
Parameterized Modeling of Multiport Passive Circuit

Blocks

by

Zohaib Mahmood

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2010

MASCHU -E ThiJ7T
OF TC~CL

OCT 735 210

L ISRA R I E3

@ Massachusetts Institute of Technology 2010. All rights reserved.

ARCHivES

Author ...........
Depart-.ent

Certified by.

of ectrical Engineering and Computer Science
August 22, 2010

. . . . . . . . . . . . . . . k . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Luca Daniel
Associate Professor

Thesis Supervisor

A. -.

Accepted by............. 7 . ......... ............................

Terry Orlando
Chairman, Department Committee on Graduate Theses





Parameterized Modeling of Multiport Passive Circuit Blocks

by

Zohaib Mahmood

Submitted to the Department of Electrical Engineering and Computer Science
on August 22, 2010, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

System level design optimization has recently started drawing the attention of circuit de-
signers. A system level optimizer would search over the entire design space, adjusting the
parameters of interest, for optimal performance metrics. These optimizers demand for the
availability of parameterized compact dynamical models of all individual modules. The
parameters may include geometrical parameters, such as width and spacing for an induc-
tor or design parameters such as center frequency or characteristic impedance in case of
distributed transmission line structures. The parameterized models of individual blocks
need to be compact and passive since the optimizer would be solving differential equations
(time domain integration or periodic steady state methods) to compute the performance
metrics. Additionally, these parameterized models would be able to facilitate the job of the
designer who could instantiate the models with different parameter value during manual
optimization.

In this thesis, we have designed and implemented various highly efficient algorithms for
the identification of individual and parameterized models for multiport passive structures.
The algorithms are based on convex relaxations of the original non-convex problem con-
sisting of modeling multiport devices from frequency response data. Passivity is enforced
in the final models by constrained fitting, where the constraints are either Linear Matrix
Inequalities or semidefinite constraints. These individual non-parameterized models can
be used for system level simulations for fixed parameter values or for building up a param-
eterized model. In the first algorithm, we identify a collection of first and second order
networks to model individual non-parameterized passive blocks. Passivity of the overall
model is guaranteed by enforcing passivity on the individual building blocks. In the second
algorithm we exploit the property of causal and stable systems for which the real and imag-
inary parts of the frequency response are related by the Hilbert transform, by minimizing
only the mismatch between real parts. Passivity is enforced in the identified model using
semidefinte constraints.

In this thesis we also propose an algorithm for generating parameterized multiport mod-
els of linear systems that the user will be able to instantiate for any parameter value, always
obtaining a stable and passive model. Our approach uses constrained optimization to con-
struct a parameterized model that optimally fits a set of given non-parameterized models



using polynomial or rational basis. By using optimization, as opposed to interpolation as
in the available parameterized modeling techniques, we are capable of guaranteeing global
passivity with respect to the parameters, while simultaneously keeping the number of terms
describing the model small.

The proposed algorithms are supported by various modeling examples including Wilkin-
son combiners, power and ground distribution grid, on-chip coupled inductors, microstrip
patch antenna and parameterized attenuator. The identified models are verified for passiv-
ity using the Hamiltonian matrix based eigenvalue test. Several comparisons with existing
techniques are also provided, which demonstrate a promising speed up of 40x in some
cases and an amazing efficiency, by generating a highly accurate model in the cases where
alternative techniques even failed to generate the model.

Thesis Supervisor: Luca Daniel
Title: Associate Professor
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Chapter 1

Introduction

1.1 Motivation

Generation of accurate and passive dynamical models for linear multiport analog circuit

blocks is a crucial part of the design and optimization process for complex integrated cir-

cuit systems. Quite often, these models also need to capture dependence of the system on

design and geometrical parameters while providing apriori passivity and stability certifi-

cates for the entire parameter range of interest. These identified models are interfaced with

commercial circuit simulators where they are used to perform transient simulations being

interconnected with other circuit blocks. If any of these building blocks violate essential

physical properties such as stability and passivity, then the overall interconnected system

might turn out to be unstable, and hence causing the transient simulations to blow up.

Let us consider the typical design flow for an analog circuit block, say a distributed

power amplifier, containing on-chip multiport passive interconnect structures, such as multi-

primary transformers for power combining. The full system design is completed in two

steps. As the first step, the interconnect passive structures are laid out in an electromag-

netic field solver and then simulated for frequency response in the desired frequency band.

The second step consists of developing a reduced model based on the frequency samples or

system matrices extracted by the solver which can be incorporated into a circuit simulator

(e.g. Spice or Spectre).

Once the models are generated, they are interfaced with the circuit simulators using



Equivalent Multiport Model

Figure 1-1: The model of a multiprimary transformer interfaced with circuit simulator to
perform full distributed power amplifier simulations

either equivalent netlists or behavioral description. The final network in Figure 1-1 shows

the interconnection of the generated model with other building blocks of the amplifier such

as transistors and capacitors. Inside of the circuit simulator, transient simulations are per-

formed in order to get performance metrics of the complete nonlinear power amplifier. If

the generated model encounters a violation of any basic physical property of the structure,

such as passivity, it can cause huge errors in the response of the overall system, and the

results may become completely nonphysical.

In addition, the designers would greatly benefit from these models if these models are

parameterized in some of the design parameters, such as width and spacing for an inductor

or characteristic impedance in the case of distributed transmission line structures. These

parameterized models will greatly reduce the design cycle by allowing the designer to in-

stantiate the structure with various design parameters without performing another full-wave

electromagnetic simulation. However these models are useful only if the final parameter-

ized models come with apriori passivity certificates in the entire parameter range of interest.

1.2 Overview and Contributions of this Thesis

In this thesis we propose various highly efficient algorithms to automatically generate both

individual non-parameterized and parameterized passive multiport models. In particular

the main contributions of this thesis are summarized as follows:

. We have proposed a new algorithm to identify individual passive dynamical models.

.............. ..... ............................... ............. -- -- : -- - 11 1 :_-



The proposed algorithm identifies the unknown system in two steps. The first step is

to identify a common set of stable poles for the multiport structure. The second step

is to identify residue matrices which conform to passivity conditions. These passivity

conditions are enforced as Linear Matrix Inequalities (LMIs).

" We have proposed another algorithm to identify individual passive dynamical model.

This algorithm generates the passive model in a single step. Since the poles and

residues are identified simultaneously, the identified model in this algorithm is near

optimal. The passivity constraints in this algorithm require polynomial positivity.

These constraints are enforced by using a semidefinite relaxation.

" We have proposed a new approach to develop globally stable and passive parameter-

ized models. In this approach a collection of individual passive models is approx-

imated by a single closed form model which conforms to passivity conditions in a

continuous parameter range of interest.

The matlab implementations of various algorithms proposed in this thesis will be posted

on public domain as free open source software at [1].

1.3 Organization of This Thesis

This thesis is organized as follows: Chapter 2 covers the relevant background on linear

systems and passivity. Chapter 3 describes a brief overview of the existing techniques

along with their advantages and shortcomings. Chapter 4 explains our convex formulation

to identify passive system models in pole residue form. Chapter 5 describes our algorithm

to identify passive linear system models as a ratio of complex polynomials. Chapter 6

covers the details how our passive models can be interconnected. Chapter 7 details how

the proposed algorithm can be extended to identify globally passive parameterized models

with apriori passivity certificates. Chapter 8 summarizes the thesis. Appendix A describes

how some of the convex problems can be cast as semidefinte programs. All the theoretical

developments are supported by examples which are provided at the end of relevant chapters.



1.4 Notation

In this thesis we use the following notations: Any letter with hat, such as H-, is used for the

unknown or identified variables. The given samples and data points are indicated by using

a subscripted letter such as Hi where i is the index. X indicates the parameters, such as

design or geometrical parameters, k is also occasionally used as a symbol for eigen values,

it is always specified in the context to which quantity X is refering to. Real and imaginary

parts of the complex quantities are denoted by prefixing 91 and 3 respectively.



Chapter 2

Background

2.1 Linear Time Invariant (LTI) systems

Dynamical systems are an extremely useful tool for the time-domain analysis of physical

systems, as they provide a relationship between input signals u(t) to an output signal y(t)

for the system. In state-space models, the evolution of the system is described by a state

vector x(t), which is controlled by input u(t) and from which output y(t) is determined. In

the general form, a Linear Time Invariant (LTI) state-space model can be expressed as

(2.1)d~)= Ax(t ) + Bu (t )
dt

y(t) = Cx(t) +Du(t)

where A E R 1x, B E Rnxp, C E RPxfn, and D E RPXP. Here n and p are the number of

states and ports respectively. Linear systems can also be expressed in terms of a transfer

matrix, by taking Laplace transform of (2.1), as

_____ [H11(s)
H(s) - Y(s) AC(sI-A)-1B+D

U(s)[ 1(s)

- Hip(s)

--- Hp(s)

(2.2)



Here Hij (s) indicates the transfer function from Port j to Port i.

2.2 Passivity

Passivity is one of the most important properties of dynamical systems. It describes the

dissipative nature of the system which implies stability and causality. Passive systems (or

models) are incapable of generating energy. Passivity is an essential property if the model,

being interconnected with other systems, is to be used for time domain simulations, since

arbitrary connections of passive systems are guaranteed to be passive. While it may be

possible for a non-passive model to provide high accuracy in the frequency domain, the

same model when used in time domain simulation could produce extremely inaccurate

results resulting from passivity violations.

Consider a system described by input ( say current) u and output (say voltage) y. Then

(u,y), describes the total energy of the system upto time t , where

(u,y)t= y(t)T u(t) dt. (2.3)

Then the system is passive if

(u,y), > 0,VT E R+ (2.4)

Linear systems are usually described as a transfer matrix or as a state space model.

Let us consider the passivity of impedance or admittance system specified by a transfer

matrix H(s). Passivity for an impedance or admittance system corresponds to 'positive

realness' of the transfer matrix. To be positive real, the transfer matrix ft(s) must satisfy

the following constraints



H(s) =l(s) (2.5a)

H (s) is analytic in 91{s} > 0 (2.5b)

H (jo)+ H^(jo)i t 0 Vo) (2.5c)

Where 91{ } denotes the real part and t indicates the hermitian transpose.

The first condition (2.5a), commonly known as conjugate symmetry, ensures that the

impulse response corresponding to H(s) is real. The second condition (2.5b) implies sta-

bility of the transfer function. A causal linear system in the transfer matrix form is stable

if all of its poles are in the left half of the complex plane, i.e. all the poles have negative

real part. The system is marginally stable if it has simple poles (i.e. poles with multiplicity

one) on imaginary axis. The third and final condition (2.5c), which is positivity condition,

implies positive realness of the symmetric part of the transfer matrix on the jo axis.

2.2.1 Manifestation of Passivity for a Simple RLC Network

We consider a simple RLC network as shown in Figure 2-1. In this simple schematic we

can analytically compute the equivalent of passivity conditions as follows

Zeq(O) = R + jXeq(O)
oL

=R+j O (2.6)
1 -0o9LC

Here 9 IZeq = R. The passivity condition translates into R being non-negative, i.e. R > 0 in

addition to L and C being non-negative.

2.3 Tests for Certifying Passivity

There are several tests, all based on positive real lemma, by which a model can be certified

to be passive. Section 2.3.1 and 2.3.2 describe conditions which are both necessary and

sufficient for passivity [8]. Section 2.3.3 describes a necessary condition for passivity.



R

L C ZEQ

Figure 2-1: Manifestation of passivity for a simple RLC network where Zeq (0) R +
jXeq(0). Passivity implies that R, L, C > 0

2.3.1 Tests Based on Solving a Feasibility Problem

When the system is represented in general state space form,

d(x)
E =Ax+Bu

dt

y =Cx+Du

with minimal realization (i.e. every eigenvalue of A is a pole of H(s)), passivity is

implied by the positive real lemma. The positive real lemma states that if there exists a

positive definite matrix P = pT >- 0 and P E R"X" such that the following matrix is negative

semidefinite

ETPA+ATPE ETPB-C

BTPE-C -D-DT 1  (2.7)

then H(s) is positive real and hence the system is passive. Hence to certify if a system

is passive, the feasibility problem for the existence of a positive definite matrix p = pT > 0

can be solved. However such a formulation cannot be used efficiently to identify a passive

system since it would then contain the product of unknowns, and is non-convex.



2.3.2 Tests Based on Hamiltonian Matrix

We can solve a condition equivalent to (2.7) based on Riccati equations and Hamiltonian

Matrices. If we assume that D + DT > 0, then the inequality (2.7) is feasible if and only if

there exists a real matrix P = pT > 0 satisfying the Algebraic Riccati Equation

ATP+PA+(PB-CT)(D+DT)-1 (PB CT)T=0 (2.8)

In order to solve the Algebraic Riccati Equation 2.8 we first form the associated Hamil-

tonian matrix M as follows

A -B(D+D T) -C B(D+DT) -BT (2.9)

-CT (D+D-T)- C -AT +CT(D+DT )~1BT

Then the system (2.1) is passive, or equivalently, the LMI (2.7) is feasible, if and only if M

has no pure imaginary eigenvalues [8].

2.3.3 Sampling Based Tests - Only Necessary

Another class of passivity tests are based on checking the passivity conditions (2.5) at

discrete frequency samples. Since passivity requires condition (2.5) to hold for all o, a

reduced model is non-passive if Xmin(91{H(j(oi)}) < 0 for some oi. Here X denotes the

eigen values. Note that this test is based on a necessary condition and can only be used to

check data samples or samples from the model for passivity violations and cannot be used

to certify the passivity of a model.

2.4 Convex Optimization Problems

In this section we describe general convex optimization problems. Before discussing the

optimization problems, we first describe the notion of convexity and convex functions in

the following section. For detailed description we refer the readers to [9].



2.4.1 Convex and Non-Convex Functions

A function f(x) is convex if the domain of f(x) is convex and if for all x, y E domain f(x)

and 0 E [0, 1], it satisfies

f(Ox(+ ( -)y) < Of(x)+ ( -- )f(y) (2.10)

Geometrically, this inequality means that the line segment between (x, f(x)) and (y, f(y))

lies above the graph of f(x) as shown in Figure 2-2.

Convex function
(finding global minimum is easy)

Figure 2-2: Shows a convex function. In general finding global minimum for convex func-
tions is easy

One of the nice properties of a convex function is that they have only global mini-

mum which is relatively easier to compute compared to non-convex functions, as shown in

Figure 2-3, which may have local minimas and hence making the computation of global

minimum an extremely difficult task.

2.4.2 Convex Optimization Problems

Using the notation of [9], a convex optimization problem is of the form



Non-convex function
(finding global minimum is extremely difficult)

Figure 2-3: Shows a convex function. In general finding global minimum for convex func-
tions is extremely difficult

minimize fo (x)

subject to fi (x) < 0, i = 1, .. ,m (2.11)

aT(x)=bi, i=1,...,p

where the objective function fo(x) is convex, the inequality constraint functions fi(x)
are convex and the equality constraint functions hi(x) = afx - bi are affine. Hence in

a convex optimization problem we minimize a convex objective or cost function over a

convex set. Convex optimization problems are particularly attractive since finding global

minimum for the cost function is a relatively easy.

2.4.3 Semidefinite Programs

Semidefinte Programs or simply SDPs belong to a special type of convex optimization

problems where a linear cost function is minimized subject to linear matrix inequalities.

minimize cTx
(2.12)

subjectto Fix1+F 2x2 +---+Fnxn-Fo -O

where all of the matrices F, F1, ... Fn C Sk, here Sk indicates set of symmetric matrices

of order k x k. Semidefinite Programs are particularly important since most of the convex

optimization problems can be cast as an SDP (described in Appendix A) and can be solved

... .......... ......... ............ ..... ............... .... ............... ..... ..



efficiently using public domain solvers such as [2,28].



Chapter 3

Existing Techniques

In this chapter we summarize various existing techniques for non-parameterized and pa-

rameterized model identification of multiport passive structures.

3.1 Traditional Approaches

Traditionally, the critical task of generating a model is completed manually where the cir-

cuit designer or system architect approximates the unknown system with emprirical or

semi empirical formulas. These models rely on the designers' experience and intuition

accumulated after a lifetime of simulations with electromagnetic field solvers and circuit

simulators. In these approaches, normally the designer would either approximate the struc-

ture with lumped RC and RL networks characterized at the operating frequency as shown

in Figure 3-1 or generate a simple schematic from intuition consisting of RLC elements

having frequency response 'close' to the original structure as shown in Figure 3-1.

Unfortunately, these intuitive approaches in addition to being extremely limited, are

also prone to generate erroneous results. Additionally, in order to generate the complete

multiport transfer matrix, quite often the individual transfer functions are approximated

separately. Hence, these models can be completely nonphysical, violating important phys-

ical properties of the original system such as passivity, since passivity is a property of the

entire transfer matrix and cannot be enforced if transfer functions are identified individu-

ally. Also, these techniques are not scalable, hence generating a model for a system with



Figure 3-1: Approximation at operating frequency

Figure 3-2: Approximation from intuition or basic physics

larger than a few ports become extremely challenging. Furthermore, the modeling task

becomes even more difficult when attempting to generate by hand closed form compact

models of the frequency response parameterized by design or geometrical parameters.

In order to make this process more efficient and robust, it is desirable to replace hand-

generated macromodels by automatically-generated compact dynamical models that come

with guarantees of accuracy, and passivity. In the following sections we discuss some of

the commonly used techniques for the identification of compact dynamical models.

3.2 Automated Approaches

In the recent years, considerable effort has been put in automating the procedure to generate

compact parameterized models. There are two commonly used available techniques to

generate models for linear structures. The first ones are projection based approaches and

the second ones are rational fitting approaches. A detailed survey of these approaches is

presented in [7]. We describe these techniques one by one in the following sections.

. .. ........



3.3 Projection Based Approaches

3.3.1 The Traditional Projection Framework

Most of the model order reduction techniques can be interpreted within a projection frame-

work. In such a framework the solution to a given large linear multiport system

E* -= Ax+Bu, y = CTx, (3.1)

is approximated in a low-dimensional space x Vf, where V E R Nxq is the right pro-

jection matrix, x is the reduced state vector, and N >> q. A reduced set of equations is

then obtained by forcing the residual, r(Vs) = EVI - AVs - Bu, to be orthogonal to the

subspace defined by a left projection matrix U, i.e. UTr(Vs) = 0. The resulting state space

model has the form

E + Eu, y=C 0 , (3.2)

where E = UTEVA = UTAV,B = UTB, and C - VTC. The accuracy of the reduced

model created via projection is completely determined by the choice of projection matrices

U and V. The most common approaches for selecting the vectors are methods based on

balanced truncation, moment matching, and singular value decomposition (e.g. proper

orthogonal decomposition, principle components analysis, or Karhunen-Loeve expansion).

For more details on generating projection vectors see [5, 18].

3.3.2 Stable Projection for Linear Systems

Traditionally it is assumed that the original large system (3.1) possesses an extremely spe-

cial structure viz. E - ET S 0 A - 0 and B = C. In such cases selecting U = V (known

as congruence transform or Galerkin projection) will preserve stability and passivity in the

reduced system for any choice of V. While all digital RLC type interconnect networks



possess the required semidefinite structure, for analog modeling it is, unfortunately, com-

pletely unrealistic to restrict consideration to only semidefinite systems. Therefore for the

vast majority of analog systems, the congruence transform cannot guarantee stability and

passivity of the generated model. One possible computationally cheap solution is to use

as a first step any of the available traditional projection based methods (including congru-

ence transforms) and then attempt to perturb the generated model to enforce stability and

passivity. One semidefinite formulation of this problem is

minimize ||A$ I +|AA||+||A||
AE,AA,AC

subject to EF 0 (33)

A+ T __ 0,

B=C

where E - UTEV + AE,A = UTAV + AA, $= UTB, and0 = VTC + AC. Here stability

and passivity are enforced in the reduced model by forcing it to be described by semidefinite

system matrices, which introduced no loss of generality even if the original system (3.1) is

not described by semidefinite matrices [6].

Unfortunately, in most cases any such perturbation could completely destroy the accu-

racy of the reduced model. Instead of perturbing the reduced model , a better approach

that can guarantee accuracy in the reduced model is to perturb one of the projection ma-

trices. That is, given U and V, search for a 'small' AU such that the system (3.2), de-

fined by reduced matrices E = (U + AU)TEV,A = (U + AU)TAV,B = (U + AU)TB, and

C = VTC+ AC is passive. This problem can similarly be formulated as a semidefinite

program

minimize ||AUll
AU

subjectto E -O (3.4)
+ T

A±A --.O0

Bz=C

It can be shown that if the original model (3.1) is stable and passive, then for any



projection matrix V there exist projection matrices U such that the resulting reduced model

is stable and passive [6].

3.3.3 Parameterization of Projection Methods

Generating a parameterized reduced model, such as

for a linear system where X is a vector of design parameters, is of critical importance if

the models are to be used for system level design trade-off explorations. Two modifications

to the previously described projection procedures must be made when constructing param-

eterized models. First the subspace defined by V must capture the solution response to

changes in parameter values. Expanding the subspace is typically achieved for linear sys-

tems by generating projection vectors that match the frequency response derivatives with

respect to the parameters X in addition to the frequency [11, 33]. Alternative approaches

for handling variability resulting from a large number of parameters are based on sampling

and statistical analysis [14,34].

The second issue involves specifically the case of nonlinear parameter dependence,

where the system matrix or vector field must be able to cheaply capture changes in X. One

way to make a parameterized system matrix A(X) projectable with respect to the parame-

ters is to represent them as a sum on non-parameterized functions that are linear in scalar

functions of the original parameters. For instance, for the parameterized linear system

i = A (X) (3.6)

we seek to approximate and project as follows:



A(X) A1 igi() () ~ ((UTAiV)gi(X) (3.7)
i=O i=O

such that A UTAiV are constant matrices and can be precomputed. Here gi(X) are

scalar functions of the original parameter set X. The matrix approximation in (3.7) can be

achieved using a polynomial expansion if A(p) is known analytically, or via fitting in the

case when only samples of the matrix Ak A(Xk) are known [11].

3.4 Rational Fitting of Transfer Functions

Projection methods have been successful for certain classes of linear systems, but in many

applications, such as when modeling analog passive components affected by full-wave ef-

fects or substrate effects, the resulting system matrices include delays, or frequency depen-

dency. To capture such effects in a finite-order state-space model, one must approximate

this frequency dependence, using for instance polynomial fitting of matrices [12], mak-

ing preservation of passivity through projection even more challenging. Furthermore, often

times only transfer function samples are available, obtained possibly from measurements of

a fabricated device or from a commercial electromagnetic field solver. In such a scenario,

since original matrices are not available, projection based approaches cannot be used.

An alternative class of methods are based on transfer matrix fitting. There exist different

approaches to generate rational transfer function matrices from frequency response data.

The problem of finding a passive multiport model from complex frequency response data

is highly nonlinear and non convex. Given a set of frequency response samples {Hi, oi},

where Hi = H(joi) are the transfer matrix samples of some unknown multiport linear sys-

tem, the compact modeling task is to construct a low-order rational transfer matrix i(s)

such that H(joi) ~ Hi. Formulated as an L2 minimization problem of the sum of squared

errors, it can be written as



E 2minimize [Hi - H(joi)
H i (3.8)

subject to H^(jw) passive

Even after ignoring the passivity constraint in (3.8), the unconstrained minimization

problem is non-convex and is therefore very difficult to solve. Direct solution using nonlin-

ear least squares have been proposed, such as Levenberg-Marquardt [25]. However, there

is no guarantee that such approach will converge to the global minimum, and quite of-

ten the algorithm will yield only a locally optimal result. Rather than solving non-convex

minimization problem, many methods apply a relaxation to the objective function in (3.8)

resulting in an optimization problem that can be solved efficiently. These schemes can be

broadly classified into two categories: those which use unconstrained minimization com-

bined with post processing perturbation to enforce passivity; and those that simultaneously

enforce passivity during the fitting process by formulating a convex optimization problem.

3.4.1 Passivity During Fitting

Over the past years considerable effort has been put into finding a convex relaxation to

the original problem including the passivity constraint (3.8) such as [10, 29]. Although

these techniques provide an analytical formulation, they are often criticized as being still

computationally quite expensive. Most of these techniques rely on enforcing the positive

real lemma by constraining the real part of the impedance matrix to be positive definite over

allfrequencies. Although such a constraint can be certifiably enforced by using a Sum-Of-

Squares (SOS) relaxation, it is normally a costly operation, specially when the constraints

are defined on frequency dependent matrices such as in [29].

3.4.2 Passivity via Post-Processing

Some iterative techniques also exist, such as [16, 19]. In these techniques a stable but

non-passive model is first identified. This non-passive model is then checked for passivity

violations by examining if there exist pure imaginary eigen values of the corresponding

Hamiltonian matrix. During the post processing step, pole locations are kept fixed and



passivity is obtained by altering only the residues. This is achieved by transforming from

pole-residue form to state space form and perturbing only the C matrix. A generic formu-

lation of the positivity-enforcing minimal perturbation can be stated as

min| AC Ix, subject to 'P(Q) (3.9)
AC

where 'P(92) is a positivity constraint for the transfer matrix over the set of positiv-

ity violations 92, and |. 1|x denotes the norm used for quantifying the effects of the per-

turbation on the accuracy of the model. In [16] it was proposed to select the norm that

produces the minimal perturbation to the impulse response of the original system, de-

fined as ||AC||x = ||ACKT| 2 where KTK = W is the controllability Grammian satisfying

EWAT +AWET +BBT = 0. Other possible choices for the objective function in (3.9) are

presented in [19]. The positivity constraint 'P(Q) is enforced using first-order perturba-

tion to the eigen values of the Hamiltonian matrix, and can be expressed as a linear matrix

equality or matrix inequality in terms of the unknown perturbation vector AC.

These techniques are computationally efficient, however since perturbing the system is

an ill-posed problem, there is no guarantee that the final passivated model is optimal for

accuracy, specially in the case where the initial non-passive model had significant passivity

violations.

3.4.3 Passivity via Passive-Subsections

A model is passive if all of its building blocks are passive. There are approaches, such

as [24, 26], where the individual building blocks of a non-passive model are checked for

passivity individually. However, since such a condition is only a sufficient condition, many

passive models will fail the test. Also in these approaches [24,26] no efficient method or

algorithm was presented in order to rectify for passivity violations. For example in [26]

it was proposed that the pole-residue pairs violating passivity conditions should be dis-

carded, this is highly restrictive and can significantly deteriorate the accuracy. We instead

propose that the identified residue matrices should conform to passivity conditions during



the identification such that there are no passivity violation in the final model.

3.4.4 Parameterized Rational Fitting

There are two possible approaches to generating a parameterized transfer matrix HI(s, k)

from a given set of frequency response and parameter values {Hi,oj,Xi}. The first ap-

proach is to fit simultaneously to the frequency response data and parameter values, i.e.

minimizing H(joi, Xi) - Hil2. This approach was first proposed in [29] along with the

simultaneously enforcement of stability passivity. However, simultaneous frequency and

parameter fitting can become quite expensive for a large number of parameters. Alter-

native fitting approaches rely on interpolating between a collection of non-parameterized

models, each generated by a stable and passive fitting procedure. The main challenge

for such approaches based on interpolation is to guarantee passivity in the final interpo-

lated model, since one may produce very trivial stable systems where simple interpolation

will not preserve stability or passivity. All the current existing interpolation based algo-

rithms [13, 15,32] only provide a test to simply check stability after a particular instance of

the parameterized model has been instantiated. The downside of such methods is that the

user (i.e. a circuit designer, or a system level optimization routine) would need to run such

test every single time a new model is instantiated. Furthermore, if the instantiated model

does not pass the stability test, the user would either be stuck with an unstable model, or

would need to basically rerun the fitting algorithm to perturb the unstable instantiation until

stability is achieved. In other words none of the available interpolation based approaches

can guarantee that any instantiation of their identified parameterized models will be a pri-

ori stable and passive for any value of the parameters in a predefined range.

In this thesis we present a method for generating parameterized models of linear sys-

tems that the user will be able to instantiate for any parameter value either within a limited

given range, or for an unlimited range, and be sure a priori to obtain a passive model.

Given a collection of systems swept over design and geometrical parameters of interest,

we identify a closed form parameterized dynamical model using constrained fitting. The

details can be found in Chapter 7. Our algorithm is completely independent from the



type of initial non-parameterized identification procedure used for the individual systems,

if only stability is sought in the final parameterized model. In other words, the individ-

ual (non-parameterized) models may be generated by any stability preserving modeling

scheme such as convex optimization based approaches [10,22,29], vector fitting based ap-

proaches [16, 17, 19, 20] or Loewner matrix based approaches [21]. However, in order to

enforce global passivity, the individual non-parameterized models need to have the struc-

ture described in Chapter 4.



Chapter 4

Passive Fitting for Multiport Systems -

Method I

4.1 Rational Transfer Matrix Fitting in Pole Residue Form

The problem of constructing a rational approximation of multi port systems in pole residue

form consists of finding residue matrices Rk, poles ak and the matrices D & F such that the

identified model, defined by the transfer function H(s) in (4.1), minimizes the mismatch

with the frequency response samples from the original system as described in (3.8).

K Rk
H(s) = Rk- +D+sF

i=1 s-ak

here Rk, D and F are T x T residue matrices (assuming the system has T ports) and

ak are poles. Since most of the passive structures have a symmetric response, we consider

the case when Rk, D and F are symmetric matrices. In the case when the matrices are

non-symmetric, we can apply the same formulation to the symmetric part of the matrices.

(4.1)



4.2 Passive Fitting for Multiport LTI Systems

4.2.1 Problem Formulation

To formulate the problem, we expand the summation for H^(s) in (4.1) in terms of the purely

real and complex poles. Also, since we are mainly interested in the properties of H(s) on

the imaginary axis, we replace s with jo.

K Rr KC R

H() =k r + E k + D + joF (4.2)
k=1 jO)ak k==1 ZlJ~ak

Where Kr and c denote the number of purely real and the number of complex poles,

respectively. Also, R E R TxT, R E CTxT, ar E R, ac E C Vk, and D,F E R TxT, where

T is the number of ports.

In the following sections, we consider one by one the implications of each passivity

condition in (2.5) on the structure of (4.2).

4.2.2 Conjugate Symmetry

Let us consider the implications of first condition of passivity on the structure of our pro-

posed model in (4.2). The terms in (4.2) corresponding to the matrices D and F, and to the

summation over purely real poles satisfy automatically the property of conjugate symmetry

in (2.5a). On the other hand such condition requires that the complex-poles ac and complex

residue matrices R' always come in complex-conjugate-pairs

_r R r _ R_+_j3Re 9Rc -j3 Re
H0(jo)) =Cr + . k_ _ k k +D + joF (4.3)

k=1 f( k k=1 j k -- ka - Sa Jo- a

In (4.3) 91 and 3 indicate the real and imaginary parts respectively. Note that the sum-

mation for complex poles now extends only upto Kc/2.

Proof The condition requires H() ) (jo). We show that the t(jo), as in (4.3) satis-

fies this constraint.



_ Rr ic/2 9R + j-R + 9IR - jSR-.
k +___ _ k__k_+_kk

Ho) = E + +D - j(OF
k=1 k =1 j k k k

K Rr Kc/2 WR - j3R RR-S+ j3Rc .Ef~wY k± + k(
(-o J _ k + .. + D-+ 9oF
k=1 j( ~-a k= j0) -- 1ac + j ac jO) - 1ac - j.3ac

= $(jO)

Rewriting (4.3) compactly we get:

Kr Kc/2

H (jo) = r E (jo)+ $(jo) + D + jOF (4.4)
k=1 k=1

Rrk-I0k 1

where: (jo) - (45)

9IRc+j3Re 9IR[-j R
H9j(0) =-k k + k (4.6)

joi - 91ac - j-3ac j~o - 91ac+ j3ac

4.2.3 Stability

The second condition (2.5b), which requires analyticity of H(s) in %f{s} > 0, implies sta-

bility. For a linear causal system in pole-residue form (4.1), the system is strictly stable

if all of its poles ak are in the left half of complex plane i.e. they have negative real part

(91{ak} < 0). Note that the system is marginally stable if conjugate pair poles with multi-

plicity one are present on the imaginary axis.

4.2.4 Positivity

The positivity condition for passivity (2.5c) is the most difficult condition to enforce an-

alytically. We present here an extremely efficient condition which implies (2.5c). We

consider the case when all the building blocks in the summation (4.4), namely: purely real

poles/residues Hr(jo), complex-conjugate pairs of poles/residues ft(jo), and the direct

term matrix D are individually positive real. Please note that the joF term has purely

imaginary response and therefore does not affect positivity condition.



Lemma 4.2.1 (Positive Real Summation Lemma) Let 1(jo) be a stable and conjugate

symmetric transfer matrix given by (4.4), then I(jo) is positive-real if Hr(jo)), I[( jo)

and D are positive-real Vk. i.e.

(4.7)9Pt (jso) p - 0, 9 opl mA) > c OVk & D e 0 -

Proof The sum of positive-real, complex matrices is positive real.

Lemma 4.2.1 describes a sufficient, but not-necessary, condition for (2.5c). However,

as it will be shown in the examples, this condition is not restrictive.

In the following sections we derive the equivalent conditions of positive realness on

each term separately.

Purely Real Pole-Residues

In this section we derive the condition for the purely real pole/residue term /k(jo) in the

summation (4.4) to be positive real. Such a condition can be obtained by rationalizing

/$[(jo) defined in (4.5), as following:

Rr
firj(j)= k rj0o - ak

R -jo - a

j(O - ar -j~o - ar

ar2 __2_r

(02 + ak 02 + a 2

9t$[(jo) k_ 0 >- [ 0 VO, k = 1, ..., IKr91ftk (2 + ak

(4.8)

(4.9)

(4.10)

Complex Conjugate Pole-Residues

In this section we derive the positive realness condition for the complex pole/residue term

4j(jo) in the summation (4.4). Since complex terms always appear conjugate pairs, we



first add the two terms for Hk(jo) in (4.6) resulting into:

4c~i) 9R[+jZR[
H jo -I0() = -k kj~o - 91ac - j.3ac

9IR[-j3Rc+ - kjk
j~o -- 91ac+ j~ac

-2(91ac)(R ) - 2(Sac)(SR')+ j2o)(91RI)

(91ac)2 + (Sac 2 - - j2o9lac

(4.11)

(4.12)

In order to obtain positive realness condition on ft j(jo) we rationalize (4.12) to form (4.13).

The resulting condition for 91ftk(jo) - 0 is given in (4.14)

c() -2(91ac)(91R)- 2(Sa)(SR) + j2&(9R ) (91a
(91ac)2 + (Sac)2 - o - j2o9Rac (91a

-2{(9Ua)2 + (Sac) 2}{(91ac)(91Re) + (Sac)(SR3}

)2+ (Sac)2 _ (02 + j2o9iac
C)2 + (Sac)2 - (02 + j2o291ac

2o2 { (9a) (91Rc)
((91ac) 2 + (Sa) 2 

- (02)2+ (2o91ac) 2

.- 20{(91a')2 - (Sac) 2 + 02}9jRk - 4co(91ac)(Sac)SR[
((91ac)2+ (Sac)2 (02)2+ (2o91ac)2

9tn'j(o) >- 0 ->

-2{(91ac)2+ 3ac2}(9ac)(91Rk)

((91ac)2 +

+ (Sac)(SR[)} - 20{(91ac)(9R[) - (Sac)
(Sac)2 - 02)2 + (2CO91ac)2

V(Olk= 1, ..., Ie

Direct Term Matrix

Since D is a constant real symmetric matrix, we require D to be a positive semidefinite

matrix, i.e.

(4.13)

(R)} >- 0

(4.14)

-(ac) (3SR)}



4.2.5 The Constrained Minimization Problem

We combine all the constraints derived earlier and formulate a constrained minimization

problem as follows:

2
minimize {Hi - H(joi)

H={Rk,ak,D,F} i

subject to a' <0Vk= 1, ..., Kr

SWac < 0 Vk =,.. c

k(jo) >- 0 Vo,k = 1,..., Kr (4.15)

91fkc(jo) >- 0 Vo, k = 1, .. ,ce

D >- 0

Kc/2

where 1(jto) =+ E 4k(jo) +D + joF
k=1 k=1

Here Hi are the given frequency response samples at frequencies oi; rj and RJ are

defined in (4.5) and (4.6) respectively; ar and ac denotes the real and complex poles re-

spectively. The detailed expressions for 91H1[(jo) >- 0 and 91ftk(jo) >- 0 are described

in (4.10) and (4.14) respectively. The optimization problem described above in (4.15) is

non convex. In the following section, we shall see how we can implement the relaxed

version of (4.15) as a convex problem in terms of linear matrix inequalities.

4.3 Implementation

In this section we describe in detail the implementation of our passive multiport model

identification procedure based on solving the constrained minimization framework devel-

oped in Section 4.2.

The optimization problem in (4.15) is non-convex because both the objective function

and the constraints are non-convex. The non-convexity in (4.15) arises mainly because of

the terms containing products and ratios between decision variables such as ratio of residue

matrices, Rk, and poles, ak, in the objective function, and product terms and ratios of Rk



and ak in the constraints.

Since the main cause of non-convexity in (4.15) is the coupling between Rk and ak, it is

natural to uncouple the identification of unknowns, namely Rk and ak in order to convex-

ify (4.15). We propose to solve the optimization problem in (4.15) in two steps. The first

step consists of finding a set of stable poles ak for the system. The second step consists of

finding a passive multiport dynamical model for the system, given stable poles from step 1.

In the following sections we describe how to solve the two steps.

4.3.1 Step 1: Identification of stable poles

Several efficient algorithms already exist for the identification of stable poles for multi-

port systems. Some of the stable pole identification approaches use optimization based

techniques such as in [29]. Some schemes such as [4,20] find the location of stable poles

iteratively. Any one of these algorithms can be used as the first step of our algorithm, where

we identify a common set of stable poles for all the transfer functions in the transfer matrix.

As mentioned before, to enforce conjugate symmetry, the stable poles can either be real or

be in the form of complex-conjugate pairs. We employ a binary search based algorithm

to automatically find the minimum number of poles required to achieve a user defined er-

ror bound on the mismatch between given frequency response samples and the frequency

response of identified stable model.

4.3.2 Step 2: Identification of Residue Matrices

In this section we formulate the convex optimization problem for the identification of

residue matrices using the stable poles from step 1. We first revisit the conditions for

passivity (4.10) and (4.14), and later we shall develop the convex objective function.

Purely Real Pole-Residues

Let us consider the positive realness condition on the purely real pole residue term Hj(jo)

as in (4.10). The constraint (4.10) requires frequency dependent matrices to be positive

semidefinite for all frequencies. This is in general very expensive to enforce. However,



a careful observation of (4.10) reveals that the denominator, which is the only frequency

dependent part of (4.10) is a positive real number for all frequency. This allows us to

ignore the positive denominator which leaves us enforcing -a'R[ S 0. Since we are al-

ready given stable poles (i.e. a' < 0), the constraint in (4.10) reduces to enforcing positive

semidefiniteness on R'.

9r(j(o) - 0 -> R - 0 Vk = 1,..., Kr (4.16)

Such a constraint is convex and can be enforced extremely efficiently using SDP solvers [2,

28].

Complex Conjugate Pole-Residues

In this section we reconsider the positive realness condition on the complex conjugate pole

residue pair term Hk(jo) as in (4.14). As before, a closer examination of the frequency

dependent denominator in (4.14) reveals the fact that it is positive for all frequencies. Given

that we have a fixed set of stable poles, and the denominator is always positive, we rewrite

the constraint (4.14) only in terms of the variables i.e. o and R'. Also, we replace the

constant expressions of 91a' and Sa' in (4.14) with generic constants ci. We finally obtain

the following equivalent condition

91H$C(jo) >0 ->

(cI1Rc+ c2SR1)+ o2( + c43R')} - 0 Vo, k = , ...,Kc (4.17)

The problem is however still not solved since the condition in (4.17) is frequency de-

pendent.

Lemma 4.3.1 Let X 1,X2 G ST and o E [0, oo), where ST is the set of symmetric T x T



matrices, then

(4.18)X1 + 2X2 > OVo <-> X1 > 0, X2 5 0

Proof Direction ->

Given X1 + O2X2 - 0 we consider the following limits:

lim (X1 + W2X2) S 0 => X1 0

lim (XI + o 2X2) S 0
CO)-*oo

-> X2 5 0 (4.19)

Direction - follows from the fact that a non-negative weighted sum of positive semidefi-

nite matrices is positive semidefinite.

We define

Xj =c19IRc+ c 2SRe

XI =c 39IR+ c 43Re,

and apply Lemma 4.3.1 to the constraint defined in (4.17) which results into

(4.20)

(4.21)

Since Xk,, X2 are linear combinations of the unknown matrices, 3R' & SR' the con-

straint (4.21) is a semidefinite convex constraint and thus can be enforced very efficiently.

91ftk 0(0) >_ 0 == > Xk - 0 1 Xk >- 0 Vk = I ICC



Convex Optimization to Find Residue Matrices

In this section we summarize the final convex optimization identifying the residue matrices

which correspond to to passive H(jo), given stable poles ak.

2 2
minimize [ Hi - 9H(joi) +[ S H(joi)
R[,RC,D,Fik k

subject to R >- 0 Vk = 1,...,

- 1a'1R'+ 3a-3R' >- 0 Vk = 1, .. ,Kc

~ (4.22)- 1a'1R[ - S3ac,3R' >- 0 Vk = 1, ...,I Ke(.2

D >- 0

Kr Kc/2
where H(jo) = 4 j(jo) + L fic(jo) + D + joF

k=1 k=1

This final problem (4.22) is convex, since the objective function is a summation of L2

norms. All the constraints in (4.22) are linear matrix inequalities. This convex optimiza-

tion problem is a special case of semidefinite programming, requiring only few frequency

independent matrices to be positive semidefinite. This problem formulation is extremely

fast to solve, compared to other convex formulations [22,29] where the unknown matrices

are frequency dependent.

Complexity

In the problem formulation (4.22), all the matrices are symmetric, allowing us to search

only for the upper triangular part. Also since complex residues are enforced by the con-

struction to appear in conjugate pairs, we account for only half of the terms in the complex

conjugate pair.

4.3.3 Equivalent Circuit Synthesis

From the circuits perspective, the algorithm identifies a collection of low-pass, band-pass,

high-pass and all-pass passive filter networks. These passive blocks can be readily synthe-

sized into an equivalent passive circuit networks, and can be interfaced with commercial



circuit simulators by either generating a spice-like netlist, or by using Verilog-A. Alterna-

tively, we can develop equivalent state space realizations for our passive multiport models,

for example a Jordan-canonical form can be obtained as described in [4] and then diago-

nalized.

4.3.4 The Complete Algorithm

In this section we present the description of the complete framework in Algorithm 1.

Algorithm 1 Complete Passive Multiport Model Identification

Input: The set of frequency response samples {Hi, oi}, either the number of poles N or
the rms error bound a

Output: Passive model H(jo)
1: Find stable poles ak for the system
2: if PN then
3: NL 1 ,Nu NMAx
4: repeat
5: t - (NL +Nu)/2
6: Find the stable system Ht with t poles ak

7: Compute the rms error et ii - Ht (joi)|2
8: if at < e then
9: Nu t

10: else
11: NL t t

12: end if
13: until NU = NL

14: N e Nu

15: end if
16: Find the stable system with N poles ak
17: Solve the optimization problem (4.22) for Rk
18: Construct the model in pole/residue form as in (4.2)
19: Synthesize the equivalent passive circuit and generate the corresponding netlist or ver-

ilogA model file

This algorithm minimizes a cost function based on L2 norm subject to linear matrix in-

equalities. Such a formulation can be solved very efficiently and is guaranteed to converge

to the global minimum. However, the fact that this algorithm provides analytical expres-

sions to enforce passivity in a highly efficient manner has an enormous potential such as

in extensions to parameterized passive multiport models (discussed in Chapter 7); or to



include designers specific constraints such as ensuring a good match for qualify factors in

RF inductor dynamical models.

4.4 Results

In this section we shall present modeling examples of various multiport passive structures.

All examples are implemented in Matlab and run on a laptop with Intel Core2Duo processor

with 2.1GHz clock, 3GB of main memory, and running windows 7. We have also posted

on public domain free open source software implementing this algorithm [1].

4.4.1 Wilkinson Combiner in a LINC Amplifier

In this section we shall present an example illustrating the usefulness of our proposed

methodology for modeling and simulating a LINC (LInear amplification with Nonlinear

Components) power amplifier [30]. The architecture, as described in Figure 4-1, consists

of a signal splitter, two power amplifiers, and a Wilkinson type power combiner. This ar-

chitecture is designed to operate at 40GHz. PA 1 and PA2 are class B amplifiers designed in

130nm SiGe process using BJTs. The Wilkinson combiner is designed on alumina substrate

with characteristic impedance of 50Q and operating frequency of 40GHz.

v.
PA1

v Signal Splitter

PA2
V2

Figure 4-1: Block diagram of the LINC power amplifier architecture

Input, Vin, to this architecture is a 64 - QAM signal. The signal splitter decomposes the

input QAM signal into two phase modulated fixed amplitude signals. Let vin = Vin/$ be

the input signal; vi = VoZ$ 1 and v2 = VO0 $2 be the two signals generated by the splitter



then,

Vin = VI +V2, VinZi = V0Z4 1 +VZ0 2  (4.23)

1.414ZO

2Zo

1.414ZO

Figure 4-2: Layout of the wilkinson combiner

The splitted signals are amplified by individual nonlinear power amplifiers. The out-

puts of these two power amplifiers are added using a Wilkinson type power combiner. This

3-port Wilkinson combiner, as shown in Figure 4-2, is simulated inside a full wave public

domain field solver [27] available at [3]. Using the frequency response samples generated

by the field solver, a closed form state space model of order m = 30 is identified using

our passive modeling algorithm. To demonstrate the accuracy of this model in frequency

domain Figure 4-3 compares the impedance parameters from field solver (dots) and fre-

quency response of our identified passive model (solid lines). The modeling error eik(o),

defined by (4.24), was less than 0.7% for all ik in the bandwidth of interest between

2GHz -60GHz

Hi,(j) -- Ak (j)|
ei,k (CO) = (4.24)

max|Hi,k(jo)|li,)

The algorithm took only 2seconds to generate the entire model, whereas for the same

order and simular accuracy the algorithm described in [29] took 83seconds giving us a

speed-up of 40 x.

A model is passive if there are no purely imaginary eigen values of the associated

Hamiltonian matrix. Figure 4-4 is a zoomed-in plot of the eigen values of the associated

hamiltonian matrix for the identified model. It is clear that the model passes the passivity

....................
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Figure 4-3: Comparing real and imaginary part of the impedance parameters from field
solver (dots) and our passive model (solid lines). The mismatch, defined by (4.24), is
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Figure 4-4: Plotting the zoomed-in eigen values of the associated hamiltonian matrix for
the identified model of Wilkinson combiner

yV n

Signal Splitter Wilkinson Combiner

V2

Figure 4-5: Block diagram of the LINC power amplifier architecture as simulated inside
the circuit

test since there are no purely imaginary eigen values.

Finally, the overall amplifier architecture is simulated inside a commercial circuit sim-

ulator after connecting the linear model for the combiner with the rest of the circuit com-

ponents including the nonlinear amplifiers, as shown in Figure 4-5.

Figures 4-6(a) and 4-6(b) plots the normalized input (vin) and output (vour) voltages re-

spectively. Practically speaking, as verified in Figures 4-6(a) and 4-6(b), the passive nature

of the identified model for the Wilkinson combiner guarantees that transient simulations

for the overall architecture converge, and the final output signal v0 a1 is also a 64 - QAM

signal similar to the input vin.

4.4.2 Power & Ground Distribution Grid

The second example we present is a power & ground distribution grid used in systems on

chip or on package. The 3D layout for this power grid is shown in Figure 4-7, and is com-

X X, X X IX X I

X XIX X

X x x X

X) X

X X

X XIX XXx x1 x -X



-0.8

0 0.1 02 03 0.4 0.5 0.6 0.7 0.8 09 1
time x 1-7

(a) Ideal normalized 64-QAM input voltage vi,,

0 01 02 0.3 o4 05 06 07 08 s 1
time X 10

(b) Normalized output voltage vou generated by tran-
sient simulation of the overall architecture in Figure 4-5

Figure 4-6: Normalized input and output 64-QAM signals

x10

2-

1 -

0-

-1

-22

2

8

6

Figure 4-7: 3D layout of the distribution grid (not to scale) showing Vdd (red or dark grey)

and Gnd (green or light grey) lines. Black strips represent location of ports
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Figure 4-8: Comparing real and imaginary parts of the impedance from our passive model
(solid line) and from the field solver (dots) for a power distribution grid

posed of five Vdd (red or dark grey) and Gnd (green or light grey) segments placed along

both x and y axes. External connections, given by solder balls in a flip chip technology,

are modeled with bond wires running vertically. Important parameters of this power grid

are as follows: die size= 10mm x 10mm, wire width= 20pm, wire height=z 5pm, vertical

separationz= 4pm, gnd-vdd separation= 20pm, bond-wire lengths= 500pm and solder ball

radius= 20pm. This structure was simulated using 52390 unknowns in the full wave mixed

potential integral equation (MPIE) solver, FastMaxwell [27], to obtain frequency response

samples up to 12 GHz. The multiport simulation was arranged by placing eight ports: four

at the grid corners and four inside the grid. Ports are illustrated in Figure 4-7 as black strips.

For this example our proposed algorithm identified an 8 x 8 passive transfer matrix of

order m =160 in 74seconds, whereas the algorithm in [29] ran out of memory and did

not generate the model. To demonstrate the accuracy, Figure 4-8 compares the real and

imaginary impedance respectively of our reduced model with the field solver data.

Although the models are passive by construction, the passive nature was verified by

the absence of purely imaginary eigen values of the associated hamiltonian matrix. A

.... ................ ...... ---.- ......
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Figure 4-9: "-i(9{A(joi)})

Figure 4-10: 3D layout of the RF inductors (wire widths not to scale)

necessary condition for a model to be passive requires Xkin(9R{1$(joi)}) > 0. We plot

Ximn(91{f(jOi)}) for our identified model within the bandwidth of interest in Figure 4-9.

4.4.3 On-Chip RF Inductors

The third example is a collection of 4 RF inductors on the same chip or package that

are used in the design of multichannel receivers. The layout is shown in Figure 4-10.

The array is comprised of four inductors laid out in the form of a 2x2 matrix. Important

dimensions of this array are as follows: wire width= 10pm, wire height= 4pm, height

of inductors above substrate= 20pm, horizontal separation between sides of two adjacent

inductors= 400pm, length of sides of each inductor= 800pm, 600pm, 400pm, 200pm, and

. ..... ...... .... - - - .............................
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Figure 4-11: Comparing real part and imaginary of impedance from our passive model
(solid line) and from field solver (dots) for the RF inductors

having 4,3,3,2 turns respectively. The structure has four ports in total, configured at the

input of each inductor. This structure was simulated using 10356 unknowns in the full wave

field solver, FastMaxwell [27] which captures substrate using a Green function complex

image method.

For this example a 4 x 4 passive transfer matrix of order m = 92 was identified. The

algorithm took 72seconds to identify the passive model, compared to the algorithm in [29]

which ran out of memory and did not generate the model.

Figure 4-11 shows impedance parameters both from the field solver and from our identi-

fied model. The passive nature of this model was verified by the absence of pure imaginary

eigen values of the associated hamiltonian matrix.
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Chapter

Passive Fitting for Multiport Systems -

Method II

In this chapter we describe an algorithm which identifies the unknown passive system as

a ratio of matrix polynomial, P(s) and scalar polynomial q(s). In this case our identified

model is represented by $(s = jo) = P(jo)/q(jo). The problem can be set as to minimize

the mismatch between given frequency response samples in either L2 or L.o sense.

P(joi) 2
132: min H -

fr i q(joi)
OR L.: minmax Hi - P(fto)

H, q(jfoi)

subject to N(jo) passive

where Hi = H(joi) are given transfer function samples at frequencies oi c R.

5.1 Semidefinite Formulation of Rational Fitting

In this algorithm we search for reduced models in the following form:

(5.1)



H(s) = H+ (S) +Ho (s),

H+4(s) P(s)/q(s), and Ao0 (s) = Po(s)/qo(s),

P, Po C - C"x, are symmetric matrix-valued polynomials

q, qo : C C, are scalar polynomials

q : all roots of q are in the open left half plane

qo : all roots of qo are on the imaginary axis

Here H+(s) accounts for the dissipative part whereas A0 (s) accounts for the marginally

stable part of the transfer matrix. The marginally stable part of the transfer matrix, o,

may be needed to capture effects in the data resulting from non-physical behavior outside

the frequency range of interest. Such effects are often numerical artifacts introduced by

the field solvers. Since this term is purely imaginary, it does not affect passivity and can

therefore be fit using a simple least squares fit.

The transfer matrix of a stable and causal system is completely defined by its real part

on the jo axis, hence for H+I(jo) we shall identify 9ft^+(jo)}, where we define matrix

polynomial B = B(X) and a scalar polynomial a = a(X) a = a(X) such that the real part,

where

P(jO) B(62)
H+(o) =- 91 {H+(00))} =a(jo) a (2)

Here B(o 2 ) and a( 2 ) are real valued matrix and scalar polynomials respectively. Also

B(0 2) and a(0 2 ) are functions of w 2 because of the rationalization of H +(jo) = P(0)a(jco)

Once B(w 2 ) and a(0 2) are known, P(s) and q(s) can be uniquely constructed from B(0 2)

and a(O2 ) using inverse Hilbert transform. To enforce the passivity conditions given

in (2.5), we require B(0o 2) = B(6 2)T - V0o, and a(0 2 ) > 0 Vo . The resulting optimization

problem can be written as:



minimize max f{Hi} -
B,a ia(o)

subject to B(O2 ) = B(02)T S 0 Vo (5.2)

a(o 2 ) > 0 Vo

The objective function in (5.2) is non-convex. However it can be relaxed and formulated

as a second order cone program, as described in (5.3).

ma 9{H} B(of) 2 B 2o2)i2max q{Hi}_ - ;> B({Hi} - a (o02) if a (of ) = 1
a(o?) a(co2) a i

a (Oi f WHi}I - B (coi)|2 (o2
a2(j)

a(o)9f {Hi} - B(o? )2

a(cof)

The new objective function in (5.3) can be interpreted as a weighted version of the

original objective function in (5.2) with normalized weights. We formulate the relaxed

optimization problem in (5.4) The optimal solution to (5.4) provides a lower bound for the

uniformly optimal solution

|2Sa (oi2 f) Hi} B (O)
minimize max

B,a i

subject to B(o) =B(o2 )r 0 Vo (5.4)

a(o 2) > 0 Vo

(a(o) =1

The constraints in (5.4) are enforced as Sum of Squares (SOS) relaxation. Hence the

convex program (5.4) is a special case of semidefinite programming and can thus be solved

very efficiently using public domain solvers such as SeDuMi [2] or SDPT3 [28].

Once the transfer matrix is identified, it can be transformed into a state-space model

and interfaced with commercial circuit simulators using VerilogA.
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Figure 5-1: Power Grid: Impedance Parameters

5.2 Results

In this section we shall present modeling examples of various multiport passive structures

we previously modeled with the algorithm presented in Chapter 4. All examples are imple-

mented in Matlab and run on a laptop with Intel Core2Duo processor with 2.1GHz clock,

3GB of main memory, and running windows 7.

5.2.1 Power & Ground Distribution Grid

In this example we shall model the same power and ground distribution grid as presented

in Section 4.4.2. The 3D layout for this power grid is shown in Figure 4-7. For this

example our proposed algorithm identified an 8 x 8 passive transfer matrix of order m =

400. Figures 5-1(a) and 5-1(b) compare the real and imaginary impedance respectively of

our reduced model with the field solver data. Figure 5-2 plots the error ei,k(O) for each

entry of the transfer matrix of the identified model, defined by (4.24).

We have compared our algorithm with standard rational fitting [20] and stable rational

fitting algorithms [29] on individual transfer functions. While both alternative methods

produce accurate fits to all elements of the transfer function matrix with order m = 640, the

resulting models are not passive.

We confirmed the passivity of our identified model using Hamiltonian matrix test as
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Figure 5-2: Percentage error between the identified model and given samples, defined by
(4.24)

described in the Section 2.3.2. Since passivity requires condition (2.5) to hold for all o0,

a reduced model is non-passive if min(${(joi)}) < 0 for some oi. Figure 5-3 plots

Ximn(91f{f(joi)}) for the three reduced models. It is clear from Figure 5-3 that both alter-

native methods generate models which are non-passive.

5.2.2 On-chip RF Inductors

In this example we model on-chip RF inductors. The structure is described in Section 4.4.3.

The layout for this array is shown in Figure 4-10. For this example a 4 x 4 passive transfer

matrix of order m = 96 was identified.

Figure 5-4 shows impedance parameters both from the field solver and from our iden-

tified model. Figure 5-5 plots error ei,k(o) of the identified model as defined in (4.24),

which attains a maximum of 4.5% error.

To emphasize the importance of preserving passivity during model identification, we

identified two additional models for this structure using the standard rational fit [20] and

stable rational fit [29] approaches. Although for the same model-complexity (m = 96) the

rational fits identified quite accurate models, passivity was still not preserved, as is evident

from the negative eigenvalues plotted in Figure 5-6 corresponding to the two alternative

models.

..................... ........................... ............ ... .................................................. ...... . ..... - - - - - -- _ _ _ -
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Chapter 6

Interconnection of Passive Identified

Models

In this chapter we present a framework for system-level modeling and simulation of com-

plex analog systems which are composed of several linear sub-systems. In the proposed

framework stable and passive models are first developed for individual linear building

blocks using semidefinite programming based dynamical modeling techniques as described

in Chapter 4 and 5. The individual models are interconnected using an automated stamping

procedure to generate the representation for the complete linear block.

6.1 Motivation

Typically during analog system level designs, one decomposes a larger system into multiple

more manageable sub-system blocks. These smaller blocks may represent linear systems

such as passive interconnect structures, power combiners, filters, and distribution grids,

and nonlinear systems such as amplifiers, mixers, MEMS structures and non-traditional

devices. These sub-systems are simulated in different simulation environments. Nonlin-

ear devices are simulated for time domain response inside spice-like simulators. On the

other hand, linear passive interconnect structures are laid out and simulated inside a full

wave electromagnetic field solver, which generates frequency response data in the form

of S-parameters or Z-parameters. Quite often these passive structures are first fabricated



and frequency response data is then collected after physical measurements. To simulate

the complete analog architecture, first compact dynamical models are developed from fre-

quency response samples for linear structures. These models are then interfaced with the

circuits simulators. Inside the circuit simulator these blocks are interconnected to other

sub-systems containing possibly nonlinear devices such as transistors and diodes.

One challenge with such block-level modeling approaches is that individually accurate

and stable models connected together could produce an unstable system, such as in the case

of non-passive models. In order to compute the response of the complete analog system,

the circuit simulator needs to solve differential equations, by either time domain integra-

tion or periodic steady state methods. Simulating the overall system accurately requires the

final differential equations to be stable, which can only be guaranteed if the linear identi-

fied models are passive. To avoid such instability problems, we use convex optimization

techniques described in Chapter 4 and 5 to guarantee that individual linear multiport sub-

system blocks are passive [22,23].

Section 6.2 we discuss an automated stamping procedure to interconnect impedance or

admittance type linear state space models

6.2 Interconnection by Automatic Stamping

When the analog system architecture consists of a collection of interconnected linear struc-

tures, it is highly desirable to interconnect all the individual passive linear models and gen-

erate an equivalent model describing the complete linear block. This section describes an

algorithm that constructs the coupled interconnected system using an automated stamping

procedure.

Figure 6-1: Two linear systems interconnected



Consider two linear state space systems described by the following equations:

y l = Cix1 +
Y12

I D11

System2: X2 = A2x2 + B21

Y21 1 C2x2 +
Y22

[ D21

B 12 ]

D12 J

B221

D22 J

Ull

L U12 J
U11

U12

U21
U22

U21
U22

Here x1 and x2 are vectors representing the states of the individual systems. Let these

systems represent the impedance of a network. In this case the inputs u s represent the

currents flowing into the ports while the outputs y 1s represent the voltages at the ports.

These two systems are interconnected to each other as shown in Figure 6-1. In the model

of the overall interconnected electrical network, we need to enforce the conservation laws

at the interconnected node, which implies Y12 = Y21 and U12 = -u2 1.

0
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We introduce extra states xu for the inputs in order to enforce conservation laws in

Row 1:

Row 2:

Row 3:

Row 4:

Row 5:

Row 6:

System1I: 1= Aix1 + IB11



the descriptor type state space model for the overall interconnected system, as described in

(6.1). Row 1 and Row 2 in (6.1) describe the original system 1 and system 2 respectively.

Row 3 enforces KCL u12 = -u21, while Row 4 equates the voltage at the connection node

Y12 =Y21. Row 5 and Row 6 relates the input of interconnected system to the internal states

corresponding to these inputs i.e. xu =- u11 and xU2 2 = u22. This algorithm only requires

the description of port interconnections in order to stamp in the connections. Therefore we

can connect large numbers of models in any arbitrary configuration at no additional cost.



Chapter 7

Globally Passive Parameterized Model

Identification

7.1 Motivation

Globally passive parameterized models are essential if one wishes to explore the design

space of a complex system containing interconnected linear and non-linear components. In

these models, passivity is required for the whole continuous parameter range, since the user

or the optimizer can instantiate the models with any parameter value. The ability to generate

passive parameterized models would greatly facilitate the circuit designers. As an example

consider a multi-primary transformer which is used for power combining in distributed

power amplifiers, as shown in Figure 7-1. The transformer design variables are length,

width and spacing for the windings. With a parameterized modeling tool, the designer

would be able to create an equivalent circuit block which approximates the dependence of

frequency response on design parameters with high fidelity. Such a parameterized modeling

tool should also give apriori guarantees of stability and passivity if the final model is to be

used in an interconnected environment. The user can interface these equivalent circuit

blocks with circuit simulators and run full system simulations, where s/he has the control

over design parameters including length, width and spacing. These parameter values can

be fine-tuned for optimal power amplifier performance.
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Figure 7-1: A multiprimary transformer parameterized in length, width and spacing. The
equivalent circuit block with parameter controlling knobs interfaced with circuit simulator
is used for design space exploration of a complete distributed power amplifier design

7.2 Background

7.2.1 Interpolatory Transfer Matrix Parameterization

A common approach to constructing parameterized transfer matrix models is to interpolate

between a collection of non-parameterized models, each generated at a different parameter

value. Given a set of individual models and parameter values {Hi, Xi}, where each model

is described in pole-residue form (4.1), meaning Hi = {Ri,Ai,Di} where

[ai,i 1
Ai =aic,

axli

[R1,;

[R=ij
RRi

(7.1)

are a collection of the poles and residues respectively, then the goal is to construct

functions A^(k), ak(k), and b(X) that interpolate exactly the given pole-residue models,

.. . ........ ..........



R(N) Ri D(Xi) Di A(Xi) Ai, (7.2)

resulting in a parameterized transfer matrix in pole-reside form
H Rk( X) (7.3))

$(six) = E k + () (7.3)
k=1 S- ak(k)

We A9() and R(k) as follows

1a N RI(1)
Z() =,N (7.4)

[a(X) [K(k)

For instance, in [32] piecewise linear functions were used to interpolate exactly the

given models, while in [13] interpolation was achieved using Lagrange polynomials. Al-

though such approaches guarantee exact matching at the given set of parameter values used

for interpolation, they do so at the expense of being able to ensure reasonable behavior

between the points, and they require an extremely large number of coefficients to describe

a model interpolating many points. Piecewise linear fits are not smooth, and therefore

preclude the use of models for sensitivity analysis where derivatives with respect to the

parameter are necessary. Methods based on polynomial interpolation are smooth, but are

likely to produce non-monotonic oscillatory curves, resulting in non-physical behavior of

the model between the interpolation points.

Additionally, while interpolation approaches can guarantee that the resulting parame-

terized model H(s, X) is passive (or stable) when evaluated at the set of parameter values

Xi used for interpolation (provided the original set of non-parameterized models are all

stable), no guarantees can be made about the passivity (or stability) of the model when

evaluated at any parameter value differing from the small set used for interpolation.



7.2.2 Positivity of Functions

Enforcing passivity in a system inevitably relies on ensuring positivity (or non-negativity)

of some quantity in the system, such as functions in (7.4). A positivity requirement on

an arbitrary function is in general a non-convex constraint making this a difficult task.

However, one way to ensure that functions are globally positive is to require them to be

expressible as a quadratic form of a positive semidefinite (PSD) matrix. That is, if we

want to ensure that a scalar multivariate function is globally non-negative, i.e. f(x) > 0 is

satisfied for all possible x, then we can choose to construct f(x) such that it can be expressed

as $(x)TM$(x) for some PSD matrix M. Here $(x) can be any vector of nonlinear functions

of the argument x. If such a construction is used to describe f, then it is guaranteed that

f(x) = $(x)TM$(x) > 0 for all possible x. If instead we wish f(x) to be globally negative,

we simply require that Mk is a negative semidefinite matrix.

Positivity of Polynomials

Let us consider the special case when the function f(x) is a polynomial. A sufficient

condition (necessary for univariate case) for the polynomial p(x) f(x) to be non-negative

is that it can be written as a sum of squares (SOS). i.e.

If p(x) = g?(x)=SOS p(x) 0 Vx (7.5)

A sum of squares polynomial can be represented as a quadratic form of a positive

semidefinite matrix. i.e.

p(x) = g2(x) SOS < p(x) =TM$, M >- 0 (7.6)

here $ is a vector of monomials. As an example, suppose we want to certify that

p(s)1 +4x+5x2 >0 Vx (7.7)



. We can certify (7.7) if we can find an M > 0 such that it satisfies (7.6). Equation (7.8)

shows that indeed we can such M

p(X) = x, M= 0 (7.8)
2 5 x 2 5

Also by performing Cholesky decomposition of M we can express p(x) as SOS explic-

itly.

p(x) 1 4x + 5x2

= 1x] 1 2 1

2 5 x

X 1 0 1 2 1

2 1 0 1 x

=(1 +2x) 2 +X2 > 0 Vx (7.9)

7.3 Optimal Parameterized Fitting

7.3.1 Problem Formulation

To circumvent the issues resulting from interpolatory fitting approaches described in Sec-

tion 7.2.1, we formulate the parameterized modeling problem as an approximate fitting

problem using optimization. Given a set of 92 non-parameterized models {Hi, ? i}, we wish

to construct a parameterized model 4 (s, k) in the form of (7.3) such that $(s, ki) ~ Hi(s).

We assume the models given to us are described in pole residue form (4.1), meaning

Hi = {Ai, Ri, Di}, as defined in (7.1). This assumption is not restrictive because if models

are only available in numerator-denominator form or in state-space form, it is a trivial task

to transform them into pole-residue from. It is advantageous to fit models in pole-reside

form because the parameters of such model (e.g. the dominant poles) have a physical

meaning and can be expected to vary smoothly as the parameters in the system are varied.

A state-space model, on the other hand, is a non-unique representation of the system (e.g.



any rotation of the coordinate system would produce completely different coefficients in

the system matrices) and therefore there is no reason to think that interpolating between

such systems is a reasonable task.

Our goal is to fit parameterized functions describing the poles, residues, and feed

through matrix such that

Ai) Ai, R(ki) ~ Ri, b(Xi) - Di. (7.10)

By using optimization-based fitting, as opposed to exact interpolation, we can greatly re-

duce the number of terms necessary to fit a model to a large number of points. Furthermore,

we eliminate the non-physical oscillatory behavior that may arise between interpolation

points when fitting high order polynomials to relatively well-behaved curves.

We generally assume that the poles and residues are both complex. Therefore we will

identify separately the real and imaginary parts of each

ak() =9 dIak() +I-3 ak) (7.11)

Rk (X) 9IRk(k) ± j-3kk(X) (7.12)

The result of this formulation is a set of five minimization problems, that solve for the real

and imaginary parts of the poles, residue matrices, and direct matrix as a function of the

parameters

min I 9A -9A (Xi)||2, min 1 ( Ai- 3A (X) 12,
96A 3A i

min [||IRi - 9IR(i)||2 min [||SRi - S(i)| 2, (7.13)
9$ i1 ZR i=

minE |Di -(li)|| 2

The accuracy of the resulting model, and the difficulty of solving the optimization prob-

lems, depends on how we choose to describe the unknown functions Z(),R(k),b(X). In

the following section we propose a convenient formulation resulting in a semidefinite opti-



mization problem, which can be easily solved using standard freely available software.

7.3.2 Rational Least Squares Fitting

Consider the case where the unknown functions to be identified are described as the ratio

of two unknown functions, each of which is expressed as a linear combination of basis

functions

g WX Y2$'2I nON~mX (7.14)

Here y and $ are predetermined basis functions, and although we use the term 'rational',

we are not forcing $ and V to be polynomials, and it is not even necessary that $ and V be

the same class of functions.

Given samples gi, the optimization task consists of solving for coefficients c and Pm

in order to minimize
ai) 2

Unfortunately, attempting to minimize directly such quantity is a difficult (i.e. non-convex)

task due to the nature of the nonlinear dependence on the unknown coefficients an, Pm.
Instead, a useful relaxation [22] of this objective transforms it into the following convex

problem

mm I()gi -xa~i)||2
min ((7.15)

Along with the normalization constraint that Em Pm = 1, this problem can be viewed as a

weighted least squares minimization of the desired objective ||gi - a(ki)/P(Xi) |. Although

the problem is still nonlinear in the unknowns, the formulation is convex (specifically,

minimization over a 'rotated Lorentz cone') and thus can be solved efficiently using freely

available software [31].

In order to utilize such a description to solve (7.13), one must select the basis functions

describing the five unknown quantities (9id, Sa, R SR, b), and solve a set of five opti-

mization problems in the form of (7.17). Note that the basis functions used to describe the



five different quantities need not be the same.

7.3.3 Linear Least Squares

If we restrict the denominator in rational formulation (7.14) to be constant unity (i.e. (9)

1), then we can consider functions defined as a linear combination of basis functions

N

g(k) = 1: an~n(X), (7.16)
n=1

which simplifies the optimization problem to the standard 'linear least squares' problem

minE l lg - g(Xi)| 2. (7.17)
i

This optimization problem is an unconstrained linear least squares minimization that is

convex and can be solved without any relaxation using freely available software [31], or

even solved analytically.

7.3.4 Polynomial Basis Example

As an illustrative example of how one uses optimization problem (7.15) to identify the

parameterized model, suppose we wish to fit the real part of the poles, 9A (X), to a function

of two parameters X1, X2 using a polynomial basis. If we choose a second order polynomial

basis for the denominator V, meaning that 'P = [1,X, X 2 , X , X1X 2 , X2], and a first order

polynomial basis for the numerator $, meaning (D [1, X1, X2], then the resulting function

expression for each individual pole 91ak(X) would be

ak (X) = +0 - 1 + C2X2

@O + P1 11 + @2X2 + @3 + 4X1X2 +P 5X

This expression is then used in optimization problem (7.15) to solve for the unknown coef-

ficients a, P for each of the K poles.

If instead we wish to use a polynomial function description to solve the linear least



squares problem (7.17), then a second order polynomial basis yields the function

91ak(k) = 0 o + ClIX -+a 2X2 -± a31 -2 + 4X1X2 - aC5 X-

It is important to point out here that exact polynomial interpolation, such as in [13], can

be thought of as a very special case of our framework. Specifically, if we choose polynomi-

als as basis functions, select the basis $ to allow as many degrees of freedom as data points

(i.e. N = Q), and choose the linear least squares formulation, then the unconstrained opti-

mization problem (7.17) is equivalent to exact polynomial interpolation. However, unlike

interpolation formulations, our optimization approach is neither confined to using a poly-

nomial basis nor to using as many coefficients as data points, and therefore the complexity

of the resulting model does not scale poorly with the number of points used for fitting.

7.3.5 Complexity of Identification

The cost of identifying parameterized model (7.3) using the previously described optimiza-

tion procedure is extremely cheap because many of the unknown quantities are uncoupled,

and additionally there are multiple redundancies within the system. As previously men-

tioned, the real and imaginary parts of the poles can be solved for separately, as described

in (7.13). If the model is described by K poles, then solving for 9ZA(X) and Z(A() can each

be separated into K different optimization problems, because the poles do not depend upon

one another. Additionally, since the residue matrices and direct term are symmetric, for a

system with T ports, there will only be T(T + 1)/2 unique elements to fit (corresponding

to the upper triangular part of the symmetric matrices). Lastly, since the complex poles and

residues occur in conjugate pairs, it is only necessary to fit half of the non-zero imaginary

pole parts in SA(X), and only necessary to fit half of the residue matrices 3RJ (X).

7.4 Constrained Fitting for Stability

The previously posed unconstrained optimization problems (7.13) enforce optimal accu-

racy of the parameterized transfer function with respect to the individual models, but pro-



vides no guarantees on global properties, such as stability, for the system. Although point-

wise interpolation as described in Section 7.2.1 will yield a model that is stable at the pa-

rameter values used for fitting (assuming the original non-parameterized models are each

stable), it provides no stability guarantee when evaluating the model at any other param-

eter value. In this section we formulate additional constraints for the previously defined

optimization problems that allow us to generate guaranteed stable parameterized transfer

function models.

7.4.1 Stable Pole Fitting

Stability of a model in pole-residue from (4.1) depends only on the real part of the poles

91A(X). We say the parameterized model H(s, X) is stable at a particular parameter value

X if all of the poles have negative real part at that parameter value, i.e. 96(x) < 0. Thus,

enforcing guaranteed stability of H(s, X) for all parameter values X can be achieved by en-

forcing negativity of 91A (X) for all such X. Note that since we are modeling the residues and

direct term separately, enforcing stability only affects one of the five optimization problems

in (7.13).

Enforcing negativity when fitting the real part of the poles 91A(X) requires adding a

constraint to the previously unconstrained minimization problems. If solving the linear

least squares problem (7.16), the constrained problem becomes

min ||9IA; - Z9A(Xi)| 2 subject to (7.18)

9 tak() <0 V k.

If we are instead fitting to rational functions as described in (7.14), then the pole func-

tion is negative if the numerator 91ak (X) is negative and the denominator 91fk (X) is positive,

resulting in the constrained optimization problem



mini fl9Ai -A(Xi)||2 subject to (7.19)
91A i

9Xk(X) <0, 9 Pk%(X) >0 V k

To enforce these positivity and negativity constraints, we will require the functions to

be describable as positive definite quadratic forms in some nonlinear basis. That is, define

9 lak(X) = A(X)TMkA(A) where A(X) is a vector of functions of X, and if Mk is a positive

definite matrix, then 9 Iak(X) > 0 is a positive function for all X. This is a standard technique

for enforcing positivity of functions as described in Section 7.2.2, and can similarly be

used to enforce negativity by requiring Mk to be a negative definite matrix. Problems

of the form (7.19) with semidefinite matrix constraints can be solved using semidefinite

optimization solvers [31].

For example, if fitting to a quadratic function of two parameters, we would select

A()= X1 (7.20)

X2

and would define 9 Iak(Xi) = A(Xi)TMkA(Xi), and Mk would contain the unknown coeffi-

cients a.

7.5 Constrained Fitting For Passivity

In additional to stability, it is desirable that the identified models also be passive. In this

section we extend the optimization framework presented in Section 4.3.2 of Chapter 4 to

include parameterization while preserving passivity.



7.5.1 Parameterized Residue Matrices

To enforce global passivity, we require that the individual non-parameterized models con-

form to the passivity conditions described in Chapter 4. Hence in our final parameterized

model we want the constraints in 4.22 to be satisfied for all values of the parameter. Given

stable approximation of poles a(X) we compute passive residue matrices by solving the

following convex optimization problem

minimize ( |9Ri - 9IN (Xi) 12 + (|ZRi - 3$(Xi|||2
Rr (k),Rc (k)

subject to R(X) 0 Vk = 1, ... ,VA

-1aa (X)9R' (X) +-3ac (X).3 Rc(X) >- 0 Vk = 1, ... VA

- aa (X) 9R' (X) - -Sac (X)SR' (X) >- 0 Vk = 1,.. K VA

where Rc(X) = 9Rc(X) + jSR(X)

Ri and R(Xi) are defined in (7.1) and (7.4) respectively. Note that the constraints in (7.21)

require matrix valued functions to be positive definite, such a constraint can be enforced

using SOS relaxation as described in Section 7.2.

7.5.2 Positive Definite Direct Matrix

One necessary condition for passivity of a model described in pole-reside form 4.1 is that

the direct term D be a positive semidefinite matrix.

minimize ( |2
D(k) i

subject to D() > 0

We notice that since each of the given individual models is passive, then Di >- 0 and can

therefore be factored into a matrix Vi such that Di = VTV. Therefore, in order to enforce

positive definiteness in b(?), we will instead fit V(X) to factors of the given direct terms Vi,

and then define h(X) = 9 (X)T79(X). Since we are enforcing positivity after identification,



the result is an unconstrained minimization problem

min V v ()H (7.21)
V i

that can be solved using either linear least squares formulation (7.16) or the rational formu-

lation (7.14) to describe Z(X).

7.6 Implementation

In this section we describe in detail our parameterized model identification procedure based

on solving the optimization problems derived in Section 7.4 and 7.5. We also discuss

methods for properly generating the individual non-parameterized models and methods for

transforming the identified parameterized transfer matrix into a circuit usable in commer-

cial simulators.

7.6.1 Individual Model Identification and Preprocessing

The ability to obtain a reasonable functional approximation between models depends cru-

cially on the assumption that the poles trace out some nice smooth curve as the parameters

vary. For the dominant poles of the system this is a safe assumption, because the dominant

poles in the individual linear models have a physical connection to the original large sys-

tem. However, for the other less significant poles in the individual identified models, there

may be many possible pole configurations that all produce a good match when originally

creating those individual models. Therefore, when performing the original identification

of the individual non-parameterized models, it may be beneficial to aid the pole placement

of the identification procedure as shown in Algorithm 2. To perform this task, we identify

poles for the first or nominal parameter value. We then use the poles identified for the

previous parameter value as the initial guess to identify poles for neighboring parameter

values. This way we ensure the smoothness in the path of the poles. Also if we want

to enforce global passivity in the final parameterized model, the initial non-parameterized

models must be identified using the algorithm described in Chapter 4.



Algorithm 2 Successive Pole Placement Algorithm
1: Given 92 frequency response data sets
2: Identify first non-parameterized model H1 (s) described in pole-residue form (4.1)
3: for i=2:Q do
4: Use pole set Ai_1 as initial guess for pole set Ai, and identify model Hi(s)
5: end for

Im
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Figure 7-2: Sample clustering

Once the collection of models Hi in pole-residue form, each containing K poles, has

been identified using Algorithm 2, the next task is to construct K functions, fitting each

pole trajectory. Therefore, it is crucial that we 'order' the K poles such that they are 'clus-

tered' accordingly. We employ a recursive Euclidean distance based clustering approach as

described in Algorithm 3. A robust implementation of this algorithm is required since we

may encounter complicated scenarios, such as poles crossings and bifurcations. Figure 7-2

shows sample clusters for a system with three poles.

Algorithm 3 Pole Ordering Procedure
1: Given collection of models each having K poles
2: Convert all models to pole-residue form if necessary
3: for i=2:92 do
4: Compute pairwise distance matrix Ddist between Ai_ 1 and Ai
5: Group aj,i with ak,i-1 based on minimum Ddist (j, k), Vj,k &- {1,2, ..., K}

j,k
6: end for

7.6.2 Parameterized Identification Procedure

The main part of our complete modeling approach, presented in Algorithm 4, is to solve

for parameterized functions describing the real and imaginary parts of the poles, residues,

and direct term. These optimization problems were derived in Section 7.4 and 7.5. There



are two important details we wish to emphasize in this part. First, to enforce positive

definiteness on the direct term D(X), we fit instead to the factor V(?) and then define

D(X) = V(X)TV(X), as described in Section 7.5. Second, We want to emphasize that when

solving for the real part of the poles 91A(X) we must enforce negativity to ensure stability

of the resulting model, as was described in Section 7.4.1. The remaining components of

the model can be solved for using either the unconstrained minimization described in Sec-

tion 7.3 if passivity is not required, or the constrained minimization described in Section 7.5

if apriori global passivity is required.

Algorithm 4 Complete Parameterized Stable model Fitting
1: Given collection of models generated using Algorithm 2 and ordered using Algorithm 3
2: if ENFORCE GLOBAL PASSIVITY then
3: Select basis functions for direct term factor V(X) and solve unconstrained opti-

mization problem (7.21) for V(X)
4: Select basis for real part of the poles 91A(X) and solve constrained optimization

problem (7.18) for 9ZA(X)
5: Select basis for imaginary parts of poles MZ(X) and solve unconstrained optimiza-

tion problem (7.13) for ZA)
6: Select basis for real and imaginary parts of the residues 91RJ(X) and S3RJ(X) and

solve the constrained optimization problem (7.21) for 9R (X) and S3R(X)
7: else
8: Select basis functions for direct term matrix D(X) and solve unconstrained opti-

mization problem (7.13) for D(X)
9: Select basis for real part of the poles 91A(X) and solve constrained optimization

problem (7.18) for 91A(X)
10: Select basis for real part of the residues 91R() and solve unconstrained optimiza-

tion problem (7.13) for 9R() (X)
11: Select basis for imaginary parts of poles SA( ) and residues ZR(X) and solve

unconstrained optimization problem (7.13) separately for SR(X) and ZA(X)
12: end if
13: Define final parameterized model

Rk(X
H (s, X)= +D(X)

k S-ak(X)

where

ak (X) =9I^k(X) + j-3ak()

Rk (X) =9I~k (X) + j-3k(X)



7.6.3 Post-processing Realization

The parameterized models generated by our approach can be readily converted into equiv-

alent circuit blocks using VerilogA. Since our models are guaranteed to be stable in the

parameter space, we use voltage sources as the 'controlling knobs'. These voltage sources

are used to change parameter value after the model is instantiated inside the circuit simula-

tor.

Several equivalent state space realizations for our parameterized models can be achieved.

For example, a Jordan-canonical form can be obtained as described in [4]. However in order

to have a better performance, such a realization needs to be diagonalized before interfacing

with the circuit simulators.

7.7 EXAMPLES

In this section we shall present three examples highlighting different aspects of our pro-

posed methodology in modeling guaranteed stable models. All examples in this section are

implemented in Matlab and run on a laptop having Intel Core2Duo processor with 2.1GHz

clock, 4GB of main memory, and running windows vista. We have also posted free open

source software implementing these procedures online [1].

7.7.1 Single port - Single parameter: Microstrip Patch Antenna

L

Figure 7-3: Layout of microstrip square patch antenna

The first example considered is a microstrip square patch antenna, shown in Figure 7-3.

It is designed on Rogers RT5800 substrate having thickness of 25mils (lmil = 0.001 inch),

relative permitivity Er = 2.2 and loss tangent tan6 = 0.0009. The layout is shown in Fig-
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Figure 7-4: Plot showing the trajectory of poles with parameter variation. Thick black lines
trace the poles' location from our stable parameterized model, while thin grey (or green)
lines trace the poles' location from the unconstrained fit (which clearly becomes unstable)

Figure 7-5: Comparison of magnitude of frequency responses of patch antenna parame-
terized model (dashed lines) with the initial non-parameterized models (solid lines-almost
overlapping) for different parameter values. Some traces are from parameter values not
used for fitting

ure 7-3. In order to control the resonant frequency, we select the side length of the square

'L' as the model parameter. A collection of individual non-parameterized models were

generated by simulating the structure for S-parameter samples from 0.5GHz to 2GHz us-

ing SONNET Lite, where L was varied from 4000mils to 5000mils with an increment of

100mils. The resulting models each have order -K = 5 and were generated and preprocessed

for each value of L as described in Algorithm 2 and Algorithm 3 of Section 7.6.1.

A stable parameterized model was then identified using Algorithm 1 along with a poly-

nomial basis of degree N = 8 for each of the model components. For this example the

entire fitting procedure was completed in just 2.48 seconds.

...... ..................



To illustrate the guaranteed stability of the resulting parameterized model, Figure 7-

4 plots the trajectory of poles in response to changes in parameter L variation. The thick

black line, corresponding to our stable parameterized model, is always in the left half plane,

meaning the model is stable at all parameter values. On the other hand, the thin green line,

corresponding to a parameterized model generated using polynomial interpolation without

stability constraints, crosses into the right half plane and is unstable for many parameter

values within the shown range.

To verify the accuracy of our parameterized model, Figure 7-5 compares the frequency

response magnitude of our model (dashed red line) to the response of individual non-

parameterized models at a set of different parameter values, some of which were not used

for fitting. Furthermore, in order to show that our model response smoothly to changes in

the parameter over the entire range of interest, Figure 7-6 plots the frequency response of

our stable parameterized model as a function of densely sampled parameter values.
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Figure 7-6: Surface traced by frequency response of parameterized model of patch antenna
over parameter sweep

7.7.2 Multi port - Single parameter: Wilkinson Power Divider

In this example we consider a multiport wilkinson divider, shown in Figure 7-7. The stan-

dard wilkinson divider is designed on alumina substrate with the following specifications:

characteristic impedance Zo = 75K, substrate dielectric constant Er = 9.8, substrate height

.1 - - - #_ - - - __ - - = = Umem
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Figure 7-7: Layout of Wilkinson Divider
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Figure 7-8: Comparison of magnitude of frequency responses, |Z(3,3)|, of wilkinson di-
vider parameterized model (dotted lines) with the initial non-parameterized models (solid
lines) for different parameter values. Some traces are from parameter values not used for
fitting

h = 125pm, and metal thickness of t = 4pm. A natural parameter choice for this example is

the center frequency fc. A collection of non-parameterized models are generated by simu-

lating the structure using a full wave field solver [3, 27] while varying the parameter from

15GHz to 25GHz, and using Algorithms 2 and 3 for fitting. The resulting models each

have order 33 and are described by 11 poles.

A stable parameterized model with coefficients described by 4 th order polynomials is

generated using Algorithm 1 to fit to the previously generated individual models. The fitting

procedure required just 1.86 seconds to solve all optimization problems in Algorithm 1.

To show the accuracy of our parameterized model, one component of the frequency

response (|Z(3, 3)1) is plotted in Figure 7-8 (dashed red line) and compared to the response

of individually fitted non-parameterized models, some of which were not used for fitting.

Lastly, Figure 7-9 plots the frequency response of our stable parameterized model as a

function of densely sampled parameter values to show the smoothness of our final models.
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Figure 7-9: Surface traced by frequency response Z(3, 3) of parameterized model of wilkin-
son divider over parameter sweep

7.7.3 Multi port - Multi parameter: T-Type Attenuator

As our third example we consider a T-type attenuator. The purpose of this example is

to show the full flexibility of our algorithm. This is a multiport, multivariate example

where we consider two design parameters. We chose rational basis of different degrees

to approximate different elements of the model. The frequency response samples were

obtained by simulating the schematic in matlab. Individual non-parameterized models of

order 14 and described by 7 poles each are generated and preprocessed for each value

of the parameters, controlling attenuation X1 and resonant frequency X2, as described in

Algorithm 2 and Algorithm 3.

A stable multivariate parameterized model is generated using Algorithm 1 using the

rational function description in (7.15). In this example the numerator of the residues

R(X 1 , X2 ), direct term factor D(X1, X2), and poles A(?,I, X2) are described by polynomials of

degree 5, 4, and 2 respectively, while the denominators are chosen as 4 th order polynomials

for each term. The identification required 6.6 seconds to solve all optimization problems

in Algorithm 1.

To show that our parameterized model is stable with respect to both parameters, Fig-

ure 7-10 plots the densely sampled surface traced by real part of one of the dominant poles

from our parameterized model as a function of X1 and X2 .

........ ........ . ........
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Figure 7-10: Surface traced by real part of one of the dominant poles from our stable
multivariate parameterized model as a function of X1 and X2

An excellent match between initial non-parameterized models and final parameterized

models can be observed in Figures 7-11 & 7-12.
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Figure 7-11: Comparison of magnitude of frequency responses, |Z(2, 1)1, of attenuator
multivariate parameterized model (dotted lines) with the initial non-parameterized models
(solid lines). Fixed X1 varying X2
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Chapter 8

Conclusion

In this thesis we have presented various highly efficient algorithms to identify individual

and parameterized multiport passive models from frequency domain transfer matrix data

samples. The algorithms are based on convex relaxations of the original non-convex prob-

lems. In the first algorithm, we identify a collection of first and second order networks to

model individual non-parameterized passive blocks. Passivity of the overall model is guar-

anteed by enforcing passivity on the building blocks. The problem is solved in two steps.

In the first step we identify a set of common poles for the transfer matrix. In the second

step we use the common set of stable poles from step one and identify residue matrices

which minimize the mismatch between the model and the given data, and simultaneously

conforming to passivity conditions. Several examples are presented which advocate the

speed and efficiency of the proposed algorithm. In these examples we have tested passivity

of the identified models by verifying the absence of purely imaginary eigenvalues of the

associated Hamiltonian matrix. The identified models are interfaced with commercial cir-

cuit simulators and used for time domain simulations of complete architectures including a

LINC power amplifier where multiport passive model was identified for the passive com-

bining network. The proposed algorithm is compared with existing algorithms based on

optimization framework. The comparisons show that our algorithm achieved a speed-up of

40 x for some examples while for other examples we generated a highly accurate model in

decent amount of time whereas the alternative algorithm ran out of memory and failed to

generate a model.



In the second algorithm for the identification of individual non-parameterized passive

models, we identify the poles and residues or equivalently numerator and denominator

polynomials for the transfer matrix in a single step. Since the complete passive model is

identified in a single step, the final model will be near-optimal. In this algorithm we exploit

the property of causal and stable systems for which the dispersion relations hold and the

real and imaginary parts of the frequency response are related by hilbert transform. We

formulate the minimization problem as a convex optimization problem where we simulta-

neously enforce passivity using semidefinite constraints. Several examples are presented

which support the algorithm. The identified models are verified for passivity using hamil-

tonian matrix based eigenvalue test. We also present an efficient automated stamping based

algorithm to interconnect these passive models.

Finally we present an algorithm to identify globally stable and passive multiport mod-

els. In this algorithm we combine individual stable and passive non-parameterized models

to develop a closed form parameterized model. The final parameterized model conforms

to passivity conditions during identification and comes with apriori global passivity certifi-

cates in the continuous parameter range of interest. In several examples we have verified

that the models generated by our approach can be safely instantiated for any parameter

value and always result in a stable and passive system, as opposed to all existing interpola-

tion approaches. We have also shown that our fitting approach only requires few seconds

to identify practical passive circuit components, having formulated the problem as an effi-

cient convex optimization program. Finally, a smooth model behavior in between original

parameter data points has been enforced in the model construction procedure, and has been

observed in all examples.



Appendix A

Semidefintie Programming

In the standard form of a semidefinte program a linear cost function is minimized subject

to linear matrix inequalities.

minimize cTx
(A.1)

subjectto Fixi+F 2 x2 +±--+Fnxn-Fo eO

describes the standard form of a semidefinite program, here all of the matrices Fo, F1 , ... Fn E

Sk, here Sk indicates set of symmetric matrices of order k x k. The problems that we have

described in this thesis are not in the standard form, however they can easily be transformed

into the standard representation. Some of the relevant transformations are described in the

following sections.

A.1 Minimizing Quadratic Function

Suppose we wish to minimize a quadratic function of the form ||Ax - b l2. We can cast this

minimization problem into an equivalent semidefinite program as



minimize |Ax - b|| 2
x

=minimize t
t,x

subject to (Ax -b)T(Ax - b) < t2

=minimize t
t,x

subject to t2 -(Ax-b)T(Ax-b);>0

=-mmnimize t
t,x

subject to t- (Ax-b)T(tI)

mrinimize t
t,x

subject to tI (Ax-b)

(Ax -b)T t

Here the last step resulted by applying Schur Complement. The final constraint (A.2)

can be transformed into standard SDP constraint as:

ti (Ax-b)]

- b)T t J
(Ax

01
1 J

0

AT

Ai 0xi -
0 - -b T

here At indicates the ith column of matrix A. The final equivalent semidefinite program

in standard form , described in (A.4) can be solved efficiently using any SDP solver such

as [2,28].

minimize |Ax - b ||2 -minimize t

subject to

'(Ax - b) > 0

(A.2)

b

01

(A.3)

I 01
0 1

0 Ai

AT 0i=1
xi-b

0

(A.4)

00



A.2 Implementing Linear Matrix Inequalities

Suppose we wish to enforce the following linear matrix inequality as and SDP constraint

CiX1 X2

X2 X3
+ C2

X5
X6

(A.5)

such a constraint can be enforced as a standard SDP constraint as follows

c 0 0 ci 0 0
x1 + X2 +

0 0 1 Lci 0 j L0 ci

C2 0]
X3 + X4 -\-

0 0

0 C2

C2 0

X5 + 0 0 X1x6 0
0 C2

(A.6)
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