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Abstract

Various electrical and optical schemes used in Mach-Zehnder (MZ) silicon plasma dispersion

effect modulators are explored. A rib waveguide reverse biased silicon diode modulator is

designed, tested and found to operate at speeds up to 13 GHz with a V"L of 1.2 Vcm. MOS

capacitor modulator designs are investigated as an alternative, but are not found to offer

significant advantages. Modulators are also designed for fabrication in an actual CMOS process

-a crucial step in the quest for low-cost integration with modern electronic devices. Photonic

crystal structures, which promise smaller footprint sizes and lower power requirements, are also

investigated, but it proves difficult to obtain a physically feasible design. Finally, a linearization

scheme for Mach-Zehnder modulators is proposed to significantly improve signal fidelity in

analog applications. Simulations are used to demonstrate the effectiveness of this scheme for

reverse biased silicon diode modulators.
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INTRODUCTION

Applications of Modulators
As electronics become more complex and performance demands become more exacting, it

becomes increasingly important that each component in a system be as accurate and efficient as

possible. Sometimes the performance of traditional electrical components is acceptable for the

desired specifications. Increasingly, however, the use of non-traditional components is necessary

or will be necessary to meet performance targets [1]. Optical components, in particular, provide

a path forward towards achieving much-desired performance gains. Including optical

components in a system, however, requires successfully passing the requisite information back

and forth between the optical and the electrical components in the system. Such communication

is accomplished by the use of photodetectors, which allow optical signals to be passed to

electrical systems, and modulators, which pass electrical signals to optical systems. While any

photonic link would need to consist of both a modulator and a photodetector, this work will be

focused on the design and implementation of electrical to optical modulators.

There are many applications in which opto-electronic integration is desirable. One such

application is communication between multiple processing cores and memory modules in

integrated circuits, particularly when these components are located on different chips, or far apart

on the same chip. Currently data transmission between these components is accomplished via

electrical interconnects. However, as transistor density and the bandwidth required increase,

power density and interconnect latency become problematic. Photonic links are likely to be

faster, have higher bandwidth, and use less power than traditional electronic solutions [1].

Photonic ADC Converters
ADCs are the means by which analog signals (from, say, an imaging system or an antenna)

are digitized for further processing. Many different effects, including thermal effects, ambiguity,

quantum uncertainty and jitter, place limits on the performance of ADC systems [38]. These

limits for available technologies are summarized in Figure 1, which also summarizes the

performance of current electronic ADCs. As can be seen, aperture jitter - random deviation

from the nominal sampling period - is the effect that currently limits electrical ADC

performance. At present, aperture jitter in electronic ADCs is on the order of 100 fs and

improves only slowly [7]. Optical sources can be much more precisely timed, with jitters of less



than 100 attoseconds, and, therefore, offer a way around this problem. Optical schemes to

implement or improve ADC performance have been around for several decades, but only

recently have mode-locked lasers been stable enough for these schemes to be practical [7].

Optical ADC schemes generally fall into one of four categories: (1) where photonics simply

"assist" an existing electrical component, (2) where optics are used to sample and electronics to

quantize the signal, (3) the reverse, where optics quantize and electronics sample the signal, and

(4) where optics are used to both quantize and sample the signal [39].

20
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Figure 1: Performance of electrical ADC and performance limits. From [38].

Our group is currently working on designing an ADC of the second type; in which optical

sampling is combined with electrical quantization. The optical sampling allows for a significant

increase in the ADC bandwidth at a given accuracy. Specifically, the jitter problem is overcome

by the use of a stable mode-locked laser to determine the sampling times, thus increasing the

timing precision, and by the use wavelength division multiplexing (WDM) to split the signal

between several electronic ADCs and thereby multiply the effective sampling rate achievable at

a given ENOB level. To be more precise, a mode locked laser and a dispersive fiber are used to

generate a sequence of chirped pulses. An electro-optic modulator, driven by the RE signal to be



sampled, imprints the signal on the chirped pulse stream. The modulated signal is then passed

through an optical filter bank where different channels pick out the different frequencies of the

chirp. Each channel passes its frequency to a photodetector, which converts it back into an

electrical signal. Finally, this electrical signal is quantized using an electronic ADC. Because

the temporal relationship between the frequencies is known, the digital output from all of the

different channels can be stitched back together to create a finely-sampled version of the signal.

The sampling rate of the ADC is then that of the electronic ADCs multiplied by the number of

different channels of the filter bank [7]. For example, if the system had 20 channels and each

channel had an electrical ADC sampling at 2 GHz, the overall sampling rate would be 40 GHz.

The achievable ENOB could then be as high as the 8-10 effective bits 2 GHz electrical ADCs

can achieve, instead of the 4 or so effective bits higher speed electronic ADCs can obtain [38].

Mode-locked Dispersive
laser fi0be

-' 0 00
Bandpas O O..s filter MZ modulator 0 0 O

SAIDC

Figure 2 Schematic of optically sampled, electrically quantized ADC. Knowledge of the precise temporal location
of each different optical frequency allows the outputs from all of the electronic ADCs to be recombined to yield a
finely sampled version of the original signal. From [7].

Silicon Photonics
Much attention has been paid to silicon photonics because it promises to integrate optical and

electronic devices together on the same chip, or even optical and electronic functions into the

same device. Such integration would allow for the cheap, efficient and effective use of optics to

improve the performance of what are presently all-electronic systems where the electronics are

hitting their fundamental performance limits. Additionally, silicon photonic structures can take

advantage of silicon fabrication techniques that have been developed into maturity for the

electronics industry [5]. This allows silicon photonic devices to be made easily and cheaply.

There are other reasons that silicon is a good candidate for optical device design. The high

index contrast between silicon and air, or, more importantly, between silicon and its native oxide



(SiO 2) allows for high index contrast (HIC) waveguides to be easily fabricated. HIC structures

have the advantage of tight confinement (which decreases necessary power), small size and a

tight bending radius (which decreases device size-key for any sort of integration with electronics

or with other optical devices on the same chip) [7]. The tight bending radius also allows for the

creation of ring filters with large free-spectral-range and of high-Q ring resonators (which,

among other things, are useful for ring modulators) [1][7]. Finally, silicon is transparent at most

of the traditional telecommunications wavelengths, allowing for on chip processing of signals

sent over fibers without any sort of wavelength conversion, and for the use of laser sources

already developed to maturity for the telecommunications industry [6].

However, silicon also has several drawbacks. Perhaps the most significant one is the lack of

a direct bandgap, which makes the use of silicon to create optical sources all but impossible

(requiring either an outside source, or that a source be bonded onto the silicon wafer) [6]. For

better or for worse, the nonlinear coefficients of silicon are quite low, precluding most useful

nonlinear effects (e.g., electro-optic modulators using the Pockels effect or the Kerr effect are not

practical, see below) [1]. Moreover, HIC structures like those in silicon can be highly sensitive to

fabrication variations and the tight tolerance specifications can be difficult or impossible to meet

[7]. Often this requires some post-fabrication way to correct errors. Thermal control is a

common solution, but leads to decreased power efficiency, more complicated designs, and

degraded performance as it must be maintained without drift [6]. Furthermore, coupling into and

out of HIC structures from fiber, often necessary due to the lack of on-chip sources, can be

difficult and is in many cases associated with high losses (on the order of a few decibels.)

Moreover, because HIC structures are often highly polarization dependent, some sort of

polarization control must be maintained in the fiber parts of the system [7]. Finally, propagation

in the waveguides is also associated with loss on the order of 0.1-0.5 dB/cm at minimum. This

loss is mainly caused by sidewall roughness (but loss from impurities can also be high) [6]. In

some applications these losses are problematic.

In all, silicon is a very promising material for optics due to its high index contrast, mature

fabrication processes, and easy integration with electronic components. Use of silicon photonics

can lead to important functional improvements to current electronic systems. However, there are

still many challenges that need to be overcome before silicon photonics can be practically

implemented at large scale.



Scope of Thesis
This work concentrates on Mach-Zehnder modulator structures that use the plasma

dispersion effect in silicon, for applications in integrated photonic systems such as the ADC

system outlined above. The next chapter, "Modulator Basics" outlines basic modulator designs

and the limits of what is theoretically possible using silicon phase shifters using the plasma

dispersion effect. The following chapter, "Modulator Modeling" explains the physical and

numerical models used for the simulations carried out in this thesis. "Rib Waveguide MZ

Modulator Designs" explains the basic structures that can be used to inject or extract carriers. It

focuses on simulated and experimental results for diode modulators and simulation results for

MOS capacitor modulators. "Linearization of MZ Modulators" shows how linear operation can

be achieved in a simple MZ structure, and applies this to the main diode design of the previous

chapter. "MZ Modulators in the Native CMOS Process" explores the integration of silicon

plasma dispersion effect MZ modulators into a current silicon electronics fabrication process.

Finally, slow wave structure options are discussed in "Photonic Crystal Modulators".



MODULATOR BASICS

Physical Effects Useful for Modulation
There are many different physical effects that can be exploited to make modulators, and a

variety of ways that each effect can be implemented. The most commonly used physical effects

in modulation include the Pockels effect, the Kerr effect, the Franz-Keldysh effect, the quantum

confined Stark effect (QCSE), the thermo-optic effect and the plasma dispersion effect. All of

these effects use physical phenomena to change either the index of refraction or the absorption of

the material or both. In general, modulation schemes that rely on changes in the index of

refraction, while trying to minimize absorption, are considered to be more useful for analog

modulation.

Pockels and Kerr Effects
In the Pockels and Kerr effects the anharmonic nature of the electron potential allows for an

applied electric field to change the polarization of a material and, thus, change its refractive

index. Modulation speeds can be very fast since the effects are based on bound electronic states

in the material, so no carrier transport is involved. For the same reason, modulators based on

these effects consume very little power. However, the Pockels effect is only present in crystals

that lack inversion symmetry. In centrosymmetric (unstrained) silicon - the material addressed

in this work - the Pockels effect vanishes. The Kerr effect is present in all materials, including

silicon. However, in silicon it is very weak-yielding index changes on the order of 10-6 to 10-4

at the most [1].

Quantum Confined Stark Effect and Franz-Keldysh Effect
The quantum confined stark effect (QCSE) and the Franz-Keldysh effect both use an electric

field to modify the energy bands of a semiconductor in order to shift the absorption spectra of the

material to longer wavelengths. In the Franz-Keldysh effect, the applied electric field tilts the

bands throughout the crystal material, leading the electron and hole wavefunctions, which do not

tilt, to extend slightly further into the bandgap. Photon-assisted tunneling may then occur at

slightly longer wavelengths than before, and light at these wavelengths will be absorbed instead

of transmitted [1]. Similarly, in the QCSE, the applied electric field changes the bands in the

quantum well in such a way as to lower the electron energy and raise the hole energy. Thus, the



energy needed to excite an electron decreases and longer wavelengths are absorbed during

photon-assisted tunneling. In silicon the absorption due to the Franz-Keldysh effect is relatively

small - demanding large device sizes to work - and only works at certain wavelengths. The

QCSE is routinely used in Ill-V materials and has been demonstrated to be relatively strong in

Ge-SiGe quantum wells [40]. However, Ge-SiGe quantum wells are difficult to fabricate, and

there are still no good schemes for coupling into the quantum well structures from standard, thin

silicon waveguides [1].

Because a change in absorption also yields a change in refractive index through the Kramers-

Kronig relations, the QSCE and Franz-Keldysh effect can also be exploited to change the index

of refraction of the material. For wavelengths that are much longer than the bandgap the index

change has a larger effect than the absorption change, and phase modulator designs work better.

Such is the case for modulation in silicon at the telecommunications wavelengths. However, the

Franz-Keldysh effect is still quite small - on the order of 10-5 for an electric field of 100,000

V/cm [1]. The QCSE is larger, but the same coupling and fabrication issues remain.

Thermo-Optic Effect
The thermo-optic effect refers to the impact of a change in temperature on the optical

properties of a material. Thermal expansion changes the optical path length through the material.

More importantly, a change in temperature causes a change in electron distribution because it

alters the band structure and the electron-phonon interaction coefficients. This change in

electron distribution translates into a change in index of refraction, and is the dominant of the

two effects in both amorphous and crystalline silicon [33]. The thermo-optic coefficient is

defined as the effective change in refractive index for 1 C change in temperature of the material.

At telecommunication wavelengths in room-temperature silicon, the thermo-optic coefficient is

about 2x10-4 K-' [6]. Despite the comparatively large effect, the thermo-optic effect is not a

good modulator candidate due to the time it takes to effect large, uniform temperature changes in

a material. In the end, device operation is limited to about 1 MHz [9].

Plasma-Dispersion Effect
The plasma-dispersion effect, caused by free carrier injection or extraction, can also change

the index of refraction and absorption of a material. A theoretical interpretation of this effect can

be derived starting from the Drude model of electrical conduction [1] [6]. The Drude model



dv v
states that electron movement in a crystal is governed by: eE = m -+ m v

dt r
. When this

equation is substituted into Maxwell's equations, a carrier-dependent index of refraction and

absorption result. After a little algebra one eventually finds that:

An=- 8 22 "mem + and
8 0~2OO 0 ce ch

e AN AN
Aa= 2 412 n In ± M 2[] + h []

4,z c'sonom20 pmi m h h

However, the Drude model makes many approximations, most of which work best for

metals, and also does not account for many physical phenomena. Because of this, the standard

empirical results of Soref et. al. [10] for silicon in the 1.55 ptm telecommunications band are

more useful for that material.

To obtain these results, Soref et al. compiled, from the literature, measured values of

absorption, a, as a function of wavelength and doping. They then used the Kramers-Kronig

relations to calculate the expected change in refractive index, and plotted these results along with

the absorption data on a series of graphs. Interpolating, they came up with a set of data that

relates free carrier concentration to Aa and to An in the two telecommunications bands (1.3 and

1.55um). Their results for 1550nm are shown in Figure 3.
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Figure 3 Left to right: fits to the change in refractive index as the concentration of electrons and holes varies (Soref
et al. Fig. 11), the change in absorption coefficient with a change in free electron concentration(Soref et al. Fig. 14),
and the change in absorption coefficient with a change in free hole concentration (Soref et al. Fig.15). From [10].
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The data can be fit to get simple equations relating these quantities. These equations are

usually given as [1], [6]:

An = -8.8e-22-ANe -8.5e-18-(ANh) 0 8, and

Aa = 8.5e-18-(ANe) + 6.0e-18-(ANh)

However, refitting Soref et.al.'s absorption data shows that a better fit is actually given by

[5]:

Aa = 9.1e-22-(ANe)1. 22 + 2.5e-20-(ANh)'. 13

It is useful to note that neither of these sets of equations is presented in Soref et. al.'s original

paper, though the first set of equations is used in later papers by Soref (for example, [11]). Soref

et. al. did do a similar fit to the data in their original paper, but ended up with slightly different

numbers, which are not, generally, used in the literature.

Index changes caused by carrier changes can be as high as 2x10-3 for 1x1018 p-type doping in

silicon. Modulation speeds, which are determined by the time necessary to move the free

carriers, can be in the GHz range [5]. Thus, the plasma-dispersion effect is the most widely used

modulation mechanism in the current silicon modulator literature. It is this mechanism that is

used for all the designs in this thesis.

Mach-Zehnder Modulators - Rational and Transfer Function
There are many different device designs for exploiting a change in index to create a working

modulator. Possibly the biggest split in these structures is between resonant and non-resonant

modulators. Resonant modulators are usually made in rings or photonic crystal cavities [5] [20]

[18]. Non-resonant modulators are usually made in a Mach-Zehnder (MZ) configuration.

Resonant modulators have a smaller footprint and require less power, but have smaller

bandwidth and are more sensitive to temperature and fabrication variations. Mach-Zehnder

modulators require more power and space, but have larger bandwidth and are more robust to

variations [2]. Because the relevant application requires a large bandwidth, this work addresses

Mach-Zehnder modulators

A Mach-Zehnder (MZ) modulator is created by splitting the power from an incoming light

pulse between two paths of different effective length, then recombining it at the output. When

the pulse recombines, the difference in effective length has caused a phase difference, which

yields either constructive or destructive interference, thereby changing the output amplitude. In



order to dynamically change the output signal, it is necessary to dynamically change the effective

length of one or both arms. Such a change is accomplished by including a device which employs

one of the phase-affecting modulation effects described above: in our case the plasma-dispersion

effect. For the remainder of this work "MZ modulator" will refer to the entire modulator

structure, while "modulator" or "phase-shifter" will refer to the device present in one or both

arms to modulate the effective path length. In order to ensure that full modulation depth can be

achieved-that is that full cancelation is possible when the arms are 180* out of phase-the light

must be split evenly between the two arms. This can be accomplished with either a 3dB coupler

or a Y-junction. In our system (depicted in Figure 4) 3dB couplers are used as the 50-50 splitter

at both the input and the output.

Modulators are included in both MZ arms of our system [7]. While, technically, only one

arm needs to contain a phase shift (and thus a modulator), operating in both arms allows for

push-pull operation. In push-pull, opposite biases are applied to the arms around some DC bias

point, adding more phase in one arm and less in the other. A ir-phase change can then be

achieved in half the modulator length. To take advantage of the most linear part of the MZ

transfer function, the MZ modulator is operated in quadrature. To place the MZ modulator in

quadrature, a titanium heater is fabricated over one of the modulator arms. The heater is then

used to adjust the accumulated phase change using the thermo-optic effect (see above) until the

outputs indicate that the device is in quadrature [7]. After the second 3 dB coupler the desired

output (the optical version of the input electrical RF signal) is transmitted in the top waveguide

and its complement in the bottom one. Often both outputs are used in future processing to

minimize errors [7].

Fehld3 dB
couple

Figure 4: Schematic of Mach-Zehnder modulator waveguide structure as implemented on chip.



The MZ transfer function itself can be calculated as follows. It is assumed that all light is

input on the upper channel, that the MZ modulator is operated at quadrature in push-pull, and

that the 3dB input and output couplers are ideal. The phase shift on the upper arm is denoted by

eip and that on the lower arm by (P2 and the input power is denoted by Po. The requirement that

the MZ modulator be operated in quadrature places an extra 7n/2 phase-shift on one of the arms.

In this calculation it is placed on the lower arm. For simplicity it is assumed that the modulators

are lossless. The effects of loss will be discussed in the "Linearization of MZ Modulators"

section below. After the first 3dB coupler the amplitude in the upper arm is given by

At11 P7 2

and that on the lower arm by:

Ab = Pe' 2 / e'2

The heater and the modulators add a phase change to these signals:

At2 ~ P (I/
b= VPOeiT1/ 2

At the second 3dB coupler part of the light in each arm stays in that arm and part is coupled

across to the opposite arm. The final output amplitudes are :

t3 e 2+ir/2 sin 2 4 1 92

b3 - P el2+1fIrr/ rr 2 2 42 4)

2 4)

Multiplying by the complex conjugates yields the final output powers:

P,,, =P sin2 (91 -92 _

It can be seen that the two outputs are complementary, and that the MZ transfer function is

sinusoidal, and not linear, in shape. This has important implications for modulator accuracy

which will be discussed in "Linearization of MZ Modulators" section below.



Figures of Merit
There are several common figures of merit (FOM) that are used when evaluating modulator

performance. The most important ones are V,,L, the 3dB optical bandwidth, the 3dB RF

bandwidth, and the insertion losses incurred by the device. These last three are more or less self-

explanatory. The 3dB optical bandwidth is the wavelength range over which the device works.

The 3dB RF bandwidth is the fastest electrical signal that can be faithfully modulated. The

insertion loss is the total optical loss through the device, including all waveguide loss

mechanisms and input and output coupling. It is usually given in dB/cm, and, especially in

smaller devices, can be quite high [26]. V2L is meant to be a measure of device sensitivity and

corresponds to the length of the device times the voltage which, when placed across it, yields a

i-phase-shift (thus allowing the MZ output in one channel to be changed across the full range

from zero to the input power using a phase-shift section in only one arm). In linear, electro-optic

modulators (like LiNbO3), VTL is a very good metric; increases in device length translate to

decreases in voltage in such a way that the VL of a given modulation scheme stays constant

even as device length varies. However, in silicon plasma dispersion modulators, this FOM is

problematic because such a nice relationship does not hold. More specifically, because the

carrier concentrations are not linear functions of bias voltage, some voltage steps create larger

changes in phase than others. The DC operating point and the amplitude of the RF voltage

swing, thus, both matter when determining the phase change achieved. There are then locations

on this phase-change versus voltage curve where increasing the voltage has more or less effect

than increasing the length. For example, in a forward biased diode modulator, the relationship

between voltage and phase is exponential and a small change in voltage can swamp even a large

change in length [5]. Alternatively, in a reverse biased diode modulator, once the waveguide is

largely depleted, increasing the voltage across the device does little in comparison to increasing

the device length. Because, in the end, the quantity of interest is the power required to operate

the device, a much better FOM would simply be the total RF power required to achieve a a-

phase-shift. The footprint of the device, which is more relevant than the length in determining

packing density, could then be reported separately

Fundamental Limitations of Plasma-Dispersion MZ Modulators
The plasma dispersion effect relies on injection or extraction of free carriers in order to create

a change in refractive index. In order for a modulator based on the plasma dispersion effect to



work, there must exist both a way of injecting and extracting carriers at high speed, and a way to

exploit the generated change in refractive index to create modulation.

The generation of free carriers is usually accomplished though the inclusion in the design of

one or more electronic devices which inject or deplete them. Diodes are by far the most common

structures used in the literature [5] [4] [1] [19] [20]. MOS capacitors are also common [9] [14]

[15] [16] and a few researchers have used specialty structures (e.g. [12] [13] [2] [37].) In non-

integratable modulator designs carrier creation is sometimes accomplished by use of an external

light source (such as a pumping laser) [17]. The work in this thesis focuses on diode structures,

with some work on MOS capacitors.

The details of diode and MOS capacitor modulator structures are discussed below. However,

it is first useful to consider the limitations imposed by the use of the plasma dispersion effect

itself.

The first restriction to note is that changes in refractive index are coupled with changes in the

loss. This is always the case - refractive index and loss are related through the Kramers-Kronig

relations. In the case of the plasma dispersion effect, it is clear what the physical source of much

of this loss is: free carriers can be excited optically within the bands and then relax back

thermally through the emission of one or more phonons [6]. The more free carriers there are, the

more undergo this process, and the higher the loss is. Because a certain amount of index change

is associated with the presence (at some point) of a given number of carriers, it will also be

associated with a minimum amount of loss. In general, holes yield both a larger change in index

and a lower loss. It is therefore desirable that phase changes be accomplished entirely using

holes. While this is not possible in practice (though it is possible to mainly use holes), to discuss

fundamental limitations it will be assumed for the remainder of this section that all free carriers

are holes.

Given the maximum tolerable loss in a silicon phase-shifter that uses the plasma dispersion

effect, the maximum achievable phase change can be calculated by first assuming that all losses

in the waveguide are the result of free carriers (with no contributions from side-wall roughness,

insertion loss, etc.) It is further assumed that the dependence of the index of refraction change

on free carriers has the form:

An =An (Ap)p'



and that of loss on carriers has the form:

Aa = A,(Ap)p"

Where Ap denotes the change in the hole concentration and An, Aa,pn, andpa are coefficients. The

maximum phase shift achievable for a given amount of loss, Mss, is then:

A ~p = k LC , An 1 1 I ( ) l

LC, A,

where L is the length of the phase shifter, Cf represents how much of the mode is confined in the

region of carrier change, and M10 s is the total loss, in dB, tolerated through the device. From this

equation we note that if pa pn the achievable phase shift will be a function of device length and

of confinement factor. Because these coefficients are, in fact, not the same for holes in silicon at

1550 nm, we can see that a confinement factor of one (the highest allowed) will yield the most

phase shift, and that longer modulators with lower carrier densities will achieve larger phase

shifts per loss than shorter ones with higher carrier densities. Specifically, at 1550 nm the above

equation becomes:

Ap=k 0 LCf *-8.5e-18 M10 10 >n(1O)j
6.Oe-18-LC,

The achievable phase-shift per loss is shown in Figure 5.



Phase-Change Vs. Allowed Loss

(U

-C

al)

--
0
a)

0)
a)
3;

100

10

1

0.1

0.01

0.001o0.001 0.01 0.1 1
Magnitude of Total Allowed Loss (dB)

Figure 5: Dashed line corresponds to a n shift, dashed-dotted line to a n/2 shift. In a push-pull MZ modulator a n/2

shift in each arm is enough to achieve full modulation depth.

The 7r/2 radian shift needed to achieve maximum modulation depth in a MZ modulator driven

in push-pull, is theoretically achievable for all considered lengths at a total loss of less than 1 dB.

However, almost three times as much phase shift is achievable in the longest device. To see why

such a difference is present, it is useful to consider carrier concentration and the effective index

change as a function of the total losses. These are shown in Figure 6.
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It can be seen that in the shorter structures, higher carrier concentrations are used to make up

for the shorter length. However, because loss increases at a faster rate with carrier concentration

than index change does, these higher concentrations are not able to compensate completely for

the length difference. In the case where the loss and index change relations are of the same

order, as is the case for electrons, increasing the carrier concentration while shortening the length

leaves the overall phase shift unchanged.

Effectvie Index Change Vs. Allowed Loss



The above calculations represent a theoretical limit and are, of course, unrealistically

optimistic. The modal confinement to a modulated carrier region is usually much less than 50%,

not the 100% assumed here. Furthermore, the modulated region, and thus the confinement to it,

changes in volume as device doping concentrations are changed. Often, though not always,

higher doping concentrations yield poorer overlaps, preventing the full benefit of having more

carriers present from being realized. Making longer devices is also problematic, as not only is

small size a desired modulator property, but there are often other losses (such as those from

sidewall roughness or impurities) that limit practical device length.

Fundamental limitations to device speed also result from the use of the plasma dispersion

effect. Because the index change is caused by a change in carrier concentration, it is necessary

to move carriers into and out of some region of space. The speed that these carriers can be

moved will determine how fast the device can be operated. There are several physical

mechanisms that can limit speed. In the case of minority carrier presence, these carriers must

either travel out of the region or recombine. Since both diffusion and recombination are slow

processes, clearing a volume of minority carriers can take on the order of 100ps-lps and can

place a severe limit on device speed - limiting performance to a few GHz at best. However, as

modulation can be accomplished with majority instead of minority carriers, lifetimes do not

provide a fundamental limit on device speed.

When only majority carriers are present, speed is usually limited by the dielectric relaxation

rate of silicon, the RC time constant of the device, or by the saturation velocity of the carriers.

The dielectric relaxation time is a measure of how fast a perturbation in the distribution of

majority carriers can recover to the equilibrium distribution. It is a function of doping and is

generally well known (it is given by F/). In p-doped silicon, with NA = lx1018 cm-3 , the

dielectric relaxation time is around 4x 10-4 s, which, if dominant, would allow the device to

operate at about 30 THz. The RC time constant places a speed-limit based on the capacitance of

the device. While, in practice, this is often the limiting factor, there is no theoretical reason why

it needs to be. Presumably, a low-capacitance, low-resistance design could be realized by either

good device engineering (particularly if holes and electrons could be made to move in the same

direction making the carrier plasma charge neutral and, thus, capacitance free), by the use of

traveling wave electrodes to cut capacitance, or even, for some device designs, simply if the

contacts have low enough capacitance and resistance that the intrinsic RC time constant of the



device (which can be quite low) dominates. It is, therefore, assumed that the RC time constant

does not limit device performance. However, carriers cannot move arbitrarily fast - moving

carriers scatter off the vibrations of the silicon lattice, not matter how pure the material, how high

the field, or how few other carriers are present; the resulting limit on their speed is known as the

saturation velocity. In situations where carriers need to move across large distances to restore

equilibrium, saturation velocity ultimately provides the theoretical limit to device performance.

In silicon, the saturation velocity for electrons is 1x107 cm/s (or 1/1000 the speed of light). If the

modulated region they need to move in and out of is 400 nm wide, device operation is then

limited to 95 GHz. For holes it is 6x 106 cm/s. For the same modulated region width the device

operation would then be limited to 57 GHz [1]. In general, if the distance the carriers must move

is known, the maximum device speed can be determined from:

fAdB 2.4 where r =
-/ Vsat

where W is the distance the carriers must move and vsat is the saturation velocity [1]. Note that

the distance that needs to be moved might not be the length of the guide. Particularly for

movement of majority carriers in an accumulation layer or movement of the depletion region

edge in a highly doped material this distance might be quite short. However, for other situations,

such as large depletion width changes, a longer distance must be used. Again, saturation speed

represents best case performance. Usually, device speed is limited to much lower values by the

RC time constant.

One final consideration is the limit on optical bandwidth from the plasma dispersion effect.

Although there is a limit placed on the optical bandwidth usable at a given speed from the

wavelength dependence of Soref's equations, this usually is dominated in the MZ case by the

wavelength dependence of the waveguide propagation constants and, more importantly, of the

couplers into and out of the phase shifting sections. In general, the optical bandwidth usable in a

given phase-shifter design will depend on waveguide geometry and system tolerances.



MODULATOR MODELING
Accurate modulator modeling involves modeling both the electronic carrier responses of the

device to an applied bias and the optical responses of the modes to those carrier changes. The

modeling work in this thesis was split into two different parts. First, an electronic structure was

designed and the carrier distributions were calculated either analytically or using Synopsys's

SentaurusTM TCAD software suite. Then, those carrier distributions were imported into

MATLABTM and used to calculate the optical response of the device. The work in this thesis

focused on the design of the phase shifting modulator sections. Design of the overall MZ

modulator structure, including couplers, was not undertaken. However, some analysis of the

impact of the phase shifting section design on overall MZ performance was undertaken in the

section entitled "Linear Modulators" below.

Electrical simulations were carried out using both analytic models and full scale simulations.

Full scale electrical simulations were implemented in Synopsis's SentaurusTM software suite.

Optical simulations for straight and rib waveguides were performed in MATLABT M , where a

mode solver previously developed by Milos Popovic was used to calculate effective indices and

losses. Because Sentaurus does not output directly to a MATLAB-compatible format it was

necessary to parse the output files into a readable form. It was also necessary to re-grid the

carrier distributions from the finite element grid used in Sentaurus to an evenly spaced finite

difference grid for input into Dr. Popovic's mode solver (MMS). The overall simulation flow for

these files is outlined in Figure 7.

Optical simulations for photonic crystal waveguides were carried out using the MIT Photonic

Bands software suite developed by Steven Johnson's group, the output of which was analyzed in

MATLAB and in MayaViTM.
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Figure 7: Flow diagram of simulation process

Electrical Simulation Details
Electrical simulations were carried out using both Sentaurus Structure Editor and Sentaurus

Device. The accompanying Synopsys plotting software, Tecplot, was used in the processing of

the output files. Sentaurus Workbench, a wrapper program, was used to organize the larger runs.

V = 0



Device structures were created and meshed using Sentaurus Structure Editor. To create a

device structure, a Scheme script placing material blocks, doping profiles, and contacts was

written (see appendix B). For large parameter sweeps, Sentaurus Workbench was used to vary

the desired input variables without the need to hand code each desired structure. To simplify

device creation and analysis all doping profiles were assumed to be constant and abrupt. The

boundary geometry specified for the device was then meshed using a Delaunay meshing

algorithm suitable for finite element simulations [46]. A fine mesh was used in areas of particular

interest, such as diode junctions. The mesh was allowed to expand away from these areas. An

example boundary file and mesh (expanded for illustration) are shown in Figure 8. To keep

simulation times down, the mesh was made as large as possible while still maintaining the

desired accuracy. This accuracy varied from simulation to simulation: with the least accuracy

demanded for original exploratory simulations and the most for rigorous optimization

simulations.
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Figure 8: (a) Boundary geometry of example device structure, (b) Example Delaunay simulation mesh. Mesh is
finest in the junction area and largest in the oxide area away from the active device.



After the device structure was created and meshed, its electrical performance was simulated

using Sentaurus Device (Sdevice). In Sdevice, the Poisson equation and the electron and hole

continuity equations were simultaneously solved. In many simulations, the heating equation was

also solved. However, for most devices of interest (reverse biased diodes and MOS capacitors)

its inclusion did not have a significant impact on simulation results.

A number of physical and numerical parameters can be set from the command and parameter

files of an Sdevice simulation. A few of the more important ones will be highlighted here. (For

an example command file, see Appendix B). Because of the high doping levels used in parts of

the modulator, it was necessary to force the use of the more accurate Fermi statistics over the

computationally more efficient Boltzmann statistics when calculating carrier densities. This was

done by specifying the keyword "Fermi" in the physics section of the file. By default the

mobility is a function of temperature only; this is not physically correct. Mobility degradation

due to doping, high electric fields, and proximity to surfaces was added into this model.

Similarly, all recombination mechanisms need to be explicitly specified: Shockley-Read-Hall

(SRH), surface and Auger recombination were included. Avalanche and band to band generation

were also incorporated into many simulations. Doping dependence was included in the SRH

calculations. In all silicon simulations, the carrier lifetimes were left at the accepted values of 10

ps for electrons and 3 ps for holes, which are also the defaults. To find the surface recombination

velocity at the silicon-SiO2 interfaces, simulation results were fit to previous simulations that

were fit to measurements of forward biased diode performance for diodes fabricated at Lincoln

Laboratory. The resulting surface recombination velocity was 2x105 cm/s. This value is

important in minority carrier dominated situations, as surface recombination is the dominant

recombination process for minority carriers in silicon devices of this size. Using this surface

recombination velocity the overall minority carrier lifetime was found to be around 1 ns.

Devices whose responses are characterized mainly by majority carrier dynamics are not sensitive

to this value. In forward bias diode simulations that involved polysilicon, the surface

recombination was turned off, and the carrier lifetime in the SRH model varied by hand in the

100 ps-10 ns range. This was to account for the fact that the large number of flaw and trap states

present in polysilicon dominate the lifetime. Because the number and type of these flaw and trap

states depends heavily on the specifics of the device processing, predicting the lifetime values

beforehand is impractical. Instead, this lifetime range was considered and devices designed that



could work throughout it. A list of important physical parameters input to simulations can be

found in Appendix A.

Optical Simulation Details
As stated above, Sentaurus does not output its results in a MATLAB readable format. It was,

thus, necessary to first convert the output files from ".tdr" format to Tecplot's ".dat" format and

then to parse them into a usable array. Because the optical mode solver needs a rectangular grid,

and Sentaurus simulations use a finite element grid, it is necessary to re-grid the electrical output

before it is input into the mode solver. It is also necessary to convert the calculated carrier

distributions into index and absorption distributions.

Each output file corresponds to a specific structure at a specific voltage. To re-grid these

files, the location of and the variable values at each grid point are placed into a list and exported

in ASCII form. A rectangular grid of blocks of the desired size (usually 2 nm x 2 nm) is created

in MATLAB and the finite element grid locations in the list are placed onto this new grid. If

more than one location falls within the same grid square, the values are averaged. To fill in

squares in which no grid points fall, a linear interpolation scheme is used.

Once the rectangular grid is created, it is necessary to prepare the electrical output for input

into the MMS. The complex refractive index at each point is determined according to

;1(x, y9,)= no (x, y,)+ An(x, y,A)+ i Aa(x, y, A)/2ko

where no is the material index of refraction, and An and Ja are, respectively, the change in index

of refraction and absorption due to carriers, and are calculated using Sorefs equations. At

1550nm, the standard equations from Soref presented above (in the section entitled "Plasma-

Dispersion Effect") are used. However, there are no such standard equations at other

wavelengths. Soref's original paper does contain graphs (but not equations) that relate change in

refractive index and absorption to carrier density at a variety of wavelengths. An interpolation

program based off data read from these graphs was implemented by Eugen Zgraggen, a visitor to

Rajeev Ram's group, and is used here when results at wavelengths other than 1550 nm are

desired. Because this program yields slightly different results at 1550 nm than the standard form

of Sorefs equations (see Figure 9), the results at 1550 nm are recalculated using this

interpolation program when comparisons across wavelengths are desired (for, say, optical

bandwidth calculations) to ensure consistency. However, in order to facilitate comparisons to



the literature and to previous results in the group, when only 1550 nm wavelength results are

wanted, the standard form of Soref's equations is used.

Change in Index of Refraction with Doping Concentration 4 Change in Absorption with Doping Concentration
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Figure 9: Comparison of change in index and absorption with carrier concentration at k=1550 nm as given by the
accepted forms of Sorefs equations (circles) and the program from E.Zgraggen, which interpolates from Sorefs
graphs (crosses). Green lines indicate changes with hole concentrations and black lines those with electron
concentration. As can be seen, there is good agreement in the area of 1 x1018 carriers per cubic cm, but progressively
less agreement further away from this range. At the edges of the graph (concentrations of 1 X10 15cx0m3 or 1 x 1020cm-3)
values may be off by a factor of two or more. Agreement is much better for index variations than for absorption
variations.

After the carrier distributions are converted into a complex index distribution, that index

distribution must be averaged for input into the mode solver. This is necessary because the mode

solver uses an iterative Arnoldi algorithm and abrupt changes in matrix values hurt convergence

and accuracy. Due to time and memory constraints, the size of the grid input into MMS is often

coarser than the newly created grid of the Sentaurus outputs. If the two grids use different x- or

y- direction steps, the complex index distribution is first re-gridded onto the MMS grid. Changes

in MMS grid size below 10 nm x 10 nm grid squares seem to have little impact on results (see

Figure 10). Furthermore, because the computational domain for Sentaurus electrical simulations

usually does not extend much beyond the silicon regions (while the modes can), extra oxide

padding is added around the Sentaurus computational domain region to ensure that no problems

are caused by computational domain boundaries. Once this is done, standard area-arithmetic

index averaging is applied. The averaged index distribution is then passes to MMS where the



eigenvalues and eigenvectors of the index distribution are found using an Arnoldi algorithm in

shift-invert mode, and the complex electric and magnetic fields along with the complex

propagation constant are returned.

10 -4 Effect of modesolver grid-size on Aneff

Voltage

Figure 10: Below 10 nm x 10 nm grid squares, x- and y-direction step size of the grid input into MMS has little
impact on results. Here the index change calculated for an example modulator design is shown for both a 10 nm x
10 nm and a 4 nm x 4 nm mode solver grid spacing.



RIB WAVEGUIDE MZ MODULATOR DESIGNS
A common waveguide design for modulator structures is the rib or ridge waveguide, pictured

in Figure 11. This structure is popular because light is guided in and confined by the rib region,

while the slab allows electrical contact to be made to an intrinsic device in such a way that the

highly-doped and metal contact regions are kept separate (or largely separate) from the optical

mode, thus, limiting losses to acceptable values.

Contact \ode Contact

Rib

}Slab lef ;

Figure 11: (a) A standard Rib-waveguide consists of a slab section with a rib placed on top, (b) the rib serves to
confine the mode away from the ends of the slab, allowing lossy metal contacts to be placed there and successful
electrical contact to be made to the intrinsic modulator device.

When designing a rib waveguide, there are two main design spaces: that of the electrical

device and that of the optical waveguide. The key is to achieve regions of high index modulation

from the electrical device and to integrate the two such that the optical mode has maximal

overlap with the area of the device that sees index modulation.

Modal Overlap Considerations
Overlap between the mode and the modulated region is, of course, important in all modulator

structures. It will be explored here in the context of the plasma dispersion effect in rib

waveguides. Because only part of a mode is carried in the modulated, or active, region of the

waveguide, it is necessary to calculate an effective index change from the refractive index

change present in the active region. The effective index change reflects the actual change in

phase accumulated by a mode traveling through the waveguide. When refractive index changes

are small enough to be considered perturbations (that is the mode shape does not change

noticeably), the effective index change can be calculated as the change in refractive index of the

region times the confinement factor of the mode to the region. What percentage of the mode

experiences what index change depends significantly on both the size and location of the active

region and on the geometry of the waveguide itself.



The two graphs in Figure 12 show the effect of waveguide geometry on effective index

change. The height and width of the rib in a rib waveguide are varied and the effective index of

a plain silicon guide with the given geometry is compared to that of a perturbed guide. Two

perturbations are considered. In the first, the perturbed region covers the bottom 100 nm of the

guide. In the second, it covers the whole guide. Because the mode is more confined in a larger

waveguide, when the perturbation occurs throughout the waveguide, the effective index change

simply increases as the size of the guide increases and there is no optimal value for either

dimension. However, when the active region only covers a portion of the waveguide, there can

exist optimal values for waveguide dimensions. Here, the 100 nm profile is constant over the

width of the guide, but varies in height. Therefore, there is no optimal width - wider is always

better as it pulls more and more of the mode into the guide and into the perturbed region - but

there is an optimal height. The maximum in effective index change with height reflects the

trade-off between obtaining the best overlap between the peak of the mode and the active region

and maintaining high overall confinement of the mode in the guide thereby keeping the modal

peak high. Too short, and there isn't enough light in the waveguide to get optimal modulation

even when the modal maximum is in the active region. Too high, and the modal peak moves

higher in the guide leaving only the mode's edges to see the index change present in the bottom.

Were the region of refractive index change to be a vertical strip instead of a horizontal one, there

would be no optimal height, but there would be an optimal width.
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Figure 12 (a) Change in effective index (from the plain, unperturbed silicon waveguide case) with height when an
index perturbation equivalent to the injection of 5x 1017 holes is applied across the bottom 100 nm of the
waveguide (circles) and across the whole waveguide (triangles). The rib width is fixed at 500 nm with a slab
height of 50 nm surrounded by SiO 2. Guide height reflects the entire height of the center of the guide (from the
SiO 2 substrate to the top SiO 2 cladding). Note that, for a 100 nm perturbation there is a maximum An, while for
perturbation of the whole waveguide, An increases continuously with height. (b) Change in effective index under
the same index perturbations as a function of guide width. Here the guide height was held constant at 150 nm. In
both cases effective index change simply increases with width.

Within a particular waveguide design, the details of the perturbation layer location and

strength obviously also have a large impact on the mode. The three graphs below demonstrate

this impact on effective index given a specific waveguide geometry. In the first graph, a 50 nm

layer of refractive index change is moved from the bottom to the top of the waveguide. An

analogous situation in an actual device would be moving the vertical location of a junction. In

the second graph, the size of the index perturbation in a 100 nm layer at the bottom of a

waveguide is varied. Changing doping levels to cause more or less carrier injection or depletion

would cause the same type of difference in a real structure. Finally, the third graph shows how

effective index change changes as the active region is increased to cover the whole guide.

Increasing bias voltage to affect a larger device area would accomplish the same thing in an

actual device.

Looking at the first graph, it should be noted that the index perturbation has a clear peak.

Because the mode is concentrated in the center of the guide, as the layer of refractive index

change approaches this region, the effective index change increases, and as it moves away it

decreases. The difference in effective index change between the location of maximum overlap

and that of minimum overlap is greater than 30%. Clearly the location of the junction relative to

the modal maximum is important. The slope of the third graph also illustrates this point. Here,



the effective index change increases quickly as the perturbation layer moves across the modal

maximum at the center of the guide, then rolls off as new index change is placed in the top of the

guide where there is not as much of the optical mode. Finally, the second graph shows the

effective index increase with increase in the strength of the index perturbation. The important

thing to notice here is that this increase is linear with refractive index change. This is to be

expected as the effective index change is approximately the refractive index change times the

confinement factor, and the confinement factor is not changing.

In general, then, the placement of regions of carrier change and the geometry of the

waveguide are important parameter spaces that need to be considered carefully during modulator

design.
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Figure 13: (a) Change in Aneff as a 50 nm
perturbation equivalent to the injection of
5x10 17 holes is moved from the bottom to the
top of a silicon rib waveguide 500 nm wide
x200nm tall with a slab height of 50 nm. The
guide is surrounded by SiO2. (b) Change in Aneff
for the same guide as the strength of the index
perturbation is increased from 0 to 6e-3
(equivalent to injecting 3.7x1018 holes). (c)
Change in Aneff for the same guide with an
index perturbation equivalent to the injection of
5x 1017 holes, as the affected portion of the guide
is expanded from the bottom 50 am to cover the
whole 200 nm guide height.
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Active Devices for Moving Carriers
Intrinsic electronic devices can be used to dynamically control carrier concentrations. There

are several different devices that can be used and they can be biased in one of several operating

regions. Diodes can be operated in forward or reverse bias; MOS capacitors in depletion,

inversion, or accumulation. Other devices come with their own operating region choices. Each

device and operating region has its own benefits and drawbacks. In particular, it is important to

consider achievable speed, sensitivity, and loss. The work performed in this thesis is

X 10~4



predominately concerned with reverse biased diode modulators and MOS capacitor modulators

biased in accumulation.

Diode Modulators
In general, diode modulators are nice because they are easy to fabricate and analyze, and

because they can achieve acceptable speed and sensitivity performance. Diodes can be operated

in forward or reverse bias. In forward bias, carriers injected across the junction contribute most

of the index change seen. However, in some designs, modulation of the depletion region size

can still have a notable effect. In the first set of diodes fabricated in our group (pictured in Figure

14), depletion width modulation accounted for nearly half of the index change observed at low

forward biases. In reverse bias, it is only the modulation of the depletion region that is

responsible for the index change.

Device speed is determined by the rate at which the carriers can be moved into or out of the

interaction area. Forward biased devices are slower as this rate is dominated by the minority

carrier lifetime (which is determined from the minority carrier recombination time - the time it

takes injected carriers to recombine - and the minority carrier transit time - the time it takes

injected carriers to move across the diode and out of the region of interest) [5]. In previous

devices fabricated in the group, the surface recombination rate was found to be the dominant

component of the minority carrier lifetime. The total lifetime was on the order of on 1 ns, which

allowed for 160 MHz modulation [4].

In reverse bias, speed is determined either by the dielectric relaxation rate of silicon, the

saturation velocity, or by the RC time constant of the device. While the saturation velocity places

the theoretical limit on device speed (as discussed above), in practice, it is actually the RC time

constant that tends to dominate in these devices. When calculating the capacitance of the device,

the capacitance of the junction as well as the contacts (and, for experimental results, the

measurement set-up) needs to be included. The resistance needs to include the resistance of the

silicon regions between the junction and the contacts, and the contacts themselves, (and again, in

practice, the measurement set-up, which typically includes a 500 probe) [5]. Previous reverse

biased Mach-Zehnder diode modulators designed in our group have had operation frequencies of

up to 26GHz. These operation frequencies are measurement limited due to the 500 probe in the

measurement setup, and would, presumably, increase if the probe resistance could be lowered

[5].



While reverse biased diodes are significantly faster than forward biased ones, they are also

much less sensitive, requiring significantly larger operating voltages and device footprints to

work. A typical forward biased diode is operated between 0 and 1 V; a typical reverse biased

diode between 0 and -5 to -10 V [5]. Furthermore, a forward biased diode with p-type doping of

NA=1x10 " cm-3 , and n-type doping of ND=2x1017 Cm 3 will inject on the order of 1x 1019 cm-3

holes, while a reverse biased diode at -10 V will still only deplete the doping value of ND=2x 1017

cm . The reverse biased case is aided slightly by the fact that, at higher voltages, depletion can

occur across the entirety of the guide, while the number of injected carriers in the forward biased

case will always fall off sharply away from the junction. However, it turns out that forward

biased modulators are still much more sensitive. Previous results in our group obtained a VL

value in forward bias of 0.005 Vem when the bias point was chosen to be 0.95V and a value in

reverse bias of 4 Vcm at bias point of -7V.

Figure 14: Previous modulator design. From [51

Work in this thesis concentrated on improving the reverse biased diode sensitivity. The

previous reverse biased modulator design used a vertical p-n junction at the side of a single mode

rib-waveguide (see Figure 14). Carriers were injected or depleted from this vertical junction area.

This junction structure does not optimally overlap the optical mode traveling through the device:

much of the index change, in both forward and reverse bias, is "wasted" in areas with relatively

little light. To increase optical mode overlap, several different junction schemes were considered

(see Figure 15). Ease of fabrication as well as expected sensitivity improvement were considered

for all cases. Because sensitivity improvement is associated with the injection or depletion of a

larger number of carriers, increased sensitivity is usually associated with increased loss (as

described above) and with decreased speed. This last tradeoff comes from the fact that

increasing the number of carriers moved into or out of a reverse biased diode by a given voltage

change is usually associated with increased device capacitance. Physically, the increase in



capacitance results either from increased junction area or from increased doping levels causing a

decrease in depletion region width (see below). The higher capacitance then decreases overall

speed. These tradeoffs were also taken into account when picking the final modulator design.
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Figure 15: Diagram of proposed diode modulator schemes

To obtain a rough estimate of modulator sensitivity and speed the Schottky diode model can

be used. In this model, the doping profiles are assumed to be abrupt with a line denoting the

junction between the n-type and the p-type materials. The depletion region is modeled as a

region of some width, xn, on the n-side of the junction and, x,, on the p-side of the junction that

contains zero carriers. The width of this region as a function of voltage is given by:

2,siNA 2EsNDXfl DqND(4+NJ (bi -V) and xp1qN(N +ND )(Obi -v)

where ND is the doping concentration of the n-type material, N is that of the p-type material, esi

is the dielectric constant of silicon, q is the electron charge, (poi is the built-in bias of the junction,

and V is the applied voltage. From these widths, the area of the modulated region can be found

and, together with the doping concentration and the modal confinement factor to that area, the

effective index change can be determined. The losses accumulated by the mode can be

calculated from the confinement in regions that still contain carriers.



In reverse bias, the capacitance can be considered to be equal to the parallel plate capacitance

for two sheets of charge separated by the width of the depletion region.

C =_ A junct Cs

where Ajune, is the area of the junction. Assuming a 50 Q load, the predicted measurement-

limited RF speed of the modulator can determined. Rough simulations using the full electrical

and optical model described in the "Modulator Modeling" section of this work, were run for the

structures that seemed promising.

A horizontal junction placed across the top of the waveguide (for ease of fabrication) was

chosen as the desired structure (see Figure 16) [5]. This structure was then optimized using more

precise simulations.

Figure 16: Proposed Modulator Design. From [5].

The device width was fixed by other system parameters. However, the height and the doping

levels were optimized. To start, the n and p regions were switched as compared to the previous

design; the hole region was placed in the center of the mode to take advantage of the larger

effective index change caused by holes. To help keep losses low, the horizontal high-doping

layer was kept as thin as possible (50 nm), and the height changed to maximize the modal

overlap. The doping level of the high doping layer was set to lx1018cm~3, again to minimize

losses, and the doping level of the center of the guide was varied to determine maximum

sensitivity. A two dimensional parameter sweep through doping and waveguide height values

was run. The effective index changes as a function of voltage for various doping levels at one

height and of waveguide heights at one doping level are shown, for example, in Figure 17.
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Figure 17: (a) Change in effective index vs. bias voltage at various doping levels for a 500 nm wide 150 nm high
silicon rib waveguide, (b) Change in effective index vs. doping level for at various bias differences for same
waveguide, (c) Change in effective index vs. bias voltage at various heights for a 500 nm wide waveguide with a
center doping of 6x 10 "cm-3, (d) Change in effective index vs. height at various bias differences for same waveguide

From Figure 17, it can be seen that there is an optimal height at this doping level, as

expected. Increasing the waveguide height increases the modulation depth quickly. However,

after the maximal height, the decrease is much slower. In part, this imbalance comes from the

fact that the depletion region edge at zero volts is some distance away from the junction. A

junction placed at the center of a narrow guide then yields index change not at the guide center

but, rather, at the bottom of the guide (in this case 35 nm or more below the junction). The short

waveguides not only have poor confinement, but also poor modal overlap. Additionally, in short

+ Change from 0-2V
--- Change from 0-4V

-+- Change from 0-2V
+ Change from 0-4V

5

4.5



waveguides, the guide may become fully depleted after a certain voltage: that is, the depletion

region extends across all the silicon in the guide. Increasing the applied voltage then yields little

change in the carrier concentration (except at the extreme edges of the mode) and the index

change levels off. This effect can be observed in the bottom two curves of graph (a) in Figure 17

. After a certain height, the index modulation in this design seems to be fairly insensitive to

changes in height - an advantage when it comes to fabrication tolerances. This is because the

better modal confinement and the poorer modal overlap balance each other somewhat over this

region. If the guide height were to increase further, performance would eventually decrease

significantly.

When the doping concentration is varied at a particular height, the story is a bit more

complex. Increasing the doping concentration both increases the size of the index change in the

modulated region and decreases the size of the modulated region. In general, the depletion

region on one side of the junction is proportional to 1/'(Nop). If the mode were spread evenly

throughout the guide, increasing the doping would always help as the effective index (which

would be proportional to the affected area times the index change) would be roughly

proportional to I(Ndop). However, because the mode is not evenly spread, the decrease in doping

region size may also hurt overlap between the index and the mode. Therefore, increasing the

doping may not always help, and may sometimes hurt. Indeed, in graphs (c) and (d) of Figure

17, the response to the doping increase eventually levels off. The change in modulated region

width also explains why a two-dimensional parameter sweep was necessary: the modal overlap

changes with both doping and height. One other consideration of increased doping is increased

loss. The mode in the undepleted region of the waveguide (which increases in size at higher

dopings) sees loss from the carriers contributed by the doping in this area (also higher at higher

dopings). Because of this, the lowest acceptable doping level should usually be used.

From the optimization simulations, a diode height of 200 nm and a doping concentration of

6x 10" cm- p-type was chosen for the center and 1x108 cm-3 n-type for the top layer. The

device's simulated DC performance was compared to the simulated performance of the previous

design used in the group. As can be seen in Figure 18, the performance is significantly improved.

We expect about a seven fold increase in device sensitivity (VpiL) over the vertical design: half

of which is due to the change in doping and half to the horizontal junction [5].
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Figure 18: Simulation results comparing the old and new modulator design sensitivity in reverse biased

operation. The old design is plotted both as originally fabricated (triangles) and with the doping polarizations

switched (squares) to take advantage of the greater index modulation from holes. In the new design the center of

the waveguide is doped p-type. From [5].

It is worthwhile to explore the predicted RF characteristics of this device. As mentioned

above, in a reverse biased diode the operating frequency is limited by the RC time constant of the

diode. Because the internal resistance of the modulators is quite low (below about 0.3 Q-cm,) it

can be neglected in comparison to the 50 Q load from the measurement set up [5]. It is then the

capacitance of the device that dominates the frequency cutoff of operations. Provided good, low

capacitance contacts are made to the device, the capacitance will be dominated by the diode

junction capacitance. It will, thus, increase as the area of the junction increases and as the

equilibrium width of the depletion region decreases (that is, as the doping level rises.) Turning

the junction from vertical to horizontal thus increases the capacitance, as does increasing the

doping level to achieve better sensitivity. The capacitance of the new device was calculated from

AC simulations carried out in Sentaurus to be 4.9 pF/cm (of device length.) For comparison, the

previous design had a capacitance of 1.9 pF/cm. Therefore, it is predicted that a 500 micron long

version of this new device will only work up to 13 GHz, and not out to the 26 GHz achieved

before [5]. If the resistance present in our measurement probes could be reduced, the device

could, presumably, be operated at significantly higher frequencies. The frequency cut off of the



intrinsic device (not counting contacts or measurement probes), was simulated using Sentaurus

and found to be 270 GHz.

The proposed device was fabricated at Lincoln Laboratory. The final device height was 220

nm, the p-type central doping was 5x1017cm-3, the n-type doping across the top was 1.5x 1018 cm-

3 and did not extend all the way across, but was instead 50 nm short of the opposite side. The

expected index change with voltage for this device variation was simulated and is shown in

Figure 19. In this design the losses are expected to be between 16.7 and 5.8 dB/cm depending on

applied voltage. The expected V,,L for this structure is 0.7 Vcm when biased from 0 V to -4 V,

1.1 Vem when biased from 0 to -1OV, and 0.5 Vcm when biased from 0 to -2 V.

Index Change as a Function of Bias

x 10- for Fabricated Diodes

7-

6

5

(D 4-

3

2

1

0 2 4 6 8 10
Reverse Bias Voltage (V)

Figure 19: Simulated effective Index change for fabricated diodes

The devices were measured using a set-up designed by Jason Orcutt in Rajeev Rams's

group and diagrammed in Figure 20. In this setup, a tunable laser was used to take data at several

wavelengths from 1549.9 to 1550.1 nm to account for possible effects from Fabry-Perot fringes.

Because such fringes were not found to be a problem, the data at 1550 nm were used during

analysis. Light was coupled into and out of the waveguides through the use of lensed fiber. The

polarization and the coupling were adjusted until the output power reached a maximum. An IR

camera was used to visually inspect the light traveling though the waveguides. Several bright

scattering spots were observed, corresponding to possible defects in the waveguides. The

wavelength and the optical power out of the laser were monitored during measurements, and

relatively little drift was observed. Finally, only the top modulator output was measured.
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Figure 20: Diagram of modulator test set-up.

To characterize the DC response of the modulator, the arms were driven in push-pull: a DC

bias point, VDC, was chosen, the top contact of the top diode was placed at 2 VDC, the bottom

contact of the bottom diode was set to ground, and the middle, joint contact was stepped through

from 0 to 2VDC (see Figure 21). This is equivalent to biasing at VDC with a swing of +VDC. This

sweep was repeated for several different heater bias currents in order to determine the quadrature

bias-point of the heater and to get a complete picture of the DC response of the device. The

experimental data for a VDC bias-point of 5 V and 2 V are shown in Figure 24 and Figure 25. To

check the stability of the measurement, two complete runs at a VDC of 5 V were taken on the

same modulator. These are plotted against each other in Figure 22. As can be seen, the

measurements are consistent.
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Figure 21: Diagram of biasing in experimental set-up
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Figure 22: Comparison of two different sets of data taken on the same modulator in the same set up. Measurement
drift is minimal.

To fit the experimental data, it was first necessary to determine the effect of heater bias on

the phase of the output, and to normalize the output. The heater phase is expected to be

proportional to the square of the current put into the heater. Thus, the output power as a function

of the square of the heater current should be sinusoidal when the bias across both arms is the

same, as it is at the DC bias point. A sine-function was fit to this curve (see Figure 23). From

this fit, the phase offset of the two arms at zero heater bias, 2FF,, the proportionality factor

between the heater bias and the heater phase, Fx, and the amplitude of the output sine wave at the

DC bias point, FA, can be determined. The theoretically predicted output power for a given

heater current and voltage input on the center contact, is then given by:



FA exp - (a v, + a+Fm

Pout, sin 2 F X [I2 + F M]+ '" "'op ( Vo

exp (- L aVDC hK

F a LePL a ybol
+ -exp - L * - exp - L "

4 exp (- L a 2 2

where L is the modulator length, Iheater is the heater current, avrp is the predicted loss in the

modulator in the top arm at the applied bias, avbo, is the same for the bottom arm, pvtop is the

predicted phase modulation in the top arm, (pvo, is the same in the bottom arm, and ac is the

predicted loss at the DC bias point.
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Figure 23: Fit to output as a function of the square of the heater current

The theoretical fit to the experimental data taken at the VDC bias-points of 5 V and 2 V is also

shown in Figure 24 and Figure 25. The quadrature point was determined to correspond to 90 mA

placed on the heater. The measured value for V2L was determined to be 1.2 Vem (at the 2 V

bias), which is almost a factor of 4 improvement over our previous designs, but almost 2 times

higher than the predicted value of 0.7.
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As can be seen, the theoretical fit follows the general trend of the measurements well.

However, it tends to overestimate the phase-change observed. Why this is the case is currently

being investigated. The frequency response of these diodes was measured at LL and the 3 dB

roll-off point was determined to be 12 GHz, which is in good agreement with the predicted

value.

MOS Capacitor Modulators
MOS capacitor modulators can be run in the depletion, inversion, or accumulation regime.

Operation in the depletion regime is similar to operation in the reverse bias regime for a diode.

However, while the depletion region in a reverse biased diode continues to expand with

additional applied voltage, there is a maximum depletion region width in a MOS capacitor that

corresponds to the onset of strong inversion. After the depletion region hits its maximum width,

it expands minimally with additional voltage, the device is in inversion, and the situation

changes. Additionally, the depletion region width in a MOS capacitor biased some amount

above its flatband voltage is similar to the change in depletion region width of an equivalently

doped diode biased the same amount above zero [8]. This can be seen in Figure 26. This means

that the device is not significantly more sensitive than its diode counterpart in the depletion

regime. Furthermore, because the depletion width may not expand to the desired extent

(inversion may be hit first), depletion of enough of the waveguide to create a 7[ or R/2 phase-

change may not occur at any voltage. Finally, because oxide thicknesses are often kept small for

fabrication reasons, the total capacitance of a MOS capacitor device in depletion is often higher

than that of an equivalently sensitive reverse biased diode. Thus, the MOS capacitor will have a

higher RC time constant, and be slower. Using a MOS capacitor device biased in depletion is

therefore not expected to be beneficial. However, if fabrication permits large oxide thicknesses,

higher speed operation can be achieved and significantly faster speeds at the same sensitivity can

be possible.
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Figure 26: Calculated width of the depletion region of a diode with NA=5x10 7 , ND=l x1018 biased from 0 to 1.6
volts (red) and the same for an n+-polysilicon-gated p-type MOS capacitor with NA= 5 x 1017 and oxide thickness of
6nm biased from flatband at -1 V to the onset of strong inversion at +0.6 V (black).

In both the accumulation and inversion regimes, high levels of charge are confined in a thin

layer near the junction. One might think that this is similar to the forward bias regime, but this is

not quite the case. In a MOS capacitor, this layer of charge is confined much more closely to the

junction itself - within a few dozen nanometers at most, as illustrated in Figure 27 [8].
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Figure 27: Cross section of hole concentration in a MOS capacitor device in accumulation biased 2V from the
flatband voltage. Various doping levels are shown. The thinness of the accumulation layer, especially at high doping
concentrations can be seen.

In the accumulation regime the accumulated thin charge layer is made up of majority carriers

- this means that the layer can be created and destroyed at high speed, and the limiting factor, in

practice, is again that of the RC time constant. In accumulation, to first order, the capacitance



per area is simply s/t,, where tox is the oxide thickness. In reality, there will be a correction to

account for the finite thickness of the accumulation layer in the semiconductor (and, in a

polysilicon gate, for the finite thickness of the gate charge layer). This correction will lower the

overall capacitance, so the above value can be treated as a maximum [42].

In the inversion regime, the charge layer is made up of minority carriers. However, unlike

the diode case, where carriers are pulled across the junction, the inversion layer is isolated by the

depletion region and does not have easy access to a source of minority carriers. While the

inversion charges can recombine quickly, it can take on the order of 1 Is - 10 ms to generate

these carriers [8]. Speed can be improved by shining a light on the junction (which generates

electron-hole pairs to replenish the inversion layer), or by attaching an oppositely doped piece of

silicon to the edge of the inversion layer to act as a source of minority carriers (see Figure 28).

Once a source of minority carriers is provided, the capacitance of the inversion layer can also be

approximated simply as the parallel plate capacitance between the inversion layer at the

semiconductor-oxide interface and the equivalent charge layer at the metal-oxide interface [8],

and high-speed operation can be realized.
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Figure 28: A MOS capacitor in inversion with a source of minority carriers provided to the junction.

Because inversion regime operation is more complicated and offers no obvious advantage

over accumulation regime operation, only accumulation regime operation will be considered here

for modulator implementation. To start, the speed of a given MOS capacitor modulator section

is limited by the RC time constant of the device. As stated above, the capacitance per area can

be well approximated by s/tex, this value as a function of oxide thickness is plotted in Figure 29:
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Figure 29: Capacitance per junction area as a function of oxide thickness. Note that for thin oxides, this value is an
over estimate as the finite accumulation layer thickness will increase the effective oxide thickness slightly

If we assume again that the 50 Q resistance of the measurement probe dominates, then we expect

to see a measurement-limited speed of 246 MHz to 13 GHz for oxide thicknesses of 2 to 100 nm

and a junction area of 250 pm2. Of more interest is the intrinsic speed of the device, which was

found to be around 140 GHz for a 10nm oxide via Sentaurus simulations. This makes this

structure faster than a forward biased diode modulator, but slower than a reverse biased one.

To obtain a good estimate of possible MOS capacitor modulator performance, it was

assumed that the contacts could be placed where desired, without regard to geometric

constraints. Therefore, a horizontal junction (allowing for more accumulation layer overlap with

the mode) was implemented here as well. The basic geometry of the simulated structure is

shown in Figure 30.
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Figure 30: Geometry of simulated MOS capacitor phase-shift structure.



Because this is not a physically realizable structure, rigorous optimization of the structure

parameters was not undertaken. Instead the relative impacts of some of the parameters were

explored and a general idea of the performance achievable in a MOS capacitor modulator was

formed. Since modal overlap is important for modulator performance, and because the

accumulation layer is so thin, a reasonable junction location and rib height need to be chosen.

The gate height is again picked to be 50 nm in order to minimize losses. To pick the height of the

semiconductor rib, simulations were carried out in MATLAB using an approximation to the

accumulation layer width and charge density as described below.

Though the thickness of the accumulation layer can be approximated to first order as [43]

tacc 2LD

where LD is the Debye length of the material, the charge is not actually spread evenly throughout

the accumulation layer. The resulting accumulation layer thickness obtained from this

approximation (shown in Figure 31), seem to imply that the thickness of the accumulation charge

at low doping is significantly larger than that at higher ones (the width is inversely proportional

to the square root of the doping concentration). However, if Sentaurus is used to plot the precise

carrier distribution of the accumulation layer (see Figure 27), it can be seen that, though there is

still accumulation at these distances, the vast majority of charge at all dopings is concentrated

within about 10 nm of the junction. This, therefore, was the accumulation layer thickness chosen

for use at all dopings in the MATLAB simulations.

Charge layer thickness vs. doping level
E 60-

C 

-

a' 30-

U)
En

-ce

20-
0

CU
5~ 10
E

0 1617 118
10 10 10

Doping of silicon bulk

Figure 31: Accumulation Layer thickness as a function of semiconductor doping level.



Because a MOS capacitor is a capacitor, the amount of charge it stores, per area, is

approximated well by

Qacc = Cox (VFB - V)

where VFB is the flat-band voltage of the MOS capacitor - that is the voltage at which the energy

bands of the device are flat, and there is neither depletion nor accumulation at the oxide interface

(there is no charge on the capacitor). Cox= e/tox as explained above. The flatband voltage is a

function of the doping concentration (see Figure 32). Lower doping in the p-type region means

that less voltage is necessary to pull its band into line with the n*-doped region being used as the
"gate." Thus, the overall voltage sensitivity will depend on the doping. However, after the

flatband voltage, the effect of a change in voltage on the accumulation layer charge is negligible

to first order. This means that, were the mode evenly spread in the guide, for equivalent changes

in the voltage above flatband, doping values would not matter. Because practical accumulation

layer width is not a strong function of doping, it is expected that MOS capacitor modulator

sensitivity to voltage above flatband, in any design, will not be a strong function of doping.

However, a lower doping means lower baseline losses contributed from carriers outside of the

accumulation layer. On the whole, then, it is expected that lower doping levels in the

semiconductor region will yield more desirable performance.
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Figure 32: Flatband voltage as a function of doping level. Note that the flatband voltage is independent of oxide
thickness.

It was stated above that the accumulation layer charge, to first order, is independent of

everything except the oxide thickness. However, a more accurate approximation is given in [43].



The resulting values from these two equations for a doping of NA= 1x108 cm-3 and an oxide

thickness of 6 nm are plotted in Figure 33. As can be seen, the agreement is quite good. It is

therefore determined that the original approximation can be used.
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Figure 33: Check of rough approximation against more accurate approximation. About the same results are found.

Using the above calculations for accumulation layer width and charge (at 1 V above flatband),

the rough dependence of modulator response as a function of height can be plotted (see Figure

34). A 150 nm height is chosen for use in later electrical simulations.
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Figure 34: Estimated effect of guide height on MOS capacitor modulator performance. Note that while the effect is

noticeable, it is not particularly strong.



To determine the actual performance of the MOS capacitor modulator, simulations were run

in Sentaturus for various semiconductor doping levels. The results are plotted in Figure 35.
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concentration, as expected. The sensitivity of this set of modulators falls somewhere in between

that of forward biased diodes (which are more sensitive) and that of reverse bias diodes (which

are less so). As stated above, the operating speed of these modulators also falls in between the



two cases. It is worth noting that the figures of merit achieved seem to be more similar to those

of a reverse biased modulator than those of a forward biased one. While MOS capacitor

modulators may be capable of some improvement over diode modulators and may be favored for

some applications, movement to a MOS capacitor design does not appear to present a path

towards next-generation modulator performance.

Finally, it is necessary to consider the losses. In the simulations above, a gate doping of

lx 1020 cm-3 was used. This led to very high predicted losses for the modulators-on the order of -

725 dB/cm or -36 dB through a 500 micron device-with lower semiconductor doping levels

yielding lower losses as expected. Increasing guide height (to decrease modal overlap with the

gate) is one way to lower the losses. If the guide height is raised to 200 nm, the loss is reduced to

-356 dB/cm while the index modulation only decreases by around 10%. However, lowering the

gate doping provides a much better way to decrease the loss. As long as the gate contains enough

charge, electrical performance and modulation depth will be similar [42]. Because of this, the

same simulations were re-run with a variety of different gate dopings and are plotted in Figure 36

for a semiconductor doping of 1x 1016 cm-3 .
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Figure 36: Effective index change, (a), and modal loss, (b), as a function of applied bias for a 500 nm wide by 150
nm tall MOS capacitor structure with a 10 n~m oxide, a semiconductor doping of 10 16cmf3, and various gate doping

levels.

As can be seen, changing the doping of the gate did not impact the effective index results

significantly, but did have a dramatic, beneficial impact on the loss levels. Because of this, if a

MOS capacitor modulator was to be designed and fabricated, low doping levels should be used

for the gate region.



Other Modulator Electrical Structures in the Literature
In addition to diodes and MOS capacitors, there are several other published junction designs

that are aimed at maximizing modulator performance. One design recently put forward in [12]

uses a P-I-N-I-P electrical junction in a double ring modulator (only one ring of which is

optically active). The design exploits the high fields created by the device to sweep carriers in

and out of the intrinsic region of the active ring at nearly the saturation velocity of silicon. 100

GHz operation is predicted. In [13], modulation in modified MOS structures using multiple SOI

layers is theoretically explored, and modulation speeds of 10 Gbit/sec with V"L < 1 V-cm are

predicted. In [24], modulation is accomplished in ring resonators by modulating the coupling

coefficient instead of the ring region. This has been proposed several times in the past. Finally,

in [37], the performance of a SiGe hetrojunction bipolar transistor modulator is modeled and a

V.L of 0.01 Vcm is achieved for speeds up to a few gigahertz. In all, these structures are very

promising and movement away from diode and MOS capacitors toward a more complicated

electrical structure is, most likely, necessary to meet desired modulator performance targets.



LINEARIZATION OF MZ MODULATORS
Linear modulators are important in all analog optical applications including CATV and

analog optical links. Linear modulator performance is also important to the accuracy of our ADC

system; if the modulator is not linear, it will not imprint the applied RF-signal onto the optical

carrier accurately. Specifically, the nonlinearities will distort the signal slightly as it is

transferred, creating errors in optical pulse height, and, thus, pulse energy. When the pulse is

then detected and quantized, these slight errors will translate into errors in the ADC output, thus

decreasing the effective number of bits achieved by the system. If 10 ENOB operation is

desired, all harmonics need to be suppressed to at most -60dBc, and in reality below than this [7].

One solution is to decrease modulation depth, staying on the more linear parts of the curve.

However, to maintain a high signal-to-noise ratio (SNR), modulation depth must be kept large.

This is important, because if the SNR becomes too low, it will take over from total harmonic

distortion or spur free dynamic range as the limiting effect for ENOB and may also create

problems in reaching desired accuracy levels.

Currently proposed schemes to linearize modulator output can be split into one of two

categories: electrical schemes and optical schemes [35]. Electrical schemes involve the use of

electrical circuits to somehow compensate for the Mach-Zehnder transfer function. Examples

include pre-emphasis of the signal to cancel out MZ linearities, feedback schemes, and inverting

the MZ transfer function in post-processing [35]. Optical schemes involve designing an optical

system that has a more linear output than a simple MZ modulator with linear phase-shifting

sections does on its own. Such schemes usually involve cascading modulators, splitting signals,

and including other elements, such as non-3 dB couplers, in an attempt to achieve linear output.

The resulting systems are usually more complicated and use more power than a single MZ

modulator [35].

Scheme Proposed in this Work
Examination of the nonlinearities present in a MZ modulator with nonlinear phase shifters

shows that phase shifter nonlinearity can be used to cancel out the nonlinearity inherent in the

sinusoidal nature of the Mach-Zehnder transfer function. To see why this is so, the MZ transfer

function is recalculated to include the effects of modulator sections with arbitrary voltage

dependent phase and loss.



The MZ modulator is assumed to be biased in push-pull, with a heater section that adds some

additional phase given by (Ph, and with a phase-shifting section in each arm. Let

1(= (VDC + v) represent the phase added by the top arm as a function of voltage, where VDC is the

dc bias voltage and v is the rf signal. Let p2 = (voc - v) be the equivalent for the bottom arm, and

al = a(vDC + v) and a 2 = a(vDC - v) be the voltage dependent losses through the two modulators. It

is further assumed that the input and the output couplers are ideal 50-50 splitters, that light is

input only on the top arm, and that the input light has power Po.

2VDc

VDC- V~

01 Potto m

Performing the same mathematical steps as in the "Mach-Zehnder Modulators-Rational and

Transfer Function" section above, the MZ transfer function including losses is found to be [36]:
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It can be seen that the transfer-function is still generally sinusoidal in nature and that the two

outputs are still complimentary. However, it can also be seen that the sinusoidal term (which is

main term responsible for imprinting the RF signal onto the optical mode) is multiplied by the

combined and voltage dependent loss in the two arms. In an ideal, lossless modulator, this

multiplier would be equal to one. In the case were the losses were constant in voltage, this

multiplier would be a simple constant and could be wrapped into Po, where, other than its effect

on SNR (due to decreasing signal power), it would have no effect on accuracy. Furthermore,

there is a second term due purely to the voltage-dependent losses. This term captures the fact

that, if the losses in the two arms are different, the amplitude of the output from the arm with

more loss will not be high enough to cancel the output from arm with less loss completely or to



the extent that it ought. This adds a non-constant voltage-dependent offset to the output, and

prevents full modulation depth from being achieved [36].

The question of the modulator's linearity can be addressed by Taylor expanding these

expressions. The math is equivalent for the upper and lower outputs of the MZ modulator. It

will, therefore, be performed for the top output only, with the results for the bottom output

simply stated without proof where necessary.

First, the phase and voltage are Taylor expanded, and the terms up through the third order

nonlinearity are kept. The phase and absorption effects of the modulator sections are then given

by:

b 2 c 3

9)(v)< (mDC +cmv+ + m 6 L
2 6

YmV + m Z
am( v amDC +XmV+ 2 + 6 L

where m is an index into the different phase-shift sections; a, b, c, x, y, and z are the coefficients

of the Taylor expansion of the phase-change per length and absorption per length respectively

around the desired DC bias point; and L denotes the length of the modulator itself. These

expansions next need to be substituted into the transfer-functions obtained above, and the

resulting equations Taylor expanded to obtain the linear and nonlinear output terms.

In Quadrature with Balanced Arms
For a first analysis, it is assumed that the modulator is in quadrature, and that the phase-

shifting sections are identical-that is that the phase change and absorption created when a certain

voltage is applied is the same on both arms: y 1 (v)= qi2(v) and aj(v) = a2 (v). Substituting the

above expansions into the transfer function then yields:



aDc +XV+ YV2+ + anc _X+ -V_/
PPP O r~exr{2-6 2 2

bvY cv3
_ v/p +a+ +a - +

xsin -+L
4 2

F 2 3 2 3 2

aDC+XV+ aDCxv+
+ - exp- 2 6 exp 2 6

4 2 2

A key point to notice at this stage is that there are no harmonic contributions from the second

derivative of the phase; for identical diodes the push-pull configuration causes all even

derivatives of the phase as well as the DC contribution to cancel. In push-pull the voltages

applied to the two diodes are exactly equal and opposite (usually the center contact is shared). If

the responses of the diodes are also exactly equivalent, subtraction will cause all the odd

derivatives to double and all the even ones to cancel. This is important because, for many

modulator designs, such as the reverse biased diode modulator of the next section, the second

order nonlinearity of the phase is the largest nonlinearity and would otherwise dominate the

response [36].

Taylor expanding the above equation, and keeping the first three terms, then yields:
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The first term corresponds to the output at the DC bias point (orange), where quadrature

simply splits the input evenly between the two channels. The second term (yellow) is the

desired, undistorted, linear response of the modulator: it's simply the input RF voltage scaled by

a constant. The third term (blue) is the second order nonlinearity and, assuming all higher

harmonics are negligible, gives the second harmonic response of the device. As can be seen, the



second order nonlinearity comes only from the voltage-dependent loss, and would not be present

were the phase-shift sections lossless. Importantly, this term has the same sign in the two arms,

while the linear terms have opposite signs. Therefore, measuring both outputs and subtracting

can cancel this harmonic. Finally, the last set of terms represents the third order nonlinearity,

and, if higher order nonlinearities can be ignored, the third harmonic. The first of these terms

(red) is the third-order nonlinearity from the MZ transfer function itself - it comes from the

interaction of the linear phase change with the sinusoidal transfer function. In a MZ modulator

with ideal, lossless, linear phase-shifters, this is the only contribution to the third harmonic that

would be present, and it is the contribution (and the harmonic) that would ultimately limit

modulator linearity and, if modulator nonlinearity dominated, system performance. The second

contribution to the third order nonlinearity (green) comes from the third-order nonlinearity of the

RF-signal-to-phase-shifter transfer function and is a direct result of the phase shifters not being

linear themselves. The final contribution (purple) is a cross term between the linear phase

response and the loss and comes from the fact that the sinusoidal transfer function is multiplied

by a loss that is not constant in voltage and, thus, adds some additional variation to the outputs

[36].

Looking at this equation, one can see that the presence of either a cubic nonlinearity in the

phase response, or a quadratic nonlinearity in the absorption response of the modulator, or both

will yield an equation for a length at which the 3rd harmonic term will go to zero. This length is

given by:

1 -3y 9y 2
L=4 +4ca

Where a, c, and y are the Taylor coefficients for the first and third derivatives of the phase and

the second derivative of the loss respectively at that given bias point. This is important because

it means that a modulator of a given length will only have a linear response at a particular DC

bias point. For any given phase-shifter section the question remains as to whether the length



given by the equation above is physical (that is positive and real) and realizable (that is practical

to use in an actual device) [36]. In at least one case, that of a reverse biased silicon diode

modulator, this length is indeed both (see the section entitled "Application of Scheme to Reverse

Biased Silicon MZ Modulator" below for more details) [36].

Out of Quadrature with Balanced Arms
It was mentioned in the previous section that one way to cancel the remaining second

harmonic from the loss was to use both complementary outputs and subtract. Another option

commonly used is to adjust the phase added by the bias element (that is the heater) such that the

second harmonic is canceled in one of the outputs. This method is particularly advantageous

when there are differences in the losses between the output of the MZ structure and the location

where that output is used (such as different coupling losses into the next element) as it does not

require that the two outputs be balanced. However, it has the disadvantage of moving away from

the more linear part of the sine curve, which can make other harmonics worse and can also

decrease the achievable modulation depth (the linear part of a sine corresponds to the area of

largest slope). If we denote the bias added by the heater as ph and consider the Taylor expansion

of the top output at an arbitrary heater bias, we find:
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We note that, regardless of the bias phase we achieve cancellation of the 3rd order

nonlinearity at the same length and DC bias.

The second harmonic can be canceled using this method as long as:

- 2L+4a
2sinr 2 y 8



yields an achievable value for ph - that is the quantity in the arcsine is real and in the range [-

1,1], and the heater or other bias element is capable of adding the necessary phase-shifts (not all

bias elements can tune across the full phase range).

Unbalanced Phase Responses
In practice, of course, one cannot fabricate two diodes that have absolutely identical

responses. Because of this it is useful to consider the impact of slight differences between the

phase-shifters on this linearity scheme. If the differences are small enough, the impact on

linearity will be minimal; if they are large, achieving linear operation may not be possible.

Furthermore, if the phase responses are different, use of the push-pull scheme will no longer

allow for cancellation of the large second-order nonlinearity in the response of the phase. This

will then affect the cancellation that can be achieved. Performing the same analysis as above

yields as a set of coupled, transcendental equations for the second and third order nonlinearity.

Whether an acceptable length and bias phase can be found to solve these depends on the

coefficients. Actual simulation or measurement of a real modulator is most likely a faster way to

determine linear performance than solving these equations. It should be noted that most of the

extra terms come not from the phase, but from the voltage-dependent loss.

If the loss is considered to be constant, the third harmonic again vanishes at

4a 2 2a2

where a and c are the averages of the coefficients in each arm (a=(a,+a2)/2,c=(c+c 2)/2) and it is

assumed that the heater is tuned to make the total DC phase difference between the two arms 7t/2.

This is an equivalent length to the lengths found in both cases above. The second harmonic

would then be equal to P exp(aDCtotal )L(b] - b2 )/2, and the difference between the quadratic

coefficients of the phase on the two arms would limit performance. Alternatively, if the device is

biased out of quadrature it might be possible to cancel both harmonics at once.

Application of Scheme to Reverse Biased Silicon MZ Modulator
The analysis of the previous sections is general and can be applied to any MZ modulator with

non-ideal phase shifters. A reverse-biased silicon diode with the cross-section shown in Figure



37 is now used to illustrate how the principles described above can be applied to achieve linear

modulation in practice. The diode cross-section was not designed with linearization in mind [36].
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Figure 37: Cross-section of reverse-biased silicon phase-shifter section. After [36].

The DC phase change p(v) and absorption a(v) caused by the diode as a function of reverse

bias voltage are shown in Figure 38. Both p(v) and a(v) are highly non-linear functions of

voltage. The expansion coefficients a and c have the same sign; thus, cancellation of the cubic

nonlinearity is possible at some L [36].
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Figure 38: Phase and loss response of the modulator structure in figure X, as a function of DC bias voltage.
After [36].

To find this length a high-order polynomial fit was made to the simulated response. This fit

was then used to give the response of the phase-shifter to a numerically applied sinusoidal RF

tone of varying amplitude. The responses were then used to calculate the output of the overall

MZ modulator structure assuming that the 3 dB input and output couplers contributed no error,
and that the structure was exactly in quadrature. The harmonics present in this output were then

measured [36].



Figure 39 shows the calculated optimal length, L, for the above modulator as a function of

bias- voltage. This length corresponds to the length that keeps the calculated 3rd harmonic below

-60dBc while maximizing achievable modulation depth. Modulation depth is maximized because

large modulation depth is important for maintaining high SNR and because the third harmonic

can always be decreased further by decreasing the RF voltage range. The achievable modulation

depths are also shown in Figure 39. It should be noted that out to a VDC level of 4.5 V,

modulation depth is not limited by the linearity constraint (to suppress the 3rd harmonic to less

than -60 dBc). Instead, in this region, modulation depth is limited by the need to keep the

modulator in reverse bias - that is the RF amplitude cannot be larger in magnitude than the DC

operating point or the applied voltage will be positive at some point in the swing [36].
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Figure 39: The maximum modulation depth achievable for third harmonic suppression to below -60 dBc (red line) and
the length at which that modulation depth occurs (green line). From [36].

The lengths calculated are quite reasonable for a silicon MZ modulator. Specifically, the

lengths are short enough that the losses are tolerable and the footprint is manageable, yet long

enough to allow for a reasonable modulation depth. Indeed, modulators of these lengths have

been successfully fabricated and demonstrated in the past (see, for example, [5]). Because the

nonlinearity varies as a function of bias voltage, the optimal length also varies. This means that

the bias point can be tuned to correct for errors in fabricated length, and possibly for other minor

fabrication errors [36].

Figure 40 illustrates the suppression of the third harmonic in a silicon MZ modulator with a

348 ptm length and a VDC of 4 V. For comparison, it also shows the 3rd harmonic for an "ideal"

72



MZ modulator - that is a modulator with perfectly linear phase shifters - biased to achieve the

same modulation depth. The 3 rd harmonic of the optimized Si MZ modulator is 10-30 dB below

that of the "ideal" MZ modulator at all RF amplitudes, with the most improvement seen at large

amplitudes. Given that it was predicted that there would be a length at which the 3rd order

nonlinearity went to zero, it might seem surprising that any 3rd harmonic is present at all.

However, higher order nonlinear terms in the Taylor expansion, such as the fifth order term,

contribute to the 3 harmonic, so it does not completely vanish. For completeness, the 2 nd

harmonic, caused by the voltage-dependent absorption, is also plotted. As explained above, the

2 nd harmonic can be completely removed either by using a differential detection scheme, or by

tuning the MZ operating point [36].
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Figure 40: Suppression of 3 rd harmonic in a 348 pm long MZ modulator biased at 4 V for various RF signal
amplitudes. As can be seen, the 3rd harmonic of the linearized structure is suppressed well below that of a MZ
modulator with ideal, linear phase shifters biased to achieve the same modulation depth. The second harmonic can
be canceled by subtracting the two complimentary outputs. From [36].

The optical bandwidth over which this scheme will work is also important, particularly for

the ADC application mentioned above, where a number of wavelengths need to be modulated.

To address this, equivalent simulations were run for wavelengths of 1500 nm and 1600 nm.

These simulations assumed that the 3 dB couplers and the heater element were not wavelength



dependent. The resulting 3rd harmonics are plotted in Figure 41. As can be seen, up to an RF

amplitude of 2V (modulation depth of 39%), the 3rd harmonic is suppressed to below -60dBc for

all 100 nm of bandwidth. Above this RF amplitude, the third harmonic creeps up slightly [36].
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Figure 41: 3rd harmonic power in a 348 pim long MZ modulator biased at 4 V
several different wavelengths. From [36].

(V)

as a function of RF amplitude for

In all, it has been demonstrated that a highly linear response (both second and third

harmonics suppressed to below -60dBc) and large modulation depth can be simultaneously

obtained over a broad optical bandwidth in a MZ modulator using reverse biased silicon diode

phase-shifters [36].



MZ MODULATORS IN THE NATIVE CMOS PROCESS
In previous chapters of this thesis, design work was undertaken for silicon modulators with

the stated goal of allowing for integration between silicon photonics and electronics. These

designs were made in silicon, and the fabrication steps required to make them would not

theoretically hurt the performance of silicon electronics; however, they cannot be fabricated in

the industry standard native CMOS process. Due to the huge cost of changing fabrication

processes as well as to the importance of electronic device performance (for which the CMOS

process is heavily optimized) it is unlikely that the semiconductor industry will be willing to

make large changes to this fabrication process. It is therefore necessary that silicon modulators

can be fabricated in the actual CMOS process as opposed to simply in compatible processes.

Here modulators were designed for fabrication in the IBM 45 nanometer 12SOI CMOS process.

They are intended to work at 1200 nm as opposed to 1550 nm.

The full layer stack for this process is shown in Figure 42; a more detailed view of just the

device layers is shown in Figure 43. The height of the silicon and poly-silicon layers is fixed in

this process: silicon layers are 80 nm tall and poly-silicon layers are 65 nm tall. Additionally,

there is only one layer of each. When both the silicon and the poly-silicon layers are present in

the same location, there is a 1.16-2.5 nm oxide layer between them. A conformal nitride layer is

deposited over the silicon and poly-silicon layers. The oxide layer separating the silicon guide

from the silicon substrate is only 145 nm [45]. Because this is thin enough that light will couple

from the silicon waveguides to the substrate, it is necessary to remove the substrate from under

the photonic devices [44]. However, due to heating effects, the electronics need a substrate

capable of conducting heat away from them, which air is not. Because of this, the substrate

needs to be removed from under the photonic structures and left in place under the electronic

ones. This idea and process, called "localized substrate removal," was developed at MIT and will

be used on the fabricated chips to allow for both chip electronics and chip photonics to work

[44].

Like the dimensions, the doping concentrations available are constrained. Here, there is the

added problem that not all of the doping concentrations are precisely known. Of relevance to

modulator design, contact dopings of 1 x 1020 cm-3 of both n-type and p-type are available for use.

"Intrinsic" poly-silicon regions doped at (probably much) less than 1 x1016 cm-3 can be used.



"Intrinsic" silicon regions are also present, but this doping level is less well-known. When

designs were completed, it was thought to be p-type and in the range of 1x1017 cm-3 to 5xl018

cm-3. Since then, it has been learned that this doping is n-type and much lower, most likely

between lx1016 and lx1007cm 3, though the exact value is still unknown [45].
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Figure 42: Top level overview of the fabrication stack-up in the IBM 45 nanometer 12SOI CMOS process. Device

layers are in the bottom-most box. Metal layers occur above them. [45]
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Figure 43: Detail of available silicon and poly-silicon device layers. Note that it is not necessary to use both silicon
and poly-silicon; the two layers can be included separately. The bottom silicon layer is locally removed in post-
processing.

The poly-silicon layer exists in this process to serve as the gate for MOSFET structures,
however it can be used instead as the rib part of a rib waveguide. Importantly, when this is done

electrical contact is not made to the poly-silicon and the poly-silicon is not in electrical contact

with the silicon. This means that carriers present in the poly-silicon will not be available for use

in modulation. Furthermore, measurements of poly-silicon waveguides in other CMOS processes

have shown that there is a high modal loss of 50-100 dB/cm associated with the poly-silicon

mainly due to surface roughness [45]. Finally, the presence of the oxide spacers on either side of

the poly-silicon layer can lead to field enhancement as in the slot waveguide case. This effect

does not seem to be large enough hurt modal confinement in the silicon, but it is not a beneficial

effect.

Electrically, contact doping levels and intrinsic doping levels are known to exist. Because no

intermediate doping levels are present, the electrical structure is constrained to have the p*-i-n*

form common in the literature (for the diode case). Because it is not known if the intrinsic

doping level is high enough to support reverse bias diode operation, device performance was

analyzed for both the forward and reverse bias cases.

There are relatively few free parameters in this system. The width of the rib is one important

one. The width of the "intrinsic" silicon region present between the contacts is another. In

general, a wider rib provided better confinement to the center of the waveguide. This was



beneficial in that it kept more of the mode out of the lossy contact regions, but harmful in that it

pulled more of the mode from the modulated, intrinsic silicon region into the unmodulated poly-

silicon region. Widening the "intrinsic" silicon region had the benefit of significantly decreasing

the loss (by moving the heavily-doped contact layers further away from the mode), but severely

decreased the device speed in the case where forward bias operation became necessary.

The rib width was chosen to maximize confinement in the intrinsic region of the underlying

silicon layer. As expected, if the rib was too narrow, modulation depth suffered and losses

increased. If the rib was too wide, however, then the modulation depth also suffered (though the

loss stayed low). Figure 44 shows the confinement factor in the underlying intrinsic silicon

region as well as the accompanying losses (assuming the "intrinsic" region has no carriers) for

various poly-silicon rib widths. This loss is a lower bound as the intrinsic region will contain

some number of carriers. The carriers in the contacts (with a doping level of 1 x1020 cm-3 ) and

the scattering losses due to the poly-silicon and silicon regions were included in the loss

calculation. The poly-silicon was assumed to contribute a 75 dB/cm modal loss: as stated above,

this is about what has been measured previously in similar structures [45]. The effect of the thin

(1-2 nm) oxide layer on the mode and the modal loss was ignored.

Confinement in Silicon as a Function Total Modal Loss as a Function
of Polysilicon Rib Width of Rib and Intrinsic Region Width
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Figure 44: (a) Modal confinement to intrinsic silicon region as a function of intrinsic silicon region width for various

rib sizes. (b) Total loss in structure (not including effects from intrinsic region carriers) as a function of same



It was determined from system requirements that no more than 10 dB, and preferably no

more than 6 dB, of loss could be accumulated in the modulator. The rib and the intrinsic silicon

region need to be wide enough to keep the losses below this level. However, because there is a

good chance that these modulators will need to work in the forward bias mode, and because high

speed operation involves moving minority carriers across the intrinsic region, the intrinsic region

needs to be kept short. From Figure 44, it was estimated that rib widths of around 300-500 nm

and intrinsic regions of 600-1000 nm will work best.

To estimate device performance, electrical simulations were run in Sentaurus to calculate

modulator sensitivity and speed. Because the "intrinsic" doping level was not known these

simulations were run for both lx1017 cm-3 and lx 10 cm-3 p-type doping to find an estimated

performance range. From the simulation results, a 400 nm rib width and an 800 nm intrinsic

region width were chosen. The effective index change and absorption as a function of voltage

for the x IO17 cm-3 and 1x 1018 cm- 3 intrinsic region doping cases are summarized in Figure 45.

Note that in reverse bias about half the loss comes from the modal loss in the poly-silicon and

half from overlap with the contacts. The intrinsic region doping level ends up having little

impact on the loss. In forward bias, the injected carriers eventually dominate the loss through the

device.
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Figure 45: Effective index change and total loss in both forward and reverse bias for proposed diode
structure. Two different intrinsic region doping levels are considered, the intrinsic region width was
chosen to be 800 nm and the poly-silicon rib width to be 400 nm.

It should be noted that the low modulation achieved in reverse bias in the 1 x 1018 cm-3 doping

case comes, in large part, from the poor overlap of the mode with the narrow depletion region

near the junction. Offsetting the rib from the center of the guide by some amount to place it

closer to the junction side provides a way of increasing achievable modulation depth while

minimizing the associated increase in loss. Such a shift also benefits the forward biased results.

The phase-change and loss curves for an 800 nm intrinsic region width and a 400 nm rib width at

the lx1018 cm-3 doping level are shown in Figure 46 for two different rib offsets. As can be

seen, increasing the rib offset helps increase index change considerably.
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Figure 46: Effective index change and loss for an intrinsic region doping of lx 1018cm~3 and several different rib
offsets.

For the x 1017 cm-3 intrinsic region doping, offsetting the rib raised the losses while failing to

notably improve the modulation depth. Because of this, a 50 nm rib offset (half way between the

desired offset of 100 nm for the 1 x 1018 cm-3 case and that of 0 nm for the 1 x107 cm-3 case) was

chosen. The cross section is shown in Figure 47. Table 1 outlines the device performance. It

should be noted that the multimode nature of the waveguide means that there may be losses

beyond those predicted for the desired fundamental mode case. On the other hand, the maximum

losses calculated for a forward bias voltage correspond to more than 100% modulation depth.

Because the extra modulation is unwanted and unnecessary, there is no need to inject so many

carriers and this loss number can be lowered. Finally, it is worth nothing that the forward bias

current is likely to be limited by some sort of contact or series resistance before it reaches the

listed value.
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"Intrinsic" Loss at OV Reverse bias Reverse RB "SNR/ Forward Bias Forward Forward Is/
Doping bias/ (max phase change bias speed (photon mod. Depth - Bias speed Bias "SNR/ I(1V)

level loss) - push-pull level)" single arm (photon
(rad.) level)"

1x10 17  -7.2 dB/(- .17 >20GHz .0022 1 1.5GHz .1 83pA/
9.7 dB) 40 mA

1x1018 -7.5dB/(- .13 >20GHz .0012 1 1GHz .085 14nA /
10.7dB) 31 mA

Table 1: Predicted performance for modulator design shown in Figure 47.

At the last minute, it was learned that the doping level was n-type and much lower. The

design was changed to that for the 1x 1017 cm-3 p-type silicon doping, shown in Figure 48. The

device performance parameters for a 1x 1017 cm-3 p-type intrinsic doping are shown in Table 2.

Because the actual doping is still not known, performance values were not calculated for any of

the possible n-type cases.
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Figure 48: Cross-section of CMOS silicon diode modulator sent to be fabricated

"Intrinsic" Loss at OV Reverse bias Reverse RB "SNR/ Forward Bias Forward Forward Bias Is/
Doping bias/(max phase change bias speed (photon mod. Depth - Bias speed "SNR/ I(1V)

level loss) - push-pull levels)" single arm (photon
(rad.) levels)"

1x1017 -6.2dB/(- .15 >20GHz .0022 1 1.5GHz .1 83pA/
8.8 dB) 40mA

Table 2: Predicted performance for modulator design shown in Figure 48.



PHOTONIC CRYSTAL MODULATORS

Background
A photonic crystal (PC) is a periodic repetition of a dielectric pattern, and is basically a way

to dispersion-engineer a medium. As light travels through a PC it diffracts in such a way that at

a given frequency, co, it can only propagate in certain directions. Careful design of a PC thus

allows one to set the dispersion relationship; the relationship between the wavevectors, k, and

frequencies co, that are allowed to propagate thorough the PC [21]. This relationship gives the

band diagram of that particular PC (dielectric structure), and is calculated by solving the

eigenvalue problem for the magnetic field [21]: V x V x H(r)) = H(r) subject to the

constraints V -H(r) = 0 and V - [E(r)E(r)] = 0. It should be noted that this eigenvalue problem

and constraints are simply an alternative way of writing Maxwell's equations for a location

dependent e and constant p. To ensure that the solutions contain the translational symmetry of

the crystal they are required to be of the form given by Bloch's equation: H, (r) = eikruk (),,

where uk(r) is a function with the periodicity of the lattice [21]. Because the crystal is periodic,

k vectors that differ by an integer number of periods will propagate at the same frequencies.

Therefore, one need only to look at one period in k-space to see what is happening in the crystal;

the values must repeat further on. In general, we look at the period centered around k = 0, which

is called the Brillouin Zone [21]. We also assume that non-linear optical effects can be ignored,

that the dielectric materials are isotropic, that the structure is macroscopic, that the material

dielectric constants do not vary with optical wavelength, and that E(r) is real and positive to

within small perturbations [21].



Photonic crystals are analogous to semiconductor crystals in many ways. Most importantly,

just as there are energy levels forbidden to electrons in semiconductor crystals, there can be

energy levels, corresponding to frequencies, forbidden to photons in photonic crystals [21].

When such forbidden frequencies exist, there is said to be a bandgap, and the frequencies at

which light may not propagate are said to be in the bandgap. In general, the analogy to

semiconductor crystals works very well with one exception. In semiconductors there is a

uniquely determined length scale set by the radius of the atoms. Under Maxwell's relations there

is no fundamental length scale, and a structure can simply be rescaled (in absolute dimensions) to

work with different parts of the electromagnetic spectrum [21]. Because of this, for a given
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Figure 49: (a) Examples of photonic crystals in 2D and
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geometry, the absolute size of the bandgap may vary based on the size of the device, but the

relative size of the bandgap (that is the absolute size divided by the frequency located in the

middle of the gap) will not. This ratio, given in percent and called the gap-midgap ratio, is often

used to characterize bandgap size [21].

Much, but not all, of the relevant information about a photonic structure is present in the

band diagram (see Figure 49b-d). In ID, 2D, or 3D photonic crystals the band diagram is

simply made up of a set of lines showing allowed a) and k (as in figure 9b). However, for a

structure like that shown in Figure 49c, where the photonic crystal only extends in one or two

directions, but the actual structure exists in 3D, the situation changes. Specifically, these

structures rely on index guiding to confine the mode in one or more directions. There then exists

a light cone in which index guiding fails and extended states propagate through both the core and

cladding. The bottom of this light cone, is called the light line. This line will intersect the edge

of the Brillouin zone. Because the dispersion relation must repeat, the light line defines the

maximum frequency that can be guided at a given k. This means that there are a finite number of

guided modes in such a photonic crystal waveguide regardless of operation frequency (in

contrast, a regular rectangular dielectric waveguide allows for the propagation of an infinite

number of modes across the frequency spectrum) [21].

Looking at the band diagram, one can see that the group velocity of the propagating waves is

also affected by the photonic crystal structure. In general v9 = k . Thus, a photonic crystal

has the ability to slow the light propagating through it; that is, to create slow wave structures.

Experimentally, structures have been demonstrated that slow light by more than a factor of 1000

[29]. We note that, because the bands must bend at the Brillouin zone edge in order to repeat,

the group velocity in this area of the band diagram will always be very low, approaching zero as

one picks operation frequencies closer and closer to the band edge [21]. Usually, a structure

needs to operate over a range of frequencies; thus, a given photonic crystal device is designed to

operate a distance from the Brillouin zone edge that corresponds to at least the desired

bandwidth. In practice, one also needs to choose the operating point such that there are no other

k-states in which light at the desired frequencies can propagate [21]. To create a slow light

structure one then seeks flat areas near the Brillouin zone edge that correspond to the edge of a

band. In practice, for 3D structures that contain a photonic crystal along one dimension (like



gratings in a photonic wire configuration,) these are more or less impossible to find. Fortunately,

bandgaps can exist for given symmetries or polarizations. If light is polarized before being

inserted into the waveguide, and the guide contains relatively few defects, coupling into the other

polarization state will be relatively low, and bands corresponding to that polarization can be

ignored [21].

Many device designs, particularly modulator designs, also need to account for dispersion.

Dipesinisgeealy ivnby D=d q A a2 n
Dispersion is generally given by: D= 2 . If the dispersion is too great, the

dA v, 9 C a2

frequencies placed into the device will walk off of each other and the pulse shape will degrade.

One way to avoid problems caused by dispersion is to employ a dispersion compensating

structure; that is a second waveguide with opposite dispersion that essentially moves the

frequencies back into place [30]. In a PC this can be accomplished by changing the crystal

dimensions or period such that the bands change shape. In particular, in the structure pictured in

figure 9c, it is not uncommon for the first and second TE bands to have opposite curvature

(figure 9d). One can then pass the light through a PC where its frequency travels in the second

band after passing it through a PC where it travels in the first, thus compensating the original

dispersion [30]. It is important to note that since light cannot propagate in the band gap, it is

impossible to transition directly from the first structure to the second. One must instead

transition back to a regular waveguide before transitioning to the second PC guide [30].

It is also important to note that such a structure will not solve all the problems caused by

dispersion in our application. In particular, this structure would only fix the dispersion of the

optical pulse. The walk off of the various frequencies in the first PC waveguide would still

damage the precise mapping between frequency and time that we rely on to properly encode the

electrical signal, causing the wrong frequency to pick up part of the electrical information at each

point in the modulator. This mistake would not be fixed by afterward moving the incorrectly

modulated pieces back into their correct temporal locations. Because of this, it is important that

the dispersion be minimal. In general, however, we do not expect the time-frequency errors to

be problematic.

Finally, it is important to note that photonic crystals can be difficult to fabricate, and

fabrication errors may have a large effect on device performance. Therefore, it is important to

examine the robustness of a PC design before sending it to be fabricated. In particular, if the



theoretical bandgap has a gap-midgap ratio below about 5%, there is a chance that there will not

be any bandgap in the fabricated device [21].

Use as Slow Wave Structures and Slow Wave Modulators
Slow wave structures have been used in time delay links, in modulators, and in other devices

to increase sensitivity and decrease device length. Because light travels through a slow wave

structure very slowly, the interaction time in a modulator between the light and the index

perturbation is larger, resulting in a larger overall phase shift for a given index perturbation at a

given length. There are several important results in the literature on both slow wave structures

and slow wave modulators. The slow wave modulators found so far in the literature all use a MZ

configuration.

Most slow wave structures that have been reported, and all slow wave modulators that the

author found, use a rectangular or hexagonal pattern of air holes in a dielectric (usually silicon)

as the basis for the photonic crystal structure. In these situations, a waveguide is created by

removing one (or more) of the columns of holes to create a defect state through which light of

the desired wavelength can propagate. In [3], a slow light structure was used to enhance non-

linear interactions in silicon, and achieved a group velocity of c/40 (which would mean an

increase in sensitivity of a factor of 10 to 20, depending on geometry, over a plain, rectangular

silicon waveguide of equal length). In this structure, in addition to removing rows of holes to

create the waveguiding region, the rows of holes immediately adjacent to the waveguide were

displaced in order to enhance the slow light effect. In [29] the group velocity and dispersion of a

2D SOI photonic crystal waveguide are characterized and a group velocity of less than c/1000 is

found.

In PC modulators, a 2D photonic crystal waveguide of this type is included in the phase-

shifter sections of the Mach-Zehnder arms to create a slow light interaction. In [17], waveguides

with both a hexagonal and a square grid of holes were used to create a low-power, compact

optical switch in an AlGaAs crystal. The switching was accomplished by injection with free

carriers excited by an external pumping source. Best results were achieved with the square

pattern of holes. More comprehensive work on PC modulators has been done in silicon in [22].

Here a hexagonal PC waveguide section is added to the arms of a MZ modulator, and a p-i-n

diode configuration is used to create a phase-shift through the plasma dispersion effect. The



slow light enhancement allows for a a phase-shift to be achieved in 80 pm at 2 V, yielding a VL

of .016 Vcm. We note that this sensitivity is not better than results reported for regular, forward

biased diode modulators [5]. This lack of improvement probably has to do with the large width

of the intrinsic region used - it was 4 tm as opposed to the more common 0.5 [tm. Like most

other forward biased modulators, this modulator operates with a speed around 1-2 GHz.

Figure 50: A basic PC waveguide MZ modulator structure similar to that implemented in the papers
described above. From [27].

Neither of these papers mentions the insertion loss or dispersion of the device. However,

these are important parameters to consider. The importance of mode matching when entering a

PC should be obvious: large mismatch leads to high optical reflection-in some cases there is as

much as a 30 dB drop in transmitted power, though 6 dB is a more reasonable figure. Tapering

into the structure can significantly minimize loss, to approximately 1 dB [26] [18] [30].

However, tapering into a PC waveguide made of holes can be difficult as holes cannot be

fabricated below a certain diameter. Thus, structures which decrease more gracefully are of use.

Furthermore, photonic crystal waveguides of this nature usually need to be patterned with

electron-beam lithography, a slow, expensive process that is generally not compatible with mass

production.

In [30], a different type of photonic crystal was used to create a slow light region for use in

tunable time delays. In this case, the PC was made up of a series of flanges attached to a normal,

rectangular waveguide (see Figure 51). In this structure reductions in group velocity were

considerably smaller - light was in the range of 2-4 times slower. The device was operated 4%

from the band edge; thus these numbers could be improved somewhat, though not dramatically.

However, this structure does retain some advantages over the structures above. First, this design

can easily be tapered into and out of; there is no problem of minimum fabrication feature size.

Because of this, reflections upon entering the device can be less that 0.1% for a 10 period taper



and less that 0.001% for a 50 period taper. A dispersion compensation section is also

successfully included in this paper, and seems to work over a broad bandwidth. Furthermore,

such a structure could be fabricated using conventional high-throughput lithography. It is

therefore desired that a modulator be integrated into this photonic crystal design.

a. Si

b. c=a-d d

Figure 51: (a) Flange structure implemented in [Povinelli] (b) Example of flange structure tapering. From
[Povinelli]

Slow-Wave Modulator Design

Achievable Slowdown
The PC structure in [30] is optimized to achieve the maximum slowdown possible for an

oxide substrate and an air cladding. It is also chosen so that a dispersion compensating scheme is

possible. Moreover, it is not electrically contacted. To start modifying this design for

incorporation into a modulator, it is desired that the maximum achievable slowdown be found.

In our system, both the substrate and the cladding are oxide. Horizontal features are constrained

to be at least 100nm in width, and vertical ones can be no more than a few hundred nanometers

tall. Simulations were run using the MIT Photonic Bands [34] software produced by Steven

Johnson's group to maximize the achievable slowdown. There were two types of modes available

that corresponded roughly to two different modal symmetries: the first kind of modes had an

electric field with odd symmetry with respect to a plane down the center of the device, while the

second kind had even symmetry. Two of the modes with odd symmetry were well localized to

the center of the structure, while only one of the modes with even symmetry possessed this



property, which is necessary to prevent modes from interacting significantly with the contacts.

For this reason, the odd-symmetry modes were chosen. Structures with bandgaps smaller than

5% were ignored (see above.)

SiO2
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d

Figure 52: Diagram of PC unit cell consisting of a silicon structure surrounded by oxide cladding. The period is
given by a; other relevant dimensions are marked.

A diagram of the PC unit cell is shown in Figure 52. The minimum speed found in this

structure was 0.075c, or about 4 times slower than the speed of light in silicon. This speed was

obtained for a structure with a = 340 nm, h = 272 nm, wi - 170 nm, wr = 1.02 tm, and d = 100

nm. The structure had a 10% bandgap. Structures with similar dimensions yielded similar results.

Perhaps not unexpectedly, the optimized dimensions for this case are only slightly different than

those for the situation in [30].

It is generally assumed that larger bandgaps correspond to larger slowdowns, but this is not

always the case. Figure 53 illustrates the reasoning behind the standard assumption and its

breakdown in certain cases. In Figure 53a, there are only two bands in the guided region, and the

bandgap is large. As a result, the slopes of both bands are small, so the propagation velocity

do/dk is small. In Figure 53b, the same two bands are pictured in the guided region, but with a

smaller bandgap. As a result, the slopes are now larger, leading to faster propagation. Figure 53c

demonstrates how the appearance of a third band in the guided region can lead to a breakdown in

the connection between small bandgaps and slow propagation. The first two bands are the same

as in Figure 53a, so their propagation velocities are still small. However, the presence of the

third band in the guided region has caused a decrease in the bandgap with no associated increase

in velocity. Figure 53d shows this phenomenon carried to its extreme. In this case, mode 3

appears in such a way as to completely erase the bandgap, rendering the device useless.
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Figure 53: Illustration of the relationship between group velocity and bandgap size.
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Figure 54: Diagram of the time-averaged electric-field energy density of the modes corresponding to the
Brillouin zone edge of the lowest three bands (in most variations of this structure). The leftmost mode
corresponds to the lowest band in nearly all cases. The middle and right most modes correspond to the second
and third bands, but which is which varies by structure.



Several trends could be ascertained from the output of the simulations. In general, a mode more

tightly confined to the dielectric will have a lower frequency than a mode carried substantially in

the cladding. Usually, the greater the difference in frequency between the modes, the more the

bands must bend and the larger the slowdown achieved. The trends observed in the simulation

sweeps show this. In most simulations mode A corresponded to the first band and mode B

corresponded to the second band (see Figure 54). It was noted that the speed of light through the

structure tended to decrease as the ratio of the waveguide height, h, to width, wi, increased. The

increase in height caused an increase in the fraction of the modes carried in the dielectric and

therefore a decrease in frequency. However, this effect was more pronounced in mode A than in

mode B, resulting in a wider bandgap and therefore a lower speed. This trend is outlined in

Figure 55. The achieved slowdown is also increased as d is decreased in relation to a, up to a

point. Here, the decrease in rib width initially increases the frequency of both modes, but the

effect is more pronounced in mode B (which is kicked substantially into the cladding) than in

mode A (which remains localized to the guide.) However, as d continues to shrink, more of

mode A is moved into the cladding, and its frequency starts to increase at a faster rate than that

of mode B (which is already dominated by the cladding nearly as much as it will be.) At this

point, the speed starts to increase again. Increasing wtot in relation to wi or a lowers the frequency

of mode A and has little effect on the frequency of mode B. Therefore, increasing this width also

decreases the light's speed. However, a large wtt pulls mode C (far left in Figure 54) down from

the air band, destroying the bandgap and ruining device performance. Because of this, these

fingers need to remain short. Finally, as wi increases more of mode B is carried in the dielectric,

lowering its frequency toward that of mode A, while little impact is had on the frequency of

mode A. Because of this, light travels faster at larger values of wi. All of these trends are

outlined in Figure 55.
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Figure 55: Trends in speed of light in the structure as a function of various dimensions. Note that not all data points
correspond to structures that can be fabricated or that have a useable bandgap. In particular, large relative values of
wot do not yield bandgaps.

Contacting Issues
The structure found in the previous section still needs to be electrically contacted; being able

to drive the modulator structure electrically is vital for integration. The structure, thus, needs to

be modified in such a way that some part of it that does not contain a large amount of the fields

extends to a contact region. Contacts are usually located a micron or more away from the center

of the device. In most structures, the main motivation for keeping contacts so far out is to

minimize loss. However, in PC structures it is also desired that contacts be far enough from the

mode that they do not affect the periodicity of the structure.



Finding an appropriate contacting scheme for this structure has proven to be problematic. In

particular, extra silicon must be added to the edges of the structure to make contact. This extra

silicon lowers the frequency of mode C (or its equivalent) in Figure 54, pulling it from the air

band to lie across the bandgap. The bandgap is then destroyed, and the structure no longer

functions as a slow wave structure. To be more precise, Figure 56 shows the actual distribution

of the time-averaged energy-density in the electric fields of the first three bands present in this

B

A

C

Figure 56: Power in electric field in the three lowest frequency modes at the Brillion Zone edge (k = 2/a).

fingered structure. When there is little enough dielectric material away from the center of the

guide, the first band is A and the second is B, both of which are nicely localized to the center of

the guide. Band C is located in the light cone for most of the Brillion zone, and is confined to the

guide only near the edges. However, as more material is added, mode C becomes the second

band. This is problematic for two reasons. First, band C tends to intersect with band B,

destroying the bandgap. Secondly, even when a bandgap is present, band C has the same general

shape as band A but at higher frequencies. This prevents mode A from being used, and mode C



cannot be used for propagation instead because it has a lot of light out near the contacting

regions. Moreover, shrinking d or the height of the fingered regions until mode C is no longer

supported at frequencies near those of A and B yields fingers that are too small to fabricate or to

use for the necessary amounts of carrier injection or extraction.

The structure was varied in several ways to attempt to circumvent this problem. Rigorous

simulations were not run for each of these structures. Instead, several different parameter

combinations were run to see if the new form was likely to help, and, if promising results were

not found, the structure was abandoned. The various structures tried are diagrammed in Figure

57. The first set of structures were aimed at keeping band B below band C. Unfortunately,

while most of these structures succeeding in lowering band B, band C stayed in the same place

(because the contacting arms needed to be maintained at a minimum thickness and width),

crossing whatever bandgap would otherwise have been present. Moreover, these structures

generally also dropped the frequency of band B in relation to that of band A, often destroying the

bandgap anyway (and raising the speed of light through the device significantly, even when a

bandgap remained). Another approach was to drop both bands A and B below band C, and use

the gap between band C and the next highest mode (band D) to carry light; this was not tenable

as both of those modes carried a significant amount of light in the contact region. The next idea

was to try to drop band C below bands A and B leaving bands A and B as the band edges.

However, doing so usually pulled other, additional modes similar to C down into the gap, even

when the order of A and C was successfully changed. In all, a bandgap of usable size (greater

than 5%) was not found in any of these structures.



Structures Attempting to Keep Band (b) below band (c)

Input
light

Structure Attempting to Lower Band (c) Below Band (a)

Figure 57: Structure variations considered to allow for electrical contact to be made to the device.

If work is to continue on this project, more rigorous simulations should be run to make sure

that none of the structures considered work for parameter combinations not tested. Some more

rigorous proof that contacts cannot be successfully added is desired. Once this is obtained, it will

probably be necessary to move to a different PC structure entirely.



CONCLUSIONS AND FUTURE WORK
This thesis investigated the design of various electrical and optical schemes used in

modulators. In rib waveguides, a silicon diode modulator was designed and tested. It operated at

speeds up to 13 GHz and had a V,,L of 1.2 Vcm. MOS capacitor modulators were investigated

as an alternative but were found not to offer substantial improvements, yielding slightly higher

sensitivities at slightly lower speeds. In addition to the standard rib waveguide structure,

modulators were designed for fabrication in an actual CMOS process. If these modulators work

as desired, they will be a big step forward towards on-chip integration of electronics and optics.

Photonic crystal structures were also investigated. While the structure explored here ultimately

proved unfeasible, slow light structures in general promise to lower footprint size and power

requirements. Therefore, other photonic crystal structures should be explored in the future.

Meanwhile, since linear modulator performance is important in analog applications, a

linearization scheme for MZ modulators was proposed, and simulations demonstrated that it

should be effective for reverse biased silicon diode modulators.

To further improve modulator performance (for use in a given general waveguide geometry,)

more complicated electronic structures, such as transistors or diode variants such as p-n+-n-n+

structures, need to be explored. Outside of the plasma dispersion effect, recent work from other

groups on using the QCSE in SiGe structures looks promising.

Future work in integrating modulator designs into a real CMOS process must start with

obtaining a better knowledge of the foundry process. Tests need to be run to determine the

actual doping levels of the various layers (and the layers themselves need to be further explored

so there is better knowledge of which can and cannot be successfully used) as well as the losses

inherent in the process. A successful way to make electrical contact to the modulators, other than

the fake rib-structure, would probably also be helpful as avoiding the use of the high loss poly-

silicon layer will be beneficial to performance.

Finally, experimental verification of the linearization scheme proposed in this thesis would

be valuable. Future theoretical work needs to include a more detailed and practical analysis of

what happens if the two phase-shifter sections are unbalanced and, in particular, how much

imbalance can be tolerated. The ability to linearize different modulator structures should also be

explored.



APPENDICES

A: Select Parameters Used In Electrical Simulations
Material = "Silicon" {
Bandgap

*Eg = Ego + dEgO + alpha Tpar^2 / (beta + Tpar) - alpha T^2 / (beta + T)
* dEgO(<bgn model name>) is a band gap correction term. It is used together with
* an appropriate BGN model, if this BGN model is chosen in Physics section
* Parameter 'Tpar' specifies the value of lattice
* temperature, at which parameters below are defined
* ChiO is electron affinity.

ChiO = 4.05 # [eV]

Bgn2Chi = 0.5 # [1]

EgO = 1.16964 # [eV]
dEgO (Bennett) = 0.0000e+00 # [eV]
dEgO(Slotboom) -4.7950e-03# [eVi
dEgO(OldSlotboom) -1.5950e-02 # [eVi
dEgO(delAlamo) -1.4070e-02 # [eVi
alpha = 4.7300e-04 # [eV K^-1]
beta = 6.3600e+02 # [K]
Tpar = 0.0000e+00 # [K]

OldSlotboom
* deltaEg = dEgO + Ebgn ( ln(N/Nref) + [ (ln(N/Nref))^2 + 0.5]^1/2
* dEgO is defined in BandGap section

Ebgn = 9.0000e-03 # [eV]
Nref = 1.0000e+17 # [cm^(-3)]

eDOSMass
{ *Documentation says to use formula 1 in simulations of silicon. Default parameters
are supposed to be correct. ?? Check this.

* For effective mass specificatition Formulal (me approximation):
* or Formula2 (Nc300) can be used

Formula = 1 # [1]
* Formulal:

* me/mO [ (6 * mt)^2 * ml ]^(1/3) + mm

* mt = a[Eg(O)/Eg(T)]
* Nc(T) = 2(2pi*kB/h Planck^2*me*T)^3/2 = 2.540e19 ((me/mO)*(T/300))^3/2

a = 0.1905 # [l]
ml = 0.9163 # [1]
mm 0.0000e+00 # [1]

hDOSMass
{ * Documentation says to use formula 1 in simulations of silicon. Default parameters
are supposed to be correct. ??Check this.

* For effective mass specificatition Formulal (mh approximation):
* or Formula2 (Nv300) can be used

Formula = 1 # [1]
* Formulal:

* mh = m0*{[(a+bT+cT^2+dT^3+eT^4)/(1+fT+gT^2+hT^3+iT^4)]^(2/3) + mm}
* Nv(T) = 2(2pi*kB/h Planck^2*mh*T)^3/2 = 2.540e19 ((mh/mO)*(T/300))^3/2

a = 0.443587 # [1]
b = 0.003609528# [KA-]
c = 0.0001173515 # [K^A-2]
d = 1.263218e-06 # [K^-3]
e = 3.025581e-09 # [K^-4]



f = 0.004683382 # [K-l]

g = 0.0002286895 # [K^A-2]
h = 7.469271e-07 # [K^A-3]
i = 1.72748le-09 # [K^-41
mm = 0 # [l]

ConstantMobility:
* Constant mobility, where limit is from phonon scattering only.

* mu const = mumax (T/TO)^(-Exponent)
mumax 1.4170e+03 , 4.7050e+02 # [cm^2/(Vs)]

Exponent = 2.5 , 2.2 # [1]
mutunnel = 0.05 , 0.05 # [cm^2/(Vs)]

DopingDependence:
{ *Dopant dependent mobility scattering, three models total, though one of them, the
University of Bolonga model takes a different key word in the physics section

* (UniBoDopingDependence instead of Doping Dependence), can from either the Massetti

model (??better for silicon) or the Arora model (??Better for GaAs) here. ??Check

values, check that using the right option. To see how much difference mobility model

makes, run both. If similar just use Massetti. If not, still use Masetti, but look at

this in a lot more detail and be aware that mobility has a big impact on results.
* For doping dependent mobility model three formulas

* can be used. Formulal is based on Masetti et al. approximation.
* Formula2 uses approximation, suggested by Arora.

formula = 1 , 1 # [1]
* If formula=1, model suggested by Masetti et al. is used:
* mu dop = mumin1 exp(-Pc/N) + (mu const - mumin2)/(1+(N/Cr)^alpha)
* - mul/(i+(Cs/N)^beta)

* with mu const from ConstantMobility
mumin1 = 52.2 , 44.9 # [cm^2/Vs]

mumin2 = 52.2 , 0.0000e+00 # [cm^ 2/Vs]
mul = 43.4 , 29 # [cmA2/Vs]

Pc = 0.0000e+00 , 9.2300e+16 # [cm^3]

Cr = 9.6800e+16 , 2.2300e+17 # [cm^ 3]
Cs = 3.4300e+20 , 6.1000e+20 # [cm^ 3]
alpha = 0.68 , 0.719 # [1]
beta = 2 , 2 # [11

EnormalDependence:
{ *Mobility degradation due to interfaces (semiconductor-oxide. ??This should be
turned on in our simulations. (also we probably want it flaged to be perpendicular to
the boundrys and not the current.

* mu Enorm^(-1) = mu ac^(-1) + mu sr^(-1) with:

* mu ac = B / Enorm + C (T/T0)A(-k) (N/NO)^lambda / Enorm^(1/3)
* mu sr^-1 = Enorm^(A+alpha*n/(N+N)^ nu) / delta + Enorm^3 / eta
* EnormalDependence is added with factor exp(-l/l crit), where 1 is
* the distance to the nearest point of semiconductor/insulator interface.
* Factor is equal to 1 if 1 crit > 100.

B = 4.7500e+07 , 9.9250e+06 # [cm/s]
C = 5.8000e+02 , 2.9470e+03 # [cmA (5/3)/(VAi2/3)s)]
NO = 1 , 1 # [cm^(-3)]

lambda = 0.125 , 0.0317 # [1]

k 1 , 1 # [1]
delta = 5.8200e+14 , 2.0546e+14 # [V/si

A 2 , 2 # [1]
alpha 0.0000e+00 , 0.0000e+00 # Il
Ni = 1 , 1 # [cm^(-3)]

nu 1 , 1 # [1]
eta = 5.8200e+30 , 2.0546e+30 # [VA2/cm*s]
1 crit = 1.00OOe-06 , 1.00OOe-06 # [cm]



HighFieldDependence:
{ *

* Deals with velocity saturation due to high electric fields. ??We need this turned
on. Which method should we be using?

* Caughey-Thomas model:
* mu highfield = ( (alpha+1)*mulowfield ) /
* ( alpha + ( 1 + ( (alpha+1)*mu lowfield*E/vsat)^beta )^(l/beta)
* beta = beta0 (T/TO)^betaexp.

beta0 = 1.109 , 1.213 # [1]

betaexp = 0.66 , 0.17 # [1]

alpha = 0.0000e+00 , 0.0000e+00 # [1]

* Smoothing parameter for HydroHighField Caughey-Thomas model:
* if Tl < Tc < (1+KdT)*Tl, then smoothing between low field mobility
* and HydroHighField mobility is used.

K dT = 0.2 , 0.2 # [1]
* Transferred-Electron Effect:
* mu highfield = (mu lowfield+(vsat/E)*(E/E0_TrEf)^4)/(1+(E/E0_TrEf)A4)

E0_TrEf = 4.0000e+03 , 4.0000e+03 # [1]
Ksmooth TrEf = 1 , 1 # [l

* For vsat either Formulal or Formula2 can be used.
Vsat Formula = 1 , 1 # [1]

* Formulal for saturation velocity:
* vsat = vsat0 (T/TO)A(-Vsatexp)

* (Parameter VsatFormula has to be not equal to 2)
vsat0 = 1.0700e+07 , 8.3700e+06 # [1]
vsatexp 0.87 , 0.52 # [1]

Scharfetter * relation and trap level for SRH recombination:
* tau = taumin + ( taumax - taumin ) / ( 1 + ( N/Nref )^ gamma)
* tau(T) = tau * ( (T/300)^Talpha ) (TempDep)
* tau(T) = tau * exp( Tcoeff * ((T/300)-l) ) (ExpTempDep)

taumin = 0.0000e+00 , 0.0000e+00 # [s]
taumax = 1.00OOe-05, 3.00OOe-06 # [s]
*taumax = 1.0000e-09, 1.0000e-09 # [s]
Nref = 1.0000e+16 , 1.0000e+16 # [cm^(-3)]
gamma - 1 , 1 # [1]
Talpha -1.5000e+00 , -1.5000e+00 # [1]
Tcoeff- 2.55 , 2.55 # [1]
Etrap 0.0000e+00 # [eV

Auger * coefficients:
* RAuger = ( C n n + C_p p ) ( n p - ni eff^2)
* with Cn,p = (A + B (T/T0) + C (T/T0)^2) (1 + H exp(-{n,p}/NO))

A = 6.7000e-32 , 7.2000e-32 # [cm^6/s]

B = 2.4500e-31 , 4.5000e-33 # [cm^6/s]

C = -2.2000e-32 , 2.6300e-32 # [cm^6/sl

H = 3.46667 , 8.25688 # [1]
NO = 1.0000e+18 , 1.0000e+18 # [cm^(-3)]

Band2BandTunneling

* See Sentaurus Device manual 'Band-To-Band
A = 8.9770e+20 # [cm / (s V^2)]
B = 2.1466e+07 # [eV^(-3/2) V/cm]
hbarOmega = 0.0186 # [eV]

Tunneling'

* Traditional models for the following keywords in input file:
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* Band2Band(El) : Al*E*exp(-Bl/E)
* Band2Band(El 5): Al 5*E^1.5*exp(-B1_5/E)

* Band2Band(E2) : A2*E^2*exp(-B2/E)
Al = 1.1000e+27 # [1/cm/sec/V]
B1 = 2.1300e+07 # [V/cm]
Al 5 = 1.9000e+24 # [1/cm/sec/V^1.5]
B1 5 = 2.1900e+07 # [V/cm]
A2 = 3.5000e+21 # [1/cm/sec/V^2]
B2 = 2.2500e+07 # [V/cm]

* Hurkx model for the following keywords in input file:

* Band2Band(Hurkx) : -Agen*D*(E/E0)^Pgen*exp(-Bgen*(Eg/Eg300)^1.5/E) if D < 0

* -Arec*D*(E/E0)^Prec*exp(-Brec*(Eg/Eg300)^1.5/E) if D > 0

* D = (n*p-ni^2)/(n+ni)/(p+ni)*(1-lalphal)+alpha, E- 1 V/cm

* So, if alpha = 0, it's original Hurkx model,

* if alpha = -1, it's only generation,

* if alpha = +1, it's only recombination.
Agen = 3.5000e+21 # [1/cm^3/sec]
Bgen = 2.2500e+07 # [V/cm]

Pgen = 2 # [11
Arec = 3.5000e+21 # [1/cm^3/sec]
Brec = 2.2500e+07 # [V/cm]

Prec = 2 # [1]
alpha = 0.0000e+00 # [11

* min length to interfaces (for traditional & Hurkx models):

dDist = 0.0000e+00 # [cm]
* min potential di fference on length dPot/E (for traditional & Hurkx models):

dPot = 0.0000e+00 # [V]

I
}

MaterialInterface = "Oxide/Silicon" {
SurfaceRecombination * surface SRH recombination:

* s = SO ( 1 + Sref ( N/Nref )^gamma ) recombination velocity

so = 2.0e+4 , 2.0e+4 # [cm/s]
Sref = 1.0000e-03 # [1]
Nref = 1.0000e+16 # [cm^(-3)]
gamma = 1 # [1]
Etrap = 0.0000e+00 # [eV]

Material = "PolySi" {
Bandgap

* Eg = EgO + dEgO + alpha Tpar^2 / (beta + Tpar) - alpha T^2 / (beta + T)

* dEgO(<bgn model name>) is a band gap correction term. It is used together with

* an appropriate BGN model, if this BGN model is chosen in Physics section

* Parameter 'Tpar' specifies the value of lattice
* temperature, at which parameters below are defined

* ChiO is electron affinity.
ChiG = 4.05 # [eV]
Bgn2Chi = 0.5 # [1]

EgO = 1.16964 # [eV]

dEgO (Bennett)= 0.0000e+00 # [eV]
dEg0(Slotboom) = -4.7950e-03# [eV]
dEgO(OldSlotboom) = -1.5950e-02 # [eV]
dEgO(delAlamo) = -1.4070e-02 # [eV]
alpha = 4.7300e-04 # [eV K^-l1]

beta = 6.3600e+02 # [K]

Tpar = O.OOOOe+O0 # [K]
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OldSlotboom
* deltaEg

* dEgO is

Ebgn
Nref

eDOSMass

= dEgO + Ebgn ( ln(N/Nref) + [ (ln(N/Nref))^2 + 0.5]^1/2
defined in BandGap section

= 9.00OOe-03 # [eV]
= 1.0000e+17 # [cm^(-3)]

* For effective mass specificatition Formulal (me approximation):
* or Formula2 (Nc300) can be used

Formula 1 # [1]
* Formulal:

* me/mO = [ (6 * mt)^2 * ml ]^(1/3) + mm
* mt = a[Eg(O)/Eg(T)]

* Nc(T) = 2(2pi*kB/h Planck^2*me*T)^3/2 = 2.540e19 ((me/mO)*(T/300))^3/2
a = 0.1905 # [1]
ml = 0.9163 # [1]
mm = 0.0000e+00 # [1]

hDOSMass

* For effective mass specificatition Formulal
* or Formula2 (Nv300) can be used

Formula 1 # [1]
* Formulal:

* mh = mO*{[(a+bT+cT^2+dT^3+eT^4)/(1+fT+gT^2

* Nv(T) = 2(2pi*kB/h Planck^2*mh*T)^3/2 = 2.5

a = 0.443587 # [l]
b = 0.003609528 # [K^-1]
c = 0.0001173515 # [K^-2]
d = 1.263218e-06 # [K^-31
e = 3.025581e-09 # [K^-41
f = 0.004683382# [K-l1]

g = 0.0002286895 # [K^-21
h = 7.469271e-07 # [K^-31
i = 1.727481e-09 # [K^-4]
mm = 0 # [1]

ConstantMobility:
{ * mu const mumax (T/TO)^

mumax = 1.4170e+03

Exponent = 2.5

mutunnel = 0.05

(mh approximation):

+hT^3+iT^4)]^(2/3) + mm)
40e19 ((mh/mO)*(T/300))^3/2

(-Exponent)
4.7050e+02 # [cm^2/(Vs)]
2.2 # [l]
0.05 # [cm^ 2/(Vs)]

DopingDependence:

* For doping dependent mobility model three formulas
* can be used. Formulal is based on Masetti et al. approximation.
* Formula2 uses approximation, suggested by Arora.

formula = 1 , 1 # [1]
* If formula=1, model suggested by Masetti et al. is used:
* mu dop = muminl exp(-Pc/N) + (mu const - mumin2)/(l+(N/Cr)^alpha)
* - mul/(1+(Cs/N)^beta)

* with mu const from ConstantMobility
muminl = 52.2 , 44.9 # [cm^2/Vs]

mumin2 = 52.2 , 0.0000e+00 # [cm^2/Vs]
mul = 43.4 , 29 # [cmA2/Vs]
Pc = 0.0000e+00 , 9.2300e+16 # [cm^3]
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Cr = 9.6800e+16
Cs = 3.4300e+20
alpha = 0.68 ,
beta = 2 , 2

2.2300e+17
6.1000e+20

0.719 # [1]

# [1]

HighFieldDependence:
* Caughey-Thomas model:
* mu highfield = ( (alpha+l)*mu lowfield ) /
* ( alpha + ( 1 + ( (alpha+l)*mu lowfield*E/vsat)^beta )^(1/beta)

* beta = beta0 (T/TO)^betaexp.

beta0 = 1.109 , 1.213 # [1]
betaexp = 0.66 , 0.17 # [11

alpha = 0.0000e+00 , 0.0000e+00 # [1]

* Smoothing parameter for HydroHighField Caughey-Thomas model:

* if Tl < Tc < (1+K dT)*Tl, then smoothing between low field mobility

* and HydroHighField mobility is used.

K dT = 0.2 , 0.2 # [1]
* Transferred-Electron Effect:
* mu highfield = (mu lowfield+(vsat/E)*(E/EO TrEf)A4)/(1+(E/EO TrEf)A4)

EQTrEf = 4.0000e+03 , 4.0000e+03 # [1]
KsmoothTrEf = 1 , 1 # Eli

* For vsat either Formulal or Formula2 can be used.

Vsat Formula = 1 , 1 # [li
* Formulal for saturation velocity:
* vsat = vsat0 (T/TO)^(-Vsatexp)

* (Parameter Vsat Formula has to be not equal to 2)

vsat0 = 1.0700e+02 , 8.3700e+06 # [l

vsatexp = 0.87 , 0.52 # [1]

Scharfetter * relation and trap level for SRH recombination:

* tau = taumin + ( taumax - taumin ) / ( 1 + ( N/Nref )Agamma)
* tau(T) = tau * ( (T/300)^Talpha ) (TempDep)
* tau(T) = tau * exp( Tcoeff * ((T/300)-1) ) (ExpTempDep)

taumin = 0.0000e+00 , 0.0000e+00 # Es]
taumax = 200.00e-12 , 200.00e-12 # [s] * varies from le-9 to 10e-12
Nref = 1.0000e+16 , 1.0000e+16 # [cm^(-3)]
gamma = 1 , 1 # [1]
Talpha = -1.5000e+00 , -1.5000e+00 # [1]
Tcoeff = 2.55 , 2.55 # [11
Etrap = 0.0000e+00 # [eV]

B: Example Electrical Simulation Code
Example Sentaurus Structure Editor Input File:

;; Reinitializing SDE
(sde:clear)

Setting parameters
lateral

(define Ltot 2.12) [um] Lateral extend total, check that

(define Lguide 0.500) ; [um] Guide width

(define Ltoj 0.05) [um] distance from left side of guide to end of encroachment

(define Lsp 0.20) [um] distance from guide to highly dopped contact (spacing

width)
(define Lleftside 0.05) ; [um] thickness of the side wall on the left
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(define Lrightside 0.05); [un] thickness of the side wall on the right
;(define Lgap 0.0) ; [um] gap across the top of the layer

;; - layers
(define Htot 0.72) ; [um] Vertical thickness total
(define Hsub 0.24) [umn] Substrate thickness
(define Hsilicon 0.05) ; [um] EPI thickness
(define Hguide 0.220) ; [un] Gate thickness
(define Hjunct 0.05) ; [un] thickness of horizontal junction (total).
;(define Hjbott 0.080) ; [um] thichness of the bottom layer of the horizontal
junction

;minimum juction meshing resolution
(define minmesh 0.001) ; [um] consider dropping to lnm.
(define medmesh 0.005)
(define maxmesh 0.01)

;; Dopings
;doping level at contacts (will be highest level in device).
(define rightContDop 1e19) ; [1/cm^3]
(define leftContDop 1e19) ; [1/cm^3]

;doping level of side layers (middle doping)
(define rightSideLayerDop 1.5e18) ; [1/cm^3]
(define leftSideLayerDop le18) ; [1/cm^3]

;doping level of side walls (middle or lower doping)
(define rightSideWallDop 1.5e18) ; [1/cm^3]
(define leftSideWallDop le18) ; [1/cm^3]

;doping level of the guide (lowest level)
(define GuideDop 5e17) ; [1/cm^3]

;define doping types
(define doptype p "BoronActiveConcentration")
(define doptype n "ArsenicActiveConcentration")

;; Derived quantities
(define Xmax (/ Ltot 2.0))
(define Xmin (* Xmax -1.0))
(define Xguide (/ Lguide 2.0))
(define Xjunct (+(* Xguide -1.0) Ltoj))
(define Xleftside (+ (* Xguide -1.0) Lleftside))
(define Xrightside (- Xguide Lrightside))
(define Xsp (+ Xguide Lsp))

(define Ymax Htot)
(define Ymin 0.0)
(define Ysub (- Ymax Hsub)) ;distance from top to bottom of Si
(define Yguide (- Ysub Hguide )) ;distance from top to top of guide
(define Ysilicon (- Ysub Hsilicon )) ;distance from top to top of side layers
(define Yjunct (+ Yguide Hjunct)) ;distance from top to bottom of junction layer

---- Next build the actual device----.

(display "Generating layer structure... \n")
; Overlap resolution: New replaces Old
(sdegeo:set-default-boolean "ABA")

Creating oxide region
(sdegeo:create-rectangle
(position Xmin Ymin 0.0
(position Xmax Ymax 0.0 ) "Si02" "oxide region 1"
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; Creating Si gate
(sdegeo:create-rectangle

(position (* Xguide -1.0) Yguide 0.0)

(position Xguide Ysub 0.0)

"Silicon" "guide active layer")

Creating guide Silicon encroach layer

(sdegeo:create-rectangle
(position Xrightside Yjunct 0.0
(position Xjunct Yguide 0.0 )
"Silicon" "guideEncroachTopLayer"

Creating Left side-wall
(sdegeo:create-rectangle

(position (* Xguide -1.0) Yguide 0.0
(position Xleftside Ysub 0.0
"Silicon" "guideLeftSideWall"

Creating Right side-wall
(sdegeo:create-rectangle

(position Xguide Ysub 0.0
(position Xrightside Yguide 0.0
"Silicon" "guideRightSideWall"

Creating Side Silicon layer right
(sdegeo:create-rectangle

(position Xguide Ysilicon 0.0
(position Xsp Ysub 0.0 )
"Silicon" "side spacer right"

Creating Spacing Silicon layer left

(sdegeo:create-rectangle
(position (* Xguide -1.0) Ysilicon 0.0
(position (* Xsp -1.0) Ysub 0.0
"Silicon" "side spacer left"

Creating Contact Silicon layer right
(sdegeo:create-rectangle
(position Xsp Ysilicon 0.0
(position Xmax Ysub 0.0 )
"Silicon" "contact layer right"

Creating Contact Silicon layer left
(sdegeo:create-rectangle

(position (* Xsp -1.0) Ysilicon 0.0)

(position Xmin Ysub 0.0)
"Silicon" "contact-layer left"

(display "Defining contacts\n")

; Contact declarations
(sdegeo:define-contact-set "Anode"

4.0 (color:rgb 1.0 0.0 0.0 ) "##")
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(sdegeo:define-contact-set "Cathode"

4.0 (color:rgb 0.0 1.0 0.0 ) "##")

;(sdegeo:define-contact-set "P thermal"

; 4.0 (color:rgb 0.0 0.0 1.0 ) "##")

;(sdegeo:define-contact-set "N thermal"

4.0 (color:rgb 1.0 1.0 0.0 ) "##")

Contact settings
Electrical Contacts

(sdegeo:set-current-contact-set "Anode")

(sdegeo:define-2d-contact
(find-edge-id (position Xmin (* 0.5 (+ Ysub Ysilicon)) 0.0))

"Anode"

(sdegeo:set-current-contact-set "Cathode")

(sdegeo:define-2d-contact
(find-edge-id (position Xmax (* 0.5 (+ Ysub Ysilicon)) 0.0))

"Cathode")
(display "Contact define completed.\n")

Separating lumps

(sde:assign-material-and-region-names "all")

Setting region names

(sde:addmaterial
(find-body-id (position 0.0 (/ (+ Ysub Ymax) 2) 0.0))

"SiO2" "oxide substrate region")

(sde:addmaterial
(find-body-id (position 0.0 (/ (+ Ymin Yguide) 2) 0.0))

"Si02" "oxide cap region")

(display "Completed region re-name.\n")

Profiles:isUndernTyp

;Guide layer
(sdedr:define-constant-profile "Const.active_guide"

doptype p GuideDop)
(sdedr:define-constant-profile-region "Place.active_guide"

"Const.active_guide" "guide activelayer"

;Guide Encroach layer

(sdedr:define-constant-profile "Const.guideEncroachTopLayer"

doptype n rightSideWallDop)
(sdedr:define-constant-profile-region "Place.guideEncroachTopLayer"

"Const.guideEncroachTopLayer" "guideEncroachTopLayer"

Sidewall area doping

(sdedr:define-constant-profile "Const.guideLeftSideWall"

doptype p leftSideWallDop)

(sdedr:define-constant-profile-region "Place.guideLeftSideWall"

"Const.guideLeftSideWall" "guideLeftSideWall"

;other side wall

(sdedr:define-constant-profile "Const.guideRightSideWall"

doptype n rightSideWallDop)
(sdedr:define-constant-profile-region "Place.guideRightSideWall"
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"Const.guideRightSideWall" "guideRightSideWall" )

; Spacer area doping
;p-type spacer

(sdedr:define-constant-profile "Const.leftSpacer"

doptype p leftSideLayerDop)
(sdedr:define-constant-profile-region "Place.left Spacer"
"Const.left Spacer" "side spacer left"
;n-type spacer
(sdedr:define-constant-profile "Const.right Spacer"
doptype n rightSideLayerDop)
(sdedr:define-constant-profile-region "Place.rightSpacer"
"Const.right Spacer" "side spacer right" )

;insert doping for other complicated regions here if needed

;Contact area doping
(sdedr:define-constant-profile "Const.left Contact"

doptype p leftContDop )
(sdedr:define-constant-profile-region "Place.leftContact"
"Const.leftContact" "contact layer left" )

(sdedr:define-constant-profile "Const.rightContact"
doptype n rightContDop )
(sdedr:define-constant-profile-region "Place.right Contact"
"Const.rightContact" "contact layer right"

;; Z2007.03 version
;;Saving BND file
;(sdeio:save-tdr-bnd (get-body-list)"")

(display "Completed doping definitions.\n")

Meshing Strategy:
note that refinement numbers go as xmax ymax xmin ymin.

;Over-all mesh:
(sdedr:define-refeval-window "Total mesh win" "Rectangle"

(position Xmin Ymin 0.0
(position Xmax Ymax 0.0

(sdedr:define-refinement-size "Total guide win Def" maxmesh maxmesh medmesh medmesh)
(sdedr:define-refinement-placement "Total win place" "Total guide win Def"
"Total mesh win")

;Mesh around guide -- start from side layers
(sdedr:define-refeval-window "Guide mesh win" "Rectangle"

(position (* Xsp -1.0) (- Yguide (/ Yguide 2)) 0.0
(position Xsp (/ (+ Ysub Ymax) 2.0) 0.0 ) )

(sdedr:define-refinement-size "Guide guide win Def" medmesh medmesh minmesh minmesh)
(sdedr:define-refinement-placement "Guide win place" "Guide guide win Def"
"Guide mesh win")

;Mesh side parts
(sdedr:define-refeval-window "Left side mesh win" "Rectangle"

(position Xmin (- Ysilicon (/ Yguide 2)) 0.0 )
(position (* Xsp -1.0) (/ (+ Ysub Ymax) 2.0 ) 0.0

(sdedr:define-refinement-size "Left side win Def" medmesh medmesh minmesh minmesh)
(sdedr:define-refinement-placement "Left side win place" "Left side win Def"
"Left side mesh win")
;;and the other side
(sdedr:define-refeval-window "Right side mesh win" "Rectangle"

(position Xsp (- Ysilicon (/ Yguide 2)) 0.0
(position Xmax (/ (+ Ysub Ymax) 2.0 ) 0.0 )
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(sdedr:define-refinement-size "Right side winDef" medmesh medmesh minmesh minmesh)
(sdedr:define-refinement-placement "Right side win place" "Right side win Def"
"Right side mesh win")

(display "Finished defining meshing strategy.\n")

;save files and generate mesh:

(sdeio:save-tdr-bnd (get-body-list) "n@node@ bnd") ;save BND file
(sdedr:write-cmd-file "n@node@ cmd") ; Save CMD file
(sdedr:append-cmd-file "") ;if don't have this line, everything dies
;(display ".bnd and .cmd files saved.\n")

(sde:build-mesh "mesh" "-F tdr -s " "n@node@ msh")
(display "Mesh generation completed.\n")
;end of file

Example Sentaurus Device Input File:

Electrode {
Name="Anode" Voltage=0.0}
Name="Cathode" Voltage= 0.01

Thermode {
{Name="Anode" Temperature = 300 SurfaceResistance = 1.4e-4}
(Name="Cathode" Temperature = 300 SurfaceResistance 1.4e-4}

}

File {
Grid = @tdr@
Parameters = "sdevice.par"
*Need parameter's file here
Current = @plot@

Plot = @tdrdat@
Output = @log@

}

Physics (MaterialInterface = "Silicon/Oxide"){
Recombination( surfaceSRH

}

Physics
Thermodynamic
Mobility ( DopingDep

Enormal
eHighFieldsat(GradQuasiFermi)
hHighFieldsat(GradQuasiFermi)

Recombination(
SRH(DopingDep)
Auger
surfaceSRH
Avalanche( Okuto
Band2Band (El)

EffectiveIntrinsicDensity ( OldSlotBoom
Fermi

Math {
Digits = 9
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Extrapolate
Derivatives
RecomputeQFP
RelErrControl
Iterations = 30

BreakCriteria{ Current(Contact "Anode" AbsVal = le-5)}
NewDiscretization
Wallclock
Method - ParDiSo

Solve
Poisson
Coupled { Poisson Electron Hole }
Coupled {Poisson Electron Hole Temperature)
Quasistationary (

InitialStep = 0.002
MaxStep = 0.01

MinStep = le-4

Goal {Name="Anode" Voltage =-5.0)
Plot { Range = (0 1) Intervals = 25)

(Coupled (Poisson Electron Hole Temperature))

Plot {
eDensity hDensity eCurrent hCurrent
Potential SpaceCharge ElectricField
eMobility hMobility eVelocity/Vector hVelocity/Vector eLifetime hLifetime
Doping DonorConcentration AcceptorConcentration
*Refractiveindex eTemperature eRelativeEffectiveMass
*hRelativeEffectiveMass eAugerRecombination SurfaceRecombination

C: Optical Processing Code
function tecplot-output_process_1(myfilenames, numvar, numel, myvars, myxsize,
myysize)
%File takes in tecplot ".dat" files and converts the data in them to 2D graphs.
%.dat file must be in ascii point form (when saving tecplot file this is
%one of the options)
%It then, making some assumptions converts the carrier panes into index
%and absorption panes and outputs these...
%Inputs:
% myfilenames - list of tecplot data files that want to process (cell array of
strings). Files

% do not need to be in any specific order, but they all must have the
% same format (same number of tecplot variables, ones desired in the
% same location on the list, same desired output gridding)
% numvar - number of variables in the tecplot output file (can see this
% by opening the file in wordpad a: the variable numbers and names are
% listed in the header information.
% numel - number of vertices a FE element has (4 if quadrilateral, 3 if
% a triangle).

% myvars - location of the variables that want to extract and grid in
% tecplot's list of variables. The first number MUST correspond to the
% location of the electron density and the second one MUST be the
% location of the hole density (usually these are 4 and 5 respectively).
% After that can have whatever variables want.
% myxsize - size, in um, of the x-dimension of the output blocks of the
% grid. Please note that it is important to pick this parameter
% correctly.

% myysize - size in um, of the y-dimension of the output blocks of the
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% grid. Please note that it is important to pick this parameter

% correctly.
%Outputs:
%not output variables are generated

%Ouput Files:
%"input name2test.mat": straight up parsed output file -- simply contains

%lists of the variables and coordinates , in order. Not yet gridded

%"input name processed.mat": contains 2D grids of variable , in order, in

%a 3D array. Also conatins index and absorption panes created for 1550nm

%light in silicon on a SiO2 background.

%parse files into MATLAB variable list

for ij = 1:length(myfilenames)
mycurfile = myfilenamesiij};
Create reformated files(mycurfile, numvar, numel);

end

%Copy variables into array

for ij = 1:length(myfilenames)
filename = myfilenames{ij};
filename = [filename(l:(end-4)), '2test.mat'];

[C, myymap, my xmap] = Createstructurearrays2(filename, myxsize, myysize,

myvars); %create arrays with known data points

C = grid smoother(C); %interpolate between those points

filename = [filename(l:(end-9)), ' processed.mat'];

save(filename, 'C', 'myxmap', 'my ymap', 'myvars', 'myxsize', 'myysize');

end

makesoref panes = 1; %boolean that alowws you to turn this part of the code off, if

would rather make index panes on own separately

for ij = 1:length(myfilenames)
filename = myfilenames{ij};
filename = [filename(l:(end-4)), '2test.mat'];

filename = [filename(l:(end-9)), ' processed.mat');

load(filename);
if(makesoref panes 1)

%use soref model and get modal index - figure out how many decimals of

%accuracy have here....

mytemp screne = (C(:,:,l) - 0);

mytempopscrene = (C(:,:,l) == 0);

mytemp screne = mytempscrene.*3.48; %correct to three sig-figs? Change from

flat silicon
mytemp opscrene = mytemp opscrene.*1.445;
mytemp screne = mytemp-screne + mytempopscrene;
Myindexpane = (-8.8e-22.*C(:,:,1) -8.5e-18.*C(:,:,2).^0.8) +mytemp-screne;

My delta absorption alpha pane = (8.5e-18.*C(:,:,l)+6.0e-18.*C(:,:,2));

end
save(filename, 'C', 'my xmap', 'my ymap', 'myvars', 'myxsize', 'myysize',

'My indexpane', 'My_deltaabsorption alpha pane');

end
end

function tecplotoutputyrocessllambda-var (myfi lenames, mylambda)

%Function takes output of and tecplot output processl.m and creates a new

%output file where the index and absorption panes correspond to a specified

%wavelength instead of to 1550 nm.

%Inputs:
% -myfilenames - list of ".mat" output files from tecplotoutputprocess_1.mat

% in general these will have the form "inputnameprocessed.mat"

% -mylambda - desired wavelength for index and absorption in microns

% (fits are only good between 1.2 and 1.6 microns)

%Outputs:
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%no output variables are generated
%Ouput Files:
%"inputnameprocessedlambda_'mylambda'.mat": contains 2D grids of
%variables, in order, in a 3D array. Also contains index and absorption
%panes created at specified wavelength, assuming a SiO2 background.

for ij = 1:length(myfilenames)
disp(['on file ', num2str(ij)]);
filename = myfilenames{ij};
load(filename);
save filename = [filename(l:end-4), ' lambda ', num2str(mylambda), '.mat');
if(1)

%use soref model and get modal index
mytemp screne = (C(:,:,l) ~ 0);
mytemp opscrene = (C(:,:,l) == 0);

mytemp screne = mytempscrene.*3.48; %correct to three sig-figs? Change from
flat silicon

mytemp opscrene = mytemp opscrene.*1.445;
mytempscrene = mytempscrene + mytempopscrene;
%My-index-pane = (-8.8e-22.*C(:,:,1) -8.5e-18.*C(:,:,2).^0.8) +mytempscrene;
%Mydeltaabsorptionalphapane = (8.5e-18.*C(:,:,l)+6.0e-18.*C(:,:,2));
[dne, dael = E soref n si formatrix(C(:,:,l), mylambda);
[dnp, dap] = E soref p si for matrix(C(:,:,2), mylambda);
My index pane dne+dnp+mytemp screne;
Mydeltaabsorptionalpha pane = dae+dap; %insert desired background loss here

end
save(save filename, 'C', 'myxmap', 'myymap', 'myvars', 'myxsize', 'myysize',

'My-index pane', 'My delta absorption alpha pane');
%note that in the end, all this really does is open the results at
%1550nm, overwrite the index and absorption panes, and save the results
%in a different file labeled with the new lambda value...

end
end

function myneff = tecplot output_process_2(myfilenames, myvolts, output filename)
%File takes in output ".mat" file from tecplot output process l.m
%It finds the refractive index and absorption for the structure contained
%therein and saves then in an array. (While only these two values are
%saved it does get the full mode solution from Milos's mode solver, so if wanted to,
%could easily save other variables).

%Inputs:
% myfilenames - list of MATLAB files that want to process (cell array of strings).
Note that
% files need to be related and in order. (I usually input all the
% outputs of one device in order from lowest to highest bias voltage.
% While the x-axis variable is called "volts" if could be used to store
% whatever (frequency, doping level, the like). The simple point I'm
% trying to make here is that there *is* an x-axis variable.
% my volts - corresponding voltage for each file. (could also be used to
% store another x-axis variable (see above)).
% output filename - string containing the name of the file to which to
% save the outputs
%Outputs:
% myneff - the (non-complex) index change along myvolts (I find having
% this useful, though not strictly necessary)
%Ouput Files:
%"outputfilename" - contains copies of "my filenames" and "myvolts" as
%well as the corresponding effect index (myneff) and the effective absorption
%(my alpha) of the structures. *myalpha is in 1/cm.*
%Note that to get the CHANGE in index or absorption, one needs to subtract
%the first value from the array
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%IMPORTANT NOTE: PARTICULARLY FOR HIGH INDEX STRUCTURES, MILOS'S MODE
%SOLVER GIVES THE CORRECT *RELATIVE* BUT NOT NECESSARILY THE CORRECT
%*ABSOLUTE* BETA (INDEX AND ABSORPTION). BECAUSE OF THIS IT IS BETTER TO
%COMPARE *CHANGES* WHEN ACCURACY IS DESIRED

%initialize variables:

kG = 2*pi/1.55; %BE CAREFUL HARD WIRED!!!
num files = length(my filenames);
myneff = zeros(l, num files);
myalpha zeros(l, num files);
%then loop through files:
for ij = 1:1:num files

disp(['completed file ', num2str(ij), ' of ' num2str(num files)]); %so don't go
crazy

clear mytempgrid myadd around2 myadd around Nn Nx Ny N F mtemp mtemp2 myipane
mytempipane

filename = myfilenames{ij};
load(filename);
%change grid
sf = 5; %BE CAREFUL HARD WIRED!!!
yc = mod(size(My index pane), sf); ycl = [floor(yc(l)/2), ceil(yc(l)/2)]; yc2 =

[floor(yc(2)/2), ceil(yc(2)/2)];
My index pane = My index pane((l+ycl(l)):(end-ycl(2)),(l+yc2(l)):(end-yc2(2)));
Mydeltaabsorptionalphapane = Mydeltaabsorption alpha pane((l+ycl(1)):(end-

ycl(2)), (l+yc2(1)):(end-yc2(2)));
myipane = Myindexpane';
myapane = le-4*Mydeltaabsorption alpha pane';
% myipane [myipane; myipane(end,:)];
mytempipane = 0;

mytempapane 0;
for ij2 = 1:1:sf

for jk = 1:1:sf

mytempipane = mytempipane+myipane(ij2:sf:end, jk:sf:end).^2;
mytempapane = mytempapane+myapane(ij2:sf:end, jk:sf:end);

end
end
N3 = mytempipane./sf^2;
N3a = mytempapane./sfA2;
%convert alpha absorption to a complex index
N3a = i*N3a/(2*kO);
%apply "simple" index averaging algorithm used in Milos's wrapper function
mytempgrid = zeros(2*size(N3));
mytempgrid a = zeros(2*size(N3a));
my temp grid(2:2:end, 2:2:end) = sqrt(N3);
mytempgrid = [my temp grid(:, ll:end), mytempgrid(:,1:10)];
mytempgrid(3:2:end-2,:) = sqrt( (my temp grid(2:2:end-

3,:).^2+mytempgrid(4:2:end-1,:).^2)/2);
my temp grid(:,3:2:end-2) = sqrt( (my temp grid(:,2:2:end-

3).^2+mytempgrid(:,4:2:end-1).^2)/2);
mytempgrid(l,:) = mytempgrid(2,:); mytemp grid(end,:) = mytempgrid(end-

1,:); my_temp_grid(:,l) = my_temp_grid(:,2); mytemp_grid(:,end) = my_temp_grid(:,end-
1);

mytempgrida(2:2:end, 2:2:end) = N3a;
my_temp_grid_a = [my_temp_grid_a(:, 11:end), my_temp_grid_a(:,1:10)];
my temp grid a(3:2:end-2,:) = (my temp grid a(2:2:end-3,:)+my temp grid a(4:2:end-

1,:))/2;
my temp grida(:,3:2:end-2) = (mytempgrida(:,2:2:end-

3)+mytempgrida(:,4:2:end-1))/2;
my_temp_grid_a(l,:) = my_temp_grid_a(2,:); my_temp_grid_a(end,:) =

my temp grid a(end-l,:); mytempgrida(:,l) = my temp grida(:,2);
mytempgrid a(:,end) = mytempgrida(:,end-1);

mytempgrid = my tempgrid+ mytemp grid a;
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%the next few lines expand boundaries of the grid because Milos's mode solver

needs
%some padding and often sentaurus outputs don't have it
sl = size(my temp grid,l);
s2 = size(my temp grid, 2);
mtemp = mytempgrid(1,1)*ones(4*size (mytemp grid));
mtemp((sl+sl/2+1):(2*sl+sl/2-2), (s2+s2/2+1):(2*s2+s2/2-2)) - my temp grid(l:end-

2,1:end-2);
my temp grid = mtemp;
%set up Mode solver variables
dxy = [myxsize*sf, myysize*sf];
options.NMODES CALC = 1; % how many modes to calculate

options.PMLwidth = [0 0.0 0.0 0.01; % left right bottom top; we don't need PMLs

for straight guide
options.PMLsigma = [0.3 0.31;
options.mu guess = kO*2.5; % wave number guess (i.e. k0*neff)

%options.operver = 'm2dpmloperR2'; options.enginever = 'm2wcylR2'--%NEVER USE THIS

IT IS BROKEN!!!!
%fix dimensions so line up:
Nn = my temp grid;
Nn = [Nn, Nn(:,end)];
Nn = Nn;Nn(end,:)];
nny = size(Nn,l);

nnx size(Nn,2);
Ny = (myysize*sf)/2:(myysize*sf)/2:(nny*(myysize*sf)/2);
Nx = (myxsize*sf)/2:(myxsize*sf)/2:(nnx*(myxsize*sf)/2);
%get the mode and record the variables:
[N, F] = sisolver3d mod(Nn, Ny, Nx, dxy, kO, options);

my neff(ij) = real(F.beta/F.kO);
my alpha(ij) = le4*2*F.kO*imag(F.beta/F.kO);

end

save (output filename, 'my filenames', 'my-volts', 'myneff', 'my-alpha',
'my neff cut', 'my alpha cut');
end
end

function B = Create reformated files(filename, mynumvar, mynumelsides)
A = textread(filename, '%s', 'delimiter' ,'\n');

filename2 = [filename(l:(end-4)), '2test.mat'];
B(1:300000,1:mynumvar) = 0;

B2(1:300000, 1:mynumelsides) 0;

mycount 1;
mycount2 1;
debugline 5;
myadder = 0;
mycorrectadder = 0;

myprev = 0;
%myblock = 0;
for ij = 1:1:length(A)

if( mod(ij, 10000)==0)
disp(['First ', num2str(ij), ' rows completed']);

end
if((~isnan(str2double(A{ij}(l)))) || ((~isnan(str2double(A{ij}(2)))) &&

(A{ij} (1)== '-')) )
b = strread(A{ij}, '%f');
if(length(b) mynumvar)

if(myprev 0)
mycorrectadder = myadder;

end

B(mycount,:) b;

mycount = mycount+l;
myadder = myadder+1;
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myprev = 1;

elseif(length(b) == mynumelsides)
if(myprev ==1)

myprev = 0;

end
B2(mycount2,:) = b + mycorrectadder;
mycount2 = mycount2 +1;

end
end

end
save(filename2, 'B', 'B2');
B B(l:(mycount-1), :);
B2 B2(1:(mycount2-1), :);
save(filename2, 'B', 'B2');

end
end

function [C, my_ymap, myxmap] = Create structure arrays2(filename, x element size,
y element size, myvarmap)
%Takes MATLAB variable arrays from Tecplot files and parses them into 2D
%arrays
%Inputs:
% filename- name of MATLAB file containing B and B2 (the array outputs of
% Create reformated file.m")
% xelementsize and yelement size - are the x and y element sizes (in um)
% of the desired mesh Please note that depending on the tecplot mesh and
% the desired accuracy and speed, these need to be chosen rather
% carefully.

% myvarmap - numeric (column) positions of the variables that want to
% grid (that is *which* tecplot variables to grid)
%Outputs:
% C - an array of 2D output panes. The first of which corresponds to
% the first variable specified in myvarmap, the second to the second, and
% etc...
% my ymap and my-xmap - the x and y axis of the 2D output panes in um.
%Output files:
%contains all the outputs as well as myvarmap. saved as
%"input name processed.mat"

%IMPORTANT NOTE: THIS FILE ONLY GRIDS THE OUTPUT POINTS FROM TECPLOT ONTO
%THE GRID. IT DOES NOT FILL IN THE BLANK GRID SPACES BETWEEN THESE POINTS.
%THIS NEEDS TO BE DONE IN A DIFFERENT FILE (SEE FOR EXAMPLE:
%GRID SMOOTHER.M)
%THIS WAS DONE TO ALLOW DIFFERENT INTERPOLATION FUNCTIONS TO BE USED IF
%DESIRED OR NECESSARY. FINALLY, WE NOTE THAT IN THE CASE OF A LARGE GRID
%IN WHCIH MANY TECPLOT VETRICES FALL INTO THE SAME SQUARE, THE VALUE OUTPUT
%FOR THAT SQUARE WILL BE A SIMPLE ARAITHMATIC AVERAGE OF THOSE POINTS, AND
%MAY NOT ACCURACTLY REPRESENT THE GEOMETRIC AREAS EACH POINT COVERS (THAT
%IS IF THERE ARE MANY POINTS IN ONE SQUARE THE WEIGHTING WILL BE OFF).
%BECAUSE OF THIS IT IS RECOMMENDED THAT THE GRID BE FINE ENOUGH THAT NO
%MORE THAN A FEW POINTS FALL INTO A SQUARE. IF THAT GRIDDING IS TOO FINE,
%I RECOMMEND MANUALLY GRIDDING THE THING DOWN **AFTER** FILLING IN
%THE FULL ARRAY.

load(filename); %get data
x min = min(B(:,l)); %find overall size of the array
x max = max(B(:,l));
y min = min(B(:,2));

y max = max(B(:,2));
x length = x max-x min;
x_size = floor(x length/xelement size);
y length = y max-y min;
y_size = floor(y-length/yelement size);
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if(x size <=0 IF y size <=0) %get upset if anything tried to give a negative length
error('Incorrect input signs or order');

end

my-device = zeros([y size, x sizel); %create actual grid
%recall that matlab is funky and that
%the horizontal variable goes second

my xmap = x min:x element size:x max; %create mapping onto actual grid
my ymap = y min:y element size:y max; %note that point (y min, x min) is

%the upper left hand corner

%initialize output array
C = zeros([y size, x size, length(myvarmap)]); %actual grid times number of variables.

%then loop through the different variables:
for ijk = 1:1:length(myvarmap)

my repeats map my-device;
my variable map = my device;
for ij = 1:1:size(B2,1) %loop through all the different squares

%find their location on the map
qpos(i) = B2(ij, 1);
qpos(2) = B2(ij, 2);
qpos(3) = B2(ij, 3);
qpos(4) = B2(ij, 4);
for ij2 = 1:1:4

my x position(ij2) = sum(B(B2(ij, ij2),1) >= my xmap); %number of bars
pass tell location-

my y position(ij2) = sum(B(B2(ij, ij2), 2) >= my ymap);
%check that location was valid
if(B(B2(ij, ij2),1) == x max)

my x position(ij2) = my x position(ij2) -1;
end
if(B(B2(ij, ij2),2) == y max)

my y position = my y position -1;
end

end
try

for ij3 = 1:1:4
Qix = my x position(ij3);
Qly = my y position(ij3);
if (ij3 4)

Q2x my x position(1);
Q2y my y position(1);

else
Q2x my x position(ij3+1);
Q2y my y position(ij3+1);

end
if(Qix> Q2x)

mywaystep = -1;

else
mywaystep = 1;

end
for mybloc = Qlx:mywaystep:Q2x

if(Qlx Q2x) %xvalue doesn't change = vertical
first point only.

line -- place

my y here = Qiy;
my variable map(my y here, mybloc) =

my variable map(my y here, mybloc)+ B(qpos(ij3), myvarmap(ijk) );
myrepeatsmap(my_y_here, mybloc) = myrepeatsmap(my_y_here,

mybloc) +1;
else

my y here = round( ((Q2y-Qiy)/(Q2x-Q1x))*(mybloc-Q1x) + Qiy);
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my variable map(my y here, mybloc) =
my variable map(my y here, mybloc)+ B(qpos(ij3), myvarmap(ijk) );

my repeats map(my y here, mybloc) = my repeats map(my y here,
mybloc) +1;

end
end
%now catch the vertical lines
if(Qly> Q2y)

mywaystep = -1;

else
mywaystep = 1;

end
for mybloc2 = Qly:mywaystep:Q2y

if(Qly == Q2y) %horizontal line, assume taken care of above.
my x here = Qix;

my variable map(mybloc2, my x here) = my variable map(mybloc2,
my x here)+ B(qpos(ij3), myvarmap(ijk) );

my repeats map(mybloc2, my x here) = my repeats map(mybloc2,
my x here) +1;

else
my x here = round( ((Q2x-Qlx)/(Q2y-Qly))*(mybloc2-Qly) + Qlx);
my variable map(mybloc2, my x here) = my variable map(mybloc2,

my x here)+ B(qpos(ij3), myvarmap(ijk) );
my repeats map(mybloc2, my x here) = my repeats map(mybloc2,

my x here) +1;
end

end
%Above based off of equation for line is: (y-yl) = (y2-yl)/(x2-xl)*(x-

xl);
end

catch
warning('Error placing location on map.');

end
end
warning off MATLAB:divideByZero
C(:,:, ijk) = my variable map./my repeats map; %note that this line sets all

squares that had no input to NaN (which is good).
warning on MATLAB:divideByZero
%next take care of averaging pieces that need to be averaged over
%do this in another file so that can change method easily
%C(:,:, ijk) = grid smoother(C(:,:,ijk));

end
filename2 = [filename(l:(end-9)), ' processed.mat'];
save(filename2, 'C', 'my xmap', 'my ymap', 'myvarmap');
end
end

function Cout = grid smoother(C)
%fills in grid via weighted linear interpolation. There
%must be at least 1 non-NaN entry on each side of the grid. Interpolation
%is done linearly around the edges in a loop.
my num var = size(C, 3);
x size = size(C,2);
y size = size (C,1);
for kn = 1:1:my num var

%handel edges first:
mt = C(l, :, kn);

mb = C(end,:,kn);

ml = C(:,l:kn);
mr = C(:,end,kn);

%start with courners: note that if corners have values, the code below
%won't change them. %do need to weight them, though
%top courner
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11 = min(find(~isnan(mt))); mvall = mt(ll);
12 = min(find(-isnan(ml))); mval2 = ml(12);
if(mvall mval2) %line is flat...

mt(l) - mvall; ml(l) = mt(l);

else
m = (mval2 - mvall)/(11+12-2); b = mval2-m*(-12+1);
mt(l) = m*O+b; ml(l) = mt(l);

end
%bottom courner
11 = max(find(~isnan(mb)));
12 = max(find(~isnan(mr)));
if(mval2 == mvall) %line is

mb(end) = mval2; mr(end)
else

mvall = mb(ll); 11 = x size+1-ll;

mval2 = mr(12); 12 = y size+1-12;

flat...
= mb(end); %C(end,end,kn) = m*O+b;

m = (mvall - mval2)/(11+12-2); b = mval2-m*(-12+1);
mb(end) = m*O+b; mr(end) = mb(end); %C(end,end,kn) = m*O+b;

end
%other two corners:
11 = min(find(~isnan(mb)));
12 = max(find(~isnan(ml)));
if(mval2 mvall) %line is

mb(l) mvall; ml(end)
else

mvall =
mval2 =
flat...
mb (1);

mb(ll);
ml(12); 12 = y size+1-12;

%C (end, 1, kn) m*O+b;

m = (mvall - mval2)/(11+12-2); b = mval2-m*(-12+1);
mb(l) = m*O+b; ml(end) = mb(l); %C(end,l,kn) = m*O+b;

en
11
12
if

d
= max(find(~isnan(mt))); mvall = m
= min(find(~isnan(mr))); mval2 = m
(mval2 == mvall) %line is flat...
mt(end) = mvall; mr(l) = mt(end);

t(ll); 11 = x size+1-ll;
r(12);

%C(l,end,kn) = m*O+b;
else

m = (mvall - mval2)/(ll+12-2); b = mval2-m*(-12+1);
mt(end) = m*O+b; mr(l) = mt(end); %C(l,end,kn) = m*O+b;

end
for ij = 2:1:(x size-1)

if (isnan(mt(ij)))
lt =min(find(~isnan(mt(ij+1:end))));
m (mt(ij+lt)-mt(ij-1))/(ij+lt - (ij-1));
b =mt(ij+1t)-m* (ij+1t);
mt(ij) = m*ij+b;

end
for

end
if(isnan(mb(ij)))

it min(find(-isnan(mb(ij+l:end))));
m (mb(ij+lt)-mb(ij-1))/(ij+lt - (ij-1));
b =mb(ij+1t)-m*(ij+1t);
mb(ij) = m*ij+b;

end

ij = 2:1:(y size-1)
if (isnan(ml(ij)))

it min(find(~isnan(ml(ij+l:end))));

m (ml(ij+1t)-ml(ij-1))/(ij+t - (ij-1));
b =ml(ij+1t)-m* (ij+lt);
ml(ij) = m*ij+b;

end
if(

end

isnan(mr(ij)))
it min(find(~isnan(mr(ij+l:end))));
m = (mr(ij+lt)-mr(ij-1))/(ij+lt - (ij-1));
b = mr(ij+lt)-m*(ij+lt);
mr(ij) = m*ij+b;

end
C(l, :, kn) = mt;
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C(end,:,kn) = mb;
C(:,l:kn) = ml;
C(:,end,kn) = mr;

for nm = 2:1:(x size-1) %for each element
for ml = 2:1:(y size-1)

if(isnan(C(ml,nm, kn))) %see if it has a value

%squares in the middle
myneighbors = 0;

ij = 0;

while ((ij>-l)&&isnan(C(ml+ij,nm,kn)))
ij = ij+l; %can't run off the edge because edges are set to

numerical values above
end
m = (C(ml+ij,nm,kn)-C(ml-,nm,kn))/(ml+ij-(ml-1));
b = C(ml+ij,nm,kn)-m*(ml+ij);
myneighbors = myneighbors+ (m*ml+b);
ij = 0;
while ((ij>-1)&&isnan(C(ml, nm+ij, kn)))

ij = ij+l;
end
m = (C(ml,nm+ij,kn)-C(ml,nm-l,kn))/(nm+ij-(nm-1));
b = C(ml,nm+ij,kn)-m*(nm+ij);

myneighbors = myneighbors +(m*nm+b);
C(ml,nm,kn) = myneighbors/2;

end
end

end
end
Cout = C;

end

D: Example "MIT Photonics Bands" Codes
;set general simulation parameters
(set-param! num-bands 3)
(set-param! resolution 16)
(set-param! mesh-size 7)

(set-param! default-material (make dielectric (index 1.445)))
(define Sil (make dielectric (index 3.4845)))

;set main period parameters:
(define-param um 1.0)
(define-param a (* 1.0 um)) ;let a = 1.0 and scale things off of a

;define k-points:
(set! k-points (list (vector3 0 0 0) (vector3 0.5 0 0)))
(define-param k-points-interp-num 100)
(set! k-points (interpolate k-points-interp-num k-points))

;set PC unit-cell sizes (height, width, length, etc...)

(define-param a bar (* 0.3 a))
(define-param h tot (* a .8))
(define-param w guide ( * a .5))

(define-param w tot (* a 3))

(set! geometry (list
(make block (center 0 0 0) (material Sil) (size a bar w tot h tot))

(make block (center 0 0 0) (material Sil) (size 1.0 w guide h tot))

;note: took advantage of new-replaces-old definitions to have fewer blocks.

;supercell parameters
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(define-param scheight (* (/ h tot a) 14)
(define-param scwidth (* (/ w tot a) 3)

;define lattice
(set! geometry-lattice (make lattice (size 1.0 scwidth scheight) (basis-size a a a) ))

;define simulation and let it run
(run-yodd display-group-velocities)
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