
Providing Caching Abstractions for

Web Applications
by

Priya Gupta

B.Tech., Computer Science and Engineering

Indian Institute of Technology, Delhi (2008)

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

OCT D 5 2010

LIBRARIES

ARCHIVES
Submitted to the Department of Electrical Engineering and

Computer Science

in partial fulfillment of the requirements for the degree of

Master of Science in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2010

@ Massachusetts Institute of Technology 2010. All rights reserved.

I
r /

... D

Department of Electrical Engineering and Computer Science

July 31, 2010

Certified by....

Certified by

' A "r , '

Accepted by..

Nickolai Zeldovich
Assistant Professor

Thesis Supervisor

Samuel R. Madden
Associate Professor

Thesis Supervisor

Terry P. Orlando

Chairman, Department Committee on Graduate Students

Author . .

.6 . y.

............

Providing Caching Abstractions for Web Applications

by

Priya Gupta

Submitted to the Department of Electrical Engineering and Computer Science
on July 31, 2010, in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering and Computer Science

Abstract

Web-based applications are used by millions of users daily, and as a result a key

challenge facing web application designers is scaling their applications to handle this

load. A crucial component of this challenge is scaling the data storage layer, especially

for the newer class of social networking applications that have huge amounts of shared

data.
Caching is an important scaling technique and is a critical part of the storage layer

for such high-traffic web applications. Usually, building caching mechanisms involves

significant effort from the application developer to maintain and invalidate data in

the cache. In this work we present CacheGenie, a system which aims to make it easy

for web application developers to build caching mechanisms in their applications.

It achieves this by proposing high-level caching abstractions for frequently observed

query patterns in web applications. These abstractions take the form of declarative

query objects, and once the developer defines them, she does not have to worry about

managing the cache (i.e., insertion and deletion) or maintaining consistency (e.g.,
invalidation or updates) when writing application code.

We designed and implemented CacheGenie in the popular Django web application

framework, with PostgreSQL as the database backend and memcached as the caching
layer. We use triggers inside the database to automatically invalidate or keep the cache
synchronized, as desired by the developer. We have not made any modifications to
PostgreSQL or memcached. To evaluate our prototype, we ported several Pinax web

applications to use our caching abstractions and performed several experiments. Our
results show that it takes little effort for application developers to use CacheGenie,
and that caching provides a throughput improvement by a factor of 2-2.5 for read-
mostly workloads.

Thesis Supervisor: Nickolai Zeldovich
Title: Assistant Professor

Thesis Supervisor: Samuel R. Madden
Title: Associate Professor

Acknowledgments

My deepest gratitude goes to my advisor Nickolai Zeldovich for his invaluable guidance

and support. Throughout my academic journey at MIT, Nickolai has been a source

of constant encouragement, impeccable advice and brilliant ideas.

I am also deeply indebted to my co-advisor, Sam Madden, who has guided this

work splendidly by providing us with a database-y point of view. I thank him for his

amazing support, sound direction and wisdom throughout this thesis.

Special thanks to Neha Narula for joining our numerous discussions, helping out

with implementation and for always being there to bounce off ideas and offer feedback;

and Eugene Wu for working with me during the initial stages of the project. I would

also like to thank other fellow grad students at the lab, especially Lenin, Taesoo,

Yang, James, Adam and Alvin, who made these past two years on the ninth floor an

enjoyable experience.

I want to thank all my friends at MIT for their wonderful company; especially

Karthik, Neha, Varun and Jairaj, who have always looked out for me. My roommate

Andrea has been both my friend and family, and a constant source of fun and advice

at the same time. Special thanks goes to my lab mate and friend Ramesh who helped

me immensely in the final stages of this thesis, whether it be brainstorming ideas,

setting up experiments or proof-reading the thesis.

This thesis would not have been possible without the support and sacrifice of my

family. I'd like to thank them for their love and patience-Papa and Mumma for

always believing in me, Manish for silently being there, and Richa for her constant

guidance and loving care. I dedicate this work to them.

6

Contents

1 Introduction 13

2 Design 17

2.1 Caching Abstractions . 19

2.1.1 Common Query Patterns . 20

2.1.2 Cache Class . 25

2.2 Cache Consistency Mechanisms . 27

2.2.1 Current Approaches . 28

2.2.2 Database Triggers . 30

2.2.3 Consistency Guarantees . 36

3 Implementation 41

3.1 Django . 42

3.1.1 Overview of Django Models 42

3.1.2 Caching in Django . 44

3.2 CacheGenie in Django . 45

3.2.1 Cache Class Implementation 45

3.2.2 cacheable Function . 47

3.2.3 An Example . 47

3.3 Memcached . 49

3.4 PostgreSQL . 51

4 Evaluation 53

4.1 Experimental Application: Pinax

4.1.1 Background Information on Pinax .

4.1.2 Porting Pinax Applications

4.2 Programmer Effort

4.3 Performance

4.3.1 Experimental Setup

4.3.2 Microbenchmarks

4.3.3 Social Networking Workload

4.4 Conclusions

5 Related Work

6 Future Work

7 Conclusion

A Pinax Database Schema

Bibliography

. 53

. 54

. 55

. 59

. 61

. 62

. 66

. 71

. 80

83

89

98

List of Figures

2-1 Various Caching Schemes for Web Applications 18

2-2 Sample Database Schema . 21

2-3 Query Patterns . 22

4-1 Pinax Social Networking Website . 56

4-2 Microbenchmarks: Database vs Cache Performance 68

4-3 Microbenchmarks: Effect of Varying Data Size 69

4-4 Experiment 1-Performance with Varying Clients 73

4-5 Experiment 2-Performance with Varying Workload 76

4-6 Experiment 3--Performance with Varying User Distribution 78

4-7 Experiment 4-Performance with Varying Cache Size 79

A-1 Schema of database tables in Pinax 95

10

List of Tables

4.1 Various Database Configurations used in Microbenchmarks 66

4.2 Trigger Overhead on INSERT . 71

4.3 Average Latency by Page Type . 75

4.4 Average Latency by Query Type . 75

12

Chapter 1

Introduction

With the tremendous increase in number of Internet users, web developers face a

huge challenge in scaling web applications. In web applications today, databases are

often the least scalable components. While it is easy to replicate stateless servers to

scale up performance, database servers cannot be scaled linearly very easily. This

is mainly because of two reasons: (i) queries spanning multiple database servers are

slow and (ii) writes need to be applied consistently across all replicas. Hence, for

good performance over large amounts of data it quickly becomes insufficient to rely

on native database performance, and merely adding more database servers will not

restore performance.

Web application developers typically solve this problem by adding a caching layer

above the database to cache the results of time consuming queries such as ones which

span multiple servers. Caching is also useful for queries which might not span multiple

servers but are sufficiently complicated and/or frequent. Thus, caching forms an

important part of storage systems of many web applications today; for example,

many websites use memcached [10] as a distributed memory caching system.

However, there are various issues involved in using any caching system, the most

important of them being cache maintenance. In cases where stale results are accept-

able, the application developer sets an expiry time on the cached result based on

various heuristics. For example, a user's friend's Facebook [7] profile page might be

cached for, say, one minute, as it rarely changes. For other queries, stale data is

not acceptable and hence the developer has to invalidate the cached result whenever

data used in computing that result changes. The data on a user's Facebook wall falls

into this category. These decisions are based on a trade-off between the tolerance

for stale data and amount of extra work required for invalidation and recomputation.

An alternate approach that is less commonly used is a write-through cache, where

the cached result is modified in place whenever data used in computing that result

changes, and hence does not need expiry or invalidation. If a data item is used to

compute multiple cached results, it is the application's responsibility to update all

the cached results.

To summarize, developers today need to manually implement caching mechanisms,

and have to manage cache consistency themselves. This has several disadvantages:

first, developers have to write a significant amount of code to manage the application's

caching layer. Second, this code is typically spread all over the application, making

the application difficult to extend and maintain. Finally, the developers of each

application independently build these caching mechanisms and cannot re-use other

developers' work, due to the lack of common high-level caching abstractions.

This thesis aims to address these issues with CacheGenie, a system which provides

higher level caching abstractions for automatic cache management in web applica-

tions, while making no modifications to the underlying database. These abstractions

provide a declarative way of caching, where the developers only specify what they

want to cache and the desired consistency requirements, and the underlying system

takes care of maintaining the cache. Specifically, CacheGenie does three things. First,

it derives the queries corresponding to the developer's specifications, which are used

to compute the cached object from the underlying database. Second, it transparently

uses the cached object whenever required by the application, instead of executing the

query on the database. Finally, whenever underlying data used in computation of the

cached object is modified, it transparently invalidates or updates the cached object.

This is done by executing database triggers when the underlying data changes. One of

the important goals of CacheGenie is to not make any modifications to the database,

and use existing primitives present in modern databases to ensure cache consistency.

Another important point to note here is that we do not provide transactional consis-

tency over the cached data. This means that updates/deletes applied to the cache as

part of one database transaction may be visible to other transactions. Once all the

updates have propagated, the cache converges to a consistent state.

We observed that typical read queries in web applications can be classified into a

few categories, and we aim to provide abstractions for several of these categories. For

example, a common but slow read query in web applications is to lookup top-K items

from the database according to some order. Looking up the latest 20 status message

updates of a user's friends falls into this category. To cache this type of query, we

introduce a caching abstraction called top-K list. More of these caching abstractions

are described in the next chapter.

It is imperative that in addition to making the developer's life easier, using

CacheGenie should not lead to any significant decrease in performance as compared to

existing solutions. It is a secondary goal of this work to, in fact, improve performance

in certain cases. For example, updating the cache in-place as opposed to invalidation

or expiry means the result will always be incrementally updated and never recomputed

from scratch. Although this results in extra work during each update operation, it

leads to overall performance improvement in a read-heavy workload. This is because

the cost-benefit of incrementally updating as opposed to calculating from scratch is

more if the data item is being queried repeatedly.

We implemented a prototype of CacheGenie by modifying a popular web applica-

tion framework called Django. Further, we ported a subset of applications from Pinax,

which is a collection of usable Django applications, and show that the abstractions we

provide are easy to use and do not require many changes to existing applications. For

Pinax, we had to add only about 20 lines of code. Also, CacheGenie automatically

generates about 1720 lines of trigger code, and we argue that without an automatic

cache management scheme, the programmer will have to manually write about the

same amount of code to manage the cache for these applications. Our prototype uses

memcached as the cache and PostgreSQL for the database. Both these work in our

system without any modifications.

We did experiments to evaluate the performance of our prototype with a book-

marks application from Pinax. From the experiments, we observed that using the

caching abstractions leads to a 2-2.5 factor of improvement in throughput as com-

pared to a system with no caching. Further, updating cached data in place is 25%

faster than invalidating it. We also measured the throughput variation with varying

workload and user distribution. As expected, caching wins by a higher margin in a

read-heavy workload, and if there are repeated users accessing the application. We

also performed microbenchmarks to measure the overhead of triggers, which can be

between 3% and 400%, depending on the operations being performed by the trigger.

The rest of this thesis is organized as follows: Chapter 2 discusses the system's

design. Chapter 3 describes our implementation in detail. Chapter 4 describes the

evaluation strategy and results. Chapter 5 discusses some important related work

in this area. Chapter 6 talks about limitations of the current system and possible

extensions of this work. Finally, Chapter 7 concludes.

Chapter 2

Design

Web applications employ several caching strategies to improve their performance and

reduce the load on the underlying data store. These strategies can be divided into

two main categories: application caching and database caching.

The first category refers to application-level caching of entire HTML pages, page

fragments or computed results. This scenario is illustrated by Figure 2-1a. In this

scenario, the web application is responsible for cache management, and typically uses

a key-value store, such as memcached, as the cache. Cache management includes (i)

choosing the granularity of cache objects, (ii) translating between database queries

and cache objects, so that they can be stored in a key-value store, and (iii) maintaining

cache consistency. Caching entire HTML pages or fragments does not work very well

for highly dynamic websites such as social networking websites, and so application

programmers instead cache data at a more granular level. For example, cached objects

maybe a list of a user's friends or a user's profile, rather than individual rows in the

users or friends database tables. To guarantee consistency of the cached data with

the underlying database, applications implement logic to either put expiration times

on the cached content or invalidate them whenever underlying data changes. In this

model, the cache and the underlying database are not aware of each other and cache

management is the application developer's burden. In summary, the advantage of

application-level caching is that it allows for caching at a granularity best suited to

the application. The disadvantage is that application developers have to manually

Web Clients

Web Requests
rWebApp Server
Applic nlicatio

Key-V
eWeb

Requests

Web Requests eApplcto Se ode
Coede

______Server __ Caching IORM Queri s
Alication CoeMiddleware Cache*renie=

Key-Value Queries IKey-Value

Invalidations DBQere nvaidations JDB Queries QeisO ure

invalidations Updates

Cache Database Dataase Daabs
(a) Application Caching (b) Database Caching (c) CacheGenie Caching

Figure 2-1: Various Caching Schemes for Web Applications

implement cache management themselves.

The second category, database caching, is illustrated in Figure 2-lb. In this model,

a middleware layer caches partial or full data from the database near the application

servers to reduce the load on the database server. The cached data can be partial

rows returned from the database against which further queries are executed ([223,

[24]), or it could be results of exact queries stored in the cache that are returned

immediately if future queries match old queries exactly ([31]). Database caching

systems typically use query template-based invalidation schemes to maintain cache

consistency. The middleware layer is responsible for deciding what queries to cache,

how to satisfy the application requests based on what is in the cache, and maintaining

cache consistency with the underlying data. In some systems the programmer can

provide hints to the middleware as to what data to cache; in others, the system itself

adapts to the workload ([24]). Though this model frees the developer from managing

the cache, it can result in sub-optimal caching behavior since cached objects are typ-

ically database rows and not application-level objects. For example, this results in

re-computation of join queries leading to slower cache performance. Some database

caching systems avoid re-computation by caching results of entire queries; however,

that requires the programmer to get involved in managing cache consistency, as de-

scribed in Section 2.2.1, thereby increasing the burden on the programmer. So, to

summarize, while database caching systems aim to reduce programmer burden related

to cache management, they have the disadvantage that the mechanisms they employ

can result in sub-optimal cache performance.

In essence, neither of the above approaches fully solves the problem of caching

in web applications. In this work we aim to combine the best parts of these two

approaches into a system that is most beneficial for the programmer. We do this

by providing high-level caching abstractions that programmers can use while writing

web applications. These abstractions result in the following benefits: They directly

cache query results and automatically store and update those results, as opposed to

providing a simple key-value store that the programmer must manually manage. Our

techniques integrate closely with the database, using triggers to manage cache consis-

tency via updates and invalidations. The caching abstractions decide the granularity

of caching, and automatically translate between the data in the cached objects and

the data stored in the underlying database. The choice of whether to invalidate or up-

date can be made by the programmer while using these abstractions. The high-level

architecture of CacheGenie is illustrated in Figure 2-1c. CacheGenie works as an in-

tegral part of the application server, handling the queries for the existing application

code. The rest of this chapter describes our design in more detail.

2.1 Caching Abstractions

Rather than trying to provide a generic query caching interface, our goal is to cache

common query patterns that emerge in web applications, particularly those written

against object-relational mapping (ORM) frameworks like Django. These ORM based

applications generate a constrained subset of SQL, and we plan to provide caching

for these common queries. For example, in social networking applications, a common

query pattern is to follow links in a social graph, such as when looking up a person's

friends. In an ORM, this appears as a sequence of key - foreign-key joins. In this

work we aim to provide abstractions for such commonly observed types of queries.

This section discusses the common types of queries seen in our target web application

workloads, and the mechanisms we provide for the programmers to be easily able to

cache those queries.

2.1.1 Common Query Patterns

Database query languages, such as SQL, are general purpose and provide a very

rich query language, suitable for many applications; however, only a subset of the

language features are used in a specific domain. For example, for warehouse type

workloads, aggregate queries are most commonly used. We use this observation to

define high-level caching abstractions for web applications based on ORMs.

For web applications, we observe that most of the read workload can be classified

into the few categories described below. Each category represents a common query

pattern observed in web application read workloads. The workloads may also have

infrequent queries that lie outside these patterns, but to improve performance, it

typically suffices to improve these commonly occurring queries. Hence, in this work

we concentrate on these common patterns. Moreover, it is easy for a programmer

to identify these patterns in an ORM layer. Working within these frameworks also

ensures that the programmer does not have to change the current programming model

she is using.

Following are the most common type of queries we observed in web applications.

Figure 2-2 gives a partial database schema from a typical social networking application

and Figure 2-3 gives sample SQL queries from the application representing these

categories.

1. Feature Query. This is the simplest type of query which involves reading some

or all features associated with an entity. In relational database terms, it means

reading a (partial or full) row from a table satisfying some clause-typically

one or more WHERE clauses. This query does not involve traversing any one-

TABLE 1: users

TABLE 2: profiles

(id
username

first-name

lastname

email

password

last-login

date-joined

(id
userid

name
about
location
website

TABLE 3: friendship (

fromuserid
touserid

TABLE 4: friendshipinvitation (
id

fromuserid

touserid

message

sent

status

TABLE 5: groups (id
name
datecreation

description

integer
character

character

character

character

character

timestamp

timestamp

integer

integer

character

text

character
character

integer

integer

integer);

integer

integer

integer

text

date

character

integer

character

timestamp

text);

varying(30)

varying(30)

varying(30)

varying(75)

varying(128)

with time zone

with time zone);

varying(50)

varying(40)

varying (200))

varying(1));

varying(50)

with time zone

TABLE 6: groups-membership (
id

userid

group-id

added

TABLE 7: status (id
userid

statustext
date-posted

integer

integer

character

timestamp

varying(140)

with time zone);

Figure 2-2: Partial database schema from a social networking application

integer

integer

integer

date);

Query 1: Feature Query

SELECT profiles.id, profiles.user-id,
profiles.name, profiles.about,

profiles.location, profiles.website
FROM profiles

WHERE profiles.profile.user-id = 42

Query 2: Link Query

SELECT groups.id, groups.name,
groups.date creation, groups.description

FROM groups, groups-membership

WHERE groups-membership.userid = 42 AND

groups.id = groups-membership.group-id

Query 3: Count Query

SELECT COUNT(*)
FROM friendshipinvitation

WHERE friendshipinvitation.touserid = 42 AND
friendshipinvitation.status = 2

Query 4: Top-K Query
SELECT st atus .id , st atus .user_ id ,

status.statustext, status.date_posted
FROM friendship, status

WHERE friendship.from-user-id = 42 AND
friendship.to-userid = status.userid

ORDER BY status.dateposted DESC

LIMIT 20

Figure 2-3: Common query patterns in the social networking application

to-many or many-to-many relationships and hence is limited to one database

table. For example, in a simple social networking application which stores profile

information in a single table, the query to get the profile information of a user,

identified by a user-id, is a Feature Query. Query 1 in Figure 2-3 represents

this query in SQL. A Feature Query is fast if the database is indexed by the

columns in the WHERE clauses, and can be satisfied in one or two disk seeks

depending on whether the index page is in the database cache. Since these

queries make up a large percentage of the workload, caching them is highly

beneficial. Moreover, it is quite simple to determine when a cached Feature

Query result should be invalidated.

2. Link Query. A query which involves traversing various relationships between

entities is a Link Query. For example, a query to find all the people in a user's

groups is a Link Query. In relational database terms, these queries involve

traversing foreign-key relationships between different tables. These queries span

more than one table and involve calculating join based on one or more clauses.

The speed of such queries depends on several factors such as whether there are

indexes on the join columns, whether the indexes are clustered, and the number

of rows involved in the join. Link Queries are in general much slower than

Feature Queries, and hence often observed Link Queries should be cached to

avoid repeated join computation in the database. Moreover, if the join needs

to be computed across multiple databases (either in the application or in a

distributed database), it becomes all the more important to cache the Link

Query result, as the join can be very slow. An example of a frequent join query

for Facebook is to look up information about the interest groups to which a

user belongs. This query involves a join between the groups-membership table

and the groups table. Query 2 in Figure 2-3 illustrates this query.

3. Aggregate Queries. The following are the most common aggregate queries:

9 Count Query. A typical web application's page displays many types of

counts, for example, a user's Facebook page displays counts of her friends,

messages in the inbox, unread notifications, pending friend requests, etc.,

Count queries can be expensive if they involve joins across multiple tables.

Count queries on a single table can sometimes be made faster by having

a clustered index on the column in the WHERE clause. However, this can

only work for a few queries since a table can be clustered on only one

index. Hence, count queries, in general, are good candidates for caching,

as they take up very little memory and the performance benefits can be

significant. Query 3 in Figure 2-3 gives an example of a query to get

the count of unaccepted friend invitations for a user ("status = 2" in

friendshipinvitation table means the invitation hasn't been accepted

yet.)

Top-K Query. Another common and expensive query is to lookup the

list of top-K elements satisfying certain criteria. The latest status updates

of a user's friends on her Facebook homepage is an example of a Top-

K Query. Another example is the list of top-selling items on Amazon.

In applications such as these, Top-K Queries are very common as they

appear in frequently accessed pages. In database terms, a top-K query

involves sorting the table (which could be a join result), and returning

K elements from the top. Hence, Top-K Queries are typically expensive,

and their results should be cached whenever possible. Some applications,

such as Facebook, build custom solutions to improve performance of Top-

K Queries, as described in Chapter 5. One important property of Top-K

queries is that the cached results can be incrementally updated as updates

happen to the database, and don't need to be re-calculated from scratch-

we exploit this property in CacheGenie. Query 4 in 2-3 represents an

example Top-K query fetching latest 20 status updates of a user's friends.

We observe that the above types of queries are the most common in web appli-

cations. Specific applications may have additional types of query patterns; however,

optimizing the query patterns listed above should deliver significant performance ben-

efits to most web applications.

Next we describe the abstraction mechanisms we provide for the above query

patterns.

2.1.2 Cache Class

Web applications based on ORMs generate database queries using objects (ORM

representation of data in the database) and functions (that filter query results based

on the certain clauses). The programmer only has to represent the desired query

using the correct object code and the ORM framework converts it into the right

database query. In CacheGenie we provide caching abstractions for the query patterns

generated by the ORM. The programmer still writes the object code, and we exploit

this code to identify the query patterns.

We represent each query pattern observed in the workload by a Cache Class ab-

straction. For instance, there is a Cache Class called FeatureQuery representing the

Feature Query pattern. To cache data pertaining to different entities, the programmer

adds multiple instances of a single Cache Class, and each instance is called a Cached

Object. For example, consider an application where the programmer is interested in

caching profile information of various users, represented by Query 1 in Figure 2-3. In

this example, since the programmer is interested in caching a user's profile informa-

tion, she creates an instance of the FeatureQuery class, say UserProfile. Once this

cached object has been created, the programmer can simply use their existing object

code, and CacheGenie will take care of fetching the right data from the cache.

The programmer creates a cached object by specifying parameters to the Cache

Class. Some of these parameters are required, and others are optional. For in-

stance, to create UserProfile, the programmer is required to specify the table name

(profiles) and column in the WHERE clause (user-id); she can optionally specify the

whether the cached data should be updated or invalidated on update of the underlying

profiles table. These parameters are discussed in detail later.

Following are the Cache Classes corresponding to the common query patterns

discussed in the previous section.

1. FeatureQuery Class. To create an instance of the FeatureQuery class, the

required parameters are the data entity of interest, and the columns by which

to index the cached object. So for instance, as explained in the above example,

profiles is the entity of interest and user-id is the column by which the

cached object is indexed. There can be optional parameters such as a list of

columns to be fetched for that entity in case the programmer is not interested

in fetching all the columns.

2. LinkQuery Class. To create an instance of the LinkQuery class, the required

parameter is the chain of relationships to be followed. For example, the cached

object for a user's interest groups (Query 2 in Figure 2-3) is created by speci-

fying the link group-membership between users and groups.

3. CountQuery Class. CountQuery has one of FeatureQuery or LinkQuery as

its base class, and the parameters to create an instance of CountQuery class

are the parameters of its base class. So for instance, to get the count of a

user's pending friend invitations (Query 3 in Figure 2-3), the base class is

FeatureQuery with parameters friendshipinvitations as entity of interest,

and status and to-user-id as columns in WHERE clause.

4. TopKQuery Class. The TopKQuery class also has FeatureQuery or LinkQuery

as its base class. It also takes as additional parameters the column on which to

sort, the order of sorting, and K. For instance, to get latest 20 status messages

of a user's friends (Query 3 in Figure 2-3), the parameters are: ordered on col-

umn date-posted of table status, descending order and 20, in addition to the

parameters to specify the underlying LinkQuery to fetch all status messages of

a user's friends.

In addition to class specific parameters, the programmer can also specify optional

parameters that determine how the cached objects are maintained. The following

optional parameters are available in CacheGenie:

1. Consistency mechanism. This parameter specifies the cache consistency update

strategy, i.e., what the cache should do when the underlying data for a cached

object changes. The programmer can specify one of two options: (i) invalidate

the cached object, (ii) update it in-place. In addition, the programmer can also

specify an expiry interval beyond which the cached data should be invalidated.

The programmer can choose one of these options according to the application

requirements. These mechanisms are discussed in more detail in the next sec-

tion. The default value for this parameter is update-in-place, and the default

value of expiry interval is 0, which means it never expires.

2. Policies based on popularity. If the application has a mechanism to deter-

mine popularity of objects, the programmer has the option of adapting caching

policies using that information. Note that these features have not yet been

implemented in the current prototype. Examples of this are:

" Prefetching. If the programmer knows that certain items are hot, she can

specify that they be prefetched to improve performance. For instance,

information about popular groups can be prefetched instead of being de-

mand fetched on first access, thereby improving overall performance during

peak-times. This is turned off by default.

" Variable update strategies. The programmer can choose to vary update

strategies within the same cached object according to popularity. So for

instance, it makes more sense to use an update policy for highly-active

users and an invalidate policy for non-active users. This is because the cost-

benefit of incrementally updating as opposed to calculating from scratch

is more if the data item is being queried repeatedly. The default case is

update-in-place for all objects.

2.2 Cache Consistency Mechanisms

In this section we discuss cache consistency mechanisms in detail. First, we describe

current cache consistency approaches and why they are insufficient. Next we describe

our proposal to solve the problem in a way that is most beneficial to the programmer.

2.2.1 Current Approaches

As discussed earlier, current caching approaches in web applications are broadly of

two types: application caching and database caching. In the application caching

model, developers have three main options to maintain cache consistency:

1. Expiration Interval. Most web caching systems use the technique of letting the

data in cache expire after a certain interval of time. There are various heuristics

to determine what this interval should be, depending on the application's re-

quirements, and the data item under consideration. This is perhaps the easiest

mechanism from the programmer's point of view. However, for a highly dy-

namic workload (such as that of social networks), this approach is insufficient,

as unless the expiration intervals are short the cache would return stale data.

A very short expiration interval does not work either since it results in a poor

cache hit ratio.

2. Manual Invalidation. In manual invalidation, the programmer writes code to

invalidate the cached data whenever there is a write query to the underlying

store that could possibly conflict with this data. This means the programmer

has to keep track of all possible writes to the underlying data store and de-

termine which updates could affect what data. This can be cumbersome as

well as error prone. One important goal of CacheGenie is to make this easier

for the programmer and provide mechanisms which automatically take care of

invalidation.

3. Write-through update. The third option, which is less frequently used is a

write-through approach. Here again, the programmer manually writes code to

update the data in cache whenever the application makes a conflicting write

query. Since the data in the cache is not invalidated but updated in place, this

leads to a better cache-hit ratio. However, sometimes the application might not

have enough information to determine which entries from the cache should be

updated, and how. In the worst case, it might mean making more queries to

the backend to get the required information. In that case, doing updates via

the application can be slow resulting in increased latency of write queries.

Unlike in application caching, in the database caching model the programmer typ-

ically does not have to worry about cache consistency, as the caching middleware is

responsible for it. Database caching systems use template-based mechanisms to en-

sure cache consistency. Write queries are executed at the central database server, and

when an edge server caches a query, it subscribes to receive invalidation of conflicting

query templates. There are two limitations with this model. First, the program-

mer is expected to specify a priori which query template conflicts with which update

template, resulting in undue burden on the programmer. Second, in template based

invalidation, if one update can potentially affect another query, all query results be-

longing to the query template are invalidated. This can cause a poor cache hit ratio,

leading to increased origin server load, and therefore increased client latency.

CacheGenie solves the problems with both application and database caching, and

maintains cache consistency automatically and transparently. The programmer only

needs to specify the update strategy for the cached objects and the system transpar-

ently takes care of maintaining the cache consistent according to that strategy. The

two options CacheGenie offers are automatic invalidation of cached data and incre-

mental updates to the cached data. The option of letting the cached data expire after

a certain interval is provided for the sake of completeness, since it can be useful for

infrequently changing data that is tolerant to staleness. Our approach solves the two

key problems with previous approaches: First, it relieves the programmer's burden

of having to manually implement cache invalidation and update with code sprinkled

across the application; the programmer also does not have to determine dependen-

cies between write queries to the database and the cached data. Second, unlike a

template-based system, CacheGenie only invalidates cached data that is affected by

writes to the database. This leads to fewer invalidations and higher cache hit ratios.

We use database triggers to implement automatic synchronization of the cached

data with the underlying database. In the next subsection, we describe how we

use database triggers to implement the different update strategies available to the

programmer.

2.2.2 Database Triggers

A database trigger is procedural code that is automatically executed in response to

certain events on a particular table or view in a database. Triggers can be defined

to execute on a INSERT, UPDATE, or DELETE operation, either once per modified row,

or once per SQL statement. Triggers can also be set to fire before or after the

operation. They can be written in many languages (as supported by the particular

database) and are typically used for maintaining integrity of data in the database.

We use database triggers to keep the cached data consistent with the database.

When a cached object is created, appropriate triggers responsible for that cached

object are created in the database. There are multiple triggers associated with each

cached object. These correspond to insertion, deletion and updation of rows of the

tables underlying the cached object. These triggers are automatically generated from

the cached object specifications. The programmer does not need to manually write

them, or specify a priori which cached objects might be affected by which write

queries. Once all cached objects have been defined, the underlying tables potentially

have multiple triggers corresponding to various cached objects.

When a INSERT, UPDATE, or DELETE occurs on the underlying table, all the triggers

on that table associated with that event are executed after the statement, once for

every affected row. The trigger code gets the old and new content of the concerned

row as input, and determines which cached entries, if any, can be affected by this row.

It then modifies or invalidates these entries appropriately.

As mentioned in the previous section, CacheGenie provides two main strategies

for maintaining consistency of cached data:

1. Invalidate. If the programmer chooses to invalidate cached objects when the

underlying data changes, the trigger code invalidates only those entries of the

cached object which are affected by this change. Building on the UserProf ile

example of Section 2.1.2, imagine that the profile information of users with

user-id 42 and 43 is currently in the cache. If an UPDATE query updates the

profile information of user 42, only the cached entry for user 42 is invalidated,

and the cached entry for user 43 remains unchanged. Note that this is different

from template based cache consistency mechanisms discussed earlier, which in-

validate both the user profiles since they both match the same template. When

the application requests profile information for user 42, CacheGenie fetches it

from the database and re-inserts it into the cache.

2. Incremental update. Simple invalidation makes the trigger code short and

fast to execute; however, invalidating frequently used items can lead to a poor

cache-hit ratio. In other words, invalidation works well in read-mostly work-

loads. But for workloads with significant fraction of writes, this leads to poor

performance. A better solution in that case is to update the cached data in

place. In this approach, the trigger code first determines which entries in the

cache could be affected by the data change in the table. Next it figures out how

to update the cached data incrementally, without recomputing it from scratch.

And finally, it updates the relevant cached objects. Continuing with the pre-

vious example, if the programmer chooses incremental updates and an UPDATE

query updates the profile information of user 42, the cached entry for user 42 is

updated with the new profile information and is available to any future request

from the application. This approach significantly reduces the number of cache

misses in workloads with a higher write-read ratio.

The problem of figuring out how to update a cached object is similar to the

problem of incrementally updating a materialized view. This problem has been

previously studied, and is significantly hard to solve for a general view. But

because we limit ourselves to a few types of query patterns, it becomes simpler

as well as computationally less intensive compared to solving it for a general

query.

An important point to note is that in CacheGenie inserting objects into the cache

does not clash with updates. This is because only reading of a data object results in

it being inserted into the cache; updates due to triggers never insert an object into

the cache. Triggers always modify (or delete) existing cached objects.

In the remainder of this section, we describe how triggers for different Cache

Classes are automatically generated. Here we only describe triggers that incremen-

tally update cached objects; similar concepts apply to invalidation of cached objects.

1. FeatureQuery. A FeatureQuery object depends on data from only one table.

For instance, UserProf ile caches data from only the profiles table. There

are three triggers associated with a FeatureQuery cached object, one each for

INSERT, UPDATE, and DELETE on the table. When a cached object is invoked

with the parameters associated with that object, it uses these parameters to

construct the keys under which that particular data item is cached. For example,

UserProfile of user with id 42 is stored in the cache with a key identified by

'42'. To illustrate with a more detailed example, consider the following SQL

query corresponding to a Feature Query:

SELECT profiles.id, profiles.userid,

profiles.name, profiles.about,

profiles.location,profiles.website

FROM profiles

WHERE profiles-profile.location = 'Boston'

Say, the cached object corresponding to this query class is UserProf ileByLocation,

and it stores a list of profiles of users who are in a particular location. These

objects are indexed by a key based on location; for example, the list of users in

Boston are indexed by a key identified by Boston, say UserProf ileByLocation: Boston.

On an INSERT to the profiles table, the key corresponding to the value of

location in the new row is a candidate for update. So if this location is

Boston, the profile of the user corresponding to this new row is added to the

cached object keyed by UserProf ileByLocation:Boston. Similarly if a row is

deleted from the table, the key identified by the location field of that row is

updated by deleting the profile of the user corresponding to the deleted row.

On an update, there are two cases. One, if the location of a row is updated,

then the keys corresponding to the old location and new location are updated

in cache. Two, if a column other than the location is updated, the key corre-

sponding to the location is updated with the new value of the column. Note

that the trigger only updates keys already present in the cache, and does not

add any key if it is not already present in the cache. This is to avoid filling the

cache with data that might not be used by the application.

2. LinkQuery. A LinkQuery object depends on data from many tables, and

involves joins on foreign-key relationships. Let us call the cached object for

Query 2 in Figure 2-3 as GroupsOfUser. This query involves a join between

the groups and groups-membership tables, on the foreign-key group-id of the

groups -membership table. For each LinkQuery, CacheGenie caches a list of

chains formed by these foreign-key relations. So, for GroupsOfUser objects, it

caches a list of (group-id). As in FeatureQuery objects, LinkQuery objects are

also indexed; in this case, GroupsOfUser objects are indexed by user-id. For

example, all groups of user with id 42 are cached as a list of (group-id) with

key GroupsOfUser: 42. When the application requests this cached LinkQuery

object, the system first gets the list of groups from the cache and then gets the

actual group information. The actual group information is also cached using

a FeatureQuery object, and this ensures that changes to group information

which do not affect the Link Query join do not invalidate or update the cached

LinkQuery objects.

To handle consistency of LinkQuery objects, we create triggers on all the tables

involved in the joins, one each for INSERT, UPDATE, and DELETE. On an INSERT

into the groups-membership table, the key corresponding to the user who added

the group is a candidate for update. So if in the new row, user-id is 42 and

group-id is 1000, the key Groupsof User : 42 is updated with the group-id 1000.

Similarly if a row is deleted from or updated in the table, the key identified by

the user-id field of that row is updated.

For LinkQuery objects with multiple links, the updating mechanism is a bit

more involved. For instance, consider the following query to get all the groups

of user 42's friends.

SELECT groups.id, groups.name,

groups.date creation, groups.description,

FROM groups, groups-membership, friendship

WHERE groups.id = groups-membership.groupid AND

groups-membership.userid = friendship.to userid

AND

friendship.fromuserid = 42

For the cached object representing this SQL query (say, GroupsOf FriendsOf User),

the system caches a list of (to-user-id, group-id) indexed by the from-user-id.

So the groups of friends of user with id 42 are cached as a list of (to-user-id,

group-id), with the key as GroupsOfFriendsOfUser:42. For this cached ob-

ject, there are triggers on the friendship and groupsimembership tables. On

an INSERT into the friendship table, the key corresponding to the user with

id from-user-id is updated with the groups of to-user-id. So for instance, if

in the new row, fromuser-id is 42 and to-user-id is 24, the system first

gets a list of groups of user 24 by querying the database (within the trig-

ger). Say this list is [1000,2000,3000]. The key corresponding to user 42,

GroupsOf FriendsOf User : 42, is then updated with the list [(24,1000),(24,2000),

(24,3000)]. Note that there are no triggers on the groups table for this cached

object since adding a new group will not change any user's existing groups

unless a row gets added to groups -membership table.

Now consider an INSERT into the groups-membership table, say with user-id

= 42 and group-id = 1000. In this case, the system first gets a list of all users

who are friends of user 42. Lets say the resulting list is [1,2,3]. And then it

updates the keys GroupsOfFriendsOf User:1, GroupsOfFriendsOfUser: 2, and

GroupsOfFriendsOfUser:3 with the tuple (42,1000).

To summarize, to update a LinkQuery object, first the system calculates all the

keys in the cache that need to be updated and then calculates the new data to

be added/removed from those keys.

3. CountQuery. As mentioned earlier, a CountQuery object can have a FeatureQuery

or LinkQuery as its base class. CountQuery objects based on an underlying

FeatureQuery are cached as a count of rows satisfying the FeatureQuery. On

an INSERT to the underlying table, the key corresponding to the inserted row

is determined (exactly as is done for the FeatureQuery) and the cached count

for that key is incremented. DELETE and UPDATE on the table are handled in

a similar manner, with the cached count being decremented or incremented as

required.

CountQuery objects based on LinkQuery are implemented in a manner similar

to LinkQuery, i.e. to cache such a query, CacheGenie caches the list of chains

formed by the foreign key relationships. When the application requests the

count, it fetches this list from the cache and returns the appropriate count based

on the list. Since the data stored in the cache is the same as the underlying

LinkQuery, the triggers corresponding to such CountQuery objects are the same

as that for the LinkQuery.

4. TopKQuery. Like CountQuery, a TopKQuery object can also be based on

an underlying FeatureQuery or LinkQuery. To cache a TopKQuery object,

CacheGenie caches an ordered list of results for the underlying query along

with the values of the column using which entries in the list are ordered. The

size of the list is limited to K elements, as specified by the programmer while

defining the cached object.

Consider for instance, Query 4 in 2-3. Assume this is cached by the name

LatestTwentyStatus~fFriends~flUser. For this query, triggers are created on

the friendship table as well as the status table, which are the tables involved

in the underlying join. On an INSERT into one of these tables, the keys corre-

sponding to the inserted row are determined, much in the same way as described

above for LinkQuery. So for instance if user 42 adds a new status message, the

trigger determines the friends of user 42, and all the keys corresponding to these

users are updated. Since K is 20 and ordered by date-posted, the new status

is inserted into the list at the correct position, sorted by date-posted, and the

oldest status is kicked out. The new status is not added to the list if it is older

than all 20 statuses already in the list. This can happen when there are frequent

status updates and by the time an update is propagated to the cache, 20 other

triggers have propagated newer updates.

We believe it is easy to extend the above concepts to other types of queries to

generate automatic triggers for managing cache consistency. Next, we discuss the

consistency guarantees offered by our system and contrast it with those provided by

existing caching systems.

2.2.3 Consistency Guarantees

We have already described the basic mechanisms we provide in CacheGenie to enable

cache consistency. In this section we discuss the consistency guarantees we provide

with these mechanisms. Following are the various consistency properties of CacheGe-

me:

1. Atomic Cache Modification. CacheGenie ensures individual operations on

the cache are atomic. This includes invalidation of a key in cache and updates

to cached keys. For example, consider the scenario where two triggers update

a cached TopKQuery object at the same time. CacheGenie makes sure that the

updates are atomic and are applied one after another. This ensures that the

cache does not have wrong results.

2. Immediate visibility of own updates. The invalidations and updates prop-

agated from the triggers are synchronous. This means that all keys updated

due to an INSERT, DELETE or UPDATE are updated as a part of that statement.

The net result is that the user sees the effects of her own update immediately

after the update is executed. This is a highly desirable property even for web

applications since users expect to see their own updates immediately; delaying

these updates leads to a very unsatisfactory user experience.

3. Commutative Operations on cache. Another important feature of our

Cache Classes is that the updates on the cached objects are commutative. This

means that even if the individual updates from two different transactions arrive

in different order to the cache, the cache will eventually be in a consistent state.

For instance, the result of adding two new status messages to a list of top K

status messages of a user is the same, whichever order the new messages get

added to the list.

4. Lag Consistency. CacheGenie does not currently extend database transac-

tions to the caching layer. This means that updates/deletes applied to the cache

as part of one database transaction may be visible to other transactions even

before the first transaction completes. We do not provide any sort of read iso-

lation over the cached data. So while one transaction cannot read inconsistent

data from the database, it could potentially read inconsistent data from the

cache for the time period that the other transaction is executing. Once all the

updates have propagated, the cache converges to a consistent state.

5. Optional Strict Consistency. We also provide a few mechanisms for the pro-

grammer to opt for a strict consistency on a case-by-case basis, if she so desires.

In the default case, CacheGenie returns a cached value of a Cache Class query,

if available. As described above, this might be stale due to various reasons.

If the programmer is aware that some cached object needs strict consistency

in certain scenarios, she can opt out of automatic fetching from cache for that

particular cached object. Then the programmer manually uses the cached ob-

ject when she requires weak consistency and does not use it in case she requires

strict consistency. The query in the latter case goes directly to the database

and fetches the fresh results.

We believe that most of our target web applications, such as social networking

applications, do not need strict transactional consistency and that the model we offer

suffices for their consistency requirements. It is possible to build caching models

with strict transactional consistency, but the overhead of such models may negate

the advantages of caching in the first place; we plan to investigate the cost of such

transactional models in future work.

Let us compare consistency guarantees of CacheGenie to existing mechanisms that

we discussed in Section 2.2.1. An application using expiry intervals on cached objects

has to be very tolerant of stale data. Also, choosing the right expiry interval is hard;

if the programmer chooses too small an expiry interval, the application incurs too

many cache misses whereas if the programmer choose a high value, the application

gets more stale data.

Programmers implementing manual invalidation or write-through to cached data,

usually provide similar guarantees as CacheGenie. The application is typically struc-

tured so that effects of its own writes are immediately visible in the cache. This is

done by implementing invalidation as part of the write in the application. Most ap-

plication caching systems we know of do not implement a strict transactional model

over the cache, and are tolerant of a weak consistency model like ours.

None of the database caching approaches we are aware of implements full trans-

actional consistency. DBProxy [221 caches partial tables and computes queries over

these tables. It applies changes corresponding to writes in the database in transac-

tion commit order, while ensuring lag consistency and immediate visibility of updates.

Similarly, DBCache [24 applies changes in the backend to the cache through a cache

daemon; however, it does not ensure that transactions can see their own updates

immediately.

GlobeCBC [31] caches query results and propagates invalidations on basis of con-

flicting templates. Again it does not provide strict consistency with the cache. How-

ever it supports lazy invalidation propagation and N-ignorant transactions to de-

crease traffic at cost of weaker consistency. Ferdinand [25] relaxes consistency for

multi-statement transactions but ensures full consistency when only single-statement

transactions are used. This is slightly stronger than the consistency we offer because

our system might do multiple updates as part of a single statement and since we do

not have read isolation, this may result in transactions reading dirty data of other

transactions.

40

Chapter 3

Implementation

A popular method of developing dynamic web applications today is to use web ap-

plication frameworks. These frameworks simplify web application development by

providing libraries for database access, templating frameworks and session manage-

ment, and promoting code reuse. Examples of such frameworks are JavaEE (Servlets),

WebObjects, Ruby on Rails [14], Django [6], and Zend Framework [21]. These frame-

works typically also provide support for using caches to speed up application perfor-

mance. The mechanisms available here are similar to what we discussed in Chap-

ter 2. They provide support for page-level and fragment-level caching, or for simple

key-value pair caching, and it is up to the programmer to deal with cache consistency.

Since the goal of our work is to make it easy for web application programmers to in-

corporate caching in their applications, a web application framework is the right place

to implement our caching abstractions. We implemented a prototype of CacheGenie

by extending a popular web application framework called Django. We provide high-

level caching abstractions as special primitives in Django-a programmer can easily

use these primitives to cache frequently accessed queries that fit these abstractions,

and CacheGenie takes care of keeping these query results up-to-date in cache.

Another advantage of using Django is that there are several open-source web

applications implemented on top of Django, which we can use to test the performance

and usability of our system. One such suite of reusable Django applications geared

towards online social networking is Pinax, which is what we use in our evaluation.

Note that even though we picked Django for our prototype implementation, it should

be relatively straightforward to apply the techniques developed in this work to other

web application frameworks.

We use memcached [10], a popular high-performance, distributed memory object

caching system as our caching system. For the backend persistent storage we use

Postgres [13], an advanced open-source database. Again, even though we picked

these specific systems for our prototype, we believe the concepts are general enough

to be applied to most database and caching systems.

3.1 Django

Django is a open-source web application framework based on Python. It provides

reusable and pluggable components for common web development activities. It is

based on model-view-controller design pattern and is geared towards rapid develop-

ment of dynamic database-driven web applications.

The core Django framework consists of (i) an object-relational mapper (ORM)

which mediates between data models (defined as Python classes) and a relational

database, (ii) a regular-expression-based URL dispatcher, (iii) a view system for pro-

cessing requests, and (iv) a HTML templating system. Models in Django are Python

classes, which describe a database table. Using models, one can create, retrieve, up-

date and delete records in the database using simple Python code rather than writing

repetitive SQL statements. Views are Python functions which contain the logic for

a webpage. The URL dispatcher specifies which view is invoked for a given URL

pattern. And finally, the HTML templates describe the design of the page. Django

provides a template language with basic logic statements.

3.1.1 Overview of Django Models

Applications in Django interact with the database via models. A Django model is a

description of the data in the database, represented as Python code. A programmer

defines her data schema in the form of models and Django creates corresponding tables

in the database. All model classes inherit from the base class called Model, which

contains all the machinery necessary to make these objects capable of interacting with

a database. For instance, the model class definition for Table 1 in Figure 2-2 looks

like:

class User(models.Model):

username = models.CharField(max-length=30, unique=True)

firstname = models.CharField(max-length=30)

lastname = models.CharField(max-length=30)

email = models.EmailField()

password = models.CharField(max-length=128)

last-login = models.DateTimeField()

date-joined = models.DateTimeField()

Each model generally corresponds to a single database table, and each attribute on

a model generally corresponds to a column in that database table. The attribute name

corresponds to the column's name, and the type of field (e.g., CharField) corresponds

to the database column type (e.g., varchar). Django automatically gives every model

an auto-incrementing integer primary key field called id.

Further, Django automatically provides a high-level Python API to retrieve ob-

jects from the database using the concept of a QuerySet. A QuerySet represents a

collection of objects from the database. It can have zero or more filters that narrow

down the collection based on the specified parameters. In SQL terms, a QuerySet

equates to a SELECT statement, and a filter is a limiting clause such as WHERE

or LIMIT. Django also provides the option of executing raw SQL queries if the pro-

grammer so desires. Here are some examples of queries over the User model

#Create a new user

user1 = User(username='bob007',firstname='Bob' ...)

#Save the object into the database.

user1.save()

#Get all users

userlist = User.objects.all()

#Get all users who joined in 2007

User.objects.filter(date-joined__year = 2007)

#Count of users

User.objects.count()

#Get email of user1

user1 . email

Django provides ways to define the three most common types of relationships

between database tables: many-to-one, many-to-many and one-to-one. A many-to-

one relationship is created by defining a ForeignKey field on the related model. So

for instance, the user-id column in Table 2, profiles, is a foreign key reference to

id column in user table. This is represented in Django as follows:

class Profiles(models.Model):

#. ...

user = models.ForeignKey(User)

#. ...

Similarly one can define many-to-many relationships using a ManyToMany field,

one-to-one relationships using a OneToOne field. A separate table is created in the

database for a many-to-many relationship.

3.1.2 Caching in Django

Django provides support for caching at different granularity, as well as different

caching backends. It provides support for using memcached, which is what we use in

our prototype. Django provide caching at various levels, such as site-level caching,

view-level caching, template fragment caching and finally, key-value caching. All these

options however suffer from the limitations of application-level caching as discussed

in Section 2.2.1-the developer has to manually manage the invalidation and expiry

of cached objects. In the next section we describe our implementation of CacheGenie

with Django, which exposes a better caching interface to the programmer.

3.2 CacheGenie in Django

In Chapter 2, we discussed the various caching abstractions based on frequently ob-

served query patterns in web applications. Now we describe how these high-level

abstractions are implemented in Django.

3.2.1 Cache Class Implementation

We implemented Cache Classes corresponding to FeatureQuery, LinkQuery and

CountQuery in Django. We have not so far implemented TopKQuery class, mainly

because the specific Django workload we were working with did not have such queries.

But the concepts involved in implementing it are similar to those of the other cache

classes and it should be straightforward to implement it based on the design discussed

in Chapter 2. Our prototype supports invalidation, update-in-place and expiry inter-

val for consistency management of all these classes; however, it doesn't yet support

prefetching or varying update strategies based on popularity of the cached objects.

A Cache Class performs the following functions:

e Query generation: It use the models and fields in the cached object to derive

the underlying query template to get that object from the database. Note that

we cache the raw results of queries and not Django model objects constructed

from them. This is because if the cached data was Python objects, database

triggers will have to construct and/or deconstruct these objects to update them

in the cache. This results in slow triggers that block the database, making the

overall database performance worse. Hence we trade increased computation in

client for better database performance. Another point to note here is that the

query derived in this step is the query template representing this cached object

that is evaluated only at runtime when the correct arguments are supplied. For

instance, for a UserProfile object, the query template looks like:

SELECT *

FROM profiles

WHERE profiles.userid = Xd

* Trigger generation: This involves determining the database tables and the

operations on these tables that need triggers to keep the cached object consistent

with the database. It also includes generating the necessary code for the triggers,

as described in Section 2.2.2.

" Query evaluation: When the application requests the cached object with

the correct arguments, the Cache Class fetches the appropriate key from the

cache and transforms the returned value into the form required by the Django

application (typically model objects). If the key is not present in the cache,

it queries the database with the query generated during the generation step,

adds the result to cache, and returns the appropriate transformed values to the

application.

As an example, the definition of LinkQuery Class is as follows, with each function

executing one task from the above.

class LinkQuery(CacheClass):

def __init__(self, reqd-params, opt-params):

Checks whether all required parameters

for this cache class are provided

Implements Query generation

def get-trigger-info(self):

Implements Trigger generation

def evaluate(self, *args, **kwargs):

Implements Query evaluation

def makekey(self, *args, **kwargs):

Returns the key in cache corresponding

to the provided arguments

The reqd-params argument provides all the required parameters for this cache

class, and similar opt-params are the optional parameters.

3.2.2 cacheable Function

To create a cached object, the programmer uses a function called cacheable:

def cacheable(cache class -type ,reqd-params ,opt-params):

...

return cached-object

This function performs the following tasks:

1. Creates the specified cache-class-type object with the given parameters and

returns it.

2. Maintains a map of all cached objects created, keyed by the parameters. This is

useful for fetching the cached objects automatically, and also ensures that there

is only one instance of the cached object with a particular set of parameters.

3. Collects all the triggers information from individual cached objects and installs

them on the database. This enables combining of various triggers on the same

table to improve performance.

Once the cached object is created, the programmer can either access it directly

using the evaluate function, or let the system automatically use a cached version

whenever available. This is done by intercepting normal Django QuerySet queries and

using the above created map to figure out if there is a cached version, and returning

the cached result transparently.

3.2.3 An Example

We illustrate the use of cache class and cacheable function in context of an ex-

ample. We have seen earlier a Django model class representing a user. Similarly, the

model class representing the statuses of users (Table 7 in Figure 2-2) is:

class Status(models.Model):

name = models.CharField(max-length=30, unique=True)

user = models.ForeignKey(User,\

relatedname = 'posted-status-list')

statustext = models.CharField(max-length=140)

date-posted = models.DateTimeField()

Specifying the related-name parameter as posted-status-list in the ForeignKey

field user allows accessing a user's statuses through a user model object. Also, we

add a field to the User model to represent the friendship relationship:

class User(models.Model):

.. .

friends = models.ManyToManyField('self', db-table =

friendship')

Django creates a separate table called friendship in the database for the above

many-to-many relationship, similar to Table 3 in Figure 2-2.

In this context, imagine that the developer wants to cache all the status messages

of all friends of a user. (In reality, one would cache only the latest status messages, and

that corresponds to a TopKQuery, but we use this hypothetical example to illustrate

a LinkQuery.) To do that in Django, the developer currently writes the following

code:

u = User.objects.get(id=42)

my-newsfeed = Status.objects.filter(user_friends = u)

This is interpreted as following the foreign-key links from status objects to the

user who created that status, and then the friends of that user. To cache this in

CacheGenie, the developer first needs to add a cached object definition like so:

usernewsfeed = cacheable(

cacheclass-type = 'LinkQuery',

reqd-params = {

'mainmodel' : 'User',

'relatedfields' : ['friends','postedstatuslist']

}

optparams = {

'expiry-interval' : 0, # means never expire

'update-strategy' : 'update', # update-in-place

'usetransparently' True

}

)

The reqd-params here show how this LinkQuery cached object represents the

Django code above. The main-model is User, which means we are interested in

following the links starting with a particular user. The related..f ields specify the

foreign-key links to be followed. In this case, the programmer wants to follow the

friends relation first and then get the posted-status-list of those users.

The values in opt-params are the default values of those parameters and did not

need to be specified; however, they are mentioned here for the sake of illustration.

Once this is done, the system retrieves the cached data when the original code is

executed.

Optionally, the programmer can call evaluate on the returned cached object

user-newsfeed with the id of the desired user:

my-newsfeed = usernewsfeed.evaluate(42)

To maintain this cached object, triggers are automatically generated and installed

on the tables friendship and status on INSERT, DELETE and UPDATE.

3.3 Memcached

Memcached is an open-source distributed memory object caching system [10]. It is

a key-value store which can be scaled over hundreds of machines easily, providing

high performance. This is unlike a relational database, which is much harder to

scale because it provides support for general query languages like SQL. Memcached

is used by several very large, well-known sites including Facebook [7], LiveJournal [9],

Wikipedia [19], Flickr [8], Twitter [17], Youtube [20], Digg [5], and Craigslist [4].

There are many client libraries available to interact with memcached servers in

most languages. For Django we use a python library called python-libmemcached.

This is a Python wrapper around libmemcached, which is a C client library that is

significantly faster than the python-based libraries.

In memcached, the servers do not know of each other and do not communicate with

each other. The clients have information about all the servers and are responsible for

determining which server stores which key. Recent memcached clients provide support

for Consistent Hashing across servers. This model allows for a more stable distribution

of keys given addition or removal of servers. In a normal hashing algorithm, changing

the number of servers can cause many keys to be remapped to different servers,

causing many cache misses. Consistent Hashing maps keys to a list of servers, such

that adding or removing servers causes a very minimal shift in where keys map to.

python-i ibmemc ached provides support for consistent hashing.

We have memcached servers running independently of the application servers (run-

ning Django). All the application servers talk to the same set of memcached servers

and share the cached data. One could potentially have multiple such clusters, each

having a layer of application servers and memcached servers. However, if these clus-

ters cache data from a common underlying database, then one has to make sure the

data from all these clusters is properly invalidated/updated when the underlying data

is modified.

Memcached supports two types of protocols, a text protocol and a binary protocol.

Binary protocol is more recent and provides support for many useful features such

as compare-and-swap support, append and prepend calls. Compare-and-swap (CAS)

functionality is crucial for our system to ensure that two database triggers executing

at the same time do not end up overwriting each others modifications to the same

key. With CAS, a gets call returns a token associated with that key. When calling

set on the same key, the client can send this token back and memcached ensures the

set call succeeds only if the current token value of the key matches this token. CAS

support is another reason why we chose python-i ibmemcached since this is the only

python library which currently provides CAS support.

Memcached uses the Least Recently Used (LRU) policy to evict items when the

cache becomes full. When all the memory allocated to it is used up, memcached

reclaims the LRU item. To do this, it searches the last few LRU items for one that

has already expired, and is thus free for reuse. If it cannot find an expired item,

it evicts one which has not yet expired. This policy serves the purpose of a web

application workload well since keys which are not being fetched anymore will slowly

fall off. This is the only eviction protocol currently supported by memcached. In our

system, apart from the application, triggers also fetch the keys for updating them.

This leads to bumping those keys to front of LRU even though they are not really

being 'used' by the application. It would be great to have a way to specify when a

particular call to memcached should bump the key in LRU. For now, we just use the

default option available in memcached.

3.4 PostgreSQL

PostgreSQL (or Postgres) is an advanced open-source relational database. We used

Postgres as our underlying persistent data store. Django provides support for Postgres

so we did not have to make any modifications to the applications for this.

Django, by default, creates indexes on primary keys (id) of the tables. However

none of the tables were clustered leading to poor performance for certain queries

such as count. We created a few more indexes depending on the workload and also

clustered the index appropriately. This improved the performance of count queries

significantly.

Another feature of Postgres that we use is triggers. A trigger in Postgres is a

specification that the database should automatically execute a particular function

whenever a certain type of operation is performed. They are implemented using Trig-

ger functions, which are user-defined functions with the return type trigger. Trig-

ger functions can be written in many procedural languages including Perl, Python,

pgSQL, C and Tcl. Since our application servers are also in Python, we chose to write

the our trigger functions in Python. One can also use C to write trigger functions

but writing trigger functions in C involves managing several low-level details, which

are already taken care of in higher-level language triggers. This is another reason we

chose to go with Python triggers. Exploring C triggers and whether they improve

trigger performance is a piece of future work.

Chapter 4

Evaluation

In this chapter, we evaluate the CacheGenie prototype and present the results. The

primary goal of this work is to provide programmers with useful high-level caching

abstractions and unburden them from the task of cache management. Thus, an impor-

tant evaluation metric for our system is an estimate of the reduction in programmer

effort. We port a subset of Pinax, a reusable suite of Django applications geared

towards online social networking, to use CacheGenie. Using this set of applications,

we compare the amount of code a programmer needs to write to manage cache with

and without CacheGenie.

The second aspect of our evaluation is performance. We measure the overall per-

formance of CacheGenie under varying parameters, such as different types of work-

loads, user distribution, and caching strategies. Further, we measure the overhead

induced by triggers, and study their impact on the overall performance.

4.1 Experimental Application: Pinax

Pinax is an open-source platform for rapidly developing websites and is built on top of

Django. It enables this by providing an extensive set of reusable Django applications.

These applications take care of the common tasks involved in building many kinds

of sites and lets the developer focus on the more important details. Moreover, the

applications already provided in Pinax can be mixed and matched to create various

kinds of sites.

During its initial development, Pinax was used to create a social networking web

site, later spun off as Cloud27 [3]. As a result, it provides most of the basic compo-

nents required to build a social networking site such as profiles, friends, microblogging,

bookmarks, messages, and so on. According to Pinax homepage, it is now used by the

following websites-CarPosse [2], we20 [18], mftransparency.org [11], SequenceMedi-

cal [15] and TuttiVisti [16].

We use Pinax to test both the usability and performance of CacheGenie. We

chose Pinax because it provides basic components of real-world social networking

type applications, which serve as excellent examples of modern web applications.

This allowed us to analyze the query workload and the dependencies between the

data that users of a social web application are interested in. It also enabled us to test

the applicability of our caching abstractions for these applications and to estimate

the amount of change needed in the application to use CacheGenie. And finally, we

could evaluate the performance of our system under realistic workloads on a realistic

web application.

4.1.1 Background Information on Pinax

The social networking project in Pinax is a collection of various applications associ-

ated with a typical social networking site. In Django terminology, a site is made up

of many applications-essentially the various independent services on the site. We

focused on three applications from the social networking project-profiles, friends

and bookmarks. Thus our site consists of users who have a profile each, with users

connected to other users by the friendship relationship. Each user makes a list of their

favorite bookmarks, either on their own or by marking bookmarks already created

by other users. We trimmed out most of the other applications except for certain

integral parts of the site such as messages, announcements and avatars, which were

not removed. However, these are passive applications and we do not add any data

to the tables corresponding to these applications; also the queries corresponding to

these applications do not add too much overhead. A list of database table schema

generated by the Django for the site is given in Appendix A.

Figure 4-1 shows a few snapshots from the site. The particular user actions we

are interested in are:

" A user wants to see a list of her own bookmarks (Figure 4-1a).

" A user wants to see a list of her friends.

" A user wants to add a new friend or accept a friend invitation from another

user. (Figure 4-1b).

" A user wants to look at a list of bookmarks created by her friends (Figure 4-1c).

" A user wants to add a new bookmark (Figure 4-1d).

Each of these actions has a web page that corresponds to it, as shown in the Figures.

4.1.2 Porting Pinax Applications

Now we describe how we modify the subset of Pinax applications to use our Cache

Classes in Django. In the bookmarks application that we discussed earlier, a book-

mark is defined uniquely by a URL. This means when two users bookmark the same

URL, they create two instances of this bookmark. This is represented by two Django

models, Bookmark and BookmarkInstance:

class Bookmark(models.Model):

unique URL representing this bookmark

url = models.URLField(unique=True)

user who added it for the first time

adder = models.ForeignKey(User,\

relatedname='addedbookmarks')

added = models.DateTimeField(default=datetime.now)

description = models.CharField(max-length=100)

note = models.TextField()

Your Bookmarks
bookmarkl 14
http://ww bookmark14. com/

July 2, 2010 Delete Bookmark
user1

July 2, 2010
user1

.. h. 1) AI 4A

bookmark203
http//www. bookmark203. com/

Delete Bookmark

bookmark221
http:Ivww bookmark22 1.com/
I Daat AnLemorir

(a) User's Bookmarks

Compose

Invitations
Invite someone new to join

Friendship Requests Received

From user75 (2010-07-02):

accept
decline

From user95 (2010-07-02):

(b) Friendship Invitations

Figure 4-1: Pinax Social Networking Website

Ae Bookark You Bookmarks A 5boM

Friends' Bookmarks All Bookmarks

Friends' Bookmarks
These are bookmarks from your friends:

Sort by: reddit-like hotness or total points or date added

July 2, 2010
user386

July 2, 2010

0 points

0 points

bookmark590
http://www.bookmark590.com/

Saved 9 times (save)

bookmark960
http://www.bookmark96O.com/

.viq A timp- tAvPl

(c) User's Friends' Bookmarks

Fie BookarksAI Bookmarks 51

Friends' Bookmarks All Bookmarks do

Add Bookmark
You can drag this 'Add to Pinax Bookmarks' link to your bookmark bar to post the pages you visit!

URL*

www.techcrunch.com

Description*

TechCrunch

Note

Latest technology news..

(d) Add a Bookmark

Figure 4-1: Pinax Social Networking Website

....

Add Bookmark Your Bookmarks

class BookmarkInstance(models.Model):

Bookmark object of which this is an instance

bookmark = models.ForeignKey(Bookmark,\

relatedname='savedinstances')

user who saved this instance

user = models.ForeignKey(User,\

relatedname='savedbookmarks')

saved = models.DateTimeField(default=datetime.now)

description = models.CharField(max-length=100)

note = models.TextField()

We created cached objects for the frequent and/or expensive queries involved in

performing the actions listed in the previous section, such as looking up bookmarks

and adding bookmarks. A few of them are listed here:

1. Fetch a user's saved bookmarks. Existing code to get a user's saved book-

marks from the database is:

u = User.objects.get(id=42)

user-bookmarks = Bookmark.objects.filter(

savedinstances__user=u)

To cache this pattern of queries, namely, bookmarks of a user, we add the

following cached object definition to the application.

userbookmarks = cacheable(

cacheclass.type = 'LinkQuery',

reqdparams = {

'main-model' : 'User',

'relatedfields' ['savedbookmarks','bookmark']

}

If the optional parameters are omitted,

default values are used

)

This enables automatic caching of queries of the above type, and further, it is

used automatically when the existing code is executed. The programmer can

also manually access the cached data by calling the evaluate method on the

user-bookmarks object with the right parameters, for instance 42 in this case.

2. Count of saved instances of a bookmark. Existing code to get the count

of saved instances of a unique bookmark from the database is:

b = Bookmark.objects.get(id=l)

BookmarkInstance.objects.filter(bookmark=b).count()

To cache this count query, we add the following cached object definition to the

application.

bookmarkcount = cacheable(

cacheclasstype 'CountQuery',

reqd-params = {

'mainmodel' : 'BookmarkInstance',

'wherefields' : ['bookmark']

}

)

Again, once this cached object has been defined, the existing code automatically

gets the corresponding cached data.

Similarly we create cached objects for a user's friends' bookmarks (LinkQuery), a

bookmark's data given its id (FeatureQuery), user's profile given user's id (FeatureQuery)

and so on.

4.2 Programmer Effort

In this section we quantify the changes made to Pinax applications to port them to

use CacheGenie. Second, we estimate the amount of work a programmer has to do to

manually manage the cache for queries that we automatically manage in our system.

As described in Section 4.1.2 with the bookmarks example, the programmer needs

to add a cached object definition for each query pattern instance she wants CacheGe-

nie to cache for her. For this purpose, first she needs to identify queries in the

application which fall into the Cache Classes we provide. Next, she needs to create a

cached object for those queries using the cacheable function. To port the subset of

Pinax applications described in Section 4.1.1, we added 14 cached objects. 3 of these

are LinkQuery class, 5 are of CountQuery class and 6 are of FeatureQuery class.

Adding each cached object is just a call to the function cacheable with the correct

parameters.

Once the cached object has been created, caching is automatically enabled and

managed for those queries. Currently, however, we have not implemented this for

LinkQuery and so we had to write about 6 lines of code to use the 3 LinkQuery cached

objects. For the rest, the modified Django automatically puts and gets the cached

query results from the cache. In the absence of CacheGenie, the programmer has to

manually write code to get and put data in cache wherever a query is being made.

In our sample application, we counted 22 explicit locations in the code where such

modifications are necessary. However, there are many instances where the query is

being made implicitly and the programmer would not be able to cache them manually

without changing the structure of the code significantly. Also, our application consists

only of four types of pages. A realistic application has many more types of pages, and

hence we believe that in a real application, the programmer has to manually perform

cache operations in many more locations.

To manage the invalidations and updates to the cache, we automatically generate

triggers corresponding to the defined cached objects. There are three triggers, one

each for insert, delete and update, on each of the tables involved in computing the

query. So with our 14 cached objects, we have 48 triggers. These 48 triggers have

about 1720 lines of Python code. Without CacheGenie, the programmer will have

to manually invalidate any cached data that might be affected by any write query

to the database. In frameworks like Django, the code for writes to each table is

centralized in one place. Hence the programmer can possibly write one piece of code

for each table and cached object combination, similar to the one set of triggers for

each combination in CacheGenie. Hence, we argue that without an automatic cache

management scheme, the programmer will have to write about the same lines of code

as our generated triggers, i.e. 1720 lines of code. In short, this is the amount of

code that the programmer does not have to write to manage the cache for this small

application if using CacheGenie. In practice, applications have a lot more cached

objects and hence many more lines of code for cache management.

From this experience, we conclude that it requires little effort on the part of

programmer to use our abstractions to get automatic cache management.

4.3 Performance

As described in the previous chapters, we provide two strategies to the programmer

for cache management-automatic invalidation and automatic updation of cached

data. To evaluate the performance benefits of these caching strategies, we com-

pare three systems: (i) No Cache-a system with no caching and all requests being

served from the database, (ii) Invalidate-CacheGenie prototype in which cache con-

sistency is maintained by invalidating cached data when necessary, and (iii) Update

CacheGenie prototype in which consistency is maintained by updating cached data

in-place. We use a workload generated from Pinax applications ported to CacheGenie.

Our experiments were designed to answer the following questions:

1. What is the improvement in a web application's performance due to caching?

2. Does updating cached data provide overall better performance than invalidating

it? If so, by how much?

3. How does the benefit of caching change as we vary the workload (reads vs

writes)? Also, does the advantage of update over invalidate vary with workload?

4. How does benefit of caching depend on the distribution of users in the workload-

how much does it improve if there are more repeated users as opposed to more

distinct users?

5. What is the overhead of database triggers and automatic cache management?

What is the extra cost of a write operation in the cached scenarios?

6. How big a cache do we need in the system in steady state, as compared to the

size of the database? How does this vary with the workload?

We conducted various experiments to answer the above questions. The remaining

sections discuss these experiments in detail.

4.3.1 Experimental Setup

As illustrated in Figure 2-1c, our experimental setup comprises of three main compo-

nents: (i) the application layer (web clients + webapp server), (ii) the cache layer and

(iii) the database layer. Now we describe each of these components in more detail.

Application Layer

Since the aim of our evaluation is to measure the performance of the cache and

database (the data backend), we have combined the web clients, web server and

application server into a single entity called the 'application layer'. The goal of the

application layer (or app layer for short) is to simulate a realistic workload for a

social-network style web application and generate the corresponding queries to the

data backends. It has three functions: (i) simulate the web browser clients and issue

GET/POST requests, (ii) act as the web server-serve static pages directly, pass on

dynamic page loads to the application server, and serve the response back to web

clients, and (iii) act as the application server and process the dynamic requests.

We use a functionality provided by Django called the test client to help us imple-

ment the app layer. Test client is a Python class that acts as a dummy Web browser,

allowing one to interact with a Django application programmatically. It simulates

GET and POST requests on a URL, processes them in the exact same way as if a

web client is requesting them, and returns the HTML response. Using this class, we

can simulate all three functions of the app layer in a single Python process-it acts

as the web client, the web server and the application server. Note that Django is

single threaded, and so is the test client. This means a single test client instance only

issues and process requests sequentially. The term client in the rest of the evaluation

will refer to one such instance. The application layer then consists of many such

clients running in separate processes and issuing requests, overall simulating a web

application workload.

We use the same set of Pinax applications described in Section 4.1.1 for our

evaluation. The database is initialized with certain number of users, bookmarks and

friendships between users. The experimental workload consists of users logging into

the site, performing certain actions according to some distribution and logging out.

Specifically, our workload consists of the following actions:

1. Lookup Bookmarks (LookupBM). The user loads a page showing all her book-

marks. The corresponding URL (relative to the main site) is '/bookmarks/y-

ouribookmarks.html'. (Figure 4-ia)

2. Lookup Bookmarks of Friends (LookupFBM). The user loads a page show-

ing all bookmarks of her friends. The corresponding URL is '/bookmark-

s/friendsibookmarks.html'. (Figure 4-1c)

3. Create Bookmark (CreateBM). The user loads the page at '/bookmarks/add'

and submits a form on this page to create a new bookmark. (Figure 4-1d)

4. Accept Friend Invitation (AcceptFR). The user accepts one of the pending

friendship invitations, thus creating a new friend. The database is initialized

with a number of friendship invitations. The URL for friend invitations is

'/invitations'. (Figure 4-1b)

The first two actions are read only, while the second two actions involve write

queries. The default ratio of these actions in our workload is (LookupBM : LookupFBM:

CreateBM : AcceptFR) = (50 : 30 : 10 : 10). We can also look at it as the ratio

of read pages (LookupBM + LookupFBM) to write pages (CreateBM + AcceptFR).

The default ratio then is 80% reads and 20% writes. We believe that this ratio is a

good approximation of the workload of a social networking type application where

users read content most of the time and only sometimes create content. This is sup-

ported by the study of user activities by Benevenuto et al [23], where they found that

browsing activities (involving no writes) comprised of about 92% of all requests in

their 12-day request data for Orkut [12}. Note that 20% writes does not mean 20% of

queries are write queries, but only reflects the percentage of write pages. In practice,

as in real web application workloads, a write page also has several read queries in

addition to write queries. So, the actual percentage of write queries measured against

total queries in our workload is lower than the percentage of write pages, which is the

parameter used in our evaluation.

The set of actions from a user's login till her logout is referred to as one Session.

We refer to each action/page as a Page Load. Further, any request for data issued

by the client to either the database or the cache is referred to as a Query. For most of

the experiments each client runs through 100 sessions. Each session in turn comprises

of 10 page loads, in the ratio specified above. Each page load consists of a variable

number of queries, on an average 80.

The distribution of users across sessions is according to a zipf distribution. Ben-

evenuto et al [231 have studied frequency of users logging into social networking sites

over a period of 12 days. According to their work, the majority of users (63%) ac-

cessed the social network aggregator's site only once during the 12-day period. From

their data, we derived the frequency of user sessions to be zipf-like with the value of

zipf parameter being 2.0. We also use [28] and [27 to help us create a realistic social

networking workload.

Running the entire Django Python clients for the experiments leads to a high CPU

utilization, and to saturate the database in this setting requires a large number of

client machines. To avoid this, we first do a trial run with the full Django clients and

record all the queries being made to the database and cache by all the clients. We also

record the beginning and end of user sessions, as well as beginning and end of page

loads. For the actual experiment we only replay these logs. Since a particular user

is always handled by only one client, the timing of queries between any two clients

does not create any inconsistencies. In this way, we are able to saturate the database

using multiple clients running on a single machine. The client machine is an Intel

Core i7 950 with 12GB of RAM running Ubuntu 9.10. We use Python 2.6, Django

1.2 and Pinax development version 0.9a1. The client machine, database machine and

the memcached machine communicate via a gigabit ethernet local network.

Database Layer

The database machine is an Intel Xeon CPU 3.06 GHz with 2GB of RAM, running

Debian Squeeze with Postgres 8.3. We changed a few of the configuration settings

to enable Postgres to run with high load, including switching off logging, increasing

shared-buff ers and increasing checkpoint-segments.

The database is initialized with the following data (Appendix A describes the

exact schema) :

" Users: The users table is initialized with 1 million users. The profiles table

is also initialized with 1 million profiles, one per user.

" Bookmarks: The bookmarks table is initialized with 1000 bookmarks. The

bookmarkinstance table is initialized with a random number of bookmark in-

stances (between 1 and 20) per user.

" Friends: The friendship table is initialized with random number of friend-

ships, between 1 and 50, for each user. Further the friendshipinvitation

table is initialized with a random number of pending friendship invitations,

between 1 and 100, for each user.

The total database size is about 10 GB. The tables are indexed and clustered as

shown in the definitions in Appendix A.

Caching Layer

Our caching layer consists of memcached 1.4.5 running on a Intel Pentium 2.80GHz

with 1 GB of RAM. We did not make any changes to the configuration of memcached

since it scaled well and was never a bottleneck in any of our experiments. The size

of the cache depended on the experiment, but for most experiments it was 512MB.

Note that this is only an upper limit on the amount of memory it can use, if needed.

As described in the implementation we use the binary protocol to communicate with

memcached, both from the clients as well as database triggers.

4.3.2 Microbenchmarks

Although our main evaluation uses Pinax, we also performed a set of microbenchmarks

to better understand the performance characteristics of the cache, the database and

the database triggers. We describe two such microbenchmarks in this section. The

machine configurations for the clients, database and memcached are the same as

described above. However, we use a simple one table database and simple queries in

these microbenchmarks.

We create a simple database with a single table called map, with the following

schema:

map (key character varying(13)

value character varying(1000));

Each key is unique and the table has a btree index on the key column. We created

four configurations of this database by varying the number of rows and the size of

value column (in bytes). These configurations are enumerated in Table 4.1. The

table also shows the approximate size of the database for each configuration.

We measured the performance of the following queries on each of the database

configurations:

Database #Rows Size of Value Size of DB
DB 1 10 million 10 B 1 GB
DB 2 50 million 10 B 5 GB
DB 3 1 million 1000 B 1 GB
DB 4 5 million 1000 B 5 GB

Table 4.1: Various Database Configurations used in Microbenchmarks

e DB SELECT (RANDOM)

SELECT value FROM map WHERE key = 'key00000001';

We measured 1000 such select queries, choosing a random key to lookup each

time, and averaged the results.

" DB SELECT (REPEATED)

SELECT value FROM map WHERE key = 'key0000000001';

We measured 1000 such select queries, with the same key each time, and com-

puted average of the results.

" DB INSERT

INSERT INTO map VALUES ('keyOO00000001', '7864382875...');

Here, the value inserted is a random string of the size specified by that database

configuration. We measured 1000 such insert queries, and computed average of

the results.

Next, we perform equivalent get and set queries on the memcached. The mem-

cached queries are:

" MC GET

cacheget('key0000000001');

We did 100000 such get queries, choosing a random key to lookup each time

and took average over the results. Further, we ensured that all the keys which

are looked up are present in the cache beforehand.

* MC SET

cache.set('keyOO00000001', '7864382875...');

Here, again, the value inserted is a random string of size either 10 or 1000 bytes.

We took measurements of 100000 such set queries and computed averages over

them.

Database vs Cache performance

In this microbenchmark we wanted to answer the following question:

How does raw performance of a relational database compare with the raw performance

of a cache in terms of simple read and write queries?

We chose the database configuration DB 3 from Table 4.1 for this comparison.

We ran the database and memcached workload with varying number of clients and

measured average throughput and latency of each type of query. The results are

shown in Figures 4-2. Figure 4-2a shows how the throughput varies with increasing

number of clients, and Figure 4-2b shows the corresponding query latency variation.

The size of value for the memcached queries is 1000 B.

80000 1MC GET 0.03MC GET

MC SET MC SET
70000 DB INSE DBINSERT

DB SELECT M) 0.025 DB SELECT (RANDOM)

60000 DB SELEC PEATED) DB SELECT (REPEATED)

0.02
50000

. 40000 0.015

30000 .0
F- 0.01

20000
0.005

10000

0 0
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50

No. of Clients No. of Clients

(a) Query Throughput (b) Query Latency

Figure 4-2: Microbenchmarks: Database vs Cache Performance

From the first graph, we see that MC GET throughput is about 25 times that

of DB SELECT (RANDOM) throughput and about 10 times that of DB SELECT

(REPEATED). This shows that even for repeated queries, memcached performs bet-

ter than a database. We believe this is due to the overhead of query planning in

the database. Moreover, MC SET throughput is about 25 times more than that of

DB INSERT. The latency graph shows similar improvements over all three database

queries.

Effect of Varying Data Size

We aim to answer the following question with this microbenchmark:

How does database and cache performance vary with the size of the database and size

of data read or written in each query?

For this, we compare the maximum query throughput achieved by each of the four

database configurations in Table 4.1, for the three types of database queries. Also,

we observe the variation in MC GET and SET performance as the size of value in

the query changes. The results for this experiment are shown in Figure 4-3.

DB I DB 2 DB 3 DB 4
Database

70000

60000

50000

40000

30000

20000

10000

0
10 1000

Size of Value (bytes)

(a) Throughput with varying Database size (b) Cache Throughput with varying Value size

Figure 4-3: Microbenchmarks: Effect of Varying Data Size

From these results, we draw the following conclusions:

1. DB SELECT (RANDOM) throughput drops by 5-6 times as the database size

increases from 1 GB (DB 1, DB 3) to 5 GB (DB 2, DB 4). DB SELECT (RE-

PEATED) and DB INSERT, however, do not show a significant performance

drop. (Figure 4-3a)

8000

7000

6000

5000

4000

3000

2000

1000

0

2. Increasing the size of value column from 10 bytes (DB 1, DB 2) to 1000 bytes

(DB 3, DB 4) does not have a significant effect on the performance of database

queries. (Figure 4-3a)

3. Increasing the size of value in memcached queries leads to a 15% drop in the

performance of MC SET, while it has no effect on MC GET. (Figure 4-3b)

4. The results show that the relative win of memcached over database for read

queries increases to a factor of 160 as the database size increases.

Trigger Overhead

With this microbenchmark, we want to answer the following question:

What is the overhead of launching a database trigger? How does this overhead vary

when the trigger performs queries to the cache and the database?

For this experiment, we chose DB 4 from the Table 4.1. We tested the performance

of the DB INSERT query with following after insert on row triggers on the map table:

1. No-op Trigger. This trigger just launches a python script that does not do any

useful work. This measures the overhead of simply launching a trigger.

2. MC-lop Trigger. This trigger launches a python script, which opens a connec-

tion to memcached and does 1 set operation. This measures the overhead of

opening a connection to the cache inside a trigger, which happens in our actual

triggers for Pinax applications.

3. MC-100op Trigger. This trigger launches a python script, which opens a connec-

tion to memcached and does 100 set operations. This measures how expensive

it is to perform a memcached operation from the trigger.

4. DB-lop Trigger. This trigger launches a python script, which does a query to

the same database. This measures overhead of doing SQL queries to the same

database within a trigger. Some of our actual triggers need to do this in order

to figure out which cached entries to update.

Trigger Type Avg INSERT Latency
No Trigger 6.3 ms
No-op 6.5 ms
MC-lop 11.9 ms
MC-1000p 30.6 ms
DB-lop 6.5 ms

Table 4.2: Trigger Overhead on INSERT

The results are shown in Table 4.2. From the results, we can see that the overhead

of launching a trigger is minimal, as is the overhead of a local SQL query from within

the trigger. However, opening a remote memcached connection doubles the INSERT

latency. Each memcached operation done from within the trigger takes about 0.2 ms,

which is the same amount of time taken by a normal client to perform a memcached

operation (as seen from our previous benchmark). From this we conclude that even

though launching a trigger does not have significant overhead, doing useful work from

the triggers such as accessing memcached does have more than 100% overhead. We

revisit this in the next section where we describe the increase in latency of write

operations at the cost of improving read operations.

4.3.3 Social Networking Workload

In this section, we describe our performance experiments with the Pinax applica-

tions, present their results and discuss our conclusions from those experiments. Each

experiment has the following parameters: number of clients, number of sessions for

each client, workload ratio, zipf parameter, and cache size. The default values for

these parameters are 15, 100, 20% write pages, 2.0, and 512 MB respectively. In each

experiment, we measure the throughput and latency values, and compute averages

for the time intervals during which all the clients were simultaneously running. We

also warm up the system by running 40 parallel clients for 100 sessions before the

start of each experiment.

Experiment 1: Throughput and Latency Measurement

In this experiment, we compare the three caching strategies-No-cache, Invalidate

and Update (as mentioned in Section 4.3)-in terms of the maximum load they can

support. We measure the throughput and latency of these strategies under increasing

load (i.e., increasing number of parallel clients).

We ran the experiment for 1, 5, 10, 15, 20, 30 and 40 parallel clients. The results

are shown in Figure 4-4. Figures 4-4a and 4-4b show the page load throughput and

page load latency, respectively, as the number of clients increases. Further, Figures 4-

4c and 4-4d depict the corresponding query throughput and latency.

From Figure 4-4a we see that the maximum throughput of the Update system

occurs at 15 clients, the value of max throughput being 75 requests per second.

Invalidate system also achieves its maximum throughput of 62 requests per second

at 15 clients. For the No Cache system, however, the maximum throughput is only

30 requests per second, achieved at 10 clients. Thus, at its peak, the CacheGenie

systems provide a 2-2.5 times throughput improvement over the No cache system.

This improvement is due to a significant number of queries being satisfied from the

cache, thereby reducing the load on the database. Note that since we have not

implemented caching abstractions for all types of queries, there are some queries in

the system which are never cached. It is predominantly because of these queries that

the throughput advantage we get from our system is only a factor of 2-2.5, which is

much less than the throughput benefit memcached can have over the database as we

saw in our microbenchmarks.

In all three systems, the database is the bottleneck and limits the overall through-

put of the system. In the No Cache case, the CPU of the database machine is

saturated, while in the two cached cases, the disk I/O is the bottleneck. This is easily

explained as the queries hitting the database in No Cache are repeated and hence

a lot of time in the database is spent in evaluating the query results for the data

already in memory. On the other hand, for the cached cases, bulk of the queries are

either non-repeated (since the system caches most of the repeated queries), or writes.

80

70

60

50

2L 40

,2 30
10
20

10

0
0 5 10 15 20 25 30 35 40

No. of Clients

(a) Page Load Throughput

6000

Inva 'idte

5000

4000

3000

2000

1000 -

0
0 5 10 15 20 25 30 35 40

No. of Clients

(c) Query Throughput

1.6

1.4

1.2

I1

0.8

-j 0.6

0.4

0.2 I

0-0.
0.018

0.016

T 0.012

2 0.01

0.008

0.006

0.004

0.002

0

0 5 10 15 20 25 30 35 4(
No. of Clients

(b) Page Load Latency

0 5 10 15 20 25 30 35 40
No. of Clients

(d) Query Latency

Figure 4-4: Experiment 1-Performance against Varying Clients

Update
Invalidate
No Cache

Update
Invalidate

No Cache

e

Moreover, writes in the cache system are slower because of the extra overhead of

triggers. (We'll show that this is the case in a later experiment where the throughput

increases dramatically for the cached systems when there are no writes.) Hence the

database becomes bottle necked on the disk. One result of this difference is that the

throughput starts dropping beyond a certain point for the cached cases since a disk-

bounded system leads to thrashing beyond peak throughput. This is not the case for

No Cache case, where the throughput stays at the peak value since CPU resources

scale better under heavy load.

Another important point to note from this graph is that the throughput is more

in case of incremental updates as opposed to invalidate. The trade-off between these

two cases is that updating leads to slower writes (because triggers have to do more

computation) but faster reads (because there are more cache hits). Figure 4-4a illus-

trates that the overhead of recomputing from database is more than the overhead of

updating the relevant cached entries.

Figure 4-4b shows how the latency of page loads increases as load on the system

increases. We see that the Update case has the least latency of 0.2 seconds per page

load at peak throughput (15 clients), followed by Invalidate with a latency of 0.24

seconds and No Cache with a latency of 0.5 seconds. Also, the latency in all three

cases rises more steeply as we increase the number of clients beyond 15, corroborating

the fact that throughput drops slightly after this point.

The query throughput and latency graphs (Figure 4-4c and 4-4d) mirror the cor-

responding page load graphs. Also, from this graph we can calculate the average

number of queries per page (for this workload) to be 76. Table 4.3 and 4.4 lists the

average latency for various types of page loads and queries, respectively, for the three

systems in this experiment. One can note from these numbers that the average la-

tency of a INSERT/DELETE/UPDATE operation in the cached cases is 5-10 times

more than that in the no cache case. This is the cost that the write operations have

to pay to improve the overall performance of the system.

For all the following experiments, unless otherwise specified, we run 15 parallel

clients since that achieves the maximum throughput for all the systems.

Page Type U
Login
Logout
LookupBM
LookupFBM
CreateBM
AcceptFR

Table 4.3: Average Latency by

pdate Inv
0.29 s
0.10 S
0.05 s
0.06 s
0.55 s
1.03 s

Page Type

alidate No Cac
0.34s 0.11
0.11 s 0.05
0.05 s 0.22
0.16 s 1.25
0.53 s 0.09
1.24 s 1.01

in Experiment 1

s

s

S

s

S

s

(with 15 clients)

Query Type
Query
Query in Database
Query in Database:SELECT
Query in Database:INSERT
Query in Database:DELETE
Query in Database:UPDATE
Query in Cache
Query in Cache:GET
Query in Cache:ADD

Table 4.4: Average Latency by Query

Update Invalidate No Cache
2.6 ms 3.1 ms 6.5 ms

21.4 ms 25.5 ms 6.5 ms
9.5 ms 14.6 ms 6.4 ms

114.2 ms 122.2 ms 12.0 ms
11.2 ms 15.4 ms 3.2 ms
20.8 ms 16.1 ms 2.1 ms

0.5 ms 0.5 ms -

0.4 ms 0.4 ms -

0.4 ms 0.6 ms -

Type in Experiment 1 (with 15 clients)

Experiment 2: Effect of Varying Workload

In this experiment, we vary the ratio of read pages to write pages in the workload,

and measure how it affects the performance in the three caching strategies. The

default workload ratio as mentioned before is 80% read pages and 20% write pages.

We perform experiments with the following additional ratios of reads to writes.

* 0% reads, 100% writes (0:0:50:50)

* 20% reads, 80% writes (10:10:40:40)

* 50% reads, 50% writes (25:25:25:25)

* 100% reads, 0% writes (50:50:0:0)

The value in parentheses is the exact breakup between different types of read and

write pages, i.e. (LookupBM : LookupFBM : CreateBM : AcceptFR). The results of

these experiments are shown in Figure 4-5a and 4-5b respectively.

250 Update 07 Update
Invalidate Invalidate

No Cache 0.6 No Cache
200

0.5
(0

150 0.150 4 0.4
CLC

03u 0.3100

0.2

50
0.1

0 0
0 20 40 60 80 100 0 20 40 60 80 100

Percentage Read Workload (%) Percentage Read Workload (%)

(a) Page Load Throughput (b) Page Load Latency

Figure 4-5: Experiment 2-Page Loads Performance with Varying Workload

From the figure, we see that for a workload with 0% reads, caching does not

provide any benefit. In fact, it makes the performance slightly worse. This is because

as we saw from Table 4.4, database writes are slower in the cached system due to the

overhead of triggers. For 0% read pages, the ratio of database write queries to read

queries is high, causing the overall performance of cached cases to be worse.

As the percentage of reads in the workload increases, however, the performance of

cached cases improves. In the extreme case of 100% reads, the cached case throughput

is about 8 times the throughput of No Cache case. This is because in absence of any

writes, database reads become much faster. Again, the throughput bottleneck here

comes from the queries which we do not cache at all. Also note that the workload

variation does not significantly affect the No Cache case since it is already CPU bound

because of reads, which hit the database buffer pool. But it affects the cached cases

since they are disk-bound, and disk performance changes as the number of writes

goes down.

We see that the gap in throughput between Update and Invalidate is zero at

0% reads and increases as the number of reads increases. This is because as the read

workload increases, the advantage of better cache hit ratio overcomes the disadvantage

of slower triggers in Update. However, the gap reduces back when we have 100% reads

because nothing in the cache is being invalidated or updated and so both cases are

equivalent. From this experiment, we conclude that caching shows much more benefit

in a read-heavy workload than a write heavy one.

Experiment 3: Effect of Varying User Distribution

The formula for zipf distribution is

p(x) = (4.1)
((a)

In our experiments, p(x) is the probability that a user has x number of sessions,

i.e. logs in x number of times. p(x) is high for low values of x and low for high values

of x. In other words, most users log in infrequently, and a few users log in frequently.

Also, a low value of the parameter a means more users login frequently.

The value of zipf parameter affects both performance of the database and the

cache. In the cache, if there are certain users who login frequently, then the data

accessed by them remains fresh in the cache and the infrequent users' data gets

evicted. This means over a period of time the frequent users will find most of their

data in cache and hence the number of cache hits goes up, improving the system's

performance. It also means we need a cache big enough to hold only the frequent

user's data, which is much smaller than the total number of users in the system. It

matters for the database performance as well, but only within short intervals, since

the buffer pool of database gets churned much faster than the cache. So the database

performance benefits from users who login repeatedly in a short time span.

In this experiment we vary the parameter a of the zipf distribution and see how

it affects the performance of the three systems. The default value of the parameter

is 2.0 (which is used in the previous experiments.) We run the experiments with two

other values of a: 1.2 and 1.6. Figure 4-6 shows the results from this experiment.

120

110

100

90

80

70

60

50

40

30

20A
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8

Zipf Parameter

(a) Page Load Throughput

Figure 4-6: Experiment 3-Page

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

1.9 2 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8
Zipf Parameter

(b) Page Load Latency

Loads Performance with Varying User Distribution

From the graph, we can see the cached cases have a 1.5 times higher throughput

with a = 1.2 as compared to a = 2.0. The No Cache case however fails to show any

improvement with changing values of a. The performance benefit in the cached cases

comes from the database, which is disk-bound. With a lower zipf value, the database

is hit with more repeated queries and reduces disk activity, thereby improving the

performance for those cases. However, the No Cache case is already CPU-bounded,

and since Postgres does not have a query result cache, it still has to compute the

results for the repeated queries from cached pages in the buffer pool.

Experiment 4: Effect of Varying Cache Size

In all our experiments so far, the cache was big enough (512 MB) and there were no

evictions. This means the only misses in the cache would be for keys which have never

been put in the cache in the first place, or which have been invalidated. In a realistic

system we cannot have a cache that is big enough to hold everything that can ever

Update
Invalidate
No Cache

Update
Invalidate
No Cache

1.9 2
.

be cached. The purpose of this experiment is to analyze the effect of evictions due to

a smaller cache on the system performance (in the cached cases).

80 Update 0.27 Update
Invalidate 0.26 Invalidate

75 -0.25

0.24
70

s 0.23

0.2

65 0.22
0.21

60 0.2

0.19

55 0.18
50 100 150 200 250 300 350 400 450 500 550 50 100 150 200 250 300 350 400 450 500 550

Cache Size (MB) Cache Size (MB)

(a) Page Load Throughput (b) Page Load Latency

Figure 4-7: Experiment 4-Page Loads Performance with Varying Cache Size

We run our experiment with the maximum cache size set to 64 MB, 128 MB,

192 MB, 256 MB and 320 MB. The results from the experiments are in Figure 4-7.

From the first graph, we can see that the throughput in the Update case plateaus

at about 192 MB, whereas for the invalidate case it does so at about 128 MB. This

is because the Update case never invalidates the data in cache, and so needs more

space. Although we need more space for achieving maximum throughput, we can

see that even with just 64MB of cache space, the Update case throughput is about

61 requests/s and Invalidate is 56 requests/s, which is still twice than the No Cache

case. From this we conclude that even in the presence of evictions, caching performs

significantly better than No Cache.

The conclusions of this experiment are related to Experiment 3. A lower zipf

parameter implies there are more number of frequent users, which in turn means we

need less space in the cache to satisfy more number of requests. So, in practice the

cache size needed depends on frequency of users and the distribution of workload.

Another important result of our experiments is that using spare memory as a cache

is much more efficient than using that memory in the database. To validate this, we

did an experiment by putting memcached on same machine as the database, so that

for the cached cases, the database has lesser memory. The throughput of the Update

case in this experiment was 64 requests/s (down from 75), and the throughput of the

Invalidate case was 48 requests/s (down from 62). This performance is still better

than the No Cache case whose throughput was 30 requests/s. These results validate

our hypothesis.

4.4 Conclusions

We ported a subset of applications from the Pinax project to use the CacheGenie

prototype implemented in Django. This required about 14 lines of code to be added

to define the cached objects. Also, our system generates about 1720 lines of trigger

code, and we argue that without an automatic cache management scheme, the pro-

grammer will have to write about the same lines of code to manage the cache for

these applications. From this experience, we conclude that it requires minimal effort

on the part of programmer to use CacheGenie's abstractions to get automatic cache

management.

From our microbenchmarks, we found that using memcached instead of a database

can improve throughput by a factor of 10 to 150 for simple queries. Further, a

database trigger can induce an overhead ranging from 3% to 400% depending on the

amount and kind of work being done inside the trigger.

With our performance evaluation on Pinax, we tried to answer a few questions

(Section 4.3). We will summarize the answers to these questions here:

1. We get a throughput improvement by a factor of 2-2.5 by using CacheGenie, as

opposed to no caching. Database performance is the limiting factor in both the

cached scenarios.

2. Updating cached data in-place rather than invalidating it provides a throughput

benefit between 0-25%, depending on the workload and user distribution.

3. The advantage of using caching increases as the percentage of reads in the work-

load increases. A workload with 100% reads gives a throughput improvement

by a factor of 8 over the No Cache case. The advantage of update over invali-

date is maximum in a medium workload and decreases as the workload becomes

read-only or write-mostly.

4. As there are more repeated users in the workload, throughput with caching

improves by about 1.5 times, whereas with no caching, it does not change.

5. Synchronous update of cache on writes to database increases the latency of write

operations by 5-10 times. This is the penalty for improving overall throughput

of the system using automatic cache management.

6. The size of cache needed for good performance is much lesser than the total size

of the database. Also, using spare memory as a cache gives better performance

than using that memory with the database. The cache size needed also depends

on frequency of users and the distribution of workload.

- . d ... - .- r - r-'" -^r'*: -MM--."- -- r.:s,--- -Weror -a+-:.. +-s:mwan .--s.:..e .s--s--.,s. --- -. 's.ss---.: . - --

Chapter 5

Related Work

There has been a lot of work done in improving caching to enable scalable storage for

web applications. Large scale websites such as Facebook typically employ in-house

solutions to solve their scaling problems. There has also been prior academic work in

this area on different caching strategies. This chapter discusses this related research

and places it in the context of our work.

As discussed in Chapter 2, caching strategies can be divided into two main cate-

gories: application caching and database caching. In the context of database caching,

we mentioned three prior systems, namely DBProxy, DBCache and GlobeCBC, which

we describe in detail below.

DBProxy [22] is an edge-of-network cache that transparently adapts to changes in

workloads. The cache in this system is a stand-alone database engine that maintains

partial materialized views of previous query results. Application access patterns de-

termine which materialized views are cached. DBProxy ensures data consistency by

subscribing to a stream of updates propagated by the database server. DBCache [24]

is a similar system which caches an entire table or a subset of the tables from the

backend database server. As in DBProxy, the results of queries are computed at run-

time from this cached data, and if not available, the queries are sent to the backend

database. Changes at the backend database are propagated to the cache using a data

replication tool. An important characteristic of their system is that they maintain

dynamic cache tables which are populated at run-time based on the queries issued

by the application, and adapt to the workload. Both these systems fall under the

category of content-aware caching. CacheGenie differs from both these systems in

that we cache the actual query result and so there is no computation involved at

query time to determine the result. We have already discussed the cache consistency

guarantees provided by these systems in Section 2.2.3, and how they differ from our

model.

GlobeCBC [31] is a content-blind query caching middleware for web applications.

Content-blind caching systems store the query results in the cache as-is, and return

the result when the same query is issued by the application again. As compared to

content-aware caching systems, this approach avoids the overhead of computing query

results from cached data. Our work is similar to GlobeCBC in that we also cache

query results. However, in GlobeCBC, to ensure cache consistency, the developer has

to mark conflicting read and write templates manually. The system then uses this in-

formation to determine when to invalidate cached content. CacheGenie, on the other

hand, does this automatically based on the cached object definition. Other differences

in cache consistency guarantees have already been discussed in Section 2.2.3.

There are other systems which try to provide automatic cache management. Chal-

lenger [30] proposed using a dependency graph between cached objects and underlying

data to update or invalidate relevant HTML pages or fragments in the cache. When-

ever underlying data changes, the affected objects in the cache are either invalidated

or regenerated. However, the query workload that they consider was mostly reads,

with very few writes; for example editing/adding news articles, which is done by very

few people (editors). Our system is designed to deal with many more writes (for

example, many users of a social network editing their personal data or adding friend

connections to other users), although we assume that overall there are more reads

than writes.

Ferdinand [25] is a proxy-based distributed database query caching system. Each

proxy's cache is a simple disk-based map between each database query and a ma-

terialized view of that query's result. It uses a publish-subscribe model to achieve

consistency in a scalable distributed manner. This differs from our work in that they

cache direct database query results transparently, whereas CacheGenie lets the devel-

oper specify what data should be cached and also provides options for varying update

strategies. However, it would be instructive to explore a pub-sub model in our setting

to achieve scalability in propagating updates to the cache. Also, on updates to the

underlying data, Ferdinand always invalidates the affected cached query results. We

however allow updates and demonstrate the advantage of incrementally updating the

cached data as opposed to simply invalidating it.

There has been a lot of work exploring materialized views in databases and al-

gorithms to incrementally update them. Materialized views are also useful in pre-

computing and thus providing fast access to complex query results. The problem

of incremental view maintenance is similar to the problem of maintaining query re-

sults in the cache up-to-date. [26] gives an overview of the techniques proposed for

view maintenance. The ideas from these techniques can be applied to incrementally

updating cached objects that are more generic than the ones we explored in this work.

TxCache [29] provides a transactional cache, and ensures that any data seen within

a transaction, whether it comes from the cache or the database, reflects a slightly stale

but consistent snapshot of the database. TxCache lets programmers designate specific

functions as cacheable; it automatically caches their results, and invalidates the cached

data as the underlying database changes. TxCache relaxes the freshness guarantee of

cached data slightly to provide transactional consistency. Our work, however, relaxes

transactional guarantees in favor of enabling the application to access fresh data in

the cache. Moreover, we also provide mechanisms to update the cached object instead

of simply discarding them when underlying database changes.

Facebook [7] is a large scale social networking website with about 500 million

users. Memcached is a central component of data storage and serving infrastructure

at Facebook. As the persistent data layer, Facebook has hundreds of MySQL servers.

These servers execute queries locally and all joins are done by the application. Face-

book then stores results of these queries in the memcached layer, itself composed of

many servers. Till recently, developers had to manually store the data in cache, and

manually invalidate it on writes. As we discussed earlier this approach is cumber-

some and error-prone. Recently, Facebook started building a new way to organize

their data, called Facebook objects and associations, because most of their data fits

into this form. Further, they are developing a system called TAO on top of mem-

cached. TAO is API-aware (i.e. it understands Facebook objects and associations)

and supports write-through on updates. This approach has similar vision as ours,

in that it relieves the programmer of the burden of managing the cache, and also

updates the cached data instead of invalidating. Further, it allows programmers to

think in terms of high-level abstractions rather than in terms of SQL, which is what

we try to achieve using caching abstractions. An important difference however is that

they support write-through cache, whereas we propagate the updates through the

database. We are not aware of the consistency guarantees provided by their system.

We briefly stated the various granularities of caching available in Django. Here

we will describe them in detail. Site-level caching caches every page that doesn't

have GET or POST parameters, and one can choose to cache only non user-specific

pages. The programmer needs to specify the number of seconds after which each

page should expire. This option works for mostly static websites, but not so well

for dynamic applications. View-level caching lets developers cache the output of

individual views (that is, the entire page produced by the view). Again, the developer

can specify expiry interval for the view. Template fragment caching lets the developer

cache fragments of a page from the template. If the fragment depends on a dynamic

data item, Django lets developers cache multiple copies of the fragment for different

values of that item. Fragment level caches also require developers to specify expiry

time for the fragment. Key-Value caching allows developers to cache arbitrary data

indexed using keys defined by the developers themselves. It exposes a get-set API,

and since the keys are set by the developers, they can delete them as well. This is

unlike the previous three options where the key is unknown to the developer and they

have to rely on expiry intervals. This is the most flexible option available to Django

programmers to cache their query results and other computed data.

Ruby on Rails [14] is another popular web application framework used by develop-

ers today. Cache Money [1] is a library which enables write-through and read-through

caching for Ruby on Rails. It is also based on memcached. The library is responsible

for populating the cache in case of a cache-miss, and for keeping the cached objects

up-to-date in case of writes. This work is similar to ours in the following ways: (i)

the developer needs to specify what data they want to cache using indices (similar to

specifying cached objects in CacheGenie), (ii) the system takes care of transparently

updating the cached data, and (iii) is able to cache only specific classes of queries.

They also provide a support for transactions over memcached by enhancing the client

library. The writes to the cache are buffered in the client until the transaction is

committed. Reads within the transaction are read from the buffer. The client library

acquires locks while performing writes; however, reads do not take locks, and hence it

is possible to peek inside a partially committed transaction. Rollback is easy in this

scenario since the buffered writes can simply be discarded. We currently do not pro-

vide support for rollback or locking while writing. Cache Money does not support any

kinds of joins, however, whereas we support joins (LinkQuery Cache Class). Also, we

provide more flexibility to the programmer to decide whether they want to invalidate

the cached objects or update them. Cache management in Cache Money is all done

in the application layer, whereas we propagate the updates from the database.

-- - -- . e-.--:, ~-----,-=~--*--.<.-0.:---*,^,,++w. -:--1;-wwwa,-.-s-.ia:a -m.s.:.iv44/,.,ii.sr..--.i.>.--.--.-. s .w..rs.....-.- .

Chapter 6

Future Work

Our work can be extended in several directions; in this chapter we discuss a few of

them and outline our plans for future work.

Transactional Consistency

The most important aspect of CacheGenie that we would like to improve is the

consistency guarantees it offers over data in the cache. As described in Section 2.2.3,

we do not provide transactional guarantees over the cached data. We would like

to extend our model to provide some version of transactions over cached data, so

that one transaction does not see another transaction's dirty data. At the same

time, a transaction should be able to see its own uncommitted changes, and once

the transaction commits, its changes need to be visible to all other transactions.

There are various challenges in providing this capability, with the major constraint

being performance. It is easy to see that memcached performance will drop if one

transaction performing a read on a key blocks, waiting for another transaction that

wrote to the key to finish.

Here we discuss one possible design to implement transactions in CacheGenie.

This design involves building a wrapper around memcached that implements trans-

actions. All keys in the cache are marked to be in one of two states, uncommitted

or committed. When a transaction begins, the application and database decide on a

common transaction id, say tid. Whenever the database issues any updates/invalida-

tions to memcached as a part of a transaction, it sends its tid along. The memcached

wrapper first acquires a lock on the key, checks whether the key is in the committed

state currently, and if yes, updates it with this new value, and changes its state to

uncommitted. Further, it keeps a list of all keys modified in each ongoing transaction.

At commit time, the application sends a commit message to the wrapper along with

the tid. The wrapper then atomically commits to the cache all the keys in that tid's

list of modified keys. Similarly, if the application issues an abort, the keys modified

in the transaction are simply invalidated.

Any read query to the cache from the database or application is also accompanied

by tid of the transaction in which the read is being performed. If the key being asked

for has been modified within the same transaction, the modified value is returned.

Otherwise, the wrapper returns a special value indicating that the key is currently

being modified, and that the query should be issued again in sometime. We take this

approach to avoid blocking within memcached and to ensure maximum throughput.

Further, to prevent long running transactions from indefinitely blocking other trans-

actions, the wrapper times-out pending transactions after some time and invalidates

the keys modified in them. Similar to read queries, updates from other transactions

also have to try again if a current transaction is modifying that key.

An important point to note is that we need to implement some kind of locking in

the wrapper to atomically perform a set of operations; memcached does not currently

provide this functionality. Also, any approach which tries to ensure full transactional

consistency can cause a performance slowdown. However, we expect that web ap-

plications typically would not have very long running transactions. Specifically, in

Django, the common practice is to commit immediately after every write operation.

Small transactions means less contention and better performance. Moreover, since we

can simply invalidate the data in cache, it is easy to deal with aborts and deadlocks.

We plan to implement this approach and measure the performance of the system with

transactional consistency.

Multiple Database Support

Clearly, any large scale web application will not use a single database server for its

entire persistent state. Currently, web applications either use commercially available

distributed databases as their persistent backend, or distribute their queries in the

application while using multiple independent single-server databases in the backend.

However, in both cases, caching still plays an important role since computing queries

over multiple databases is slow. In our current prototype we assume there is a single

database backend. We would like to extend our prototype to work with a system

having multiple database backends. We believe it should be relatively straightforward

to extend our model to support either types of distributed databases.

Supporting other workloads

Another future direction is to analyze other types of web application workloads in

addition to the ones we studied in this work, and identify other commonly occurring

query patterns. Once we identify more patterns, we can implement Cache Classes for

them and thus enable automatic cache management for more queries. Also, we would

like to port other kinds of applications to CacheGenie and evaluate its usability and

performance with those applications.

From an evaluation point of view, it would be interesting to obtain actual workload

traces of real applications, and evaluate our system's performance using those traces.

While we tried to model real user behavior in our evaluation, it is far from ideal and

it would be instructive to experiment with real data. Another evaluation we plan

to do is to implement application-level manual invalidation in Pinax applications

(just like developers today would implement), and compare the performance of that

implementation with CacheGenie.

There are certain parts of our design which we have not yet implemented in our

prototype. Two of these are prefetching cached objects, and providing variable cache

update strategies based on popularity of users and associated data (Section 2.1.2).

Also, to use a LinkQuery class, currently the developer has to manually use the cached

object instead of the original code. For FeatureQuery and CountQuery however, the

system automatically fetches cached objects when the original code is used. We also

haven't implemented the Cache Class for TopKQuery pattern. We plan to implement

these missing pieces as part of future work.

Performance Optimizations

The performance of write queries can be improved by optimizing the database triggers.

Currently, each cached object has three triggers (corresponding to INSERT, DELETE

and UPDATE) on each table involved in computing the query result. This means

most tables have multiple triggers if there are multiple cached objects that depend

on them. Since there is significant overhead in launching a trigger and opening a

connection to memcached, combining these multiple triggers into one trigger each on

INSERT,DELETE and UPDATE can lead to significant performance improvements. We

believe this optimization is straightforward to implement and plan to incorporate this

in our system.

A second idea for trigger optimization is to offload the trigger execution to a long

running external process on the same or a different server. We expect this will reduce

the load on the database server and let writes complete faster. However, getting

good performance with this approach can affect consistency. For example, if the

trigger simply sends the data required to update the cache to the external process

and returns, it is possible that the database write can complete without the relevant

cached objects being updated. This can lead to the transaction not seeing its own

updates in the cache. But, to avoid this, if the trigger waits for the external process

to acknowledge that the execution has finished, it might not afford a performance

benefit. We have done some preliminary implementation of this offloading approach,

and observed significant performance benefits if we choose the first option, i.e. not

wait for the execution to finish. We would like to explore this area more fully and

quantify the benefits we can get from it.

Chapter 7

Conclusion

This thesis presents CacheGenie, a system which provides high-level caching abstrac-

tions for modern web applications. The main goal of the work in this thesis are

to provide automatic cache management for web applications without requiring any

changes to the underlying database or cache. A secondary goal is to improve cache

performance by providing mechanisms to automatically update cached data as the un-

derlying database changes, instead of the currently prevalent strategy of invalidating

it.

The key ideas that help us in achieving these goals are: (i) extracting common

query patterns from ORM-based web applications and providing caching abstractions

for them, (ii) exploiting database triggers to automatically keep the cached results of

these common queries consistent with the database, and (iii) generating automatic

triggers using the caching abstractions paradigm to either update the cached data or

invalidate it whenever the underlying database is modified.

Our current prototype implements these abstractions by modifying Django, a

popular web application framework, and works with unmodified PostgreSQL and

memcached. To evaluate CacheGenie, we ported a subset of applications from the

Pinax project (which is based on Django) to use our prototype. We had to add only

about 20 lines of code for this. From this experience, we conclude that it requires

minimal effort on the part of programmer to use CacheGenie to get automatic cache

management.

From our microbenchmarks, we found that using memcached instead of a database

can improve throughput by a factor of 10 to 150. Further, a database trigger can

induce an overhead ranging from 3% to 400% depending on the amount and kind

of work being done inside the trigger. We did a series of performance experiments

on the modified Pinax applications, and CacheGenie improved the throughput of the

applications by a factor of 2-2.5, depending on the cache update strategy. Updating

cached data in place is 25% faster than invalidating it. We also measured the variation

in performance as (i) the workload changes from more reads to more writes, (ii) as

the user distribution changes from more distinct to more repeated and (iii) as the

size of the available cache varies. In each case we determined which configurations

are best suited to get maximum performance from our system.

There are several directions in which this work can extended and we plan to work

on some of them to make CacheGenie more useful to application developers. We

hope that ideas from this work will be used by web application framework designers

to develop useful and efficient caching frameworks for web applications.

Appendix A

Pinax Database Schema

TABLE 1: auth-user (id

username

first-name

lastname

email

password

isstaff

isactive

issuperuser

last-login

date-joined

integer

character

character
character

character

character

boolean

boolean

boolean

timestamp

timestamp

varying(30)

varying(30)

varying(30)

varying(75)

varying(128)

with time zone

with time zone)

Indexes:
"authuserpkey" PRIMARY

"authuserusername-key"
KEY, btree (id)

UNIQUE, btree (username)

Figure A-1: Schema of database tables in Pinax

TABLE 2: profiles-profile (
id integer

userid integer

name character varying(S0)

about text

location character varying(40)

website character varying(200)

Indexes:
"profiles._profilepkey" PRIMARY KEY, btree (id)

"profiles-profileuser-idkey" UNIQUE, btree (user-id)

Foreign-key constraints:

"profiles-profile-user-idfkey" FOREIGN KEY (user-id) REFERENCES

authuser(id) DEFERRABLE INITIALLY DEFERRED

TABLE 3: bookmarksbookmark (
id integer
url character varying(200)
description character varying(100)
note text
hasfavicon boolean
faviconchecked timestamp with time zone
adderid integer
added timestamp with time zone

Indexes:
"bookmarksbookmarkpkey" PRIMARY KEY, btree (id)
"bookmarksbookmark-url-key" UNIQUE, btree (url)
"bookmarksbookmarkadderid" btree (adder-id)

Foreign-key constraints:

"bookmarksbookmarkadderidfkey" FOREIGN KEY (adder-id)
REFERENCES auth-user(id) DEFERRABLE INITIALLY DEFERRED

TABLE 4: bookmarksbookmarkinstance (
id integer
bookmarkid integer
userid integer

saved timestamp with time zone
description character varying(100)
note text
tags character varying(255));

Indexes:

"bookmarksbookmarkinstancepkey" PRIMARY KEY, btree (id)
"bookmarksbookmarkinstancebookmark-id" btree (bookmarkid)

CLUSTER
"bookmarksbookmarkinstanceuserid" btree (user-id)

Foreign-key constraints:

"bookmarksbookmarkinstancebookmarkidfkey" FOREIGN KEY (
bookmarkid) REFERENCES bookmarksbookmark(id) DEFERRABLE
INITIALLY DEFERRED

"bookmarksbookmarkinstanceuserid-fkey" FOREIGN KEY (user-id)
REFERENCES authuser(id) DEFERRABLE INITIALLY DEFERRED

Figure A-1: Schema of database tables in Pinax

TABLE 5: friendsfriendship (
id integer

touserid integer

fromuserid integer

added date);

Indexes:

"friendsfriendship-pkey" PRIMARY KEY, btree (id)

"friendsfriendshiptouser-id-key" UNIQUE, btree (to-user-id,

fromuserid)
"friendsfriendship-fromuserid" btree (fromuser-id)

"friendsfriendshiptouser id" btree (to-userid) CLUSTER

Foreign-key constraints:

"friendsfriendshipfromuseridfkey" FOREIGN KEY (from-user-id

) REFERENCES auth-user(id) DEFERRABLE INITIALLY DEFERRED

"friendsfriendshiptouseridfkey" FOREIGN KEY (to-user-id)

REFERENCES authuser(id) DEFERRABLE INITIALLY DEFERRED

TABLE 6: friendsfriendshipinvitation (
id integer

fromuserid integer

touserid integer

message text

sent date

status character varying(1));

Indexes:

"friendsfriendshipinvitation-pkey" PRIMARY KEY, btree (id)

"friends-friendshipinvitation-fromuserid" btree (fromuser-id)

"friendsfriendshipinvitationtouser id" btree (touserid)

CLUSTER

Foreign-key constraints:
"friendsjfriendshipinvitationfromuserid-fkey" FOREIGN KEY (

fromuser-id) REFERENCES authuser(id) DEFERRABLE INITIALLY

DEFERRED
"friendsfriendshipinvitationtouseridfkey" FOREIGN KEY (

touserid) REFERENCES authuser(id) DEFERRABLE INITIALLY

DEFERRED

Figure A-1: Schema of database tables in Pinax

98

Bibliography

[1] Cache Money. http: //github. com/nkallen/cache-money.

[2] Car Posse. http://carposse. com/.

[3] Cloud27. http: //cloud27. cm/.

[4] Craigslist. http://www.craigslist. org/.

[5] Digg. http: //digg. com.

[6] Django. http://www.djangoproject. com/.

[7] Facebook. http: //www. facebook. com.

[8] Flickr. http://www.flickr.com/.

[9] Live Journal. http://www.livejournal. com/.

[10] Memcached. http: //memc ached. org.

[11] mftransparency.org. http: //mf transparency. org/.

[12] Orkut. http: //www. orkut. com/.

[13] PostgreSQL. http://www.postgresql.org/.

[14] Ruby on Rails. http: //rubyonrails. org/.

[15] Sequence Medical. http: //sequencemed. com/.

[16] TuttiVisti. http://tuttivisti.com/.

[17] Twitter. http: //twitter. com/.

[18] we20. http://we20.org/.

[19] Wikipedia. http://www.wikipedia.org/.

[20] YouTube. http: //www. youtube. com/.

[21] Zend Framework. http: //framework. zend. com/.

[22] Khalil Amiri, Sanghyun Park, and Renu Tewari. DBProxy: A dynamic data

cache for Web applications. In In Proc. ICDE, pages 821-831, 2003.

[23] Fabricio Benevenuto, Tiago Rodrigues, Meeyoung Cha, and Virgilio Almeida.

Characterizing User Behavior in Online Social Networks. In IMC '09: Proceed-

ings of the 9th ACM SIGCOMM Conference on Internet Measurement, pages

49-62, New York, NY, USA, 2009. ACM.

[24] Christof Bornh6vd, Mehmet Altinel, C. Mohan, Hamid Pirahesh, and Berthold

Reinwald. Adaptive Database Caching with DBCache. IEEE Data Eng. Bull.,

27(2):11-18, 2004.

[25] Charles Garrod, Amit Manjhi, Anastasia Ailamaki, Bruce Maggs, Todd Mowry,

Christopher Olston, and Anthony Tomasic. Scalable Query Result Caching for

Web Applications. Proc. VLDB Endow., 1(1):550-561, 2008.

[26] Ashish Gupta and Inderpal Singh Mumick. Maintenance of Materialized Views:

Problems, Techniques, and Applications. IEEE Data Engineering Bulletin, 18:3-

18, 1995.

[27] Marcelo Maia, Jussara Almeida, and Virgilio Almeida. Identifying User Behavior

in Online Social Networks. In SocialNets '08: Proceedings of the 1st Workshop

on Social Network Systems, pages 1 6, New York, NY, USA, 2008. ACM.

[28] Atif Nazir, Saqib Raza, and Chen-Nee Chuah. Unveiling Facebook: A Measure-

ment Study of Social Network Based Applications. In IMC '08: Proceedings

100

of the 8th ACM SIGCOMM conference on Internet Measurement, pages 43-56,

New York, NY, USA, 2008. ACM.

[29] Dan R. K. Ports, Austin T. Clements, Irene Zhang, Samuel Madden, and Barbara

Liskov. Transactional Consistency and Automatic Management in an Applica-

tion Data Cache. In OSDI '10: 9th USENIX Symposium on Operating Systems

Design and Implementation, 2010.

[30] Swaminathan Sivasubramanian, Guillaume Pierre, Maarten van Steen, and Gus-

tavo Alonso. Analysis of caching and replication strategies for Web applications.

IEEE Internet Computing, 11(1):60-66, 2007.

[31] Swaminathan Sivasubramanian, Guillaume Pierre, Maarten van Steen, and Gus-

tavo Alonso. GlobeCBC: Content-blind Result Caching for Dynamic Web Ap-

plications. Technical Report IR-CS-022, Vrije Universiteit, Amsterdam, Nether-

lands, June 2006. http://www.globule. org/publi/GCBRCDWA_ircs022.html.

101

