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Abstract

Mathematical modeling of biological networks is under active research, receiving at-
tention for its ability to quantitatively represent the modeler's systems-level under-
standing of network functionalities. Computational methods that enhance the use-
fulness of mathematical models are thus being increasingly sought after, as they face
a variety of difficulties that originate from limitations in model accuracy and exper-
imental precision. This thesis explores robust optimization as a tool to counter the
effects of these uncertainty-based difficulties in calibrating biological network models
and in designing protocols for cancer immunotherapy.

The robust approach to network calibration and therapy design aims to account
for the worst-case uncertainty scenario that could threaten successful determination
of network parameters or therapeutic protocols, by explicitly identifying and sampling
the region of potential uncertainties corresponding to worst-case. Through designat-
ing individual numerical ranges that uncertain model parameters are each expected
to lie within, the region of uncertainties is defined as a hypercube that encompasses
a particular uncertainty range along each of its dimensions. For investigating its
applicability to parameter estimation, the performance of the optimization method
that embodies this robust approach is examined in the context of a model of a unit
belonging to the mitogen-activated protein kinase pathway. For its significance in
therapeutic design, the method is applied to both a canonical mathematical model of
the tumor-immune system and a model specific to treating superficial bladder can-
cer with Bacillus Calmette-Guirin, which have both been selected to examine the
plausibility of applying the method to either discrete-dose or continuous-dose admin-
istrations of immunotherapeutic agents.

The robust optimization method is evaluated against a standard optimization
method by comparing the relative robustness of their respective estimated parame-
ters or designed therapies. Further analysis of the results obtained using the robust
method points to properties and limitations, and in turn directions for improvement,
of existing models and design frameworks for applying the robust method to network
calibration and protocol design. An alternative mathematical formulation to solving
the worst-case optimization problem is also studied, one that replaces the sampling
process of the previous method with a linearization of the objective function's param-
eter space over the region of uncertainties. This formulation's relative computational



efficiency additionally gives rise to a novel approach to experimental guidance directed
at improving modeling efforts under uncertainties, which may potentially further fuel
the advancement of quantitative systems biological research.
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Chapter 1

Introduction

Computational methods are being actively applied to advancing the field of systems

biology. This direction of advancement holds the goal of putting to use the advantages

of quantitatively characterizing the systems biological knowledge available. One of the

main advantages arises from the exactness with which such characterization can take

place. In particular, a mathematical representation, or model, of how a system works

contains no less and no more than the components that the modeler has decided

use to replicate the workings of the system. By checking whether the model can

accurately trace the system behavior under conditions of interest, the modeler can

decide whether the components that have been included are of the right size or are

connected with one another in the correct manner. This work deals with the former

of the two, where effort is put into searching for the right size of components to use

in making system models behave as desired.

Model calibration as discussed in this work points to the task of determining

the component sizes that would make the model outputs match analogous outputs

measured from experiments performed on the actual system. In other words, the

desirable model behavior in this case is one that makes the outputs as close to the

measurements as possible. The best component sizes for performing this task can be

sought for by using optimization, once what is desired is formulated as a mathematical

problem minimizing the difference between the model and actual outputs.

Therapeutic protocol design as covered by this work is approached through opti-



mization as well. In this instance, the desirable model behavior is one that minimizes

the adverse effects of being subject to both the disease itself (e.g., tumor cell count

in cancer patients) and the treatments administered (e.g., side effects of drugs). The

amount and timing of therapeutic intervention are in turn the components whose

sizes are to be determined to make these effects as small as possible, a problem that

can once again be posed mathematically as a minimization.

Optimization in both cases is thus a tool that helps identify the choices that lead

to optimal model behavior. There is, however, a need for caution in using this math-

ematical tool. On the flip side of the much desired exactness offered by quantitative

representation of these tasks lies the pitfall as well, which is that the decisions made

do not have in them any consideration for matters that have not explicitly been in-

cluded into defining what indeed is optimal. For example, the schematic plot in Fig.

1-1(i) shows the range of choices that can be made on the horizontal axis (e.g., the

amount of therapeutic agent to administer to a cancer patient) and the corresponding

range of costs associated with the choices on the vertical axis (e.g., the amount of

toxic side effects due to therapeutic agent administered). If the optimal choice is

defined as the one associated with the lowest cost, the optimizer should pick choice

c1. However, notice that if there were to be slight fluctuations in the value of ci along

the horizontal axis (e.g., the amount of therapeutic agent administered is not ci but

slightly higher or lower than ci), the corresponding costs will actually be considerably

high. On the other hand, although the exact choice c2 is associated with a higher cost

than the exact choice ci, slight fluctuations in c2 do not largely affect the resulting

cost.

Considering that it is realistic to assume the existence of such fluctuations and

other uncertainties in modeling real-world phenomena in systems biology, this work

focuses on analyzing the effects of defining the optimal choice while taking the fluc-

tuations and uncertainties into account. It works with the concept of robust opti-

mization, a type of optimization that can be specified to favor more robust solutions

to optimization problems (i.e., the robust optimizer can be designed to pick choice

c2 in Fig. 1-1(i) over choice ci). An interesting additional variation to the robust
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Outside variable at choice c2  Outside variable at choice c3

Figure 1-1: Characterizing robust choices schematically. (i) Choice ci is as-
sociated with the lowest cost, but is less robust than choice c2 or choice c3 to slight
fluctuations in the value of the respective choice along the horizontal axis. Although
they are similarly robust to the value of their respective choices, c3 (iii) is more robust
than c2 (ii) to fluctuations in an outside variable that also affects the cost.

optimizer's task that is also covered in this work can be schematically seen through

comparing (ii) and (iii) of Fig. 1-1, which represent how the cost is affected by an

outside variable (e.g., the patient's ability to counter side effects) at choice c2 and at

choice c3, respectively. Although there is not a noticeable difference in how robust

c2 and c3 each are to the choice itself (i.e., the decision variable of the optimization

problem) being implemented with slight fluctuations, c3 is more robust to outside

uncertainties that affect the cost (i.e., parameters, other than the decision variable,

of the objective function that is minimized by the optimizer). Fig. 1-2 clarifies this

idea by schematically showing the cost being a function of both the choice and the

............ .. .. .. . ... ..... .... ............ ...... .. ......... ..



Choice P4 C5

Outside variable

Figure 1-2: Schematically visualizing cost being affected by both choice and
outside variable. Choice c5 is associated with the lower cost, and is about as robust
as choice c4 to slight fluctuations in the value of the respective choice, but c5 is less
robust than c4 to fluctuations in an outside variable that also affects the cost.

outside variable simultaneously; although choices c4 and c5 are comparably robust to

slight fluctuations in the value of the respective choice, c4 is more robust than c5 to

fluctuations in the outside variable.

Following this introduction, Ch. 2 surveys the published literature relevant to this

work. Each of its sections are arranged to relate in particular to one of the following

main three chapters of this dissertation, although many of the ideas pertaining to

model-based research methodologies expand beyond the boundaries of their respec-

tive sections into others. Ch. 3 explores the use of robust optimization for estimating

parameters of quantitative models in systems biology. The study applies the con-

cept to a typical model of the mitogen-activated protein kinase (MAPK) pathway,



which has been found to exist as a part of a number of cellular networks whose be-

haviors are affected by cancer. After familiarizing the reader to this work's general

approach to robust optimization through the MAPK study, Ch. 4 investigates the

effectiveness of using robust optimization for determining treatment protocols for can-

cer immunotherapy. Protocols are computationally designed for one type of therapy

using the bacterium Bacillus Calmette-Guirin (BCG) and another using a combina-

tion of cytotoxic T lymphocytes (CTL) and interleukin-2 (IL-2), by utilizing models

that attempt to capture the tumor-immune interaction initiated by these therapeutic

agents. Ch. 5 offers an alternative mathematical formulation to the robust optimiza-

tion procedure, which is computationally less expensive than the one originally used

for robust approaches in Chs. 3 and 4. Besides analyzing its application to designing

protocols for BCG immunotherapy, this chapter also introduces a novel approach to

experimental guidance that is made possible by this computationally more efficient

formulation. And finally, Ch. 6 summarizes this dissertation as a whole and shares

ideas regarding future research directions that have materialized from the valuable

lessons learned while carrying out this work.
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Chapter 2

Background

2.1 Biological network calibration

Building mathematical models

A mathematical model of a biochemical network represents the modeler's understand-

ing of the network's mechanistic details. The model is specified by which components

it contains, in what ways the components are interconnected, and how strong the

connections are. Which components are included depends on the adequate level of

abstraction of the actual network by the model, and is dictated by the purpose behind

which the model is built. The nature and the strengths of the connections between

the components initially arise from prior knowledge that the modeler has about the

network, based on previously conducted studies and available experimental data.

The validity of the model is evaluated on its ability to exhibit the actual network's

properties of interest. Systematic methods for model validation are thus in high

demand, as it allows the model, and in turn the modeler's understanding of the

network, to evolve together to remain consistent with new findings. One such method

is proposed in ref. [1], where Apgar et al. design dynamic stimuli in stimulus-response

experiments of systems for which there exist multiple parameterized models, differing

from one another in the reaction mechanisms that are included. By designing stimuli

that maximize the difference between the candidate models' simulations of measurable



outputs, models that do not succeed in matching the outputs of experiments run under

those stimuli can be eliminated.

The process of calibrating such models to match experimental outputs uses the

data-based modeling approach widely practiced in systems biology. Maiwald and

Timmer present a framework for modeling signal transduction pathways and metabolic

networks based on available data from multiple experiments [2]. Focused on dealing

with the often noisy and partially observed nature of the data coming from these

types of systems, both deterministic and stochastic optimization routines are imple-

mented within the framework. These routines are used to analyze the identifiability

of model parameters from available data, generate predictions that can be experimen-

tally tested using different parameters, and run statistical tests to enable qualitative

comparison of alternative models that may exist for a system.

Hirmajer et al. also present an optimization framework for modeling networks in

systems biology, taking into consideration the dynamic characterization of these net-

works that are commonly expressed through ordinary differential equations (ODEs)

[3]. This consideration is embodied by the framework's ability to handle time-

dependent decision variables, and performance analyses are carried out on sample

problems that range in applications from bioreactor designs to drug-based patient

therapy. In addition to the deterministic local optimization strategy, multiple al-

ternative strategies are made available, including successive re-optimization and hy-

brid optimization, where the latter combines global stochastic and local deterministic

solvers. This variety is meant to handle the nonconvexity associated with many op-

timization problems that arise in the context of networks studied in systems biology.

These types of software tools also exist for mathematically modeling more specific

types of biological networks. Dilio and Muraro, for instance, propose a methodology

for building genetic regulatory networks [4], which are responsible for dictating the

expression level of genes within the cell to determine its phenotype and function.

The operon model of Jacob and Monod is the particular protein-gene interaction im-

plemented for this tool, which characterizes the activation or repression of a gene's

transcription to be controlled by the proteins that bind to its regulatory sequences [5].



The tool is applied to modeling gene regulations that are involved in early develop-

ment of Drosophila, which is a genus of small flies that are commonly referred to as

fruit flies.

Identifying model parameters

Characterizing a mathematical model requires quantitatively specifying the compo-

nents included. This task is what parameter estimation is concerned with, as it aims

to determine concentrations of involved species and rates of their chemical reactions

that would allow the model to exhibit properties observed in the actual biochemi-

cal network. The optimization problem that solves for the model parameters that

would minimize the difference between the observed data and the model outputs is

often made difficult due to nonlinear relationships between the parameters and the

outputs. Moreover, both the small amount of available experimental data and their

varied sources add to the challenge.

The difficulty arising from the nonlinearity and the data limitations commonly

takes the form of there existing multiple sets of parameters that allow the model

outputs to closely match the observed data. Besides the nonlinearity possibly lead-

ing to isolated sets in parameter space that can successfully calibrate the model,

Gutenkunst et al. examine the parameter spaces of biochemical network models to

show large ranges of parameters within which selecting any parameter set does not

notably alter the associated model's behavior [6].

Besides studies such as these that demonstrate through considering local sensitivi-

ties that system behavior is largely affected by only a few parameters, there are others

that focus on identifying regions of parameter space and their shapes as they relate to

behavioral changes. Coelho et al. offer a generic approach to identifying boundaries

between regions in parameter space that relate to distinct behaviors [7]. Analogous to

the magnitudes of sensitivity ranges as they pertain to local analyses, the concept of

global tolerance is explored, together with the relationship that it shows against local

performance. The concept is illustrated in modeling moiety-transfer cycles, which re-

quire values of the parameters to strictly remain within their boundaries to guarantee



certain phenotypical expressions.

Vilela et al. extend this concept of insensitivity, which has come to commonly

be referred to as sloppiness, beyond values of model parameters to structures of

models [8]. By allowing parameters that quantify the connections within a network

to range across negative through positive values in the fitting process, ensembles of

models are found that all match the experimental data reasonably well. This method-

ology of model identification is applied to generate models of the glycolytic pathway in

Lactococcus lactis, a bacterium recently explored for its usage in treating Crohn's dis-

ease [9]. By suggesting plausible competing model structures, the methodology helps

form a basis for designing experiments to be performed on the system to discriminate

among the structures.

The idea that many mathematical models in systems biology inherently embody

sloppiness is supported by a number of works such as ref. [10], in which Ashyraliyev

et al. argue the difficulty of extracting dependable quantitative information from

models that can be calibrated with many different sets of parameters to all match the

experimental data equally well. Illustrating this concept by applying it to gene circuit

models of early Drosophila embryos, they devote a part of their work to showing that

using less noisy data does not lead to higher determinability of model parameters,

and in turn conclude sloppiness to be a property of the model. Studies such as these

leave open the question of how the types of experimental data gathered (i.e., the

types of experiments performed) contribute to parameter identifiability, as explored

by Apgar et al. in ref. [11].

Experimental design for identifiability

Whether model parameters can be uniquely identified is dependent on what data is

used in the calibration process. The ranges of parameters found in ref. [6], for example,

are only as large as published when the observations of model behavior are made under

a single set of experimental conditions [12]. Designing experiments for gathering the

data most useful for parameter estimation is thus a field of active research. The

optimization for this design process determines the experiments that would maximize



the information that the resulting data can provide about the parameters, while

keeping in mind the constraints of costs and measurement feasibilities.

Bandara et al. apply this concept of optimal experimental design (OED) to a cell

signaling model, constraining the types of experiments to ones that can be realistically

performed [12]. They find that data gathered from optimally designed experiments

are able to define much narrower ranges for the model's pharmacological and kinetic

parameters than data gathered from intuitively designed, and therefore commonly

performed, experiments. The positive results presented are heavily dependent on the

types of allowed experiments being sufficient for extensively exploring the space of

parameters of interest; this dependency may suggest the potential of OED to provide

valuable information on experimental limits of parameter identification, and in turn

meaningful levels of model abstraction.

The types of experiments that can be considered as being realistic certainly un-

dergo change with the continued advancement of new experimental technologies. In

addition to designing inputs that can be administered to a system, M6lykditi et al.

investigate OED for experiments that involve altering the initial conditions of the

species tracked in the system and the reaction rates with which they undergo dynamic

changes, under the assumption that developing procedures such as RNAi technology

could make possible such experiments [13]. They apply their design methodologies

to discriminating between two different models of signal processing that is carried

out by Dictyosteliurn amoebae, which are widely used to study fundamental cellular

processes in cell and developmental biology.

Donckels et al. emphasize the significance of the times at which experimental

measurements are taken in whether or not candidate models can be successfully dis-

criminated [14]. They focus on offering a methodology for determining optimal sam-

pling times that is useful even when discrimination needs to be performed on models

that have loosely estimated parameters. They approach the task in two stages; the

first stage designs an experiment to improve parameter accuracy for all the compet-

ing models simultaneously, then the second stage designs an experiment to optimally

discriminate among them. The methodology is applied to determine the most likely



set of reactions that is involved in the functioning of glucokinase, an enzyme that reg-

ulates carbohydrate metabolism in vertebrae by sensing the level of glucose present.

The importance of parameter identifiability in model-based studies is made appar-

ent by how investigative reports of such studies rarely fail to include the dependence

of their results on the choice of parameters used in their mathematical models. One

way in which studies aim to enhance the validity of their findings is through perform-

ing their analyses on ensembles of models. Tasseff et al., for example, tackle the issue

of parameter uncertainty in their prostate cancer model by using an ensemble of 107

models to conduct their studies [15]. They draw on the quantified amount of certainty

they have about individual parameters to explain qualitative physical mechanisms of

the system that can be expected to have small or large effects on system behavior as

a whole, which is also a common practice of model-based studies that are meant to

extract as much knowledge as possible from available quantitative information.

Efforts to enhance identifiability

Although richness in the data used to estimate the parameters, potentially from

collecting data under numerous experimental conditions, is essential for increasing

parameter identifiability, notable efforts are under way to enhance the identifiability

even under the types of data that are already currently available [16]. These efforts

use additional information arising from biological insights to further constrain their

optimization problems in estimating parameters. The main challenge faced by these

approaches lie in the confidence with which their respective insights can be viewed as

reasonable biological assumptions.

An approach that involves augmenting the data used in the optimization problem

is proposed in ref. [17]. Using available measurements of the network under consid-

eration, Gadkar et al. generate estimates of all protein concentrations and reaction

rates, which are functions of the parameters of interest, through a state regulator ap-

proach. Successfully identifying the parameters from the data augmented with these

estimates is found to depend on optimally selecting the measurements initially used

to generate the estimates.



Locke et al. augment the cost function to be minimized in the optimization

problem with terms that represent the model's ability to match notable qualitative

features of the actual system that are observed in the experimental process [181. In

order to balance the effects of the various terms included in the cost function, each

term is weighted to contribute equally under tolerable deviation from its respective

observation. Minimizing this augmented cost function leads to a parameterization of

the model that can reproduce several of the notable features considered.

Reducing the dimensionality of the optimization problem is the approach taken in

ref. [19]. Bentele et al. divide the model into subunits, with each subunit consisting

of components of the model that share the same level of data quality and abundance.

Investigating the model's response to changes in individual parameters helps in both

performing the process of subdivision iteratively and revealing network characteristics

of modularity and robustness, where most species' concentrations seem to be sensitive

only to a subset of parameters.

Robustness in biochemical networks

The property of robustness, proposed by this work as the biological constraint to

add when optimizing for the model parameters, is viewed as one of the fundamen-

tal characteristics of biological systems [20]. Its commonly accepted definition, that

"robustness is a property that allows a system to maintain its functions against in-

ternal and external perturbations [21]," reflects its systems-based conceptualization.

And as biochemical networks are increasingly studied as interrelated components at

the systems level, many reports probe the mechanistic sources of observed biological

robustness.

Based on the argument that proper functioning of biochemical networks requires

their key features to be robust, Barkai and Leibler propose a quantitative model

for bacterial chemotaxis, a widely-studied signal transduction network, which con-

sistently exhibits a key feature of chemotaxis over a wide range of model parameter

values [22]. By demonstrating this robust model's ability to match experimental

observations, they emphasize the potential for robustness investigations to allow ad-



vances in systems-level understanding of complex biochemical networks.

Morohashi et al. also argue that robustness is an essential property of biochemical

networks, particularly in those that are involved in carrying out cellular processes

conserved across multiple species [23]. They take two models of one such process, the

cell cycle, and compare their robustness to parameter variations. By designating the

more robust model as the more plausible one, they suggest that mechanisms giving

rise to network structures that cause such robustness to parameter variations are more

likely to have protected conserved cellular processes against evolutionary mutations.

2.2 Cancer immunotherapy design

Nonlinear dynamics of immunogenic tumors

Tumors evoke immune responses, and such immunogenicity has long been shown

through historical data of the immune system's effect on cancer progression. Genetic

defects that cause cancer lead to the production of abnormal proteins, to which the

immune system responds to. This response is exhibited through a change in the

concentration of effector cells, which are the white blood cells mainly responsible for

the body's cell-mediated immunity against foreign materials. The dynamics of the

interaction between effector cells and tumor cells point to how immune responses are

generated.

Kuznetsov et al. explore these dynamics through studying how an immunogenic

tumor's growth affects the response of CTL, which recruit other white blood cells to

surround and destroy the cancerous cells that they recognize to be antigenic [24]. The

study is conducted through formulating a mathematical model of the CTL response,

calibrated to observations from experiments performed on mice. The model attempts

to capture tumor cells' evasion of the immune response, their exhibition of a dormant

state, and their growth's reaction to the immune response being present.

A property of the immune response that is also of interest is how effector cells

are distributed through normal and tumor tissues across different organs in the body.



Zhu et al. develop a mathematical model that simulates this effector cell distribution

for various animal species [25]. By fitting their model to experimental biodistribution

data of mice, rats, and humans, they find that effector cells being highly retained in

normal tissue serves as an explanation for their limited interaction with tumor tissue.

Based on this model-driven hypothesis, they suggest research in immunotherapy to

pursue the direction of decreasing the adhesion rate of effector cells to normal tissue,

possibly through mechanisms that can limit effector cell interaction with normal tissue

and can in turn retain their concentrations in the systemic circulation.

The use of bifunctional antibodies that bind to both effector and tumor cells

is explored for this purpose of leading effector cells more effectively to tumor cells.

Friedrich et al. include these antibody dynamics into a mathematical model of the

tumor-immune system to enable a systematic analysis of how these antibodies affect

effector cell distribution [26]. Using the model enables them to quantitatively solve

for optimal conditions under which tumor therapy using these antibodies should be

performed. By showing that the model predicts successful therapy to be highly de-

pendent on these physiological conditions being met, they offer a possible reason for

limited success thus far in using these bifunctional antibodies for directed effector cell

therapy.

A recent application of such antibody usage is reported by Biihler et al. in ref. [27]

for treating prostate cancer. Drawing on the prostate-specific membrane antigen's

potential of being a tumor target, they use a bifunctional antibody that expresses

specificity to this membrane antigen and the effector cell antigen CD3 to promote

directed killing of prostate cancer cells. More generally, Reusch et al. explore the

potency of a different bifunctional antibody that expresses specificity to epidermal

growth factor receptor (EGFR) as well as to CD3, based on EGFR being commonly

overexpressed in a number of cancer types [28]. They propose the additional cytolytic

activity against the tumor cells, provided by the effector cells that are transported to

them by the antibody, as a reason for greater effectiveness of the antibody compared

to other monoclonal antibodies that only bind to EGFR with the purpose of inhibiting

tumor cell proliferation.



Immunotherapy of tumor-immune interaction

Triggering the immune system to respond to tumor is the underlying premise of

immunotherapy. However, as abnormal proteins produced by cancerous cells are often

tolerated by the system, such direct stimulation of immunity is difficult to achieve.

Immunotherapy today thus focuses on supplying the very substance of the response

itself (i.e., effector cells) into the system. Additionally suppliable are cytokines such

as interleukin, which are proteins both produced by and that enhance the activity of

effector cells.

Kirschner and Panetta integrate effector cells and cytokine IL-2 into a mathemat-

ical model of immunotherapy [29]. The model is used to study the dynamics between

these therapeutic agents and tumor cells, attempting to find explanations for exper-

imentally observed tumor oscillations and relapse. Such adoptive cellular therapy

has been reported to potentially counter the tolerance of cancerous cells by the im-

mune system, and the model helps define the circumstances under which successful

immunotherapy can in turn be accomplished.

One type of cancer for which immunotherapeutic interventions are being actively

explored is malignant melanoma. A large portion of these explorations has been

devoted to therapies involving IL-2, particularly for advanced stages of the disease.

However, better patient survival has not widely been reported for IL-2 usage alone,

leading to Halama et al.'s investigation into possible new immunotherapeutic agents

for alternative or combined therapy [30]. They point out the move of cancer therapy

towards combination therapy, which is particularly fueled by reports of therapeutic

success for effective combinations for specific situations. This specificity is in line with

the growing demand of personalized therapeutics for disease treatment as a whole.

Immunotherapeutic strategies, particularly those using methodologies that target

specific antigens using antibodies, lend well to personalized medicine. Schilsky dis-

cusses the potential of such immunotherapy and targeted therapy to be the future of

cancer treatment, especially as it has long been accepted that tumor progression and

patterns often vary noticeably from patient to patient [31]. He notes the shortage



of clinically meaningful biomarkers, which can serve as a prediction for whether or

not a patient will respond positively to a certain type of targeted therapy, to be a

hindrance to developments in personalized immunotherapy. He attributes the diffi-

culty of biomarker identification to both the mutation-prone biology of cancer and

the challenges faced by research conducted in the realm of regulatory affairs.

Well-observed mutations caused by cancer can become the very targets of im-

munotherapy, such as mutations in Ras proteins studied by Lu et al. in ref. [32].

The study builds on their earlier development of a method that uses whole yeast for

immunotherapy, which is based on yeast's molecular patterns being close to those

that are commonly regarded as pathogens by the body's immune system. They show

lung cancer cells being effectively controlled through this whole-yeast immunother-

apy in mice, and mention that the relevance of their work to human lung cancer

is dependent on whether analogies to human tumor progression can be drawn from

mouse tumor studies. This relevance is further investigated by Wansley et al., test-

ing in mice how plausible such yeast-based therapy is for inducing immune responses

against carcinoembryonic antigen, which has been observed on many occasions for

human carcinomas [33].

BCG immunotherapy in superficial bladder cancer

Bladder cancer, typically found in older adults, is often diagnosed at an early stage.

Treatment for early-stage, or superficial, bladder cancer is likely to involve a combina-

tion of surgical and immunotherapeutic procedures. Used prior to surgery for shrink-

ing tumor size or following surgery for preventing tumor recurrence, immunother-

apeutic agents are generally administered to the bladder intravesically through the

urethra. A common treatment is one that uses BCG, a bacterium most well-known

as a vaccine against tuberculosis.

In an effort to clarify the dynamics of BCG therapy for superficial bladder cancer,

Bunimovich-Mendrazitsky et al. provide a mathematical model for the tumor-immune

interaction involved [34]. The model is calibrated to observations from in vitro, mouse,

and human experiments, bringing to light the difficult task of determining the ideal



strength of BCG administration for eradicating the tumor without causing severe side

effects. The studies performed also help identify externally controllable factors that

may potentially improve therapeutic results.

Frequency of relapses and patients developing resistance have been reported as

major shortcomings of BCG immunotherapy for bladder cancer. Mangsbo et al. find

CpG DNA, derived from bacterial DNA, to be more effective than BCG against more

aggressive forms of bladder cancer [35]. Their study also suggests the usefulness of

binding directly to toll-like receptors, which are proteins that activate immune cell

responses by recognizing molecules that are commonly found on pathogens. Kresowik

and Griffith, even as they review the application of BCG immunotherapy for bladder

cancer, support this claim by mentioning the lower effectiveness of immunotherapy

measures that do not perform this direct binding [36].

The relationship between BCG immunotherapy and tumor necrosis factor-related

apoptosis-inducing ligand (TRAIL), a protein that has been found to induce apoptosis

in tumor cells but not in normal cells, is highlighted by Kresowik and Griffith in

ref. [36] and further reviewed in ref. [37]. Therapies that target the TRAIL receptor

are under active research for various cancers including the non-small cell lung cancer,

where combination therapies using this target along with other therapeutics are being

explored to maximize the recognition of these therapies by the receptor; some of these

combinations under investigation include the use of EGFR inhibitors or agents that

target other apoptosis regulator proteins such as B-cell lymphoma 2 [381.

The promising performance of BCG immunotherapy in treating superficial blad-

der cancer has triggered the study of recombinant BCG strains as well. Chade et

al. evaluate one such strain, rBCG-S1PT, and find that it induces a stronger cellular

immune response than wild-type BCG [39]. Arnold et al. examine bladder cancer

immunotherapy using another strain that expresses interferon-gamma [40], which is

a cytokine that is produced by effector cells as a part of the body's innate immune

response and is known to promote effector cell activity. Through murine experi-

ments, they identify a principal cause for the stronger immune response to lie in the

recombinant strain's ability to recruit more effector cells into the bladder than the



strain without interferon-gamma, in turn prolonging survival significantly under even

a low-dose treatment regimen.

Optimal therapeutic protocols in cancer immunotherapy

Fighting cancerous cells that evade the immune system inevitably calls for a stronger

immunotherapeutic intervention. An increase in the amount of therapeutic agent

administered, however, may lead to an increase also in toxic side effects of therapy.

Furthermore, if multiple agents are used simultaneously, their combined effect on the

system will most likely not be simply additive of their individual effects. Determining

treatment protocols that can maximize the benefits of therapy while limiting its costs

is in turn a problem of optimization.

Cappuccio et al. formulate such an optimization problem for determining im-

munotherapy protocols [41]. The formulation is applied to the tumor-immune system

model of Kirschner and Panetta [29], aiming to identify the administration timing

and dosage of CTL and IL-2 for successful therapy. Decreasing the tumor size by the

end of the treatment time period is but one of several factors that are balanced, which

include ensuring that the tumor does not grow too large over the entire treatment

period and refraining from clustering administration timings to be too close to one

another.

Following the recent discovery of interleukin-21 (IL-21), Cappuccio et al. also

study optimal protocol determination specific to IL-21 immunotherapy in ref. [42].

Approved for Phase 1 clinical trials for patients with metastatic melanoma and renal

cell carcinoma, IL-21 is a cytokine that plays a key role in the immune response to

tumor by enhancing the cytotoxicity of effector cells. The optimization is set up

to balance IL-21's benefits for tumor killing against noteworthy costs that include

possible inhibition of effector cells and toxicity. The mathematical model used is that

of murine melanoma, as IL-21 has been explored for its potential use and toxicity in

mice. As a direction for future research, they point to the possibility of using real-

time feedback information on the most recent tumor state for improved treatment

design.



Another immunotherapeutic strategy involves the adoptive transfer of dendritic

cells, which have been found to efficiently induce CTL. Ludewig et al. attempt to

better understand the dynamics between these dendritic cells and CTL to enhance

their potential for usage in treating human cancer [43]. Their work uses a mathemat-

ical model representing the dynamics, fit to mice data, and identifies parameters of

the model that seem to have the largest effects on the level of CTL response caused

by dendritic cells. Relating these significant parameters to physical phenomena that

they represent, the study reveals that the recipient having high avidity effector cells,

coupled with the optimal delivery regimen being applied, is essential for successful

immunotherapy using dendritic cell transfer.

Optimal scheduling for interventions is also found to significantly affect the per-

formance of combined immunotherapy using both dentritic cells and CTL [44]. Park

et al. find such scheduling to be necessary to ensure successful immunotherapy in

the context of the subtle interplay between gradual immune response induction by

dendritic cells and rapid decrease of the transferred CTL population. This type of

combined therapy is often also referred to as vaccine therapy, as the function of the

dendritic cells can be viewed as priming, or preparing, the CTL to become of high

avidity to effectively kill tumor cells. Dendritic cell vaccination is also being ac-

tively explored in further combination with radiotherapy, following initial reports of

radiotherapy enhancing the efficacy of vaccine therapy in murine studies [45].

Mixed immunotherapy and chemotherapy of tumors

As another form of nonsurgical therapy, chemotherapy has been found to treat many

types of tumors effectively. Its potency is nevertheless clouded by abundant reports

of both mild and severe side effects that can possibly lead to serious complications

for the cancer patient. Growing interest in immunotherapy is to a great extent due

to its potential complementary use with chemotherapy. Such mixed therapy holds

the hope of consequently limiting the amount of often highly toxic chemotherapeutic

drugs from being administered.

By developing a mathematical model of tumor response to such combination ther-



apy, de Pillis et al. analyze the effectiveness of implementing both chemotherapeutic

and immunotherapeutic protocols in fighting cancer [46]. Analysis is mainly per-

formed through numerical simulations of the model, which is calibrated to observa-

tions from both human and mouse experiments. Building on previous findings re-

garding the benefits of combining vaccine therapy with chemotherapy [47], the model

also captures the effects of vaccine therapy on the tumor system.

Chareyron and Alamir implement the concept of feedback control into de Pillis

et al.'s mathematical model of mixed therapy to enable the design of reactive treat-

ments [48]. They perform their studies on the model that has been fit to human

data, and also show the difficulty of guaranteeing successful therapy under only one

of immunotherapy or chemotherapy. Their results indicating the benefit of using

feedback-based treatments as a way to handle modeling uncertainties is also notewor-

thy, as is the applicability of their feedback scheme to models other than the one of

combined immunotherapy and chemotherapy that they use in their work. Such appli-

cability cannot be ignored in assessing newly developed methodologies for computa-

tional studies of tumor treatment models, as these models are subject to continuous

development and change themselves.

As one example of this change, Karev et al. include the characteristic of tumor

heterogeneity into their mathematical modeling of therapy [49]. Variability in tumor

progression and treatment efficacy have long been attributed to such heterogeneity,

which consists of tumor cells within a single population showing noticeably different

survival and development patterns. The type of heterogeneity that they explore is

parametric heterogeneity, where they allow parameter values of their model to vary

within continuous distributions around mean values. As the model itself is of tumor

therapy using oncolytic viruses, they particularly subject the parameters that relate

to cell reproduction, cell death, and cell infection by the virus to this parametric

heterogeneity in performing their studies.

The relevance of such viral therapy to immunotherapy is highlighted in ref. [50],

where the possibility of their combined usage for cancer treatment is explored. The

ability of oncolytic viruses to preferentially select and destroy tumor cells has un-



doubtedly brought much attention to their possible role in therapy, despite their

limitations that include their rejection by the innate immune system. Bridle et al.

look to overcome this major hurdle by utilizing the difference in the strength of pri-

mary and secondary immune responses of a patient; they propose preimmunizing,

or vaccinating, the tumor patient against a tumor antigen, then designing oncolytic

viruses with that very antigen to subsequently administer to that patient. Testing

their hypothesis on mice, they found the interval between the vaccination and the

viral administration to play a major role in determining therapeutic success, which is

a realm that potentially can be extensively investigated using mathematical modeling

and optimization.

2.3 Robust optimization

Methodology of robust optimization

An optimal choice is defined as a decision that is as effective or functional as possible

in fulfilling an objective at hand. Mathematical optimization in turn refers to the

mathematical procedures taken to arrive at this choice. Robust optimization is a

methodology that characterizes the manner in which these procedures are taken; it is

applied when there is uncertainty in the data being used in the procedures [51].

Consider f(x, p), a mathematical function whose output is a scalar value that is

dependent on x, a vector of inputs, and p, a vector of parameters. The optimization

problem of finding the x that minimizes f(x, p) is

min f (x, p) . (2.1)
X

Robust optimization aims to solve Eqn. (2.1) under circumstances in which there

exist uncertainties in x and p; i.e. the input vector can be any x = x + Ax instead of

x, and the parameter vector can be any p = p + Ap instead of p. The optimization

problem of finding the x that minimizes f(i, b) can be expressed as



minf(x+Ax,p+Ap)
X

(2.2)

Worst-case robust optimization

For Ax and Ap arising from uncertainty sets U^X and U^P, respectively, worst-case

robust optimization is concerned with finding the x that minimizes the largest value

that f(ki, b) takes on, given that Ax and Ap can be any member of UA and UAP,

respectively. This optimization problem can be expressed as

min max f (x + Ax, p + Ap) . (2.3)
X AnXGUzAXApCUA'P

For linear, quadratic, and semidefinite optimization problems with uncertainty sets

taking on particular geometric shapes in data space (e.g., ellipsoidal or box), Ben-

Tal and Nemirovski illustrate the possibility of reformulating Eqn. (2.3), or its close

approximation, into computationally tractable convex optimization problems [51].

Such reformulation has been applied to solving problems in a wide range of fields in

engineering; for instance, Luo surveys its impact, combined with advances made in

interior point methods, on signal processing and digital communication [521, while

Atamtirk and Zhang specialize it for network flow and design problems in operations

research [53].

Nonconvex worst-case robust optimization

Many, if not most, problems of interest that hold real-world applications have diffi-

culty fitting into the realm of convex, or even approximately convex, problems. For

these nonconvex problems, developments in worst-case robust optimization can gen-

erally be divided into two categories.

The first of these categories applies the reformulation techniques mentioned above

to convexified approximations of nonconvex problems. Such approximations most

often take the form of linearization, in which a nonlinear function is approximated

around a point using a substitute linear function. An example of this approach is



an optimization method presented by Zhang, where the worst-case of the linearized

problem is optimized [54]. This method is thus appropriate for nonlinear problems

that can be closely approximated by their linearizations.

The second category of approaches to nonconvex worst-case robust optimization

searches for the worst-case by sampling multiple instances of the uncertainties within

UAX and U^P. The sampling is integrated into iterative methods for nonconvex op-

timization, using information from the approximate worst-case found for the solution

x at one iteration to decide on the update to be made to x for the subsequent itera-

tion. An example of this approach, outside of this work, is an optimization method

presented by Bertsimas et al., where the updates are made to find an x for which

the largest f(x, p) among all of the sampled instances of U^X is made as small as

possible [55].

Robust optimization in network calibration

The robustness of a biochemical network's behavior to parameter variations is a com-

mon topic of exploration, where methods for quantifying the degree of this robustness

is an active field of research (e.g., ref. [56]). Such exploration, however, is often per-

formed for sets of parameters that have already been found through optimization to

plausibly calibrate the network to match available data. Consequently, it is difficult

to find works that explicitly incorporate the robustness to parameter variations into

either the optimization problem formulation or the solution process.

Parameter estimation methods are most likely to be characterized as being ro-

bust, not due to their application of the robust optimization methodology, but rather

due to their ability, analyzed post-optimization, to consistently reach similar esti-

mates for various uncertainties that may exist in the available data. In other words,

robustness in this context is used as a measure of how successfully a given param-

eter estimation method can select one parameter set among many candidates, and

can therefore be regarded as being synonymous to the method's effectiveness in car-

rying out the calibration. For instance, Rodriguez-Fernandez et al. evaluate their

parameter estimation method, a hybrid of deterministic optimization and stochastic



search methods, by considering how well it can estimate model parameters when the

available data are subject to various amounts of noise [57].

Robust optimization in therapy design

The field of radiation oncology actively applies robust optimization to planning proton

radiation treatments. The nature of these treatments involves many stages of planning

and execution, and sources of uncertainty are likely to exist at almost every stage.

For example, imaging procedures and scanning beams that deposit the radiation

are subject to errors in placement and strength. The notable effects of such setup

uncertainties on therapeutic success have been reported for numerous types of cancer,

including focal liver tumors [58] and prostate cancer [59]. Unkelbach et al. account

for uncertainties in the patient's body position and the proton range of each beam

used by setting up the objective function in their optimization to be dependent on

random variables that parameterize the amount of treatment dose delivered [60].

They also present a worst-case formulation for considering range uncertainties in an

earlier work [61], which is applied by Pflugfelder et al. to a clinical case beyond simple

tumor geometry [62].

As is the case for parameter estimation, methods used for designing medical treat-

ments are also often referred to as being robust for their ability to consistently reach

what is suspected to be the global minimum in their respective objective functions.

For instance, Mahfouz et al. present a method for registering three-dimensional

knee implant models onto two-dimensional images, which they regard to be a ro-

bust method based on their application of simulated annealing successfully yielding

the global minimum without being halted at various local minima [63].
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Chapter 3

Robust Calibration of Biological

Network Model

3.1 Motivation

As biological systems are being increasingly investigated from the network point of

view, there is an escalated demand for computational models that quantitatively

characterize those systems. For instance, as dysregulation of apoptosis is found to

contribute to various autoimmune diseases and cancer [64], developing comprehensive

and predictive models of the signaling pathways for apoptosis may help quantify the

effectiveness of candidate treatment targets.

Using data to define the parameters that characterize the model is an essential

yet time-consuming task in building models. When signaling pathways are modeled

using differential equations derived from chemical kinetics, the parameters subject

to estimation are chemical reaction rates and initial concentrations of species. The

task then is to determine the set of parameter values that would enable the model to

generate outputs that match experimental measurements.

A major barrier to successful model calibration is the limited amount of available

experimental data. Therefore, it is often the case that multiple sets of parameters

produce outputs that match the measured data, and it is difficult to determine which

of these many parameter sets correspond to a model that will be predictive. Because



many parameters must be estimated from only a small amount of data, additional

biologically reasonable constraints that keep the estimation problem tractable may

be especially useful in order to select the correct parameter set among many.

Based on the intuition that a critical behavior of a system is not likely to have been

designed to react dramatically to ubiquitous noise and varying surrounding conditions

that cause small parameter changes, a robust optimization method for biological

network calibration is provided here. The performance of the method is examined by

applying it to a model typical of an individual layer of MAPK pathways [65].

The MAPK pathway has been identified as being a part of numerous signal trans-

duction pathways, many of which have long been under heavy investigation for their

relevance to cancer research. In particular, components of the EGFR pathway have

been targeted for cancer therapy, with malignant cells of multiple myeloma patients

being found to over-express a number of EGFRs and their ligands [66].

3.2 Model calibration procedures

3.2.1 Methods

Suppose a biological system is described by the interaction of three species, X 1, X 2 ,

and X 3, represented through the chemical reaction equation

X1 + X2,-A X3 .(3.1)
k2

Letting [Xi] denote the concentration of Xj, the concentration change of X1 , X 2, and

X3 over time can be modeled using the system of ODEs derived from Eqn. (3.1)

[X1] k2 [X3] - k1 [X1 ][X 2]1

dt dt X] = k2 [X3 ] - ki[X1 ][X 2 ] . (3.2)

X3 -k 2 [X3 ] + k1 [X1 ][X 2]

The simulated output y of the model is the concentration of one or more species at

designated points in time. For instance, if measured data for X 2 is available at times



ti, t 2 , ... , t5 , then

[X2] (ti)

[X2] (t 2)

y =(3.3)

[X2] (t5 )

Calibrating the model refers to finding a set of model parameters that would cause

the model to output a y that is close to the corresponding measured data

[X2]m (t1 )

[X2]m (t2)

ym = (3.4)

[X2]m (t)

where [X2]m is the measured counterpart of the simulated [X 2].

In this work, the parameter set p that is subject to calibration is taken to be

either the set of reaction rate constants associated with the chemical reaction given

by Eqn. (3.1)

p = , (3.5)
k2

or the set of initial concentrations of the species

[X1
p= [X2] .(3.6)

[X3 ]0

The algorithm for a standard approach to model calibration is given below, followed



by the algorithm for the proposed robust approach.

Standard approach

The standard approach to calibrating the model is as follows:

Step 1. Guess at a solution, p0 . If ly(po) - yml2 < tolerance, then return po as

the solution and terminate. Else, set s = 1.

Step 2. Select the da that is expected to minimize ||y(p"-l + as) - ydm2 using the

Gauss-Newton method for nonlinear least-squares.

Step 3. Search for the a that minimizes ||y(pS-1 + aas) - yfll2 ; set d5 = ad5 and

ps - ps-1 + d .

Step 4. If y(ps) - ym 2 < tolerance, then return ps as the solution and terminate.

Else, set s = s + 1 and go back to Step 2.

Robust approach

For calibrating the model using the robust approach, define the neighborhood of

p = (PiP2, ... , p), N(p), to consist of all vectors q = (qi, q2, ..., qn), such that each qj

is within the interval [(1 - 6 )pi, (1 + 6)pi], 0 < 5 < 1. Let Q(p) be a subset of N(p),

made up of p and 100 vectors randomly sampled from N(p), based on a uniform

distribution across [(1 - 6)pi, (1 + 6)pj], Vi. Then the robust approach is as follows:

Step 1. Guess at a solution, po. Assemble Q(p 0 ) from N(p0 ), and choose q0 E Q(p 0 )

under which ||y(q0 ) - ym2 is maximized. If y(q 0 ) - ym 2 < tolerance, then return

p0 as the solution and terminate. Else, set s = 1.

Step 2. Select the ds that is expected to minimize ||y(q"-1 + as) - ym 2 using the

Gauss-Newton method for nonlinear least-squares.

Step 3. Search for the a that minimizes the maximum of ||y(p-l-+a a)-yM2 among

all Q(p"-1 + ads) assembled from N(p5 -1 + aa); set d' = ads and ps - p-1 + ds.

Step 4. Assemble Q(ps) from N(ps), and choose qs E Q(p8) under which ||y(qs) -

Ym||2 is maximized. If ||y(q') - ym 2 < tolerance, then return ps as the solution and

terminate. Else, set s = s + 1 and go back to Step 2.



3.2.2 Model

To illustrate the effectiveness of the proposed robust approach, its performance is

compared to that of the standard approach for calibrating a model typical of an indi-

vidual layer of MAPK pathways [65]. The model, based on [67] and as communicated

by [65], is represented through the chemical reaction equations

F + A F : A 4 F + A' (3.7)
d1

F + A'7 F A'4 F + A"
d2

R + A" R :A" 4 R + A'

R + A' R :A' R + A.
d4

A is representative of a protein that can be modified by enzyme F to become A',

which can in turn be modified by F again to become A"; enzyme R can unmodify A"

into A', which it can further unmodify into A [65].

Letting [X] denote the concentration of species X, Eqns. (3.7) gives rise to the

ODEs



d [F] = -a1[F][A] +(d1+ k1 )[F :A] - a2 [F][A'] + (d2 + k2 )[F: A'] (3.8)
dt

+[A] - -a1[F][A]+d1[F:A]+k4(R: A']
dt
[F:A] a1[F][A] - (d1 + k1 )[F :A]
d

([A'] =ki[F: A] - a2 [F][A'] + d2 [F: A'] + k3 [R: A"] - a4(R] [A'] + d4[R: A']
dt

d [F: A'] a2 [F][A'] - (d2 + k2 )([F: A']
d

d [A"] k2 [F: A'] - a3[R] [A"] + d3[R: A"]
d

d [R] -a 3 [R][A"] + (d3 + k3)[R: A"] - a4[R][A'] + (d4 + k4 )[R: A']
dt

d [R: AA"] = a3 [R][A"] - (d3 + k3 )[R: A"]
d

d [R: A'] a4[R][A'] - (d4 + kg)[R: A']

The ode15s function in MATLAB [68] is used to numerically integrate Eqns. (3.8)

to simulate the concentration changes of the species over time. The measured data

[A"]m (ti)

[A"]m (t 2 )

Ym (3.9)

[A"]m (tT)

is imitated by running the model with a set of nominal reaction rates and initial

concentrations (Table 3.1), adopted from [65], then taking the concentration of A" at

specified points in time. T is number of time points at which the data is considered

available, and ti through tT are evenly spaced between 0 and 200 seconds.



Table 3.1: Nominal parameter values used in Eqns. (3.8).

3.3 Application to estimating reaction rates

The set of reaction rate constants associated with Eqns. (3.7) was first designated to

be the parameter set subject to calibration

(3.10)p = (ai,di,ki,a2,d2,k2,a3,d3, k3,a4,d4,k4)

= (plp2, ... , P12) ,

with the goal of estimating the values in the nominal parameter set

Pm = (0.1,0.033,16,0.1,0.033,16,5,0.5,0.3,5,0.5,0.3) (3.11)

= (Pm, Pm2, ..., Pm12)

as closely as possible from the measured data ym.

For T = 5, 100 initial guesses for p0 = ---,Po2) were randomly sampled from

a uniform distribution across the interval [(0.2)pmi, (1.8)pmi], Vi. Each p0 was used to

initialize the standard approach and the robust approach. The robust approach was

Parameter Value Units
a1 , a2  0.1 MI--Ts- 1

di, d2  0.033 s-
ki, k2 16 s-
a3 , a 4  5 pM- s--
d3, d4  0.5 S
k3, k4  0.3 s-

[F]o 20 pM
[A]o 34 pM

[F : A]o 0 pM
[A']o 0 MAI

[F:A']o 0 pM
[A"l]o 0 pM
[R]o 16 pM

[R: A"]o 0 puM
[R:A']o 0 pM
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Figure 3-1: Ranges of estimated reaction rates when T = 5 for (a) standard
approach, (b) robust approach with 6 = 0.1, (b1) robust approach with 6 = 0.025,
and (b2) robust approach with 6 = 0.4. Analogous ranges from using noisy ym for
(bn) robust approach with 6 = 0.1, (bnl) robust approach with 6 = 0.025, and (bn2)
robust approach with 6 = 0.4. The black dots represent nominal parameter values.

further varied by trying 6 values of 0.025, 0.1, and 0.4. (a), (b), (bl), and (b2) of Fig.

3-1 show the ranges of terminating values given by the approaches when provided

with these 100 initial guesses for p.

Then for 6 = 0.1, the performances of the two approaches for different numbers

of data points T were compared. (a), (b), (aa), and (bb) of Fig. 3-2 show the results

for T values of 5 and 25, using the same 100 initial guesses for p0 .

As measurements are often subject to noise, ym was then imitated more realis-

tically by introducing random perturbations to the y(pm) generated by the model.

From a normal distribution across [(0.8)y(pm)i, (1.2)y(pm)i], Vi, 100 different vec-

tors to be regarded as ym were sampled. The combined results from repeating the

experiments above for each noisy ym are shown in (bn), (bnl), (bn2), and (bbn) of

Figs. 3-1 and 3-2, analogous to (b), (b1), (b2), and (bb), respectively.
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Figure 3-2: Ranges of estimated reaction rates when 6 = 0.1 for (a) standard
approach with T = 5, (b) robust approach with T = 5, (aa) standard approach with
T = 25, and (bb) robust approach with T = 25. Analogous ranges from using noisy
ym for (bn) robust approach with T = 5 and (bbn) robust approach with T = 25.
The black dots represent nominal parameter values.

3.4 Application to estimating initial concentrations

The set of initial concentrations of the species was then designated to be the parameter

set subject to calibration

p = ([F]o, [A]o, [F : A]o, [A']o, [F : A']o, [A"]o, [R]o, [R : A"]0 , [R : A']o) (3.12)

= (Pi, P2 .... P9)

with the nominal parameter set now being

PM = (20,34,0,0,0,0,16,0,0) (3.13)

- (PmiPm2,...,Pm9) .
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Figure 3-3: Ranges of estimated initial concentrations when T = 5 for (a)
standard approach, (b) robust approach with 6 = 0.1, (b1) robust approach with
3 = 0.025, and (b2) robust approach with 3 = 0.4. Analogous ranges from using noisy
ym for (bn) robust approach with 3 - 0.1, (bn1) robust approach with 6 - 0.025, and
(bn2) robust approach with 3 = 0.4. The black dots represent nominal parameter
values.

As in the case of estimating reaction rates, 100 initial guesses for p0 - p , )

were randomly sampled from a uniform distribution across the interval [(0.2)pmi, (1.8)pmi],

Vi, for T = 5. Once again, each p0 was used to initialize the standard approach and

the robust approach, with the robust approach being further varied by trying 6 values

of 0.025, 0.1, and 0.4. (a), (b), (bl), and (b2) of Fig. 3-3 show the ranges of termi-

nating values given by the approaches when provided with these 100 initial guesses

for p0 .

Then similarly, the performances of the two approaches for different numbers of

data points T, for 3 = 0.1, were also compared. (a), (b), (aa), and (bb) of Fig. 3-4

show the results for T values of 5 and 25, using the same 100 initial guesses for p0.

Finally, the experiments above were repeated for each noisy ym that had earlier

been specified for estimating reaction rates. The combined results are shown in (bn),

(bnl), (bn2), and (bbn) of Figs. 3-3 and 3-4, analogous to (b), (b1), (b2), and (bb),

respectively.
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Figure 3-4: Ranges of estimated initial concentrations when 6 0.1 for (a)
standard approach with T = 5, (b) robust approach with T = 5, (aa) standard
approach with T = 25, and (bb) robust approach with T = 25. Analogous ranges
from using noisy ym for (bn) robust approach with T = 5 and (bbn) robust approach
with T = 25. The black dots represent nominal parameter values.

3.5 Discussion

The results obtained suggest the usefulness of including robustness as a constraint

when calibrating biological networks. When using 5 data points in time for calibration

(T = 5), (a) and (b) of Figs. 3-1 and 3-3 show that requiring the output to be robust

to each parameter varying up to 10% of its nominal value (6 = 0.1) improves the

preciseness of fit, as 100 identical initial guesses lead to much narrower ranges of

terminating values using the robust approach. Moreover, comparing (b) of Figs. 3-

1 and 3-3 with their respective (bn) reveals the relative insensitivity of the robust

terminating values to noise in the measured data.

(bl) and (b2) of Figs. 3-1 and 3-3 illustrate the performance of the robust approach

as 6 is varied. As 6 decreases below 0.1, the performance nears that of the standard

approach, which can be characterized as an instance of the robust approach with 6

being 0. As 6 increases above 0.1, the performance also deteriorates, possibly due

to the output not being robust to more than approximately 20% variation in the



nominal values. (bnl) and (bn2) of Figs. 3-1 and 3-3 show that these observations

also hold in cases where the data used to calibrate the model is noisy.

Figs. 3-2 and 3-4 demonstrate the change in the relative effectiveness of the robust

approach over the standard approach as the number of data points T is varied (6 is set

to 0.1). For T = 5, the robust approach in (b) exhibits a higher preciseness of fit than

the standard approach in (a). However, this effect diminishes as more data become

available; for T = 25, the performance of the standard approach in (aa) is more

comparable to that of the robust approach in (bb). And once again, (bn) and (bbn)

of Figs. 3-2 and 3-4 report similar findings under the presence of noise in the data.

This phenomenon is consistent with the notion that successful calibration is limited

by the small amount of available data, and with the purpose of adding robustness as

an additional constraint when many parameters must be estimated from much less

data.

Nevertheless, significant challenges still lie ahead. For instance, it is difficult to

fully survey the neighborhood of a parameter set only through sampling. Although

there may exist neighboring sets that cause a notably different output, such a case

will be overlooked by the current robust approach if the output is deemed robust to

all the sampled neighbors. Another issue lies in deciding the value of 6, i.e. the degree

of robustness that is to be enforced as a constraint in the calibration process. The

model provided here seems to suggest a o of approximately 0.1, but that is at most

specific to this model and only determinable from knowing the nominal parameter

set to begin with. Furthermore, there is no guarantee that the output of a system

will not also be robust to variation in incorrect parameters.

The existing challenges indicate the directions in which to move forward to make

the robust approach useful for a wider variety of biological networks. For a network

whose proper functioning is expected to exhibit robustness to small perturbations in

its parameters, the performance of the method must be systematically categorized

for successive levels of robustness required. Such classification would call for a more

precise mathematical representation of the robustness constraints to better represent

the neighborhood of a parameter set. Applying the analytically refined constraints



to the robust optimization process would then allow further progress to be made in

calibrating biological networks.

More specifically, with regards to progress in systematic categorization of robust-

ness levels, the focus need not be tied to looking only at uniform levels of robustness

(i.e., the same 6 for all model parameters) as done in this study. Gutenkunst et al.'s

work in ref. [6] shows a wide variation in the ranges that fit parameters can belong to.

The ranges, furthermore, do not necessarily lie along the the axes of the parameters

themselves; eigenanalysis is performed to find meaningful combinations of parameters

along which the ranges lie. That parameter combinations are worth considering is

also supported by Coelho et al.'s work in ref. [7], which attempts to identify regions of

parameter space in terms of their shapes and boundaries in relating them to distinct

model behaviors. As the regions found to contain parameter sets exhibiting similar

behavior do not match hypercubes that lie perfectly along the individual parameters,

using the idea of carving out a neighborhood around solutions for the robust approach

developed here may require a more sophisticated way of characterizing the boundaries

within which the robust approach should sample.

The robust approach also has the potential to take part in experimental design

for increasing identifiability. For instance, Bandara et al. report in ref. [12] that their

optimally designed experiments produce data that can be used to estimate model

parameters down to much narrower ranges than those estimated using data from

conventional experiments. Incorporating the robust approach here would start by

first asking whether the optimal experiments designed can lead to useful data even

if there were to exist experimental and measurement uncertainties. This type of

incorporation of the approach is also conceivable for work done by Donckels et al.

in ref. [14], which determines the optimal sampling times for experiments that are

performed for model discrimination. The work takes into account that parameters

of models are uncertain up to considerable ranges, but does not explicitly take into

account that the sampling may not occur at the exact times designed.

Requiring robustness in model calibration is a way of constraining the optimiza-

tion problem at hand to favor solutions that are robust to fluctuations in model



parameters. With other efforts for selecting parameter estimates from many possi-

ble sets of values actively under way, it would interesting to see how the robustness

requirement relates to those other approaches. For example, Gadkar et al. take a

data augmentation approach to enhance identifiability in ref. [17], by generating esti-

mates of additional values of concentrations and rates, which are functions of model

parameters being estimated, to add to the data to be used for calibration. Would

adding the robustness requirement in the context of such augmented data serve to

effectively further constrain the optimization problem? Also, Bentele et al. reduce

the dimensionality of the optimization problem in ref. [19] for better identifiability.

Can or should robustness to uncertainty or fluctuation in pre-reduced parameters be

taken into account prior to the reduction?

Through these possible future studies, the methodology of robust model calibra-

tion introduced in this work can offer a different way to view and analyze the existing

knowledge regarding biological systems. In particular, networks can be systematically

probed using the robust approach, possibly in combination with the other approaches

mentioned above, to enable a deeper understanding about the reasons behind the ro-

bustness or lack of robustness associated with systems that have evolved to exist

today. The application of the robust approach to parameter estimation may indeed

only be the very beginning of how robust optimization can take part in systems

biological research from here onwards.



Chapter 4

Robust Protocol Design for Cancer

Immunotherapy

4.1 Motivation

Cancer immunotherapy is receiving increased attention as both an alternative and a

complementary strategy for treating cancer patients. It focuses on stimulating the in-

herent immune system of a patient to fight against the proliferation of cancerous cells.

With immunotherapy being an active field of research, proteins such as mesothelin

are being closely studied not only as a biomarker for pancreatic adenocarcinomas

and other histologic types of tumors, but also as a potential target for inducing the

immune response in pancreatic cancer patients [69].

Cappuccio et al. formulate an optimization problem for determining the admin-

istration timing and dosage of therapeutic agents for successful therapy [41], applied

to the tumor-immune system model of Kirshner and Panetta [29]. Yet how robust is

the performance of the determined protocol in fighting the tumor? Will the protocol

remain effective (i.e., will the minimized objective function value remain small) even

if there exist errors in the timing and the dosage of the administrations? What if

the parameters specified in the quantitative model, such as the initial state and the

reaction rates, do not exactly match those of the actual system, due either to inherent

inaccuracy of the model or variation among patients?



Although advances in immunology are leading to the proposal of novel immunother-

apeutic strategies [70], the use of dynamic quantitative models of immune system re-

sponse to cancer in determining the details of therapeutic protocols remains notably

limited. This scarcity may be a reflection of the fear of unexpected variability in the

success of model-designed protocols in combating tumor, across different patients as

well as between the model and the actual system being treated. Fig. 4-1A schemat-

ically represents such a scenario; under realistic discrepancies between the model

tumor system and the actual tumor system, coupled with expected administrative

imprecision in delivering the immunotherapeutic protocol as designed, a protocol

that is designed to optimally treat the model tumor may not necessarily perform well

in treating the actual tumor.

In an effort to enhance the effectiveness of using quantitative models for treat-

ment design despite the existence of such discrepancies, a method for model-based

determination of immunotherapeutic protocols under uncertainties in model accuracy

and treatment administration is introduced here. The robust optimization method is

provided in the context of the immunotherapy model of Bunimovich-Mendrazitsky et

al., which exhibits a continuous-dose administration of BCG into the tumor-immune

system [34]. Results show that under uncertainties, the robustly determined protocol

outperforms the protocol determined through a standard optimization method in de-

creasing the tumor size over the course of the treatment, as shown in Fig. 4-1B. The

advantage of using the robust method in designing treatment protocols is then also

examined for the immunotherapy model of Cappuccio et al. introduced above, which

exhibits discrete-dose administrations of CTL and IL-2 [41]. CTL and IL-2 continue

to be subjects of widespread investigation for their use in immunotherapy for cancers

such as glioblastoma [71,72].
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4.2 Therapeutic design procedures

4.2.1 Continuous-dose therapy using BCG

This work uses the following ODE model presented by Bunimovich-Mendrazitsky et

al. in ref. [34]: 61
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dB B(-1 - p1E - P2T,,) + bdB

dE E(-p+ p 4B - p5 T)+ O(T
dT,-
dt p E T + p 2BT.

d_= T.(-p 2B +r[1 - BTu])

B, E, T, and T represent concentrations of BCG, effector cells, tumor cells infected

with BCG, and tumor cells uninfected by BCG, respectively. The effects covered by

the model include encounters between BCG, effector cells, and tumor cells, which

lead to BCG infection of tumor cells, effector cell recruitment, and immune response

activation. In addition to tumor cell destruction and effector cell inactivation, net

mortalities of the cells. as well as logistic tumor growth, are also included in the

model. The nominal values of the model parameters that represent these effects, as

well as initial amounts of each cell type at the initiation of therapy, are shown in

Table 4.1 [34]. The values here are in dimensionless form as used in ref. [34], based

on a time scale of [(0.1)-days] and a cell count scale of [(10 6)cells]. This work uses

these adimensional values for model simulations, and the numerical results presented

and discussed for this model are accompanied by these scalings for clarity.

Table 4.1: Nominal parameter values used in Eqns. (4.1).
Parameter Value Description

P 0.41 Mortality of effector cells / net mortality of BCG

Pi 1.25 Loss of BCG by encounter with effector cells

P2 0.285 Infection of uninfected tumor cells with BCG
P3 1.1 Destruction of infected tumor cells by encounter with effector cells

P4 0.12 Encounter of effector cells with BCG (immune response activation)

P5 0.003 Effector cell inactivation by encounter with infected tumor cells
a 0.52 Stimulation of effector cell recruitment by infected tumor cells

# 0.0155 Inverse of carrying capacity of tumor cells
r 0.12 Growth rate of tumor cells

Bo 0.02 Initial amount of BCG
EO 0.04 Initial amount of effector cells

Ti 0.01 Initial amount of tumor cells infected with BCG

To 0.56 Initial amount of tumor cells uninfected with BCG

The values shown are adimensional estimates used in ref. [34], based on a time scale
of [(0.1)-days] and a cell count scale of [(10 6)cells].

b represents the constant rate at which BCG is administered, and is in turn the



decision variable of the optimization problem. The objective function to be mini-

mized, F(b), is a combination of the following gy(b) for j = 1, 2, 3:

91(b): Final amount (at time T) of tumor cells

9 2(b): Tumor cells through time

g3(b): Total amount of BCG administered

Specifically, for the system in Eqns. (4.1) behaving under a protocol b,

=Ti(r) +T T(r)

j[T(t|2 dt + [OTU(t)| 2 dt

bT

(4.2)

(4.3)

(4.4)

Each gj(b) is weighted by its associated u.; i.e.,

(4.5)

where

= 1.9 (4.6)

is the nominal b (based on Fig. 4 of ref. [34]) used to set the weights. r = 20 and the

values for #, r, BO, Eo, Tio, and Tuo in Table 4.1 are also based on Fig. 4 of ref. [34].

This problem setup is implemented in MATLAB; the odel5s function [68] is used to

numerically integrate Eqns. (4.1).

The types of uncertainty considered are as follows:

1) BCG is administered at some rate b b + zib, where -1 < zi < 1, instead

of at b.

2) At t = 0, the initial concentrations of the species are Bo = Bo + z2Bo, Eo

F (b) = Ig u.- g. (b), Uj = 1/gg (bn m) ,I



EO + z3Eo, T1i 0  T o + z4TO, and Tuo = Tuo + z5Tuo, where -1 Zk K 1 for

k = {2, 3, 4, 5}, instead of BO, E0 , Tio, and Tuo, respectively.

3) #3 z6 and r = z7 , where 0.013 K z6 K 0.022 and 0.1 K z7 K 0.45 [34], instead of

0.0155 and r = 0.12.

The aim is thus to implement a robust optimization method to design protocols

that would be effective across this range of uncertainties.

Standard optimization procedure

The standard approach to finding the b that minimizes F(b) is as follows:

Step 1. Guess at a solution, b0 , and set s = 1.

Step 2. Select the d' that is expected to minimize F(b"~l + d8 ) using Newton's

method.

Step 3. Search for the a that minimizes F(b"-1+ad"); set ds = ads and bs = bs 1 +ds

Step 4. If d8 < tolerance, then return bs as the solution and terminate. Else, set

s = s + 1 and go back to Step 2.

Robust optimization procedure

For using the robust approach, a region of potential uncertainties is specified. This

specification is carried out by first designating a numerical range that each uncertain

model parameter is expected to belong to. Then, taking each of those ranges to span a

particular dimension of uncertainty, a resulting hypercube of uncertainties, where each

corner represents an intersection of the ends of all the ranges considered, is created

to be the region of potential uncertainties to be accounted for in the optimization

process.

Specifically, define U(b) as the space of uncertainty that consists of all vectors

z = (zi, z 2 , ... , zr), such that -M zm M_ for m = {1, ..., 5}, where 0 < M < 1,

and Mim < z_ < Mum for m = {6, 7}, where 0 < M16 < 0.0155, M"A > 0.0155,

0 M 7 < 0. 12, and M 7 > 0.12. Let Z(b) be a subset of U(b), made up of

z = (0,0,0,0,0,0.0155,0.12) and n vectors additionally sampled from U(b). Then



the robust approach is as follows:

Step 1. Guess at a solution, b0 , and set s = 1.

Step 2. Assemble Z(bs-1) from U(bs-1).

Step 3. Choose z'-l c Z(bs-1) under which F(bs-l) is maximized.

Step 4. Select the d' that is expected to minimize F(b- 1 + ds) under z'-s using

Newton's method.

Step 5. Search for the a that minimizes the maximum of F(bs-1+ ads) among being

under all Z(b-' +ads) assembled from U(b-' +ads); set d = ads and bs = b"1+d"

Step 6. If ds < tolerance, then return bs as the solution and terminate. Else, set

s = s + 1 and go back to Step 2.

Unless otherwise stated, this work specifies U(b) used in the robust procedure with

Mm = 0.25 for m = {1, ... , 5}, M16 - 0.013, MA6 = 0.022, M17 = 0.1, and Mu 7 = 0.45,

and chooses the n members of Z(b) within the iterations of the algorithm to be z made

up of every combination of zi {M, Mm}, Z2 = {Mm, Mm, Z3 = {-Mm, Mm},

Z4 ={Mm, Mm}1, z= {-Mm, Mm}, z6 = {M 16 , M 6 }, and z7  {M 1 7 , M 7 }. This

space, or region, of uncertainty U(b) is referred to as the uncertainty hypercube of

size 25% in discussing the results presented.

When the performance of a protocol b against uncertainty scenarios sampled from

within this hypercube is evaluated, F(b) is computed under every member of Z(b)

drawn from U(b). In addition to z = (0, 0, 0, 0, 0, 0.0155, 0.12), members of Z(b) for

this evaluation are chosen to be z made up of every combination of zi = {-p, p},

z2 = {-pp, z3 = {-pp, z4 = {-pp, Z5 -= {-pp, z6 = {M 16, M }, and

Z- {M 7 , Mu7}, for every 0.05 increment of p between 0 and 0.25. The worst

uncertainty scenario z E Z(b) that maximizes F(b) is designated as zwor.

4.2.2 Discrete-dose therapy using CTL and IL-2

This work uses the following ODE model of Kirschner and Panetta, as presented by

Cappuccio et al. in ref. [29]:



dE cT -p 2 E + + IL±

dT rT b) aET
dt r2T (1 - bTg) 2 +T (4.7)

dIL - 2 pET _-3I 0
dt 9 3 g2T

E, T, and IL represent concentrations of effector cells, tumor cells, and IL-2, re-

spectively. Cappuccio et al. point out in ref. [41] that the model captures tumor

oscillations and recurrence, which have both been observed experimentally [73-76].

The model covers the interactions between the cells by specifying how effector cells

are stimulated by IL-2 and how IL-2 growth is affected by effector cells encountering

with tumor cells, which also leads to the immune response. Additionally, the anti-

genicity and growth of the tumor and mortalities of the cells are also included in the

model. The nominal values of the model parameters that represent these effects, as

well as initial amounts of each cell type at the initiation of therapy, are shown in

Table 4.2 [41]. The values here are in dimensionless form as used in ref. [41], based on

a time scale of [(0.18)-days] and a cell count scale of [(10 9)cells] [29]. This work uses

these adimensional values for model simulations, and the numerical results presented

and discussed for this model are accompanied by these scalings for clarity.

Table 4.2: Nominal parameter values used in Eqns. (4.7).
Parameter Value Description

c 1.009 Antigenicity of tumor cells

pt2 0.0378 Mortality of effector cells
Pi 0.044 Stimulation of effector cells by IL-2
91 0.02 Michaelis constant for effector cell stimulation by Michaelis-Menten kinetics

r2 0.123 Growth rate of tumor cells
b 1 Inverse of carrying capacity of tumor cells
a 0.018 Strength of immune response

92 10-4 Michaelis constant for tumor antigenicity by Michaelis-Menten kinetics

P2 0.9 IL-2 growth by effector cell encounter with tumor cells

93 10-5 Michaelis constant for IL-2 growth by Michaelis-Menten kinetics

/13 1.8 Mortality of IL-2
Eo 10-5 Initial amount of effector cells

TO 10-5 Initial amount of tumor cells

ILO 10-5 Initial amount of IL-2

The values shown are adimensional estimates used in refs. [41] and [29], based on a
time scale of [(0.18)--days] and a cell count scale of [(10 9 )cells].



/01 and 92 represent the administrations of CTL and IL-2 (denoted therapeutic

agent 1 and agent 2, respectively), and are defined as

k (t) - Uki, t = ti (4.8)
0, otherwise

for k = {1, 2} and i = {1, ..., N}. k indicates the therapeutic agent type, i the ith

administration, and N the total number of administrations. An administration of

agent k at time t. thus affects the ODE system as a discrete impulse of height Uki.

The decision vector x of the optimization problem is in turn

x = (ti, ...,i tN, U11, --- ,7 U1N, U21, --- ,7 U2N) - -49)

The objective function to be minimized, G(x), is a combination of the following #5(x)
for j = 1, 2, 3, 4:

#1(x): Final amount (at time T) of tumor cells

2 (x): Tumor cells exceeding a safety threshold amount (T""') through time

3 (x): Total amount of therapeutic agent administered

#4(x): Penalty for close successive administrations [41]

Specifically, for the system in Eqns. (4.7) behaving under a protocol x,

#1(x) = T(T) (4.10)

j2(X) = ([T(t) - Tma"i+) 2 dt (4.11)

2 N

3(X) EE Uki (4.12)
k=1 i=1

N-1

#4(x= e .05(th+l-th) (4.13)
h=1

Each 0,.(x) is weighted by its associated w.; i.e.,



G(x) = E wj #j(x), wj = 1/4(xn"m), j = 1, 2,4 (4.14)

W3 = 0.0005/# 3 (x"')

where

x nom (106.8, 157.8,164.9, 354.2, 475.3,

10-4, 10-4, 110-, 10-4, 10-4,7 (4-15)

10 -3, 10-3, 10o-3, 10 -3, 10-3)

is the nominal x used in ref. [41] to set the weights. N, T, and Tm" are taken from

Fig. 4(c) of ref. [41] to be 4, 500, and 10--5, respectively. This problem setup is

implemented in MATLAB; the odel5s function [68] is used to numerically integrate

Eqns. (4.7).

The types of uncertainty considered are as follows:

1) For k = {1, 2}, therapeutic agent k is administered as some 9k (t) = Ok(t)+zkV),

-1 zk 1, instead of as $b(t).

2) Instead of c and a (which represent the antigenicity of the tumor and the strength

of the immune response, respectively [41]), = c+ zAc, -1 < z3 < 1, and & = a+ z4a,

-1 z4 1, respectively, are what make up the actual system.

3) The actual system is z5 time units out of phase with the model, which can also be

thought of as initiating the treatment at t = z5 instead of at t - 0.

For minimizing G(x) using the robust approach, define U(x) as the space of uncer-

tainty that consists of all vectors z = (zi, z2 Z3, 4, z5), such that -Mm < z_ < Mm

for m = 1, ..., 4}, where 0 < M_ < 1, and 0 Z 5 M5 . Let Z(x) be a subset of

U(x), made up of z = (0, 0, 0, 0, 0) and n vectors additionally sampled from U(x).

Unless otherwise stated, this work specifies U(x) used in the robust procedure

with Mm = 0.25 for m ={1, ... , 4} and M5 = 110, and chooses the n members of

Z(x) within the iterations of the algorithm to be z made up of every combination

of zi = {-Mm, Mm}, Z2 = {-Im, Mm}, Z3 = {--Mm, Mm}, Z4 = {-Mm, Mm},



and z5 = {0, (0.25)M 5 , (0.5)M 5 , (0.75)M 5 , M 5 }. This space, or region, of uncertainty

U(x) is referred to as the uncertainty hypercube of size 25% in discussing the results

presented.

When the performance of a protocol x against uncertainty scenarios sampled from

within this hypercube is evaluated, G(x) is computed under every member of Z(x)

drawn from U(x). In addition to z = (0, 0, 0, 0, 0), members of Z(x) for this evaluation

are chosen to be z made up of every combination of zi {-p,p}, z2 = {-p,p},

Z3 = {-pP, z4 = {-p, p}, and z5 = {0, (0.25)M 5 , (0.5)M 5 , (0.75)M 5 , M}, for every

0.05 increment of p between 0 and 0.25. The worst uncertainty scenario z E Z(x)

that maximizes G(x) is designated as zwos.

4.3 Application to treatment using BCG

The standard and robust approaches described in Sec. 4.2 were implemented to

determine the continuous rate at which the bacterium BCG should be administered

to treat superficial bladder cancer, using the ODE model of BCG immunotherapy

from ref. [34]. In seeking the optimal rate of administration, the standard approach

aims to minimize the value of the objective function in Eqn. (4.5), which accounts

for both the negative effects of increased BCG levels and the successful elimination

of tumor cells (see Sec. 4.2). The robust approach, instead of focusing solely on

minimizing the objective function value, aims to do so even if BCG ends up being

administered at a slightly different rate than intended, and possibly also with limited

knowledge regarding the exact values of the model parameters used in the protocol

design process.

The protocol designed using the standard approach, denoted bst", was b"tn -

2.8375 reduced units (equal to 283750 cells days-1 ), associated with an objective

function value of F(bstn) = 2.4659. A trajectory of the total number of tumor cells

as a function of time [T(t) = Ti(t) + Tu(t)] under this protocol bstn is shown in Fig.

4-2A. The trajectory (solid blue line) shows that the therapy controls the number

of tumor cells and leads to a rapid decrease in tumor size. Once under control, the



tumor shrinks monotonically with no net growth.
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Figure 4-2: Tumor response under designed continuous-dose therapy. (A)
Total number of tumor cells [T(t) = T (t) + T(t)] under standardly designed protocol
bst" (solid blue) and with its worst-case uncertainty zstnworst (dashed blue). (B) T(t)
under robustly designed protocol brob (solid green) and with its worst-case uncertainty
Zrob,worst (dashed green).

Essentially this result means that, in principle, a perfectly modeled tumor will

be well controlled by a perfectly implemented therapy. In this case the therapy is

a constant level of administration of the bacterium BCG. To assess the effect of in-

accuracies in the model or the delivery of therapy on the control of tumor growth,

we enumerated a range of inaccuracies for the model and the therapy delivery, and

we examined the effect of the intended standard optimized therapy (bstn) on each.

Specifically, we enumerated up to 25% variation in the initial conditions of the model

and the applied therapeutic dose (as compared to the intended dose) as well as vari-

. ........................... - --- - ......... A ................ '11 11 A!



ation in the parameters 3 E [0.013, 0.022] and r E [0.10, 0.45] (see Sec. 4.2). The

least favorable objective function value was observed for one corner of this param-

eter hypercube, although approximately eleven values were enumerated along each

hyperaxis. The worst point is zstnworst = (-0.25, -0.25, 0.25, 0.25, 0.25, 0.013, 0.45)

with objective function value F(bstn) = 4061.5, and the resulting trajectory is shown

(dashed blue line) alongside the perfect trajectory (solid blue line) in Fig. 4-2A. The

model and therapeutic uncertainty causes a therapy designed as optimal without ac-

counting for uncertainty to perform quite poorly. In fact, the tumor grows without

control.

A new treatment was designed using the robust approach developed here. A

detailed description is given in Sec. 4.2. Briefly stated, the objective function is

evaluated across a family of models and protocols with altered parameter values

representing uncertainty in the model and the delivery of the intended therapy. The

actual objective function value used in the optimization is the maximum value over

the various uncertainties and so represents a "best treatment in the worst case."

Using a range of uncertainty (25%) corresponding to that used to test the standard

optimized therapy above, the resulting optimized treatment was computed to be

brob = 5.9304 reduced units (equal to 593040 cells days-'), with objective function

value F(brob) = 3.6503. A trajectory of tumor cell number versus time under this

protocol is shown in Fig. 4-2B (solid green line). This robust treatment protocol

controls tumor growth very well and in a manner similar to the standard protocol,

which is reasonable because the robust protocol corresponds to more than twice the

dose level compared to the standard one.

The strength of the robust protocol can be seen from its behavior across the same

uncertainties in model and treatment tested for the standard treatment optimum. The

same point in the uncertainty space produced the worst performance for the robust

protocol as the standard protocol zrobworst = zstnworst, and the resulting trajectory

is shown in Fig. 4-2B (green dashed line) with associated objective value F(brob) -

5.0592. The trajectory shows that the robust protocol is able to control the worst

uncertain model/treatment combination, in contrast to the standard optimization,



yet it takes a little longer for the treatment to reduce the tumor to negligible size in

the uncertain case compared to its performance in the perfect case.

The performance of the robustly determined protocol brob compared to that of the

standardly determined protocol bt' was then examined in unfavorable uncertainty

scenarios besides the single worst case and the exact realm of 25% uncertainty hyper-

cube accounted for in its design process. The comparison was carried out between

the objective function values F(bstn) and F(brob) over the worst 10% of uncertain-

ties considered, at every 5% increment of uncertainty hypercube sizes. The midpoint

along the x-axis of the plot shown in Fig. 4-3 marks the 25% uncertainty hyper-

cube that was accounted for in designing the robust protocol. The average objective

function value over the worst 10% of uncertainties for that hypercube size is much

higher for the standard protocol (blue) than for the robust one (green). Furthermore,

even for smaller uncertainty hypercubes (i.e., to the left of the 25% midpoint of the

x-axis), the robust protocol performs much better on average across the respective

worst 10% of uncertainty scenarios considered than the standard one. Essentially,

unless there is no uncertainty present, brob is able to better maintain a low objective

function value than bstn in the presence of unfavorable uncertainties. And only as the

scenarios considered move beyond the 25% uncertainty hypercube that was originally

accounted for in its design, b rob shows a gradual decrease in performance (i.e., a rise

in the objective function value), as shown to the right of the 25% midpoint of the

x-axis in Fig. 4-3.

4.3.1 Effect of therapeutic cost

Each optimization approach balances competing contributions to the objective func-

tion in order to achieve an optimal solution to the therapeutic problem posed. The

objective employed here includes penalties for the final and integrated number of tu-

mor cells as well as a third penalty for the integrated therapeutic dose, which includes

risk due to side effects and possibly the financial cost of treatment. The standard and

robust solutions differ in that the robust solution is more effective over a significant

uncertainty range, which was included in the optimization, and the robust solution
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Figure 4-3: Average costs of designed continuous-dose therapy over worst
10% of uncertainty scenarios considered. Unless there is essentially no uncer-
tainty present, the robustly designed protocol br"b (green) is better able to maintain a
low objective function value than the standardly designed protocol bt' (blue) in the
worst 10% of uncertainty scenarios examined.

uses a larger therapeutic dose.

To examine this effect in more detail, we repeated the standard and robust opti-

mizations for a variety of values of u3 , the weight of the integrated therapeutic dose in

the objective function. Fig. 4-4A plots b, the optimized rate of BCG administration,

for these protocols as a function of the order of magnitude change applied to the Ua

in Eqn. (4.5). The plots show a trend of increasing optimized therapeutic dose with

decreasing weight U3 for the dose penalty, consistent with the notion that lower ther-

apeutic cost drives increased doses to allow more efficient tumor killing. However, as

the weight U3 increases, the standard procedure leads to greater reductions in dose
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whereas the robust protocol gives a nearly constant dose to retain effective tumor

killing in the face of uncertainty.
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Figure 4-4: Effect of therapeutic cost on continuous-dose therapy designed.
(A) Rate of BCG administration b determined using the standard (blue) and the
robust (green) optimization procedures for various orders of magnitude change applied
to U3 , the weight of the integrated therapeutic dose, in the objective function (Eqn.
(4.5)). (B) brobnot-b (red), robust as the fully robust protocol brob, except not to
uncertainty in BCG administration rate b. (C) brobnot-r (light blue), robust as bo,
except not to uncertainty in tumor growth rate r. (D) brobr (pink), robust only to
uncertainty in tumor growth rate r. Determined b approaches 0 in all cases as u3 is
increased.

As u3 is decreased (i.e., as BCG usage becomes less costly), higher administration

rate b are determined for both protocols. Fig. 4-5, analogous to Fig. 4-2 for decreasing

the u3 in Eqn. (4.5) by two orders of magnitude, shows that for such high b, the total

number of tumor cells [T(t) = Ti(t) +Tu(t)] decreases over the course of the treatment

in the worst uncertainty scenario even under the standard protocol (dashed blue line).
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Fig. 4-6, analogous to Fig. 4-2 for increasing the u3 in Eqn. (4.5) by two orders of

magnitude, shows that using the standard approach may lead to designing a protocol

that suggests a lower rate of BCG administration sufficing for effective treatment of

the tumor, when in fact, such would not necessarily be the case with uncertainties

being present.
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w/ uncertainties
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Figure 4-5: Tumor response under continuous-dose therapy designed for
lower therapeutic cost. For the U3 in Eqn. (4.5) decreased by two orders of
magnitude: (A) Total number of tumor cells [T(t) = T (t) + Tu(t)] under the standard
protocol (solid blue) and with its worst-case uncertainty (dashed blue); (B) T(t) under
the robust protocol (solid green) and with its worst-case uncertainty (dashed green).

4.3.2 Comparison of uncertainty sources

Out of the multiple types of uncertainty accounted for in designing the robust treat-

ment protocol brob, whether there is a single type that has the most dominant effect
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Figure 4-6: Tumor response under continuous-dose therapy designed for
higher therapeutic cost. For the u3 in Eqn. (4.5) increased by two orders of
magnitude: (A) Total number of tumor cells [T(t) = T (t) +Tu(t)] under the standard
protocol (solid blue) and with its worst-case uncertainty (dashed blue); (B) T(t) under
the robust protocol (solid green) and with its worst-case uncertainty (dashed green).

in driving the robust approach to reach its design was then called into question. This

assessment was carried out by implementing the robust approach repeatedly, account-

ing for a different subset of uncertainty types (i.e., a different subset of dimensions of

the uncertainty hypercube) each time. These additional implementations gave rise to

two interesting model observations; first, that even a very precise administration of

the determined protocol will not by itself make possible an effective treatment with a

lower rate of BCG administration, and second, that having limited knowledge about

the exact growth rate of tumor cells (r in Eqns. (4.1)) seems to be the most notable

hindrance to designing an effective treatment.
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Fig. 4-4B speaks to the first of these observations. The changes in the optimal

BCG administration rate determined by the standard (blue) and the robust (green)

approaches for varied therapeutic cost are plotted here, exactly as described earlier for

Fig. 4-4A. The newly added values shown in red correspond to the robust approach

being implemented for varied therapeutic cost as for the green values, but without

accounting for any uncertainty in the rate of BCG administration b (the resulting

protocols are denoted brobnot-b). These red values being very close to the green ones

clearly indicate that even if high precision in therapeutic interventive measures could

in fact be achieved, it is not enough to overcome the effects of other uncertainties

that the robust protocol should be ready to encounter.

Fig. 4-4C shows a different set of these values overlaid on top of those result-

ing from the standand (blue) and the fully robust (green) approaches run on varied

therapeutic cost. The newly added light blue values correspond to the robust ap-

proach being implemented, this time without accounting for any uncertainty in the

tumor growth rate r. Denoted b bnot , these values being very close to the blue ones

indicate that knowing r accurately can eliminate a large portion of unfavorable un-

certainties that threaten successful therapy, making it possible for lower rates of BCG

administration to be sufficient in effectively treating the tumor.

Fig. 4-4D also illustrates this observation made regarding r, yet in a reciprocal

manner to that of Fig. 4-4C; the pink values overlaid here correspond to the robust

approach being implemented, this time only accounting for the uncertainty in the

tumor growth rate r. Denoted brobr (to clarify its reciprocity to brobnot discussed

above), these values being very close to the green ones once again makes clear that

out of the multiple uncertainty types considered for this model, uncertainty in r makes

the behavior of the tumor system most difficult to predict, in turn requiring higher

rates of BCG to be administered into the system for it to be accounted for.



4.4 Application to treatment using CTL and IL-2

The standard and robust approaches described in Sec. 4.2 were implemented to design

immunotherapeutic protocols involving discrete-dose administrations of CTL and IL-

2 to treat tumor, using a canonical ODE model of the tumor-immune system in Eqns.

(4.7) based on refs. [41] and [29]. The standard approach aims to design a treatment

protocol that minimizes the value of the objective function in Eqn. (4.14), attempting

to simultaneously limit the negative effects of increased amount and frequency of

therapeutic intervention and enhance the effectiveness of tumor killing (see Sec. 4.2).

The robust approach, instead of focusing solely on minimizing the objective function

value, aims to do so even if the protocol that it designs is administered in the context

of both inaccuracies in model parameters and imprecision in therapeutic interventive

measures.

Shown in Fig. 4-7A (solid blue line) is the number of tumor cells in the system

with no model or therapeutic uncertainties, being treated with the protocol designed

using the standard approach, denoted x'tn. The protocol administers the thera-

peutic agents at the times indicated by the grey vertical lines, which correspond to

t = {1.4599, 171.7512, 331.6943, 498.8447} reduced units (equal to {8.1106, 954.1733,

1842.7461, 2771.3594} days). The associated amounts of CTL and IL-2 adminis-

tered at those times are V1 = {0.0091, 0.0036, 0.0048, 0.0011} reduced units (equal to

{9100000, 3600000, 4800000, 1100000} cells) and 2 = {0.0001, 0.0004, 0.0009, 0.0006}

reduced units (equal to {100000, 400000, 900000, 600000} cells), respectively. As can

be seen by the number of tumor cells remaining low throughout the treatment, this

standard therapy is associated with a low objective function value of G(x)tn) 0.0029

in the absence of any model or therapeutic uncertainties.

The standardly designed protocol, however, is not as effective in maintaining

the number of tumor cells at a low level when the system is subject to model

and therapeutic uncertainties. Shown in Fig. 4-7A (dashed blue line), the num-

ber of tumor cells rises well above the safe level of T"" = 10-5 reduced units

(equal to 104 cells) in the worst possible combination of such uncertainties exam-
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Figure 4-7: Tumor response under designed discrete-dose therapy. (A) Num-
ber of tumor cells [T(t)] under the standardly designed protocol x"t" (solid blue)
and with its worst-case uncertainty zstnworst (dashed blue). (B) T(t) under the ro-
bustly designed protocol xrob (solid green) and with its worst-case uncertainty zrobwo, t

(dashed green). Grey vertical lines indicate times at which therapeutic administra-
tions take place.

ined z'stnworst = (-0.20, -0.20, -0.20, -0.20, 27.5)] (see Sec. 4.2). The associated

objective function value is G(xstn) - 11.3453, significantly higher than that for the

case of no uncertainties. The space of uncertainties tested included up to 25% vari-

ations in each of the amounts of CTL and IL-2 administered, the antigenicity of the

tumor (c in Eqns. (4.7)), and the strength of the tumor response (a in Eqns. (4.7)).

Also, it included up to 110 reduced units (equal to 611.11 days) variation in the time

of treatment initiation. (See Sec. 4.2 for details on specific combinations of these

uncertainties examined, from within a 25%-sized hypercube of uncertainties.)

A protocol was then designed using the robust approach, denoted xrob, accounting

............. !!!! . . . ........ . ..... ........ .... ....



for the space of potential model and therapeutic uncertainties (see Sec. 4.2). Shown in

Fig. 4-7B (solid green line) is the number of tumor cells in the system with no model

or therapeutic uncertainties, being treated with this robustly determined protocol.

The protocol administers the therapeutic agents at the times indicated by the grey

vertical lines, which correspond to t = {0.5450, 172.5882, 250.2969, 428.6621} reduced

units (equal to {3.0278, 958.8233, 1390.5383, 2381.4561} days).

The associated amounts of CTL and IL-2 administered at those times are $1'=

{0.0079, 0.0075, 0.0047, 0.0024} reduced units (equal to {7900000, 7500000, 4700000,

2400000} cells) and 492 = {0.0002, 0.0006, 0.0004, 0.0003} reduced units (equal to

{200000, 600000, 400000, 300000} cells), respectively. Although this robust therapy

is associated with a higher objective function value [G(xrob) = 0.0289] than that of

the standard therapy in the absence of any model or therapeutic uncertainties, it is

just as effective in keeping the number of tumor cells below Tomax throughout the

treatment.

The advantage of using the robustly designed protocol for tumor treatment over

the standard one surfaces in the case of model and therapeutic uncertainties being

present in the tumor system. xob was examined across the same hypercube of uncer-

tainties as was done for x"'", and Fig. 4-7B (dashed green line) shows that even in the

worst possible combination of uncertainties [zrobworst = (-0.25, -0.25, -0.25, -0.25,

0)], unlike the standard protocol in zstnworst, the robust protocol is able to retain the

number of tumor cells at a very low level [G(Xrob) = 1.0726].

4.4.1 Tradeoff between optimality and robustness

In addition to analyzing the performance of the robustly designed protocol Xrob against

the worst uncertainty scenario found within the very hypercube of 25% uncertainty

that was accounted for in its design process (see Sec. 4.2), the next step was to com-

pare its performance to that of the standardly designed protocol x'" , against smaller

and larger ranges of uncertainties (i.e., within uncertainty hypercubes of sizes other

than 25%). The x-axis in Fig. 4-8A indicates this hypercube size, where the mid-

point along that axis marks the size of 25%. The worst-case objective function value



for xstn within this uncertainty hypercube (G(x"n) = 11.3453 in zat", as discussed

above) is plotted (blue) at this midpoint in Fig. 4-8A, along with the considerably

lower-valued (green) worst-case for xrob (G(xrob) = 1.0726 in zrob, also as discussed

above).
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Figure 4-8: Effect of uncertainty types and amounts on cost of designed
discrete-dose therapy. Objective function values for protocols x"'" (blue), xrob

(green), xrobCTL (red), xrob- (light blue), and xrobini (pink) under their respective
worst uncertainty scenarios for (A) uncertainties existing in CTL dosage, IL-2 dosage,
reaction rate c, reaction rate a, and initial state of tumor system, (B) uncertainty
existing only in CTL dosage, (C) uncertainty existing only in IL-2 dosage, (D) uncer-
tainty existing only in reaction rate c, (E) uncertainty existing only in reaction rate
a, and (F) uncertainty existing only in the initial state of the tumor system.

Having additionally analyzed such worst-case values for every 5% increment of

uncertainty hypercube size, shown along the x-axis here, and focusing only on the blue

and the green values for the time being, it can be seen that xrob performs better than
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x s"nin the worst case even for amounts of uncertainty larger than the 25% accounted

for in the robust design process. Notice, however, that the standard protocol x"'"

(blue) outperforms the robust protocol xob (green) when the amount of uncertainty

is limited to below 10%. By compensating for the possibility of a higher uncertainty

amount during the design, there is in turn a resulting tradeoff of optimality when the

actual amount of uncertainty that needs to be handled is much less than accounted

for.

Seeing these effects, of treating in the presence of uncertainties besides the exact

amount of uncertainty considered, called for further investigation into how protocols

that have been designed to be robust to a certain type of uncertainty handle other

types not accounted for. One robust protocol was designed to be robust only to

25% uncertainty in CTL dosage, denoted xPobCTL. A protocol robust only to 25%

uncertainty in the strength of the immune response (a in Eqns. (4.7)) and another

robust only to up to 110 reduced units (equal to 611.11 days) variability in the time

at which treatment is initiated, denoted xroba and Xrolnit, respectively, were also

designed.

Returning to Fig. 4-8A, the worst-case objective function values for the newly

designed XrobCFL (red), xroba (light blue), and xrobmnit (pink), against uncertainties

drawn from varying sizes of uncertainty hypercubes along the x-axis, are shown. None

of these protocols outperform the fully robust x'ob (green) at 25% here, which xro6 is

specialized for handling. Against uncertainties only in CTL dosage, however, shown

in Fig. 4-8B, XrobCTL (red), the protocol specialized to handle this uncertainty, has the

lowest objective function value at the 25% midpoint along the x-axis, before gradually

rising beyond that amount, worsening in performance along with the other protocols

examined. Similarly, and not to great surprise, xroba (light blue) and xrobiit (pink)

perform the best against their particular specialties, uncertainty only in immune

response strength a (Fig. 4-8E) and only in variability in treatment initiation time

(Fig. 4-8F), respectively.

And once again, the assessment carried out here emphasizes the existence of the

tradeoff that needs to be made to account for more uncertainty. If, in fact, uncer-



tainties do exist only in one of the many uncertainty dimensions accounted for by

Xrob, treating with this fully robust protocol will not perform as optimally in the

worst-case as would have been possible to design with better knowledge regarding

how much smaller the actual space of uncertainties that need to be dealt with is.

4.4.2 Properties of ODE model used

The worst-case performance comparisons shown in Fig. 4-8, between the standard, ro-

bust, and partially robust protocols, revealed interesting properties of the robustness

analyses carried out over varying uncertainty amounts. There is striking similarity

between B and E of Fig. 4-8, despite them being worst-case evaluations for distinct

types of uncertainty, in CTL dosage and in immune response strength a, respec-

tively; this relationship is further highlighted by protocol XrobCFL (red) performing

well against 25% uncertainty in reaction rate a (Fig. 4-8E), which is not what it was

designed for, and also by xroba (light blue) doing the same against 25% uncertainty

in CTL dosage (Fig. 4-8B). Also noticeable are C and D of Fig. 4-8, which exhibit

essentially no sensitivity of any protocol's performance to uncertainty either in IL-2

dosage or in tumor antigenicity (c in Eqns. (4.7)). The next step in the studies was

thus to figure out why the model in Eqns. (4.7) is giving rise to these properties

observed.

If, instead of a, & - (1 + E)a, -1 < E < 1, is the strength of the immune system,

the second equation in Eqns. (4.7) would be

dT = r2T(1 - bT) -( + c)aET (4.16)
dt g2 + T

Now suppose a is as is, and consider dE() through the course of treatment (i.e., thedt

right hand side of the first equation in Eqns. (4.7)) under protocol xst", shown in Fig.

4-9B. C, D, and E of Fig. 4-9 show the contribution of each of the first three terms

of this dE(t) as the protocol is carried out. Since the second term dominates E(t)
dt dt

d E(t )
dt -pu2E(t) + fi (t) , (4.17)dt



which, with V)1(t) defined as in Eqn. (4.8) and denoting the elements of xstn as in

Eqn. (4.9), leads to

0 < t < t1

E(t1 )e-4/2(t-t)

E(t 2)c 1 2 (t-t 2 ),

E(t 3 )e /2(t t3 ),

E(t4)e,-Y2 (t-t),

ti < t < t 2

t2 t < t3

t3 < t < t4

t4 < t < 500

E(ti) ~ E(0)eC-/2tl + U11

E(t 2 ) E(ti)e-A2(t2 -I) + u12

E(t 3 ) E(t 2 )e 62(t3 t2 ) + U13

E(t 4) ~ E(t 3 )e - 2 ( 4 -t3) + u14 .

Since it can be seen in Fig. 4-9A that E(t) leading up to each t, is much smaller than

the u1i that gets added to it at ti, Eqns. (4.19) can be further approximated as

E(ti) ~

E(t 2 ) ~

E(t 3 )

E(t 4 ) ~

U 1 1

U 12 (4.20)
U 13

U 14

which in turn allows Eqn. (4.18) to also be further approximated as

E(t) ~ E(0)e- /t2t

U1 1 e-P2(t- )

U12e / 2 (t-t 2 ),

U13e C/2(t-t 3 )

u14e /2(t-4),

ti < t < t 2

t2 < t < t3

t3 5 t < t4

t4 <t < 500

If, instead of $b1(t), some @i4(t) - (1+ ) 01(t), -1 < C < 1, is administered as a part

of protocol xst", its effect on Eqn. (4.21) would be

where

(4.18)

(4.19)

0 < t < ti

(4.21)

E (t) ~-- E(0)eCs12,



E(0)e-92t, 0t

(1 + E)uI 1 e-2(t-t1),

(1 + )u 1 2 e 12(-t2),

(1 + e)ui 3 e 92(t-t 3 ),

(1 + )ui 4 e -2(1-t4),

t 3 < t < t4

t 4 < t < 500

which leads to the second equation in Eqns. (4.7) being

dT r 2T(1 - bT)
dt

(1 + E)aET

g2 + T

approximately equivalent to the effect of a being replaced by (1 + e)a as in Eqn.

(4.16).
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This approximate equivalence, and consequently the similarity between B and E

of Fig. 4-8, suggests the possibility of countering the uncertainty in reaction rate a

by improving the precision with which CTL is delivered, and vice versa. It must be

noted, however, that such is the case only under the assumption that the particular

model parameters that have generated this phenomenon are close to those of an actual

tumor-immune system to be treated.

In contrast to being sensitive to changes in CTL dosage or reaction rate a, the

insensitivity of the objective function value to changes in IL-2 dosage or reaction

rate c, as shown in C and D of Fig. 4-8, respectively, is also noteworthy. Since the

performance of a protocol does not worsen under uncertainty in either IL-2 dosage

or reaction rate c, there are no separate protocols XrobL -2 or xrobc found to perform

better than protocol x't" against those uncertainties.

With the nominal value of c being close to 1 (as shown in Table 4.2), its effect on

the tumor system is solely dependent on the the magnitude of T(t). It is therefore

no surprise that the performance of protocols such as x", which keep T(t) very low

through treatment, is not greatly affected by changes in c. And considering that c

represents the antigenicity of the tumor, it makes sense that its effect on the system

should in fact be directly related to T(t).

4.5 Discussion

The performance of immunotherapeutic protocols for treating tumor are found to be

highly dependent on the extent of uncertainties that exist in model-based protocol

design, which are likely to arise from one or more of the discrepancy between model

and actual systems and the imprecision in administering the treatments. By taking

these uncertainties into account in the design process, the robust optimization method

introduced in this work aims to enhance the plausibility of quantitatively designing

protocols for cancer immunotherapy.

In analyzing the results presented above, particular emphasis was put on tracking

down, in the mathematical model itself, the sources of interesting properties observed



(e.g., the relationship between CTL dosage and immune response strength in the

tumor-immune system model given in Eqns. (4.7)). These types of investigations

fully put to use the advantage of model-based studies; as the mathematical model

is a representation of what is known about the workings of actual tumor-immune

systems, figuring out the exact aspects of the model that cause the observations

made can either hypothesize causes for a model behavior that matches experimental

findings or, for a behavior that is contrary to experiments, point to missing links in

understanding the workings of the system. For instance, the observed insensitivity

to IL-2 dosage observed for the model in Eqns. (4.7) is in line with the findings

reported in ref. [41], which explains the relative effectiveness of CTL over IL-2 as

being caused by the specific choice of their rates of decay. Alongside that, however,

in light of continued reports of experimentally observed efficacy of IL-2 [77-79], the

insensitivity observation made here also strongly indicates the need for a correction

to be made to what is currently understood to be their relative decay rates.

Another potential improvement to immunotherapy design is suggested by observ-

ing what happens to the tumor size post-treatment. Fig. 4-10A shows the number of

tumor cells for an additional 1000 reduced units (equal to 5555.6 days) after being

under the standardly designed protocol x"'" between 0 and 500 reduced units (equal

to 2777.8 days). It is clear that the tumor eventually returns to its pre-treatment

levels. Treating with the robustly designed protocol xrob instead does not provide a

solution to this particular issue, as is made apparent by Fig. 4-10B. As a temporary

solution, if the protocols designed here were to be repeatedly administered for every

interval of 500 reduced units following the first treatment lasting between 0 and 500

reduced units, the resulting tumor behavior would be as shown in Fig. 4-11; note

that, in this case as well, the robustly determined protocol (Fig. 4-11, dashed green

line) is more effective than the standardly determined protocol (Fig. 4-11A, dashed

blue line) when uncertainties are present. Reports of tumor recurrence being one of

the most major difficulties associated with immunotherapy practice [80,81] only add

to the importance of improving the existing framework of protocol design to take

post-treatment tumor levels into consideration.
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Figure 4-10: Tumor response following designed discrete-dose therapy. (A)
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protocol x'tn (solid blue) and in its worst uncertainty scenario (dashed blue). (B) T(t)
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Regarding the investigation of the relative effects of different uncertainty sources

using the BCG immunotherapy model in Eqns. (4.1), uncertainty in r seemed to be

the most significant consideration to be made in designing robust treatment proto-

cols. As the growth rate of tumor cells, r can be expected to vary depending on many

different factors, including the fraction of tumor cells growing and the stage of clinical

treatment [82]. This variability in r further emphasizes the need for robust determina-

tion of treatment protocols for achieving successful immunotherapy. With reports of

significant correlation between the net growth rate and response to radiation therapy

in glioblastoma patients [831, allocating significant consideration to r in planning can-
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Figure 4-11: Exploring longer-term effectiveness of designed discrete-dose
therapy. (A) Number of tumor cells [T(t)] repeatedly being under the standardly
designed protocol x"'" (solid blue) and in its worst uncertainty scenario (dashed blue).
(B) T(t) repeatedly being under the robustly designed protocol xrob (solid green) and
in its worst uncertainty scenario (dashed green). Grey vertical lines indicate times at
which therapeutic administrations take place.

cer treatments seems necessary even beyond the realms of immunotherapy explored

here.

One alternative form of nonsurgical cancer therapy is chemotherapy, which has

been found to treat many types of tumors effectively. Its potency is nevertheless

clouded by abundant reports of both mild and severe side effects that can possi-

bly lead to serious complications for the cancer patient [84-86]. Growing inter-

est in immunotherapy is to a great extent due to its potential complementary use

with chemotherapy. Such mixed therapy holds the hope of consequently limiting

the amount of often highly toxic chemotherapeutic drugs from being administered.
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The enhanced effect of CTL immunotherapy when combined with chemotherapy,

for instance, have been experimentally observed in mice [87], which follows a num-

ber of reports of findings regarding the benefits of combining vaccine therapy with

chemotherapy [47,88,89]. With mathematical modeling efforts for cancer treatments

including such combination therapy being on the rise [46, 90], and with added po-

tential dimensions of uncertainty that are likely to accompany the combination of

multiple therapeutic interventions, robust protocol design, using methods such as the

one presented in this work, is expected to grow in importance.

Exciting avenues for further exploration lie ahead, particularly with regards to

incorporating additional sources of uncertainty that must be accounted for in de-

signing robust treatments. A notable source is patient-to-patient variability in re-

sponses to cancer therapy, which have been extensively observed [91-93]; this vari-

ability continues to fuel research efforts in making individualized therapy planning

more plausible [94,95]. Reaching a step further leads to considering varied effects of

therapy other than reduction in tumor size; unfavorable side effects of cancer ther-

apy range widely from metabolic and cardiovascular disruption [96,97] to decreased

bone density [98], and have long been giving rise to studies involving their effective

management [99, 100]. The methodology of robust protocol design introduced in this

work offers a framework for planning therapies that can treat tumors under various

uncertainties, and can readily be applied to incorporate these variabilities into its

mathematical optimization-based approach. Analyzing the benefits and tradeoffs of

requiring robustness, both comparatively and complementarily to such individual-

ized therapy and consideration of therapeutic effects, is a major target for future

investigation that is made possible by the introduction of this robust approach to

cancer treatment design. And by fully utilizing the strengths of model-based studies

as was done here, such investigations can be expected to help build upon the current

understanding of tumor systems as a whole.



Chapter 5

Robust Optimization by Linearized

Worst-case Approximation

5.1 Motivation

The robust optimization method explored in Ch. 3 for biological network calibration

and in Ch. 4 for cancer immunotherapy design approximates the worst uncertainty

scenario by sampling the region of potential uncertainties for that worst-case. An

alternative mathematical formulation to solving the worst-case optimization problem

is offered here, one that replaces the sampling process of the previous method with a

linearization of the objective function's parameter space over the region of uncertain-

ties. Studied in the context of Bunimovich-Mendrazitsky et al.'s mathematical model

of BCG immunotherapy for superficial bladder cancer shown in Eqns. (4.1) [34], this

linearized worst-case approximation method is first evaluated on its ability to design

comparable robust protocols as the previous method, after which it is additionally

given the task of designing robust protocols against a notable increase in the number

of uncertainty dimensions to be considered. Its relative computational efficiency al-

lows it to succeed not only in carrying out this additional task, but also in giving rise

to the potential for a novel approach to experimental guidance directed at improving

model-based design of robust immunotherapeutic protocols.



5.2 Iterative minimization procedures

Standard iterative minimization Shown schematically in Fig. 5-1, the iterative

procedure for finding the x that minimizes f(x, p), solving Eqn. (2.1), is as follows:

Step 1. Guess at a solution, x 0, and set s = 1.

Step 2. Select the a' that is expected to minimize f(x'-1 + aS, p) using Newton's

method.

Step 3. Search for the a that minimizes f(x8-1 + aas, p); set d8 = aas and

xs -- xs-1 + ds.

Step 4. If ds < tolerance, then return xs as the solution and terminate. Else, set

s = s + 1 and go back to Step 2.

Robust iterative minimization The iterative procedure for finding the x that

minimizes f(k, p) in the worst-case, solving Eqn. (2.3), is as follows:

Step 1. Guess at a solution, x0 , and set s = 1.

Step 2. Select the da that is expected to minimize f(k 8 -1 + as, p) in the worst-case.

Step 3. Search for the a that minimizes f(i"-1 + aa, p) in the worst-case; set

d = aas and xs - xs-1 + ds.

Step 4. If ds < tolerance, then return xs as the solution and terminate. Else, set

s = s + 1 and go back to Step 2.

5.2.1 Sampled worst-case approximation

Update direction selection

Shown schematically in Fig. 5-2, the sampling-based method for determining the dS

in Step 2 of the robust iterative procedure is as follows:

1. Sample N sets of {Ax, Ap} from Ax c U x and Ap C U^P.

2. Of the N sets sampled, select as {Axworst, Apworst} the set that maximizes

f(xs-1 -±Ax, p - Ap).

3. Select the ds that is expected to minimize f(x"-1 + as ± Lxworst, p + ApWorst)

using Newton's method.
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Figure 5-1: Schematic representation of standard iterative procedure for
finding solution x in solution space that minimizes objective function
f(x, p).

Update magnitude selection

The sampling-based criterion for determining the a in Step 3 of the robust iterative

procedure is as follows:

1. Sample N sets of {Ax, Ap} from Ax E U" and Ap E UAP.

2. Of the N sets sampled, designate {Axworst, Aporst} for a given a as the set that

maximizes f(xs- 1 + aa + Ax, p + Ap).

3. Search for the a that minimizes f(x"~1 + aa + Axors, p + Aporst

- - - - - - - 'i d - 1 111, - - .... ... ...... ........................... .
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Figure 5-2: Schematic representation of sampling-based robust iterative
minimization. (I) N sets of {x, p} are sampled from {Ax, Ap}-variation around

{xk, p}; maximum f(x, p) of these approximates worst-case. (II) For finding solution
x in solution space that minimizes worst-case f(x, P), sampling takes place at each
iteration to account for variations in both solution value and parameters.

5.2.2 Linearized worst-case approximation

Ellipsoidal uncertainty

Let E denote an ellipsoid in R' centered at 0, whose jth semi-axis has a length of

|h l, i.e.,

{E=Au I ||u||2 < 1} ,

where

(5.1)



A = (A1, ... , A,) (5.2)

and

A = diag(A) . (5.3)

Regarding uncertainty sets U^* and UAP as ellipsoid Ex around x and ellipsoid E,

around p, respectively, finding the x that minimizes fc(k, P) in the worst-case is to

solve

min max f (x + Ax, p + Ap) . (5.4)
x AxcEx,ApcE

As one way of designating the lengths of the semi-axes for the uncertainty ellipsoids to

be proportional to the uncertainty ranges in each dimension, consider an uncertainty

set UAx in R' that consists of all vectors (Ax,..., Ax), where Ax3 E [-cj, cy],

c3 ;> 0, j = {1, ... , n}. Place the foci of the associated ellipsoid to be along its

semimajor axis at (0, ... , -ci, ..., 0) and (0, ... , ci, ..., 0), where ci > cy, Vj. Let

(2ci)2 +I ZC? + Zc? 2AI (5.5)
j7 i j:Ai

where Ai becomes the length of the ellipsoid's semimajor axis. Since the sum of the

distances from the foci to any point on the surface of the ellipsoid is 2Aj,

IF A ,- c? .(5.6)
Ji

Maintaining the proportionality using =3  leads to replacing Aj, j f {i, k}, with
Ak Ck

AkC 3 which gives rise to
Ck

Ak~ A- C2 
' (5.7)

1A- + ZJ{2 k



where Ak then becomes the length of the ellipsoid's kth semi-axis. Aj, j # {i, k},

which are the lengths of the ellipsoid's remaining semi-axes, can then be computed

using A k = once again. A two-dimensional illustration of this ellipsoid designation
Ck

process is shown in Fig. 5-3.

C.

-Cj

C
0 ---

1(2c.)2

C.2I/2

C;

Figure 5-3: Two-dimensional illustration of method used for specifying un-
certainty ellipsoid E, from uncertainty set U^X. (I) Place the foci of the
eventual Ex to be along its semimajor axis, corresponding to the widest dimension
of UAX, at (-ci, 0) and (ci, 0). (II) Specify Aj, the length of Ex's semimajor axis, by
choosing to make the surface of E, intersect with the corners of UAX. (III) Specify
Aj, the length of E,'s semiminor axis, by using the fact that the sum of the distances
from the foci to any point on the surface of E, is 2Aj. (IV) The resulting Ex has
semiaxis lengths of Ai and Aj, with foci at (-ci, 0) and (ci, 0).

UAX

-C'

III

AlL



Update direction selection

Shown schematically in Fig. 5-4, the linearization-based method for selecting the ds

in Step 2 of the robust iterative procedure outlined above is as follows:

1. Assemble the following entities:

(a) J 1, the matrix of partial derivatives of f(xs-1 , p) with respect to each element

of xs-1

(b) J"-, the matrix of partial derivatives of each element of J8-1 with respect to each

element of p

(c) JS-- , the matrix of partial derivatives of f(x5-1, p) with respect to each element

of p

(d) Js-I , the matrix of partial derivatives of each element of J8 -1 with respect to each

element of xs-1

2. Approximate f(xs- I + as + Ax, p + Ap) as

f(xa- 1 , p)

+J"- l(dsA" x)

(5.8)+ Ip T J S-l(as + Ax)

pP

+1 i" Ax) T J, p.

Distributing out the terms in Eqn. (5.8) gives

f (xs_-, p)

+J,-ls + Js- 1Ax

+ApTJs-la" + IApTJs-IAx

+J8 - 1Ap

+j(as)TJ-ILAp + jAxTJ-Ap

which can be rearranged to be

(5.9)



f (x -1 1p)

+Jd-las + Js'-Ax + Js'Ap

+j1APT[JS-1 -+ (J- )T Ax
+Ap T [Js-pi + (J~p-I)T ]

3. Including bounds on ds as constraints (e.g., xs-1 + as > 0), solve

mina, maxAxEExs,ApEEp

{Ex= AXSuXS

{ E, Apup |

1 ||uxs||2 <_ 1} ,

||up 12 < 1}

for x' in R' and p in R". Ass3 and Ap represent the amounts of uncertainty around

x 8 and p in dimension j and dimension i, respectively.

Min-max formulation

Using Eqns. (5.12) and (5.13), the inner maximization problem of Eqn. (5.11) can

be written as

+ w s ApJ s- + J - )

+ Ap[JS + (Jp- )T ]d |2 -

(5.14)

Substituting the inner maximization problem of Eqn. (5.11) with Eqn. (5.14) gives

(5.10)

where

j-1 as A-'Ax±+Jis 1Ap- X -6 P
+ Ap T {T[Js - (Js- )T ]Ax

+I APT[J 8-+ (Jj, f)l ]s

(5.11)

and

(5.12)

(5.13)

maxj,pE{-1,1},vE{-1,1}



X"

(xk + Ax, p + Ap)

+ d2

solutionspace

Figure 5-4: Schematic representation of linearization-based robust iterative
minimization. (I) f(x, p) is linearized across ellipsoidal {Ax, Ap}-variation around

{xk, p}; maximum of this linearized f(x, p) approximates worst-case. (II) For finding
solution x in solution space that' minimizes worst-case f(x, P), linearization takes
place at each iteration to account for variations in both solution value and parameters.

mina, max E{- 1,1},vc{-1,1} s 1 s 1 wJx - Axsj + vJpiApj

+jw~xaAp (J"-I + JSp- )

+J||Ap[Js 1 + (Jp- )T s 2

(5.15)

which is equivalent to solving

f(x,p)



minaz z

s.t. J-las + w J"-I Axsg + v \JpjAp

+ |Ap[Jp (J+- )T ]ds|2

< z, V{j,i, w,v},

j C{1, ... , n}, i E {1, ... , m},

W E {-1, 1}, V E {-1, 1} ,
(5.16)

where each of the 2 2nm constraints is a second-order cone in da and z. Rearranging

the terms gives

minas,z z

s.t. }|jAp[J -1 + (Jp-l)T]as 11 < -Jsf la" +,z

-wJs- 'Axsj - vJ, Apj

- woAxj -Ap(Jp + JS- ),
V{j, i, i w,

j E {1, ...In}, i E{,..., m},

w E {-1, 1}, V C {-1, 1} ,

and if the additional constraints expressing the bounds on das are also second-order

cones or are linear in as and z (e.g., x'- 1 + as > 0), Eqn. (5.17) can be solved as a

second-order cone program.

Update magnitude selection

The linearization-based criterion for determining the a in Step 3 of the robust iterative

procedure is as follows:

1. Designate the following entities for a given a:

(a) .j-', the matrix of partial derivatives of f(xs-' + aa, p) with respect to each

element of xs-I + ads

(b) is-, the matrix of partial derivatives of each element of j'l with respect to

each element of p
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(c) is-', the matrix of partial derivatives of f(x"-' + ads, p) with respect to each

element of p

(e) a-', the matrix of partial derivatives of each element of Js-~ with respect toPIIp,a eseto

each element of xs-I + ads

2. Approximate f(xs-1 + ads + Ax, p + Ap) as

f (x8 -I + ad, Ip)

(5.18)+isj Ax + is Ap

+ LpTjscp aAX + jAX T , S Ap

and in turn the maximum of f(x"-1 + aas + Ax, p + Ap) as

f (x"-1 + aas, p)

+ maxj,j E {1,1},vE{ 1,1} w(a8 1)jAxj + v( a'1)jAPi

+IWVAXSjA~kJ + -1+ w PoA(x,pa)iJ + (p-,2xa)j,i]

3. Search for the a that minimizes Eqn. (5.19).

5.3 Application to BCG immunotherapy

5.3.1 Methods

The linearized worst-case approximation procedure is applied to designing robust

protocols for continuous-dose therapy of superficial bladder cancer using BCG, as

specified in Sec. 4.2.1. The types of uncertainty considered here are as follows:

Type A. BCG is administered at some rate b = b+ zi(O.5), where -1 < zl 1,

instead of at b.

Type B. At t 0, the initial concentrations of the species are Bo = Bo + z 2Bo,

EO = Eo+z 3 Eo, TO = To+z 4TO, T.0 = T.o+z 5 T. 0 , where -1 Zk < 1, k = {2, ... , 5}

instead of BO, E0 , Tio, Tao, respectively.

101

(5.19)



Type C. # z6 and r = z7 , where 0.013 < z6 < 0.022 and 0.1 < z7 < 0.45 [34),

instead of # = 0.0155 and r = 0.12.

Type D. {1,PP2,P3,P4,P5, } = {(u+zsp), (pI+zgp1), (p2+ziop2), (P3+zuip3), (p4+

z12 p4 ), (p5 + z13 p5), (a + zi4a)}, where -1 < zQ < 1, Q = {8, ..., 14}, instead of

{IpP1,P2,P3,P4,P5, a} = {0.41, 1.25, 0.285, 1.1,0.12,0.003, 0.52}.

Handling uncertainty types A, B, and C

Define U(b) as the neighborhood of uncertainty that consists of all vectors z

(zi, ... , z7 ), such that -M 1 < zi < M1 , where 0 < M1 K 1, -Mk Zk < Mk for

k = {2, ... , 5}, where 0 < Mk < 1, MA6 < z6 < Ma6 , where 0 < I6 < 0.0155 and

M 6 > 0.0155, and M17 < z7 < M 7 , where 0 K M17 < 0.12 and M 7 > 0.12. Let Z(b)

be a subset of U(b), made up of z = (0, 0, 0, 0, 0, 0.0155, 0.12) and additional vectors

sampled from U(b). Unless otherwise stated, this work specifies this uncertainty hy-

percube U(b) with I = 1, Mk = 0.25 for k = {2, ... 5}, MI16 = 0.013, MX6 - 0.022,

M17 =0.1, and M1 7 = 0.45.

When the performance of a protocol b against uncertainty scenarios sampled from

within the hypercube is evaluated, F(b) is computed under every member of Z(b)

drawn from U(b). In addition to z = (0, 0, 0, 0, 0, 0.0155, 0.12), members of Z(b) for

this evaluation are chosen to be z made up of every combination of zi = {-p, p},

Zk= {-q, q} for k = {2, ..., 5}, z6 = {I 6 , M 6}, and z7 = {M17 , I1 7}, for every 0.2

increment of p between 0 and 1 and every 0.05 increment of q between 0 and 0.25.

The worst uncertainty scenario z E Z(b) that maximizes F(b) is designated as zwors

Handling uncertainty types A, B, C, and D

Define U(b) as the neighborhood of uncertainty that consists of all vectors z =

(zi, ... , z1 4), such that -M 1 < zi < MI, where 0 < MI < 1, -NMk Zk Ik

for k = {2,..., 5}, where 0 < Mk < 1, I16 z < M 6 , where 0 < MI16 < 0.0155

and M 6 > 0.0155, M17 < z7 < MX7, where 0 < M17 < 0.12 and M 7 > 0.12, and

-NMQ < zQ < MQ for Q = {8, ... , 14}, where 0 < MQ < 1. Let Z(b) be a subset of

U(b), made up of z = (0,0,0,0,0,0.0155,0.12,0.41,1.25,0.285,1.1,0.12,0.003,0.52)
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and additional vectors sampled from U(b). Unless otherwise stated, this work spec-

ifies this uncertainty hypercube U(b) with Mi = 1, M = 0.25 for k - {2, ..., 5},

M 16 = 0.013, M16 = 0.022, M17 = 0.1, M 7 = 0.45, and MQ 0.25 for Q ={8, ..., 14}.

When the performance of a protocol b against uncertainty scenarios sampled from

within the hypercube is evaluated, F(b) is computed under every member of Z(b)

drawn from U(b). In addition to z = (0, 0, 0, 0, 0, 0.0155, 0.12,0.41,1.25, 0.285, 1.1,

0.12, 0.003, 0.52), members of Z(b) for this evaluation are chosen to be z made up of

every combination of zi - {-p,p}, Zk = {-q, q} for k = {2, ... , 5}, z6 = {M,16 Mu6 },

Z7 = {M 17 , A/I 7 }, and zQ = {-q, q} for Q = {8, ..., 14}, for every 0.2 increment of

p between 0 and 1 and every 0.05 increment of q between 0 and 0.25. The worst

uncertainty scenario z E Z(b) that maximizes F(b) is designated as z D-

5.3.2 Results

The protocol designed using the standard approach, denoted bst", was bstn 2.8375

reduced units (equal to 283750 cells days-'), associated with an objective function

value of F(bstn) = 2.4659. A trajectory of the total number of tumor cells as a

function of time [T(t) = T(t) + Tu(t)] under this protocol bstn is shown in Fig. 5-5

(solid blue line).

We first enumerated variation in the applied therapeutic dose, the initial condi-

tions of the model, and the parameters # and r (see Sec. 5.3.1). The least favorable

objective function value was observed for one corner of the uncertainty hypercube

at ZA or' - (-1, -0.25. 0.25, 0.25. 0.25. 0.013. 0.45) with objective function value

F(bstn) = 2051.8, and the resulting trajectory is shown (dashed blue line) alongside

the perfect trajectory (solid blue line) in Fig. 5-5.

A new treatment was designed using the sampling-based robust approach, des-

ignating a range of uncertainty corresponding to that used to test the standard

optimized therapy above. The resulting optimized treatment was computed to be

Brbs = 4.4762 reduced units (equal to 447620 cells days-1), with objective func-

tion value F(b§o7,) = 2.6225. A trajectory of tumor cell number versus time under

this protocol is shown in Fig. 5-5 (solid green line). Evaluating the behavior of this
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brobsmp = 4.4762 (obj func val = 2.0518 x 103
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2. b =-5.0110 brobsmp w/ no uncertainties
ABC ABC

(obj func val = 2.6225)
2- bobsmP w/ uncertainties

I- -- ABC
0 M (obj func val = 3.1858)

0 1.5- roblin
Eb ABC w/ no uncertainties

(obj func val = 2.8831)
broln w/ uncertainties

(obj func val = 3.3919)
0.5
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-0.5
0 5 10 15 20

Time units (t)

Figure 5-5: Tumor response under designed BCG therapy when uncertainty
types A, B, and C are present. Total number of tumor cells [T(t) = Ti(t) +T(t)]
under standardly designed protocol bt" (solid blue) and with its worst-case un-
certainty z' """'' (dashed blue); T(t) under sampled-robust protocol b ros"p (solid

green) and with its worst-case uncertainty zAB"C*'"'' (dashed green); T(t) under
linearized-robust protocol brobi" (solid pink) and with its worst-case uncertainty

roblinworst (dashed pink).
ZABC

sampled-robust protocol across the same uncertainties in model and treatment tested

for the standard treatment optimum, its worst point within the uncertainty hyper-

cube is at zABwCm''"o's = (1, -0.25, -0.25, 0.25, 0.25, 0.013, 0.45), and the resulting

trajectory is shown in Fig. 5-5 (green dashed line) with associated objective value

BC ") = 3.1858.

A treatment was then designed using the linearization-based robust approach de-

veloped here. A detailed description is given in Sec. 5.2. Briefly stated, the worst

objective function value across a range of uncertainties in the model and the delivery
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of the intended therapy is approximated by a linearization of the objective funcation

at each iteration of the minimization process. Once again using a range of uncertainty

corresponding to that used to test the standard optimized therapy, this time by desig-

nating analogous ellipsoid-shaped uncertainty spaces (see Sec. 5.2), the resulting op-

timized treatment was b§,i = 5.0110 reduced units (equal to 501100 cells days-1),

with objective function value F(bWN5g) = 2.8831. The tumor trajectory versus time

under this linearized-robust protocol is shown in Fig. 5-5 (solid pink line). And sub-

jecting it to the same uncertainties within the uncertainty hypercube as the other

protocols, its worst point is at zo 'o t (1, 0.25 0.45),
ZABC -. 5 -0.25, 0.25, 0.25, 0.013,04)

associated with an objective function value of F(bNlg) = 3.3919, and its resulting

tumor trajectory is shown in Fig. 5-5 (pink dashed line) as well.

We then allowed variation to also exist in model parameters other than # and r (see

Sec. 5.3.1). Subject to this higher-dimensional uncertainty hypercube, the number of

tumor cells rises uncontrollably through time under the standardly designed proto-

col's worst associated uncertainty [z rst = (-1, -0.25, 0.25, 0.25, 0.25, 0.013, 0.45,

-0.25, 0.25, -0.25, -0.25, 0.25, -0.25,0.25)], as shown in Fig. 5-6 (blue dashed line).

This worst objective function value is F(bstn) = 11845. Also shown here, once again

for comparison, is the number of tumor cells in the system with no model or thera-

peutic uncertainties (solid blue line), being treated with the same standard protocol.

A protocol was then designed using the linearization-based robust approach, de-

noted bb7lD, accounting for the enlarged space of potential model and therapeutic

uncertainties. Shown in Fig. 5-6 (solid pink line) is the number of tumor cells in the

system with no model or therapeutic uncertainties, being treated with this lineared-

robust protocol. The protocol administers BCG at a rate of b4i5D = 9.4893 reduced

units (equal to 948930 cells days-1), with objective function value F(bijgD

5.1678. Its worst point is at zfoblinworst = (1, -0.25, 0.25, 0.25, 0.25, 0.013, 0.45, -0.25,

0.25, -0.25, -0.25, 0.25, -0.25, 0.25), associated with an objective function value of

F(b rjgD) = 6.0944, even under which the number of tumor cells remains under

control, as shown in Fig. 5-6 (pink dashed line).

The results obtained illustrate the effectiveness of using the robust optimization
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Figure 5-6: Tumor response under designed BCG therapy when uncer-
tainty types A, B, C, and D are present. Total number of tumor cells
[T(t) = Ti(t) + Tu(t)] under standardly designed protocol bt" (solid blue) and with its
worst-case uncertainty zt"gj"" t (dashed blue); T(t) under linearized-robust protocol
brC'5gD (solid pink) and with its worst-case uncertainty z's"o"'' (dashed pink).

method based on linearized worst-case uncertainty approximation for designing can-

cer immunotherapeutic protocols in the presence of uncertainties. Fig. 5-5 shows

that, for handling uncertainty types A, B, and C (see Sec. 5.3.1), the linearized-

robust protocol b maintains the objective function value relatively low even in

its worst uncertainty scenario z ' ,worst when compared to the standard protocol

bs'tn in z't"'orst. The same holds true when comparing the linearized-robust protocol
roblin Zroblinwos stn Zstn,worst fr hnln

bA D n bnworst against b in Zfor handling uncertainty types A, B, C,

and D, as shown in Fig. 5-6.

To select the update direction during every iteration of the minimization process,
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the sampling-based robust method evaluates the objective function value at each of

the N samples taken from the uncertainty sets. For n dimensions of uncertainty in

the vector of decision variables and m dimensions of uncertainty in other parameters

upon which the objective function value depends, the number of samples expected

to be necessary in making a valid approximation to the worst uncertainty scenario

grows exponentially with n + m. Contrastingly, the number of constraints in (5.17),

the optimization problem solved by the linearization-based robust method to select

the update direction, grows linearly with nm. For handling uncertainty types A, B,

and C, Fig. 5-5 shows the comparable performance of the linearized-robust protocol

b§oli to that of the sampled-robust protocol b ",.

5.4 Robustness-based experimental guidance

How sensitive the objective function value at a protocol b is, to a parameter p that

it depends on, can be analyzed by assessing how much the value changes under a

change in p. These changes at the standard protocol bstn (blue square) and at the

linearized-robust protocol bWj3gD (pink circle) under 1% increase in p, taking as p

every parameter in Table 4.1 and bstn and brblinD, respectively, are shown in Fig.

5-71. Since b§r'b"D is explicitly designed to be robust to variability in the parameters,

the changes are greater in magnitude at bstn than at b7,l"D as expected.

One can also assess how much the worst-case objective function value under bA2BfD,

denoted F'orst(bWoji D), changes as the uncertainty range of a parameter p decreases.

Shown in Fig. 5-711 are these values for the uncertainty range of p decreasing by

25% (pink triangle), once again taking as p every parameter in Table 4.1 and b§AB"D'

The values found here can help indicate having more certainty about which single

parameter can improve the worst-case performance under protocol b§5igD; out of these

single-parameter uncertainty changes considered, having either r or P2, the tumor

growth rate or the infection rate of uninfected tumor cells with BCG [34], respectively,

be subject to less uncertainty seems to improve the worst-case performance of bBjC"D

the most. This type of assessment can certainly be further carried out for pairs and
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Figure 5-7: Effect of parameter and parameter uncertainty changes on ther-
apeutic performance. (I) Change in the objective function value at the standard
protocol bstfl (blue square) and at the linearized-robust protocol b§,bigD (pink circle)
under 1% increase in p, where p is every parameter in Table 4.1 and bst" and blijgD,

respectively. (II) Change in the worst-case objective function value under b§4?D as
the uncertainty range of p is decreased by 25% (pink triangle). (III) Change in the
worst-case objective function value under each respective newly determined linearized-
robust protocol bbiD nep as the uncertainty range of p is decreased by 25% (light
blue diamond), by 75% (black x), and by 100% (red star).

even higher-order combinations of parameter uncertainties decreasing simultaneously.

However, what is of greater interest is not the performance of b~bjigD given a de-

creased uncertainty range for a parameter, but rather the performance of a robust

protocol that has been newly optimized for handling the worst-case given the new

decreased uncertainty range. Shown in Fig. 5-7111 are these values for the uncer-

tainty range of p decreasing by 25% (light blue diamond), by 75% (black x), and

by 100% (red star), once again taking as p every parameter in Table 4.1 and the
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respective new optimal robust protocol given the uncertainty decrease in p, denoted

AB§NgD ewp. Although a decrease in the uncertainty of r still remains as the strongest

single-parameter effect, notice that p4, the rate of immune response activation by the

encounter of effector cells with BCG [34], increases in significance as its uncertainty

is decreased by 75%. Also, y, the ratio of effector cell and BCG mortality rates,

increases in significance as its uncertainty is further decreased. The values found

here indicate having how much more certainty about which single parameter can im-

prove the best worst-case performance, and thus can more directly point to which

parameters experiments should concentrate on precisely specifying for improved ro-

bust therapy.

Determining which experimental efforts to pursue through this type of approach

requires a large number of worst-case optimization problems to be solved, particu-

larly as one wishes to simulate higher-order combinations of changes in parameter

uncertainties. Besides being capable of designing robust treatment protocols, the

linearization-based robust method introduced in this work, by enabling multiple di-

mensions of uncertainties to be considered in a more computationally efficient manner,

makes plausible such a novel approach to guiding experimental planning towards im-

proving the worst-case performance of protocols designed for cancer immunotherapy.

5.5 Discussion

The robust optimization method introduced in this work that uses the linearized

worst-case approximation, together with the robustness-based experimental guidance

that it enables, is applicable to therapy beyond immunotherapy. Radiation oncology

is a field that already actively applies robust optimization to handling the potentially

hazardous radiation equipment. Among many sources of uncertainty in the radiation

therapy procedure, Unkelbach et al. report their consideration of the possibility that

the position of the patient's body and the ranges of the proton beams that are directed

at the tumor from outside the body may deviate from the situation under which

optimal therapy is designed [60]. Comparing the probabilistic approach that they take
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to incorporate the uncertainties into the optimization with the linearization-based

approach, the relationship between the specifications of the random distributions that

they use and the lengths of the semi-axes of the uncertainty ellipsoids characterized

during the linearization here can be studied.

Further improvement of analytically formulating the min-max problem for opti-

mizing the worst-case is also conceivable. Such improvement may consist of consid-

ering whether including additional higher-order terms when linearizing the objective

function is helpful for locating more favorable robust minima. If all second-order terms

were to be included in the approximation, for instance, f(xs-1 + aas + Ax, p + Ap)

would be approximated as

f (x 1 , P)

+ (ds + Ax) Jj-(ds + Ax)

+AApTJsI (as + Ax) (5.20)

+J, 1 Ap

+2 (ds ± x T jpI

+ApTJ"-,Ap.

instead of as Eqn. (5.8), where JS-l is the matrix of partial derivatives of each ele-

ment of Js-1 with respect to each element of xs-1 and Jsp1 is the matrix of partial

derivatives of each element of JS-- with respect to each element of p. This version

of the linear approximation would require a different set of subsequent equation .ma-

nipulations to take part in a computationally reasonable formulation of the min-max

optimization problem, such as the second-order programming formulation in Eqn.

(5.17) used in this work. Having multiple versions of the linearization-based for-

mulation at hand can then enable investigation into how different orders of linear

approximation trade off against computational efficiency for running the optimizer

on a variety of network models, which may in turn offer additional dimensions of

analysis that shine light on inherent properties of the networks modeled.

Relating to Ch. 3 of this work, the linearization-based method can also be applied

110



to network calibration in systems biology. The methodology of robust optimization

itself is yet to be extensively used for biological network calibration, with robust

parameter estimation most often being aligned rather with the ability of an estimation

method to consistently reach one parameter set more often than other sets in the

midst of limited data quality and nonlinearity, as in ref. [57]. With one of the major

next steps to take following the robust calibration efforts explored thus far being

systematic characterization of robustness levels for analyzing networks, this worst-case

approximation through linearization can potentially serve as the alternative efficient

mathematical representation needed for such characterization, taking the place of the

sampling process previously used.
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Chapter 6

Contributions and Future Work

This dissertation began with trying to answer one question of whether or not using

robust optimization can make a difference in estimating parameters of quantitative

biological models from experimental data. Realizing that the answer to the question is

not a simple yes or no was a critical step in adjusting the focus to look more carefully

into the capabilities of robust optimization for systems biological research as a whole.

Applying robust methods to design therapeutic protocols showed the difference that

considering robustness can make in efforts involving model-based design that need

to reliably handle expected uncertainties that exist in both model accuracy and the

precision with which the design can be implemented. Formulating the computational

methodology for solving worst-case optimization problems beyond extensive sampling

of possible uncertainty scenarios, this work also made plausible a novel approach to

carrying out experimental guidance that is aimed at lowering the cost of making

robust decisions.

There are three directions towards which work from here onwards can move in.

The first of the three is further development of the worst-case robust optimization

method. This refinement includes experimenting with other mathematical methods of

approximating the worst-case, particularly in terms of using any application-specific

knowledge to decrease the computational burden while increasing the accuracy with

which robust optima can be found. The second direction is branching out with the

robust tools developed here, such as the optimization methods and the approach
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to experimental guidance, and applying them to where robust determination would

be critical. One interesting field would be quantitative epidemiology, which uses

mathematical models of infectious diseases in planning the intervention needed to

track and prevent outbreaks at the population level. The third direction is concerned

with using the robust tools for system identification beyond parameter estimation.

For example, combining robust calibration with experimental model discrimination

can help classify models or individual components of models into being robust or not

and to what degree, contributing to enhancing the understanding of why nature has

designed biological systems to behave the way they do.

Optimization is one of many mathematical ideas being actively applied to the

field of systems biology. Whether or not such an idea can directly solve an existing

problem may actually be just the beginning of the application. More often than not,

that beginning can serve as the entrance into new dimensions of analysis that can be

made using the idea in ways that have not been explored previously. Such interaction

that leads to synergistic development in the areas involved is where the strength of

interdisciplinary research lies, as is shown by this work and others that are in the

midst of active progress towards advancing the study of biological systems from a

mathematical perspective.
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