to avoid large computation complexity overlooked in previous research. To maintain
the effectiveness of algorithm improvements, we find it necessary to adopt the system-
atic message encoding, instead of the evaluation-map encoding used in the previous
work on interpolation decoders.

The LCC255 and LCC31 decoders are both implemented in 90nm CMOS process
with the areas of 1.01mm 2 and 0.255mm 2 respectively. Simulations show that with
1.2V supply voltage they can achieve the energy efficiencies of 67pJ/bit and 34pJ/bit
at the maximum throughputs of 2.5Gbps and 1.3Gbps respectively. The proposed
algorithm changes, combined with optimized macro- and micro-architectures, result
in a 70% complexity reduction (measured with gate count). This new LCC design also
achieves 17x better energy-efficiency than a standard Chase decoder (projected from
the most recent reported Reed Solomon decoder implementation) for equivalent area,
latency and throughput. The comparison of the two decoders links the significantly
higher decoding energy cost to the better decoding performance. We quantitatively
compute the cost of the decoding gain as the adjusted area of LCC255 being 7.5 times
more than LCC31.

Thesis Supervisor: Vladimir M. Stojanovid
Title: Associate Professor

4

Acknowledgments

I want to thank Dr. Fabian Lim and Professor Aleksandar Kavoid from University of

Hawaii at Manoa for the cooperation on the algorithm investigation. I also want to

thank Professor Vladimir Stojanovid for his inspiring supervision. Finally, I want to

acknowledge Analog Devices, Inc. for supporting my study at MIT.

6

Contents

1 Introduction

1.1 Reed-Solomon codes for forward error correction

1.2 Low complexity Chase decoders for RS codes

1.3 Major contributions and thesis topics

2 Background

2.1 Encoders and HDD decoders for Reed-Solomon codes

2.2 Channel model, signal-to-noise ratio and reliability

2.3 The LCC decoding algorithm .

3 Algorithm Refinements and Improvements

3.1 Test vector selection .

3.2 Reshaping of the factorization formula

3.3 Systematic message encoding .

4 VLSI Design of LCC Decoders

4.1 Digital signal resolution and C++

4.2 Basic Galois field operations

4.3 System level considerations

4.4 Pre-interpolation processing . . .

4.4.1 Stage I

4.4.2 Stage II

4.4.3 Stage III

simulation

13

13

15

16

19

19

22

23

29

29

32

32

35

. 35

. 37

. 39

. 40

. 41

. 43

. 44

4.5 Interpolation .

4.5.1 The interpolation unit

4.5.2 The allocation of interpolation units

4.5.3 Design techniques for interpolation stages . . .

4.6 The RCF algorithm and error locations

4.7 Factorization and codeword recovery

4.8 Configuration module

5 Design Results and Analysis

5.1 Complexity distribution of LCC design

5.2 Comparison to standard Chase decoder based on HDD

5.3 Comparison to previous LCC work

5.4 Comparison of LCC255 to LCC31

6 Conclusion and Future Work

6.1 C onclusion .

6.2 Future work .

A Design Properties and Their Relationship

B Supply Voltage Scaling and Process Technology Transformation

C I/O interface and the chip design issues

D Physical Design and Verification

D.1 Register file and SRAM generation

D.2 Synthesis, place and route .

D.3 LVS and DRC design verification

D.4 Parasitic extraction and simulation

. 44

. 44

. 46

. 50

. 52

. 55

. 57

59

. 60

. 64

. 66

. 67

73

73

74

75

77

81

85

85

85

90

93

List of Figures

3-1 Simple rj = 3 example to illustrate the difference between the standard

Chase and Tokushige et. al. [30] test vector sets. The standard Chase

test vector set has size 27 = 8. The Tokushige test vector set covers a

similar region as the Chase, however with only h = 4 test vectors. . . 30

3-2 Performance of test vector selection method for RS[255, 239,17]. . . . 31

4-1 Comparison of fixed-point data types for RS[255, 239, 17] LCC decoder. 36

4-2 Galois field adder . 37

4-3 The XTime function . 38

4-4 Galois field multiplier . 38

4-5 Horner Scheme . 39

4-6 Multiplication and Division of Galois Field Polynomials 39

4-7 VLSI implementation diagram. 40

4-8 Data and reliability construction . 41

4-9 Sort by the reliability metric . 42

4-10 Compute the error locator polynomial 43

4-11 Direct and piggyback approaches for interpolation architecture design. 45

4-12 The Interpolation Unit. 47

4-13 Tree representation of the (full) test vector set (2.12) for LCC255 de-

coders, when 71 = 8 (i.e. size 28). The tree root starts from the first

point outside J (recall the complementary set J has size N - K = 16). 47

4-14 Sub-tree representation of the h = 16 fixed paths, chosen using the

Tokushige et. al. procedure [30] (also see Chapter 3) for LCC255 decoder. 48

4-15 Step 2 interpolation time line in the order of the sequence of group

ID's for the depth-first and breadth-first approaches 49

4-16 Sub-tree representation of the h = 4 fixed paths for RS [31, 25, 7 decoder. 50

4-17 RCF block micro-architecture. 53

4-18 Implementation diagram of the RCF algorithm. 54

4-19 Diagram for root collection. 55

4-20 Detailed implementation diagram of Stage VII. 56

5-1 The circuit layout of the LCC design 60

5-2 Complexity distribution v.s. number of test vectors h 64

5-3 Decoding energy cost v.s. maximum throughput with supply voltage

ranging from 0.6V to 1.8V . 69

5-4 Decoding energy cost v.s. adjusted area with constant throughput and

latency as the supply voltage scales from 0.6V to 1.8V 70

5-5 Decoding energy cost v.s. adjusted area with equivalent/constant

throughput and latency as the supply voltage scales from 0.6V to 1.8V 71

C-1 The chip design diagram . 83

D-1 ASIC Design Flow. 86

D-2 Floorplan of the LCC255 decoder . 89

D-3 Floorplan of the LCC31 decoder . 90

D-4 Floorplan of the I/O interface . 91

D-5 The circuit layout of the complete chip design 92

List of Tables

5.1 Implementation results for the proposed LCC VLSI design 60

5.2 Gate count of the synthesized LCC decoder 62

5.3 Complexity Distribution of the synthesized LCC decoder 63

5.4 Comparison of the proposed LCC with HDD RS decoder and the cor-

responding standard Chase decoder 66

5.5 Area adjustment for comparison of decoding energy-costs 67

5.6 Multiplier usage in the proposed LCC decoder 68

5.7 RAM usage in the proposed LCC decoder 68

5.8 Comparison of the proposed LCC architecture and the work in [33] . 68

5.9 Computed limits of clock frequency and adjusted area along with through-

put and latency for LCC31 and LCC255 71

C.1 Number of Bits of Decoder Interface 81

C.2 The I/O interface to the outside environment 83

D.1 Memory usage in the chip design . 87

D.2 Physical parameters of the circuit layout 93

D.3 Testing cases in transient simulations 93

12

Chapter 1

Introduction

In this thesis, we improve and implement the low complexity chase (LCC) decoders for

Reed-Solomon (RS) codes. The complete VLSI design is the first effort in published

research for LCC decoders. In this chapter, we briefly review the history of Reed-

Solomon codes and LCC algorithms. Then we outline the contributions and the

organization of the thesis.

1.1 Reed-Solomon codes for forward error correc-

tion

In data transmission, noisy channels often introduce errors in received information

bits. Forward Error Correction (FEC) is a method that is often used to enhance the

reliability of data transmission. In general, an encoder on the transmission side trans-

forms message vectors into codewords by introducing a certain amount of redundancy

and enlarging the distance'between codewords. On the receiver side, a contaminated

codeword, namely the senseword, is processed by a decoder that attempts to detect

and correct errors in its procedure of recovering the message bits.

Reed-Solomon (RS) codes are a type of algebraic FEC codes that were introduced

by Irving S. Reed and Gustave Solomon in 1960 [27]. They have found widespread

'There are various types of distance defined between codeword vectors. See [23] for details.

applications in data storage and communications due to their simple decoding and

their capability to correct bursts of errors [23]. The decoding algorithm for RS codes

was first derived by Peterson [26]. Later Berlekamp [3] and Massey [25] simplified the

algorithm by showing that the decoding problem is equivalent to finding the shortest

linear feedback shift register that generates a given sequence. The algorithm is named

after them as the Berlekamp-Massey algorithm (BMA) [23]. Since the invention

of the BMA, much work has been done on the development of RS hard-decision

decoding (HDD) algorithms. The most notable work is the application of the Euclid

Algorithm [29] for the determination of the error-locator polynomial. Berlekamp and

Welch [4] developed an algorithm (the Berlekamp-Welch(B-W) algorithm) that avoids

the syndrome computation, the first step required in all previously proposed decoding

algorithms. All these algorithms, in spite of their various features, can correct the

number of errors up to half the minimum distance dmin of codewords. There had been

no improvement on decoding performance for over 45 years since the introduction of

RS codes.

In 1997, a breakthrough by Sudan made it possible to correct more errors than

previous algebraic decoders [28]. A bivariate polynomial Q(X, Y) is interpolated over

the senseword. The result is shown to contain, in its y-linear factors, all codewords

within a decoding radius t > dmin/2. The complexity of the algorithm, however,

increases exponentially with the achievable decoding radius t. Sudan's work renewed

research interest in this area, yielding new RS decoders such as the Guruswarmi-Sudan

algorithm [9], the bit-level generalized minimum distance (GMD) decoder [12], and

the Koetter-Vardy algorithm [16].

The Koetter-Vardy algorithm generalizes Sudan's work by assigning multiplicities

to interpolation points. The assignment is based on the received symbol reliabili-

ties [16]. It relaxes Sudan's constraint of passing Q(x, y) through all received values

with equal multiplicity and results in a decoding performance significantly surpass-

ing the Guruswarmi-Sudan algorithm with comparable decoding complexity. Still,

the complexity of the Koetter-Vardy algorithm quickly increases as the multiplicities

increase. Extensive work has been done to reduce core component complexity of the

Sudan algorithm based decoders, namely interpolation and factorization [7, 15, 24].

Many decoder architectures have been proposed, e.g. [1, 13]. However, the Koetter-

Vardy algorithm still remains un-implementable from a practical standpoint.

1.2 Low complexity Chase decoders for RS codes

In 1972, Chase [6] developed a decoding architecture, non-specific to the type of

code, which increases the performance of any existing HDD algorithms. Unlike the

Sudan-like algorithms, which enhance the decoding performance via a fundamentally

different approach from the HDD procedure, the Chase decoder achieves the en-

hancement by applying multiple HDD decoders to a set of test vectors. In traditional

HDD, a senseword is obtained via the maximum a-posteriori probability (MAP) hard-

decision over the observed channel outputs. In Chase decoders, however, a test-set

of hard-decision vectors are constructed based on the reliability information. Each

of such test vectors is individually decoded by an HDD decoder. Among successfully

decoded test vectors, the decoding result of the test vector of highest a-posteriori

probability is selected as the final decoding result. Clearly, the performance increase

achieved by the Chase decoder comes at the expense of multiple HDD decoders with

the complexity proportional to the number of involved test vectors. To construct the

test-set, q least reliable locations are determined and vectors with all possible symbols

in these locations are considered. Consequently, the number of test vectors and the

complexity of Chase-decoding increase exponentially with q.

Bellorado and Kavoid [2] showed that the Sudan algorithm can be used to im-

plement Chase decoding for RS codes, however, with decreased complexity. Hence

the strategy is termed the low complexity Chase (LCC), as opposed to the standard

Chase. In the LCC, all interpolations are limited to a multiplicity of one. Application

of the coordinate transformation technique [8, 17] significantly reduces the number of

interpolation points. In addition, the reduced complexity factorization (RCF) tech-

nique proposed by Bellorado and Kavoid, further reduces the decoder complexity, by

selecting only a single interpolated polynomial for factorization [2]. The LCC has

been shown to achieve performance comparable to Koetter-Vardy algorithm, however

at lower complexity.

Recently, a number of architectures have been proposed for the critical LCC

blocks, such as backward interpolation [15] and factorization elimination [14], [33].

However, a full VLSI micro-architecture and circuit level implementation of the LCC

algorithm still remains to be investigated. This is the initial motivation of the research

presented in the thesis.

1.3 Major contributions and thesis topics

This thesis presents the first2 , complete VLSI implementation of LCC decoders. The

project follows the design philosophy that unifies multiple design levels such as al-

gorithm, system architecture and device components. Through the implementation-

driven system design, algorithms are first modified to significantly improve the hard-

ware efficiency. As the result of the joint research of MIT and University of Hawaii,

the main algorithm improvements include test vector selection, reshaping of the fac-

torization formula and the adoption of systematic encoding.

Two decoders, LCC255 and LCC31 (for RS [255, 239,17] and RS [31, 25, 7] codes

respectively), are designed with Verilog HDL language. Significant amount of effort is

devoted to the optimization of the macro- and micro architectures and various cycle

saving techniques are proposed for the optimization of each pipeline stages. While

being optimized, each component is designed with the maximal flexibility so they

can be easily adapted to meet new specifications. The component flexibility greatly

supports the design of two LCC decoders simultaneously.

The Verilog design is synthesized, placed-and-routed and verified in a represen-

tative 90nm CMOS technology. The physical implementation goes throughput com-

prehensive verifications and is ready for tape-out. We obtain the power and timing

estimation of each decoder by performing simulations on the netlist with parasitics

2In previously published literature (e.g. [15] and [14]), the described LCC architecture designs
were incomplete, and were focused only on selected decoder components.

extracted from the circuit layout. The measurements from the implementation and

simulations provide data for comprehensive analysis on several aspects of the design,

such as system complexity distribution and reduction, decoding energy-cost of LCC

compared to Standard Chase and comparison between LCC255 and LCC31 decoders.

The thesis topics are arranged as follows.

Chapter 2 exposes the background of LCC and the previous techniques for com-

plexity reduction.

Chapter 3 presents new algorithm and architecture proposals that are essential

for further complexity reduction and efficient hardware implementation.

Chapter 4 presents in detail the VLSI hardware design of LCC255 and LCC31

decoders along with macro- and micro-architecture optimization techniques.

Chapter 5 presents the comprehensive analysis on complexity distribution of the

new LCC design and its comparisons to the standard Chase decoder and previous

designs of LCC decoders. Comparison is also performed between LCC255 and LCC31.

Chapter 6 concludes the thesis and outlines future directions for the work.

18

Chapter 2

Background

2.1 Encoders and HDD decoders for Reed-Solomon

codes

Reed-Solomon (RS) codes are a type of block codes optimal in terms of Hamming dis-

tance. An [N, K] RS code C, is a non-binary block code of length N and dimension K

with a minimum distance dmin = N - K +1. Each codeword c = [co, c, ... , cN-1]T E

C, has non-binary symbols ci obtained from a Galois field F2., i.e. ci E F23. A

primitive element of F 2. is denoted a. The message m = [imo, m 1 , - , mK-1]T that

needs to be encoded, is represented here as a K-dimensional vector in the Galois

field F28. The message vector can also be represented as a polynomial m(x) =

mo + mix + - - -mK-1xK-1, known as the message polynomial. In encoding pro-

cess, a message polynomial is transformed into a codeword polynomial denoted as

c(x) = co + cix + cN-xN

Definition 1. A message m = [n, rn1 ,- , mK]T is encoded to an RS codeword

c E C, via evaluation-map encoding, by i) forming the polynomial 0(x) = mo +

mx+- -- mK-1XK-1 , ii) evaluating 0(x) at all N = 2'- 1 non-zero elements at E F2",

z. e. ,

ci 0 0(a') (2.1)

for all i E (,1, - , N - 1}.

In applications, a message is often encoded in a systematic format, in which the

codeword is formed by adding parity elements to the message vector. This type of

encoder is defined below,

Definition 2. In systematic encoding, the codeword polynomial c(x) is obtained

systematically by,

c(x) = m(x)x(N-K) + mod(m(x)x(N-K) I g)) (2.2)

where mod() is the modular operation in polynomials and g(x) =| H 1-K)(X + &) ts

the generator polynomial of the codeword space C.

An HDD RS decoder can detect and correct v < (N-K)/2 errors when recovering

the message vector from a received senseword. The decoding procedure is briefly

described below. Details can be found in [23].

In the first step, a syndrome polynomial S(x) = So + Six + - SN-K-1X N-K-1 is

produced with its coefficients (the syndromes) computed as,

Si=r(o), for 1 <i<N-K, (2.3)

where r(x) = ro +riX+- - -rN-1zN-1 is a polynomial constructed from the senseword.

Denote the error locators Xk = aik and error values Ek = eik respectively for k =

1, 2,... , V, and ik is the index of a contaminated element in the senseword. The error

locator polynomial is constructed as,

A(x) = 1J(1 - XXk) = 1 + Aix +Ax+ ... + Axv, (2.4)
k=1

The relation between the syndrome polynomial and the error locator polynomial is,

A(x)S(x) = F(x) + x"O(x), deg]F(x) < v (2.5)

where 8(x) contains all non-zero coefficients with orders higher than 2t and 1(x) is

named error evaluator polynomial, which will be used later for the computation of

error values.

Each coefficient of A(x)S(x) is the sum-product of coefficients from S(x) and

1(x) respectively. It is noted that the coefficients between order v and 2t in A(x)S(x)

are all zeros. These zero coefficients can be used to find the relation between the

coefficients of S(x) and 1(x).

The relation is expressed as,

S 1 S2 ... Su AV -Sv+1

S2 S3 -. Sv+1 A-1 -Sv+2(26)

Sv Sv+1 -.. S2v-1 A1 -S2v

It is observed from (2.6) that with 2v = N - K syndromes, at most v errors can be

detected. To obtain the error locator polynomial, it requires intensive computations if

(2.6) (the key equation) is solved directly. A number of efficient algorithms have been

proposed to compute the error locator polynomial, such as the Berlekamp-Massey

algorithm and the Euclidean algorithm. Details of these algorithms can be found in

many texts such as [23].

Chien search is commonly used to find the roots (the error locators) of the error

locator polynomial. Basically, the algorithm evaluates the polynomial over the entire

finite field in searching for the locations of errors. Finally, Forney algorithm is an

efficient way to compute the error values at the detected locations. The formula is

quoted below,

r7(X)
Ek= k) 0<k<v (2.7)

The four blocks, i.e. syndrome calculation, key equation solver, Chien search

and Forney algorithm are the main components of an HDD RS decoder. The simple

and efficient implementation together with the multi-error detection and correction

capability make Reed-Solomon codes commonly used FEC codes.

2.2 Channel model, signal-to-noise ratio and reli-

ability

The additive white Gaussian noise (AWGN) channel model is widely used to test

channel coding performance. To communicate a message m across an AWGN channel,

a desired codeword c = [co, ci, ... , cN-1 T (which conveys the message m) is selected

for transmission. The binary-input AWGN channels are considered, where each non-

binary symbol ci E F28 is first represented as a s-bit vector [ci,o, - - , ci>s1]T before

transmission. Each bit ciy is then modulated (via binary phase shift keying) to xij

and xij = 1 - 2 - cij. Then xi,j is transmitted through the AWGN channel. Let

rij denote the real-valued channel observation corresponding to cij. The relation

between rij and cij is,

rij= z xy + nij (2.8)

where nij is Gaussian distributed random noise.

The power of modulated signal x is d2 if the value of zij is d or -d. In AWGN

channel, any nij in the noise vector n are independent and identically distributed

(IID). Here n is a white Gaussian noise process with a constant power spectral density

(PSD) of No/2. The variance of each nij is consequently o2 = No/2. If the noise

power is set to a constant 1, then No = 2.

In the measurement of decoder performance Eb/No is usually considered for the

signal to noise ratio, where Eb is the transmitted energy per information bit. Consider

a (N, K) block code. With an N-bit codeword, a K-bit message is transmitted.

In the above-mentioned BPSK modulation, the energy spent on transmitting the

information bit is Nd2/K. With the noise level of No = 2, the signal to noise ratio is

computed as

Eb -Nd 2
(2.9)

No 2K

Using Eb/No as the signal to noise ratio, we can fairly compare performance between

channel codes regardless of code length, rate or modulation scheme.

At the receiver, a symbol decision y!HD] c F 2, is made on each transmitted symbol

ci (from observations ri,0,- , ri,s_1). We denote y[HD} HD] HD] D]N as

the vector of symbol decisions.

Define the i-th symbol reliability 7y (see [2]) as

7i min Iri, (2.10)
o<j<s

where | denotes absolute value. The value 74 indicates the confidence on the symbol

decision yiHD]; the higher the value of gi, the more confident and vice-versa.

An HDD decoder works on the hard-decided symbol vector y[HD] and takes no

advantage on the reliability information of each symbol, which, on the other hand, is

the main contributor to the performance enhancement in an LCC decoder.

2.3 The LCC decoding algorithm

Put the N symbol reliabilities ,yo, -, - -,7N-1 in increasing order, i.e.

71 72 N '' (27iN1)

and denote the index set I A {ii, i 2 ,--- , i, pointing to the r/-smallest reliability

values. We term I to be the set of least-reliable symbol positions (LRSP). The idea

of Chase decoding is simply stated as follows: the LRSP set I points to symbol

decisions y!HD] that have low reliability, and are received in error (i.e. y HD] does not

equal the transmitted symbol ci) most of the time. In Chase decoding we perform 2"

separate hard decision decodings on a test vector set {y(i) : 0 < j < 27 }. Each y(J) is

constructed by hypothesizing secondary symbol decisions y 2HD] . HD] that differ

from the symbol decision values y[HD] 'HD]. Each y!2HD] is obtained from y!HD], by

complementing the bit that achieves the minimum in (2.10), see [2].

Definition 3. The set of test vectors is defined as the set

yi = y [HD] for i V I
y : (2.12)

y E f{y[HD] Y[2
HD]} for i E I

of size 27. Individual test vectors in (2.12) are distinctly labeled y(0) 7y , y(27-1)

An important complexity reduction technique, utilized in LCC, is coordinate trans-

formation [8, 17]. The basic idea is to exploit the fact that the test vectors yU) differ

only in the r; LRSP symbols (see Definition 3). In practice r is typically small, and

the coordinate transformation technique simplifies/shares computations over common

symbols (whose indexes are in the complementary set of I) when decoding the test

vectors y(O), ... y(2 -1)

Similarly to the LRSP set I, define the set of most-reliable symbol positions

(MRSP) denoted J, where J points to the K-highest positions in ordering (2.11),

i.e., 7 {iN-K+1, *' , iN}. For any [N, K] RS code C, a codeword c[l'] (with coef-

ficients denoted c') can always be found such that c[i equals the symbol decisions

y[HD] over the restriction J (i.e. c - yjHD] for all i E J, see [23]). Coordinate

transformation is initiated by first adding cl'l to each test vector in (2.12), i.e. [8, 17]

y0j) = Y) + c[jj (2.13)

for all j E {0, ... , 2q - 1}. It is clear that the transformed test vector yk() has the

property that 99 0 for i E J. We specifically denote 7 to be the complementary

set of 3, and we assume that the LRSP set I C J (i.e. we assume rq < N - K).

The interpolation phase of the LCC, need only be applied to elements {i : i E j}

(see [28, 2]). Denote the polynomial v(x) f]jE (x - ai).

Definition 4. The process of finding a bivariate polynomial Q0) (x, z) that satisfies

the following properties

i) Q(i)(ai,P)/1v(ai)) = 0 for all i E

ii) Q(i)(x, z) =qU (x) + z - qU(x)
(j) N-K (z) KO

iv) deg q0 (x) < N-K and deg q() W N-K

is known as interpolation [28, 2].

Each bivariate polynomial Q(i) (x, z) in Definition 4 is found using Nielson's al-

gorithm; the computation is shared over common interpolation points1 [2]. Next,

a total of 27 bivariate polynomials Q() (x, z), are obtained from each Q() (x, z), by

computing

Q ((x, z) = v(x) - qf (x) + z -qfj (x) (2.14)

for all j E {0, ... , 2" - 1}. In the factorization phase, a single linear factor z+00)6(x)

is extracted from QW (x, z). Because of the form of QW)(x, z) in (2.14), factorization

is the same as computing

$($(x) Av(x)qf)(x)/qf)(x). (2.15)

However, instead of individually factorizing (2.15) for all 27 bivariate polynomi-

als Qi(x, z), Bellorado and Kavoid proposed a reduced complexity factorization

(RCF) technique [2] that picks up only a single bivariate polynomial Q) (x, z) |j, =

Q(P) (x, z) for factorization. The following two metrics are used in formulating RCF

(see [2])

df degqo(x) - {i :qf (a) = 0,i E } , (2.16)

df) deg qi(x) - {i : qj (a') = 0, i E } . (2.17)

'The terminology points come from the Sudan algorithm literature [28]. A point is a pair (ai, yi),
where yj E F2 is associated with the element a.

The RCF algorithm considers likelihoods of the individual test vectors (2.12) when

deciding which polynomial Q(P) (x, z) to factorize (see [2]). The RCF technique greatly

reduces the complexity of the factorization procedure, with only a small cost in error

correction performance [2].

Once factorization is complete, the last decoding step involves retrieving the es-

timated message. If the original message m is encoded via evaluation-map (see Defi-

nition 1), then the LCC message estimate m is obtained as

N-1

rni = Z (+ c -()i (2.18)
j=0

for all i E {, ... , K - 1}, where coefficients $ correspond (via (2.15) and Definition

4) to the RCF-selected Q(P)(x, z). The second term on the RHS of (2.18) reverses

the effect of coordinate transformation (recall (2.13)). If we are only interested in

estimating the transmitted codeword d, the LCC estimate 6 is obtained as

8j= $(X)() 1=,i + c4 (2.19)

for all i {O, ... N - 1}.

Following the above LCC algorithms, a number of architecture designs were pro-

posed for implementation. In Chapter 5, our design will be compared to that in [33],

which is a combination of two techniques, the backward interpolation [15] and the

factorization elimination technique [14]. In contrast to these proposed architectures

that provide architectural-level improvements based on the original LCC algorithm,

we obtain significant reductions in complexity through the tight interaction of the

proposed algorithmic and architectural changes.

Backward interpolation [15] reverses the effect of interpolating over a point. Con-

sider two test vectors y(j) and y(j') differing only in a single point (or coordinate). If

Q() (x, z) and Q(i') (x, z) are bivariate polynomials obtained from interpolating over

y(W) and y(j'), then both Q(J)(x, z) and Q(W')(x, z) can be obtained from each other by a

single backward interpolation, followed by a single forward interpolation [15]. Hence,

this technique exploits similarity amongst the test vectors (2.12), relying on the avail-

ability of the full set of test vectors. This approach loses its utility in situations where

only a subset of (2.12) is required, as in our test vector selection algorithm.

Next, the factorization elimination technique [14] simplifies the computation of

(2.19), however at the expense of high latency of the pipeline stage, which conse-

quently limits the throughput of the stage. Thus, this technique is not well suited for

high throughput applications. For this reason, we propose different techniques (see

Chapter 3) to efficiently compute (2.19). As shown in Chapter 5, with our combined

complexity reduction techniques, the factorization part occupies a small portion of

the system complexity.

28

Chapter 3

Algorithm Refinements and

Improvements

In this section we describe the three modifications to the original LCC algorithm [2],

which result in the complexity reduction of the underlying decoder architecture and

physical implementation.

3.1 Test vector selection

The decoding of each test vector y(j), can be viewed as searching an N-dimensional

hypersphere of radius L(n - k + 1)/2] centered at y(j). In Chase decoding, the de-

coded codeword is therefore sought in the union of all such hyperspheres, centered

at each test vector y(j) [30]. As illustrated in Figure 3-1, the standard test vector

set in Definition 3 contains test vectors extremely close to each other, resulting in

large overlaps in the hypersphere regions. Thus, performing Chase decoding with the

standard test vector set is inefficient, as noted by F. Lim, our collaborator from UH

at Manoa.

In hardware design each test vector y(i) consumes significant computing resources.

For a fixed budget of h < 27 test vectors, we want to maximize the use of each test

vector y(i). We should avoid any large overlap in hypersphere regions. We select the

h test vectors y(i) as proposed by Tokushige et. al. [30]. For a fixed r, the h test

Test Vector Selection

y(O) YkU
~~(2)

Sy(3) is selected
as most-likely point
outside shaded region

Figure 3-1: Simple q = 3 example to illustrate the difference between the standard
Chase and Tokushige et. al. [30] test vector sets. The standard Chase test vector set

has size 2 = 8. The Tokushige test vector set covers a similar region as the Chase,
however with only h = 4 test vectors.

vectors y(), ... , y(-1) are selected from (2.12). The selection rule is simple: choose

the j-th test vector y(i), as the most-likely candidate in the candidate set, excluding

all candidates that fall in previously searched j - 1 hyperspheres.

The Tokushige test vector set is illustrated in Figure 3-1 via a simple example. The

test vector y(O) is always chosen as y(O) = y[HD]. Next, the test vector y(') is also chosen

from the candidate set (2.12). However, y(l) cannot be any test vector in (2.12), that

lies within the hypersphere centered at y(O). To decide amongst potentially multiple

candidates in (2.12), we choose the test vector with the highest likelihood. Similarly,

the next test vector y(2) is chosen similarly, i.e. y(2) is the most-likely candidate

outside of the two hyperspheres centered at y(O) and y(l) respectively. This is repeated

until all h test vectors y(j) are obtained.

The procedure outlined in the previous paragraph obtains a random choice of

test vectors. This is because the choice of each y() depends on the random likeli-

hoods. We repeat the procedure numerous times to finally obtain fixed test vectors

y(0) .. . , y(h-1), by setting each test vector y(i) to the one that occurs most of the time

(see [30]). In this method q and h are parameters that can be adjusted to obtain best

performance. Furthermore, we also let the hypersphere radius be an optimizable pa-

rameter. There is no additional on-line complexity incurred with the Tokushige test

vector set, the test vectors are computed off-line and programmed into the hardware.

In Figure 3-2, we compare the performances of both the standard Chase and

Standard Chase

10-20

0

6.5

SNR [dB]

Figure 3-2: Performance of test vector selection method for RS[255, 239,17].

Tokushige et. al. test vector sets, for the RS[255, 239, 17] code. To compare with

standard Chase decoding, we set the parameters (h = 24, r/ = 8) and (h = 25, r = 10).

It is clear that the Tokushige test vector set outperforms Chase decoding. In fact,

Tokushige's method with h = 2' and h = 25 achieves standard Chase decoding

performance with 2" = 25, and 2n = 26 respectively, which is equivalent to a com-

plexity reduction by a factor of 2. We also compare with the performance of the

Koetter-Vardy algorithm; we considered both multiplicity 5 and the (asymptotic)

infinite multiplicity cases. As seen in Figure 3-2, our LCC test cases perform in-

between both Koetter-Vardy algorithms. In fact when h = 2 , the Tokushige test

vector set performs practically as well as Koetter-Vardy with (asymptotically) infi-

nite multiplicity (only 0.05 dB away). This observation emphasizes that the LCC

is a low-complexity alternative to the Koetter-Vardy (which is practically impossi-

ble to build in hardware). Finally, we also compare our performance to that of the

Jiang-Narayanan iterative decoder [11], which performs approximately 0.5 dB better

than the LCC. However, do note that the complexity of the iterative decoder is much

higher than our LCC (see [11]).

3.2 Reshaping of the factorization formula

Factorization (2.15) involves 3 polynomials taken from the selected polynomial (P) (x, z)

(see (2.14)), namely q #3(x) and q," (x), and v(x) = HJ (x - a). The term v(x) is

added to reverse the effect of coordinate transformation, which is an important com-

plexity reduction technique for LCC. The computation of v(x) involves multiplying

K linear terms, which is difficult to do efficiently in hardware due to the relatively

large value of K (more details are given in Chapter 4 on the hardware analysis).

Note that the factorization (2.15) (only computed once with j = p when using

RCF) can be transformed to

q#() -X (N_

6(P)(z) q= (3.1)

where e(x) is a degree N-K polynomial satisfying v(x)e(x) = zN 1. The computa-

tion of e(x) involves multiplying only N - K linear terms, much fewer than K terms

for v(x). The polynomial product q0f)(x)- (xN - 1) is easily computed, by duplicating

the polynomial q") (x) and inserting zero coefficients. In addition, all 3 polynomials

q0 9(x), q!j')(x) and e(x) in (3.1) have low degrees of at most N - K, thus the large

latency incurred when directly computing v(x) is avoided. Ultimately the advantage

of the coordinate transformation technique is preserved.

3.3 Systematic message encoding

We show that the systematic message encoding scheme is more efficient than the

evaluation-map encoding scheme (see Definition 1), the latter used in the original

LCC algorithm [2]. If evaluation-map is used, then the final message estimate h is

recovered using (2.18), which requires computing the non-sparse summation involving

many non-zero coefficients c]. Computing (2.18) for a total of K times (for each

mi) is expensive in hardware implementation.

On the other hand if systematic encoding is used, then (2.19) is essentially used

to recover the message m, whose values mi appear as codeword coefficients ci (i.e.

ci = mi for i E {o, ... , K - 1}). A quick glance at (2.19) suggests that we require N

evaluations of the degree K - 1 polynomial 0) (x). However, this is not necessarily

true as the known sparsity of the errors can be manipulated to significantly reduce

the computation complexity.

As explained in [2], the examination of the zeros of qj2) (x) gives all possible MRSP

error locations (in J), the maximum number of which is (N - K)/2 (see Definition

4). In the worst-case that all other N - K positions (in 7) are in error, the total

number of possible errors is 3(N - K)/2. This is significantly smaller than K (e.g.

for the RS [255, 239,17], the maximum number of possibly erroneous positions is 24,

only a fraction of K = 239).

Systematic encoding also has the additional benefit of a computationally simpler

encoding rule. In systematic encoding, we only need to find a polynomial remain-

der [23], as opposed to performing the N polynomial evaluations in (2.1).

34

Chapter 4

VLSI Design of LCC Decoders

In this chapter, we describe the VLSI implementations of the full LCC decoders

based on the algorithmic ideas and improvements presented in previous sections,

mainly test-vector selection, reshaped factorization and systematic encoding. We

often use the LCC255 decoder with parameters (h = 24, 7 = 8) as the example for

explanation. The same design principle applies to LCC31 decoder with parameters

(h = 4, 7 = 6). In fact, most Verilog modules are parameterized and can be easily

adapted to a different RS decoder. All algorithm refinements and improvements

described in Chapter 3 are incorporated in the design. Further complexity reduction

is achieved via architecture optimization and cycle saving techniques.

The I/O interface and some chip design issues are presented in Appendix C.

Appendix D describes the main steps of the physical implementation and verification

of the VLSI design.

4.1 Digital signal resolution and C++ simulation

Before the VLSI design, we perform C++ simulation of the target decoders. There

are two reasons for the preparation work:

1. Decide the digital resolution of the channel observations.

2. Generate testing vectors for verification of each component of the VLSI design.

100

10

10-3 L
5

Eb/No

Figure 4-1: Comparison of fixed-point data types for RS[255, 239, 17] LCC decoder.

In practice, the inputs to an LCC decoder are digitized signals from an A/D

converter, which introduces the quantization noise to the signals. Higher resolution

causes less noise but results in more complexity and hardware area. We need to find

the minimum resolution of the digitized signal that still maintains the decoding per-

formance. For this purpose, we perform a series of C++ simulations for a number of

fixed-point data type. A significant advantage of using C++ language for simulation

is that the template feature of the language makes it possible to run the same set of

code but with different fixed-point data types. Figure 4-1 presents the Word Error

Rate (WER) curves of LCC255 for a number of fixed-point data types. It shows that

the minimum of 6 bits resolution is required. The trivial difference between the curves

of data type 2.5 and 1.6 indicates that the number of integer bits is not essential to

the decoder performance. Note that the MSB of an integer is dedicated to the sign

bit. For convenience of design, we select 8-bit resolution for channel observations.

5 Bits, 1.4
OE 6 Bits, 1.5 .

..... x 7 Bits, 2.5 -
7 Bits, 1.6 ~

.--- 8 Bits, 1.7 -

-' - ' - -- - --- ----- - -N......

....................I
.

..

................

..

..

..

..

10-2
........... .
...............
..............

.............

..............

..............

...............

Figure 4-2: Galois field adder

The object oriented programming feature makes C++ an excellent tool to simulate

components of the VLSI design. Exact testing vectors are provided for apples-to-

apples comparison between simulation modules and hardware components. Therefore

the debugging effort of the hardware design is minimized. All hardware components

in our VLSI design have their corresponding C++ modules. Also the C++ program

is supposed to have equivalent system level behaviors with the Verilog design.

4.2 Basic Galois field operations

Mathematical operations in Galois Field include addition and multiplication. The

addition of 2 Galois Field elements is simply the XOR of corresponding bits as show

in Figure 4-2. The multiplication, however, requires more design effort. We use the

"XTime" function [31] to construct the multiplier. The XTime function implements

the Galois Field multiplication with "x" using XOR gates. Figure 4-3 illustrates the

implementation with the prime polynomial x8 + X4 + X3 + X2 + 1. The construction

of the Galois field multiplier is presented in Figure 4-4.

Another frequently used function in Galois Field is the polynomial evaluation. The

Horner's rule is commonly used because of its hardware simplicity. For example, the

Horner's representation of an order 2 polynomial can be written as ao + aix + a2x 2 =

(a2x + ai)x + ao. The implementation diagram of the Horner's rule in Figure 4-5

shows that only a multiplier, an adder and a register are needed for the function.

Figure 4-3: The XTime function

Figure 4-4: Galois field multiplier

Coefficients

Figure 4-5: Horner Scheme

a(x) D D ... D D

bib 1 b14 b15

A. Polynomial Multiplier

b13 F 14 b15 1/

ar D.D D

B. Polynomial Divider

Figure 4-6: Multiplication and Division of Galois Field Polynomials

For a polynomial of order N, it takes N + 1 cycles for the device to perform the

evaluation.

Polynomial multiplication and division are two frequently used polynomial oper-

ations in Galois Field. The implementation of polynomial multiplication takes the

form of an FIR filter where the coefficients of one polynomial pass through the FIR

filter constructed from the coefficients of the second polynomial. The polynomial

division, similarly, takes the form of IIR filter, i.e., the coefficients of the dividend

polynomial pass through the IIR filter constructed from the coefficients of the divisor

polynomial. Their implementation diagrams are presented in Figure 4-6.

4.3 System level considerations

The throughput of LCC decoders is set to one F2. symbol per cycle. This throughput

is widely adopted for RS decoders. To maintain the throughput, in each cycle the

LCC decoder assembles s channel observations rj, 0 < j < s, corresponding to one

F28 symbol. To maximize the decoder data rate and minimize the hardware size, the

output

Stage I Stage II Stage Ill Stage IV
256 cycles 169 cycles 1 161 cycles 1 98 cycles

Stage V Stage VI
237 cycles 169 cycles

-Pbytime
Likelihood

Erasure Only Decoder, (EOD),0:11
Syndrome Build Error Forney Interp. Interp. RCF & Error Cact 0 (x) Calculation eval. Poly. A S 1 S

andy

i Sort by 1 Build Eras. Dadorn j

y re oc. PolY - y =equyn+ia

-- ---- Ray e(x)----------

Evaluate v(a 1).

forii Ef

iRC
& ErrorJSort~~oc Codealc. 0[j

SI Sequential
---- - - --- Reay , 2to l'arallel

Relayy~ y
.I - ---

Figure 4-7: VLSI implementation diagram.

decoding procedure in our LCC implementation is divided into 8 pipeline stages, as

shown in Figure 4-7. Each stage has different latencies, determined by their individual

internal operations (as marked for LCC255 decoder in the figure). There is a limit on

the maximal pipeline stage latency, which is determined by the (maximum) number of

computation cycles required by atomic operations, such as "Syndrome Calculation".

It is appropriate to set the maximum latency to 256 cycles and 32 cycles for LCC255

and LCC31 decoders respectively.

The maximum stage latency is set to ensure that the required throughput is met

in each stage. As long as we stay within the latency limit, we can maximize the

computation time of individual components, in exchange for their lower complexity.

Thus, to trade-off between device latency and complexity, we adopt the "complexity-

driven" approach in our design.

Detailed description for each pipeline stage is provided in the following sections.

4.4 Pre-interpolation processing

As shown in Figure 4-7, Stages 1, 11 and III prepare the input data for interpolation.

Coordinate transformation (described in Chapter 2) is implemented in these stages.

The codeword cH, required for transformation in (2.13), is obtained using a simplified

HDD decoding algorithm known as the erasure-only decoder (EOD). In the EOD, the

Figure 4-8: Data and reliability construction

N - K non-MRSP symbols (in the set T) are decoded as erasures [23]. In order to

satisfy the stage latency requirement, the EOD is spread across Stages 1, 11 and III,

indicated by the dashed-line box in Figure 4-7. The operations involved in Stages I,

II and III are described as follows.

4.4.1 Stage I

Stage I contains three main components. In the component labeled "Construct

y[HD] [2HD] and 7", channel data enters (each cycle) in blocks of 8s bits; recall there

are s channel observations rij per F2 1 symbol, and each rij is quantized to 8 bits.

Symbol decisions y HDI and y4
2

HD] are computed, as well as the reliability values -yj in

(2.10); using combinational circuits, these quantities are computed within a single

cycle. Figure 4-8 presents the logic diagram of the circuit. For convenience, the di-

agram considers 4-bit signal instead of 8-bit resolution in our real design. To form

a Galois symbol in y[HD], we simply compact the sign bits of s corresponding input

samples. The reliability values, or the log likelihoods (LLR) are obtained by finding

the minimum absolute value from these s input samples. Finally, y[2HD] is obtained

by flipping the least reliable bit in each symbol of y[HD].

In the "Sort by -y order" block, the LRSP set I (see (2.11)) is identified as shown

in Figure 4-9. A hardware array (of size jj = 16 for LCC255) is built to store partial

set set

Figure 4-9: Sort by the reliability metric

computations for I. In each cycle, the newly computed reliability 7j, is compared

with those belonging to other symbols (presently) residing in the array. This is done

to decide whether the newly computed symbol, should be included in the set LRSP I.

If positive, the symbol is inserted into I by order. The dash line in Figure 4-9 divides

the circuit into the main body and the control part. The registers Ej, 0 < i < 15 are

duplicated in both parts for convenience. Based on the metrics (reliability) of the

new input and the current registers, the control part produces control signals to the

MUX's in the main body. A MUX in the main body has 3 inputs from the current

register, the previous register and the new data. The control signal "INS" lets the new

data pass the MUX. The signal "SFT" passes the value from the previous register. If

none of the signals are on, the value of the current register passes the MUX so that

its value is hold. The "set" signal of each register resets the reliability metric to the

maximum value in initialization.

In the "Syndrome Calculation" block, we compute syndromes for EOD [23]. The

Horner's rule is used for efficient polynomial evaluation, as shown in Figure 4-5. It

requires N+1 cycles to evaluate a degree N polynomial. LCC255 and LCC31 decoders

are assigned with 16 and 6 evaluators respectively. Finally, the symbol decisions y HD]

and y 2HD] are stored in a relay memory to be used later in Stage VIII.

1 PD D ma D

a0 01 ak-1

Figure 4-10: Compute the error locator polynomial

4.4.2 Stage II

In Stage II operations belonging to the EOD are continued. The component labeled

"Build Eras. Loc. Poly." constructs the error locator polynomial [23] using the

equation (aox + 1)(aix + 1)...(aklx + 1), where ao, ai, ...ak_1 corresponds to the

k = N - K least reliable locations in j marked as erasures. The implementation

diagram is given in Figure 4-10. Note that the EOD error locator polynomial is

exactly equivalent to the polynomial e(x) in (3.1); thus e(x) is first computed here,

and further stored for re-use later.

The "Build Error Eval. Poly." component constructs the evaluator polynomi-

als [23], which is obtained by multiplying the derivative of the error locator poly-

nomial and the syndrome polynomial. The implementation device is the Galois

Field polynomial multiplier as described in Figure 4-6. In Stage II the polynomial

v(x) =] j (z - ai) in (2.14) is also evaluated over the N - K symbols in J. Its

implementation is N - K parallel evaluators implemented in a similar way to the

Horner's rule. The evaluation results are passed to the next Stage III for coordinate

transformation. The total number of cycles required for evaluating v(x), exceeds the

latency of Stage II (see Figure 4-7). This is permissible because the evaluation results

of v(x) are only required in the later part of Stage III (see Figure 4-7). In accordance

with our "complexity-driven" approach, we allow the "Evaluate v(a&) for i E "

component the maximum possible latency in order to minimize hardware size; note

however that the total number of required cycles is still within the maximal stage

latency (N + 1 cycles).

4.4.3 Stage III

In Stage III, the "Forney's algorithm" [23] computes the N - K erasure values.

After combining with the MRSP symbols in 5, we complete the clk codeword. The

N - K erasure values are also stored in a buffer for later usage in Stage VIII. The

complete c[H is further used in the component labeled " Transform yr = y + clJ]". The

computation of v(ai)-1 (see Definition 4) is also performed here (recall the evaluation

values of v(x) have already been computed in Stage II). Finally, the transformed values

(y[HD +C
1) -)v(ai)1 and (Y 2HD} + _v(a)1 are computed for all i E .

The operations involved in this stage are Galois Field addition, multiplication and

division. The implementations of addition and multiplication are presented in Figure

4-2 and 4-4. Division is implemented in two steps. Firstly, the inverse of the divisor is

obtained with a lookup table. Then the lookup output is multiplied with the dividend

and the division result is obtained.

4.5 Interpolation

Stage IV and Stage V perform the critical interpolation operation of the decoder.

The interpolation operation over a single point is performed by a single interpolation

unit [2]. The optimization of interpolation units and the allocation of these devices are

two design aspects that ensure the accomplishment of the interpolation step within

the pipeline latency requirement.

4.5.1 The interpolation unit

Interpolation over a point consists of the following two steps:

PE: [Polynomial Evaluation] Evaluating the bivariate polynomial Q(x, z) (partially

interpolated for all preceding points, see [2]), over a new interpolation point.

PU: [Polynomial Update] Based on the evaluation (PE) result and new incoming

data, the partially interpolated Q(x, z) is updated (interpolated) over the new

point [2].

A. Direct Approach

~ C icycles-

SConditionL I Polynomial

B. Piggyback Approach

Figure 4-11: Direct and piggyback approaches for interpolation architecture design.

The PE step involves first evaluating both polynomials qO) (x) and ql) (x), be-

longing to Q (x, z) = qj (x) + z -qfj (x). Assume that both degrees deg qo(x) and

deg q,(x) are D. If both deg qo(x) and deg q,(x) are evaluated in parallel (using

Horner's rule), then evaluating Q(x, z) (in the PE step) requires a total of D + 1 cy-

cles. The PU step takes D +2 cycles for the update. If we adopt the direct' approach

shown in Figure 4-11.A, both PE and PU steps require a total of 2D + 3 cycles.

The order of PE and PU in the direct approach is the result of PU's dependence

on the conditions generated from PE since both belong to the same interpolation

point, see [2]. However, it is possible to perform PE and PU concurrently if the PE

step belongs to the next point. Figure 4-11.B shows our new piggyback architecture,

where the total cycle count is now reduced to D + 2 (almost a two-fold savings). In

this new architecture, PE is performed concurrently, as the PU step serially streams

the output polynomial coefficients. Note that dedicated memory units are allocated

for each interpolation units.

'Direct in the sense of causality (time dependence) of events, see [2].

Lastly, the latency of each interpolation unit is tied to the degrees deg qO) (x) and

deg ql) (x), which grow by (at most) one after each update. Note that it is best to

match each unit's operation cycles to the (growing) degrees of the polynomials qU) (X)

and ql) (x). This is argued as follows: the number of cycles required for performing D

updates, when estimated as the sum of the growing polynomial degrees (i.e. degrees

grow as 1, 2, 3, - - , D), equals the arithmetic sum D(D+1)/2. Compared to allocating

a fixed D number of cycles per update (corresponding to the maximum possible degree

value of both qf(x) and q)(x)), we see that our savings are roughly 50%.

Incorporating all the above considerations, we finalize our design of the interpo-

lation unit as presented in Figure 4-12. The input and output of the unit are loaded

from and saved to storage memories such as "Coeff. Storage" and "Cond. Storage" in

Figure 4-11. We design the device with optimized micro-pipeline architecture. Delay

registers are inserted for synchronization between pipeline stages and the reduction of

the critical path. New interpolation can start when part of the device is still process-

ing the last interpolation. Consequently, none of the device components idles during

processing and the minimum of processing cycles is achieved.

4.5.2 The allocation of interpolation units

We next describe the assignment of interpolation units in Stages IV and V. Recall

from Chapter 2 the test vector set (2.12) of size 27. With r = 8 (for LCC255) Figure

4-13 illustrates a tree representation for all the 27 = 28 - 256 test vectors in (2.12).

The tree has N - K = 16 levels (for each interpolated location in J, recall Definition

4). A path from the root to each bottom leaf corresponds to a test vector in (2.12) as

follows. The symbol locations in j\I are common to all test vectors; the last 8 levels

correspond to the q = 8 LRSP locations I. At each level, two child nodes originate

from an (upper-level) parent node, representing the two hypotheses yjHD] and yj2HD] for

i E I. The number in each node indicates the corresponding hypotheses, specifically

0 + y[HD] and 1 [y!2HD}

From Figure 4-13, it is clear that all test vectors (paths) share interpolation op-

erations from levels 0 to 7. We divide the interpolation procedure into 2 pipeline

Figure 4-12: The Interpolation Unit.

0: Interpolate 0 Level 0
over y[HD]

Level 1
1: Interpolate

over y[2HD]

0 Level 7

0 1Level 8

0 1 0 1 Level 9

0 1 0 1 0 1 Lee1

0 >0Level 14
FO]L~ FI] F] F1 Levell15

0 1 2 3 4 5 6 7 252 253254255

Figure 4-13: Tree representation of the (full) test vector set (2.12) for LCC255 de-
coders, when rq = 8 (i.e. size 2'). The tree root starts from the first point outside 3
(recall the complementary set J has size N - K = 16).

Stages IV and V (see Figure 4-7). In Stage IV, one unit is assigned to interpolate

over the common path; the result is shared by all test vectors. In Stage V, parallel

0

[~1:0: 1J: :0: 1:
1

22
0O 1 0 1, 0 1 0 1 i

3
3 41 1 0 10 11 1 12

01 01 1010 1010 0 10o1148 7

01 23 45 67 891011 1213 1415

0 1 0 1 3

Figure 4-14: Sub-tree representation of the h = 16 fixed paths, chosen using the
Tokushige et. al. procedure [30] (also see Chapter 3) for LCC255 decoder.

units are utilized to handle the branching paths. Recall from Chapter 3 that we ju-

diciously choose (using the Tokushige procedure) a test vector subset of size h = 16.

As Figure 4-14 shows, we only consider a sub-tree with h = 16 leaves, one leaf (or

equivalently path) corresponds to one of the chosen test vectors. Note that two extra

levels are moved from Stage IV to Stage V to balance the workload between the 2

stages.

As illustrated in Figure 4-11.B, before each unit executes "Polynomial Update"

(PU), the coefficients of Q(i)(x, z) are read from storage memory. After updating

QMi)(x, z), its coefficients are then stored back to memory. Thus, each unit is free to

switch between paths when updating individual points; prerequisite data needed for

PU is simply loaded from memory. On the other hand, both reading and writing to

memory require a number of cycles (typically 3 cycles) for data preparation. However,

this minor drawback is superseded by the obtained flexibility when allocating multiple

interpolation units in Stage V. Moreover, the extra data preparation cycles can be

embedded in a micro-pipeline architecture as explained later. For ease of control,

we allocate all interpolation units to the same level, working on adjacent paths (see

Figure 4-14). As shown, every 4 nodes are grouped together with a dashed box and

each dashed box is assigned a group ID number. All nodes in each group will be

Time

Grp ID 1 3 5 9 13 11 3 0 6 10 14 2 4 7 11 15 2 4 8 12 16

on A. Depth-first Approach
Savings

Grp ID 9 2 4 | 8 10 11112 113 114|15|16

From parent From micro-

B. Breadth-first Approach sharmg pipehmng

Figure 4-15: Step 2 interpolation time line in the order of the sequence of group ID's
for the depth-first and breadth-first approaches

processed in parallel using 4 interpolation units.

Figure 4-14 shows the assigned group ID's in the design. These groups are pro-

cessed in increasing order of the group ID's. From the assignment shown in Figure

4-14, it is clear that a tree level will be completed before proceeding onto the next

level. We term this approach the breadth-first approach. Alternatively, the groups

could have been processed, such that a set of tree paths will be completed, before pro-

ceeding onto the next set of tree paths. We wish to point out that the latter approach,

conversely termed the depth-first approach, has the following two disadvantages com-

pared to the former. Firstly, the depth-first approach breeds data dependency. If a

single interpolation unit works on a single path from the beginning to the end, the

PU for the current point has the following dependency on the previously updated

point. The memory read required to load the data for the current PU, is constrained

to happen only after the memory write is completed for the previously updated point.

The breadth-first approach on the other hand, will not have this constraint; consecu-

tively interpolated points always belong to different paths. By using a micro-pipeline

that has been set-up amongst the interpolation units, we are able to save the cycles

originally required for data preparation (we use a dual-port memory that permits

concurrent read/write). Without the micro-pipeline, the maximum number of cycles

required per interpolation (for the last node in a path), including the data preparation

cycles, is estimated as 17 + 3 = 20 cycles (3 cycles for data processing). A conserva-

tive estimate of the cycle savings is thus given as 3/20 = 0.15 (or 15%). The average

savings are actually higher because the number of cycles required by the other nodes

0

1

2

3 0

4 10

5 1 0 1 0

Figure 4-16: Sub-tree representation of the h = 4 fixed paths for RS [31, 25, 7] decoder.

is less than 17.

The second advantage of the breadth-first approach is that computations of the

parent nodes can be easily shared by their children. This is clearly difficult in the

depth-first approach, because in this case the intermediate results (from parent nodes

that are shared by children nodes) need to be stored in large amount of memory.

Hence to avoid storing intermediate results in the depth-first approach, we need to

perform these computations more than once. Figure 4-15 presents the interpola-

tion time line for both breath- and depth-first approaches, as well as illustrates the

pipelining effect. Out of the 20 operations required in the depth-first approach, 4 of

these operations are saved in the breadth-first approach, thus accounting for 20% sav-

ings. The total combined savings achieved by pipelining, and sharing of intermediate

results, are at least 32% in the breadth-first approach.

For LCC31 decoder, the assignment of interpolation units is presented in Figure

4-16. Level 0, 1, 2, 3 are processed in Stage IV with one interpolation unit. Level 4

and 5 are processed in Stage V with 2 parallel interpolation units.

4.5.3 Design techniques for interpolation stages

We summarize our cycle saving techniques in the interpolation phase and the saving

percentage for the LCC255 decoder as follows

1. The piggyback design of both PU and PE within the interpolation unit achieves

roughly 50% cycle reduction.

2. Tying-up interpolation cycles to the polynomial degrees deg qOU) (x) and deg qU) (x)

can achieve around 50% cycle reduction.

3. Breadth-first interpolation achieves a further cycle reduction of at least 32%.

The cycle savings reported above are approximations; values that are more accurate

are given in Chapter 5. Cycle savings translate into complexity savings when we

further apply our "complexity-driven" approach. The minimum number of required

interpolation units for Stage V of LCC255, in order to meet our latency requirement,

is reduced down to 4. For the LCC31 decoder, 2 interpolation units are required in

its Stage V.

The design flexibility introduced in sub-section 4.5.1 makes it possible to design a

generic interpolation processor as described in Figure 4-11.B, which can be configured

to meet various interpolation requirements. This is indeed how we design Stage IV

and Stage V for LCC255 and LCC31 decoders respectively, 4 scenarios in total. The

generic interpolation processor can be configured with the following parameters:

1. Number of parallel interpolation units

2. Number of test vectors for interpolation

3. Number of interpolation levels

4. The maximum degree of polynomials after interpolation

The coefficient storage memory in the processor can be configured with the same set

of parameters accordingly. Parameter 1 determines the bit width of the memory.

The depth of the memory is determined by the formula Parameter2/Parameter1 x

Parameter4. The coefficient memory is naturally divided into Parameter2/Parameterl

segments. Each segment contains the coefficients of a group of test vectors and they

will be processed in parallel by the same number of interpolation units, as shown in

Figure 4-14. Similar design applies to the condition storage in Figure 4-11.B. In the

end, we are able to use one generic design to cover Stage IV and Stage V for both

LCC255 and LCC31 decoders.

Besides the design flexibility, the operation of a designed interpolator is also flex-

ible. In each step of operation, the interpolation processor is instructed to fetch data

from the specified memory segment. The data are fed to the parallel interpolation

units together with other inputs such as the conditions and the test vector data for

the current interpolation point. The outputs of the interpolation units are also in-

structed to be saved in the specified memory segment. By controlling the target

read/write memory segments and the supplied test vector data, the operation of the

interpolation processor is fully programmable. These controls can be packed into a

sequence of control words that are used to program the interpolation function of the

device.

The flexibility of control words is essential to the support of the test vector se-

lection algorithm. As explained in Chapter 3, the test vector selection format is

determined to the type of transmission channel. The selection format must be pro-

grammable so the designed decoder can be adapted to match different types of trans-

mission channels. This adaptability is achieved by defining a specific sequence of

control words.

4.6 The RCF algorithm and error locations

We use LCC255 decoder for the explanation of Stage VI. The stage is divided into

2 phases. In phase 1, the RCF algorithm is performed so that a single bivariate

polynomial Q(P) (x, z) is picked up. In phase 2, the Chien search [23] is used to locate

the zeros of the polynomial q(P) (x). Recall that the zeros of qP) (x) correspond to

MRSP error locations in J (at most deg q(P) (x) < (N - K)/2 = 8 of them). Together

with the 16 non-MRSP locations J, there are a total of 24 possible error locations,

considered by Stage VII (which computes the 24 estimated (corrected) values).

Figure 4-17 illustrates the general procedure for the RCF algorithm [2]. The

interpolated bivariate polynomials Q) (x, z) are loaded from the "Storage Buffer".

Likelihoods

Figure 4-17: RCF block micro-architecture.

The metrics d(/) and dl (see (2.16) and (2.17)) are computed. The RCF chooses a

single bivariate polynomial Q(P) (x, z).

In accordance with the "complexity-driven" approach, the latency of the RCF

procedure is relaxed, by processing the 16 polynomials Q) (x, z), four at a time. As

compared to full parallel processing of all 16 polynomials, when we only process 4 at

a time, we reduce the hardware size by a factor of 4.

The "Compute Metrics" block (see Figure 4-17) dominates the complexity of Stage

VI. The main operation within this block, is to evaluate h = 16 polynomials qW (X),

each over - 16 values. This is to compute both RCF metrics d4' and dj in (2.16)

and (2.17). As mentioned before, there will be a total of 4 passes. In each pass, 4

bivariate polynomials will be evaluated in parallel, in half segments of |j|/2 = 8

values each. To this end, we build 32 polynomial evaluators, all implemented using

Horner's scheme as in Figure 4-5. Each pass will require a total of 20 cycles. The

computed metrics will then be passed over to the "RCF Algorithm" block and a

partial decision (for the final chosen Q(P) (x, z)) will be made based on the metrics

collected so far. The "Compute Metrics" block will dominate the cycle count in (Stage

VI) phase 1, and the total cycle count needed for all 4 passes is 80 cycles.

The selected polynomial Q(P) (x, z) from (Stage VI) phase 1, is brought over to

the second phase, for a Chien search. The same hardware for the 32 polynomial

evaluators (used in phase 1) is reused here for the Chien search. A total of 8 passes

will be required to complete the Chien search (testing all 255 unique F28 symbols).

Gfor 4 paths q0(x) = 0? OR flag

- Select indicator

dl for 4 paths comp.-- -- -- --- --

do for 4 paths comp

MIN dO'

icirnb2----------------
w for 4 paths comp w=MAX(w)? comb3

MAX :w

Figure 4-18: Implementation diagram of the RCF algorithm.

Here in each pass, polynomial evaluation will require 10 cycles (the number of required

cycles equals deg q, (x)). Thus (Stage VI) phase 2 also requires a total of 80 cycles

(same as phase 1). Combining both phase 1 and phase 2 and including some overhead,

the latency of Stage VI is 169 cycles, which is within the maximum pipeline stage

latency (of 256 cycles).

The "RCF Algorithm" block in Figure 4-17 needs extra effort in design. Its

implementation diagram is presented in Figure 4-18. In order to meet the critical

path requirement, a number of delay registers are inserted, which turn the block into

a micro-pipeline system. The "comp" block compares the inputs and output logical

values. The "MIN" and "MAX" blocks find the minimum or maximum values of

the inputs. These two blocks introduce the main delays in critical paths. The dash

lines to "MIN" and "MAX" carry conditions that these blocks must satisfy when

performing their operations.

Finally, the "root collection" function collects the detected MRSP roots from the

8 passes of "Chien Search". In each pass, the "Chien Search" tests 32 symbols in

Galois Field F28 and generates a 32-bit zero mask that records the testing results.

The device presented in Figure 4-19 collects these roots according to the information

contained in the 32-bit zero mask.

midMask1

OR~ IX X X X... X X Xl X]midMask2

new~pMask XR ++_+++

XX X X ... jX XjX X] selMask

32 Galois Feld -- |MX --- +theOne

Figure 4-19: Diagram for root collection.

"opMask" is initialized with all ones so all bits in the zero mask are considered for

root collection. Each time after a root is collected, its representation bit in the zero

mask is disabled by setting the corresponding bit in "opMask" to zero. "midMask1"

is the AND result of the zero mask and "opMask". "midMask2" ensures all bits

after the first "1" bit in midMask1 are set to "1". In "selMask" only the first "1"

bit in "midMask1" is kept and all other bits are set to "0". "selMask" is used to

control the MUX block so the corresponding F2s symbol is selected for collection. In

the mean time, "selMask" is XORed with "opMask" to generate "newOpMask" in

which the bit corresponding to the collected root is disabled. "opMask" is updated

with "newOpMask" in the next cycle. The AND of the zero mask and "newOpMask"

indicates whether all roots have been collected. If so, the operation for this pass is

done. The total number of operation cycles equals to the number of roots detected in

the zero mask. So the maximum number of cycles is 8 due to the maximum degree

of the selected polynomial Q(') (x, z).

4.7 Factorization and codeword recovery

The selected bivariate polynomial Q(P) (x, z), is factorized in Stage VII. As shown

in the (reshaped) factorization formula (3.1), the factorization involves two separate

gO(x)

g1(x)

Sort by
e(x) temporal

order

MRSP
Roots Compute
LRSP Tempora

locators tnie

Figure 4-20: Detailed implementation diagram of Stage VII.

polynomial divisions, by both polynomials qlP)(x) and e(x). The coefficients of e(x)

are relayed (by a memory buffer, see Figure 4-7) from Stage II. Here, polynomial

division is implemented as shown in Figure 4-6. Two of such divisions will be needed

(one each for both q (x) and e(x)).

The division output $(P)(x) (see (3.1)) will be obtained after completing the fac-

torization, and will be needed to compute the estimated values 2j (see (2.19)). Recall

that the LCC only needs to consider 3(N - K)/2 = 24 (for LCC255) symbol posi-

tions in which errors may occur; these 24 positions include (N - K)/2 = 8 MRSP

positions and all N - K = 16 LRSP positions. Computing h- requires two steps.

First, we need to evaluate $(P)(x) over values a, for values a' corresponding to the 24

identified positions. This is done using 24 polynomial evaluators operating on O(P) (X).

Secondly, the previously applied coordinate transform (see (2.13)) must be undone.

This is done in the following Stage VIII, by adding back the corresponding symbols

cli. Note that to facilitate Stage VIII, the 24 identified positions must be sorted

in temporal order. The implementation is the same as Figure 4-9 with the sorting

metric set to the time index of the error locations. The implementation diagram for

Stage VII is presented in Figure 4-20.

The following are the inputs to Stage VIII: i) the outputs of the previous Stage

VII. ii) the c1[1 values indexed by the set J (relayed from Stage III). iii) the hard-

decision vector y[HD] (relayed from Stage I). The operations in Stage VIII are listed

below:

1. Output in temporal order the elements in the vector y[HDI = [__HD] ** D]T

2. Check if the index i of the current output y HD], corresponds or not to one of

the 24 locations that require correction.

3. If the index i is identified to require correction, construct the estimated value

8j according to (2.19). Replace the element y!HD] using the estimate 84.

4.8 Configuration module

Each function component in the LCC design is maximally parameterized. They can

be adapted to other specifications if their parameters are configured appropriately.

This flexibility is "static" in the sense that these parameters are configurable in design

stage but can not be changed when the design is finalized. Another level of flexibility,

the "dynamic" flexibility, allows the hardware behavior to be controlled in real time

by parameters or a sequence of control data. Our interpolation stage is designed with

both of these levels of flexibility.

The decoder with "dynamic" flexibility must be sets up with those control words

and configuration parameters before operation. The configuration module is designed

to facilitate the set up procedure. Each configuration parameter has a dedicated ad-

dress, which must be provided before the parameter value is presented to the config-

uration module. The sequence of control words for interpolation can be written to a

single dedicated address. Based on the specified address, the configuration module

sets up the corresponding component in the decoder. In this way, the set up procedure

simply becomes the provision of control addresses and control words. The internal

configuration work is handled by the configuration module.

The configuration module is a small component of the design, but it significantly

simplifies the set up procedure of the decoders and supports the feature of "dynamic"

flexibility.

58

Chapter 5

Design Results and Analysis

We synthesize, and place-and-route our design using 90nm CMOS technology and run

post-layout simulations to obtain area, power and timing estimates (See Appendix

D for details). The circuit layouts of LCC255, LCC31 and the I/O interface are

presented in Figure 5-1 and the key metrics are listed in Table 5.1.

LCC decoder is a complexity-improving algorithm as compared to the standard

Chase. We use the LCC255 decoder for complexity analysis since RS [255, 239,17]

code is widely used in previous LCC research. The analysis is performed as fol-

lows. First, the complexity distribution is presented in terms of gate counts, and

we highlight the various complexity reductions obtained from the proposed algorith-

mic changes. Next, utilizing both post place-and-route area and power estimates, we

compare the decoding efficiency of our design, to that of a standard Chase decoder

(using the RS decoder design in [18]). This comparison will demonstrate that the

LCC algorithm indeed allows for a simple hardware design. Then we will compare

our design architecture with the architecture previously presented in [33].

Finally, we compare LCC255 and LCC31 decoders (as algorithms with different

decoding performance). Under combined conditions of throughput, latency and area,

we investigate the behavior of their energy costs with the scaled supply voltage. We

then also quantitatively show the cost of higher decoding performance.

1.048 mm

Figure 5-1: The circuit lay

0.511 mm L I

)ut of the LCC design

Table 5.1: Implementation results for the proposed LCC VLSI design
Decoder LCC255 LCC31
Technology 90nm CMOS 90nm CMOS
Power Supply 1.2V 1.2V
Clock Frequency 333MHz 333MHz
Throughput 2.5Gpbs 1.3Gpbs
Latency 1347 cycles 196 cycles
Gate Count 375411 gates 95354 gates
Area 1.048 x 0.965 = 1.01mm 2 0.511 x 0.499 = 0.255mm 2

Power Consumption 166mW 45mW
Decoding Energy-cost 67pJ/bit 34pJ/bit

5.1 Complexity distribution of LCC design

Table 5.2 presents the complexity and latency measurements of each stage of the

synthesized design. Although the synthesized design may not fully represent the

design complexity, we will use the figures shown in Table I, to highlight the relative

cost of different blocks and complexity improvements resulting from the algorithm

Y

modifications.

A quick description of Table 5.2: the first two rows labeled "Gates" and "Distr."

display the gate counts, and distribution percentages, according to the various pipeline

stages. As expected, Stage V has the highest complexity; this stage contains the main

component "Interpolation Step 2". The third row labeled "Latency", shows the vari-

ous latency of each stage. Recall that we adopt the "complexity-driven" approach in

our design; the complexity will be optimized while satisfying the latency constraints.

Note that this approach may not always be desired, in some applications we may opti-

mize our design to achieve the lowest possible latency (while disregarding complexity).

This approach is termed the "latency-driven" approach. We wish to point out that

the complexity (gate count) v.s. latency distribution (according to the various stages)

shown in Table 5.2, provides all the necessary information to analyze both "complex-

ity-" and "latency-driven" approaches. More specifically, if for example we want to

further reduce complexity, we pick out the pipeline stages with latencies smaller than

the maximum limit, and increase the latency in order to reduce the complexity. Take

for example Stage IV, which contains the component "Interpolation step 1". This

stage has a latency of only 98 cycles, and there exists plenty of room to trade latency

for complexity here. One way of doing this is to sequentially process the 2 polynomi-

als in the bivariate polynomial (instead of parallel processing). On the other hand,

for a "latency-driven" (equivalently latency critical) design, we can trade complexity

for latency. Finally, it is important to note that the "complexity-driven" approach

may result in having large relay memories in the design. For example, to achieve

a 1347-cycle total latency in our design, we require that the complexity of all relay

memories, to occupy 13.23% of the total complexity. The "complexity-driven" ap-

proach reduces local complexity (of individual components), but at the same time

requires more relay memories, due to the larger global latencies.

To complement the previous Table 5.2, we present Table 5.3 in which we list the

decoder complexities in a different fashion. Here, the complexities are listed accord-

ing to the functional decoder components. The third column labeled "Complexity

Reduction", indicates the percentage reduction in complexity, achieved by the vari-

Table 5.2: Gate count of the synthesized LCC decoder
I II III IV V VI VII VIII Mem. Total

Gates 38332 32905 22743 39512 89094 53917 47780 1448 49680 375411
Distr. 10.21% 8.77% 6.06% 10.52% 23.73% 14.36% 12.73% 0.39% 13.23% 100.00%
Latency 256 169 161 98 237 169 256 1 1347

ous architectural improvements suggested in this paper. To summarize, the various

complexity reductions are achieved in each decoder component, using the following

main ideas

* [Interpolation Step 1] The "piggyback" and "tying-up" cycle-saving techniques

(see summary in the end of Section 4.5.3) provides 59% reduction, more than

half of the original complexity.

* [Interpolation Step 2] Tokushige et. al.'s test vector selection achieves the per-

formance of a standard Chase decoder with half the number of test vectors

(50% complexity reduction). The "piggyback" technique achieves another 50%

reduction in complexity. The "tying-up" and "breadth-first" techniques result

in 10% and 32% reduction respectively. Combining all three techniques, the

total complexity reduction is 85% (approximately 5-fold).

* [RCF algorithm] Adopting the "complexity-driven" approach, we achieve a fac-

tor of 4 complexity reduction for both "Compute Metric" and "RCF algorithm"

blocks shown in Figure 4-17. Assuming constant size of relay memory, the total

reduction is consequently 20%.

* [Factorization] The (reshaped) factorization formula (3.1) replaces the com-

putation of v(x) with the already computed e(x), leading to the complexity

reduction of 91%. The technique effectively reduces the complexity by 11-fold

and greatly reduces the footprint area of the factorization step.

* [Estimated value computation] Using systematic encoding, we now only need

to compute a small number of 24 estimated values e4 to completely recover

the message i. This technique reduces the required number of polynomial

evaluators from 239 down to 24. The complexity reduction is 90% or 10-fold.

Table 5.3: Complexity Distribution of the synthesized LCC decoder

Gates Distr. Complexity
Reduction

Hard Decision and Reliability 34040 9.07%
Erasure Only Decoder 31593 8.42%
Coordinate Transformation 28347 7.55%
Interpolation Step 1 39512 10.52% 59%
Interpolation Step 2 89094 23.73% 85%
RCF Algorithm 53917 14.36% 20%
Factorization 12733 3.39% 91%
Corrected value computation 13680 3.64% 90%
Codeword Recovery 22815 6.08%
Relay Memory 49680 13.23%
Total 375411 100.00% 70%

Our new algorithmic modifications and architecture design are justified by an

overall complexity reduction of 70%. The complexities of the core components (e.g.

interpolation, RCF, Factorization, and estimated value computation) are reduced by

80%. These components now only occupy 56% of the whole design, as opposed to 86%

of the original algorithm (suggested in [2]). In our improved design, these components

no longer dominate design complexities, and future efforts should be directed toward

reducing the complexities of other infrastructure components (that had negligible

contribution so far).

Figure 5-2 shows the (projected) complexity distributions versus the number of

test vectors h. It is clear that only the "Interpolation Step 2" and "RCF Algorithm"

component complexities (see Table 5.3) depend on h; the other components do not

vary when h is changed. Therefore as Figure 5-2 shows, both components "Inter-

polation Step 2" and "RCF Algorithm" eventually dominate the decoder complexity

for large enough h. To investigate the trade-off between increased performance and

complexity for a larger h, we observe the following from both Figures 3-2 and 5-2.

When comparing cases h = 16 and h = 32, we notice diminishing returns in perfor-

mance increment (see Figure 3-2), however the complexity increase is much sharper

(see Figure 5-2). We find that h = 16 is a reasonable choice for the number of test

vectors.

Relay buffer

8 < Codeword Recovery
Est. value computation
Factorization
RCF Algorithm

6 -...- Interpolation Step 2 of tsvos
Interpolation Step 1

5C--.. Coordinate Transformation
re l Erasure Only Decoder (EODs

4oc...0.- Hard Decision & Reliability

4 1.... 2.4.8.1

effcinc)usrella 5-2: Coeit dreutins. roneroutpvetor anaec)

In.hi Coper ar ilfson the hsialprtieh s se teyongly daeed

mine thmer ofpoerabtyon andLS chipeT gtha eond, aretyialsd compare oualgg wt ot

recthm/archimptulevlpoementats h HDD RS25 37 decoder[1] [22], []1] The0]e

concerni mmned wihpyinalm MStchooy nt properties arepwrcnsmto n edn qenery

Table 5.4. For fair comparison, we first estimate the corresponding features of the

decoder as if it were implemented in 90nm CMOS technology, figures given in the sec-

ond column of Table 5.4 (See Appendix B for details). The decoder in [18] contains

16 parallel RS decoders. To match the throughput of our LCC decoder, we simply

reduce the number of parallel decoders down to 2. As shown in Table 5.4, with simi-

lar throughput (2.8Gbps v.s. 2.5Gbps) the HDD decoder has smaller latency (2.42ps

v.s. 4.05ps) and better decoding efficiency (12.4pJ/b v.s. 67pJ/b) than our LCC

decoder. However, to match the performance of LCC, h = 16 of such RS decoders

are required to construct a standard Chase decoder. The properties of the projected

standard Chase decoder are also listed in Table 5.4 along with our LCC decoder for

comparison. The two decoders have comparable decoding performance (due to the

same number of test vectors), latency (3.80ps v.s. 4.05ps) and throughput (2.8Gbps

v.s. 2.5Gbps). With similar functional properties, our LCC decoder significantly

outperforms the standard Chase decoder in all aspects of physical properties. The

area is over 14 times smaller; the power consumption and decoding energy-cost are

both over 3 times smaller. These notable improvements in physical properties clearly

justify the application of LCC design approach over a standard Chase decoder.

Since the decoding energy-cost in pJ/bit is one of the key metrics used to evaluate

the implementation of a decoder, we manage to match the areas of the two decoders

while keeping their latency and throughput comparable. With identical throughput,

the power consumption and the decoding energy-cost carry equivalent information.

Before moving on, we list factors that affect the involved design properties. Firstly we

want to point out that, another significant advantage of the LCC design, over that of

the standard Chase (implemented using existing HDD designs), is that the LCC pos-

sesses additional flexibility in adjusting its latency to meet a given requirement. We

may also adjust the throughput. These adjustments are achieved by adding/reducing

hardware area (see Appendix A). Note that both techniques do not change the decod-

ing energy-efficiency (see Appendix A). The scaling of the supply voltage, however,

will change the decoding energy-efficiency (see Appendix B).

We start with the reduction of the supply voltage, which results in a lower clock

rate, and consequently longer latency and lower throughput. The recovery of both

properties requires parallelizing the design, which increases the area. As shown in

Table 5.5, after the adjustment of both latency and throughput, the LCC decoder

Table 5.4: Comparison of
standard Chase decoder

the proposed LCC with HDD RS decoder and the corresponding

[18] Tech. Throughput Standard LCC in

Original Adjusted Adjusted Chase this paper

Technology 0. 16pm 90nm 90nm 90nm 90nm

Power Supply Vdd 1.5V 1.2V 1.2V 1.2V 1.2V

Clock Freq. (MHz) 83 184 * 184 184 333

Latency ([ps) 5.37 2.42 2.42 3.80 **** 4.05

Throughput (Gbps) 10 22.1 2.8 2.8 2.5

Area (mm 2) 23.25 7.36 ** 0.92 14.72 1.01

Power Consump. (mW) 343 274 34 549 166

Energy-cost (pJ/b) 34.45 12.4 12.4 198 67

* Assuming minimum clock period proportional to CyVdd load capacitance C linear to gateVdd-Vth'I
length, threshold voltage Vth = 0.7V for 0.16pum and Vth = O.4V for 90nm

** Assuming area proportional to square of gate length
For h = 16 test vectors
Including the latency of the front-end similar to the first stage of LCC, in which 255 cycles are
required for sorting sample reliabilities

has a comparable area to the standard Chase decoder based on [18]. However, the

decoding energy-cost of LCC is only 11.6pJ/b as compared to 198pJ/b for the Chase

implementation. This is an improvement by a factor of 17. Even considering the

approximate nature of this scaling analysis, this improvement is significant enough

to indicate the high efficiency of hardware design in LCC compared to the standard

Chase approach.

5.3 Comparison to previous LCC work

We compare our design with the latest LCC architecture proposal in [33]. The front-

end in Stage I will be excluded since it is not considered in [33]. Because of the

lack of physical implementation in all previous LCC research, it is difficult to make

a thorough circuit and physical level comparison. Utilizing the available data in

Table 5.5: Area adjustment for comparison of decoding energy-costs

LCC Voltage Latency ** Throughput Standard

Original Reduction Adjusted Adjusted Chase[18]

Power Supply 1.2V 0.5V 0.5V 0.5V 1.2V

Clock Freq. (MHz) 333 100 * 100 100 184

Latency (ps) 4.05 13.48 3.37 3.37 3.80

Throughput (Gbps) 2.5 0.7 0.7 2.8 2.8

Area (mm 2) 1.01 1.01 4.05 15.17 14.72

Power usage (mW) 166 9 9 33 549

Energy-cost (pJ/b) 67 11.6 11.6 11.6 198

* Assuming minimum clock period proportional to C.Vdd

** Reducing latency by increasing area by 4 times
Increasing throughput by increasing area by 3.75 times

previous work, we focus on the Galois Field multipliers and RAM usage involved in

designs. In our design, the use of multipliers and RAM is given in Table 5.6 and Table

5.7 respectively. The comparison of architectures in [33] and this paper is listed in

Table 5.8. Since the complexity of core components is dependent on the number of

involved test vectors, we also present in Table 5.8 the complexity normalized over a

single test vector. With equivalent decoding performance (which is determined by

the number of test vectors), our LCC solution outperforms [33] in both complexity

(multipliers and RAM) and decoder requirements (throughput and latency).

5.4 Comparison of LCC255 to LCC31

The decoding performance of LCC255 is superior to LCC31 by around 2dB at WER

of 10-8. More decoding gain can be achieved at lower WER. The better decoding

performance is due to the longer codeword of LCC255 and is at the cost of higher

computation complexity. As shown in Table 5.1, the throughput of LCC255 is also

roughly 2 times better than LCC31. However, the latency and area of LCC255 are

roughly 7 times and 4 times higher than LCC31 respectively. The analysis pattern

Table 5.6: Multiplier usage in the proposed LCC decoder
I Mult. [Notes

Syndrome (EOD)
Location Poly. (EOD)
Evaluation Poly. (EOD)
v(x) evaluation
Forney (EOD)/Transform
Interpolation Step 1
Interpolation Step 2
RCF/Chien search
Factorization
Error computation
Total

16
2
16
16
5
12
48
32
26
24

197

Calculation of EOD syndromes in Stage I
Construct location polynomial in Stage II
Construct evaluation polynomial in Stage II
Evaluate v(x) for coordinate transform
Compute cI'] and transform in Stage III
One interpolator has 12 multipliers
4 parallel interpolation units
Zero checks of qi(x)
9 an 17 mult. to divide qi(x) and e(x)
Compute error values

Table 5.7: RAM usage in the proposed LCC decoder
RAM (Bits) Notes

Stage IV 32x48 Memory storage for interpolation step 1
Stage V 128x64 Memory storage for interpolation step 2
Stage VI 64x36 Memory storage for interpolated coefficients
Buffer for e(x) 8x72 Relay memory of e(x) from Stage II to Stage VII
Buffer for y[HD] 8x1536 Relay memory of y[HD] from Stage I to Stage VIII
Total 24896

Table 5.8: Comparison of the proposed LCC archier and the work in [:331

in Section 5.2 can not be simply applied here because it is difficult to adjust their

throughputs, latencies and areas to same levels simultaneously. To compare the two

decoders, we first see how their energy costs change with throughputs as the supply

voltage ranges from 0.6V to 1.8V (see Appendix B for estimation models). The voltage

range is reasonable for a decoder designed and tested with 1.2V supply voltage.

As shown in Figure 5-3, both decoders have fast increasing energy costs as their

throughputs increase with the supply voltage. The behavior is expectable based on

the models presented in Appendix B. The energy cost of LCC31 quickly surpasses

Original Per test vector
[33] This Work [33] This Work

Equivalent number of test vectors 8 32 1 1
Latency (from input to output) 1995 1347 1995 1347
Throughput (cycles per codeword) 528 256 528 256
Number of Multipliers 74 197 9 6
RAM Usage (Bits) 16928 24896 2116 778

Decoding Energy Cost v.s. Throughput

100
0.

0 80

W 60

1.5 2
Throughput (Gbps)

Figure 5-3: Decoding energy cost v.s. maximum throughput with supply voltage
ranging from 0.6V to 1.8V

LCC255 with limited improvements in throughput.

The scaling of the supply voltage not only changes the throughput but also the

latency. Both of them can be compensated with area (See Appendix A). Figure 5-4

presents the energy cost versus area curves for both decoders with areas adjusted to

maintain constant throughputs and latencies. The energy cost of LCC31 is signifi-

cantly lower than LCC255 in the overlapping range of the adjusted areas. Therefore,

with unchanged decoding performance, throughput and latency, and with matching

area sizes, LCC31 has an excellent property in decoding energy cost than LCC255.

Using the area adjustment techniques in Appendix A, we can first match both

decoders with equivalent throughputs and latencies. According to the models used

in our analysis (see Appendix B), the throughputs and latencies keep the equivalence

between both decoders as the supply voltage scales. Then we adjust the areas again

to restore the throughputs and latencies back to their level before voltage scaling.

In this way, we maintain the equivalence and consistence of the throughputs and

latencies throughout the scaling range of the supply voltage. In practice, it is more

convenient to match low throughput to high throughput (by adding area) and low

Decoding Energy Cost v.s. Area with Constant Throughput and Latency
180

-a---LCC255

160 -- LCC31 _

140 -

120- - -

100-

80-

60-40

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Area (rnm 2)

Figure 5-4: Decoding energy cost v.s. adjusted area with constant throughput and
latency as the supply voltage scales from 0.6V to 1.8V

latency to high latency (by serialize operations with reduced area). So we match

these properties of LCC31 to LCC255 before the voltage scaling. The energy cost

versus area curves are presented in Figure 5-5.

As shown in Figure 5-5, within the supply voltage scaling range (from 0.6V to

1.8V), there is no area overlapping between LCC255 and LCC31. However, we have

already seen the high energy cost of LCC255 as compared to LCC31 if we try to

pull their areas close to each other. Obviously the high energy cost of LCC255 is

linked to its better decoding performance than LCC31. If we continue to lower the

supply voltage of LCC31, its area can extend to overlap with LCC255. However, it

is difficult to obtain accurate quantitative comparison in the overlapped area range.

This is because the supply voltage of LCC31 is unrealistically close to the threshold

voltage Vth = O.4V and the variation of LCC255 energy cost is very large at a small

change of area.

On the other hand, it is much more robust to compare their adjusted area at

equivalent energy cost. As described in Appendix B, we can compute the upper limit

of clock frequency, from which we can obtain the lower limit of adjusted area, as

Decoding Energy Cost v.s. Area with Equivalent/Constant Throughput and Latency
180

-B- LCC255
-A- LCC31

1601 1 - - - LCC255 limit
- -- - LCC31 limit

140 -1-

1201

100 -

0

> 801 0 .5 1.5 5 4 . 5

Ara mm60

Figure 5-5: Decoding energy cost v.s. adjusted area with equivalent /constant
throughput and latency as the supply voltage scales from 0.6V to 1.8V

Table 5.9: Computed limits of clock frequency and adjusted area along with through-
put and latency for LCC31 and LCC255

LCC31 LCC255

Throughput (Gbps) 2.5 2.5

Latency (us) 4.05 4.05
Upper limit Of ferk (MHz) 498 498
Lower limit of area (mm2) 0.06 0.45

marked in Figure 5-5. Although it requires an unrealistically large supply voltage

for the clock frequency and the adjusted area to get close to their limits, as we can

see from Figure 5-5, the ratio of the area limits follows the ratio of the areas under

reasonable supply voltages. Consequently it is logical to quantitatively compare the

area limits of the two decoders and link their ratio to the discrepancy in the decoding

performance. Table 5.9 presents the computed limits of clock frequency and adjusted

area along with the throughput and latency. With identical throughput and latency,

and with virtually idt ec nergy cost, the adjust area of LCC255 is 7.5 times larger

than LCC31. The 7.5 times larger area is the expense of LCC255 for having better

performance than LCC31.

72

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, we present the first complete VLSI design of improved LCC decoders.

We show that cross-layer approach to system design, through interaction among the

algorithm design and underlying architecture and circuit implementation, can yield

the most significant improvements in design complexity.

At the algorithmic level we first propose the test vector selection algorithm that

reduces the complexity of the LCC decoder proposed in [2]. We further propose the

reshaping of the factorization formula as well as the application of systematic message

encoding, in order to avoid the negative impact of the involved parts on previously

proposed complexity reduction techniques.

To support these algorithm improvements, we present a new VLSI design architec-

ture and apply it to the design of two decoders for RS [255, 239, 17] and RS [31, 25, 7]

respectively. Micro-architecture enhancements and cycle saving techniques result in

further complexity reductions of the implemented LCC decoders. The flexibility of

each component facilitates the design of both decoders simultaneously.

We then implement the design with 90nm CMOS technology and present the

whole design and implementation flow. The design is synthesized, placed-and-routed

and verified with industrial standard tools. We apply the last comprehensive test on

the circuit and measure its power consumption by transient simulations on the netlist

with parasitics extracted from the circuit layout.

Based on the complexity distribution of the synthesized design, we illustrate the

performance-complexity trade-offs of LCC-based decoders and demonstrate that the

proposed algorithmic and architecture modifications reduce the complexity by 70%

compared to the original LCC algorithm. Comparing our post place-and-routed de-

sign with a standard Chase decoder projected from an existing RS decoder, we observe

over 17 times improvement in decoding energy-cost, which justifies the application

of LCC design approach over the standard Chase design. We also show that our

LCC design is more efficient in resource utilization than previously proposed LCC

architectures based on the original LCC algorithm.

Finally we compare the two decoders and notice a significantly high decoding

energy cost of LCC255 as compared to LCC31, which can be linked to the extra

decoding performance of LCC255. We find that the adjusted area of LCC255 is 7.5

times of LCC31 with all other design properties matched to identical levels. So the

cost of decoding performance is quantitatively computed.

6.2 Future work

In this thesis, we use physical properties of a decoder design to justify its advantage

in either complexity reduction or decoding performance gain. This investigation ap-

proach generates more practical and accurate evaluations of decoders with various

complexity and decoding performance. It is of great potential interest for a variety

of energy and power-constrained applications to better understand the relationship

between energy cost, adjusted area and decoding gain of a larger class of decoder

blocks. In this thesis we start this task with a class of Reed-Solomon decoders with a

goal to extend this work to other classes of decoders in the future work. The flexible

design components and more importantly, the design methodology we present in the

thesis, can greatly facilitate our future research work.

Appendix A

Design Properties and Their

Relationship

In analysis of our LCC design, we are interested in design properties such as maximum

throughput, minimum latency, area and energy cost. In many cases we trade one

property for another. Here we briefly present their definition and our assumptions on

their relationship.

The maximum throughput is the maximum bit rate the design can process. In

our LCC decoder example, the maximum throughput is defined as

K
Maximum throughput = bits per symbol x N x fdk (A.1)

where J is the coding ratio with the message length of K and codeword length N.
N

fcdk is the maximum clock frequency of the device. LCC255 and LCC31 have 8 bits

per symbol and 5 bits per symbol respectively.

The latency of our design is defined as the time duration from the first input to

the first output in the design. For digital circuits it is often measured as number of

cycles. We are interested in the minimum latency in time when the circuit runs at

its highest frequency. The latency in time can be computed as

.latency in cycles
latency in time = y cle (A.2)

fclk

(A. 1) and (A.2) indicate that both throughput and latency properties are determined

by the running frequency of the design.

The decoding energy cost is an important measurement. It is used to measure the

energy efficiency of the design and is defined as

power consumptionEnergy cost = maiu hogpt(A.3)
maximum throughput

We often use the property to justify the complexity improvement achieved by the

design.

The area of the design is measured from its layout after place and route. Area

can be used to match throughput and latency to desired levels. We may adjust the

throughput by parallelizing the design (as it is typically done) so the throughput

changes linearly with the added area. The adjustment of latency is achieved by

adding/reducing hardware resources in each pipeline stage so the change of latency

is inversely proportional to the change of area.

It should be noted that both adjustment techniques do not change the decoding

energy cost. The argument is as follows. When the throughput is increased by adding

more hardware, we see that power consumption increases proportionally, therefore

the decoding energy-cost (see definition in (A.3)) remains approximately constant.

Adjusting the latency also does not affect the total power consumption and decoding

energy-efficiency, because the total amount of processing is fixed. With the same

throughput, the active time of each pipeline stage is reduced as its area (computation

capability) increases, leading to constant total power consumption (and decoding

energy cost). In analysis, we can match the throughput and latency of two designs

by adjusting their areas without changing their energy costs. This is a very useful

technique for design comparison.

To adjust the decoding energy cost of the design, we may scale its supply voltage,

as explained in Appendix B

Appendix B

Supply Voltage Scaling and Process

Technology Transformation

In analysis of our design, we may want to estimate its design properties in a different

process technology or under a modified supply voltage. Here we describe the models

we use for estimation.

First we consider the maximum clock frequency fcIk since it determines both the

maximum throughput and the latency of the circuit. The maximum clock rate is

inversely proportional to the delay of CMOS device TD, which can be approximated

as [5]

TD -CL X Vdd
I

CL Vdd

E(Vdd -Vth)'y

CL: capacitance along the critical path;

Vdd: supply voltage;

I: source current of the transistor;

c: device parameter;

Vth: threshold voltage of the transistor.

where

(B.1)

For 90nm technology, the value of -y is close to 1 so we assume that the source

current I is linear to the voltage between the gate and the source Vdd Vth. Thus the

determining factors of the maximum clock frequency are

fc Vdd-h (B.2)
CL X Vdd

(B.2) shows that fclk increases nonlinearly with Vdd, and gets close to a constant fclki

asymptotically as Vdd increases. Based on the model, we can compute the value of

fckl from the measured properties of the design. Assume the design voltage and the

measured maximum clock frequency is Vddo and fczko respectively. Then fclkl can be

computed as

fclkl fdkO VddO (B.3)
Vddo - Vth

Clearly, the design throughput and latency change linearly with the clock frequency

and reach their individual limit asymptotically as well. The values of these limits can

be easily computed from the definitions in Appendix A.

The dynamic power dissipation in a digital circuit is commonly modeled as

P a-CL 'Vd flk (B.4)

where

a: activity factor;

CL: effective load capacitance;

Vdd: supply voltage;

fclk: operating clock frequency.

Power consumption P increases quickly with Vdd as a combined effect of Vd2 and fclk-

At large Vdd, since feik is close to fcLMl, P continues to increase with V. The energy

cost is defined as the power consumption divided by the throughput (see Appendix

A), so it increases along with V.

Process technology transformation changes the area size by square of transistor

size. It also affects both fck and P via the load capacitance CL- CL is mainly

composed of the gate capacitance of transistors and the wire capacitance. The gate

capacitance CGB is related to transistor sizes as follows,

CGB - (B.5)
tox

where

E: silicon oxide permittivity;

tox: oxide thickness;

L: transistor channel length;

W: transistor channel width.

Because tox, L and W all scale linearly with the process technology, the gate ca-

pacitance CGB changes proportionally to gate size as well. With layer thickness

considered, the capacitance of a wire also scales linearly with the process technology.

Combining both capacitance parts, the effective load capacitance CL is linear to the

process technology. So do fek and P, from which the throughput, latency and energy

cost are also affected accordingly.

80

Appendix C

I/O interface and the chip design

issues

Table C.1: Number of Bits of Decoder Interface
Signals Direction Bits for LCC255 Bits for LCC31
Senseword Data input 64 40
Senseword signal input 1 1
Reset signal input 1 1
Clock signal input 1 1
Codeword Data output 8 5
Codeword signal output 1 1
Configure Address input 4 4
Configure Data input 16 16
Configure Enable input 1 1
Total 97 70

The interfaces of LCC255 and LCC31 decoders are presented in Table C.1. For

the two decoders to interact with the environment outside the chip, we need to design

an I/O interface. The reasons for the requirement are explained below,

1. The internal core of the chip usually runs at much higher frequency than the

buses outside the chip.

2. There are limited number of I/O pads for a chip (75 pads for our chip), which

is not enough to handle the power supplies and the I/O of both decoders.

3. The two decoders have different input bit width, but they need to share the

same set of chip pads, so arbitration of interfaces is necessary.

Inside the chip, the I/O interface connects to each decoder respectively. Its inter-

face to the outside world is presented in Table C.2. The operation procedure of the

chip is as follows: The "Reset Signal" sets the whole chip into a known state. The

"Decoder selection" signal indicates which decoder is being enabled. When "Setup

Signal" is on, the chip is in "setup" mode and configuration parameters are fed into

the I/O interface via the "Input Data" port. The I/O interface pre-processes these

parameters and configures the enabled decoder. When "Setup Signal" is off, the de-

vice is in "decoding" mode. The I/O interface collects 32-bit data from the "Input

Data" port, and constructs the senseword data from them (64 bits per F 28 symbol

for LCC255 or 40 bits per F25 for LCC31). This operation is driven by the "I/O

Clock" which is usually much lower than the "Core Clock". After one senseword is

collected (255 groups of 64 bits for LCC255 or 31 groups of 40 bits for LCC31), the

I/O interface starts to feed them to the enabled decoder driven by the "Core Clock".

Because the input data rate of the I/O interface is lower than the input data rate of

the decoder, a new senseword is not ready when the decoder has finished processing

the old one. It is designed that the I/O interface repeats the same data to the enabled

decoder until the new senseword is ready. In this way the decoder is kept running

and its full-speed power consumption can be measured in testing. The output code-

words from the decoder are caught by the I/O interface, which are then separated

into groups of 4-bit data and output to the "Output Data" port. For LCC31 decoder,

a 5-bit output of the decoder is divided into a 4-bit group and a 1-bit group in the

I/O interface. The chip design diagram including two decoders and the I/O interface

is presented in Figure C-1.

The ratio between the "Core Clock" frequency Fc1k and the "I/O Clock" frequen-

cies Fro must be integer, i.e. Fek/Fro = M. Two I/O clock cycles are required to

transfer the data of one senseword symbol from outside the chip and one core clock

cycle is used to transfer the same amount of data from the I/O interface to an enabled

decoder. Thus the ratio between the core data rate the I/O data rate is 2M. The

Table C.2: The I/O interface to the outside environment
Signals Direction Number of Bits

Input Data input 32
Input Enable input 1
Reset Signal input 1

I/O Clock input 1
Core Clock input 1

Output Data output 4
Output Signal output 1

Setup Signal input 1
Decoder Selection input 1

Total 43

Figure C-1: The chip design diagram

clock ratio and the data rate ratio are two important parameters for setting up the

testing platform for the chip.

84

Appendix D

Physical Design and Verification

We implement our VLSI design using the standard industry-grade 90nm CMOS tech-

nology. The industry-grade standard cell libraries are also used for synthesis, place

and route. The diagram in Figure D-1 describes our ASIC design flow and the de-

sign/implementation tools used in each step. Note that the iterations between the

"Verilog Design" and "Critical Path Analysis" steps are essential in manipulating the

critical path to meet the desired running frequency.

D.1 Register file and SRAM generation

It is convenient and efficient to use generator tools to implement the storage compo-

nents, such as the relay memories in Figure 4-7 and the storage memories in Figure

4-11. There are tools for generation of register files (RF) and SRAM respectively. In

our design we use register files for small storage and SRAM for large memory blocks.

The generated storage memories are listed in Table D.1. The generator tools produce

all necessary files for synthesis, place-and-route, and verification.

D.2 Synthesis, place and route

We use Cadence RTL compiler to synthesize the Verilog design. The synthesizer

converts the RTL level design into a standard cell level design. The required input to

Verilog Design

Synthesis (Cadence
RLT Compiler)

I
Place & Route (Cadence

SOC Encounter)

Critical Path Analysis
(Cadence SOC Encounter)

LVS & DRC (Calibre
LVS & DRC)

DRC Error Correction
(Cadence Virtuoso)

Parasitic Extraction
(Calibre PEX)

Simulation on Extracted
Netlist (Synopsys NanoSim)

Figure D-1: ASIC Design Flow.

the tool is:

1. The Verilog RTL design

2. The standard cell timing library

3. The timing constraint file specifying the clock frequency and I/O delays

The output Verilog code from the synthesizer is still hierarchical, although the internal

implementation of each module has been replaced with connected standard cells. It is

noted that we specify all generated memories as black boxes in synthesis. In this way,

we can prevent the RTL compiler from trying to synthesize the behavioral Verilog

code of the memory modules. These black boxes will be replaced with the generated

memories in the later step of physical implementation.

Before place and route, we have the following considerations:

Table D.1: Memory usage in the chip design

bits x words Type Size (ym2) Location Function
8 x 1536 SRAM 233.37 x 392.38 LCC255 Relay y[HDI
8 x 72 RF 107.96 x 108.145 LCC255 Relay e(x)
32 x 48 RF 141.56 x 125.04 LCC255 Storage for interp. step 1
128 x 64 RF 141.84 x 346.48 LCC255 Storage for interp. step 2
64 x 36 RF 112.44 x 208.76 LCC255 Storage of poly. in RCF
5 x 224 RF 116.36 x129.145 LCC31 Relay y[HD]
5 x 32 RF 83.925 x 91.08 LCC31 Relay e(x)
20 x 20 RF 92.42 x 114.22 LCC31 Storage for interp. step 1
40 x 16 RF 88.22 x 154.08 LCC31 Storage for interp. step 2
20 x 8 RF 79.82 x 109.94 LCC31 Storage of poly. in RCF
16 x 128 RF 137.545 x 141.56 I/O Buffer for parameters
64 x 512 SRAM 290.36 x 661.18 I/O Buffer for input data
8 x 512 SRAM 199.77 x 247.98 I/O Buffer for output data

1. The three main blocks, i.e. the two decoders and the I/O interface are func-

tionally independent on each other (see Figure C-1).

2. We want to measure the individual power consumption of each functional block,

so they must have independent power supplies.

3. Due to the complexity of each decoder, it is more efficient to have them placed

and routed individually.

Cadence SOC Encounter provides a partition method that can address the above

concerns. We divide the whole design into 3 partitions, each of which contains one

of the three functional blocks. Each partition is placed and routed separately. In the

end, these partitions are assembled into the complete design.

The place and route procedure consists of two steps. The first step is floorplanning.

The following operations are accomplished in this step:

1. Setup the die size and the margins as well as the target utilization (TU) for

each module.

2. Create a module guide for each hierarchical module that can enhance the tool's

place-and-route performance.

3. Place hard macros such as memory blocks in appropriate positions so that the

tool can achieve better optimization results.

4. Conduct power planning and specify power rings and power grids.

The preparation work is essential for the tool to optimize its performance in the

place-and-route stage. A metric to measure the performance is the target utilization

(TU). TU is defined as the area of all standard cells and hard macros divided by the

die size. The higher value of TU is achieved, the more efficiently the design is placed

and routed. With appropriately defined module guides and correctly placed hard

macros, it is possible to achieve a TU of 80% or above. Thus, the floorplan phase of

place-and-route needs the designer's close engagement.

The floorplans of the three functional blocks are presented in Figure D-2, D-3 and

D-4 respectively. Note that the power rings and power grids are hidden for a clearer

view of the module guides and hard macro placements.

After floorplanning, the next step of place-and-route can be automated with tcl

scripts. Cadence SOC Encounter provides tools for timing analysis and power anal-

ysis in each stage of place and route. The analysis can take into consideration the

capacitance of routed wires and is thus more accurate than the analysis performed

in synthesis stage. However, the analysis is still "static" in the sense that the result

is not obtained via transient simulation. We will perform "dynamic" analysis in the

final stage of the design. Still the analysis in this stage is critical for early detection

of setup time violations and hold time violations. Moreover, by investigating the crit-

ical paths, we can easily locate the bottleneck of the clock frequency and improve the

corresponding Verilog design. Note that setup time violations can be eliminated by

lowering the clock frequency in the timing constraint. Hold time violations, however,

must be fixed by improving design. In our design, the timing analysis shows that

the circuit can run at around 250MHz without hold time violations. The running

frequency estimated at this stage is conservative. We will see that the circuit can run

at higher frequency in transient simulations.

Figure D-2: Floorplan of the LCC255 decoder

After placing and routing each function block individually, we assemble the par-

titions into the complete chip design. We also include the I/O pads provided with

the standard cell library. In the assembly process, we apply the ECO (Engineering

Change Order) routing to connect the wires between partitions and I/O pads. With

ECO routing, we can ensure the timing consistence between partitions while mini-

mizing the change to the internal circuit of each partition. The final SOC Encounter

layout of the whole chip design is presented in Figure D-5.

Table D.2 lists the physical parameters of each functional block. Multiple pairs of

power pads are assigned to each functional block to minimize the impedance influence

of power wires. The power pad number for the core includes the power pads for all

three functional blocks. Three extra pairs power pads are counted at the chip level.

Figure D-3: Floorplan of the LCC31 decoder

They are used to provide 3.3v power supply for the I/O pads.

D.3 LVS and DRC design verification

Two verifications are required before a circuit layout is ready for tape-out. Layout

versus schematics (LVS) checks the conformance of layout wire connection to the

design netlist. Design rule check (DRC) ensures the physical layout of standard cells

and metal wires complies with the layout rules of the process technology. We use

industry-standard tools from Calibre to perform the verifications.

Firstly, we export the design from Cadence SOC Encouter into a GDS file, and

Figure D-4: Floorplan of the I/O interface

import the GDS file into the Cadence layout tool Virtuoso. One reason for the step is

that Cadence Virtuoto is a layout tool and provides more powerful editing capability

than SOC Encounter. The advantage is essential for DRC error corrections that often

require manual manipulation of layout wires. More importantly, it is not convenient to

perform a thorough LVS check in SOC Encounter with third party hard macros such

as generated memories. The SOC Encounter only requires the LEF file of a generated

memory for place-and-route, but the file does not include sufficient information for

LVS check inside the block. In the procedure of importing to Virtuoso, the tool can

automatically link the memory library, which has been imported from the GDS files

of the generated memories.

We must create pins for the I/O ports of the chip in Virtuoso. The LVS tool needs

these pins as the starting point for circuit comparison. Most pins can be generated

automatically from the labels inherited from the GDS file. The power supply pins,

however, need manual insertion.

Figure D-5: The circuit layout of the complete chip design

There is another problem in LVS test that is caused by the generated memories.

The memory generator does not provide the schematic file. Instead, it provides the

CDL file that contains the LVS netlist for a generated memory. So we can not

perform the LVS test between the layout and the schematic of the design if these

memory blocks are included. We need to force the tool to operate on CDL files

directly. In fact, in normal LVS check, the Calibre tool generates the CDL netlist

from the schematic as the first step of LVS. We simply skip this step. Calibre provides

a tool "v2lvs" to convert all Verilog components into CDL netlists. Combined with

the CDL files for memories, we have the complete CDL netlist of the design and the

LVS test is ready to go.

Table D.2: Physical parameters of the circuit layout
Functional Block Dimension (pum) Area (mm 2) Power Pads
LCC255 1048.32 x 965.16 1.011 6 pairs
LCC31 511 x 498.96 0.255 3 pairs
I/O interface 344.96 x 347.76 0.12 4 pairs
The Core 1285.76 x 1577.52 2.028 13 pairs
The Chip 1976 x 1978 3.91 16 pairs

In DRC test the Calibre tool checks the layout wires according to the process

technology rule file. Since the place and route is mostly performed automatically by

the tools, there are usually a limited number of violations. These violations can be

easily corrected using Cadence Virtuoso layout tool.

D.4 Parasitic extraction and simulation

Table D.3: Testing cases in transient simulations
Core Clock (MHz) 250 250 333
I/O Clock (MHz) 125 250 111

Transient simulation on netlists with extracted parasitics provides the most com-

prehensive verification on the final design. The power consumption measured in the

test is also the most accurate estimation. We perform the simulation on our LCC

design as the last step of verification before tape-out. We also use the measured power

consumption for design analysis.

The Calibre PEX tool is used to extract the parasitic of the circuit layout and

Synopsys Nanosim is used to perform the transient simulation. The testing vectors are

the VCD files generated from Verilog simulation. There are several viewers available

for checking the output waveforms from simulations. They all provide comparison

tools to compare the simulation result to the reference test bench.

In simulations, we verify various combinations of the I/O clock and the core clock,

as listed in Table D.3. All these cases pass the waveform comparison. Therefore, the

transient simulation indicates that the chip can run at frequency up to 333MHz,

which is higher than the frequency predicted by the timing analysis in the place and

route stage.

Bibliography

[1] A. Ahmed, R. Koetter, and N.R. Shanbhag. Vlsi architectures for soft-decision
decoding of Reed-Solomon codes. Communications, 2004 IEEE International
Conference on, 5(20-24):2584-2590, June 2004.

[2] J. Bellorado and A. Kavoid. A low complexity method for Chase-type decoding of
Reed-Solomon codes. In Proc. IEEE International Symp. Inform. Theory (ISIT
'06), pages 2037-2041, Seattle, WA, July 2006.

[3] E. Berlekamp. Nonbinary bch decoding. IEEE Transactions on Information
Theory, page 242, 1968.

[4] E. Berlekamp and L. Welch. Error correction for algebraic block codes. US
Patent 4 633 470, 1986.

[5] A. P. Chandrakasan and R.W. Brodersen. Minimizing power consumption in
digital cmos circuits. Proc. IEEE, 83:498-523, April 1995.

[6] D. Chase. A class of algorithms for decoding block codes with channel mea-
surement information. IEEE Trans. on Inform. Theory, 18:170-182, January
1972.

[7] W. J. Gross, F. Kschischang, R. Koetter, and P. G. Gulak. Towards a VLSI ar-
chitecture for interpolation-based soft-decision Reed-Solomon decoders. Journal
of VLSI Signal Processing Systems, 39(1/2):93-111, Jan./ Feb. 2005.

[8] W.J. Gross, F.R. Kschischang, R. Koetter, and R.G. Gulak. A vlsi architecture
for interpolation in soft-decision list decoding of reed-solomon codes. Proc. IEEE
Workshop on Signal Processing Systems, pages 39-44, Oct. 2002.

[9] V. Guruswami and M. Sudan. Improved decoding of Reed-Solomon codes and
algebraic geometry codes. IEEE Trans. on Inform. Theory, 45(6):1757-1767,
September 1999.

[10] HanhoLee. A vlsi design of a high-speed reed-solomon decoder. 14th Annual
IEEE International, ASIC/SOC Conference, 12-15, pages 316-320, September
2001.

[11] J. Jiang and K. R. Narayanan. Iterative soft-input soft-output decoding of Reed-
Solomon codes by adapting the parity-check matrix. IEEE Trans. on Inform.
Theory, 52(8):3746-3756, August 2006.

[12] J. Jiang and K. R. Narayanan. Algebraic soft-decision decoding of ReedSolomon
codes using bit-level soft information. TransIT, 54(9):3907-3928, 2008.

[13] Xinmiao Zhang Jiangli Zhu. Efficient vlsi architecture for soft-decision decoding
of Reed-Solomon codes. Circuits and Systems I: Regular Papers, IEEE Trans-
actions on, 55(10):3050-3062, Nov. 2008.

[14] Xinmiao Zhang Jiangli Zhu. Factorization-free low-complexity chase soft-decision
decoding of reed-solomon codes. Circuits and Systems, IEEE International Sym-
posium on, 24-27:2677-2680, May 2009.

[15] Zhongfeng Wang Jiangli Zhu, Xinmiao Zhang. Backward interpolation architec-
ture for algebraic soft-decision reedcsolomon decodin. Very Large Scale Integra-
tion (VLSI) Systems, IEEE Transactions on, 17(11):1602-1615, Nov. 2009.

[16] R. Koetter and A. Vardy. Algebraic soft-decision decoding of Reed-Solomon
codes. IEEE Trans. on Inform. Theory, 49(11):2809 - 2825, November 2003.

[17] R. Koetter and A. Vardy. A complexity reducing transformation in algebraic
list decoding of reed-solomon codes. Proc. Info. Theory Workshop, pages 10-13,
March 2003.

[18] M-L. Yu L. Song and M. S. Shaffer. 10 and 40-gb/s forward error correc-
tion devices for optical communications. IEEE Journal of Solid-State Circuits,
37(11):1565-1573, November 2002.

[19] H. Lee. An area-efficient euclidean algorithm block for reed-solomon decoder.
IEEE Computer Society Annual Symposium on VLSI, pages 209-210, February
2003.

[20] H. Lee. High-speed vlsi architecture for parallel reed-solomon decoder. IEEE
Trans. On VLSI Systems, 11(2):288-294, April 2003.

[21] H. Lee. A high-speed low-complexity ReedSolomon decoder for optical commu-
nications. IEEE Trans. on Circuits. and Sys., 52(8):461-465, August 2005.

[22] Hanho Lee, Meng-Lin Yu, and Leilei Song. Vlsi design of reed-solomon decoder
architectures. IEEE International Symposium on Circuits and Systems, pages
705-708, May 28-31 2000, Geneva, Switzerland.

[23] S. Lin and D. J. Costello. Error Control Coding. Pearson Prentice Hall, second
edition, 2000.

[24] Jun Ma, A. Vardy, and Zhongfeng Wang. Low-latency factorization architecture
for algebraic soft-decision decoding of Reed-Solomon codes. Very Large Scale In-
tegration (VLSI) Systems, IEEE Transactions on, 15(11):1225-1238, Nov. 2007.

[25] J. Massey. -Shift register synthesis and bch decoding. IEEE Transactions on
Information Theory, pages 122-127, 1968.

[26] W. Peterson. Encoding and error-correction procedures for bose-chaudhuri codes.
IRE Transactions on Information Theory, pages 459-470, 1960.

[27] G. Reed and I. Solomon. Polynomial codes over certain finite fields. Journal of

the Society for Industrial and Applied Mathematics, 8:300-304, 1960.

[28] M. Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound.
Journal of Complexity, 13(1):180 - 193, 1997.

[29] Y. Sugiyama, Y. Kasahara, S. Hirasawa, and T. Namekawa. A method for solving
key equation for goppa codes. Information and Control, 27:87-89, 1975.

[30] H. Tokushige, K. Nakamaye, T. Koumoto, Y. Tang, and T. Kasami. Selection
of search centers in iterative soft-decision decoding algorithms. IEICE Trans.
Fundamentals, E84-A(10):2397-2403, 2001.

[31] K.K. Xinmiao Zhang; Parhi. Implementation approaches for the advanced en-
cryption standard algorithm. Circuits and Systems Magazine, IEEE, 2(4):24-46,
2002.

[32] You Yu-xin, Wang Jin-xiang, Lai Feng-chang, and Ye Yi-zheng. Design and
implementation of high-speed reed-solomon decoder. ICCSC, pages 146-149,
2002.

[33] Xinmiao Zhang. High-speed vlsi architecture for low-complexity chase soft-
decision reed-solomon decoding. Information Theory and Applications Work-

shop, pages 422-430, Feb. 2009.

