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Abstract

Transmission Control Protocol (TCP) is a widely used transport protocol in today's
multimedia applications. TCP was originally designed for wired networks, and its
performance is highly degraded in networks with stochastically variable links, such as
satellite and wireless networks. One significant class of degradation is caused by link
dropouts, which may occur due to multipath fading effects in wireless networks, or
due to signal attenuation by changing weather conditions and turbulence in satellite
channels.

In this thesis, we study the effects of a diversity routing strategy on TCP perfor-
mance in networks with stochastic links. This strategy allows each data sender to
send copies of data packets along multiple paths in order to reduce the probability of
packet losses. We define TCP efficiency to be the ratio of a data sender's throughput
to the network capacity used by this sender. We explore the optimization of TCP
efficiency by varying the number of paths along which data packets are sent,denoted
as n. We find the optimal number of diversity routing paths n* that maximizes the
TCP efficiency, and we observe that the value of n* depends on the variability of the
stochastic links.
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Chapter 1

Introduction

As communication network architectures evolve, the next generation of networks will

most likely be heterogeneous with the inclusion of wired, wireless and satellite tech-

nologies [11]. In Figure 1-1, we give an example of various interconnected communi-

cation networks. In this example, the communication paths between typical network

applications (e.g. personal computers and cellular phones) may include different types

of network links.

The inclusion of different types of network channels introduces new challenges to

future network architectures. One of the largest challenges is making the traditional

network protocols adapt well to the different types of sub-networks in a heterogeneous

network. Many properties of heterogeneous networks make it difficult to assure that

one set of protocols work well across all of the interconnected sub-networks. As an

important example, Transmission Control Protocol (TCP) experiences performance

degradation in heterogeneous networks.

TCP is one of the core protocols in the IP Protocol Suite for traditional wired

networks. It is believed to be the most widely used transport protocol in today's

multimedia applications [11]. TCP has been designed for wired networks to effi-

ciently manage the network flow. However, TCP is known to suffer from performance

degradation in wireless network environments. Simulation results in [9] and [11]

demonstrate this performance degradation in wireless networks. Similar degradation

exists in satellite network environments. For example, [10] experimentally verified



Wired Networks

Figure 1-1: Schematic illustration of different components in a heterogeneous net-

work. This is a combination of wired network, wireless network, optical network and
satellite network. Typical applications of wired and wireless networks are shown in
the figure. We see that the applications of the heterogeneous networks have the op-

tion to communicate through more than one type of networks when properly set up.
For example, an application in the wireless network, such as a cellular phone, may

have the option to receive data transmitted by the satellite network.



that TCP throughput is sharply degraded in GEO satellite networks. More specifi-

cally, an experiment conducted over a 1 Mbps actual GEO satellite link verifies that

TCP is only able to utilize small portion of the available bandwidth [10].

The reasons for TCP throughput degradation in wireless and satellite networks

are well understood. For satellite networks, the degradation is mainly due to the

effects of long propagation delays and link dropouts [1]. For wireless networks, the

degradation is due to packet dropouts caused by channel fading effects. We refer to

these two types of links as stochastic links in the rest of the paper, in contrast to

copper wired and fiber optical links which have very stable link capacity over time.

To improve TCP performance in networks with stochastic links, one category of

solutions suggested by previous research is modifying TCP to accommodate the needs

of different heterogeneous sub-networks [1, 11]. For example, in satellite networks,

it takes TCP a fairly long time to reach a high data sending rate if the traditional

version of TCP is deployed. To overcome this problem, a modified version of TCP,

TCP-Peach, incorporates two new mechanisms: sudden start and rapid recovery.

However, this category of solutions sometimes requires modification not only to TCP

itself, but also to applications [11]. In addition, because these TCP modifications are

specific to one type of network, they cannot be easily generalized.

Another category of research proposes more proactive solutions, in the sense that

the data sender collects information about the network dynamics, and adjusts the

data sending rate based on this information [2, 4, 7, 11]. As an example of this,

TCP-Westwood is one variant of TCP in which the sender dynamically estimates the

available network bandwidth to adjust the sending rate [7]. However, in networks

with long RTT and high data rate, such as GEO satellite networks, TCP-Westwood

would not perform as well as it does in networks with shorter RTT and lower data

rate, such as LEO satellite networks. Another variant of TCP, TCP-Veno, monitors

the network congestion level and adjusts its data sending rate less drastically if it

makes an educated guess that a packet loss is not due to congestion [4]. TCP-Veno

works poorly if consecutive packet losses occur.

In this thesis, we propose a diversity routing strategy in which the sender sends



copies of data packets along multiple paths. By increasing the number of paths along

which the packets are sent, we are able to reduce packet losses caused by link dropouts

and increase TCP throughput. We define TCP efficiency to be the ratio of a data

sender's throughput to the network capacity used by this sender, and we explore the

optimization of TCP efficiency. Moreover, the model we develop to calculate TCP

throughput over stochastic links is much simpler than the models previously used.

This simple model enables us to analytically study TCP performance over compli-

cated network configurations.

The rest of the thesis is structured as follows. In Chapter 2, we present a two-state

Markov model that describes the stochastic properties of satellite and wireless links.

In Chapter 3, we study TCP throughput and efficiency in a simple network model

where the sender has the option to use diversity routing over multiple single-link

paths. We start our analysis with a slightly complicated model and later on reduce

it to a much simpler, but fairly accurate model. In Chapter 4, we study TCP per-

formance over a more complicated network configuration, where there are multiple

paths each of which consists of multiple stochastic channels. In Chapter 5, we draw

conclusions based on our study, and discuss further work to be done.



Chapter 2

Preliminaries

In this chapter, we introduce the physical properties and architectural design of net-

works with stochastic links, i.e. wireless and satellite networks. The goal is to choose

some basic models that can be extended to study more complicated network con-

figurations. We use Markov models to represent stochastic links. We also give a

brief description of TCP's congestion control algorithm, and present the upper and

lower bounds of TCP performance. We will see that our models can be extended to

represent complicated network configurations, and that they capture the important

properties of satellite and wireless channels. In the rest of the text, we use the words

channel and link interchangeably.

2.1 Channel model for wireless networks

Wireless channels have varying capacity, ranging from kilobits per second to gigabits

per second. Because wireless channels use the open air as the transmission medium,

they are subject to many factors affecting link quality, such as weather conditions or

mobility of wireless [11]. As a result, wireless channels have much higher bit error

rates than traditional wired links.

Multipath interference causes signal attenuation in wireless channels, which is

called fading. Fading can lead to temporary link dropouts that result in packet
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Figure 2-1: On-off Markov model for fading wireless channel.

losses. In addition, dynamically changing routes due to wireless devices' mobility can

cause packet loss and a high latency variation over time. It turns out that fading is

the major factor that causes packet losses in wireless links [7]. Thus in our research

we will focus on wireless channels' fading effects.

Markov processes have been used to model fading channels in previous research.

In [14], Milstein et al. showed that using a first-order Markov model to approximate

fading wireless channels gives satisfactory results. In [13], Zhang and Kassam devel-

oped a methodology to partition the received signal-to-noise ratio (SNR) of fading

channels into a finite number of Markovian states. The SNR partition depends on

the fading speed of the channel. In [7], Gerla et al used a two-state Markov model to

represent the behavior of lossy wireless links, and study TCP-Westwood's throughput

over such links.

In our study, we model wireless channels by a Markov process with two states:

fading and non-fading, as shown in Figure 2-1. This simple channel model helps us

qualitatively understand the effects of fading in a tractable fashion.

The lengths of time spent in the two states are denoted by random variables

Xm,,f and Xf with the following distribution functions

Fx (x) = 1 - exp(-7ywx) (2.1)

Fx (x) =1 - exp(-vx)

The determination of the values of y., and v, should be done by measurements

in a wide range of channel environments. However, a rough estimation of -, and v

will provide significant insights on the quality of the wireless links. More specifically,
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Figure 2-2: Illustration of a direct path and a reflective path for moving wireless
signal sending antenna. The receiving antenna receives a combine waveform of the
two paths, which leads to a multi-path fading effect.

the order of magnitude of 7, and v, shows how frequently wireless links transition

between the two states, and how long each transition lasts.

In Figure 2-2, we illustrate a scenario under which a moving wireless device ex-

periences multi-path fading effects. In this scenario, the sending antenna is moving

towards the receiving antenna at a constant velocity v, and is sending a signal at

frequency fo. Moreover, there is a perfect reflecting wall parallel to the line segment

connecting the sender and the receiver, at a distance h from the line. Thus, there

are two paths for the signal to arrive at the receiver: one direct path from the sender

to the receiver, and one reflected path from the sender reflected by the wall to the

receiver.

We denote the length of the direct path by ri, and the length of the reflected

path by r2 . From the geometry of this scenario,

h h
r + - vt (2.2)

tan 01 tan 02

and
h h

r2 = + . - vt cos 01  (2.3)
sin 01 sin02

19



Because there are two paths for the signal to arrive at the receiver, the signals

are combined and depending on the relative phase, signal cancellation may occur,

which leads to fading effects. In Appendix A, we see that the combined waveform is

dominated by a cosine term that depends on ! . The combined wave has a periodC

of T(fo) = If we pick fo as 2 GHz, 01 = 100, c = 3 x 108 mps and a fading
fo Vcos 2  1

signal threshold of ! (see Appendix A for details), we find the order of magnitude of

v, should be in thousands of sec1, and that of -. should be in several sec 1 . The

ratio of the two parameters should be around 102 to 103.

2.2 Channel model for satellite networks

Long propagation delays increase the latency of satellite channels. This results in

long round trip times (RTT) for satellite channels. For example, in a GEO satellite,

the round trip time is at least 480 milliseconds (ms) [10]. We will see the effects of

longer RTT on TCP throughput in Chapter 3.

Satellite communication (Satcom) channels have variable capacity. Satcom chan-

nel capacity changes due to fading effects caused by turbulence and weather condi-

tions. These time-varying fading effects are characteristic of satellite channels at high

frequencies above 10 GHz. Satellite channels' fading effects are mainly caused by

rain; while on clear days, scintillation effects are the major causes of fading [3].

In [3], the spectrum of the log amplitude of satellite channels' signal strength was

approximated by a 1-pole autoregressive model. We will approximate the signal at-

tenuation of satellite channels by a Markov process. A similar method was used in

[7] to model a LEO satellite channel.

In our research, for simplicity and consistency with the wireless channel model,

we still use a two-state Markov model for satellite channels, illustrated in Figure 2-3.

The lengths of time spent in the two states are denoted by random variables Xs, and

X,, with the following distribution functions,
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Figure 2-3: On-off Markov model for satellite channel

Fx, (x) = 1 - exp(-yx) (2.4)

Fx d(x) = 1 - exp(-vex)

[3] plots the sampled power spectral density (PSD) and its corresponding autore-

gressive model for satellite channels. In this plot, the 3 dB corner frequency is at

around 0.11 Hz. Thus the coherence time for the Satcom link is around Hz 9

sec. This coherence time can be used as the average length that the Markov process

remain in the up state on average. From the exponential distribution, expected up

time is 1 over the rate -y,

1
E[up time] 9 sec (2.5)

We get -y, = 0.11 sec- 1 . The ratio between E[up time] and E[down time] can

vary. We will make different assumptions on this ratio in later chapters.

2.3 Brief review on the Transmission Control Pro-

tocol (TCP)

In this section, we give a brief review of TCP's congestion control algorithm, and

propose a model that captures its dynamics. Each TCP session is a peer process

between a sender node and a receiver node. The two nodes collaborate to control the

number of packets sent into the network. The sender starts by sending one packet

per round trip time (RTT). Each packet sent has a packet sequence number (SN).

For every packet received in sequence, the receiver sends an acknowledgement

packet (ACK) to the sender. For example, if the receiver receives packet 1, 2, 3, ... , n,



it will send the ACKs for all of these packets. Upon receiving the ACKs, the sender

learns that packets 1 to n were correctly delivered successfully. If the next packet

received is not packet n + 1, but some packet with a larger packet number, it must

be the case that packet n + 1 is lost or delayed in the network. Instead of sending an

ACK with SN greater than n+ 1, the receiver will continue sending an ACK with SN

equal to n, known as duplicate ACKs.

The sender maintains a value called the window size. It dynamically changes

its window size in response to congested network situations to achieve a fairly good

throughput. In addition, we define "maximum window size", Wm, to be the maximum

number of packets that the sender has sent but has not received an ACK for. Wm

is usually 128 packets or 256 packets in most deployed versions of TCP. There is

also a standard modification to TCP called TCP window scaling [8] that allows the

TCP window size to be increased to larger values. In our thesis, we assume that the

maximum window size is set to be the maximum possible number of packets in flight,

denoted by M.

The traditional version of TCP has two phases for the sender to increase its window

size. There is a Slow Start phase, during which the sender increases its window size

exponentially until the window size reaches a threshold (ssthresh). After this point,

the sender operates in the Congestion Avoidance phase, in which the sender increases

its window size linearly until it reaches the maximum window size. The sender detects

a packet loss in two different ways and reduces its window size accordingly. First,

if the sender receives 3 duplicate ACKs for a packet, it assumes that the packet is

lost due to network congestion, and reduces its window size by half. In addition, the

sender keeps a timer for each packet, and the timer has an expiration value called

Retransmission Time Out (RTO). If RTO expires, the window size is reduced to one

packet, and enters the Slow Start phase again.

For now, we assume that all packet losses are due to the variability of the stochastic

links, not due to congestion. We also assume that TCP always closes its window and

goes back to the Slow Start phase when it determines a packet loss. Moreover,

as shown in Figure 2-4, if the sender uses only exponential window increasing, the
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Figure 2-4: Illustration of different phases of TCP window increase. Wm=128 pack-
ets. We see that TCP window size increasing is upper-bounded by the exponential
increasing pattern, and lower-bounded by the linear increasing pattern.

number of packets sent will set an upper bound on the number of packets sent in the

two-phase pattern; if the sender uses only linear window increasing, the number of

packets sent will set a lower bound on the two-phase pattern. In our research, we

assume that TCP always operates in the Congestion Avoidance phase.

In the next two chapters, we will combine the channel models and the TCP model

described in this chapter to analyze the performance of TCP in different network

configurations.

................... ............. x ..... .. ... .. ...........
................ .... .... .. ..... .......... . . . ...... .... ................... ....... ..............
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Chapter 3

TCP performance analysis over a

network model with parallel

single-link paths

In this chapter, we study the performance of TCP over simple networks with stochas-

tic links, using the models developed in Chapter 2. In this chapter's analysis, we

quantify the level of degradation of TCP performance in networks with stochastic

links, such as satellite networks and wireless networks. We also evaluate the improve-

ment of TCP performance by applying the diversity routing strategy.

Before we dive into the quantitative analysis, we want to understand why the

performance of TCP is highly degraded in satellite and wireless networks. In tradi-

tional wired networks, the sender manages the TCP window size to achieve congestion

control for the network. A data sender reduces its window size when there is net-

work congestion, i.e., when there are more packets released into the network than the

routers can handle at a time. TCP was designed for traditional wired networks, and

works well in managing the network flow.

The sender assumes every packet loss is due to congestion, which is a fair assump-

tion in wired networks. However, in Satcom and wireless networks, the variability of

the channels will also cause packet losses. TCP is unable to distinguish the causes of

the packet losses, which is the major reason for its performance degradation. In this



one link per path

n paths in total

Figure 3-1: n identical single-link paths between sender and receiver

chapter, we want to solve the degradation problem by applying a diversity routing

strategy, which instead of modifying TCP, allows the sender to send copies of data

along multiple links to reduce the probability of packet losses.

In this chapter, we focus our analysis on a simple case, where there are several

identical parallel paths between the sender and the receiver, and each path consists

of only one link, as shown in Figure 3-1. All the parallel paths are independent from

each other. Later on we will extend our analysis to more complicated network mod-

els.

The rest of the chapter is organized as follows. Section 3.1 gives a detailed

description of the diversity routing strategy; Section 3.2 derives an exact expression

for TCP throughput based our assumptions; Section 3.3 presents an approximation

to the expression we derived in Section 3.3, and the approximation is much easier

to calculate and use; Sections 3.4 and 3.5 analyze the performance of TCP and the

effects of the diversity routing strategy in several network scenarios, some of which



correspond to real-life network systems.

3.1 Diversity routing strategy

Diversity routing is a routing strategy that allows the sender to send identical copies

of data packets via multiple paths to its downstream network. As long as the receiver

receives one of the copies of a certain packet, that is, whichever copy that first ar-

rives at the receiver, it will send an acknowledgement with the packet number. The

receiver will send copies of ACKs on the later copies of the same packets as well. As

long as one of the copies of ACKs arrive at the sender, the sender knows that the

data packet was correctly received.

To see why we need diversity routing in networks with stochastic links, let us first

see how the data packets are routed in traditional wired networks. In wired networks,

the routers each keep a routing table that reflects the network status. Usually, there

are multiple paths that a packet can be routed. The routers will compute an optimal

path using the routing table and a shortest path and/or minimum cost algorithm.

In networks with stochastic links, if we still follow this routing strategy, there

exists a non-negligible possibility that as the packet is routed along the optimal path,

one or more stochastic links on that optimal path are temporarily dropped out and

the packet is lost. Thus, computing the optimal path based on a shortest path algo-

rithm does not suffice to provide delivery with high reliability, leading to TCP window

closing and severe reduction in throughput. If we use diversity routing, we may re-

duce the possibility of packet loss caused by link dropouts, thus make the connection

between the sender and the receiver more reliable.

Now that we have introduced the rationale behind using diversity routing in net-

works with stochastic links, we want to understand how efficient this strategy is. If we

define the TCP efficiency to be the ratio of TCP throughput to the network capacity

used by sender. A question that follows immediately is how many paths should the

sender use to send data. Are more paths always more efficient? Or is there an optimal



number of paths that is the most efficient? We see that in diversity routing, the more

paths along which the sender routes the data packets, the less likely there will be a

disconnection; on the other hand, the more paths the sender uses, the more network

capacity is consumed to send the same data packet. If we use too many paths in di-

versity routing, it might be inefficient because we allocate too much network resources

to send the same data. Thus, the answer should certainly not be the more paths,

the better TCP efficiency achieved. There exists some optimal number of diversity

routing paths that maximizes the TCP efficiency. In the sections to follow we will

verify this, and determine what parameters this optimal number of paths depends

on.

3.2 Steady-state TCP throughput by diversity rout-

ing

3.2.1 Channel models revisited and assumptions

In the network model illustrated in Figure 3-1, there are N identical parallel paths

between the sender and the receiver, and each path consists of only one link. From

Chapter 2, we see that each of the links can be modeled by a two-state Markov process

as shown in Figure 3-2. The N links are all independent from each other. The links

can be those of a wireless network, or those of a satellite network. Note that we are

only looking at the case that all N paths are identical for now.

The sender sends n (n < N) copies of a certain data packet, and waits for the first

ACK of this data packet. When n = 1, it means that the sender does not implement

any diversity routing strategy.

In our analysis, time is measured in one of two units: round trip time (RTT) or

seconds, under different contexts. When we focus on the sender's TCP window size

control, we choose RTT as our time unit because in reality, the basic unit of time for

the sender to take reaction in adjusting window size is one round trip time. On the

other hand, when we measure the throughput of the sender, we use bits per second



Figure 3-2: Two-state Markov process model for a stochastic channel

(bps) as the measurement unit, so that we can compare networks with different RTT

lengths.

Each of the N links is modeled by a two-state Markov process. We denote the two

states of the link as up and down, up when the link is nominal and down when it has

dropouts. We use a set of identically and independently distributed (IID) random

variables {Xu; i = 1, 2, ...N} to denote the length of time that the ith link spends

in its up state. Similarly, we use a set of IID random variables {Xd; i = 1, 2, ...N}

to denote the length of time that the ith link spends in its down state. Since {X }

are IID, we simply use X, to denote each of them. Similarly, we use Xd to denote

each of the {Xd}. Both X, and Xd are exponentially distributed, with rates -y and

v, respectively. Figure 3-2 gives an illustration of the channel model.

For each of the N links, we have the following distribution functions,

Fx(x) = 1 - exp(- yx) (3.1)

Fxd(x) = 1 - exp(-vx)

The expectations of the length of time that a single link will spend in its up and

down states are

E[Xe] = 1
(3.2)

E[Xd]=-

Let ru and 7rd represent the steady state probabilities for a single link to be in its

up and down states, respectively. The steady state probabilities can be expressed as



follows:
_= E[Xu] v

E[Xu] + E[Xdl - +V (33)
S E[Xd] -y

E[Xu] + E[Xd] + v

In this thesis, we assume that all packet losses are caused by the variability of

the stochastic links. We further assume that the packets sent while the sender and

the receiver are connected can all be received correctly, except for the last window

before the connection is broken. A portion of or the entire last TCP window before

the connection is broken may be lost. If TCP deploys a selective-repeat strategy, the

lost packets will be re-transmitted; if TCP deploys a go-back-N strategy, the entire

last window will be re-transmitted.

We also assume that as soon as the sender senses a packet loss, it immediately

reduces the window size to 1 packet per RTT starting from the next round trip

time, until the next time that the sender and the receiver are connected. This is

realistic since link dropouts usually results in multiple packet losses, and causes TCP

window closing. For there to be a packet loss, the sender and the receiver must be

disconnected, implying the n links must all be in the down state at the same time.

As we have mentioned in Section 2.3, there exists a maximum TCP window size

Wm, which is the maximum number of packets that a sender can send during any

round trip time. In our model, we assume that W, is the maximum number of

packets in flight in any round trip time, denoted by M.

In our model, each link has a capacity Rmax, the maximum rate at which the link

can transmit data, in bits per second (bps). We assume that all the N links always

operate at their maximum data rates as long as they are in the up state. We also take

the round trip time, RTT, as a given parameter in our analysis for now. Moreover,

the size of a single packet is denoted by K, in bits. Thus the maximum number of

packets in flight, M, during any RTT, is given by

M =RTT
time to transmit one packet
RTT - Rmax (3.4)

K



3.2.2 TCP's window size control over stochastic links: a re-

newal process perspective

As long as one of the n links is still up, the packets can be delivered to the receiver.

When a link goes from the up state to the down state, or vice versa, we say that there

is a "link state change." We assume that in a time interval (t,t +6) for a very small 6,

the probability of one link state change is some rate 7 times the length of the interval

6, 776; in addition, the probability of two or more link state changes happening in the

small interval 6 is o(6), where the term o(6) is used to describe a function of 6 that

goes to 0 faster than 6 as 6 -+ 0, i.e., lim 0 (o6i) 0. Based on this assumption, if at

time t there are k out of the n paths that are up (k = 1, 2, ...n), then at time t + 6

we can have at most k + 1 links that are in the up state, and at most n - k + 1 links

that are in the down state.

Since only one link state change can happen during any small time interval 6, we

know that at any time t and t + 6, the number of links that are in the up state Nu,(t)

and Nu,(t +6) can be different by at most 1, i.e., INu,(t) - Nu,(t +6)1 = 0 or 1. Thus,

it is natural to use a (n + 1)-state Markov process to model the behavior of the status

of the n paths between the sender and the receiver, as shown in Figure 3-3. We call

the model in Figure 3-3 Markov Process 1 (MP1).

In MP1, State k (k = 0, 1, 2, ...n) represents that there are k paths(links) in the

up state; State 0 represents that all of the n paths are in the down state; in other

words, the sender and the receiver are disconnected. The transition rates between

the states are shown as in Figure 3-3.

When Markov process 1 is in State 0, there is no path between the sender and

the destination that is up. We assume the sender still sends 1 packet per RTT, until

the time epoch that Markov Process 1 transits to State 1 from State 0. The reason

why the sender still sends 1 packet per RTT while all paths are down is that the

sender needs to constantly check the status of the n paths. While all paths are down,

this packet will be lost and the sender will not receive an ACK. Whenever the sender

receives an ACK for this packet, it knows that at least one path becomes up and that



Markov Process 1
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Figure 3-3: Markov Process 1: n + 1 state Markov process for n identical paths in
parallel. State i represents that i out of n links are in the up state at the same time.



it is ready to increase the window size again.

When MP1 is in States 1 to n, the sender and the receiver are connected, and

the sender keeps on increasing the window size; when MP1 is in State 0, the sender

and the receiver are disconnected. Thus, the connection between the sender and the

receiver alternately goes on and off as MP transitions out of and into State 0. The

alternating behavior has a repeating pattern, and we can view it by defining a renewal

process.

We define the following event as a renewal: every time that MP1 is right about

to make a transition out of State 0, the process renews itself. In Figure 3-4 we give

an illustration of the TCP window size during each renewal of the process, assuming

that TCP always increases window size linearly. The packets colored in red represent

the packets that are not received.

We define a new random variable, Ts, to denote the time elapsed from the epoch

when a renewal begins, until the epoch that all paths just go back to the down state.

Alternatively, T is the time from the time epoch when MP1 enters its State 1, which

is the same epoch as when MP1 is right about to transition out of State 0, until the

time epoch when it goes back to State 0 for the first time. We define another random

variable, Td, to denote the time elapsed from the epoch that all n links just go to the

down state until the time epoch that one of the n link is right about to go back to

the up state. Alternatively, Td is the time from the epoch that MP1 just enters its

State 0 until the epoch that MP1 is about to go back to State 1 from State 0 for the

first time. We see that T = Tu + Td is the length of the inter-renewal interval.

From the beginning of each renewal, TCP starts increasing its window size in

every round trip time (RTT): for the first RTT after a renewal, the window size is 1

packet; for the second RTT after renewal, as long as Markov Process 1 is still in a

non-zero state, TCP increases its window size to 2 packets. TCP keeps on increasing

its window size until the next epoch that all n paths are down, i.e., until the next

time that Markov Process 1 goes into State 0. This manner of TCP window size

increasing is depicted in Figure 3-4. In the terminology of renewal processes, we may

say that the number of successfully received TCP packets is a reward function for the
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*Note: 1) the dotted part of time axis is not plotted to scale.
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Figure 3-4: Linear TCP window size increasing modeled as renewal reward process,
with each renewal defined as when one of the n down paths is right about to go up.
From the beginning of each renewal, TCP starts linearly increasing its window size
in every RTT. The last window before all links go down is assumed to be lost. This
is a lower bound of the number of packets sent under a selective-repeat strategy.
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renewal process defined in the previous paragraph. The renewal reward function is

denoted by R(t). We see that the packets colored in red in Figure 3-4 are not part of

the reward function because they are never successfully delivered to the receiver.

Up until now, we have prepared enough to derive the TCP throughput. Through-

put means the average rate of successful information delivery over a communication

channel or network. Thus, we define the TCP throughput (in number of packets) to

be
f'= R(7-)d-r

lim = (in number of packets) (3.5)
t -oo t

Note that by saying t - oo we mean that the process has been going on for a

while, and it has reached steady state.

By the Strong Law of Large Numbers for Renewal Reward Process in [5, Chapter

3], we have
f 1= R(T) dr E[R ]

lim = T , with probability 1 (3.6)
t oo t E [T]

where E[T] is the expected length of the inter-renewal interval, and E[RI] is the

expected cumulative reward within one inter-renewal interval, which is the same for

any positive integer i.

From Equation (3.6), we see that to find the steady-state throughput of TCP, we

just need to find E[Ri] and E[T]. In the context of our problem, E[T] is the expected

length of each inter-renewal interval. E[Ri] is the expected number of successfully

received TCP packets within one inter-renewal interval. Since T = T + Td, we have

E[T] = E[T] + E[Td] (3.7)

In order to derive E[Ri], we need to derive the cumulative distribution function

of Ts, FTr(t). We have

FT(t) = Pr(T < t) (3.8)

This derivation will be done in Section 3.2.3.

We also need to derive the distribution of Td. Td is the length of time that Markov

Process 1 spends in State 0; as long as one of the n parallel links goes back to up, Td



will end. Thus, the process that one of the n links goes back to up is just a merged

process of n independent processes, each of which follows an exponential distribution

of rate v. Thus, FTd(t) has an exponential distribution with rate nv.

FT(t) = 1 - exp(-nut) (3.9)

and

E[Td] = (3.10)
nu

Because the n independent links each has a down state steady state probability

of 7d, the steady state probability for MP1 to be in State 0, r0, is just the product

of each link's steady state probability of being in the down state. Thus,

1f0 =1r n

= y (3.11)

We also know that the ratio of the expected length of Tu and Td is the same as the

ratio of the steady state probabilities that MP1 is in a non-zero state versus that

MP1 is in State 0. Hence,

E[T] - _1ifk

E[T] ,ro

1 - 7ro

7i0

= (+ V )" - 1 (3.12)

and E[Tu] is
1 7 + v

E[Tu]= [( ) -1] (3.13)

As we can see, the values of E[T] and E[Td] depend on the value of , v and n.

Keeping n fixed, E[Td] oc . Keeping n and v fixed, E[Tu] increases as the value of

-y increases. This makes sense because a small value of v means that the links are

fairly variable: the transition rate out of the down state is small, holding Markov



Process 1 in State 0 for a longer time. Similarly, if the ratio g is high, it means that

the stochastic link is less variable, and we should expect that for the majority of the

time, the sender and the receiver are connected, holding Markov Process 1 in one of

its non-zero states.

In addition, the values of E[T] and E[Td] also have a dependency on n. When n

is large, keeping -y and v fixed, we would expect E[T] to be much larger than E[Td].

This makes sense because as the number of paths along which the sender sends copies

of data increases, we should expect the connection between the sender and receiver

to be less likely to drop out, which leads to a much larger E[T] than E[Td].

3.2.3 Derivation of the probability distribution function of

TU

As a reminder, we derive the probability distribution function of Tu because we want

to find the expression for the expected number of packets successfully sent during T".

Readers who are not interested in the derivation may skip this section and only read

Equation (3.15) and its related text.

Recall that Tu is the time from the epoch that MP1 enters its State 1 until the

epoch that it goes back to State 0 for the first time. In MPl, it is hard to capture

when it is the first time that State 1 transits back to State 0. Thus, we make State 0

of Markov Process 1 into a trapping state, i.e., the process will never transit out once

State 0 has been entered. Figure 3-5 illustrates this modification, and we call the

modified process Markov Process 2 (MP2). All the other transition rates of Markov

Process 2 are exactly the same as those of Markov Process 1.

For MP2, we have the following Kolmogrov backward differential equation [5,

Chapter 3]:
d [P(t )]

dPt [Q][P(t)], for t > 0 (3.14)
dt

[P(t)] is a (n + 1) x (n + 1) matrix, where Pij(t) is the probability that the Markov

process is in state j given that it was in state i at time 0; [Q] is an (n + 1) x (n + 1)

matrix with Qij as the rate of transition to state j from state i if i f j, and the rate
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Figure 3-5: Modification to Markov Process 1 by making State 0 a trapping state
(denoted as Markov Process 2)

of exiting state i if i = j.

We see that Pio(t), the probability that Markov Process 2 is in State 0 at time t

given that it was in State 1 at time 0, is the time that it takes for State 1 in MP1

to transit back to State 0 for the first time. Thus Pio(t) and FT(t) are the same

distribution function.

The matrix [Q] will always have an eigenvalue 0, and a corresponding left eigen-

vector 1. We denote the other n eigenvalues of [Q] as Al, A2, ...An, with corresponding

eigenvectors v1 , v2, ...v,. Note that Al, A2, ...An are all strictly negative. The initial

condition of [P(t)], denoted [P(O)], is a diagonal matrix with diagonal entries all equal

to 1 [5, Chapter 5].



The solution of Pio(t) can be written as a linear combination of exponential terms

with rates that are the eigenvalues of [Q], i.e.

FT (t) = P10 (t)

= 1 + ECk exp(Akt) (3.15)

where the coefficients Ck can be calculated from the eigenvalues, the eigenvectors and

the initial conditions. In Appendix B, we solve the case where n = 2 analytically.

The probability density function of FT, (t), denoted fT. (t), is

fT (t) = En_1CkAk exp(Akt) (3.16)

3.2.4 Expression of lower bound on TCP throughput

Now we have the distribution function FT, (t), and we can find the expression for

the sender's steady state TCP throughput. First, we find E[RI]. We view time as

a concatenation of round trip times. We assume the entire window sent in the last

RTT before the sender and the receiver are disconnected is lost, which sets a lower

bound on the linear lower bound of TCP throughput.

If T = t < Wm - RTT, the sender will not reach the maximum window size,

and during T it will send a total number of I: Ej i = RTT 2 packets. If

T = t > Wm - RTT, during T the sender will send a total number of EZ j +

(t - Wm - 1) - Wm = (Wm+1)Wm + (R - Wm - 1) - Wm packets. To find the

expression of Ri, we just need to take the integrals for both cases. Thus,

E[Ri] E[number of succesfully sent packets within one inter-renewal interval]
fWm .RTT t ( t- 1 )
w- RTT RTT I (dt

Jo 2
0 (WM + 1)W t

+f + ( t- Wm - 1) Wm~fT. (t) dt (3.17)
+ w -RTT 2 T



Carrying out the integration gives us the following result:

E[Rj] = El Hk (3.18)

where

Hk =C {-2 - AkRTT + exp(AkWmRTT) - [1 + W(-2 + RTT(-1 + Wm))]}
2A2 RTT 2

Ck exp(AkWRTT)W(-2 + RTT(-1 + Wm)Ak) (3.19)
2AkRTT

As stated before, we relax the maximum window size Wm to M in our analysis. We

plug E[Ri] into Equation (3.6) and we can get the TCP throughput in packets per

second. Because the packet size is K bits, we can convert the TCP throughput in

Equation (3.6) to bits per second.

TCP throughput K (in bps) (3.20)
E[Tu] + E[Td]

This expression for the lower bound of TCP throughput is accurate based on our

models and assumptions, but it does not provide much intuition on what factors drive

TCP throughput, because it contains many complicated terms. For example, from

this TCP expression, we cannot tell easily how the throughput will change as the

values of -y and v change. We will plot the throughput expressed in this form in later

sections, and those plots will help us understand what factors drive TCP throughput.

In addition, the derivation of this expression is complicated. The eigenvalues and

eigenvectors of the [Q] matrix become hard to solve as n becomes large. This draw-

back will become obvious when we want to study complicated network models. Thus,

we will give an approximated model to Markov Process 1 in the next section, and we

will see that we can derive the TCP throughput much more easily using this approxi-

mated model. Moreover, we will show that the approximation is fairly accurate when

becomes large.



3.3 TCP performance analysis by state aggrega-

tion

In this section, we give a simpler model to calculate the TCP throughput that gives

similar results as the model we developed in Section 3.2.

3.3.1 A simplified Markov model by state aggregation

We noticed that in Markov Process 1, although we use n + 1 states to represent the

number of links that are up at any given time, the connection between the sender and

the receiver only has two states: connected and disconnected. We saw that State 0 of

MP1 represents the disconnection of the sender and the receiver, while the union of all

the non-zero states of MP1 represents that the sender and the receiver are connected.

What if we aggregate States 1 to n of MP1 into one State called connected, and

keep State 0 to form another state on its own, called disconnected? If we can make this

aggregation to MP1, no matter how large n is, we can always model the connection

between the sender and the receiver by two states, instead of n + 1 states.

We make an audacious simplification to MP1 by claiming that the transitions

between the sender and the receiver being connected to disconnected can be modeled

by a two-state Markov process, denoted by Markov Process 3 as shown in Figure

3-6. If we use MP3 to analyze TCP throughput and if it gives us similar results to

that of MP1, we may claim that MP3 is a good approximation to MP1 in terms of

throughput calculation. In the next subsection, we will plot the two results and test

how accurate the state aggregation is.

Now we need to find the state holding time distributions of Markov Process 3.

Again we start from the steady state probability of the two states, 7rc and 'rdc. There

are n independent links in parallel, each with a steady state probability d = + of

being in the down state, but the sender and the receiver will only be disconnected

if all n links are in the down state at the same time. Hence, we have the following



Markov Process 3

Figure 3-6: Aggregated Markov process to model n parallel paths. In this aggregated
model, we combine all non-zero states of Markov Process 1 into one state, connected,
and we leave State 0 of Markov Process 1 to be another state, disconnected. If this
state aggregation gives us similar calculated TCP throughput, we may use this model
because it greatly reduces the difficulty of calculation.

steady state probabilities of Markov Process 3:

7dc 7 ld

)nl

oc = - srsc (3.21)

For the same reason as we discussed in Section 3.2, the disconnected time, Tdc, has

the same distribution with Td in Markov Process 1,

FTdC(t) = 1 - exp(-nvt)

and

E[Tc] = 1
nu

(3.22)

(3.23)



Under the Markov assumption, the ratio of expected time spent in each of the two

states is equal to the ratio of the steady state probabilities of the two states,

E[Tc]

E[Tc]
1 - 7c

dc
(3.24)

We get the expression for E[Tc],

E[Tc] = 1 1 -7dc (3.25)
ni rdc

In MP3, the connected time Tc is exponentially distributed with rate ya. Thus,

1

E[Tc]

+' ± n - nyf
(3.26)

Therefore, we write the distribution functions of the state holding time Tc and Tc as:

FTe(t)

FTdc (t)

= 1 - exp(-Nyt)

= 1 - exp(-nut)

(3.27)

(3.28)

Now we want to find the TCP throughput over this simplified network model.

This follows exactly the same procedure as we used in Section 3.2.4,

W Wm-RTT t t 1 )
=T RTT"' fr(t) dt

02
E[Rj

+ 0 (WM +1)Wm

JW.RTT 2

t
+ ( - Wm - 1)Wm}fTc(t) dt (3.29)

~RT T

with Wm = M. Converting to bits per second, we get

TCP throughput = - K(bps)
E[Tc] + E[Tc]

(3.30)
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Figure 3-7: Comparison of TCP throughput calculated from Markov Process 1 and
Markov Process 3 over a wireless channel. 2 parallel paths. Rmax = 10 Mb; packet
size= 10 kb; 1 = 0.1 sec, which is the expected length of connection between sender
and receiver; RTT = 0.1 sec; Wm = M = 100 packets/RTT.

3.3.2 Numerical evidence of the accuracy of the simplified

Markov model

Now we want to compare the lower bounds of TCP throughput calculated by MP1

and MP3, and see what factors drive the TCP throughput. To see how well MP3

can approximate MP1 measured in terms of TCP throughput, we plot the TCP

throughput calculated from both equations on the same plot, and see how close they

are.

First, we use the same value of n for both equations, and see how the TCP

calculations differ. We still start from the case n = 2 and Wm = M. We realize that

the ratio of v to -y indicates the variability of the stochastic channels. If we fix -y,

the smaller this ratio is, the more variable the channel is, or the more likely it is for

the channel to go into the down state. We may expect that TCP achieves a better

throughput as we increase the value of V.

In Figure 3-7 A, we show the change of TCP throughput with respect to the
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Figure 3-8: Comparison of TCP throughput calculated from Markov Process 1 and
Markov Process 3 over a wireless channel. 5 parallel paths. Rm. = 10 Mb; packet
size= 5 kb; I = 0.1 sec, which is the expected length of connection between sender
and receiver; RTT = 0.1 sec; Wm = M = 200 packets/RTT.

change of g in a wireless channel. Note that the horizontal axes are in log scale.

The value of - is fixed at 1 sec- 1 since from Appendix A we know that the y value

for wireless channels should be on the order of one second. We constantly increase

the value of ' along the horizontal axis. The red curve is the throughput calculated

from Markov Process 1, and the blue curve is the throughput calculated from the

approximated Markov Process 3. We see that as the ratio E grows higher and higher,

it is less likely for the paths to go down, and the TCP throughput increases.

In Figure 3-7 B, we plot the error of the approximated Markov process by state

aggregation. We denote the throughput calculated from Markov Process 1 by TP',

and the throughput calculated from Markov Process 3 by TP 3, and we define the

error of throughput calculation to be the following:

T P3 - TP (331
Error of Caculated TCP Throughput = TP(3.31)

T P1
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Figure 3-9: Comparison of TCP throughput calculated from Markov Process 1 and
Markov Process 3 over a wireless channel. 10 parallel paths. Rmax = 10 Mb; packet
size= 5 kb; I = 0.1 sec, which is the expected length of connection between sender
and receiver; RTT = 0.1 sec; W, = M = 200 packets/RTT.

The curve in Figure 3-7 B shows that in our case, the worst error is about 15%,

when ! = 2. When ! > 2, the error decreases as ' increases, and the error converges

to 0. We expect this pattern of error to occur when n becomes larger, which is plotted

in Figure 3-8 for the case of n = 5, and in Figure 3-9 for the case of n = 10. Again,

the error converges to 0 as i becomes higher, and the two curves TP' and TP3 move

closer to each other.

From the above three plots, we conclude that numerical analysis verifies that as

becomes large, the throughput calculation by state aggregation converges to the

calculation by Markov Process 1.

3.3.3 Analysis of the accuracy of the simplified Markov model

To understand why the approximation becomes accurate when ' becomes large, we
-y

compare the distributions of T, and Tc. When n becomes large, it is hard to find

the eigenvalues and eigenvectors of the matrix [Q], but we can study the distribution



functions FT, (t) and FT. (t) analytically when n = 2.

From Equation (3.15), (3.27) and Appendix B, we see that when n = 2,

FT,(t) 1 = ciaexp(Ait)+ c2 bexp(A2t)

FT,(t) 1 - exp( 272 t) (3.32)
2-y+ v

If we can prove that the above two distribution functions become close when j become

large, we may say that the state aggregation is reasonable. Looking at the terms of

FT.(t), and defining p = < 1, we know that

a = I ( - v+ 2 + 6 yv+ V2 )4-y
1 1

= -{-Y- v+v[1+ (6p+p 2 ) + o(p 2 ]}4-y 2
1

= [-y+3+o(p 2 )4-y
= 1 + o(p 2 )) (3.33)

From the first equality to the second equality, we used the Taylor series of the square

root
1 1

+ 2 + . < 1 (3.34)

Following the same logic, we see that

1

4(-y 67v +
1 1

= {-Y V -v[1 + (6p + p 2 ) + o(p 2 )}4 -y 2
1

- [7 - 2v - 3y + o(p 2 )]
4-y

1 1

2 2 + o(p 2 ) (3.35)



b -i
a- b

b-i
1- b + o(p2 )

- -1+ o(p 2 )

1-a

a -b
ofp2)

1 - b + o(p 2 )
- o(p 2 )

Now we turn to look at the 2 eigenvalues of the [Q] matrix.

3
A1 =-2

3
2

1 1
2 2 +6v+v 2

v [1
2 2

2 - 2
-- +/ ( 2

1
2"

1+ 2 V+ 6yv + v 2

2
3 1 Vi 1

= -~- -V - -_ I + -(6p+ P2 ) ±
2 2 2 2

-36p 2 + o(p 2 )]8

- -37 - v + o(p2)

If we plug all these parameters into the expression for FT, we see that

= 1 + [-1 + o(p 2 )] - [1

+ 0(p2) . [_ 1 +-H2 2p

(3.39)

+ o(p2))] exp{[- + o(p2)]t}

O(p2)] exp{[-37 - v / + o(p2)]t} (3.40)

Thus,

and

(3.36)

(3.37)

+ I(6p + p2) + 36p 2

8
+ o(p 2)]

(3.38)

3
A2 =

FT.(t)



We see that when p becomes large, the third term is very small compared to the

second term in the above equation. Thus, we can ignore the third term,

FT.(t) 1 + [-1 + o(p2)] - [1 + o(p2)) expf + o(p 2 )]t} (3.41)

Comparing FT(t) with FT.(t) as in Equation (3.27), we see that when p becomes

large, T -+ Tc in distribution. Since the distributions of the first passage time to

State 0 are asymptotically equivalent when n = 2, the calculated TCP throughput

should be the same. Intuitively, when n is larger the 2, the state aggregation still

achieves satisfactory accuracy because the error made by aggregation will not blow

up as n becomes large.

3.4 TCP efficiency

Remember in diversity routing strategy, we copy the data n times and send each copy

along one of n independent paths. Thus, the network capacity used by the sender is

nRma., and at most - of this capacity is efficiently used. As the value of n increases,

the TCP throughput increases monotonically; however, the portion of the network

capacity that is used to send non-repetitive data becomes less and less. Thus, it may

become less efficient if the sender sends too many copies of the same data packet. To

measure how efficient the diversity routing strategy is, we define the TCP efficiency

for a single network user as the following:

TCP Throughput by Sender

Network Capacity Used by Sender
TCP Throughput

max(3.42)

TCP efficiency is essentially the efficient network capacity utilization. It repre-

sents how much of the network capacity is used to successfully send non-repetitive

data. Sending copies of data along multiple links is more costly to the users than



the traditional shortest path/minimum cost algorithm. We are interested in looking

for an optimal number of links, n*, that can maximize the TCP efficiency. If we can

confirm the existence of this n* and study its dependency on the values of -Y, v and

RTT, we may further understand how to optimize the TCP throughput for users of

networks with stochastic links.

To find the value of n*, we just need to take partial derivative of the TCP ef-

ficiency's expression with respect to n. Expressing the TCP efficiency, taking the

partial derivative and setting it to 0, we have

a 1
On fnWm~ +"")

exp( )(M n )Wfy-" + v) + n"(-2 + nRTT(-1 + Wm)y))

2nRTTv
-2n

-- 2  [-2(y +v) 2 n _ 2n(2 + nRTTv) + _,"l(_, + v)n(4 + nRTTv)2n2RT] T,2i
nRTTWm'1"v

+e ,+-(,+,)" [2 (-y + v) 2 " + _yf(_, + v) 2 (-4 + nRTT(-1 + 2Wm)v)

+-Y2n(2 + nRTT-y(1 - 2Wm + nRTT(-1 + Wm)Wmv))]]}}

= 0 (3.43)

In Appendix D, we carry out the partial derivative in Equation (3.43) and display

the transcendental equation that can be used to solve for n*. Note that we assume

M = Wm. Due to the complexity of this equation, instead of solving it, we use a

numerical analysis approach to study this optimization problem.

In the rest of this section, we are going to study TCP efficiency in several different

scenarios. These scenarios are simplified representations of real life network systems.

For each scenario, we are going to generate plots using the models we developed in

the previous sections, look for the n* in each scenario, and discuss any insights we

can get from these plots.
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Figure 3-10: TCP efficiency in a wireless network

3.4.1 Networks consisting of wireless links

In wireless networks, we pick the maximum data rate Rmax to be 0.1 Gbps. We

choose the round trip time to be 0.1 sec, y = 1s- 1, v = 100s-1. In Figure 3-10, we

plot the TCP efficiency of the sender for different values of n; for comparison we plot

the curve 1 as the maximum portion of network capacity that can be used to send
n

non-repetitive data packets when n copies of data packet are sent.

As we see from Figure 3-10, in the wireless network case, the value of n* that

maximizes the TCP efficiency is 3, with the maximum efficiency 33%. We see that

when n > n* the achieved TCP efficiency decreases and approaches 1; for n < n*,

the achieved TCP efficiency was far below the maximum efficiency. We also see that

the calculated TCP efficiency from both Markov Process 1 and Markov Process 3 are

very close for all n, and the value of n* is fairly small, due to the fact that for a single

wireless channel, it is already fairly unlikely for it to go down.

. .. .......................................... . .. ......
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Figure 3-11: TCP efficiency in GEO satellite network versus the number of diversity
routing paths. Rma = 1 Gb; packet size= 10 kb; = 10 sec, which is the expected

length of connection between sender and receiver; = 0.01 sec, which is the expected
length of disconnection between sender and receiver; RTT = 0.5 sec; Wm = M =

50000 packets/RTT. n* = 4

3.4.2 Networks consisting of GEO satellite links

In GEO satellite networks, we pick the maximum data rate Rma to be 1 Gb, or 101

bps. We choose the RTT to be 0.5 sec due to the long propagation delays in satellite

networks. -y = 0.1s- 1, v = 100s1. In Figure 3-11 we plot the TCP efficiency of

the sender for different values of n; as a comparison, we also plot the curve as

the maximum portion of the network capacity that can be used by a sender to send

non-repetitive data packets.

As we see from Figure 3-10, the value of n* that maximizes the TCP efficiency is 4,

with a maximum efficiency of 24%. For n > n*, the achieved TCP efficiency decreases



and approaches -. On the other hand, for n < n*, the achieved TCP efficiency is far

below the maximum efficiency. Moreover, we see that the TCP efficiency calculations

from Markov Process 1 and Markov Process 3 are very close to each other for all

values n, which demonstrates again that the state aggregation provides satisfactory

results as an approximation to MP1.

3.4.3 Parameters affecting TCP Efficiency

In this section, we vary the value of ", as well as the value of RTT, to further un-

derstand what factors drive the TCP efficiency and how the value of n* is related to

these factors.

First, we want to see how changes in " will make a difference in the value of n*.

In Figure 3-12, we have set the ratio " to be 1 : 1, with both -y and V equal to 1 sec-.

We keep all the other parameters the same as those in Figure 3-10. Because a 1:1

ratio of -y and v indicates that the links are much more variable in Figure 3-12 than

in Figure 3-10, we now need n* = 12 for the sender to achieve the optimum efficiency;

the maximum efficiency is only 7.2%, which is far below the maximum TCP efficiency

achieved when the links are less variable. We also noticed that the TCP calculations

from Markov Process 1 and 3 have the the same trends, though due to the low "

value, the two calculations are a little off when n is small.

In Figure 3-13, we plot the value of n* versus the ratio ", keeping y fixed. On

the x-axis, we vary the ratio " and plot it on the log scale. On the y-axis is the
-Y

corresponding value of n* that maximizes the TCP efficiency in each case, plotted in

both linear scale and log scale. We see that as " becomes larger, the channels become

less variable; accordingly, the number of links needed to maximize TCP efficiency

decreases, and the achieved maximum throughput increases.

In Figure 3-14, we plot exactly the value of n* versus the ratio " in networks

that consist of satellite channels. We observe the same trend of n* versus " in this

case. As " becomes larger, the satellite links become less variable, and we need fewer
ly

links to maximize the TCP efficiency. We see that in' is a non-increasing function of

-Y
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Figure 3-12: TCP efficiency in wireless network versus the number of diversity routing
paths, when the links are highly variable:- = 1 sec,which is the expected length of

connection between sender and receiver, = 1 sec,which is the expected length
of disconnection between sender and receiver. Rm., = 1 Gb; packet size= 10 kb;
RTT = 0.1 sec; Wm = M = 1000 packets/RTT. n* = 12

We also noticed that the value of RTT may affect the value of n*. The effect of

RTT becomes more obvious when the value of ! is relatively small. In Figure 3-15
'Y

we vary the round trip time of a stochastic channel to be 0.01 sec, 0.1 sec and 0.5

sec. We see that when the RTT is longer, we need fewer links to optimize the TCP

efficiency under any ratio of g. Intuitively, this phenomenon makes sense because

the longer the RTT is, the larger the maximum window size W, = M is, and the

longer it takes the sender to re-initiate sending packets to achieve M every time after

it closes its window. To optimize TCP efficiency, we need to allow the sender to have

enough expected time to achieve M; the way to give the sender more time to send

data packets is to increase the number of links. That is why when RTT is longer, the

value of n* increases accordingly.

............. ...... ... .......... .......... ... .. ... ...... .............



In conclusion, we see that for a network that consists of multiple identical stochas-

tic links, such as satellite links and wireless links, we can model the sender's through-

put under diversity routing strategy by setting up a (n + 1)-state Markov process,

or by an approximated Markov process that only has two states. When the value

,y becomes large, the approximation gives satisfactory results. Moreover, there is

an optimal number of diversity routing paths, n*, that can maximize the expected

efficiency of TCP. The value of n* is a non-increasing function with respect to the

value of , which is a direct indicator of the variability of the link: the link is more

variable when the value E is smaller. Given that everything else is the same, the

more variable the links are, the larger n* is. Finally, we see that the value of n* is a

non-decreasing function of the round trip time, under any ratio of ". This is because

under a longer RTT, it takes the sender more time to achieve its maximum window

size. As a result, we need to send the data packets along more paths to increase the

expected time during which the sender and the destination are connected, which gives

the sender longer time to ramp up its window size.
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Figure 3-13: Number of links that maximizes TCP efficiency in a wireless channel

versus different ", denoted by n*, plotted in semi-log and log-log scale. = 1 sec,
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Chapter 4

TCP Performance analysis over a

network with parallel multi-link

paths

In this chapter, we study the performance of TCP over a more complicated network

model with stochastic links, where there are n paths in parallel between the sender

and the receiver, and each of the n paths consists of m identical, independent links.

The procedure and models that we use to analyze the TCP performance of these

network models are extended from those developed in Chapter 3. In the end of this

chapter, we will discuss how our study can be used to improve the routing strategy

for the sender to achieve better efficiency and/or throughput.

4.1 Network model with n parallel paths and m

identical links on each path

In Figure 4-1, we give an illustration of the first extended model that we solve, when

there are n identical parallel paths between the sender and the receiver, and each

path consists of m identical links. Each of these links again can be modeled by a



m links per path

n paths in total

Figure 4-1: n parallel paths with m identical links on each path
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two-state Markov process, with rates 7 and v.

We are going to analyze the TCP throughput of this network model. We first

consider the m links on each path. Because the m links are in concatenation, as long

as one of them goes down, the path is disconnected. Assume at a given time all m

links on a path are all up. It is obvious to see that the time it takes one of the m

links to go down is exponentially distributed with rate my. Use Tc to denote the

time that an m link path will remain connected before it goes disconnected, we have

FTc = 1 - exp(-myt) (4.1)

and
1

E[Tc] = (4.2)

We also see that the steady state probabilities for an m-link path to be connected

or disconnected, irp, and Fpd are

7FPC U

grpd = 1- 7pc (4.3)

Again, the ratio of expected time the path spends connected (denoted Tc) and dis-

connected (denoted Tpd) is equal to the ratio of the steady state probabilities,

E[Tc] -rpc

E[Td] Fpd

E [Tpd] = 1 11rp (44)
m7Y 71pc

Consider a network where there is only one path between the sender and the

receiver, and there are m links on this path (Figure 4-2). We calculate the TCP



m links on a single path

sender ....-.--- -- _O receiver

Figure 4-2: A single path consisting of m identical links

throughput of this sender, still assuming the maximum window size Wm equal to M

M =RTTRmax (4.5)
K

The TCP throughput will have the same format as in that derived in Equa-

tion (3.29), except that we are integrating with respect to fT,,(t) now, and the ex-

pected inter-renewal interval length (i.e. the denominator of Equation (3.30)) becomes

E[Tc] + E[Td].

In Figure 4-3 we plot the calculated TCP throughput for different values of m in

a satellite network. Notice that the case when m = 1 should give the same through-

put as the case when n = 1 in the Markov Process 1 Model developed in Chapter 3,

both representing that there is a single stochastic link between the sender and the

receiver.

We discover from Figure 4-3 that as the number of links in concatenation gets

larger, the TCP throughput decreases. This makes intuitive sense because as long as

one of the m links goes down, the path between the sender and the receiver is discon-
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nected, thus the sender needs to re-start its window size increasing from 1 packet per

RTT. The more links on a single paths there are, the more likely it is at any time for

one of them to break down, thus the less time we should expect the path between the

sender and receiver to remain connected. That is why we observe that TCP through-

put decreases as the number of links in concatenation on a path increases.

In Appendix C, we prove that we can use a similar state aggregation trick to

approximate the distributions of Tc and Td. we use Tac and Tad to denote the path

connected and disconnected time in the state aggregation model. The approximated

distributions, Fpac(t) and Fpad(t) are exponential with transition rates Ypa and Vpa,

respectively. The two transition rates are

7'pa -m-Y

v/pa = M ___," m (4.6)
1 - ___"V)

Now we go back to the network model in Figure 4-1 after we study the performance

of the TCP over one of the n paths. Since each of the n paths can be modeled by

an on-off Markov process, we can treat the n paths as n stochastic links in parallel,

each one with transitions rates moy and vpa. This will lead us back to the problem

discussed in Chapter 3, where there are n single-link stochastic links in parallel. We

will not present plots due to the repetitive information they will contain.

4.2 A baby version of a diversity routing strategy

for a data sender

So far we have developed a methodology for the sender to evaluate its throughput

and efficiency by applying diversity routing. We want to develop a baby version of

diversity routing algorithm for the sender in a network with N parallel paths. As the

first step to implement this baby version of routing algorithm, we need to evaluate

each possible path by using the two-state Markovian approximation we discussed in

the previous subsection. Using the -y and v values of each link on a path, we may



determine the expected TCP throughput along any path. Record the calculated TCP

throughput on each single path i as thupi.

In this work we assume the network is not congested. The sender is going to

send its data packets along k paths in order to achieve a high efficiency, at the same

time meet its own minimum requirement of throughput. The value of k is to be

determined.

To determine the value of k, think about the optimization problem we solved in

Chapter 3 to find n*. We know that n* is small if the paths are not too variable. In

our problem, the sender is facing N parallel paths, each has its own variability. Sort

the paths according to their variability, i.e., the ratio -/v, and keep the sorted path

number into a set, {P1, P2 ...PN} such that the variability of the paths in the set is

in ascending order. The sender first calculate its throughput and efficiency assuming

it sends data along P1 , and denote the calculated throughput as thri, the calculated

efficiency as ei. Then, the sender can calculate the throughput and efficiency of

diversity routing along both Pi and P2, and denote the calculated throughput thr2

and e2. We already know that as more paths are included, thri+1 > thri for all integers

i > 1; however there is an optimal number of paths k*, at which ek* 1 < ek* and

ek*+1 < ek*. The efficiency by routing along fewer than k* paths is non-decreasing as

k increases, and the efficiency by routing along more than k* paths is non-increasing.

For j k*, choose k to be the minimum j that meet the requirement thrj > thrrequired,

where threquired is the required TCP throughput by the sender. This number k is

the number of paths that the sender should diversity route its data packets, and the

paths P 1 , P2, ... Pk should be the k paths along which the sender sends data.

We see that if the sender keeps on sending the links along the optimal k paths, it

is going to cause congestion in the network. Thus, in a real network, the sender needs

to evaluate the congestion status of the network, combined with the optimization of

its expected throughput and efficiency, to determine its routing strategy. This work

is left to be done in the future.
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Chapter 5

Conclusion and future work

5.1 Methodologies

In this thesis, we developed a systematic way to understand how diversity routing

can improve TCP performance in networks with stochastic links, such as satellite

networks and wireless networks. We looked at two major types of network models:

first a simple network model with independent, identical single-link paths, and second

a more complicated network model with multi-link paths.

In the single-link paths case, when there are n paths for diversity routing, we first

used a n + 1 state Markov model to represent the number of paths that are up at

a given time, and used renewal processes to analyze the TCP window size control

algorithm. By viewing TCP data sending as a renewal reward function over time, we

were able to derive an expression for the linear lower bound of TCP throughput over

networks with single-link paths.

This n + 1-state Markov model is correct but hard to extend to large values of n.

For large n, we aggregated all non-zero states of the Markov model to form a new

two-state Markov model, with the two states representing whether or not all the n

paths for diversity routing are disconnected. We gave both numerical and analytical

evidence to show that the state-aggregation preserves satisfactory accuracy in calcu-

lated TCP throughput.

Using state-aggregation, we extended our analysis to a more complicated network



model, where there are n independent, identical parallel paths each consisting of m

identical, independent and concatenated links. This network configuration can still

be modeled by a two-state Markov process because we can first model the m links on

each path by a two-state Markov model, and thus treat the n paths as n single-link

paths. Then, we reduce the problem to the previous single-link paths case.

5.2 Major results

Our numerical analysis has shown that diversity routing can significantly increase the

throughput of TCP over networks with stochastic links. The more paths along which

copies of data are sent, the higher throughput that can be achieved.

However, focusing on the absolute value of throughput is not the best way to

evaluate TCP performance. Instead, we define TCP efficiency as the portion of the

network capacity used by a sender that is used to send non-repetitive data. The

efficiency when n copies are sent is always upper bounded by -. We found the

optimal number of paths along which data should be sent to maximize the sender's

TCP efficiency, and this number is denoted by n*. We understood that this number

varies with the variability of the stochastic links, as well as the round trip time. The

more variable the links are, the the larger n* is; the longer the RTT is, the larger n*

is.

Based on our results, we have introduced a possible improvement to the routing

strategy for a user of a network with stochastic links. Different from the traditional

way of calculating the shortest path between the sender and receiver, we suggest

that the sender may evaluate the variability of each stochastic path and calculate the

expected TCP efficiency. Thus the sender is able to find the optimal number of paths

along which it can send copies of data packets.



5.3 Future work

Future work that follows this research may involve the following: we need to systemat-

ically investigate the routing algorithm in Chapter 4.2, in particular we need to study

how it can be combined with the traditional TCP congestion control algorithm. We

need to test its improvement on scenarios when congestion is present. Our research

has also made some simplifying assumptions. For example, the maximum TPC win-

dow size was set to be the maximum number of packets in flight per round trip time.

The link variability statistics, i.e., the -y and v values, are not extracted from real-life

data, and we only have conjectures about the order of magnitude of these parameters,

not about the exact values of them. These assumptions are reasonable because they

simplify our research. However, to bring the research to an implementation level, we

need to assess the impact of these assumptions on our results.

We also conjecture that a network model with n parallel paths, each consisting

of distinct, independent and concatenated stochastic links can be modeled by using

state-aggregation. The simplest example of such a network is when there are two

distinct single-link paths between the sender and the receiver, each of which can be

model by a two-state Markov process with transition rates -Y, and vi, where i = 1, 2

respectively.

We draw a corresponding 4-state Markov Process, MP4 to represent the tran-

sitions among the links. State "11" represents that both links are up; State "10"

represents that Link 1 is up and Link 2 is down; State "01" represents Link 1 is down

and Link 2 is up; State "00" represents both links are down. The transitions among

the states are illustrated in Figure 5-1.

In general, we need to use 24-state Markov model to represent a network with n

single-link paths. We propose that the state-aggregation method can still be used in

this case. Further more,
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Figure 5-1: Markov Process 4: a four-state Markov process for 2 distinct single-link
path network model.



Appendix A

Estimation of the Multipath

Fading Time Parameters of

Wireless Links

As described in the scenario of Figure 2-2, the sending antenna is moving towards

the signal receiver at a constant velocity v, and is sending signal at frequency fo.

The sending antenna is fairly far away from the receiving antenna, thus 01 < and

02 < -

We have
h h

r1 = + - vt (A.1)
tanO1 tan02

Let R 1 =ag + h for simplicity.

h h
T2 = + . -

sin81 sin02

vtcos01 (A.2)

Let R2 = h + for simplicity.

From Robert Gallager's Principles of Digital Communication[6], the signal field

at the receiving antenna can be expressed as

R{a exp[27rifo(t - E)]}
r1 - vt

R{a exp[27rifo(t - !)]}

r2- vt
(A.3)E,(f, t) =



where c is the speed of light and R- represents the real part of the function inside the

braces.

Since we assume 01 < ' and 02 <' , we can approximate the denominator of the

second term to be r1 - vt as well. Thus,

E,(f, t) oc R{ oexp[27rifo(t - )]} + R{a oexp[27rifo(t -
c c

vt vtcos6
oc R{aexp[27ifo(t - R1 + )]} + R{aexp[27rifo(t - R 2 + )]c c

vt vtcos0
cX a cos[27rfo(t - R1 + -)] + a cos[27rfo(t - R 2 + )] (A.4)

c c

Since cos 01 + cos 02 = 2 cos 6
j

6
2 cos 0 02, we have

Er (f,t) oc 2a cos[7fo(2t - R 1 - R 2 + -L+ ] Cos0l)
c c

cos[7rfo(R 2 - R 1 ) + rfo -(1 - cos 01)t] (A.5)
c

From the above equation, we see that that the received signal field is proportional

to the product of two cosine terms. Since the coefficient of t in the second term

is smaller, the second cosine term is dominant. Thus, we know that the combined

waveform will have a frequency f, and

V
f = fo(1 - cos 01)

2c

S fo cos2 - (A.6)
c 2

Thus the period of the combined wave form is

c
T(fo) = c 2 

1 (A.7)
2

We define the fading time Tfading(fo) as the period of time from when the received

signal level falls below 1 of the original signal sent, to the time when it goes up above

of the original signal again. In a cosine waveform, arccos(l) = g. This corresponds

to -L of the period T(fo), and we need 2 x 1 x T(fo) = T(fo) for the signal level to12 12 6



fade below the threshold and go back above the threshold. Thus,

Tfading UO) c (A.8)
6fov cos2 0

In one example wireless link, fo is 2GHz, 01 = 10', c = 3 x 10' mps. The

moving data sending (or receiving) antenna may be a car, with velocity around 30

miles/hr, or 13.3 mps. Plugging these numbers into the expression for Tfading(fo)

gives Tfading(fo) = 0.0019 sec.

Note that this is a rough estimation of the fading time for a single wireless link.

We also know that in our two-state Markov process model,

fx,,f(x) = y exp(- 7x) (A.9)

fx.f(x) = v exp(- vx)

Thus,

E[fading time] 0.0019 sec (A.10)

We get that vw = 526 sec- 1 . We can assume that every 10 meters there is such a

reflecting wall, thus

1 10M
E[non-fading time] 0.5 sec (A.11)

yw 20mps

This suggests that the order of magnitude of v, is thousands of sec- 1 , while that of

-y, is several sec- 1 . The ratio of the two parameters is roughly 102 to 103.
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Appendix B

Derivation of distribution of T

over a network with 2 identical

single-link paths

This appendix is a continuation of the derivation of the distribution of T, in Chapter

3.2, but written out analytically for the case n=2.

For n = 2,we write out [P(t)] and [Q] analytically as

Poo(t) P01(t) P02 (t)

P10(t) Pn1(t) P12(t)

P20(t) P21(t) P22(t)0 0 0
QY = y -- v V

0 2-y -27

(B.1)

The eigenvalues of [Q] are

Ao = 0

A, 3 1 v+1
A1 2 2 2

3 
-

A 2-
1

Vy2 + 6-yv + v2

V2 + 6-yu' + 1/2 (B2

P =

(B.2)



The corresponding eigenvectors of [Q] are

vo =

vi = 0

V2 = 0

]IT

(7- v + 7 2 + 67v + v2 )

4-'(7 -v - V-72 + 67yv + v,2)

1T

1T
(B.3)

The initial condition for the first column of [P(t)] is

Poo(t)

Pio(t)

P20 (t)

1
0

0J

(B.4)

and for simplicity, we denote v 1 (2) by a, and v 2 (2) by b. Using this initial condition,

we get the following solution for Pio(t)

Pio(t) = 1 + cia exp(A t) + c2b exp(A2t)

b -I

==

a-b

1a
a- b

FT. (t) =

-3-y - v - V2+67v + v 2

2 V 2 +67v+v 2

3Y+ v - 572 +6v + v 2

2/ 2 +67v+v2

(B.5)

(B.6)

P10(t)

= 1 + ciaexp(lt) + c2b exp(A2 t)

where

Thus,

(B.7)



The expectation of T is

E[Tu] (1
cia c2b

A1 A2

3'y+v+/7 2 +67v+v 2 1

2 72 +6v+v2 4 -y

- 1-

(-v+ / 2 ±+67v + v2) 2

/y2+ 6yv +v 2

2

3- + V 72 + 67v + V2 I / + 1 V/T2)+ 6-v + v2
+ b~( - V - s/72 + 67v + V2) 2 222 V + 67v + v2 4-2

1 {( -z± v + y/2 6±+v 2 )(±-i+-+

8'-3 / 2 ±+6'y v 2 22v2
3 1 1

--(-v- y2 + 6v+ v 2)( y + v - 12 + 6YV + v2) 2 12 2 2
1 9 2

1 f 212 + _6v + v2( 9 y2 +
8y 3 /72 +6v+v2 + V2 4

+2(- - v)( 3y + v) / 2 &+ 6 yv+v 2}

8 3 (8 Y2 + 4yv)

+ v
y 2-2

1

4

s 72 +671 + v2)
2

3 1~ 1 12
+ -YV + 72 + 6y-v + Iv2)

We can verify E[Tu] in another way. In Markov Process 1, when n = 2, we have

the following steady state probability

'fF0

71

'72J

2-yv
(-yAV)

2

('-vZ) 2 J

(B.9)

We also know that the length of time spent in State 0 follows an exponential distri-

bution

fT(t) = 2vexp(-2vt) (B.10)

1
E[Td(t)] = 1

2 v

- FT.(t)) dt

(B.8)

and

(B. 11)



From the definition of the steady state probabilities,

E[T] 7ri + 7r2 (B.12)
E[Td] ,To

Thus,

2yu + v2

E[Tu] = y+v)2 (y+v) 2 1
'Y 2v

(-y+v)2

1v
= + (B.13)

which agrees with Equation (B.8).



Appendix C

State aggregation Markov model

for network with one multi-link

path

In this appendix we show that the network model in which there is a single path be-

tween the sender and the receiver consisting of m identical and independent stochastic

links can be approximated by a two-state Markov process. If we build an (m + 1)-

state Markov process with state i representing the number of links that are down,

then State 0 represents the fact that the sender and the receiver is connected, and the

aggregation of the rest m states represents the fact that the sender and the receiver

is disconnected, as shown in Figure C-1. We denote this Markov process by MP-A1.

We prove analytically that when m = 2, the state-aggregation Markov model is a

good approximation to the (m + 1)-state Markov model.

When m = 2, we know that Tc is exponentially distributed as

FT,,(t) = 1 - exp(-2-/t) (C.1)

and we want to find the time distribution of Tpd.

We see that Tpd is the time epoch from the epoch that MP-A1 just enters State

1, until the time epoch that MP-A1 is about to go back to State 0 from State 1



Markov Process Al

path disconnected

Figure C-1: Markov model for m identical links on one path



for the FIRST time. Again, we use the trick that makes State 0 a trapping state

(see Markov Process A-2 in Figure C-2), and solve for Pio(t) of the [Q] matrix of of

MP-A2, denoted by PlO(t).

Markov Process A2

(m - 3)y 2 y 7

(m -1)v mv

Figure C-2: m + 1-state Markov model for a single path consisting of m independent

links

For MP-A2, we still have the following Kolmogrov backward differential equation

d[F(t)]
dt = [Q][P(t)]; t > 0 (C.2)



In MP-A2, [P(t)] and [Q(t)) are now defined as

0 0 0Q K v --v y
0 2v -2v

The eigenvalues of the [Q] matrix of MP-A2, A', A' and A' are

An= 0

3
2
3

A2 = -- V -
2

1

2+
1
2

1 1
-2 2 +67v +v 2

The corresponding eigenvectors of [Q] are

v' [

v'1 = 0

v'2 = [o

] T

(v -y + 72-+ 6-v + v2)

-L(v - -y - V72 + 6 7 v+ v2)

and for simplicity, we denote v'(2) by a', and v'(2) by b'.

conditions for [P(t)], we get the following solution for P'o(t)

P'o(t) = 1 + c'ia' exp(A't) + c'b' exp(A't)

Plugging in the initial

(C.6)

where

, b' - 1
c= a' - b'

1- a'
2 a' - b' (C.7)

On the other hand, we may aggregate States 1, 2, 3, ... , m into one state called

P-disconnected, representing the fact that the path between sender and the receiver

is disconnected; we also keep State 0 as one single state, P-connected, representing
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(C.3)

(C.4)

1

1] (C.5)



the fact that the path between sender and the receiver is connected. We denote this

two-state Markov process by MP-A3 with transition rates are -yp and Vpa, as shown

in Figure C-3. MP-A3 is an approximation to MP-A1.

Now we need to find the state holding time's distribution of MP-A3. We still

Markov Process A3

YVpa

connected disconnected

( ; .0 Vpadi4

Figure C-3: Modification to Markov Process Al by making State 0 a trapping state

start from the steady state probability of the two states, 7pac and lrpad:

7r2
lTpac

7pad 1 - 7rpac

S2 + 2yv (C.8)
(-y + V)

2

For the same reason as we discussed in Section 3.2, the state holding time of the P-

connected state, Tac, has the same exponential distribution as Tc in Markov Process

Al,

FTac(t) = 1 - exp(-2-yt) (C.9)

and
1

E[Tpac] = . (C.10)
2-y

Because the ratio of expected time spent in each of the two states is equal to the ratio

of the steady state probabilities of the two states,

E[Tac] - pac (C.11)
E [Tpad] 7pad
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hence we get the expression for E[Tpad] as

E[Tpad] = 1 pKad (C.12)
27 lpac

In MP3, the disconnected time Tpad is exponentially distributed with rate vpa,

thus

1
Vpa = E[Tpad]

2v2
7+ 2v

+ v as =p - 0 (C.13)

Thus we write the distribution functions of the state holding time Tpac and Tpad as:

FT,,(t) = 1 - exp(-27t) (C.14)

Frd(t) -4 1 - exp(-vt) as = p -+ 0 (C.15)

If we can prove that the distribution of Tpd converges to the same form when p - 0,

we may say that the state aggregation is reasonable and will provide satisfactory

accuracy when p is small, and the TCP throughput calculated from both models will

be close in value as well.

Analyzing the terms of FTd(t) with p = 3 < 1, we know that

1
a' = -(v - 7 + /72 + 67-v + v 2)

1 1
{v-7 + V[1+ (6p + p 2) + (p2 )

-4v ~ 2
1

- [v -7 + v + 3 + o(p 2 )4v,
S1 + + o(p2)) (C.16)

2 2



b'v (v - -Y - V/7+ 67vi + v2)11

4v(6p+ p2 ) + o(p2 ]

1
= 4v v - y - v - 37 + o(p2)]4 +p

-P pO(p 2 )

b' - 1
1 a' - b'

- (1+p) + o(p 2 )
(1+ 3p)

-> -2 as p -+ 0

1- a'
2 a'- b'

1 p o(p 2)
1 + 3 p

-+ 1 as p -+* 0

Now we turn to analyze the eigenvalues of the [Q] matrix of MP-A2.

3
A1 =2

3
= -- v,

1 1
2 2
1 v1  1 2)1+ 2 (P2)]
- j+ [1+ (6p+ p 36p2+ 0

-> -v as p -+ 0

3
A2 = -2 -

3
= - v -

1 1
+ 72 + 6v +

Y - 2[
1

+ 2-(6p + p 2 ) +
12136 p2 + o(p 2)]8

--+ -2v as p -+ 0(

and

Thus,

(C.17)

and

(C.18)

(C.19)

(C.20)

(C.21)



If we plug all these parameters into the expression for FT,,(t), or Pfa(t), we see that

FT,,(t) - 1 - exp(-vt) + exp(-2vt) as p -+ 0 (C.22)

We see that FT,,(t) is dominated by the first exponential term.

We notice that the expression of FTpc (t) is exactly the same as that of F~c (t), and

the expressions of FTd (t) and FTad(t) both approach to 1 - exp(-vt) as p -+ 0, or

equivalently, as the ratio E becomes large. In real life systems, the ratio " is usually

at around 100 or higher, and we may conclude that state-aggregation is a good model

to approximate the original (m + 1)-state model. In Figure C-4, we plot FTpad (t) and

FT~d(t) when -y = is-1 and v = 100s-1. We see that the two cumulative distribution

functions are very close to each other. Thus, we can approximate the connected and

the disconnected time distribution of a path that consists of m identical stochastic

links by the state-holding times of a two-state Markov process.



FT (: Disconnected time calculated from MP-A1
0.9 pd t)

1F : Disconnected time calculated from state aggregation, or MP-A3
pd(t)pad

0.8 - - - : - - -.. :.:

0.7 - :+

m 0.6 - .-

0.3

2

0

010 10. 102 101 100
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Figure C-4: Cumulative distribution functions for Frp (t) and FTr (t), plotted in
semi-log scale. The conformity of the two distributions shows that the state aggrega-
tion is a good approximation to the original model.
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Appendix D

Transcendental equation to solve

for n*

In this appendix, we carry out the partial derivative in Equation (3.44) and display

the transcendental equation that can be used to solve for n*. Note that we assume

M = Wm.

1

n2W(i + y n(7-(y+,n)

exp(fl_ ")Wm-n(2(y + v)n + 7,(--2 + nRTT(-1 + Wm)v))

2nRTTv
1

2n2RTT 2V 2

(,-2n(-2(y + ,)2n _ y2n(2 + nRTTv) +3 "y(_, + v)"(4 + nRTTv)

+ exp( nRTTWm7")(2(y + ) 2n + 7"(, + v)"(-4 + nRTT(-1 + 2Wm)v)
7" - (,y + v)"

+2n(2 + nRTTv(1 - 2Wm + nRTT(-1 + Wm)Wmv)))))]

1

nWm(4 + (y+vM)2

exp" ")Wm "(2( + )" + (-2 + nRTT(-1 + Wm)v))

2nRTTv
,-2n

2 2RT 2v2 [-2( + )2  2n(2 + nRTTv) + (+v)"(4 + nRTTv)

2nRTTWml/
+exp( )(2(y + )2n+ "(2+v)"(-4 + nRTT(-1 + 2Wm)v)

,," - (7y + v)n



+7 2(2 + nRTTv(1 - 2Wm + nRTT(-1 + Wm)Wmv)))]}

1 _-"y(-" + (-Y+v)") _-n(-," + ('Y + v)") In

n2l/ n2l/ ni/
+ 7-"(-ynln(-y) + (y + v)"ln(y + v))

nu
1

+ n W m ( 1  
+ y - ( - -y n (- , + ) )

exp(" n ")Wmy-"(2(y + v)" + 7(-2 + nRTT(-1 + Wm)v))

2n 2 RTTv
-2n

+ 2n [-2(7 + v) 2 n _ _y2n(2 + nRTTv) + 7"l(Qy + v)"l(4 + nRTTv)
n3RTT2m2

+exp( nRTTWmnv )(2(y +v) 2n + n(y +v)n(-4+ nRTT(-1+ 2Wm)v)
7y - (7/ + v)n

+y 2 "(2 + nRTTv(1 - 2Wm + nRTT(-1 + Wm)Wm/)))]

exp(" TT7"')Wm-"(2 + v)n + 7 n(-2 + nRTT(-1 + Wm)v)) ln(y)

2nRTTv
1

n2RTT 2V2

-2n [- 2 (7 +v)2n _ y2n(2 + nRTTv) +7"(, +v)n(4+ nRTTv)
nlRTTWm'7~v

+ exp( ) -
y- (-y + yj)n

(2 (7 + v) 2, + "(_ + v)"l(-4 + nRTT(-1 + 2Wm)v)

+72n(2 + nRTTv(1 - 2Wm +nRTT(-1 +Wm)Wmiv)))] - In(y)

1
2nRTTv

[exp( nRT TW( v )Wm-y-"(RTT (-1+ W)_"v + 7(-2 + nRTT(-1 + Wm)v) In(7)

+2(-y + v)n 1n(_ + v))]

2I T2n (-RT 2 RTTy( 7 ±y +v)n -_272n(2 + nRTTv) ln(y)
2n2RRT2V2 -T +RT-

7fn(7 + v)"(4 + nRTTv) n(7) - 4(7 + v) 2 " ln(7 + v) + 7fl(7 + v)n(4 + nRTTv) ln(y + v)

+ exp(f[RW 7  TT(-1 + 2Wm) (y + )n + y2n(RTT2 (_1 + W)WA
e (7" -(,y + )n R T -1+2 m n T l,

+RTTv(1 - 2Wm + nRTT(-1 + Wm)Wmv)) + _y"(_7 + )"(-4 + nRTT(-1 + 2Wm)v) 1n(7)

+272n(2 + nRTTv(1 - 2Wm + nRTT(-1 + Wm)Wmv)) 1n(7) + 4(7 + v) 2n ln(7 + v)

+y"(7 + v)"(-4 + nRTT(-1 + 2Wm)v) 1n(7 + v)]

+ exp(n mv )(2(7 + ,)2n + 7 "( 7 + v)"(-4 + nRTT(-1 + 2Wm)v)
7+ l - (7 + v)n

+72n(2 + nRTTv(1 - 2Wm + nRTT(-1 + Wm)Wmv)))



RTTW.7"v n RTTW, 7 " ln(7 ) + nRTTW,7v/ ln(7 )

S-- ( + - (+ + )n - (y + )n

nRTTWm"l/(7" ln(y) - (-y -- v) ln(7 + v))

(7 " - + )n)2

0 (D.1)
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