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Abstract

State-of-the-art capacitance extraction methods for Integrated Circuits (IC) in- volve
scanning 2D cross-sections, and interpolating 2D capacitance values using a table
lookup approach. This approach is fast and accurate for a large percentage of IC wires.
It is however quite inaccurate for full 3D structures, such as crossing wires in adjacent
metal layers. For such cases electrostatic field solvers are required. Unfortunately
standard field solvers are inherently very time-consuming, making them completely
impractical in typical IC design flows. Even fast matrix-vector product approaches

(e.g., fastmultipole or precorrected FFT) are inefficient for these structures since
they have a significant computational overhead and scale linearly with the number of
conductors only for much larger structures with more than several hundreds of wires.
In this talk we present therefore a new 3D extraction field solver that is extremely
efficient in particular for the smaller scale extraction problem involving the ten to one
hundred conductors in the 3D structures that cannot be handled by the 2D scanning
and table look up approach.

Because of highly restrictive design rules of the recent sub-micro to nano-scale IC
technologies, smooth and regular charge distributions extracted from simple model
structures can be stored beforehand as "templates" and instantiated and stretched
to fit practical complicated cases as basis function building blocks. This "template-
instantiated" strategy largely reduces the number of unknowns and computational
time without additional overhead. Given that all basis functions are obtained by the
same very few stretched templates, Galerkin coefficients can be readily computed from
a mixture of analytical, numerical and table lookup approaches. Furthermore, given
the low accuracy (i.e., 3%-5%) required by IC extraction and the specific aspect ratios
and separations of wires on ICs, we have observed in our numerical experimentations
that edge and corner charge singularities do not need to be included in our templates,



hence reducing the complexity of our solver even further.

Thesis Supervisor: Luca Daniel
Title: Associate Professor of Electrical Engineering and Computer Science



Acknowledgments

I want to express my appreciation to my thesis advisor, Prof. Luca Daniel, for his

great mentoring. I would like to thank my senior labmates Dr. Tarek El-Moselhy

and Dr. Bradley Bond for their advice and inspirations in this project. I would

also like to thank my labmates, Zohaib Mahmood, Lei Zhang, Bo Kim, Yan Zhou,

and Omar Mysore for their creating an enjoyable lab environment. Special thanks to

Dr. Roberto Suaya for his constructive comments and supports. Thanks to Dawsen

Huang for mathemtical consuting and Derek Smith for proofreading the English text

of this work. Finally, I would like to thank Grace Lee for proofreading part of this

work and her seven-years of companion. Wihout her, nothing can be possible.



Contents

1 Introduction 8

1.1 The Role of Interconnect Capacitance . . . . . . . . . . . . . . . . . . 9

1.1.1 Capacitance in Digital Circuits . . . . . . . . . . . . . . . . . 9

1.1.2 Capacitance in Analog Circuits . . . . . . . . . . . . . . . . . 10

1.1.3 Capacitance in RF Circuits..... . . . . . . . . . . . . . . 10

1.1.4 Capacitance in Packages and MEMS . . . . . . . . . . . . . . 11

1.2 Contemporary Capacitance

Extraction Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.1 2D Table Lookup and Approximation Formula . . . . . . . . . 11

1.2.2 3D Field Solvers . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.3 Practical Considerations . . . . . . . . . . . . . . . . . . . . . 13

1.3 C hallenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 Our Approach:

New Basis Functions for Charge Distribution . . . . . . . . . . . . . . 14

2 Background 16

2.1 The Boundary Element Method . . . . . . . . . . . . . . . . . . . . . 16

2.1.1 The Electrostatic Formulation . . . . . . . . . . . . . . . . . . 16

2.1.2 System Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1.3 The Collocation Testing . . . . . . . . . . . . . . . . . . . . . 18

2.1.4 The Galerkin's Testing . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Basis Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 General Basis Functions . . . . . . . . . . . . . . . . . . . . . 20



2.2.2 Specialized Basis Functions . . .................

2.3 System Solving . . . . . . . . . . . . . .................

2.3.1 Traditional Direct Approaches ...................

2.3.2 Standard Iterative Approaches ...................

2.3.3 Accelerated Iterative Methods ...................

2.4 Capacitance Extraction . . . . . . . . ..................

3 Observations

3.1 The Effects of Charge Singularities

on Capacitance . . . . . . . . . . . . . .................

3.2 Stretchable Induced Charge . . . . . . .................

4 Instantiable Basis Functions

4.1 The Templates . . . . . . . . . . . . ...

4.1.1 Arch and Flat Templates . . . ...

4.1.2 Arch Shape: Extraction . . . . . .

4.1.3 Arch Shape: Storing and Retrieval

4.2 Instantiable Basis Functions . . . . . . . .

4.2.1 An Example: Partially Overlapping

4.2.2 The Merge Condition . . . . . . . .

4.2.3 The Complete Algorithm . . . . . .

5 Implementation

5.1 System Setup . . . . . . . . . . . . . . . .

5.1.1 Integration Schemes . . . . . . . .

5.1.2 Integration Strategies . . . . . . . .

5.2 System Solving . . . . . . . . . . . . . . .

6 Examples

6.1 Performance Comparison Methodology .

6.2 Exam ples . . . . . . . . . . . . . . . . . .

6.2.1 A Comb Capacitor . . . . . . . . .

Wires



6.2.2 Three-by-Three Buses . . . . . . . . . . . . . . . . . . . . . . 57

6.2.3 A Spiral Inductor . . . . . . . . . . . . . . . . . . . . . . . . . 57

7 Conclusions 60



Chapter 1

Introduction

Since the first integrated circuits were invented in 1958 [18], more and more different

system integration concepts, such as System-in-a-Package (SiP), System-on-a-Chip

(SoC), 3D packages and 3D ICs, have been proposed over the years, and more and

more different subsystems, such as digital, analog, radio frequency (RF) front-end,

micro-electro-mechanical systems (MEMS), and also optical devices, are attempted

to be integrated. On the other hand what has not changed for decades is the design

methodology: design a circuit schematic, draw its layout, extract parasitics, compare

the performance of the layout with the schematic, and revise it until converged.

Among those steps, the importance of parasitic extraction continually grows with

the advance of fabrication technologies. Until 2010, the number of transistors in

commercial products has exceeded two billion in a central processing unit (CPU)

and three billion in a graphics processing unit (GPU). It can be easily seen that

the interconnect wires between transistors become extremely complicated as well

as the electromagnetic interaction among them. Therefore, accurately extracting

interconnect parasitic is the key to a functional chip.

Parasitics in an electronic interconnect system, such as resistance, capacitance,

and inductance, are usually modeled as constant parameters in linear models. Al-

though they are called parasitic, well-controlled parasitics can be treated as design

components, such as a comb capacitor and a spiral inductor. Regardless if it is an in-

tended device or a purely unwanted effect, parasitics need to be well modeled not only



because exploiting the best performance out of a technology is beneficial, but also

because bad modeling may cause serious unexpected behaviors, such as oscillation

and latchups.

This thesis focuses on interconnect capacitance extraction. It is organized in the

following way: in the rest of this chapter, the effects of capacitance in different parts of

circuits and the survey of existing capacitance extraction techniques are introduced.

Chapter 2 reviews necessary background of this work and the two performance com-

parison references. Chapter 3 shows some important observations that motivate the

algorithm described in Chapter 4. In Chapter 5, implementation details are pre-

sented. To improve the overall performance, several accelerated integration schemes

are proposed in the same chapter. Some examples are shown in Chapter 6 and their

performance is compared with the two aforementioned references in Chapter 2.

1.1 The Role of Interconnect Capacitance

Capacitance has different roles in different types of circuits. Extraction accuracy

is stringent in most cases, whereas some errors can be tolerated in others. In the

following, major capacitance effects and usages in different circuits are introduced.

1.1.1 Capacitance in Digital Circuits

In digital circuits, the most prevalent capacitance effect is RC time delay. The signal

propagation time from one logic gate to another is called gate delay. Signals are

delayed because it takes the first gate some time to charge the parasitic capacitance

of the second gate input up to the point where it is activated and responds to logic

transition. This effect can be modeled as a first-order RC charging circuit. Besides,

all wires possess some capacitance. Changing wire voltage also suffers from this type

of delay. The aggregation of this phenomenon in digital circuits limits the overall

performance. Circuit designers need accurate parasitic extraction to determine the

critical path, or the most delayed logic path, and also to avoid clock skews. This

effect forms a fundamental speed limit of digital circuits. A bad capacitance estimate



may cause critical race condition that makes the system totally malfunctioned.

1.1.2 Capacitance in Analog Circuits

Analog signals are susceptible to noise. One of the major noise source is from power

wires, which connect to power supply or ground and collect all the current that flows

into or out of all components and are assumed constant voltage everywhere. However,

their finite resistance and large current generate a sensible voltage along the wire and

it is coupled everywhere as noise. A common resolution is to place large capacitors

to stabilize the voltage by enlarging the RC time constant. This is a rare example

where accurate capacitance modeling is not crucial. For other important analog

subsystems, such as Phase-Locked Loops (PLLs), which are used to generate stable

timing signals or to synthesize desirable carrier frequencies in both wired or wireless

systems, accurate capacitor design is essential for both phase locking and frequency

accuracy. For another important analog circuit family: Analog-to-Digital Converters

(ADCs), making capacitors identical is important. Capacitance mismatch may cause

signals to lose their resolution. It is considered as a failure if the target number of

bits of resolution is not achieved.

1.1.3 Capacitance in RF Circuits

In RF, millimeter-wave, or even higher frequency circuits, capacitance is an important

design parameter. Capacitors are used to achieve maximum power transfer. A badly

modeled capacitor can greatly degrade the overall power output, which is one of

the most important system parameters in RF communication systems. Even more

serious effects can happen to the very front-end circuits, such as power amplifiers,

power combiners, and antennas. Those components drain huge power from power

supply. Even 1% leakage to its neighborhood through capacitive coupling may cause

the system malfunction such as oscillation or damage such as exceeding wire current

limits.



1.1.4 Capacitance in Packages and MEMS

As more different subsystems are integrated into a single system, extending design

to packages is a common choice. Such capacitance extraction includes, for example,

various types of wire bonding and through-silicon vias (TSVs) in 3D ICs. Since they

are input and output pins of a chip and usually comparatively huge in structures, The

issues discussed above, such as time delay and capacitive coupling, are also effective

in the package case. In MEMS, capacitors are usually used to exert capacitive forces.

The influences of inaccurate extraction depend on different usages of the force.

1.2 Contemporary Capacitance

Extraction Techniques

In contemporary design flow, capacitance extraction techniques can be classified into

two categories: 2D table lookup methods and 3D field solvers. The former is indeed

fast, yet it is accurate only for 2D structures. Full 3D structures need the accuracy

of electrostatic field solvers. They are much more accurate choices but their long

computation time restricts their usage. The choice of which method to use is always

a compromise between computation time and accuracy. A practically good accuracy

in circuit design is within a 3% error. A 5% error is the minimum requirement and

guaranteeing an error less than 1% is usually unnecessary due to the uncertainty of

fabrication and measurement.

1.2.1 2D Table Lookup and Approximation Formula

One major state-of-the-art capacitance extraction approach is based on a 2D scanning

approach. In this method, 3D structures are cut into 2D slides along the scanning

direction. Once 2D cross-sections are formed, the 2D capacitance on each cross-

section is determined by looking up and interpolating the value from a pre-computed

table such as in [16]. Then the corresponding quasi-3D capacitance is constructed

based on the 2D cross-section capacitance information. This procedure is illustrated
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Figure 1-1: 2D scanning and table lookup extraction method. The quasi-3D capaci-
tance is built based on the 2D capacitance on each slide.

in Figure 1-1. This method is extremely efficient, and full-chip extraction is possible,

yet its accuracy is as good as a 2D approximation. Some approximation formula are

proposed as alternatives to the table lookup approach, such as [25][28], or [19] for

through-silicon vias. These formula are generated by curve fitting or used through

interpolation. Hence, they are only accurate for some types of geometries.

1.2.2 3D Field Solvers

Field solvers are the numerical methods that provide numerical solutions to the set

of governing differential equations of a physical problem. Fields can be scalar or

vector fields, such as electric and magnetic fields in an electromagnetic problem,

pressure and velocity fields in a fluid problem, and more. 3D field solvers are the

field solvers that solve 3D differential equations. Hence, unlike the 2D table lookup

method, 3D field solvers can capture 3D phenomena. These methods usually involve

two steps: transforming the differential equations into a system of linear equations,

and then solving the system. Such steps are called system setup and system solving,
respectively, and diagrammed in Figure 1-2. Their corresponding computation time

are called system setup time and system solving time, or simply setup time and

solving time.

Compared with the previous class of extraction methods, field solvers are more

numerically robust and accurate because they require a system solving step. Hence,

minor error in calculating a coefficient in a single equation can be tolerated and
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Figure 1-2: A general two-step process of field solvers.

"diluted" in the solution. However, they are computationally a lot more expensive,

making the use of field solvers limited to partial layout extraction instead of full-chip.

Acceleration techniques were proposed, such as [21] [6] [24] [17]. The most efficient

ones are typically based on the boundary element method which will be described in

more details in Chapter 2 The acceleration is usually accomplished by adopting fast

matrix-vector multiplications in an iterative system solve. However, these methods

have a significant overhead to initiate the acceleration and their use starts to become

beneficial only when the number of conductors is larger than one hundred. At that

point, the computation time begins to scale nearly linearly, O(Nlog(N)), instead of

quadratically or cubically with the number of conductors. Hence, they are ideal only

for very large scale problems.

1.2.3 Practical Considerations

In practice, for quasi-3D geometries which are at least uniform in one direction, called

quasi-3D structures, such as parallel wires, the 2D scanning approach is accurate.

For those full-3D geometries which are not uniform in any direction, for instance,

two buses crossing each other and comb capacitors , the 2D table lookup approach

fails to provide accurate results within a 5% error. Designers usually identify these

types of geometries by inspection, and then turn to 3D field solvers to extract them

individually.

........................ ............ .



1.3 Challenges

Current 3D field solver acceleration techniques suffer from two major drawbacks:

they work best for large scale problems and the most acceleration is accomplished by

reducing solving time.

The full-3D structures that cannot be handled by the 2D table lookup approach

are usually small but many, spread out all over a layout. This scenario is very much

against the existing acceleration techniques for 3D field solvers. In small structures,

the acceleration by the existing techniques is usually very limited. In a practical

layout, the coverage of the full-3D structures is about a 5% area in digital design, and

generally more in analog/RF/MEMS design. Due to the computation inefficiency of

field solvers, extracting the 5% full-3D structures can take much more time than the

remaining 95% of quasi-3D structures extracted by the 2D scanning and table lookup

approach.

The second drawback of the existing acceleration methods is that their paralleliza-

tion is not a trivial task. It is because most acceleration of these methods is achieved

by speeding up the system solving time, which is not embarrassingly parallelizable.

The use of piecewise constant basis functions (discussed in Chapter 2) by the existing

methods largely limits the feasibility of parallel computing.

1.4 Our Approach:

New Basis Functions for Charge Distribution

Basis functions are used by the boundary element methods to represent the solution

by linear combination. Traditionally, piecewise constant basis functions are preferred,

and combined with acceleration techniques in the system solving step. A huge number

of unknowns and hence a giant system is generally inevitable when using this type

of basis functions. However, things can be more natural and efficient by employing

"specialized" basis functions which are characterized by physical properties such as

sinusoidal basis functions for high frequency resonating antenna problems [15], loop-



star basis functions for diverge-free unknowns [321, conduction mode basis functions

for Helmholtz current distributions inside conductors [29][7][8][23][11].

This thesis presents a new set of specialized basis functions for charge distribution,

which first appeared in [12]. The key idea is to exploit the charge distribution prop-

erties under the highly restrictive design rules of the recent sub-micro to nano-scale

integrated circuit technologies. In our approach, only two fundamental templates are

needed to represent virtually every charge distribution for any valid VLSI geometries

with a capacitance error less than 3%. Our strategy is to compute these fundamental

shapes beforehand, and reuse them to "instantiate" the real basis functions through

stretch and assembly operations on the fly when analyzing a geometry. Very few num-

ber of basis functions are needed in this approach. Hence, it is extremely efficient in

solving a system, both in terms of time and memory.



Chapter 2

Background

This chapter introduces the boundary element method applied to the electrostatic

problem, as well as different types of basis functions and system solving techniques.

The two classical testing methods: the collocation testing and the Galerkin's testing

are also derived in details. Two performance comparison are introduced as references

to this work: the standard boundary element method using piecewise constant basis

functions with the collocation testing and FASTCAP. The former will be termed as

"the standard method" for brevity. The chapter ends with a section that derives the

transformation from charge distribution to the capacitance matrix solution.

2.1 The Boundary Element Method

The standard way to extract capacitance is to integrate the surface charge distribution

when conductor voltages are properly assigned. In this section, we formulate the cor-

responding electrostatic problem and how it can be solved given conductor voltages.

The voltage assignment for capacitance extraction is postponed to Section 2.4.

2.1.1 The Electrostatic Formulation

In order to obtain the charge distribution in an n-conductor system embedded in

a uniform dielectric material with the dielectric constant e, it suffices to solve the



integral equation
p(r') ds' = #(r) (2.1)

is, 47rE|Ir - r'(

for charge distribution p. In the equation , r and r' E R3 are position vectors in 3D

space, #(r) : R' - R is the electric potential, p(r') : R3  
-+ R is the unknown charge

distribution, S' is the union of conductor surfaces corresponding to the r' position

vector, e is the dielectric constant of the medium, and the operator |. computes the

euclidean distance of its argument. Physically, the charge distribution p is nonzero

only on conductor surfaces. The equation says that the electric potential at position

r is the overall potential contribution at the presence of surface charge distribution in

the space. Mathematically, this equation can be also understood as the fundamental

solution to the electrostatic Poisson's equation

V2 #(r) = -p(r)/E

subject to the known boundary charge distribution on conductor surfaces, whereas in

the integral equation form, the roles of charge and electric potential are interchanged.

2.1.2 System Setup

In order to solve the integral equation, the unknown charge distribution p can be

further expressed as a linear combination of N basis functions O/(r')

N

p(r') = pj ~j (r'), (2.2)
j=1

where p3 is the unknown coefficient corresponding to each basis function O/(r')

R- IR supported in s' C S' . Substitute the above expression. The original integral

equation becomes

(r ds' pj = #(r). (2.3)
j=1 4~Ir

Note that here the integration surface is replaced by s' , the support of the basis

function Oj(r'). Once these N coefficients pj are determined, the charge density in



the whole space is known and the self and mutual capacitance between conductors

can be calculated accordingly.

In order to determine these N coefficients in the linear equation, it is necessary

to at least generate a set of total N equations. There are two traditional methods to

achieve this goal: the collocation testing and the Galerkin's testing. The mathemati-

cal formulations will be derived first, followed by the introduction to several different

basis function selections.

2.1.3 The Collocation Testing

As the name suggests, collocation testing is performed by choosing N "proper" test

points in the solution space. A common practice is to place one test point at the center

of each basis function. Evaluating N test points can generates N linearly independent

equations, forming a full-rank inhomogeneous system of linear equations:

(Yr') I p3 = #j(r), (2.4)
LJ ' 4ire||ri - r'||dS

j=1 . 4

for i {1, 2, ... , N}, or equivalently in the matrix form

01 W).[-ri ds/ f ,4ei2ri)rl dst ... f 47reriW) ds'- Pi

f i ds' f P2( ds' f N(r') sd /0(r)fs' 4e||r2-r1 s' 4e||r2-r1 S 4 r r2-r1 P2 

01 (r') ds' f 02(r') ds' f ON(r') d / pN #(rP)s 47rc|rN-r'| ' 47reI rN-r'I ' ' 4-7 jN-r' | N

Hence this is a N-by-N dense linear system. To conform with the formulation of the

Galerkin's testing in the next section, Eq.(2.4) can be rewritten as

N '
r r)O~rds'ds p = 6(r - ri)#(r)ds, (2.5)

s , 47rE||r - r ||
j=1 . 1 ..



where the integration surface si is the support of the Dirac delta function 6(r - ri),

which has the sifting property:

jf(r)J(r - ri)ds = f(ri).

In this formulation, the test points ri in (2.4) are rewritten as the inner product with

the test functions J(r - ri), the Dirac delta function shifted by ri.

2.1.4 The Galerkin's Testing

Unlike choosing proper test points in the collocation testing, the Galerkin's testing

explicitly involves the notion of projection. Since mathematically the selection of finite

basis functions in (2.2) cannot form a complete basis for arbitrary charge distribution

in R3, Eq.(2.2) is a numerical approximation and the residue of using the set of basis

functions $j(r') for j E {1, 2,. . ., N} is defined as

R(r) = Z [j 4 O(r' ) rJ I p- $(r).

Then enforce the projection of the residue R on the linear space spanned by the set

of basis functions 4i for i E {1, 2, ..., N} to be zero:

< ir R(r) > = 0,1

where the inner product operator < f(r), g(r) > is defined as

J f(r)g(r)ds.
s nsg

The collocation testing in the form of (2.5) can be interpreted as the projection on

the subspace spanned by the set J(r - ri) for i E 1, 2,. . ., N . In the Galerkin's

testing, the test functions are chosen as the same basis functions that expand charge



distribution, i.e.,

,oi(r) = @j(r),

for i E {1, 2, ... , N}. In parallel with (2.5), the Galerkin's testing can be formulated

as
4 i(r)4(r' ds'ds p = j (r)#(r)ds, (2.6)

Similarly, this is an N-by-N linear system, but it is a symmetric matrix whereas the

matrix in the collocation testing is not. The corresponding charge distribution can

be calculated through (2.2) once all coefficients pj are solved.

2.2 Basis Functions

A set of basis functions is used to span the solution function (p(r) : R3  -4 R in

our electrostatic problem) through linear combination. Numerically, only finite basis

functions are computationally feasible. The selections of basis functions are usually

based on how well a solution function is approximated by the shapes of basis functions

and the computation cost in an integration such as the bracketed terms in (2.6). Based

on the way to the basis functions are constructed, they can be generally classified into

two categories: general basis functions and specialized basis functions.

2.2.1 General Basis Functions

General basis functions are the set of basis functions that are not specifically defined

as solutions for differential equations, such as piecewise constant, piecewise linear, and

sinusoidal functions shown in Figure 2-1. They are usually parametrized by a number

as the order of the function, and they can converge to an arbitrary target function

by adding more higher order terms. The set of sine and cosine functions with integer

multiples of fundamental frequency is such an example. Though the formulation of

these types of basis functions is independent of a specific physical problem, some

choices are better than the others when fewer basis functions are needed to achieve a

similar error, for instance, using sinusoid basis functions in a wave problem.



an unknown
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Figure 2-1: Examples of general basis functions: piecewise constant, piecewise linear,
and sinusoidal basis functions. An unknown coefficient is determined during the
system solving step.

The set of piecewise constant basis functions is usually the standard choice in the

boundary element method of the electrostatic problem. These basis function shapes

do not favor any specific type of function. Therefore, a large number of basis functions

are required for accurate capacitance extraction (within a 3% error), resulting in

very long system solving time. This drawback is compensated to some extent by

a relatively efficient panel integration when using the collocation testing. This fact

can be observed in Eq.(2.4). The analytical expression is available as a smooth well-

behaved function. Moreover, its "neutral" look also results in very small function

supports because of the requirement of a fine discretization. Hence, the integration

in Eq.(2.4) can be well approximated (within a 1% error) by the expression

A(s )

(47rs|lri - rj)'

where the function A(-) calculates the surface area of the argument, when the position

vector ri is three times of panel length from the integration surface, s'. When using

piecewise constant basis functions, this computational shortcut generally happens

to more than 90% of integrations due to their tiny supports. That feature makes

piecewise constant basis functions attractive. FASTCAP [21], pre-corrected FFT [24],

and IES3 [17] are the examples adopting this type of basis functions. Hence, their

acceleration are mostly accomplished by using fast system solving methods.

Other standard basis function examples are piecewise linear basis functions in

Figure 2-1 and higher degree polynomials. Piecewise linear basis functions are the

.................................................................. .........
WWOMM - -..- . . ........ ..



standard choice in the finite element method, but in the boundary element method,

these types of basis functions are less common because even though they have better

shape approximation abilities, resulting in a reduction of the number of basis functions

needed at a fixed error level, their drastically increase in integration computation cost

almost balances the time saved in the system solving step.

The set of sinusoidal basis functions is another common choice due to its solid

mathematical study. It converges well and fast in a wave problem such as time-

domain transmission line analysis. In the boundary element method of the electro-

static problem, its shape does not match charge distribution and hence is not an ideal

choice.

General basis functions are mathematics oriented and physics detached. They are

usually elementary functions and hence the closed form Green's function integration

expressions are more likely to be available. Since they are not extracted directly from

a physics problem, the same type of basis functions can be used in different situations.

But, generally, they are not the most efficient choice to a specific problem.

2.2.2 Specialized Basis Functions

Specialized basis functions, on the other hand, utilize the knowledge of the physical

problem. They are more physically-oriented than mathematics. This type of basis

functions targets a specific problem by extracting essential shapes directly from the

problem and reuse them. Hence, they are more likely numerically represented. Some

orthogonalization processes are usually needed after extraction in order to to increase

the numerical stability.

One example of specialized basis functions is the conduction mode basis functions

for current distribution at high frequency [29] [7] [8] [23] [11]. The high frequency effects,

such as skin effects and proximity effects, only become prominent when wire dimension

is more than two skin depth. The conduction mode basis functions are more efficient

and accurate in these cases because traditional fast algorithms are either inaccurate

or inefficient in these cases. The conduction mode basis functions, on the other hand,

specifically target these effects and the corresponding shape template basis functions



are extracted directly from a wire geometry. Therefore, very few basis functions are

needed to represent these phenomena. An orthogonalization process is performed to

improve the numerical stability in [13).

In this thesis, we propose a new set of basis functions for capacitance, which first

appeared in our publication [12]. Traditionally, the combination of piecewise constant

basis functions and the collocation testing uses too many discretization panels for

unnecessarily accurate charge distribution. That is necessary only when the detailed

charge shapes are important. For instance, charge singularities, or the infinite charge

density around corners and edges, are crucial when considering electrostatic discharge

or other applications. In the capacitance extraction, all these charge shape details

are lost because capacitance is the integration of surface charge density. The basis

function extraction process focuses on capturing major charge interactions between

conductors. There will be no orthogonalization process involved due to the fact that

orthogonalization usually destroys the physical meaning of the shapes. A workaround

and the detailed extraction procedure will be described in Chapter 4.

2.3 System Solving

Once the system of linear equations such as (2.4) or (2.6) is set up, the next step

is to solve the system. Choosing a proper solving method is crucial for the overall

performance, especially for piecewise constant basis functions which usually require

a fine discretization. In addition to computation time, memory is also another im-

portant factor. Some approaches require much less memory than the others, making

the solutions to huge systems feasible.

2.3.1 Traditional Direct Approaches

Suppose we are solving the linear system

Ax = b, (2.7)



where A E RNxN is a full-rank matrix without any specific structure, x E RN is the

unknown vector, and b E RN is the known right-hand side. The most common choice

is to perform LU decomposition

A = LU,

where L, U E RNxN are lower and upper triangular matrices, respectively. Then

perform two computationally cheaper back substitutions of L and U in order in (2.7)

to solve for x. In solving a large and sparse matrix, the LU decomposition is an ideal

choice for its complexity as low as O(N 1 2 ). In solving a dense matrix, it is usually

not practical since the complexity becomes O(N 3). However, it is still attractive

in a small and dense matrix due to its low overhead. Some variations such as LU

decomposition with partial pivoting

PA = LU,

where P is a permutation matrix, or LU decomposition with complete pivoting

PAQ = LU,

where in this case P and Q are both permutation matrices, are the means to im-

prove numerical stability for the reason that numerically represented numbers have

finite precision. The latter case is rarely used because of its significant overhead but

marginal stability improvement [31].

In this thesis, most of the computation complexity is moved to the system setup

part. The system matrix A in our case is extremely small compared with the sys-

tem size when using piecewise constant basis functions. Hence, a well-implemented

standard decomposition method with twice back substitutions is an ideal choice. The

selection of implementation will be discussed in Chapter 5.

Though the direct approach is used in this work, the iterative counterpart and

the corresponding accelerated methods will be introduced in short paragraphs for

comparison and as the technical background of the second performance comparison



reference, FASTCAP.

2.3.2 Standard Iterative Approaches

When the system matrix is large and dense, as in the case of the boundary element

method with piecewise constant basis functions, an iterative approach is more time

efficient and hence usually preferred. A popular choice is the family of Krylov sub-

space methods. When solving a linear system (2.7), these methods build an iteration

sequence that iterates from an initial guess xo through several x,, n E {1, 2,... }

such that Xn E xo + Kn(A, ro), where C,(A, ro) = span{ro, Aro, . . ., An-ro}, and

rn = b - Axn is the residual of the n-th iteration. The orthogonal property is usually

satisfied

rn _L AKn(A, ro)

to ensure the minimum residual search direction in each iteration. In these methods,

matrix-vector products are the dominant operations. The time complexity is O(kN 2),

where k is the number of iterations. One classic implementation is the GMRES

algorithm by Saad and Schultz [27].

2.3.3 Accelerated Iterative Methods

The performance bottleneck of the Krylov subspace methods is the matrix-vector

product in each iteration that takes O(N 2 ). Hence, the methods can be accelerated

by replacing the standard matrix vector product with an approximated or equiv-

alent operation but with lower time complexity, such as O(Nlog(N)). FASTCAP

is such an example by taking the advantage of multi-pole expansion [26]. It has

twofold effects: reduce the matrix-vector product time to O(Nlog(N)) by performing

an approximated linear operation, and also the setup time of the linear operation to

O(Nlog(N)). The multi-pole expansion, however, is restricted to the electrostatic or

similar problems. Another method called pre-corrected FFT [24] relaxes this restric-

tion and has similar performance. It can be applied to other problems such as current

or inductance extraction. Its acceleration is based on the fact that the fast Fourier



transform takes O(Nlog(N)).

The drawbacks of these accelerated iterative methods are that they require an

extra start-up overhead. For instance, in the multi-pole expansion method, the ex-

pansion coefficients need to be calculated first before the iteration schemes, and in

the pre-corrected FFT, the "pre-corrected" step needs extra computation to map

discretization panels to uniform grids. These extra overheads are significant if the

system is small. Hence they are not ideal for our approach.

2.4 Capacitance Extraction

Capacitance, by definition, is the overall accumulated charge on the surface of a

conductor per unit voltage. The capacitance extracted in this thesis is the short-

circuit capacitance matrix (or capacitance matrix for brevity), which can be used to

generate other types of capacitance matrices such as two-terminal capacitance matrix

and total capacitance [20]. In a capacitance matrix, the off-diagonal entry Csj is the

mutual-capacitance between two different conductors Mi and Mj, j 7 i, and the

diagonal entry Cjj is called self-capacitance.

According to the definition of capacitance, the extraction problem can be trans-

formed into a special setup of the electric potential in the electrostatic problem (2.1).

In the following, we explicitly differentiate between a basis function support surface

and a conductor surface by using a small letter s and a capital letter S, respec-

tively. In order to have a general treatment for both the collocation testing and the

Galerkin's testing, we first multiply both sides of (2.4) by the area of the i-th basis

function support si, written as A(sj), to correct the inconsistent dimension in (2.5)

compared with (2.6). It is caused by the singular behavior of delta functions.

1 A s) j 5j(r') ds' p1 = A(si)#(ri). (2.8)
S41re||ri - r'||j=1 _ , j,

In a circuit model, we assume capacitance is a constant parameter in a linear model.

Hence, acoording to the principle of superposition, the unit voltage in the capacitance



definition can be set up as one volt raised on the conductor of interest and zero volt

on the others, i.e., when the capacitance associated with the k-th conductor is of

interest,

k(r) = 1 if r E Mk,

0 otherwise.

Substitute it in (2.8) or in (2.6) for all basis functions, forming a column vector #4
on the right-hand side. Collect all such columns for each k E {1, 2,. ... , n}, where n

is the number of conductors, to form a matrix <D E RNxn

CD = [#1|#2| ... -1n].

Then the equation (2.8) or (2.6) becomes

Pp = <b,

where P E RNXN is the system matrix, each entry of which is the square bracketed

term in (2.8) or (2.6), and p E RNXn is the unknown coefficient matrix

p = [p 1 |p 2 1 ... n

in which the k-th column vector is the coefficient solution under the electric potential

setup #k. The capacitance matrix entry Cjj is the capacitance between the i-th and

the j-th conductors. It is the overall accumulated charge on the i-th conductor when

the j-th conductor is set to be one volt higher whereas the rest is zero. It can be

formulated as

Cgj = p(r)ds, (2.9)

where Si is the surface of the i-th conductor, and p'(r) is the charge distribution

solution under the electric potential setup #j. After substituting (2.2), (2.9) becomes

N --

Cu=j p,,(r) dsp.
m=1 - si -



The integration can be rewritten as

j 0m(r) ds = im 4(r)#O(r)ds

by treating #j(r) as an indicator function. It is identical to the right-hand side of

(2.8) or (2.6) except that it is under the electric potential setup #i(r). Hence,

C.,j = #i = #<P- 1 #.

Therefore, the complete capacitance matrix is

C =<ITp-1



Chapter 3

Observations

The geometries in contemporary nano-scale circuit technologies have many restric-

tions, such as minimum wire width and separation, maximum ratios of wire size to

wire thickness, and only drawn in Manhattan geometry. The charge distribution is,

hence, very regular and does not change drastically. This fact brings several good

properties to reduce the complexity of calculating charge distribution. In particular,

in this chapter we will point out two key observations that will be the foundations

for the development of the algorithm in Chapter 4.

3.1 The Effects of Charge Singularities

on Capacitance

Charge singularities are the infinite charge density accumulated around a pointed

geometry, such as edges, corners, or pin tips. Figure 3-1 shows a common 3D wire

in a VLSI layout and the singular charge distribution on its top face. This charge

distribution is obtained by using finely discretized piecewise constant basis functions

combined with the collocation testing. Although the charge density is infinite, it is

integrable and contributes a finite charge. This singular behavior is of great interest

in several applications, such as the discharge problem in MEMS [30]. The theoretical

study of the charge behaviors in the vicinity of a singular point was studied in [9].
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Figure 3-1: Charge singularities of a 3D interconnect wire in VLSI and the visualiza-
tion of corner, edge, and flat basis functions. Using all the corner, edge, and flat basis
functions in the Galerkin's testing gives a capacitance error less than 0.01%, whereas
the error of using the flat basis functions alone is less than 3%.

In order to investigate the singular charge effect in the boundary element method

when using the Galerkin's testing, we set up the following experiment. First, we

extract the "exact" charge distribution by using the collocation testing in order to

construct specialized basis functions for charge singularities. The "exact" charge

distribution is extracted by setting up a straight wire with finite thickness, finely

discretizing it, and solving it by using the collocation testing for both its charge

distribution and its capacitance Co. Specifically, the charge distribution on the top

face of the wire is shown in Figure 3-1. By inspection, three types of basis functions

can be identified: flat, edge, and corner basis functions. The flat basis function is

constant all over the conductor face S. The edge basis function decays in the direction

perpendicular to the edge. It can be mathematically written as x-o 2- when x E S.

The corner basis function is chosen to decay in both directions at the same rate,

written as (xy) 0 540 for x, y E S. All the numbers of negative fractional power are

numerically selected. Their shapes are illustrated in the same figure.

The next step of this experiment is to use these three types of basis functions

to calculate capacitance C. Instead of using the collocation testing, the use of the

Galerkin's testing in this case is necessary for the relatively large support of each basis

function. The relative capacitance error (C - Co)/Co turns out to be less than 0.01%.

.. ... .... .. .. .... .... .. .... .................... ............ -....... ......... .....
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Figure 3-2: The relative capacitance errors for different wire lengths and different pad
sizes with respect to very fine discretized geometries using piecewise constant basis
functions with the collocation testing. The width of the wire is fixed to be 0.3 um
and its thickness is 0.2 um. The thickness of the pad is also 0.2 um.

It is too accurate for practical purposes. For VLSI capacitance, we wish to relax some

accuracy in trade of computation efficiency.

The last step is to pick up the necessary basis functions that make the accuracy

stay at a reasonable level. We found that using flat basis functions alone can give us

an error less than 3%, which is generally enough in a VLSI capacitance extraction

problem, as we have discussed in Section 1.2.3. A further investigation of different

wire sizes in Figure 3-2 shows similar results. In this case, we again use only a flat

basis function on each face of a straight wire (the upper curve) and a square pad

(the lower curve). As we can see, the resultant capacitance is no worse than 3% less

than the finely discretized collocation solutions. Note that the 50 um in the figure is

usually the largest dimension for a pad in a contemporary VLSI technology.

Based on these facts, it can be inferred that constructing basis functions specifi-

cally for charge singularities may not be necessary for practical capacitance problems.

Observation 3.1. Basis functions for charge singularities are negligible in capaci-

tance extraction within a 3% error in single conductor cases in valid VLSI Manhattan

geometry using the boundary element method with the Galerkin's testing.

This observation is not obvious since most previous boundary element method

based algorithms, such as [21][24][17], use the collocation testing, which is a point-

matching approach (see Eq.(2.4)). The Galerkin's testing is sometimes used, but their
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Figure 3-3: Two wires crossing each other at the centers separated by h.

implementation usually use only a few quadrature points [5][14], which is not much

different from the collocation testing in the aspect of edge and corner singularities. In

our experiments, however, the integration of flat basis functions is calculated analyti-

cally. Hence, the singularity effect is implicitly taken into account in an average way.

A different argument was reached in [34] that a correction term is necessary when

using a finite difference approach. It can be explained by considering the formulation

of two methods: the boundary element method is integral equation based whereas

the finite difference approach is based on a differential equation. The latter seems to

be more sensitive to this singularity issue.

3.2 Stretchable Induced Charge

Induced charge, by our definition, is the separated charge distribution of a wire that

mainly results from the presence of the other wire. Those wires are called the induced

wire and the inducing wire, respectively. Figure 3-3(a) shows a pair of wires in

different metal layers that cross each other at their centers. Its charge distribution

solved by the standard method after removing the charge singuarities is shown in

Figure 3-3(b). The removal is done by extracting an independent setup of the induced

wire alone and subtracting the result from the crossing wire case. The charge density

is rescaled during the subtraction to ensure the corner charge is zero.

............
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Figure 3-4: The induced charge distribution on the top face of the induced wire at
the presence of the inducing wire. A series of the curves corresponding to different
inducing wire widths w demonstrates the induced charge is stretchable. The center
flat part is stretched with the inducing wire width, whereas the two decaying shapes
on sides are only shifted outwards. The dimensions of the induced wire and of the
inducing wire are 10 x 1 x 0.2um3 and 5 x w x 0.2um3 , respectively. The wire geometry
is not to scale in the y-axis.

In this experiment, we are interested in how the induced charge reacts to the

change of the width of the inducing wire. Figure 3-4 shows a series of induced charge

distribution curves that are sampled along the central line on the top face of the

induced wire in Figure 3-3(b) with different widths of the inducing wire. These

curves demonstrate that only the center flat part of each curve stretches or shrinks

with the width of the inducing wire. The decaying shapes are only shifted without

changing their slopes when the inducing wire decreases its width.

Observation 3.2. Given a pair of inducing and induced wires separated by h as in

Figure 3-3(a), the shapes of the decaying charge distribution on the induced wire in

the vicinity of the edges of the inducing wire are "invariant" regardless of the width

of the inducing wire. When the inducing wire continuously narrows down, the flat

part shrinks to zero at some point and the two decaying arch shapes start to merge

from the top. In addition, the decaying arch shape only strongly depends on the wire

separation h. This dependency is shown in Figure 3-5.

The last statement is made according to a separate experiment on the parameters

of wire geometries that we will skip here. This shape invariant property is a great

............... .............. . .......... .. ......
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Figure 3-5: The separation dependency of the induced charge distribution. The
induced charge is quickly flattened when the separation gradually increases. The
dimensions of the inducing wire and the induced wire are 10 x 1 x 0.2 um3 and
5 x 1.6 x 0.2 um3 , respectively. The wire geometry is not to scale in the y-axis.

implication that an induced charge distribution is decomposable. Figure 3-6 shows

such a decomposition suggestion. We will describe the slope extraction procedure in

Chapter 4 and reuse it everywhere in Chapter 6.

x 1o-'
6-

5 -Inducing wire

4---------------------------------------reflected arch shape
arch shapes

3- flat
Sb(h) shape

2-extension ah)
g ingrowing,

h length

Induced wire

-5 -4 -3 -2 -1 0 1 2 3 4 5
position (m) X 10-

Figure 3-6: A possible induced charge decomposition, based on Observation 3.2. The
parameter a denotes the extra length of arch shapes under the inducing wire, and
the parameter b denotes the length of the truncated tail. They are called ingrowing
length and extension length, respectively. The parameter h is the separation distance
of the induced and the inducing wires. The wire geometry is not to scale in the y-axis.
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Chapter 4

Instantiable Basis Functions

In this chapter, we define two templates based on the two key observations in Chap-

ter 3 and demonstrate the instantiation process of basis functions.

4.1 The Templates

Templates are the building blocks of induced basis functions. They are extracted

off line and parameterized by geometry given a fabrication technology before solving

a capacitance extraction problem. Only two templates are needed to construct the

whole algorithm in this work. They are arch templates and flat templates.

4.1.1 Arch and Flat Templates

Before having a mathematical description of the templates, several terms need to be

defined first.

Definition 4.1. The surface Si of the i-th conductor Mi is the union of all the

interfaces between dielectric and Mi. The j-th face of Mi denoted as Sjj C Si is a

largest rectangle plain surface that contains a point p such that any other rectangle

X C S, such that p E X C Sej. They are related by Si,, c Si c Mi.

These notations will be useful in the algorithm description in Section 4.2.3.



Definition 4.2. A face basis function is a function with value 1 supported in SJ

for some i, j. A basis function is called an induced basis function if it is not a face

basis function.

Face basis functions are the only basis functions used to capture self capacitance.

It is based on Observation 3.1 and extended to multi-conductor problems. Using

these basis functions with the Galerkin's testing, charge singularities around corners

and edges are also taken into account in an average sense. Here, we need one extra

definition in order to define the two templates.

Definition 4.3. An arch shape Ap(r) : R - [0, 1) is a function parameterized by a

vector of parameters p, and supported in [-a(h), b(h)], where a(h) and b(h) are the

length under the inducing wire and the length extended from the edge of the inducing

wire as shown in Figure 4-1, called the ingrowing length and the extension length,

respectively.

In the definition, the parameter vector p contains at least the wire separation h

by Observation 3.2. More parameters can be added in p if necessary. Some errors

in the arch shapes can be tolerated. An imperfect selection of basis function shapes

may only cause an additional 0.1%-1% capacitance error. It will be discussed in

Section 4.1.2. Now, we are ready to define the two templates.

Definition 4.4. An arch template TA,p(u, v) : R 2 
F-+ R is a function supported

in S, a subset of some face basis function support and TA,p(u, v) = Ap(u), for all

(u, v) E S, where Ap(u) is an arch shape.

Definition 4.5. A flat template TF(u, v) :R 2  - R is a function supported in S, a

subset of some face basis function support and TF(u, v) = 1, for all (u, v) E S.

These templates are simply formed by taking the ID variation in Figure 3-6 and

extending it to 2D by fixing its value. The choice brings many advantages and will

be discussed in Chapter 5. The exact function supports of the templates have not yet

been specified. They will be decided by wire geometries as described in Section 4.2.
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Figure 4-1: Arch extraction setup.

4.1.2 Arch Shape: Extraction

The decomposition suggested in Figure 3-6 is based on the curve extracted by the

standard method. This curve can be a choice of arch shapes, but it is not the optimal

one after we truncate the arch tails and neglect basis functions for the corner and

edge singularities. A new arch shape extraction scheme is needed to comply with this

modified setup.

In Figure 3-3(b), it can be seen that there is significant charge density induced

around the top edge of the side faces. Hence, for the optimal arch shape extraction, the

induced charge on the side faces also needs to be considered. This extraction setup

is shown in Figure 4-1. In this figure, there are five parameters to be determined

before extracting the optimal arch shapes: the side depth d, the arch extension and

the side arch extension lengths b(h) and b,(h), and the arch ingrowing and the side

arch ingrowing lengths a(h) and a,(h). Figure 4-2 shows the same setup but with the

templates separated from conductor faces and placed in different layers to emphasize

the fact that they are laid on the face basis functions. In these figures, each rectangle

represents a piecewise constant basis function used by the Galerkin's testing. The

arch templates and side arch templates are only discretized in the x-direction but

not in the y-direction in order to simulate the fact that arch templates have simply

side
depth

............................... - . .............. ......... .....
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Figure 4-2: Arch extraction setup displayed in layers.

1D variation. The arch shapes, or the coefficients of the small rectangles of the arch

templates, are determined in the system setup step.

The strategy to select the five parameters in Figure 4-1 is based on capacitance

errors, numerical stability, and the physical meaning of shapes. The numerical ex-

periment in Figure 4-3(a) shows that the deepest side template produces the least

capacitance error. However, the difference is limited. For the sake of numerical stabil-

ity, the side depth of the induced charge induced by the closest metal layer is chosen

to be the upper 50% of the wire thickness. The lower 50% is reserved for the presence

of the inducing wire from the bottom. The side depth for the second closest metal

layer takes 25% of the thickness. If the induction is from even farther metal layers,

all the corresponding side templates are neglected.

Figure 4-4 and 4-3(b) shows the arch shapes and the side arch shapes for different

extension lengths, b(h) and ba(h), and their corresponding capacitance errors. It can

be seen that the arch shapes and the side arch shapes overlap almost perfectly no

matter how long the extension lengths are chosen. Hence, they are selected to be the

distance measured from the edge of the inducing wire to where the charge density

drops to zero, discarding the negative part.

The effects of different arch and side arch ingrowing lengths, or a(h) and a8(h)

u 0 s a ft - I . - ... ...
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are similar: the largest a(h) and a,(h) gives the most accurate capacitance. It is

reasonable since the solver has more degree of freedom to find the most suitable

shapes. It is, however, not practical because the integration involving arch templates

is more computationally expensive and less accurate. Hence, the best strategy is to

minimize the support of arch templates without much loss of accuracy, while at the

same time keeping the physical meaning of arch shapes. Once all these parameters

are determined, the optimal shapes for this template setup can be extracted by using

the boundary element method with the Galerkin's testing.

The family of arch shapes A,(r) is parametrized by the parameter vector p. In

addition to the most dominant parameter h, the separation between inducing and

induced wires, we add one extra parameter w, the width of the induced wire, or more

precisely, the width of the arch template itself, to account for the effect that edge

singularities are averaged into the extracted shapes by the Galerkin's testing. Several

extractions for different p are necessary to fully characterize the shapes. Fortunately,

they are very smooth functions of p and thus both storing them and retrieving them

are very efficient.

4.1.3 Arch Shape: Storing and Retrieval

The arch shapes A(h,w)(r) extracted in the previous section are decaying functions of

r and smooth in all h, w, and r. Although three-dimensional, the functions are so

smooth that storing them in a table with several coarse discrete values and reusing

them via linear interpolation is possible and memory efficient. They can also be fit

by polynomial functions. However, due to the decaying nature of these functions,

a polynomial representation is not the most efficient choice, especially when higher

degree polynomials are computed. A more attractive representation is a multivariable

rational function of degree (n, m)

fN(p, r)
f r) (p,r) (4.1)

fD (P, r)



where p is a vector of k parameters and the numerator and the denominator are both

polynomial functions defined as

fN(p,r)= N par
aI+y <n,'Va,7

and

fD (P, r) =al #yp"'r,

in which the non-negative integer multi-indices a and a' are k-tuples, their absolute

values are the sum of all elements, i.e., lal = E ai, and -y is a non-negative integer

as well. In order to fit the rational function to the arch shapes Ap(r), Eq.(4.1) is

rewritten as

f(p, r)fD(P, r) - fN(P, r) = 0.

Substitute M data points Ayj(ri), for i = 1, 2, ... , N, and formulate the problem into

a constrained optimization problem. Then we have

M

minimize |A, (ri) fD(pi, ri) - fN(pi, ri)
a a it/ =1 (4.2)

subject to # =1.

When v = 1, it is linear programming. When v = 2, it forms a sum of squares

programming problem. The latter can be solved by using a MATLAB-based software,

STINS [3] {4]. Both norms provide similar results. The constraint in (4.2) is important.

Otherwise, the minimum happens when all coefficients #3N , , are equal to 0. In

this rational function representation, only the degrees n, m and the coefficients #N

and 4, need to be stored. The polynomial degrees for the denominator and the

numerator are usually less than cubic. In the case p = (h, w), n = 2 and m = 3 are

enough for a 0.3% relative shape error. Computing arch shapes through this way is

also efficient even compared with the table lookup approach, which needs to search

for indices for six values in the table and perform 3D linear intepolation.



4.2 Instantiable Basis Functions

The two templates defined in Section 4.1.1 are the only two building blocks we need

to generate all basis functions for induced charge. This instantiation process will be

demonstrated first by an example, then followed by a general algorithm.

4.2.1 An Example: Partially Overlapping Wires

Figure 4-5(a) shows a pair of partially overlapping wires in adjacent metal layers.

The bottom and the top wires are called the induced wire and the inducing wires,

respectively. We are going to instantiate the face-induced basis function and then the

side-induced basis function.

Face-Induced Basis Functions

Face-induced basis functions occur when an induced basis function is induced by a

parallel face. Their instantiation procedure in this example is described below. First,

we scan the z-direction, the direction that includes different metal layers, of the

induced wire Mi within its x and y boundaries, denoted by xi± and y±. The top wire

Mj is found, which is separated from Mi by a distance h in the z-direction. Its x and

y boundaries are denoted by zi* and yli, respectively. Since they are overlapped, at

least a flat template will be placed on the top face Si,top of Mi but only until all arch

templates are determined. Next, we examine each edge of the top face Sj,top of Mj

to check whether it is within the range of xi± and yli. The right-front edge of S

oriented in the y-direction, is first examined and its overlapping segment [yj , yi+] of

length w is determined. Then we place an arch template TA,(h, )(x - xb, y) supported

in [xj± - a(h), x6+ + b(h)] x [yi-, y ,] x z n Si,top, where zg is the upper z boundary

of Mi. The result is illustrated in Figure 4-5(b).

The same procedure can be followed for the left-front edge and the left-back edge.

The right-back edge has no effect for the induced basis function on the top face since it

is not within the induced wire boundaries. Finally, a flat template supported in [X4_ +

a(h), xi - a(h)] x [yj + a(h), y',] x z' is placed to connect the three arch templates
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as shown in Figure 4-5(c). A single induced basis function is formed now to represent

all the induced charge on the top face induced by Mj. The charge distribution of the

same structure solved by the standard method after removing singularities is shown

in Figure 4-5(d) for comparison. Even though the charge distribution outside the

corner of the incuding wire is not represented by a specific template or basis function,

this approach is very accurate and only results in a 1.6% capacitance error. The

performance comparison is listed in Chapter 6. Note that these four pieces, though

integrated separately in Chapter 5, only contributes a single unknown to the linear

system. Hence, the system size can be expected to be very small. If there is more

than one inducing wires present, an additional induced basis function is needed for

each inducing wire. The additional induced basis functions can be instantiated in

the same way as if all the other inducing wire are not present, and then their best

coefficients will be determined when the linear system is solved.

Side-Induced Basis Functions

Since the induced charge distribution on the side face of the induce wire is considered

when we extract the optimal arch shapes in Section 4.1.2, side arch and side flat

templates are used in an actual extraction problem. The instantiation procedure is

similar to the one we had for the face-induced basis functions, but the side-induced

basis functions are necessary only when the inducing wire protrudes from the bound-

ary of the induced wire. The wire setup in Figure 4-5(a) is such an example. When

we examine each edge of the top face of Mj as we did for the induced basis func-

tion on the top face, the right-back edge is found outside the range of x4± and yz.

Although it has no effect for the basis function on the top, its non-overlapping fea-

ture indicates that the protrusion of My from Mi happens in its direction. The

placement of the induced basis function on the side Si,side of M, is as the follow-

ing: first, a pair of side arch templates TA,(h)(z -- z+, y) and T, (- - zb-, y)

are placed with the supports (X, y) E [xi - a,(h), x+ + b,(h)] x [z, z+] n Si,side and

[xi -b(h), x_ +as(h)] x [z, z +]nSi,side, respectively, where i and z denote the cen-

ter point of Mi and the upper boundary in z-direction, respectively. Second, we con-



nect them by placing a flat template supported in [x'_ + a.(h), xb± - a,(h)] x [z, zb+].

This step completes the instantiation of the induced basis function on the side face.

The placement looks the same as the one on the side face when we extract the arch

templates in Figure 4-1.

4.2.2 The Merge Condition

The merge condition happens when the inducing wire is so narrow that the function

supports of the two arch templates that variate in the same direction overlap each

other. The curve corresponding to the narrowest wire in Figure 3-4 is an example.

When the condition happens, the arch templates overlap the induced basis function

loses its physical meaning because of its bizarre look. Hence, the procedure described

above needs a simple modification: instead of placing each arch template one after

another, a pair of arch templates with the same variation direction are considered

altogether. If the width of the inducing wire is narrower than 2a(h), then the function

support of each arch template only extends inwards to the center line of the inducing

wire. This modified procedure is listed in Algorithm 1.

4.2.3 The Complete Algorithm

Suppose the two conductors Mi and M, are both simple straight wires, for exam-

ple, as the case in Figure 4-5(a). At most five induced basis functions need to be

instantiated: one face-induced basis function on the top and four side-induced basis

functions on the sides. The algorithm of placing a face-induced basis function and four

side-induced basis functions are listed in Algorithm 2 and Algorithm 3, respectively.

They are the general form of the procedures we demonstrated in the example of the

partially overlapping wires in Figure 4-5(a). In the algorithm description, a template

function supported in an empty set is automatically discarded. The algorithm can

be easily extended to the case when Mi and Mj are in the same metal layers. In

this case, the face-induced basis functions are instantiated when the side faces of Mi

and Mj are facing each other. The side-induced basis functions are not included in



general since the metal thickness in the same layer is approximately the same and

no wire obviously protrudes from another in the z-direction. In general wiring of a

layout in Manhattan geometry, connected conductors can be decomposed into several

straight wire segments. The same algorithm can be also applied to each segment

pair from different conductors. Note that in this algorithm, only several geometry

operations are used such as union and intersection of rectangle shapes, which can be

implemented as simple coordinate comparisons and computed efficiently. Even when

multiple conductors with several segments are involved in one extraction problem,

the computation complexity is at the level of number of segments which is no more

than one hundred in our target problem. Compared to the overheads of FASTCAP

and pre-corrected FFT at the discretization level, this overhead is extremely small.



Algorithm 1: Instantiate arch templates in the u-direction
input : A pair of edges E* of Sj,top in the u-direction, separation distance h,

and ub±, vb±, z±, b±, o± v, zvi , the boundaries of Mi, Mj

output: A pair of arch templates T with the u-direction variation

define : T+ and T- are an arch and a reflected arch template, respectively.

begin

[V1,V2 ] +-- [vi_,I vi]I n (vi- ,v|

if layer(Mj) - layer(Mi) > 0 then s <- + else s <- -

if u' - u' < 2a(h) then

uJ +-- (u-' + u3_)/2

S- +- [uj - b(h), u4] x [v1 , v21 X zi. n Si,to,

S+ +- [u's, u + b(h)] x [v1 , v2] x zi n Si,t ,
else

S- +- [uj_ - b(h), uj + a(h)] x [Vi, v2] x z. n Si,top

_+ 4- [uj+ - a(h), uj, + b(h)] x [v1 , v2] X zi. n Si,top
T; <-- TA,,(-u - uo_, v) supported in S-

T<--- Tap(U - , v) supported in S+

end

Algorithm 2: Instantiate a face-Induced Basis Function
input : Si,top, Sj,top of Mi and Mj, respectively

output: A face-induced basis function O(r)

define : The support of a template, supp(T), is bounded by Xb± (T), Yb± (T),

where xb± (T), yb± (T) = ±oo if supp(T) = 0

begin
Instantiate the arch templates Tf and T+ on S-t induced by Sj,to,

S<- [xb+(T-),x -(Tb) x [yb(T), yb-(T+)] x z nSito

To- TF(x, y) supported in S

$(r) +- To+ T; + Tx + T,-+ T,+

end



Algorithm 3: Instantiate Side-Induced Basis Functions
input : E±, E± of Sj,top, Si,+x, Si,+y of Mi, separation distance h,

and ut, v, z~, n , vi, zj, the boundaries of Mi, Mj

output: A set of side-induced basis functions IF

define : E,(,) is an edge of Sj,top on the s(v)-direction side.

Si,s(v) is the face of Mi facing the s(v)-direction.

S p [u_, u,] x [v_, v ]x R

begin
T +-- 0

switch layer(Mj)-layer(Mi) do

case 1,-1

L [z1 , z2] +- the closest first half segment of [z4_, z;±]

case 2,-2

L Iz1, z2] +- the closest first quarter segment of [z4_, z +]

otherwise

[ zi, Z2] +-- 0

foreach v E {x, y}, S E f,-} do

if Es(v) n |S,,top| = 0 then

if u + - u < 2a(h) then

U - (u, + ul-)/2

S~ <-- {uj_ - b(h), uj] x [z1 , z2 ] X oJs n Sis(o)

S+ [uj, ui,+ + b(h)] x [Zi, Z2] x oi, n Si,,t,)
else

S- +- - b(h), uj_ + a(h)] x [Zi, z21 x of, n Si,,(v)

S+ <-- [ub, - a(j), ui, + b(h)] x [zi, z2 1 x vs n Si,s(v)

T- +--T"(-u - i-, z) supported in S-

T+ +-Tl,( - +, z) supported in S+

S + [Ub+ (T-), Ub- (T+)] x [zi, z2 ] x oF, n Si,s(v)

To +-- TF(u, z) supported in S

O(r) +- To + T++ T-

end



Chapter 5

Implementation

In this chapter, we discuss the implementation of FastCaplet from the system setup

to the system solving step. In particular, in the system setup step, we propose

four different panel-to-panel integration strategies for the efficient computation of the

Galerkin's testing.

5.1 System Setup

Once all basis functions are instantiated by performing Algorithm 2 and 3, we next

construct the system of linear equations Pq = <b in Eq.(2.6).

5.1.1 Integration Schemes

The bracketed integration of the i, j-th entry of P is reproduced here. In this case, we

assume the basis functions /j(r) and #Lj(r') are functions of x and y with the position

vector r and r' substituted by (x, y, z) and (x', y', z'), respectively.

=ij / fi (x, y) O(x', y') dx'dy'dxdy. (5.1)
is, 47re F4ir -(x - x') 2 + (y - y') 2 + (z - z')2

Since a basis function $j(x, y) is the summation of several templates, and each tem-

plate Ti,(x, y) is supported in a rectangle region [x1,1, x1,2] x [yi,1, y1,21, Eq.(5.1) can be



decomposed into

pij= Z ,Y,2 JX2 JY-,2 JX'fl2 Ti,1(X, y)T,m (X' ) dx'dy'dxdy .
E Y. Y n1  X m l 47re F(x - x') 2 + (y - y') 2 + (z -

(5.2)

When Ti,1 and T,m only variate in the x-direction and the y-direction, respectively,

we can rearrange the bracketed integration in Eq.(5.2) into

X1,2 YI,/2_ m,2  1 dy'dx.
Ti, i(X) Tj,. (y') d'dy dy'd.
JX1'1 ~ ~ ' yy .. 1, 47rE _ (X - z)2 + (y - y')2 + (Z - z')2

(5.3)

The inner 2D integration is identical to the integration of the collocation testing in

Eq.(2.4), which is analytically integrable and well-behaved. The rest of the outer

2D integration can be numerically integrated by Gaussian quadrature. Since the

integrations involve two panels, which may orient in different directions, three other

similar schemes are shown in the category of Arch-Arch integration of Type 1 in

Figure 5-1. If the inner 2D integration happens to integrate the same x-direction or y-

direction twice, referred as Arch-Arch Integration of Type 2, the analytical expression

is available but it is not well-behaved. Hence, Gaussian quadrature is not accurate

when the two templates overlap. In this case, we subdivide the overlapping region

into several small pieces and integrate each piece as a flat template.

The other two categories, Arch-Flat integration and Flat-Flat integration, are

used when only one template is flat and both templates are flat, respectively. The

corresponding 3D and 4D analytical integrations are employed in each case. All these

schemes are summaries in Figure 5-1.

5.1.2 Integration Strategies

All the integration schemes mentioned above are based on the analytical expressions

of 2D, 3D or 4D integrations. As a result, we can speed up the overall system setup

process if we accelerate the computation of these integrations. Here, we propose four

integration strategies.
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ZX-XY

ZX-YZ

.... ........ . .. ......... ..... .......



Tabulation of Definite Integration

In this method, we tabulate the analytical expression, for example, in the 4D case,

fY2fx2 [Y;/ X' 1
Fdefinite = , 4 dxd'dxdy. (5.4)

X 47rE||r -r ||

After being properly normalized, it is a six-parameter table. The error of this method

can be easily controlled, but it involves a huge table which is feasible only when

sampling carefully. Its acceleration is also limited due to the expensive six-dimensional

linear interpolation.

Tabulation of Indefinite Integration

Instead of tabulating the whole definite integration expression, we can reduce the tab-

ulation parameters from six to three by tabulating the indefinite integration without

substituting the upper and lower limits

Findefinite(X - X', Y - Y, z) I= j j J J dx'dy'dxdy.
Y1 X1 I 4ri |r - r1||

(5.5)

In this case, though the number of parameters is reduced, the table size is still large

because the overall integration requires very accurate indefinite integration results.

Also, the error of the overall integration is indirectly related to the table. Therefore,

the error control is not as easy as the previous method.

Tabulation of Expensive Elementary Functions

In the 2D, 3D, and 4D analytical expressions, more than half of the computation time

is spent on computing elementary functions, such as arctangent and logarithmic func-

tions. They are expensive, taking roughly 30 times more computation time than a

multiplication of two single-precision floating points. Tabulating these single param-

eter functions is memory efficient even when the accuracy requirement is high. The

IEEE-754 representation of floating-point numbers is also useful for the tabulation of



the logarithmic function

log2({mantissa} x 2  "exponent}) = {exponent} + log2 ({mantissa}).

Therefore, only log2 ({mantissa}) needs to be tabulated[22], and in our experiments,

tabulating the first 14 bits of mantissa is enough for a 1% overall integration error

in a 4D integration. This approach is faster than the built-in logarithmic function

and arctangent function by a factor of five and four, respectively, on a Xeon 3.2 GHz

machine.

System Identification of Integrations

It can be seen from Eq.(5.5) that an analytical expression of an integration is an ill-

conditioned representation. Several significant digits of the indefinite integration are

canceled out when substituting the upper and the lower limits. A more efficient and

numerically stable expression, such as rational functions in Eq.(4.1), can be adopted.

In this case, we treat the equation (5.4) as a six-input-single-output system without

feedback, and use STINS[3] to identify the "model" of the integration. In order to

fully characterize the integration, a large number of sampling points are required.

Hence, it is necessary to make the have an appropriate selection of sampling points

to make the identification process feasible.

Considering the compatibility with the original analytical expressions and the

memory efficiency, we will use the method of tabulating elementary functions in the

examples in Chapter 6. Although it is a partial tabulation of the whole integration,

it is, in fact, slightly faster than the direct tabulation of the whole integration in our

2D integration implementation.

5.2 System Solving

In the system solving part, we use a standard LU decomposition method. Among

many optimized linear algebra libraries, we choose a GotoBLAS-based LAPACK li-



brary in our implementation [10] [2]. The reason of this selection is based on perfor-

mance and portability. As we will see in Chapter 6, the selection of the linear system

solver is not critical because most of the computation is moved to the system setup

part by using the instantiable basis functions.



Chapter 6

Examples

In this chapter, we first describe the methodology of performance comparison and,

then, present several extraction examples of common interconnect structures in a

VLSI layout.

6.1 Performance Comparison Methodology

In the following examples, we first use FASTCAP to extract the reference capacitance

matrix CO of a structure by adaptively refining the discretization until the capacitance

matrix is converged. In the adaptive process, we increase the number of panels by

10% in each step. We stop the process and consider the result convergent when each

entry of the matrix in the last step is less than 0.1% different from the same entry in

the previous step. The convergence criterion used here requires a very large number of

panels that the reference capacitance solution is not feasible when using the standard

method because of its O(N 2) memory requirement. As a result, we choose FASTCAP

instead of the standard method to extract the reference capacitance.

Second, we extract the capacitance matrix Ccaplet of the same structure by using

our implementation, FastCaplet, and calculate the relative error of each entry with

respect to the diagonal entry

CCapet - C9
ei - =i~ t
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Figure 6-1: A comb capacitor.

The capacitance error of the structure extracted by FastCaplet is the largest absolute

value of ei,

ecapiet - max I e3I

Finally, we adjust the discretization in order to make the error of the capacitance

extracted by FASTCAP with respect to CO is equal to ecaplet. We then make the

performance comparison between this work and FASTCAP in this discretization. A

similar procedure is followed for the standard method.

6.2 Examples

6.2.1 A Comb Capacitor

Figure 6-1 shows a comb capacitor. The comparison of different extraction methods is

listed in Table 6.1. We compare this work with FASTCAP and the standard method,

which is called the piecewise constant (PWC) collocation method in the table. The

improvement factor is calculated and listed to the right of the column of each method.

............



Table 6.1: Comparison of extraction methods in the comb capacitor example

Method FastCaplet FASTCAP Impr. PWC Collocation Impr.

Total time (ms) 55.8 1040 18.6 x 2310 41.2x
Setup time (ms) 54.8 670 12.2x 133 23.3x
Solving time (ms) 1.00 370 370 x 980 980 x

Number of unknowns 212 5640 26.6 x 5640 26.6 x
Memory 180 KB 74 MB 410 x 255 MB 1410x

Error 2.08% 2.24% 1.76%

Table 6.2:

Method

Total time (ms)
Setup time (ms)
Solving time (ms

Number of unkn
Memory

Error

Comparison of extraction methods in the

FastCaplet FASTCAP Impr.

30.2 380 12.6 x
29.5 180 6.1x
0.70 200 285 x

owns 90 2692 30x
37.4 KB 16.4 MB 439 x

2.38% 2.94%

3x3-bus example

PWC Collocation

3900
2840
1060

2692
58.2 MB

3.06%

6.2.2 Three-by-Three Buses

Figure 6-2 shows an example of 3-by-3 buses. It is a very common structure in a

circuit layout and known to be inaccurate when using 2D scanning and table lookup

approach. The widths of the wires in this example are intentionally set to be differ-

ent in order to demonstrate the versatility of the instantiable basis functions. The

performance comparison is summarized in Table 6.2.

6.2.3 A Spiral Inductor

Figure 6-3 shows a spiral inductor. Spiral inductors are common structures in a RF

circuit layout. In addition to the inductance, the parasitic capacitance is also of

great interest because, for example, it directly affects the operating frequency of a

LC-tank-based oscillator. The metal ground plane is patterned in order to reduce

the induced eddy current but increase the capacitance between the inductor and the

Impr.

129 x
96.3x
1510x

30 x

1560 x
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Figure 6-2: Three-by-three buses. The length and thickness of the wires are fixed
to be 10 and 0.2 um. The width of each wire is 0.1, 0.2, 0.4, 0.6, 0.8, and 1.2 um,
respectively. The separation between wires is 0.2 um. The two metal layers are
separated by 0.2 um.

ground plane. The performance comparison is summarized in Table 6.3.

...... ..... .
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Figure 6-3: A spiral inductor.

Table 6.3: Comparison of extraction methods

Method FastCaplet FASTCAP

Total time (ms) 41.6 650
Setup time (ms) 40.6 390
Solving time (ms) 1.00 260

Number of unknowns 197 7250
Memory 150 KB 41.0 MB

Error 1.46% 1.82%

in the spiral inductor example

Impr. PWC Collocation

15.6 x 7250
9.6x 1734
260 x 2010

36.8 x 7250
270 x 420 MB 2

1.80%

Impr.

90.1x
42.7x
2010x

36.8 x
800 x
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Chapter 7

Conclusions

We propose a new set of basis functions for charge distribution, which is very effective

to capture dominant induced charge. These basis functions are instantiated on the fly

by analyzing wire geometries and assembling template components. We use only two

important templates: the arch template and the flat template. The arch template

is defined with ID variation, which is beneficial both for storing the shapes and for

computing the Galerkin's integrations efficiently. Our implementation, FastCaplet, is

based on these basis functions. In our examples, it is more than 10 times faster than

FASTCAP, and roughly 100 times faster than the boundary element method using

piecewise constant basis functions with the collocation testing. The memory usage of

our method is very efficient: only less than 1/100 storage of the FASTCAP is needed.

It is also very accurate, generating only 3% capacitance errors demonstrated in our

examples.

Future Work

Using our new template instantiable basis functions is efficient because the resultant

field solver is faster than the existing accelerated field solvers in small structures.

Even more, our method moves most of the computational efforts from system solving

to system setup. Widely accepted methods, such as [21] and [24], spend more than

50% of computational time in solving system in small structures and more than 90%

in large structures. Parallelization of these specialized system solving processes is not



trivial, and the acceleration is very limited [33] [1]. In our approach, on the other

hand, more than 90% of computation time is spent on the system setup step, which

is embarrassingly parallelizable. As a result, an efficient parallelization of our current

method will surely have an even bigger improvement in computational time.

In addition, we assume all conductors are embedded in a uniform dielectric ma-

terial. However, in a common fabrication technology, there are several very thin

sub-layers with different dielectric constants between metal layers. Traditionally, ex-

tracting capacitance including the effects of sub-layers is computationally expensive.

It can be usefully to extend the use of the instantiable basis functions to layered

dielectric structures.
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