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Abstract

The as yet unattained milestone of room-temperature operation is essential for es-
tablishing Terahertz Quantum Cascade Lasers (THz QCLs) as practical sources of
THz radiation. Temperature performance is hypothesized to be limited by upper
laser level lifetime reduction due to non-radiative scattering, particularly by longi-
tudinal optical phonons. To address this issue, this work studies highly “diagonal”
QCLs, where the upper and lower laser level wavefunctions are spatially separated
to preserve upper laser level lifetime, as well as several other issues relevant to high
temperature performance.

The highly diagonal devices of this work performed poorly, but the analysis herein
nevertheless suggest that diagonality as a design strategy cannot yet be ruled out.
Other causes of poor performance in the lasers are identified, and suggestions for
future designs are made.
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Chapter 1

Introduction

The two major sources of coherent radiation in modern technologies are electronic os-

cillators and conventional lasers. The need for explicit charge transfer limits electronic

oscillators via RC time constants to approximately <300GHz. Conversely, naturally

occurring bandgaps tend not to fall below ∼60meV (eg. in lead-salt lasers [1]), lim-

iting conventional lasers to approximately >15THz. The source-poor region of the

spectrum lying in ∼0.3THz–10THz is therefore known as the terahertz gap (see figure

1-1). Diverse applications ranging from chemical sensing and spectroscopy to security

and astronomical imaging have been proposed for the THz spectrum (see, for exam-

ple, [2–6]), thus it remains desirable to find compact sources of continuous-wave, high

power, coherent THz radiation.

Figure 1-1: The “terahertz gap” in the electromagnetic spectrum. Few natural sources
of radiation exist in this range.

At present, no entirely satisfactory source exists. Electronic sources such as Gunn
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oscillators and Schottky-diode frequency multipliers provide output powers only of

order ∼10µW [7, 8]. Solid-state lasers based on strained p-type germanium with

crossed electric and magnetic fields or optically pumped impurity state transitions in

silicon require liquid helium operating temperatures and permit only pulsed operation

due to large energy consumption and poor efficiency [9]. Optically pumped molecular

gas lasers based on vibrational/rotational molecular state transitions are bulky and

energy inefficient, and moreover yield only a limited number of frequencies (although

they have seen some practical use [10]). Free electron lasers offer high power and broad

tuning, but are even more unwieldy; they remain impractical outside of research due

to large cost, size, and infrastructure requirements.

The topic of this thesis is the Quantum Cascade Laser (QCL), arguably the most

promising THz source currently under development.

1.1 Quantum Cascade Lasers

At heart, a QCL is a superlattice. First proposed by Esaki and Tsu in 1970 [11], a

superlattice is a periodic stack of semiconductor films of varying thicknesses that is

typically grown by molecular beam epitaxy (MBE). At the heterojunctions boundaries

between different semiconductor layers, the abrupt change in lattice potential creates

discontinuities in the conduction band-edge energies, leading to quantum confinement

in the growth direction. This splits the material conduction band states into subbands,

between which optical transitions can occur (see figure 1-2).

Kazarinov and Suris first proposed the basic idea of a QCL in 1971 [12]: through

careful selection of layer widths, a biased superlattice can achieve optical gain through

population inversion between subband states. Referring to figure 1-3, a single elec-

tron can “cascade” in energy down the superlattice while emitting a photon in each

superlattice period, ingeniously enabling effective quantum efficiencies much higher

than unity (in principle).

The first QCL was demonstrated in 1994, lasing in the mid-infrared (mid-IR) [13].

Mid-IR QCLs have since advanced rapidly in power, efficiency, and maximum lasing

16
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Figure 1-2: Electronic transitions in a heterostructure. The abrupt material discon-
tinuity leads to both conduction and valence band energy level discretizations in the
well region. ~ω1 is an intersubband transition, on which QCLs are based, and ~ω2 is
an interband transition, on which traditional semiconductor lasers are based.
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Figure 1-3: Schematic of QCL operation. In principle, each electron emits one photon
in each superlattice period before moving into the next period.
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temperature [14], establishing themselves in diverse applications such as spectroscopy

and optical communications [15]. Köhler et al. demonstrated the first operational

THz QCL in 2002 [16]. THz QCLs now cover the spectral range from 5THz down

to 1.2THz (or even lower with magnetic field assistance [17,18]), and can emit up to

hundreds of milliwatts of power.

1.2 THz QCL Temperature Performance

Unfortunately, THz QCLs have in general lagged behind their mid-IR counterparts

in progress; perhaps the eight year gap between the first mid-IR QCL and the first

THz QCL attests to the difficulty of working in the THz regime. The foremost

barrier to application is that THz QCLs require cryogenic operation. Whereas mid-

IR QCLs have long ago attained continuous-wave room temperature operation [19],

no THz QCL to date operates above 186K (see design OWI222G in section 4.2.5,

and also [20]). This thesis details theoretical and experimental investigations into

the limits to temperature performance and progress made towards achieving higher

temperature operation.

The postulated limit to high temperature performance is degradation of popula-

tion inversion due to non-radiative scattering. With increasing temperature, scat-

tering mechanisms (most notably interactions with LO phonons) cause upper laser

subband electrons to transit to the lower laser subband without photon emission.

Section 3.2.1 later in this thesis elaborates further on this topic.

Solutions such as magnetic confinement [18, 21], zero-dimensional heterostruc-

tures [22], and new material systems (in particular, GaAsN [23]) have been proposed

in the literature to quench non-radiative scattering mechanisms. In particular, mag-

netic confinement has already proven capable of raising operating temperatures to

225K, but the equipment needed to generate the requisite ∼10-16T magnetic fields is

even less practical than cryogenic cooling equipment. Adequate zero-dimensional het-

erostructures have yet to be fabricated, and epitaxial growth in GaAsN is notoriously

difficult [24].

18



As an alternative, the MIT THz QCL group of Professor Qing Hu is pursuing the

less radical strategy of increasing the spatial separation between upper and lower laser

level wavefunctions, or the so-called “ diagonality” of the laser design. While high

diagonality carries its own disadvantages, calculated scattering rates indicate that

diagonality ensures the survival of population inversion up to room temperatures.

The thesis explores the effects of diagonality on THz QCL design, particularly on

observed experimental transport properties.

1.3 Thesis Overview

The remainder of this thesis is organized as follows.

• Chapter 2 expands upon the qualitative introduction given in this chapter,

explaining the physical models of QCL transport.

• Chapter 3 draws upon the theoretical foundation formed in chapter 2 to discuss

QCL design.

• Chapter 4 presents the analysis and experimental data for the devices studied,

and draws final conclusions.
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Chapter 2

The Theory of Quantum Cascade

Laser Operation

Although conceptually easy to understand, QCL operation is challenging to model

quantitatively. This is because electrical transport in a QCL is neither fully ballistic

nor fully scattering-assisted, so traditional approaches such as Landauer-Buttiker

transmission and the drift-diffusion equations do not apply. This chapter details the

semiclassical/quantum phenomenological methods that have been adapted for QCL

analysis. One must bear in mind that these methods, although useful, are highly

approximate.

In recent years, much effort has been devoted to the development of fully quantum

mechanical theories of transport in the formalism of Nonequilibrium Green’s Func-

tions (NEGF; see for example [25, 26]). This field of research is promising, but the

tremendous computational burden of NEGF prevents its regular use in design, and

even the best implementations presently available do not make consistently accurate

predictions.

There are two crucial transport processes which must be considered in detail:

carrier scattering and resonant tunneling.

21



2.1 The Envelope Function Approximation (EFA)

for Superlattices

Quantum cascade lasers are typically analyzed using effective-mass theory in the

envelope function approximation. There is extant work on QCL modeling using more

accurate microscopic approaches, such as the tight-binding approximation [27], but

the envelope function approximation remains invaluable for its simplicity and ability

to give rapid results.

The governing equation is the effective mass envelope function equation that de-

termines the wavefunction envelope F (r),

−∇ ~2

2m∗(r)
∇F (r) + V (r)F (r) = EF (r) (2.1)

where m∗(r) is a spatially varying effective mass encoding the effects of the semicon-

ductor crystal lattice on electron motion, and V (r) is the combination of potentials

due to conduction band-offsets of the superlattice and any externally applied electrical

potential. More generally, 1/m∗ can be a matrix for anisotropic bands, but this thesis

considers only the conduction band of AlxGa1−xAs, which is isotropic. Except for the

spatially varying effective mass, one notes that equation (2.1) is formally identical

to Schrödinger’s equation, so most quantum mechanical techniques apply directly.

Nevertheless, one should remember that F (r) is not the wavefunction per se; that is

given by Ψ(r) ≈ F (r)uk=0(r) where uk=0(r) is the zone-center Bloch amplitude.

Let the epitaxial growth direction of the QCL superlattice be denoted as ẑ. For a

QCL, one typically assumes that x− y plane is homogeneous and practically infinite.

This is justified by the large in-plane dimensions of real devices compared to the

quantum well dimensions along ẑ. Therefore, m∗(r) = m∗(z) and V (r) = V (z), and

one may assume plane wave solutions in-plane, namely

F (r) = F (z)
eik·ρ
√
A

(2.2)
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where ρ = xx̂ + yŷ, and k is the in-plane (not bulk) wavevector. Substituting this

into equation (2.1) yields

[
−~

2

2

d

dz

1

m∗ (z)

d

dz
+ V (z) +

~2k2

2m∗ (z)

]
Fn (z) = En

(
k
)
Fn (z) (2.3)

where the subscript n has been introduced to denote different eigensolutions. The

spatially varying effective mass in the kinetic energy term couples the z and x − y

solutions. This is a severe complication, so some average effective mass m∗ (typically

the well effective mass) is used in that term instead. One may rewrite equation (2.3)

as

[
−~

2

2

d

dz

1

m∗ (z)

d

dz
+ V (z) +

~2k2

2m∗

(
m∗

m∗ (z)
− 1

)]
Fn (z) =

(
En

(
k
)− ~

2k2

2m∗

)
Fn (z)

(2.4)

If the well and barrier effective masses are similar, or if the kinetic energy is modest

(typically true since QCLs tend to operate at low temperature), then the third term

on the LHS is negligible. Under this simplification, equation (2.3) becomes

[
−~

2

2

d

dz

1

m∗ (z)

d

dz
+ V (z)

]
Fn (z) = EnFn (z) (2.5)

where En = En

(
k
) − ~2k2/2m∗ is the quantization energy associated with the ẑ

direction. Equation (2.5) reduces the QCL analysis to an essentially 1D problem,

greatly easing analysis.

The final ingredient to completing the theoretical picture is the inclusion of bound-

ary conditions. At the junction between two semiconductor layers 1 and 2, the enve-

lope functions must satisfy

F1 = F2(
1

m∗
dF

dz

)

1

=

(
1

m∗
dF

dz

)

2

(2.6)

As the effective masses in a superlattice are discontinuous, this manifest as a “kink”

in the envelope function at layer boundaries.
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2.2 Approaches to Transport: on the Choice of

Basis

There are several formalisms for QCL transport using the envelope function theory

of section 2.1. A detailed discussion of all of them is beyond the scope of this thesis,

but the reader is the referred to the excellent review article by Wacker [28] for more

information.

2.2.1 Miniband conduction

Except for the spatially varying effective mass, the form of superlattice envelope

function equation (2.5) is exactly analogous to Schrödinger’s equation for an electron

in a periodic 1D potential. As such, one obvious approach to superlattice transport

is to simply elevate all the standard techniques of solid-state physics to the level of

the envelope functions. Although this picture is generally not used for QCL analysis,

it is important from a conceptual viewpoint.

In this approach, one diagonalizes the Hamiltonian of the unbiased superlattice,

assuming Bloch periodicity of the envelope function between superlattice periods.

This results in a superlattice miniband dispersion, with the resulting Wannier-Bloch

eigenstates analogous to the Bloch functions of a 1D atomic lattice (see figure 1-3).

The applied electric field is treated as a perturbation inducing an electron in a given

band to traverse the miniband Brillouin zone. Scattering processes induce changes

between different kz states and minibands.

Because the superlattice period is many hundreds of monolayers in length, the

miniband Brillouin zone is much smaller than the microscopic Brillouin zone of bulk

crystals. As such, it is much easier for an electron to fully traverse the miniband

Brillouin zone. One proposal for original Esaki-Tsu superlattice was to exploit these

Bloch oscillations for generating coherent THz radiation, and indeed, Bloch gain has

recently been confirmed in a QCL [29].
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Figure 2-1: Schematic of miniband conduction. Only the superlattice potential is
included in the Hamiltonian to be diagonalized, resulting in miniband continua of
states indexed by a “supermomenta” kz. Scattering happens between different mini-
bands and kz states, and an electric field induces evolution in kz (motion in the
super-Brillouin zone of envelope functions).

2.2.2 Wannier-Stark hopping: the semiclassical rate equa-

tions

This formalism chooses the eigenstates of the biased superlattice, the so-called Wannier-

Stark states, as the basis. Assuming periodicity of the QCL potential, these states

are periodic in energy and space: for any given eigenstate ψ(z) with energy E, there

will be a whole set of corresponding states with eigenfunctions ψ(z−nd), and energies

E − eEnd, where E is is the applied electric field, d is the superlattice period, and n

is an integer. This is known as the Wannier-Stark ladder (see figure 2-2), and is the

usual basis for QCL calculations. Transport occurs through scattering between these

eigenstates, in the manner of the classical Boltzmann transport equation. The scat-

tering rates themselves, however, are calculated quantum mechanically using Fermi’s

golden rule (hence this approach is “semiclassical”).

There are, however, some theoretical difficulties with the Wannier-Stark states; al-

though not so relevant to practical design, they are worth mentioning. The application

of an electric field yields (up to some additive constant) the potential eΦ(z) = −eEz.
A QCL superlattice is typically hundreds of periods long, making it effectively infi-
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Figure 2-2: Schematic of Wannier-Stark Hopping conduction. Both the superlat-
tice potential and the electric field are diagonalized, and transport occurs entirely
through scattering between eigenstates. Equivalent WS states in adjacent periods
are separated in energy by eEd.

nite in length. This results in a potential that extends essentially from −∞ to ∞ in

energy, and consequently there are no bound states in the superlattice. In fact, the

spectrum of the biased superlattice is mathematically proven to be continuous [30],

even for arbitrarily small biases. On the other hand, the spectrum of an unbiased

superlattice clearly has bound states, the experimental gain spectra of QCLs clearly

shows discrete structure, and experimental absorption studies in other superlattice

structures also support the existence of the Wannier-Stark ladder.

The resolution to this apparent paradox is that lasing in QCLs occurs between

resonant eigenstates that possess a discrete spectrum embedded inside a continuous

spectrum. One way to think about these resonant Wannier-Stark states is that they

are the bound states of the unbiased superlattice, but the applied field induces them

to possess a finite lifetime. This reflects that in the presence of a field, electrons

possess a finite probability of leaking out of the quantum wells over time. As the field

approaches zero, the escape rate approaches zero, or equivalently, the lifetime goes to

infinity.

But the wavefunctions of the Wannier-Stark states are proven to have exponen-

tially divergent tails at infinity, and hence are not unnormalizable in the usual sense

(〈ψ|ψ〉 = 1). This reflects that in the absence of scattering, electrons in a resonant

state will eventually leak out, and then accelerate indefinitely [31]. Fermi’s golden
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rule cannot be used with such pathological wavefunctions. Here, QCL design takes

a refreshingly straightforward approach: for want of a better solution, the issue of

unbounded wavefunctions is simply ignored. One or two modules of the superlattice

are modeled as a closed system with Dirichlet boundary conditions (F (z) = 0 at

simulation boundaries), and the resulting wavefunctions are normalized over the one

or two module lengths. The resulting wavefunctions are well behaved, and Fermi’s

golden rule applies.

There is no mathematically rigorous justification for this artificial approach to

boundary conditions. Physically, however, the heavy scattering in semiconductor

systems would prevent the indefinite acceleration corresponding to the unnormaliz-

able tail of the Wannier-Stark states. The states of interest are quite often located

energetically far below adjacent quantum barriers, such that one would expect the

resonant lifetime to be long in comparison to scattering induced lifetimes. In this

situation, the expectation that the electrons should be localized to within one or two

modules is reasonable. However, the resonant lifetimes grow shorter at high applied

fields, and the lifetime associated with “over-barrier” escaping electrons may possibly

become significant even in comparison to scattering mechanisms.

Perhaps the strongest endorsement of this method, however, is purely empirical:

practically all QCLs are designed using this approach, and the success of all these

devices attest to the validity of this method, even though its theoretical foundations

may not be solid.

Analytical QCL rate equation model

As an example of a rate equation approach, QCLs are often described by a restricted

rate equation model examining only the upper and lower laser subbands coupled to

the optical field in the device. Although this model attains reasonable quantitative

agreement with mid-IR devices, it is insufficient for THz devices. Nevertheless, it

deserves a brief overview here on account of its ubiquity in the literature, and also

because it has some utility in the qualitative description of THz QCLs.

Consider a QCL consisting of Nm modules and volume V enclosed in a waveguide
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whose modes have uniform photon density (unachievable in practice of course, but

consideration of the detailed modal information garners no additional insight). Let

the upper and lower laser subband populations in the total device volume be denoted

as n3 and n2 respectively (the designation “1” is normally reserved for the injector

subband; see chapter 3). Let there be a single lasing mode of negligible spectral

width, modal volume Vph and total photon number nph. Then the rate equations for

n3, n2 and nph are

dn3

dt
=

ηINm

e
− n3

τsp
− n3 − n2

τ ′sp

(
nph

Vph

· V
Nm

)
− n3

τ3

dn2

dt
=

(1− η)INm

e
+
n3

τsp
+
n3 − n2

τ ′sp

(
nph

Vph

· V
Nm

)
+
n3

τ32

− n2

τ2

dnph

dt
=

n3

τ ′sp
+
n3 − n2

τ ′sp

(
nph

Vph

· V
Nm

)
− nph

τph

(2.7)

The other symbols above are defined as follows:

• I is the device current. It is taken to be a model parameter.

• 0 < η < 1 is the injection efficiency into the upper level. It is taken to be a

model parameter.

• τsp is the total spontaneous emission rate, and τ ′sp is the spontaneous emission

rate into the lasing mode.

• τ32 is the scattering lifetime of non-radiative processes from the upper to lower

subband.

• τ3 is the scattering lifetime of other upper level non-radiative processes.

• τ2 is the scattering lifetime of lower level non-radiative processes.

• τph is the photon lifetime in the optical cavity.

The term
(

nph

Vph
· V

Nm

)
reflects that stimulated emission is proportional to the number

of photons in each module, rather than the total number of photons. One may
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abbreviate V/Vph as Γ, the confinement factor, which measures the fraction of the

optical mode overlapping with the active region.

In steady state, one sets all time derivatives in equations (2.7) to zero, and solves

for the electron and photon populations. Above threshold, one must be careful to

solve the equations with the amount of population inversion n3−n2 held constant. Of

particular interest is the degree of subthreshold population inversion, as this deter-

mines whether there will be positive gain for lasing. Subthreshold radiative lifetimes

are typically orders of magnitude higher than non-radiative lifetimes, so one may

neglect all radiative terms. The result is that

∆n = n3 − n2 =
INm

e

[
ητ3

(
1− τ2

τ32

)
− (1− η)τ2

]
(2.8)

Let η ∼ 1 (this is not necessarily—or even likely to be— true, but is done for simplicity

due to the difficulty of determining η from experiment or calculation). One finds that

∆n ∝ τ3

(
1− τ2

τ32

)
(2.9)

This simple rate equation model can be developed much further; the reader is

referred to [32] for more elaborate treatments. However, due to the model’s limited

applicability to THz devices, this section stops here.

2.2.3 Density matrix transport: the Kazarinov-Suris model

As a Boltzmann transport equation-like model, the Wannier-Stark hopping model de-

scribed in section 2.2.2 admits a simple physical description and appeals to intuition.

Current conduction occurs between the Wannier-Stark eigenstates having different

average positions, enabling an electron to hop down the superlattice. However, fur-

ther examination reveals a number of contradictions.

From a conceptual viewpoint, whereas Wannier-Stark hopping describes current

as being driven by scattering, the miniband conduction model describes current as

caused by coherence. In the miniband conduction model of transport, scattering in-

duces transitions to different kz states, possibly in different minibands, but does not
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change the average position of the electrons. Instead, the field-induced coherent evo-

lution of the Wannier-Bloch states carries the current, and scattering is only relevant

insofar as it interrupts the evolution.

From a empirical viewpoint, Callebaut has shown that the Wannier-Stark hopping

model predicts unphysical behavior for current densities [33]. This is best explained

by an example. Figure 2-3a depicts a two-well superlattice biased such that two

single well states align in energy as indicated. When this resonance1 or anticross-

ing occurs, diagonalization to calculate the Wannier-Stark states yields a delocalized

bonding/anti-bonding pair separated by an anticrossing gap, ∆. In the Wannier-Stark

hopping model, transport occurs through scattering from this pair into subsequent

modules. Although increasing the barrier thickness decreases the size of the anti-

crossing gap, the wavefunctions are nearly unchanged, resulting in a current density

essentially independent of barrier width. Experimentally, increasing the barrier thick-

ness does decrease current density, a result consistent with physical intuition.

(a) (b)

Figure 2-3: (a) Extended wavefunctions used in Wannier-Stark hopping. (b) Localized
wavefunctions coupled through a barrier used in the Kazarinov-Suris model. The gap
between the extended states is ∆ = EA − ES ≈ 2U

The unphysical behavior of the Wannier-Stark hopping model is due to the neglect

of coherent transport. To account for coherent effects, Kazarinov and Suris proposed

a phenomenological density matrix model based on localized states (such as single

well states2). Consider the same two-well superlattice in figure 2-3b. This time, the

1Not to be confused with the “resonant eigenstates” discussed in section 2.2.2; those are eigen-
states with finite lifetime even in the absence of scattering.

2These have some complications in that they are not strictly orthogonal, which the present
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two states in resonance are modeled as a dissipative two-level system coupled through

an interaction potential U . In matrix form, the Hamiltonian is

H =


 E1 −U
−U E2


 (2.10)

Diagonalizing H yields bonding and anti-bonding Wannier-Stark levels as before,

with the coupling U responsible for the anticrossing gap at resonance (E1 = E2). The

density matrix evolves according to

i~
d

dt
ρ = [H, ρ] + i~Γ(ρ) (2.11)

where the commutator [H, ρ] describes coherent evolution and Γ is the dissipation

super-operator describing coupling to the environment (in this case, other superlattice

states). Γ is approximated using a phenomenological relaxation time expression of

the form

Γ(ρ) =




ρ22

τ
−ρ12

τ||

−ρ21

τ||
−ρ22

τ


 (2.12)

In this picture, transport occurs via two mechanisms. A particle initially localized in

state 1 in the left well will resonantly tunnel into state 2, and back again, much like

the Rabi oscillations of an optical two-level system; these oscillations are interrupted

(damped) by the scattering of electrons from state 2 into state 1 of a subsequent

superlattice period, with some time constant τ . In addition, there may be processes

that do not change populations (the diagonal elements ρ11 and ρ22), but nonetheless

scramble the coherence of the tunneling process; the overall phase-breaking time τ||

combines the effects of these “pure” dephasing processes with the phase-breaking due

to population changing scattering. Let the total electron population be N , such that

ρ11 + ρ22 = N . Solving equation (2.11) for steady state yields the Kazarinov-Suris

discussion ignores. A more appropriate choice might be, say, the Wannier function basis. The
crucial point is that the basis is localized.
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expression for the current through the barrier,

J =
eNρ22

τ
= eN

2Ω2τ||
4Ω2ττ|| + ω2

21τ
2
|| + 1

(2.13)

where Ω = U/~ and ω21 = (E2 − E1)/~.

Consider the case of resonance (ω21 = 0). For strongly interacting states (thin

barrier), |Ω| À 1/
√
ττ||. Electrons in this regime oscillate freely between states 1 and

2 with only light damping due to scattering effects (oscillations are underdamped).

This case yields

J ≈ eN

2τ
(2.14)

This expression is indeed independent of the interaction Ω between the two states

and the phase-breaking time τ||. Transport is determined essentially by the scattering

time in this regime, so one expects the Wannier-Stark hopping model to be valid. In

contrast, for weakly interacting states (thick barrier), |Ω| ¿ 1/
√
ττ||. Electrons in

this regime scatter rapidly but tunnel slowly (oscillations are overdamped). This case

yields

J ≈ 2eNΩ2τ|| (2.15)

Here one finds that current density is strongly dependent on the interaction between

the two states and is sensitive to phase-breaking processes. This recovers the exper-

imental result that current density does depend on the barrier width, as the barrier

width factors into both Ω and τ||.

Note that the relaxation time approximation for Γ does not recover sensible results

if the delocalized Wannier-Stark states are used as the basis. Although physical

results should in principle be independent of the quantum basis, equation (2.12) for Γ

is approximate, and our choice of basis affects the quality of the approximation. This

can be illustrated by an example. At resonance (E1 = E2), diagonalizing equation

(2.10) yields

H = SHDS
† (2.16)
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where

HD =


 E − U 0

0 E + U


 =


 ES 0

0 EA


 , S =

1√
2


 1 1

1 −1


 (2.17)

The density matrix equation of motion (2.11) can be changed to the eigenbasis by

multiplying both sides from the left by S† and from the right by S (in this particular

example S = S†). The result is

i~
d

dt
ρD = [HD, ρD] + i~ΓD(ρD) (2.18)

where

ρD = S†ρS =


 ρSS ρSA

ρAS ρAA




=




1
2
(ρ11 + ρ12 + ρ21 + ρ22)

1
2
(ρ11 − ρ12 + ρ21 − ρ22)

1
2
(ρ11 + ρ12 − ρ21 − ρ22)

1
2
(ρ11 − ρ12 − ρ21 + ρ22)


 (2.19)

ρ = SρDS
† =


 ρ11 ρ12

ρ21 ρ22




=




1
2
(ρSS + ρAS + ρSA + ρAA) 1

2
(ρSS − ρAS + ρSA − ρAA)

1
2
(ρSS + ρAS − ρSA − ρAA) 1

2
(ρSS − ρAS − ρSA + ρAA)


 (2.20)

and

ΓD = S†ΓS (2.21)

=


 − 1

2τ||
(ρ21 + ρ12)

ρ22

τ
− 1

2τ||
(ρ21 − ρ12)

ρ22

τ
+ 1

2τ||
(ρ21 − ρ12)

1
2τ||

(ρ21 + ρ12)




=




− 1
2τ||

(ρSS − ρAA)
1
2τ

(ρSS − ρAS − ρSA + ρAA)

− 1
2τ||

(ρAS − ρSA)

1
2τ

(ρSS − ρAS − ρSA + ρAA)

+ 1
2τ||

(ρAS − ρSA)

1
2τ||

(ρSS − ρAA)



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The on-diagonal scattering has the expected form of a rate equation involving the

populations, but the off-diagonals do not evolve through a simple relaxation of the

form −ρAS/τD||.

Use of the Wannier-Stark basis leads to the erroneous conclusion that coherence

plays no role in QCL transport. Unfortunately, Iotti and Rossi in their 2001 paper [34]

introducing the use of ensemble Monte Carlo methods for QCL transport appears to

have done exactly this: they employed a density matrix model in the Wannier-Stark

basis with a scattering superoperator analogous in form to equation (2.12), with rates

calculated using Fermi’s golden rule. Perhaps this is the reason why they came to

the conclusion that a QCL’s transport is essentially incoherent. Callebaut modified

the Monte Carlo density matrix technique to employ a tight-binding basis [35], and

in doing so recovered the importance of coherence to transport. Weber et al. have

also studied QCLs using a first principles density matrix formalism in the Wannier-

Stark basis, concluding that coherence is crucial to transport [36]. The importance

of coherence in QCL transport has also been affirmed in studies using the methods

of NEGF [26,37].

Quantitative application of the Kazarinov-Suris model is difficult because of large

uncertainty in τ and τ||, and because often more than two states are of interest.

However, it highlights the key role of the anticrossing gap ∆ of delocalized Wannier-

Stark states. This is because the interaction between the corresponding localized

states can be estimated by U ≈ ∆/2, and hence ∆ is a key metric of resonant

tunneling through thick barriers, where Wannier-Stark hopping is invalid. Chapter 3

considers in detail the injection anticrossing and the collection anticrossing.

2.3 Numerical Determination of Eigenfunctions

Equation (2.5) admits tractable analytical solutions only for a few simple potentials,

such as the prototypical unbiased, single quantum well. In general, a numerical

solution is faster and more fruitful. This section covers two common methods, and a

useful, but lesser known third.
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2.3.1 Finite difference method

The finite difference method approximates the differential equation to be solved by

its values on a mesh of uniformly spaced points. Let the computational domain be

of length L, meshed with N points spaced by δz = L/(N − 1), and assume Dirichlet

boundary conditions. A 2nd order finite difference approximation of the envelope

function derivative is

d

dz
F (z) ≈ F (z + δz)− F (z − δz)

2δz
(2.22)

Interestingly, if F is a vector whose entries are the values of the envelope function

at the grid points (F [i] = F (i × δz)), then equation (2.22) defines a linear matrix

algebra transformation for F . That is, if G is the vector representing the derivative

of F (z), then F and G are related by

G = D
1
F (2.23)

where D
1

is the infinite, tridiagonal matrix

D
1

=
1

2δz




. . . . . .

. . . 0 1

−1 0 1

−1 0
. . .

. . . . . .




(2.24)

Similarly, multiplication by a scalar function, such as the potential V (z), can be

represented as multiplication of F by a diagonal matrix.

V =




. . .

V [0]

V [1]

V [2]
. . .




(2.25)
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where, like the definition for F , V [i] = V (i× δz). Therefore, one may write down by

inspection the finite difference approximation of equation (2.5) as a matrix eigenvalue

problem.

[
−~

2

2
D

1
M−1D

1
+ V

]
F = EF (2.26)

where M−1 is the inverse effective mass matrix, which is diagonal like V . Finally,

enforcing Dirichlet boundary conditions means F [0] = 0 and F [N ] = 0; this enables

truncation of the infinite dimensional matrix value problem of equation (2.26) into

a (N − 2) × (N − 2) matrix value problem, which can be solved by any eigenvalue

method of numerical linear algebra.

2.3.2 Shooting method

The finite difference methods above returnsN−2 eigenstates, but one is normally only

interested in a few of the lowest energy eigenstates. The numerical approximation

worsens as the characteristic oscillations of the envelope function approaches the

finite difference step size, so beyond some point in energy, the computed eigenstates

degenerate into numerical garbage. This motivates the use of the shooting method,

which directly computes the lowest energy eigenstates one at a time.

The shooting method for eigenfunction determination solves a 1D boundary value

problem using the numerical methods of time-dependent ordinary differential equa-

tions. A typical time-dependent problem starts at an initial condition at some time

t, and uses some approximation of the differential equation to determine the solution

at a later time t′ = t+ δt. In this manner, the solution can be traced in time by steps

of δt.3 In the shooting method, the same procedure is applied to a spatial coordinate.

The solution at some boundary z1 is integrated forward by steps of δz until a second

boundary z2 is reached. However, in the shooting method, some of the boundary con-

3Although the section assumes constant δt, this is not necessary in general. Clever shooting
method implementations may adjust δt in response to how quickly they perceive the solution to be
changing at a given current point in time, optimizing the trade-off between resolution and solution
speed.
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ditions at z1 and the eigenvalues are left as adjustable parameters to fit the boundary

conditions at z2. This motivates the name “shooting method”: one targets (“shoots

at”) a boundary condition on the opposite side of the computational domain.

An example is helpful for clarification; the following shooting method is presented

by Harrison for the solution of equation (2.5) [38]. One starts by deriving the following

finite difference approximation of equation 2.5:

[
−~

2

2

d

dz

1

m∗ (z)

d

dz
+ V (z)

]
F (z) = EF (z)

⇒ −~2

2δz

[
1

m∗(z + δz/2)

dF

dz

∣∣∣∣
z+δz/2

− 1

m∗(z − δz/2)

dF

dz

∣∣∣∣
z−δz/2

]
+ V (z)

= EnFn(z)

⇒ −~2

2δz

[
1

m∗(z + δz/2)

F (z + δz)− F (z)

δz
− 1

m∗(z − δz/2)

F (z)− F (z − δz)

δz

]

+V (z) = EnFn(z)

⇒ −~2

2(δz)2

[
F (z + δz)− F (z)

m∗(z + δz/2)
− F (z)− F (z − δz)

m∗(z − δz/2)

]
+ V (z) = EF (z) (2.27)

In the above, Harrison takes m∗(z ± δz/2) to be the average effective mass between

two points, but another possible choice is to instead calculate the average inverse

effective mass between two points; the difference is small unless the heterostructure

has extremely mismatched effective masses. One may rewrite equation (2.27) to yield

the solution for a subsequent point as function of the previous two points. This reads

F (z + δz)

m∗(z + δz/2)
=

[
2(δz)2

~2
(V (z)− E) +

1

m∗(z + δz/2)
+

1

m∗(z − δz/2)

]
F (z)

− F (z − δz)

m∗(z − δz/2)
(2.28)

Using Dirichlet boundary conditions, the initial conditions at the left-hand side of

the simulation boundary are that F (z = 0) = 0 and F (z = δz) is any non-zero

value. The arbitrariness of F (z = δz) is because eigenfunctions are unique only

up to a multiplicative constant, said constant being determined by wavefunction

normalization requirements and itself determined only up to a complex phase factor.
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Integrating over to z = L, one treats F (z = L) as a function of E, and scans E

through some range of energies to find solutions satisfying F (z = L) = 0. A root-

finding algorithm (for example, the secant method or Newton-Ralphson method) is

used to refine the value of E when close to an eigenvalue.

Paul and Fouckhardt introduced a superior shooting method in [39]. In this

alternate method, one defines

G(z) =
1

m∗(z)
d

dz
F (z) (2.29)

and specifies different, but coupled, shooting equations for F and G. This yields

G(z + δz) = G(z) +
2δz

~2
(V (z)− E)F (z)

F (z + δz) = F (z) + δz m∗(z)G(z) (2.30)

These equations are simpler to compute than equation (2.28), and reference [39] also

shows them to be more numerically stable.

2.3.3 Spectral element method

Before discussing the spectral element method, one must first understand the more

specific technique of spectral methods. This thesis could not possibly do justice to this

rich subject area, so the introduction here is necessarily qualitative. The interested

reader is referred to Boyd’s excellent textbook [40].

Spectral methods take a philosophically different approach to numerical solution

from the finite difference approximation on which both the finite difference method

and the shooting method is based. Spectral methods pick some basis of orthogonal

functions, and assume that the solution of a problem can be expanded in this basis.

One then attempts to find the expansion coefficients of the series. Whereas accuracy

of a solution is determined by the step size δz in the finite difference approximation, it

is determined by the number of terms retained in the expansion in spectral methods.

Qualitatively, one could say that finite difference method finds exact solutions to
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an approximation of the problem, whereas spectral methods try to find approximate

solutions to the exact problem. A well-chosen basis results in exponentially fast

convergence. Since finite difference methods converge only algebraically, spectral

element methods practically always achieve better accuracy for a given number of

points—sometimes dramatically so.

Like in quantum mechanics, the choice of basis depends somewhat on the problem

at hand, but is also largely a matter of taste. Surprisingly, there exist a class of

orthogonal functions whose expansion coefficients are equal to the value of the solution

at certain points (nodes), the Lagrange interpolation polynomials. It turns out that

if these points are chosen to be zeros or extrema of another basis set (usually the

Chebyshev polynomials of the first kind), the Lagrange interpolation polynomials will

inherit the same convergence properties. Ironically, the practical implication of using

the Lagrange interpolation polynomials as a spectral basis is that the spectral method

is merely solving for the values of the solution on a non-uniform grid. Phrased as

such, this pseudospectral method does not sound so different from the finite difference

method, despite the philosophical differences explained previously.

A major difficulty with spectral methods, however, is that they lose their excel-

lent convergence properties in the vicinity of discontinuities. A well-known example of

this is Gibb’s phenomena seen in the Fourier expansion of piecewise continuous func-

tions. Unfortunately, the envelope function problem for a heterostructure is riddled

with discontinuities, both in the effective mass and in the potential. The solution,

as first advocated by Patera [41], is to divide the computational domain into smooth

sub-domains, or elements, each possessing its own series expansion, and then enforce

boundary conditions between elements. A superlattice lends itself well to this ap-

proach, as one can treat each layer as a separate element. This essentially combines

spectral methods with the finite element method, resulting in the spectral element

method.

Unfortunately, the mathematics of the spectral element method are significantly

more complicated to derive. The pseudospectral variant used in this thesis is based

on the method reported in [42]. It uses the Gauss-Legendre-Lobatto (GLL) nodes, and

39



possesses the convergence properties of a direct expansion in Legendre polynomials.

On the normalized interval [-1,1], the N GLL nodes are the extrema of the (N − 2)th

Legendre polynomial and the two end-points ±1. Denoting these as ζn, they can be

remapped as necessary onto any other linear interval [a, b] through the transformation.

zn =
b+ a

2
+ ζn

b− a

2
(2.31)

Let the Lagrange interpolation polynomials be denoted bn(z). The derivation starts

by considering just a single element. First, the inner produce (integral) of both sides

of equation (2.5) is taken against an arbitrary bm(z) (readers familiar with finite

element methods will recognize this as Galerkin’s method). This yields

−~
2

2

∫

C

dz bm
d

dz

1

m∗
d

dz
F +

∫

C

dzbmV F = E

∫

C

dzbmF (2.32)

where C is the length of the element under consideration, and the argument depen-

dences of the functions have been suppressed for clarity (eg. F really should be F (z)).

The first term is expanded using integration by parts

∫

C

dz bm
d

dz

1

m∗
d

dz
F

=

[
bm
m∗

dF

dz

]

∂C

−
∫

C

dz
dbm
dz

1

m∗
dF

dz

= δm0

[
1

m∗
dF

dz

]

z=z0

− δmN

[
1

m∗
dF

dz

]

z=zN

−
∫

C

dz
dbm
dz

1

m∗
dF

dz
(2.33)

The last step above uses a property of the Lagrange interpolation polynomials that

bm(zn) = δmn, where zn is the nth GLL node. Next, the series expansion

F (z) =
N∑

n=1

Fnbn(z), (2.34)
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where Fn = F (zn), is inserted into equations (2.32) and (2.33), yielding

−δm0

[
~2

2m∗
dF

dz

]

z=z0

+ δmN

[
~2

2m∗
dF

dz

]

z=zN

+
~2

2

N∑
n=1

[∫

C

dz
dbm
dz

1

m∗
dbn
dz

]
Fn

+
N∑

n=1

[∫

C

dz V bmbn

]
Fn = E

N∑
n=1

[∫

C

dzbmbn

]
Fn (2.35)

In principle, the integrals above can be integrated analytically, but numerical integra-

tion in this case is much simpler. Conveniently, the GLL nodes are the same nodes

at which a function needs to be evaluated in order to perform Gaussian quadrature.

Gaussian quadrature of order N approximates a normalized integral in [-1,1] as

∫ 1

−1

f(ζ)dζ ≈
N∑

p=1

wpf(ζp) (2.36)

and for an arbitrary interval [a, b],

∫ b

a

f(z)dz ≈
N∑

n=1

(b− a)wp

2
f(zp) =

N∑
p=1

Wpfp. (2.37)

(The integration weights wp are given in [40]). Applying Gaussian quadrature and

after doing some algebra, equation (2.35) becomes

−δm0

[
~2

2m∗
dF

dz

]

z=z0

+ δmN

[
~2

2m∗
dF

dz

]

z=zN

+
~2

2

N∑
n=1

[
N∑

p=1

dbm(zp)

dz

Wp

m∗
p

dbn(zp)

dz

]
Fn

+VmWmFm = EWmFm (2.38)

Equation (2.38) defines a set of N equations in the element of consideration; essen-

tially, it leaves one with a mini-matrix problem for each element, and it remains

to combine them. Consider now two adjacent regions A and B, with NA and NB

points respectively. At the boundary between A and B, boundary conditions (2.6)

imply that FA(zN,A) = FB(z0,B), motivating one to add together the last equation

of A and the first equation of B. But the boundary terms
[
~2

2m∗
dFA

dz

]
z=zN,A=z0,B

and
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[
~2

2m∗
dFB

dz

]
z=zN,A=z0,B

are equal, and so cancel. The essential point is that all the in-

ternal boundary terms between elements cancel out when the sets of equations for

different elements are combined. Furthermore, Dirichlet boundary conditions enables

one to discard the external boundary terms at the edges of the computational domain.

Ultimately, one finds that equation (2.5) can be approximated by the generalized, lin-

ear, matrix eigenvalue problem

[
~2

2
DT

1
M−1W D

1
+ V W

]
F = A F = EW F (2.39)

It is difficult to discuss the structure of the matrices without a specific example, so

consider a computational domain partitioned into 3 elements with 4, 3 and 5 nodes,

respectively. Consider D
1
: each element will contribute an elemental sub-matrix and

these will be assembled into D
1

by “overlapping and adding together at the corners.”

For example, the elemental sub-matrix of the first element has elements defined by

[
D(1)

1

]
mn

=
db

(1)
n (zm)

dz
(2.40)

where b
(1)
n are the Legendre interpolation polynomials for region 1 (formulae for the

pseudospectral differentiation matrices are given in [40, 43]). D
1

is schematically

shown in 2-4. The inverse effective mass matrix M−1 and the matrix of Gaussian

quadrature weightsW are similarly assembled from the inverse masses and quadrature

weights evaluated at the nodes in each element. (Conveniently, these last two matrices

are diagonal.)

The problem specification is complete at this point, but Cheng et al. [42] introduce

a final numerical method to turn generalized eigenvalue problem (2.39) into a regular

eigenvalue problem by manipulating equation (2.39) into

A F = EW F

⇒ W−1/2A
(
W−1/2W 1/2

)
F = EW 1/2 F

⇒ A′F ′ = EF ′ (2.41)

42



Figure 2-4: Schematic of pseudospectral differentiation matrix for the spectral element
method, for a hypothetical computational domain partitioned into three elements
having 4, 3, and 5 nodes, respectively. The differentiation matrices for each region
are assembled intoD

1
by overlapping and adding together boundary entries (indicated

in grey). Dirichlet boundary conditions enable one to strike out the first and last rows
and columns (dotted lines).

Where A′ = W−1/2A W−1/2 and F ′ = W 1/2F . As with the finite difference method,

this eigenvalue problem can now be solved using any eigensolver.

2.3.4 Comparison of methods

Both the finite difference method and spectral element method require linear algebra

eigensolvers; the most basic and reliable of these is the QR method, and its cousin

for generalized eigenvalue problems, the QZ method [40]. Unfortunately, the QR/QZ

methods can be numerically expensive, with costs scaling as O(N3) where N is the

matrix size or number of nodes (these being approximately equal). In contrast, as-

suming some average number of root-finding iterations for each eigenfunction, the

shooting method scales as O(NM), where M is the number of points to scan in

energy (assuming linear scan). M will depend on the number of eigenfunctions re-

quested and the nature of the particular potential. For example, one might expect

that M would scale as the square of the number of requested eigenfunctions in an
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infinite quantum well. But in general, M will be modest compared to N2. This favor-

able scaling makes the shooting method potentially the fastest of the three methods,

achieving finite difference accuracy at a fraction of the cost of eigensolver routines

when N becomes large.

Unfortunately, the shooting method’s speed comes at the cost of stability. From

quantum mechanics, Schrödinger’s equation in regions where the potential energy

surpasses the particle energy leads to exponentially growing or decaying waves with

imaginary wavevector. The exponentially divergent solutions frequently lead to nu-

merical overflow when one integrates from a well into a thick barrier, causing the

shooting method to crash (for this reason it is also necessary to shoot in the direction

of decreasing electric potential energy). Although the shooting method usually does

converges, it is the author’s experience that there is no easy way of predicting when

it does not, nor of salvaging broken problems. In contrast, both the finite difference

method and spectral element method are very robust.

The advantage of spectral elements over finite differences is that the exponential

accuracy of the former enables one to use far fewer solution nodes. This greatly

speeds up the QR algorithm. As numerical methods are not the focus of this thesis,

this section makes no attempt at a controlled study comparing finite differences and

spectral elements (see [42] for such a study), but nevertheless, a semi-quantitative

example is illuminating.

This thesis uses a custom spectral element code developed in MATLAB 7.0. The

tool of choice for the last three generations of graduate students working on the

THz QCL project at MIT is the SEQUAL 2.1 finite difference code developed in the

1980s at Purdue University [44] (the order of the finite difference approximation is

unknown). The spectral element code of this thesis normally uses 1 node every 2

monolayers, whereas the SEQUAL 2.1 convention is to use 2 nodes per monolayer.

Ignoring prefactors to the computational costs, the QR algorithm scaling suggests a

64-fold reduction in computation time. To test this, table 2.1 compares the perfor-

mance of this thesis’s code and SEQUAL 2.1 in computing the two-module eigenstates

of QCL design OWI185E-M1 (see section 4.2.3). It is difficult to get both programs to
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SEM SEQUAL 2.1
0.5pts 1.0pts Rel. err 2.0pts 4.0pts Rel.err

Eij /ML /ML (%) /ML /ML (%)
(meV) (meV) (meV) (meV)

E32 37.80 37.80 0.466e-4 37.90 37.94 -0.0933
E43 5.138 5.138 5.765e-4 5.127 5.129 -0.0544
E54 5.137 5.137 -2.628e-4 5.162 5.164 -0.0341
E65 13.75 13.75 -0.327e-4 13.95 13.98 -0.2419
E76 3.212 3.212 11.65e-4 3.182 3.176 0.2009
E87 35.57 35.57 -1.435e-4 35.72 35.76 -0.1157
E98 4.809 4.809 5.868e-4 4.802 4.8 0.03521
E10,9 2.737 2.737 -15.10e-4 2.257 2.238 0.8526
E11,10 2.621 2.621 13.48e-4 3.133 3.16 -0.8472
E12,11 9.425 9.425 -3.812e-4 9.138 9.095 0.4791
E13,12 7.192 7.192 13.23e-4 7.627 7.685 -0.7600
E14,13 23.78 23.78 -4.075e-4 23.33 23.28 0.1980
E15,14 13.72 13.72 0.010e-04 13.81 13.83 -0.1357

Time(s) 0.083 0.600 2.75 23.0

Table 2.1: Performance comparison of custom spectral element method (SEM) im-
plemented in MATLAB 7.0 versus SEQUAL 2.1. Reported are the energy differences
between adjacent eigenstates at different resolutions. The relative error is specified
relative to the higher resolution calculation for both methods.

agree on exactly the same eigenvalues (due to slight differences in parameters, round-

ing, etc.), so table 2.1 compares relative accuracy for each program: for each method,

the eigenvalue problem is solved, and then the calculation is repeated with twice the

resolution. The results from the differing resolutions are compared to see how well

converged the solution is. Although the results of table 2.1 are not well controlled (for

example, SEQUAL must spend spend additional time writing results to hard drive,

making the contest stacked against it), the spectral element method clearly outper-

forms SEQUAL 2.1 in both speed and relative accuracy. The actual speed increases

are ∼33 between the two low resolution computations, and ∼38 between the two high

resolution calculations. The reasons for the factor of ∼2 discrepancy from 64 are not

known.

A few minor points in closing: there is also a risk of the shooting method acciden-

tally skipping over closely spaced eigenvalues, but it is the author’s experience that

the aforementioned stability problems are a more severe issue. On the other hand,
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the shooting method can account for non-parabolicity using a energy-dependent effec-

tive mass at no additional cost. In contrast, equation 2.5 with an energy dependent

effective mass cannot be cast into a linear eigenvalue problem, so the finite difference

method and spectral element method both require iterative solutions where none were

necessary before. However, non-parabolicity is generally not considered in this thesis.

Finally, the spectral element method’s non-uniform grid accommodates layers of ar-

bitrary thickness, not just multiples of the step-size δz as in the finite difference and

shooting methods.

2.4 Non-radiative Scattering Mechanisms

Having established the eigenstates of the biased superlattice, this section considers the

scattering mechanisms which drive transport. All scattering rates here are calculated

using Fermi’s golden rule.4 The treatment here is standard. The derivations below are

also covered in Smet [45], Callebaut [33], Harrison [38], and other excellent sources.

The eigenstates of the superlattice are uniquely identified by a subband number

and an in-plane momentum.5 In this context, Fermi’s golden rule for scattering

from a state i, ki (subband i with momentum ki, energy Ei(ki) = Ei +
~2k2

i

2m∗ , and

envelope function Fi(z)
eiki·r√

A
) to a state f, kf (subband f with momentum kf , energy

Ef (kf ) = Ef +
~2k2

f

2m∗ , envelope function Ff (z)
e
ikf ·r√

A
) due to a time-harmonic perturbing

potential H ′(t) = H ′e±i∆E/~t reads

W
(
i, ki → f, kf

)
=

2π

~
∣∣〈f, kf | H ′ | i, ki

〉∣∣2 δ (
Ef (kf )− Ei(ki)±∆E

)
(2.42)

where ∆E is the energy absorbed from or released to an intermediate entity such as

a phonon or photon, and δ represents the Dirac delta function; its presence reflects

that energy must be conserved over long time scales.

A note on the calculation of matrix elements in Fermi’s Golden Rule: given two

4First formulated by Dirac, Fermi being its titular spokesman notwithstanding.
5Spin is ignored here because spin-up and spin-down are degenerate in the absence of an applied

magnetic field
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perturbations H ′
1 and H ′

2, one normally proceeds to calculate
∣∣〈f, kf | H ′

1 | i, ki

〉∣∣2 and
∣∣〈f, kf | H ′

2 | i, ki

〉∣∣2 instead of
∣∣〈f, kf | H ′

1 +H ′
2 | i, ki

〉∣∣2. While the latter matrix

element seems more mathematically well motivated, the cross-terms between H ′
1 and

H ′
2 complicates analysis. The standard approach is much more convenient because,

by neglecting these cross-terms (correlations), scattering rates for each mechanism

can be calculated independently and directly added together. The neglect of cross-

terms is physically equivalent to assuming uncorrelated scattering mechanisms, which

is an assumption somewhat justifiable given that Fermi’s golden rule is accurate only

in reflecting mean behavior of weak scattering over long time scales. But ultimately,

the real motivation is probably mathematical convenience: given that any golden rule

analysis is only approximate anyway, the extra rigor likely nets little advantage over

the simpler approach.

2.4.1 Scattering by longitudinal optical phonons

Scattering by longitudinal optical (LO) phonons is the most important scattering

mechanism in QCL transport, since it yields sub-picosecond scattering times in polar

semiconductors such as GaAs/AlGaAs. This is a two-edged sword. The phonon

depopulation QCL designs studied in this thesis (see chapter 3) use this ultrafast

LO phonon scattering for depopulating the lower laser subband to create population

inversion, but it is also hypothesized to be a major source of non-radiative scattering

of electrons from the upper laser subband (recall section 1.1).

The section treats scattering of subband electrons from a thermalized gas of dis-

persionless, bulk GaAs LO phonon. This treatment is approximate, since the differing

mechanical properties of quantum wells and quantum barriers will induce quantiza-

tion in the phonon spectrum as well. However, studies by Williams [46] and Gao [47]

suggest that calculations based on detailed phonon spectra make little difference to

overall scattering rates. Because QCLs are mostly GaAs (the barriers are typically

only 15%-30% aluminum), even in more detailed calculations scattering tends to be

dominated by GaAs-like phonon modes [46]. Moreover, screening and renormalization
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effects due to charges from other electrons are ignored.

Let the phonon momentum be denoted Q (q will be reserved for the in-plane

momentum). The interaction Hamiltonian is

H ′
LO(t) =

∑

Q

α(Q)
[
b(Q, t)eiQ·r + b†(Q, t)e−iQ·r

]
(2.43)

where b†(Q, t) = b†
Q
e−iωLOt and b(Q, t) = bQe

iωLOt are phonon creation and annihila-

tion operators. The term α
(
Q

)
is the Frölich interaction strength given by

∣∣α(Q)
∣∣2 =

1

V

e2~ωLO

2Q2

(
1

ε∞
− 1

εs

)
(2.44)

where V is the system volume, ~ωLO ≈ 36meV is the LO phonon energy of GaAs,

and ε∞ = 10.89ε0 and εs = 12.19ε0 are the optical and static permittivities of bulk

GaAs. The matrix element is therefore

∣∣〈f, kf | H ′
LO | i, ki

〉∣∣2

=
1

V

∑

Q

e2~ωLO

2

(
1

ε∞
− 1

εs

) |Aif (qz)|2
q2
z + q2

δkf−ki=∓q

(
NLO +

1

2
± 1

2

)

=
e2~ωLO

2A

(
1

ε∞
− 1

εs

)(
NLO +

1

2
± 1

2

) ∫
dqz
2π

|Aif (qz)|2
q2
z + q2

(2.45)

where q2 =
∣∣kf − ki

∣∣2, NLO is the Bose-Einstein occupation factor for phonons at a

lattice temperature TL

NLO =
1

exp
(
~ωLO

kBTL

)
− 1

(2.46)

and Aif is dubbed the LO phonon scattering form factor

Aif (qz) =

∫ ∞

−∞
dzψ∗f (z)ψi(z)e

±iqzz (2.47)

In equations (2.45) and (2.47), the upper-sign corresponds to phonon emission, and

the lower sign corresponds to phonon absorption. The derivation of equation (2.45)

uses standard sum-to-integral substitutions for limV →∞: 1
V

∑
Q →

∫
d3Q
2π

, δkf−ki=∓q →
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(2π)2

A
δ
(
kf − ki ± q

)
. Fermi’s golden rule reads

W
(
i, ki → f, kf

)

=
2π

~
e2~ωLO

2A

(
1

ε∞
− 1

εs

)(
NLO +

1

2
± 1

2

)

×
(∫

dqz
2π

|Aif (qz)|2
q2
z + q2

)
δ
(
Ef (kf )− Ei(ki)± ~ωLO

)
(2.48)

In practice, one is generally interested in an average scattering rate between two

subbands, rather than between single particle states. This requires some integrals over

the initial and final momenta. The first step is to sum over all possible final momenta

(state blocking is neglected here). The required integral is tedious to compute, but

final result is

W (i, ki → f)

= Θ

[
±

(
Ei +

~2k2
i

2m∗ − Ef

)
> ~ωLO

]

×CLO

(
NLO +

1

2
± 1

2

) ∫ ∞

−∞
dqz

|Aif (qz)|2√
q4
z + 2q2

z(2k
2
i − κ2) + κ4

(2.49)

where

κ2 =
2m∗

~2
(Ef − Ei ± ~ωLO) (2.50)

and the scattering prefactor CLO is given by

CLO =
1

4

(
m∗

π~2

)
~ωLO

(
e2

~

)(
1

ε∞
− 1

εs

)

= αfs

(
m∗c
~2

)
~ωLO

(
ε0
ε∞

− ε0
εs

)
(2.51)

where αfs is the fine structure constant. The leading step function (Θ) in equation

(2.49) expresses the fact that some transitions are energetically forbidden. For exam-

ple, no LO emission is possible if the initial state is below the minimum energy of the

final subband.

Finally, the scattering rate is averaged (not summed!) over the initial momentum
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distribution, to find the mean carrier lifetime. If the subband i has momentum

distribution fi(k), then the average scattering rate is

〈
W (i, ki → f)

〉
ki

=

∑
k fi(k)W (i, k → f)∑

k fi(k)
(2.52)

It is usual to assume thermalized subbands, such that the subband distribution

function is a Fermi-Dirac distribution dependent only on kinetic energy; that is,

fi(k) = fi(Ek). Also, equation (2.49) shows that the scattering rate is also a function

only of kinetic energy, ie. W (i, k → f) = Wif (Ek) . Therefore, one may write

〈
W (i, ki → f)

〉
ki

=

∫∞
0
dEk g(Ek)fi(Ek)Wif (Ek)∫∞

0
dEk g(Ek)fi(Ek)

=

∫∞
0
dEkfi(Ek)Wif (Ek)∫∞

0
dEk fi(Ek)

(2.53)

where g(Ek) is the subband density of states; within the approximation of constant

effective mass, g(Ek) is conveniently constant for 2D subbands, and therefore cancels

out between the numerator and denominator. But instead of performing the full

thermal average, for Ef − Ei < ~ωLO, a useful approximation is that

〈
W (iki → f)

〉
ki

=
1

τif
≈ W hot

if exp

(
Ef − Ei − ~ωLO

kBTL

)
(2.54)

where W hot
if is the scattering rate at the lowest Ek in the subband where LO-phonon

scattering is energetically allowed [46]. QCL design and analysis frequently employs

equation (2.54).

A final note: equation (2.49) is not in the usual form encountered in the literature

(Harrison is the exception here [38]). Most literature sources replace the integral in

equation (2.49) with the equivalent expression

1

2

∫ 2π

0

dθBif (q) (2.55)

where
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Bif (q) =

∫ ∞

−∞
dz

∫ ∞

−∞
dz′F ∗f (z)Fi(z)F

∗
i (z′)Ff (z

′)
1

q
e−q|z−z′| (2.56)

q2 =
∣∣kf − ki

∣∣2 = k2
f + k2

i − 2kikf cos θ (2.57)

The popularity of this more common expression is somewhat puzzling. Equation

(2.55) requires evaluation of a triple integral, whereas equation (2.49) requires only a

double integral. Equation (2.49) seems to have the clear advantage for computation.

2.5 Radiative Scattering

2.5.1 Fermi’s golden rule for the light-matter interaction

This section considers radiative processes based on Fermi’s golden rule. Although so-

phisticated theories of optical gain employing Green’s functions exist [25], this simpler

theory will suffice for the present.

Let the optical field be determined by a scalar potential φ(r, t) and a vector po-

tential A(r, t). The usual Coulomb gauge is adopted here, where ∇ · A = 0 and

φ = 0. The minimal-coupling light-matter Hamiltonian is then obtained by replacing

the canonical momentum p of the field-free Hamiltonian with the kinetic momentum

p− eA, where e is the magnitude of the electron charge (the Hamiltonian of the field

itself is ignored, as the quantum mechanics of the light field are not of interest). How-

ever, envelope function equation (2.1) is not Schrödinger’s equation, and the effective

mass Hamiltonian is not amenable to this treatment. Assuming a homogeneous semi-

conductor for the moment, Schrödinger’s equation in the presence of an optical field

is

HΨ =

[
(p− eA)2

2m0

+ VL

]
Ψ = i~

∂

∂t
Ψ (2.58)

where VL is the microscopic lattice potential and m0 is the bare electron mass. The
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Hamiltonian expands as

(p− eA)2

2m0

+ VL

=
p2

2m0

+ VL − e

2m0

(
p · A+ A · p) +

e2A2

2m0

≈
[
p2

2m0

+ VL

]
− e

m0

A · p (2.59)

The above derivation employs the fact that p · (Af) = (p · A)f + A · (pf) = A · (pf)

since p ·A = −i~∇·A = 0 for our choice of gauge. It also neglects the term quadratic

in A, as this is unimportant to linear optics. In equation (2.59), the term in square

brackets is the Hamiltonian for a single electron in a periodic lattice. Approximating

it with the effective mass Hamiltonian yields

[
p2

2m0

+ VL

]
− e

m0

A · p

=
p2

2m∗ −
e

m0

A · p (2.60)

Allowing for the effects of a heterostructure and an external potential, the Hamilto-

nian further changes to

p
1

2m∗(r)
p+ V (r)− e

m0

A · p = H0 +H ′
e−l (2.61)

The light-matter coupling Hamiltonian is therefore

H ′
e−l = − e

m0

A · p (2.62)

To calculate matrix elements in Fermi’s Golden rule, at this point we make the en-

velope function approximation, and assume a set of eigenstates of H0 given approx-

imately by Ψn(r) = Fn(r)u(r), where u(r) is the microscopically varying Γ-point

Bloch function (assumed to be approximately the same for all constituent materi-

als of the heterostructure), and the Fn are the mesoscopically varying, orthonor-

mal envelope functions. Within a one-band approximation as done here, u(r) is the
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same for all wavefunctions of interest. Let the envelope functions be normalized as
∫
d3r F ∗m(r)Fn(r) = δmn, and the Bloch function be normalized as

∫
d3r u∗(r)u(r) =

V , where both integrals are over the entire system (volume V ). δm,n is the Kronecker

delta function. Therefore,

〈
Ffu | H ′

e−l | Fiu
〉

= −
∫
d3r F ∗f u

∗ e
m0

A · p (Fiu)

= −
∫
d3r F ∗f

e

m0

A · (pFi)u
∗u−

∫
d3r F ∗f Fiu

∗ e
m0

A · (pu) (2.63)

Next, the envelope function approximation is used to separate the integration of the

rapidly varying u from the slowly varying Fn. At THz frequencies, the optical wave-

lengths (∼0.1mm) are much longer than the periodicity of u (∼3Å), and therefore A

may also be separated from the integrations of u. Equation 2.63 is then approximately

given by

≈ −
∑

n

F ∗f (Rn)
e

m0

A(Rn) · (pFi)|Rn

∫

∆n

d3r u∗(r)u(r)

−
∑

n

F ∗f (Rn)Fi(Rn)
e

m0

A(Rn) ·
∫

∆n

d3r u∗(r) (pu(r))

≈ −
∫
d3r F ∗f

e

m0

A · (pFi) (2.64)

where the summations are over all unit cells of the semiconductor crystal (the n-th

cell having position Rn and volume ∆n). The second summation is dropped because

the integral
∫
d3r u∗ (pu) = −i~ ∫

d3r u∗ (∇u) is zero due to the symmetry properties

of u and ∇u. Therefore, the calculation of matrix elements for Fermi’s golden rule in

equation (2.63) ignores contributions from the Bloch function matrix elements and

uses just the envelope functions. That is,

〈
Ffu | H ′

e−l | Fiu
〉 ≈ −

∫
d3r F ∗f

e

m0

A · pFi (2.65)

One is reminded in the above that the envelopes are uniquely indexed by a subband

and in-plane momentum (|Fn〉 =
∣∣nkn

〉
).
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In the quantum theory of fields, the vector potential A can be written as

A(r, t) =
∑

λ

√
~

2εωλ

(
bλ(t)uλ(r) + b†λ(t)u

∗
λ(r)

)
(2.66)

where bλ(t) = bλe
−iωλt and b†λ(t) = b†λe

iωλt are the annihilation and creation operators

for the mode indexed by λ. Evaluating equation (2.65) yields that

∣∣〈fkf | H ′
e−l | iki

〉∣∣2

=
∑

λ

e2~
2m2

0εωλ

[
NλδNλf ,Nλi−1

∣∣〈fkf | uλ · p | iki

〉∣∣2

+(Nλ + 1)δNλf ,Nλi+1

∣∣〈fkf | u∗λ · p | iki

〉∣∣2
]

(2.67)

where Nλf and Nλi are the number of photons in the final and initial states respec-

tively. The Kronecker deltas preserving photon number are hereafter ignored, as

tracking the quantum statistics of the photons in the cavity is of no interest.

To proceed further, it is convenient to specialize to the case of free space, in which

the modes are normalized plane waves indexed by a polarization σ and a wavevector

β, or

uλ = uσβ =
eiβ·r
√
V
êσβ. (2.68)

where êσβ is a polarization vector. Then

〈
fkf | uλ · p | iki

〉

=
1√
V

〈
fkf | eiβ·rêσβ · p | iki

〉
≈ 1√

V

〈
fkf | êσβ · p | iki

〉
(2.69)

The last step above employs the electric dipole approximation, taking eiβ·r ≈ 1. This

is justified because the wavefunctions have an extent on the order of one module

length at most (∼500Å), whereas a THz wavelength is ∼0.1mm. An equivalent inter-

pretation is that the photon momentum is negligible. Next, one inserts the relation

p = im0

~ [H0, r] (derivable from the canonical commutation relation [p, r] = −i~) to
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yield

1√
V

〈
f, kf | êσβ · p | i, ki

〉

=
im0

~
√
V

〈
f, kf | êσβ · [H0, r] | i, ki

〉

=
im0

~
√
V

[
Ef (kf )− Ei(ki)

] 〈
f, kf | êσβ · r | i, ki

〉

=
im0

~
√
V

[
Ef (kf )− Ei(ki)

]
êσβ ·

[
ẑ 〈f | z | i〉 〈kf |ki

〉
+ 〈f |i〉 〈kf | ρ | ki

〉]

=
im0

~
√
V

[Ef − Ei] (êσβ · ẑ)zfiδkf ,ki
(2.70)

where zfi is the z-projected dipole matrix element. Note that the term (êσβ · ẑ) forbids

interactions with optical fields polarized in-plane.

Combining equations (2.70) and (2.67) and inserting into Fermi’s golden rule (2.42)

yields for the photon emission and absorption rates

Wem(i, ki → f, kf )

= δkf ,ki

∑

σβ

∣∣êσβ · ẑ
∣∣2 (nσβ + 1)

πe2ωσβ

2εV
|zfi|2 δ(Ef − Ei + ~ωσβ) (2.71)

Wabs(i, ki → f, kf )

= δkf ,ki

∑

σβ

∣∣êσβ · ẑ
∣∣2 nσβ

πe2ωσβ

2εV
|zfi|2 δ(Ef − Ei − ~ωσβ) (2.72)

In closing, note that the minimal-coupling momentum substitution applied di-

rectly to the effective mass Hamiltonian in equation (2.1) yields

H ′
e−l = − e

m∗A · p (2.73)

for the light-matter interaction Hamiltonian, with only inner products with the en-

velope functions being relevant. The difference between equation (2.73) and the

previously derived equation (2.62) is the use of the effective mass in place of the

bare electron mass. Equation (2.73) appears frequently in the literature [46, 48], but

appears to be incorrect, strictly speaking. But surprisingly, due to the cancellation
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of the masses in substituting equation (2.70) into equation (2.67), both interaction

Hamiltonians will recover the correct scattering rates.

2.5.2 Intersubband optical gain

The difference between the photon emission and absorption rates gives the rate at

which photons are produced or absorbed—in other words, the optical gain or loss.

Let there be just one free space optical mode possessing frequency ω and polarization

parallel to the the growth axis, ẑ. The net radiative transitions between initial and

final subbands i and f is given by

W (i→ f)

= 2
∑

ki

∑

kf

{
Wem(i, ki → f, kf )fi(ki)

[
1− ff (kf )

]

−Wabs(f, kf → i, ki)ff (kf )
[
1− fi(ki)

]}
(2.74)

where fn(kn) is the state occupation, and the factor of two accounts for spin-degeneracy.

Inserting equations (2.71) and simplifying yields

W (i→ f)

=
πe2ω

εV
|zfi|2 δ(Ef − Ei + ~ωσβ) ·

∑

k

N
[
fi(k)− ff (k)

]
+ fi(k)

[
1− ff (k)

]

=
πe2

εV
δ(Ef − Ei + ~ω)ω |zfi|2

·

N(ni − nf ) +

∑

k

fi(k)
[
1− ff (k)

]



≈ πe2

εV
δ(Ef − Ei + ~ω)ω |zfi|2N(ni − nf ) (2.75)

where ni and nf are the 2-D subband populations (unitless), and N is the photon

number. The last term in the above corresponds to spontaneous emission, which

is presumed to be small in comparison to stimulated emission. In the above, the
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δ-function can be taken out of the summation because the subband dispersions are

parallel in the absence of nonparabolicity (joint density of states is a δ-function; all

transitions are at the same frequency regardless of in-plane momentum).

Considering an incident photon flux of (N/V )v = (N/V )c/nr, where nr is the

refractive index of the semiconductor, the gain is given by

g(ω) =
W (i→ f)/V

(N/V )c/nr

=
πe2nr

εc
δ(Ef − Ei + ~ω)ω |zfi|2

(
ni − nf

V

)
(2.76)

Energy level broadening (due to scattering induced level lifetimes) can be phenomeno-

logically included by replacing the Dirac delta function in equation (2.76) with a

normalized Lorentzian with a full-width at half-maximum (FWHM) of ∆E

δ(Ef − Ei + ~ω) → γ(~ω) =
∆E/2π

(Ef − Ei + ~ω)2 + (∆E/2)2
(2.77)

to yield

g(ω) =
πe2nr

εc
ω |zfi|2 ∆Nγ(~ω) (2.78)

where ∆N = (ni − nf )/V is the population inversion per unit volume. Peak gain

occurs when ~ω = hνif = Ei − Ef ; the expression is

gpeak =
2e2nr

~εc
|zfi|2 ∆N

νif

∆ν
(2.79)

where ∆ν is the linewidth in units of frequency.

While equation (2.79) is complete, it is useful to rewrite it in terms of another

parameter, the oscillator strength, ffi.

gpeak =
nre

2

2πm∗εc
∆N

∆ν
ffi

≈ (70cm−1)
∆N/1015cm−3

∆ν/THz
ffi (for GaAs), (2.80)
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where

ffi =
2m∗(Ei − Ef )

~2
|zfi|2 (2.81)

Note from equation (2.79) that the peak gain does not have any explicit dependence

on electron mass, effective or bare. Therefore, the choice of mass used in the light-

matter Hamiltonian does not affect the final result.

2.5.3 The oscillator strength

The oscillator strength indicates the “strength” of an optical transition. It is analo-

gous to the oscillator strength of classical electromagnetics, where the ideal Hertzian

dipole is defined to have an oscillator strength of 1. As such, the gain of the transition

between any two subbands levels is proportional to the oscillator strength. Due to

the presence of the dipole matrix element, the oscillator strength is, in general, larger

for extended states (such as at anticrossing) than for localized states. An optical

transition with a lower oscillator strength is said to be more diagonal.

Any quantum system, regardless of the shape of the potential, has the property

that the oscillator strengths between all possible transitions sum to unity.6 Because of

the formal equivalence between the envelope function equation (2.1) and Schrödinger’s

equation, this property carries over. For a system of constant effective mass, it can

be shown that the oscillator strength obeys the sum rule defined by

∑

j 6=i

fij = 1 (2.82)

This has interesting consequences in quantum systems. Because of the energy differ-

ence factor in the oscillator strength definition (equation 2.81), quantum oscillator

strengths can be negative. This means that in the sum rule, oscillator strengths for

other transitions can be greater than unity; in general, transitions between higher

lying states will have larger oscillator strength.

When the effect of valence bands upon the conduction band is considered, one

6However, with a general quantum system, the oscillator strength is defined with the bare electron
mass.
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must consider non-parabolicity. The effective mass becomes energy dependent, and

the envelope function equation (2.1) loses its formal equivalence to Schrödinger’s

equation. The sum rule equation (2.82) does not hold in this situation. Sirtori et

al. discuss modifications to the sum rule due to non-parabolicity, and also spatially

varying effective mass [49]. Moreover, one often encounters in the literature the

oscillator strength defined with the bare electron mass rather than the effective mass

in equation (2.81), in which case the sum rule is modified to

∑

j 6=i

fij =
m∗

m0

(2.83)

Oscillator strength is a crucial parameter in QCL design, and will be discussed at

length in the discussion on temperature performance in the next chapter.

Combining equation (2.9) with the oscillator strength yields a useful figure-of-

merit to which the gain is proportional.

gpeak ∝ FOM = ffiτ3

(
1− τ2

τ32

)
(2.84)
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Chapter 3

THz Quantum Cascade Laser

Design

Having established the theoretical foundations of QCLs in Chapter 2, this chapter

discusses design. Because of QCL periodicity, one need only specify the design of a

single period (module).1 A single period of a QCL superlattice can partitioned into

an active region responsible for optical gain and an injector region responsible for

funneling electrons into a subsequent module. This conceptual division exists even

though these regions are not always physically distinct. The injector is also key to

the electrical characteristics of a QCL, and a well designed injector is necessary to

avoid operation in negative differential resistance (see section 3.2.3).

Different designs use different active and injection regions. At present, there are

three major THz QCL designs

1. The chirped superlattice (CSL) design

2. The bound-to-continuum design (BTC) design

3. The phonon depopulation design (PD) design

The CSL design was introduced by Köhler et al. in the first THz QCL [16] (see

1This is a major simplifying assumption. Recent computational results call into question whether
QCL operation is truly periodic (see [26], for example), but to assume otherwise dramatically com-
plicates the problem.
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figure 3-1a). In this approach, the basic superlattice period consist of several wells

of gradually narrowing width. At some bias the states of these wells align in energy

to form highly anticrossed “minibands” of states. Electrons tend to relax to the

bottom of the minibands through fast intersubband electron-electron scattering, thus

population inversion can be achieved between an upper miniband and lower miniband

of one module. The lower miniband is also designed to align with the upper miniband

of a subsequent module, hence facilitating the cascading process through resonant

tunneling.

The BTC design is a variant of the CSL design. One in the progression of nar-

rowing wells is made slightly larger. When the biased to miniband formation, the

aberrated well forms a “defect” state that lies in the gap between the upper and

lower minibands (see 3-1b). Population inversion is formed between this defect state

and the top of the lower miniband. The defect state is well localized (“bound”) but

emits to the highly delocalized (“continuum”) lower miniband; this is the origin of

the name “bound-to-continuum.”2 BTC designs are notable for their extremely low

threshold current densities.

The PD design works on an entirely different principle from the CSL and BTC

designs. There are two variants: resonant-phonon (RP) and intrawell-phonon (IP).

Injection into the upper laser level is still accomplished using resonant tunneling, but

using far fewer states. In the RP variant, the lower level is depopulated by resonant

tunneling to an adjacent well followed by LO phonon emission. This form of phonon

depopulation was used in the original mid-IR QCL [13], and adapted for use in THz by

Williams et al. [51]. To date, RP based QCL designs possess the highest temperature

performance. In the IP variant, there is no phonon depopulation step; the lower level

is directly depopulated by LO phonon emission.

Although many of the concepts discussed in this chapter apply to QCLs in general,

the remainder of this chapter focuses on PD designs, which are MIT’s specialty. Note

that the division into CSL, BTC, and PD is not strict. For example, there exist

hybrid designs which combine BTC and RP features.

2This contrasts the CSL design, which could rightly be called a “continuum-to-continuum” design.
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(a)

(b)

Figure 3-1: (a) Band diagram of CSL design by Köhler et al., reproduced from [16].
Population inversion occurs between level 2 at the bottom of the upper miniband and
level 1 at top of the lower miniband. (b) Band diagram of BTC design by Scalari et al.,
reproduced from [50]. Injection occurs into the localized “defect” level 8. Population
inversion occurs between level 8 and the top of the lower miniband.
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3.1 Phonon Depopulation Device Families

This section discusses the major PD designs. A note on naming conventions: although

there are no strict rules in this regard, MIT designs are generally labeled by a short

acronym indicating particular features of the design, then the number of modules

specified for growth, and finally by additional markings indicating different variations

on the same design.

3.1.1 FL devices

The FL series contains the first of the operational resonant phonon designs. The

acronym “FL” originally stood for “Four-well, LO-phonon depopulated,” but the

acronym has since lost its meaning since many members of this family have more

than four quantum wells. This family of devices features active regions consisting of

2-3 wells and a injector region typically consisting of two wells. The band diagram

for a sample FL design is shown and explained in figure 3-2.

FL designs traditionally have large oscillator strengths (very vertical transitions).

This is largely for historical reasons: the FL series devices were based on the non-lasing

L-series and M-series (see Xu [52] and Williams [46] for discussion of these devices).

Prior to the achievement of lasing, research in RP THz QCLs was largely based on

spontaneous emission measurements of the superlattices. Large oscillator strengths

are required to avoid spontaneous emission measurements from being swamped by

thermal background.

3.1.2 OWI devices

The acronym “OWI” stands for “One Well Injector.” The OWI family are RP devices

but the injector region consists of a single quantum well, and so there is only one

subband injecting electrons into the subsequent module. The band diagram for a

sample OWI design is shown and explained in figure 3-3.

The OWI devices were originally introduced for producing low frequency lasers

[53]. Because the majority of electrons in a QCL reside in the injector region, a
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Figure 3-2: Sample band diagram of an FL family device (design FL175C from
[46, 51]); one QCL period is boxed. At the design bias, the injector 1′ of the
previous module aligns in energy with the upper laser level (1′ − 5 anticrossing),
populating the upper level through resonant tunneling. After photon emission
(E54 = 13.9meV ≡ 3.4THz), the lower level is depopulated by resonant tunneling
extraction by the collector, which is the excited state of an adjacent well. E32 is
39.3meV, approximately resonant with the GaAs LO phonon energy of ELO ≈36meV.
This in turn enables depopulation of the collector via fast LO phonon scattering into
the injector levels 1 and 2.
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Figure 3-3: Sample band diagram of an OWI family device (design OWI185-M1
from [32, 53]); one QCL period is boxed. At the design bias, the injector 1′ of the
previous module aligns in energy with the upper laser level (1′ − 4 anticrossing),
populating the upper level through resonant tunneling. After photon emission (E43 =
8.6meV ≡ 2.1THz), the lower level is depopulated by resonant tunneling extraction
by the collector, which is the excited state of an adjacent well. E21 is 35.8meV,
approximately resonant with the GaAs LO phonon energy of ELO ≈36meV. This in
turn enables depopulation of the collector via fast LO phonon scattering into the
injector level 1.
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multi-level injector with several closely spaced subbands can suffer from significant

photon absorption. For example, in FL designs, this large injector population makes

reabsorption of photons by the two energetically close double injector subbands a

serious problem at low photon energies. Using only one injector level avoids this

problem. This problem is even worse in CSL and BTC designs, since the miniband

injectors they employ involved many subbands—although ironically, injector level

absorption notwithstanding, BTC designs hold the record for low frequency operation

[17].

Belkin et al. [54] and then Kumar et al. realized soon afterward that OWI designs

could potentially be advantageous for high temperature performance as well. A single

subband injector is energetically narrowest, resulting in improved injection selectivity.

Also, the single injector well significantly simplifies the high energy subband structure

compared to the two-well injectors of the FL family of devices. This eases avoidance

of upper level parasitics.

Indeed, the current temperature record of 186K is held by an OWI device: OWI222G

(see section 4.2.5) uses a one-well injector along with a moderately diagonal radiative

transition to achieve its good temperature performance.

3.1.3 DSL devices

The acronym “DSL” stands for “Diagonal” radiative transition and “Superlattice” ac-

tive region, but like the FL family, this acronym is no longer meaningful. This family

represents the IP variant of phonon depopulation based designs, the key characteristic

of which being the elimination of resonant tunneling collection. Instead, the upper

laser level depopulates directly into the excited state of the adjacent phonon well

through a diagonal radiative transition, and the lower laser level is in turn directly

depopulated by LO phonon emission. In principle, this ought to hasten depopulation

of the lower laser level. Simultaneously, this increases the upper laser level lifetime

through increased diagonality (see section 3.2.1). The band diagram of a sample DSL

design is shown in figure 3-4.

For reasons not well understood, this family of devices has never performed well.
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Figure 3-4: Sample band diagram of an DSL family device (design DSL203E-M1
from [32]); one QCL period is boxed. At the design bias, the injector 1′ of the previous
module aligns in energy with the upper laser level (1′ − 4 anticrossing), populating
the upper level through resonant tunneling. Unlike standard RP designs, the lower
state is in the phonon well, so after photon emission (E43 = 13.9meV ≡ 3.36THz) the
lower state is directly depopulated by LO phonon scattering into the injector levels
1 and 2. E32 is 33meV, approximately resonant with the GaAs LO phonon energy of
ELO ≈36meV).
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Notably, DSL designs seem prone to non-lasing wafers which have extremely large

turn-on voltages before any conduction is observed.

3.2 Design Considerations

This section details design considerations for achieving high temperature lasing in

THz QCLs. There are two requirements of design: first, lasing requires preserving

sufficient gain at high temperatures to overcome cavity and material loses, and second,

the superlattice must be electrically stable so that the design bias can be reached.

3.2.1 Suppression of non-radiative scattering: on the bene-

fits of diagonality

As mentioned in the introduction, the postulated limit to high temperature perfor-

mance is degradation of population inversion due to non-radiative scattering. Some

of these are illustrated in figure 3-5. The most important non-radiative scatter-
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Figure 3-5: Non-radiative scattering mechanisms between upper and lower laser
subbands. Electron-electron scattering is indicated in green. Thermally activated
electron-LO-phonon scattering is indicated in red. k indicates 2D in-plane momen-
tum.
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ing mechanism is hypothesized to be thermally activated LO phonon scattering. A

fundamental problem of THz QCLs is that radiative subband separations are neces-

sarily below the semiconductor Reststrahlen band, the frequency range spanned by

the transverse and longitudinal optical phonon frequencies ωTO and ωLO. Therefore,

with increasing temperature, upper laser level electrons gain enough energy to transit

to the lower laser level through LO phonon emission rather than the desired photon

emission. The upper level lifetime decreases continually as temperature increases, so

that ultimately insufficient population inversion remains for lasing. This problem is

absent in mid-IR QCLs because the the radiative gap is much larger than the LO

phonon energy, making scattering less temperature dependent.

That thermally activated LO phonon assisted non-radiative depopulation is a

cause of laser degradation is experimentally supported by magnetic field assisted QCL

operation experiments by Wade et al. [18]. Wade et al. used extremely strong mag-

netic fields (∼16T) to produce in-plane confinement, hence quenching the in-plane

free-electron like dispersion that enables thermally activated LO phonon scattering.

This enabled them to reach lasing temperatures up to 225K. While such strong mag-

netic fields are impractical for real applications, this experiment suggests that higher

operating temperatures might be achieved if alternative methods of protecting the

upper level lifetime are found. To this effect, the MIT group has been pursuing the

design of highly diagonal QCLs with ever decreasing oscillator strengths.

Recall from section 2.5.2 that peak optical gain associated with a given intersub-

band transition has the dependence

gmax ∝ ∆Nfif

∆ν
(3.1)

where ∆N is the population inversion, fif is the oscillator strength, and ∆ν is the

gain linewidth broadening. Equation (2.48) shows that the LO phonon scattering rate

is proportional to the scattering form factor given by equation (2.47), and equation

(2.81) shows that the oscillator strength equation (2.81) is directly proportional to the

dipole matrix element. Both the form factor and dipole matrix element are overlap
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integrals of some sort between the upper and lower level wavefunctions. Unfortu-

nately, this leads to the conflict that protecting population inversion from thermally

activated LO phonon scattering demands that this overlap decrease, but increasing

oscillator strength demands that it must increase.

Whereas historically THz QCL development actively designed for large oscillator

strengths, the insight above motivates a search for an optimal balance in this trade-

off between upper level lifetime and oscillator strength. In this, one may use the

figure-of-merit defined in equation (2.84) as a guide. In FOM = ffiτ3

(
1− τ2

τ32

)
,

increasing diagonality (decreasing ffi) lengthens τ3 and τ32 and slows their decay

with rising temperature. τ2 is essentially set by the LO phonon depopulation gap,

and is relatively constant with respect to temperature. Detailed calculations are

deferred to chapter 4, which discusses actual THz QCL designs, but it turns out that

the overall result is increased FOM at higher temperatures.

A major unknown, however, is the effects of gain linewidth, on which little in-

formation exists in general. Diagonal transitions are inherently more sensitive to

interface roughness scattering, and so possess broader linewidths. Linewidths can

also be temperature dependent; indeed, NEGF simulations by Nelander and Wacker

suggest that temperature induced linewidth broadening may be limiting high temper-

ature performance more than population inversion [55], although this interpretation

remains highly speculative. However, one hope is that if linewidth in a diagonal de-

vice starts broader, relative change in linewidth versus temperature will be smaller

compared to vertical designs. Therefore, a diagonal design could potentially be more

robust to temperature induced linewidth broadening.

3.2.2 Thermal backfilling

Another concern at high temperatures is thermal backfilling from the injector level(s)

to the lower laser level. At high temperatures, the QCL gain medium becomes suf-

ficiently populated with LO phonons that reabsorption occurs between the collector

and injector levels. In this case, instead of the upper laser level getting depopu-

lated non-radiatively, the lower level becomes thermally populated, again reducing
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population inversion. While this is a recognized problem in mid-IR lasers operating

above room temperature, there is less consensus on whether thermal back-filling is

significant in THz QCLs still operating below 200K.

This question inspired the design of several of lasers in this thesis that use two

phonon depopulation, where the single phonon depopulation gap in standard RP and

IP designs is replaced by two (not necessarily both resonant) phonon gaps. Similar

two-phonon designs are commonly used in mid-IR lasers to inhibit thermal backfilling

(although more often these are doubly resonant; for example, see [19]).

3.2.3 Negative differential resistance

Negative differential resistance (NDR) occurs whenever the small-signal resistance of a

device is negative: at a given bias, a further increase in bias results in a drop in current.

Studies of superlattice transport suggests that superlattices in NDR are generally

inhomogeneously biased [28, 56], with different modules breaking into “domains” of

differing electrical field strengths and possibly oscillating with time. This breaks the

QCL electron recycling scheme, thus reducing gain.

In lasing QCLs, there is normally at least one major NDR feature, that which

corresponds to the misalignment of the injector and the upper laser levels. When this

misalignment occurs, lasing abruptly ends, and the current drops. But, as discussed

in the next section, it is also possible for other NDR features to occur ahead of the

threshold bias point. Lasing in NDR in this manner is believed to be detrimental to

temperature performance.

3.2.4 Parasitic current channels

In a given QCL design, there is normally only one desired sequence of quantum

states through which electron flow results in gain at a targeted radiative transition.

All other paths of current conduction are undesirable and are termed parasitic current

channels, for they draw current but produce no radiation. Parasitic channels may be
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divided into upper level parasitics and lower level parasitics.3 The former are current

flows that bypass the designed channel by transport through a subband with energy

higher than the upper laser level. The latter bypass through a subband with energy

lower than the upper laser level.

While upper level parasitics can be avoided in some cases by design, lower level

parasitics are generally unavoidable (although they can be strongly suppressed). The

injector-to-collector lower parasitic resonance manifests in practically all QCLs, be-

cause the injector level starts at zero bias as the lowest energy level. Bias is increased

to bring the injector into resonance with the upper laser level, and along the way the

injector come into resonance with all energy levels below the upper laser level. When

the injector is resonant with the collector, it is believed that a strong parasitic cur-

rent channel opens up consisting of successive resonant tunneling and fast LO phonon

scattering steps. This is illustrated in figure 3-6.

3
1′−2

4

1 period

Figure 3-6: Schematic of the lower level parasitic due to injector-collector resonance
(1′ − 2 anticrossing) in an OWI design. The current path is indicated by the green
arrows, with light green indicating LO phonon emission and dark green indicating
resonant tunneling. The upper and lower laser levels 4 and 3 are entirely bypassed.

3Not to be confused with the upper and lower laser levels.
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Parasitic lower level resonances divert current away from the radiative channel,

and therefore increase the lasing threshold (a greater overall current is needed to fuel

enough electron flow in the radiative channel). An extremely strong parasitic causes

an early NDR as the lattice is biased beyond the parasitic resonance. A major goal

of QCL design is keeping lower level parasitic currents low while still keeping peak

currents high.

3.2.5 Injection and collection selectivity

Injection selectivity is the ability of injector levels to funnel electrons into the upper

laser level without leakage into other states; in particular, funneling into the lower

laser level should be avoided. Collection efficiency is the ability of the collector

states to depopulate the lower laser level without drawing electrons from the upper

laser level. Selectivity in both injection and collection is key to creating population

inversion. The condition of unity injection is when all current flows through the

radiative path and parasitics are avoided.

Unity injection is often assumed to keep transport calculations tractable, but is

patently false in THz devices. Injection and extraction selectivity are particularly

difficult for THz QCLs because typical radiative gaps (∼ 5− 15meV) are of the same

order as as the energy level broadening of the subband states. This makes it difficult

to selectively direct transport into any one subband. Therefore, resonant tunneling

injection demands keeping the injection anticrossing smaller than both the energetic

broadening of the upper and lower laser levels and also the radiative gap. Yet a large

anticrossing is desirable to maximize electron transport, and hence laser gain. In this

trade-off, the injector barrier thickness producing the optimal injection anticrossing

varies from design to design and is largely determined experimentally [57]. Similar

concerns hold for the collector anticrossing, where a large anticrossing is desirable for

fast depopulation but a small anticrossing is desirable for selective depopulation.

One notes that in principle, injection selectivity may be improved by by spatial

separation of the upper and lower levels. This is another manner in which diagonality

should improved performance.
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THz QCLs have been historically limited to maximum operating temperatures

of ∼ ~ω/kB [24], where ~ω is the photon energy. This trend which remains largely

unexplained, but Kumar has suggested that it might be an artefact of resonant tun-

neling injection.4 The argument is as follows: positive gain can only be attained

when the injector levels are biased between the upper and lower radiative subbands,

so low frequency designs have an inherently smaller usable bias range. Level broad-

ening exacerbates the problem. Whether this explanation is satisfactory remains to

be seen.

3.2.6 Doping

The QCLs in this thesis are grown in the AlxGa1−xAs material system and doped

with silicon (Si), which is known to be an amphoteric dopant in GaAs. However,

THz QCLs are typically very lightly doped (bulk concentrations of ∼ 5× 1015cm−3),

and Si doping is n-type at low doping concentrations. Typical designs are either bulk

doped or δ-doped. Impurity scattering is sure to contribute to dephasing wherever

dopants are located, so location is important. Typically, one avoids doping in the

injector barrier or active region to avoid dephasing carrier injection or the radiative

transition. Usually, doping is placed in one of the injector wells, but δ-doping is

frequently placed in the collector barrier as well.

Dopants are assumed fully ionized, so that population inversion, and hence gain, is

proportional to the doping density. However, increasing carrier density also increases

free carrier losses and impurity scattering, which increases dephasing. The scaling of

these detrimental effects is not so well understood. Empirical studies have confirmed

that a given design has an optimal doping density [58], although good methods of

predicting this value are unavailable. For the design studied in [58], doping was

found to affect Tmax by as a much as ∼25K over δ-doping concentrations ranging

from 3.0 × 1010cm−2 to 5.0 × 1010cm−2, with the doping level of 3.6 × 1010cm−2

yielding the highest Tmax. The lasers of this thesis typically employ 3.0 × 1010cm−2

δ-doping or bulk equivalent.

4Unpublished results.
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Chapter 4

Characterization, Measurement,

and Experimental Results

4.1 Experimental Methods

4.1.1 Growth and fabrication

The MBE wafers of this study were grown by Dr. John Reno at Sandia National

Laboratories. The accuracy to which wafers are grown is characterized using X-ray

diffraction. This method probes the average periodicity of the superlattice rather than

detailed layer by layer information. As such, growth inaccuracies are not necessarily

integer monolayer multiples. A given design may be grown more than once, so each

MBE wafer is uniquely numbered.

Wafers are processed into Fabry-Perot ridge lasers clad in copper-copper waveg-

uides using methods described in [32]. Ridges were processed either using dry or wet

etch methods, resulting in straight or sloped sidewalls, respectively. One notes that

the sloped sidewalls of wet-etched devices introduces some ambiguity in the device

width, and hence area, to use for the calculating current densities. The conven-

tional adhered to in this thesis is to use the widest width, approximated by adding

20µm to the lithography mask metal width. Further fabrications details can be found

in [32,46].
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4.1.2 Characterization

In the characterization of QCLs, there are three basic sets of experimental data. Cur-

rent versus voltage is measured to form the IV . Optical power output versus current

is measured to form the LI. Finally, for lasing devices, the spectra of the output ra-

diation is measured to determine the lasing frequency. Typically, measurements are

performed with pulsed mode biasing in order to avoid heating the device significantly

above heat sink temperatures. Sometimes it is also useful to measure the differen-

tial conductance versus voltage or current to form the GV or GI. Loosely speaking,

IV and GIV fall under “transport measurements,” while LI and spectra fall under

“optical measurements.”

Ridge lasers were cleaved of length ∼1-2mm. Substrate backsides are gold-coated

during fabrication, and this is used to indium solder the devices to custom made

copper chip-carriers. Electrical connections are made using 25µm gold wire bonds. If

transport data for a non-lasing device was desired, the device would be encapsulated

in Stycast 2850 epoxy with LV23 catalyst following wire-bonding. Said chip carriers

are then mounted on the cold stage of a pulsed-tubed cryocooler for measurement

(Cryomech PT810). Devices intended to lase were fitted with Winston cones to

improved light collection. Devices were biased either using a 2Ω/50Ω pulsed supply

(Avtech AV-1011-B) or a DC supply (HP6632A). Typical pulsed biasing consisted of

300ns square pulses at a repetition rate dependent on the choice of optical detector.

The usual choice of optical detector was a helium-cooled Ge:Ga photoconductive

detector (Infrared Laboratories unit #2189), for which 10kHz pulsing was usual. The

Ge:Ga photodetector is based on valence band-to-impurity state excitations, limiting

optical detection to above ∼2THz. For optical frequencies less than 2THz, either a

helium-cooled InSb hot electron bolometer (MM-IR spectra, Inc.) or a helium-cooled

Si bolometer was used (Infrared Laboratories), for which 3kHz and 300Hz pulsing

was usual, respectively. The InSb bolometer has a high frequency roll-off at optical

frequencies of ∼1.5THz. The Si bolometer is broad-band, with an optical low-pass

filter cutting frequencies above ∼5THz. A thermopile was used for continuous wave

78



(CW) measurements (Coherent P4-42), with laser output chopped at typically 100Hz.

All four detectors mentioned above were fitted with 1.9mm diameter Winston cones

for light collection. Pulsed optical signal or chopped CW signal was measured by

lock-in detection (EG&G 5209). Absolute power measurements were made using a

calibrated thermopile detector (Scientech AC2500). One notes that power measure-

ment for THz QCLs is in general fraught with uncertainties of collection efficiency,

and no corrections are made for these.

Pulsed current was detected using a calibrated inductive current sensor, and pulsed

voltage was detected using a resistive voltage divider. Each of these were sampled

using a boxcar averager (Stanford Research Systems SR 250 or Princeton Applied

Research Model 4121B). CW current was measured using a ∼0.5Ω sense resistor,

and CW voltage was measure directly across the device. While in principle one may

obtain GIV data from numerical differentiation of the IV data, this method can be

extremely noisy. To directly probe GV , a small sinusoidal bias (typically 100kHz)

was applied on top of a CW bias using a bias-T (Pasternack PE1611), and a lock-in

amplifier was used to detect the resulting small-signal current oscillations.

Spectra were measured using a Nicolet Magna 850 infrared spectrometer in linear

scan, typically purged with dry nitrogen to limit atmospheric absorption. Either

one of the three pulsed optical detectors mentioned above was used, or a deuterated

triglycine sulfate (DTGS) detector internal to the spectrometer.

The data collection process is PC controlled via GPIB, with measurements col-

lected by digital multimeters (HP34401A), or sometimes directly from the measure-

ment instrument if it had a GPIB interface (eg. the lock-in amplifiers).

One contribution, albeit minor, of the present thesis was improving the data col-

lection process. Prior to the author’s arrival in the MIT THz group, one generally

needed to collect IV s, LIs, and GIV s from separate measurements, and cyrocooler

temperature was controlled manually. Spectra needed to be collected manually for dif-

ferent biases. This work introduced methods for pulsed “LIV T” and CW “GLIV T”

measurements, where most quantities are collected simultaneously and the task of

controlling the cyromech temperature is handled by the PC. Spectra acquisition was
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also automated. These improvements were necessary for the collection of increasingly

detailed transport information. In particular, previous THz QCL investigations rarely

collected pulsed IV s, relying instead on CW IV s versus temperature. Pulsed IV s

are now standard.

The next sections discuss in more detail some quantities of experimental interest:

the threshold current density (Jth) in section 4.1.3, maximum current density (Jmax)

in section 4.1.4, dynamic range in section 4.1.5, and differential conductance (GIV )

in section 4.1.6.

4.1.3 Threshold current density (Jth)

Jth is the current density at which the QCL starts lasing. This manifest as a dis-

continuous increase in the current versus voltage slope when Jth is reached; the slope

increases due to the increased transport caused by stimulated emission. This “kink”

has varying degrees of visibility: it is obvious in devices with a prominent 1′ − 2

parasitic, but can be nearly invisible for devices with suppressed parasitics. The

magnitude of the slope discontinuity also has a theoretical interpretation to be dis-

cussed in section 4.1.6. Jth is important because it is proportional to the population

inversion required to achieve lasing (up to some temperature dependent prefactor).

That said, it is a crude diagnostic; Jth in most cases rises with temperature, but it is

difficult to pinpoint the physical mechanism responsible. Possible causes of reduction

in gain include

• thermally induced population inversion degradation, in which case more pump-

ing is required to achieve the same population inversion.

• thermally induced linewidth broadening, reducing peak gain.

• thermally induced increase of device loss (due to thermal redistribution of car-

riers between different quantum states in the gain medium).

In good designs, the rise of Jth versus temperature is usually characterized by a plateau

region characteristically extending to ∼ 50−100K, followed by a region of exponential
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increase. Therefore, for sufficiently high temperatures, Jth is empirically well modeled

by Jth ∝ exp(T/T0), where T0 is a fitting parameter. The fitted value of T0 can be

used to compare different devices and different designs. T0 has a tendency to be

higher in lower frequency devices. This is cited as experimental evidence supporting

the hypothesis of phonon-assisted non-radiative scattering as a cause of population

inversion degradation with temperature.

Nevertheless, T0 must be interpreted with caution. Even devices from the same

fabrication and wafer can exhibit significant differences in T0. Moreover, the extracted

value of T0 depends somewhat on the number of high temperature threshold points

used for fitting. It also has some dependence on device size, particularly in wet-etched

devices. On a theoretical note, the mathematical form of this exponential fit is strik-

ingly unphysical. The mathematics of statistical mechanics always produces terms

like exp(E0/kBT ) (where E0 is some sort of characteristic energy), never exp(T/T0).

Therefore, the physical significance of T0 is unclear.

Finally, rather than fitting the highest temperature points to the expression Jth =

J1 exp(T/T0), another common procedure is to the fit all threshold data to Jth =

J0 + J1 exp(T/T0). T0 from these different fits are significantly different and should

not be directly compared.

4.1.4 Maximum current density (Jmax)

Jmax is the current density at which the main NDR occurs. After this point, injector-

upper laser level misalignment presumably results in a sudden loss of current flow.

Therefore, at least at low temperatures, Jmax is a measure of injection-to-active re-

gion transport and is essentially determined by the injector barrier thickness. The

behavior of Jmax with temperature gives an indication of the coherence of injection.

For example, equation (2.14) shows that in the strong-coupling limit Jmax ought to

be essentially be determined by the upper level lifetime (either lasing or non-lasing).

Conversely, equation (2.15) shows that in the weak-coupling limit Jmax ought to be

essentially determined by the coherence of transport; the anticrossing coupling, Ω, is

temperature independent, and one expects somewhat different dependences for the
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dephasing time τ|| and the upper level lifetime.

Jmax often —but not always— corresponds to the point of maximum optical power.

4.1.5 Dynamic range

Clearly, one always desire Jth to be small and Jmax to be large. The difference

Jmax − Jth is known as the dynamic range. One qualitative way to think about QCL

laser operation is that the laser’s dynamic range shrinks with temperature, mainly

according to T0. Lasing action stops when the dynamic range is entirely consumed.

For a given T0, mid-IR QCLs have a significant advantage over THz QCLs, because

they possess a much larger dynamic range (the problem is even worse because T0 is

generally lower for THz devices, owing to the sub-Reststrahlen band operation).

4.1.6 Differential conductance

Measurements of small-signal conductance G versus voltage or current (GV or GI

measurements) yield two sorts of useful information. First, regions of NDR manifest

as roughness in the GV or GI. This enables discrimination of regions of slight NDR

that may not be apparent from an IV measurement alone. Second, it gives the

magnitude of the slope discontinuity, ∆G, in the IV at threshold. Note that in the

literature it is standard to work with the differential resistance R = 1/G and the

corresponding discontinuity ∆R, but there is no fundamental difference in doing so.

Based on the rate equation approach of section 2.2.2, and employing the assump-

tion that the upper laser level population varies as dn3/dJ ∝ R, Sirtori et al. [59]

have argued that the slope discontinuity is given by

∆G

G2

=
∆R

R1

=
1− τ2/τ32

1− τ2/τ32 + τ2/τ3
(4.1)

where G2 (R1) is the conductance (resistance) just above (below) threshold. There-

fore, the fractional discontinuity is a measure of depopulation efficiency, and ap-

proaches unity as τ2 approaches zero.
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Based on a simplified 3-level density matrix approach in the vein of the Kazarinov-

Suris formulation discussed in section 2.2.3, and without resorting to Sirtori’s assump-

tion, Kumar has derived that alternate interpretation

∆R

R1

=
2∆nth

ntot

(
1− τ21/2τ31

1 + τ21/τ31

)
≈ 2∆nth

ntot

(4.2)

where ∆nth is the population inversion above threshold and ntot is the total population

[60]. This has a major qualitative difference from Sirtori’s formulation in that the

slope discontinuity becomes a measure of the population inversion at threshold instead

of approaching unity for vanishing τ21.

However, one notes that due to the small number of subbands and other sim-

plifying assumptions, neither model is universally applicable to QCL analysis. In

particular, both models become broken in the presence of a large lower level para-

sitic. The experimental results in this chapter present several such examples. In the

worst case, the subthreshold IV becomes flat, meaning the subthreshold conductance

G1 is zero. This yields the pathological result that the fractional discontinuity truly

is unity.

4.2 Experimental Results

This section presents the experimental results gathered over the course of this thesis.

The designs here were largely designed by Dr. Sushil Kumar, and the measurements

mostly done by the author.

The THz QCL community still awaits a quantitatively accurate simulation tool

for design; in the absence of such a tool, QCL designs progress by incremental changes

to existing designs guided by the simpler theories of chapter 2 and 3. As such, it is an

inherently sequential process. Therefore, this section groups designs into chronological

“generations,” as this best reflects the thinking process that went into each design.

The “first” generation represents the designs that were under investigation at the time

the author joined the Hu group at MIT, and each subsequent generation describes
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the evolutions since then.

4.2.1 On the calculation of band diagrams and anticrossings

Each design is accompanied by a single-module band diagram and an anticrossing

diagram. The former is used for lasing frequency, oscillator strength, and scattering

rate calculations while the former is used to identify the anticrossing gaps discussed

in section 2.2.3.

The band diagram for each design shows the approximate Wannier-Stark eigen-

state envelope functions calculated by diagonalizing the Hamiltonian of the biased

superlattice potential of a single QCL module plus the injector barrier of the next

module, employing Dirichlet boundary conditions (F (z) = 0 at simulation bound-

aries). The modulus squared of the eigenfunctions are plotted offset by their eigen-

energies. By convention, the superlattice potential tilts downwards from left to right.

Normally, the design bias is chosen to be the bias at which the injector level of one

module is optimally aligned with the upper laser level of the next module, as de-

termined by the anticrossing calculations to be discussed below. Eigenstates at this

bias are numbered from lowest to highest energy starting with the injectors; this

numbering is retained even if the eigenstates cross over in energy at different biases.

The upper and lower laser levels are writ in bold to distinguish them from other

eigenstates.

Each band diagram reports the layer width sequence in monolayers; all lasers in

this thesis are grown in the AlxGa1−xAs system, so 1ML≈2.825Å. The band dia-

grams presented below are not based on the intended designs, but correct for growth

inaccuracies. For example, if X-ray diffraction data determines 2.0% overgrowth, the

band diagram is calculated with all layer widths multiplied by 1.02. In assuming

homogeneous growth inaccuracy, it should be understood that these band diagrams

are true only in an “average” sense. Layers that are fractions of monolayers in width

are of course physically impossible, but a detailed layer-by-layer account of growth

inaccuracies is not only unavailable, but would render the calculation intractable even

if it were.

84



Finally, the LO phonon scattering lifetimes reported in each band diagram are

calculated assuming a lattice temperature of 4K and an electronic temperature of

100K. Two lifetimes are reported: τLO,ul considers scattering only from the upper

laser level to the lower laser level, while τLO,u includes scattering to all levels below

the upper laser level.

The anticrossing diagram plots energy differences between eigenstates in a two-

module simulation as function of bias. The minima of these differences yield the

anticrossing gaps which approximate the interaction potential between localized well

states. A “prime” designation indicates a level from a previous module; for example,

if the upper laser level is 4 and the injector level is 1, then the 1′ − 4 anticrossing

designates the bias at which the injector level of the previous module is optimally

aligned with the upper laser level of the current module, and its anticrossing gap is

designed ∆1′−4.

4.2.2 First generation designs

These devices were measured earliest in this course of research; the transport data is

not as complete as measurements for later devices.

OWI202D-M1, OWI180E

OWI202D-M1 is modification of the original OWI design (OWI185-M1, see reference

[53]) changed to lase at a higher frequency. Device specifications and experimental

data are presented in figures 4-1 and 4-2. Originally, it was postulated that the

mechanism limiting temperature performance is population inversion degradation due

to level 5 acting as an upper level parasitic. Level 5 is relatively close in energy to

the upper level 4 and has a large overlap with the upper level envelope function, thus

can be populated by LO phonon absorption.

To test this hypothesis, OWI180E was designed. In this modification of the OWI

scheme, the active region well structure is modified so that former parasitic level 5

becomes the new upper level, and the former upper level 4 is brought into resonance
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Figure 4-1: Design parameters for OWI202D-M1, wafer VB0175 (overgrown by
0.39%). (a) Calculated single-module band diagram at optimal injection bias. Sub-
band 5 was postulated to degrade temperature performance by acting as an upper
level parasitic for upper laser level 4. (b) Calculated anticrossings. Main parasitic in
IV is attributed to ∆1′−2. Collector anticrossing is ∆3−2, and injection anticrossing
is ∆1′−4.

with the lower level and collector. Design specifications and experimental data are

presented in figures 4-3 and 4-4 respectively. With this subband structure, the next

highest eigenstate becomes spatially isolated from the upper laser level, thus discour-

aging LO phonon absorption. Indeed, OWI180E did achieve superior performance,

with Tmax = 174K as opposed to Tmax = 155K for OWI202D-M1.

This comparative study was thought to have confirmed the upper level parasitic

hypothesis, but in retrospect, this conclusion may have been too hastily made. There

are at least three problems hindering a definite conclusion. First, the phonon depop-

ulation gap (E21) was slightly larger in OWI180E (41.2meV; although later evidence

suggests that thermal backfilling is not currently a performance barrier). Second,

OWI180E was designed with a larger radiative gap than OWI202D-M1. The ratio of

lasing frequencies between the two devices is roughly the same as the ratio of their

Tmax, in accordance with the empirical ∼ ~ω/kB temperature limit. Third, T0 was

higher for OWI202D-M1 than it was for OWI180E (162K versus 96K), suggesting that

OWI202D-M1 is actually less sensitive to temperature dependent effects; although
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Figure 4-2: Experimental results for OWI202D-M1, wafer VB0175 (overgrown by
0.39%). (a) CW LIV vs. temperature measured for a narrow device. (b) Threshold
(Jth), maximum (Jmax) and parasitic (Jpar) current densities versus temperature. Jpar

is evaluated at 11.7V applied bias. (c) Pulsed LI measured for a wide device lasing
up to 155K.
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Calculated single-module band diagram at optimal injection bias. The next highest
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thus becomes unlikely to act as a parasitic. (b) Calculated anticrossings. Main
parasitic in IV is attributed to ∆1′−2. Collector miniband width is ∆4−2, and injection
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this may be unsurprising due to its lower lasing frequency, and a slight departure

from T0=162K is noted at the highest temperatures.

An unusual feature of OWI180E is the current at its parasitic knee. While a

prominent knee such as that seen in figure 4-4a is a common feature of many designs

both before and after OWI180E, OWI180E has a parasitic knee that is amazingly

independent of temperature (more so than other devices), beginning to rise only

around 200K. One possibility considered was that the Jpar versus temperature curve

reflects the LO phonon population, to which 2-1 LO phonon scattering should be

proportional. However, a fit to this curve using a Bose-Einstein distribution with

an offset and scaling factor fits poorly. OWI180E also lased at significantly lower

frequency than expected.

Summary

Whether the absence of an upper level parasitic is the reason for the improvement of

OWI180E over OWI202D-M1 remains uncertain.
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Figure 4-4: Experimental results for OWI180E, wafer VB0205 (overgrown by 2.4%).
(a) CW LIV versus temperature measured for a narrow device. (b) Threshold (Jth),
maximum (Jmax) and parasitic (Jpar) current densities versus temperature. Note that
Jth is from a CW measurement, while Jmax and Jpar are from pulsed measurements;
pulsed light data were not measured for the device in a. Jpar is evaluated at 8.9V
in the pulsed IV s. (c) CW spectra from a narrow device, overlaid on ∼8K IV to
indicate bias location. Note that the spectra were measured for a device different
than the one used in plots a and b, and the IV characteristics are hence somewhat
different. (d) Pulsed LI and spectra data for a 174K device.
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The improved performance of OWI180E over OWI202D-M1 (and also OWI185E-

M1 in the next generation) also engendered speculation that thermal backfilling of

the lower level is a potential source of temperature degradation. Evidence from third

generation devices (discussed in section 4.2.4) suggests this is not the case, so it

may be worth while to redesign OWI180E with a smaller phonon gap and all other

parameters kept the same.

OWI202D-M1 is perhaps also worthy of further investigation, on account of its

exceptionally high T0.

4.2.3 Second generation designs

This generation was the first to seriously explore the effects of increasing diagonality

in the design. This second generation of devices has yielded three novel results: the

first demonstration of LO phonon scattering assisted injection in a THz device, the

highest temperature lasing to date, and the simplest QCL design to date.

OWI185E-M1

OWI185E-M1 is a modification of OWI180E, and one of the first forays into explor-

ing the effects of diagonality. Design parameters are presented in figure 4-8. Between

OWI185E-M1 and OWI180E, the oscillator strength is reduced from 0.74 to 0.39,

the radiative gap is raised from 14.2meV to 17.6meV (3.44THz to 4.25THz), and

both collector and injector anticrossings are increased. The phonon depopulation

gap is also brought closer to LO phonon resonance, from 41.2meV in OWI180E to

38.7meV. So in short, every design parameter has been changed between OWI180E

and OWI185E-M1—not such a good idea in retrospect, as this significantly compli-

cates analysis.

The intended 5-4 transition performed reasonably well (Tmax ∼ 154K), but did

poorer than OWI180E. However, this design yielded unexpected low frequency las-

ing (∼1.8THz) at very high biases. This serendipitous lasing actually lased up to

163K, even higher than the originally designed transition. One hypothesis is that

90



1

2
3

4

5

6

7

8

9

15.014.012.08.0
54.026.034.030.0

OWI185E−M1
(VB0244)  
Al

0.15
Ga

0.85
As/

GaAs                 

54.6nm    
per module

Electric field
1.22e+06 V/m  

E
54

=17.6meV 

(4.25THz)      

f
54

=0.39         
τ

LO,54
=11.29ps

τ
LO,5

=3.08ps  

E
21

=38.7meV

2.1×1016cm−3

Si n−doping            
in widest well         5 6 7 8 9 10 11 12 13

x 10
5

0

1

2

3

4

5

6

7

8

9

10

11

Electric field (V/m)

∆E
 (

m
eV

)

OWI185E−M1 (VB0244) Anticrossing Diagram

∆
4−3

=5.10

∆
3−2

=5.13

∆
5−2

=1.89 ∆
1

′
−2

=0.52

∆
4−3−2

=10.22

(mini−band width)   

∆
1

′
−5

=3.00

(a) (b)

Figure 4-5: Design parameters for OWI185E-M1, wafer VB0244 (overgrown by
0.09%), for resonant tunneling injection. (a) Calculated single-module band dia-
gram at optimal injection bias. (b) Calculated anticrossings. Main parasitic in IV is
attributed to ∆1′−2. Collector miniband width is ∆4−3−2, and injection anticrossing
is ∆1′−5.

the lasing is due to Stark-effect splitting of the collector levels, with lasing occurring

between subbands 4 and 3. Based on its lasing frequency, the postulated band dia-

gram is shown in figure 4-6. Under this interpretation, the upper laser level is not

resonant with any preceding energy levels. Therefore the high-bias upper laser level

is hypothesized to be pumped by LO phonon scattering assisted (SA) injection. Scat-

tering assisted injection has been proposed and implemented in mid-IR QCLs (see,

for example, [61]), but OWI185E-M1 marks its first deployment in an THz device.

There are two SA possibilities: using the level numbering in figure 4-5, Kumar

originally proposed that level 5, the upper laser level of the designed resonant-phonon

lasing, becomes an electron reservoir for level 4, the upper laser level in the SA based

lasing. In the course of writing this thesis, it was discovered that level 7 is highly

anticrossed with level 3 of the previous module (anticrossing gap of 2.12meV), and

7-4 pumping may also be possible. Both of these are illustrated in figure 4-6. Figure

4-7 compares LO phonon scattering rates for these two injection mechanisms. The

low temperature selectivity of the 5-4 injection mechanism is so poor that it becomes

surprising that lasing occurs at all. The calculated 7-4 scattering rate is significantly
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larger the 5-4 scattering rate at low temperatures, and is also much more selective.

The disadvantage of the 7-4 scattering mechanism, however, is that the scattering

rate is not expected to increase significantly with temperature, because of the large

7-4 energy separation. In contrast, figure 4-7 shows that injection selectivity increases

with temperature for the 5-4 transition.
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Figure 4-6: Postulated 2-module band diagram for scattering assisted lasing in
OWI185E-M1, illustrating the possible 5→4 injection mechanism (purple) and the
possible 7→4 injection mechanism (blue). The calculated 3′ − 7 anticrossing gap is
2.12meV.

Experimental data for both the resonant tunneling and scattering assisted tran-

sitions are presented in figure 4-8. Although the resonant tunneling and scattering

assisted transitions are almost mutually exclusive, there exists a small bias region

close to the main NDR where both frequencies lase simultaneously. Note, that the

optical power of the 5-4 lasing peaks prior to the main NDR. This is consistent with

a population build-up in level 4, such that both transitions start to lase prior to the

onset of the main NDR.

Non-lasing current transport was also investigated for this design. As shown

in figure 4-8d, the principle NDR disappears in the absence of lasing. Hence, one

speculates that the NDR in the lasing device is related to the cessation of 5-4 lasing.

Surprisingly, figure 4-8d also shows that the non-lasing IV has noticeably higher
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Figure 4-7: LO phonon scattering rates in OWI185E-M1 vs. electrical bias for 7-
4 injection and 5-4 injection at (a) 4K (b) 160K. Rates are calculated based on a
1-module band diagram simulation. Electronic temperature is assumed to be 100K
above the lattice temperature.

current in the vicinity of the parasitic knee. This is puzzling, as conventional wisdom

holds that stimulated emission is irrelevant to current transport below threshold. The

reason for the near-threshold differences seen in 4-8d are currently unknown, and has

not been observed in the non-lasing measurements of other designs.

OWI222G

OWI222G currently possesses the highest lasing temperature of any published THz

QCL gain medium. It has Tmax=186K, and a remarkably high T0 = 158K given

that it lased at the somewhat high frequency of 3.9THz. Design specifications and

experimental data are presented in figures 4-10 and 4-11 respectively.

OWI222G has no predecessor amongst MIT designs, but Luo et al. published

details of 3-level one-well injector design in 2007 ahead of OWI222G. Its design spec-

ifications, as calculated from layer widths reported in [62], are shown in figure 4-9. It

lased up to 142K (Belkin et al. later used the exact same gain medium design and

better waveguide fabrication to achieve 178K lasing [54]). In their design, Luo et al.

adhered to the once conventional philosophy of making oscillator strengths as large

as possible.
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Figure 4-8: Experimental results for OWI185E-M1, wafer VB0244 (overgrown by
0.09%). (a) Pulsed LIV versus temperature measured for a wide device. Note that
LV at 163K is missing because LI data was taken in a separate experiment from LV
and IV . (b) Threshold (Jth), maximum (Jmax) and parasitic (Jpar) current densities
versus temperature. The threshold for the ∼1.8THz transition is determined by
measuring the light output using a InSb hot electron bolometer. Jpar is evaluated
from the IV s at 12.0V. (c) Pulsed spectra at ∼8K, overlaid on corresponding IV to
indicated bias location. As indicated by the purple spectrum, close to NDR, both
low and high frequency lasing occur simultaneously. (d) Lasing versus Non-lasing IV
measurements. At high temperatures, IV s converge.
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Figure 4-10: Design parameters for OWI222G, wafer VB0240 (overgrown by 0.79%).
(a) Calculated single-module band diagram at optimal injection bias. (b) Calculated
anticrossings. Main parasitic in IV is attributed to ∆1′−2. Collector anticrossing is
∆3−2, and injection anticrossing is ∆1′−4.
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Figure 4-11: Experimental results for OWI222G, wafer VB0240 (overgrown by 0.79%).
(a) Pulsed LIV versus temperature measured for a wide device. (b) Threshold (Jth),
maximum (Jmax) and parasitic (Jpar) current densities versus temperature. Jpar is
evaluated from the IV s at 13.9V. (c) Pulsed spectra at ∼8K, overlaid on correspond-
ing IV to indicate bias location. (d) Pulsed LI data for a wide device lasing up to
186K; no spectra available.
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A comparison between the Luo et al. 2007 design and OWI222G is useful for

demonstrating the theoretical benefits of diagonality. Figure 4-13 compares the figure-

of-merit defined in equation (2.84) for the two designs. The upper level lifetime is

taken to be
1

τu
=

1

τ43

+
1

τ42

+
1

τ41

(4.3)

and lower level lifetime to be
1

τl
=

1

τ31

+
1

τ21

(4.4)

and the upper-to-lower level lifetime is

1

τul

=
1

τ43

+
1

τ42

(4.5)

So the figure-of-merit of equation (2.84) becomes

FOM = f43τu

(
1− τul

τl

)
. (4.6)
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Although the large reduction of oscillator strength from 0.82 to 0.37 yields only a

modest improvement to the FOM, figure 4-13 shows that this improvement persists

across all temperatures. For equal doping levels, device losses, and linewidths, the

FOM becomes a direct measure of gain; figure 4-13 also indicates an extrapolated

Tmax=211K for OWI222G based on these assumptions. Because the FOM tapers

more slowly at high temperatures, even modest improvements should, in principle,

enable significantly higher Tmax.
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Figure 4-13: Comparison of the figure-of-merit defined in equation (2.84) between
OWI222G and the Luo et al. APL 2007 3-well design. Only LO phonon scattering is
considered, using the thermally-activated approximation of equation (2.54). The elec-
tronic temperature used in these calculations is assumed to be 100K above the lattice
temperature. The pseudo-“lasing threshold” is determined from the intersection of
the blue curve and the experimental Tmax of Luo et al.

That said, the above analysis is of only qualitative importance, as the assump-

tions of equal doping levels, device losses, and linewidths are almost certainly false.

For example, in figure 4-13, dividing the green line by ∼1.1 (ie. 10% broader gain
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linewidth than the Luo et al. design) is enough to bring it into intersection with the

red line at the experimentally observed 186K. And one must again bear in mind that

Belkin et al. achieved Tmax=178K using the exact same gain medium design.

TW246

Although not labeled as such, TW246 is a DSL family device. “TW” in this case

stands for “two-well.” This two-well QCL is the simplest QCL in existence, and

could possibly be the simplest QCL possible. A one-well QCL, as originally proposed

by Kazarinov and Suris, has never been demonstrated due to NDR induced electrical

instability. Design parameters and experimental results are shown in figures 4-14 and

4-15, and are further published in [63].
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Figure 4-14: Design parameters for TW246, wafer VB0227 (overgrown by 2.74%).
Note that, in contrast to [63], the band diagram here is calculated without non-
parabolicity. (a) Calculated single-module band diagram at optimal injection bias.
(b) Calculated anticrossings. Main parasitic in IV is attributed to ∆1′−2. Injection
anticrossing is ∆1′−3. As this is a DSL design, there is no collection anticrossing.

TW246 and OWI222G may be compared using the same figure-of-merit analysis

used in the previous section to compare the design of Luo et al. 2007 to OWI222G.

The results are presented in figure 4-16, according to which TW246 should have lased

up to room temperature (the average bulk doping is the same in the two designs).

Instead, TW246 performed significantly worse, lasing only up to Tmax=121K.
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Figure 4-15: Experimental results for TW246, wafer VB0227 (overgrown by 2.74%).
(a) Pulsed LIV versus temperature measured for a wide device. (b) Threshold (Jth),
maximum (Jmax) and parasitic (Jpar) current densities versus temperature. Jpar is
evaluated from the IV s at 8.9V. (c) Pulsed spectra at ∼8K, overlaid on corresponding
IV to indicate bias location. (d) Comparison of LI versus GI. Discontinuities in
differential resistance match up with features in the LI; mode hopping is the apparent
cause of both, as indicated by the spectral changes (see inset).

100



0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
TW246 vs. OWI222G "Figure of Merit" comparison

F
O

M
 =

 f ul
τ u (

1−
τ l/τ

ul
) 

(p
s)

Lattice Temperature (K)

 

 

T
W

24
6,

 T
m

ax
 =

 1
21

K

O
W

I2
22

G
, T

m
ax

 =
 1

86
K

"Lasing threshold"

TW246
OWI222G

Figure 4-16: Comparison of the figure-of-merit defined in equation (2.84) between
TW246 and OWI222G. Only LO phonon scattering is considered, using the thermally-
activated approximation equation (2.54). The electronic temperature used in these
calculations is assumed to be 100K above the lattice temperature.
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The reasons for this poor performance are not known. In figure 4-15b, no value for

T0 is reported because the threshold current density does not fit well to an exponential

curve at high temperatures. This is on account of an extremely steep rise in Jth as

the end of lasing is approached. Moreover, Jmax starts to rise prior to the end of

lasing. For example, the point of peak optical power moves further behind Jmax with

increasing temperature.

In [63], Kumar has speculated that this Jmax behavior and the performance degra-

dation of the device might be due to hot-phonon induced absorption of upper level

electrons into upper parasitic levels. This is illustrated in figure 4-17. At design bias,

the upper laser level is approximately in LO phonon resonance with upper parasitic

level 4. The scattering time to these parasitics therefore increases as resonance is

approached, providing one possible explanation for why at higher temperatures the

power peaks before Jmax is reached. In figure 4-17, the scattering lifetimes from the

the levels 1′ − 3 to the parasitics 2′ − 4 are in the range of 0.4ps/NLO to 0.8ps/NLO,

where NLO is the LO phonon occupation factor. At cryogenic temperatures, NLO ∼ 0

in equilibrium, but a nonequilibrium NLO could cause significant scattering.

But absent empirical evidence for the existence of hot LO phonon populations

in THz QCLs, this hypothesis remains highly speculative. Empirical evidence does,

however, exists for the existence of nonequilibrium interface TO phonons [64]. Com-

putational studies employing Monte Carlo methods also support the existence of

nonequilibrium LO phonon populations in THz QCLs [65, 66]; in [66], Lu and Cao

report nonequilibrium occupation factors as high as 0.2 at 25K. However, the appli-

cability of Monte Carlo methods to QCL simulation remains questionable, so such

computational studies need be treated with some caution.

There is a more straightforward manner in which level 4 can act as an upper level

parasitic: it could be just that level 2′ electrons tunnel into level 4, and then relax

into level 2 through LO phonon emission, and then tunnel into level 4 of the next

module, and so forth. Through this path, the electrons entirely bypasses both the

upper laser level and the injector.
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Figure 4-17: 3-module simulation of TW246 showing hypothetical mechanism of hot-
phonon absorption. At the design bias, the upper laser level, depicted in purple
(level 3, shown here anticrossed with the previous module’s injector as 1′ − 3) is
coincidentally almost in LO phonon resonance with the upper level parasitics shown
in green (level 4, which is anticrossed with 2′; calculated gap is 34.8meV). The period
of one module is boxed in red.
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Summary

This generation of devices produced mixed results regarding increased diagonality in

design. On the one hand, OWI222G achieved a record Tmax=186K. On the other hand,

TW246 performed much more poorly than OWI222G despite being an ostensibly

much better design according to available theoretical tools.

The intended lasing mechanism of OWI185E-M1 also disappointed, but its unin-

tended high-bias lasing has established scattering assisted injection as a viable design

strategy that may prove superior to resonant tunneling injection.

4.2.4 Third generation designs

Overall, designs in the 3rd generation are characterized by three major changes. First,

all designs were made much more diagonal than their 2nd generation predecessors,

in order to increase the upper level lifetime. Second, the injection anticrossings were

generally made larger, in a bid to improve current transport and hence maximum

gain. Third, some designs employ a larger phonon gap or used a two phonon cascade

in order to combat thermal backfilling.

This generation of devices had somewhat suspect quality of growth, consistent

with our MBE collaborator, Dr. Reno, having recently moved to a new MBE machine.

Several wafers exhibited unusually broad X-ray diffraction data, or showed a split

period suggesting two different periodicities in the superlattice. This set of devices

also largely switched from bulk doping to δ-doping.

OWI190E-M2

OWI190E-M2 is a another descendant of OWI180E. There were two growths of

OWI190E-M2: VB0288 was overgrown by 3.1% and VB0287 was overgrown by 7.4%.

Accounting for overgrowth in this design, the oscillator strength is reduced from 0.37

in OWI185E-M1 to 0.15 and 0.14 in the two wafers (the targeted oscillator strength

was 0.21). The injector anticrossing was designed to be larger than OWI185E-M1,

although overgrowth resulted in it being the same in the case of VB0288, and smaller
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in the case of VB0287. The collector miniband width was also smaller in both cases.

Finally, the phonon depopulation gap was increased to ∼46meV in a bid to suppress

thermal backfilling. As with OWI185E-M1, the change of so many parameters at

once hampers analysis. Design specifications for both wafers are presented in figure

4-18. Experimental results for VB0288 and VB0287 are presented in 4-19 and 4-20

respectively.
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Figure 4-18: Design parameters for OWI190E-M2, VB0288 (overgrown by 3.1%) and
wafers VB0287 (overgrown by 7.4%). (a) Calculated single-module band diagram at
optimal injection bias for VB0288. (b) Calculated anticrossings for VB0288. Main
parasitic in IV is attributed to ∆1′−2. Collection miniband width is ∆4−3−2. Injection
anticrossing is ∆1′−5. (c) and (d) are the same plots for VB0287.

Both VB0288 and VB0287 lased up to Tmax=137K, and showed a marked decrease
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Figure 4-19: Experimental results for OWI190E-M2, wafer VB0288 (overgrown by
3.1%). (a) Pulsed LIV versus temperature measured for a wide device. (b) Thresh-
old (Jth), maximum (Jmax) and parasitic (Jpar) current densities versus temperature.
Jpar is evaluated from the IV s at 14.0V. (c) Pulsed spectra at ∼8K, overlaid on
corresponding IV to indicate bias location.
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Figure 4-20: Experimental results for OWI190E-M2, wafer VB0287 (overgrown by
7.4%). (a) Pulsed LIV versus temperature measured for a wide device. (b) Thresh-
old (Jth), maximum (Jmax) and parasitic (Jpar) current densities versus temperature.
Jpar is evaluated from the IV s at 12.6V. (c) Pulsed spectra at ∼8K, overlaid on corre-
sponding IV to indicate bias location. (d) Lasing versus non-lasing IV s. Lasing was
suppressed by covering devices with Stycast 2850 epoxy (catalyst 23LV) or by using
extremely small devices. At low temperatures, the Stycasted device shows a delayed
onset of lasing, and the smallest device does not lase at all. At higher temperatures,
lasing ceased in all three devices, and all IV ’s converge. Note that all features of the
IV ’s in d happen at lower voltages.
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in Jmax versus temperature. While this has been observed before in previous designs

(eg. OWI185E-M1), the drop has never been so dramatic. The interpretation is

that transport in this design is limited by the upper level lifetime, due to the large

injector anticrossing and long upper level lifetime. Lasing plays a significant role

in transport above threshold, and so the decrease of Jmax is caused by diminishing

lasing as temperature increases. As temperature increases, the non-radiative lifetime

decreases, but the radiative lifetime increases (ie. less lasing occurs), but such that

overall upper level lifetime increases with temperature while the device continues to

lase. Another explanation for falling Jmax is thermal backfilling of electrons from the

injector into the collector levels, but this is inconsistent with the larger LO phonon

gap of OWI190E versus OWI185E-M1—if thermal backfilling is the cause, Jmax should

have dropped more prominently with temperature in OWI185E-M1.

Additionally, OWI190E-M2 had a prominent parasitic knee in its IV character-

istics. This parasitic is likely causing early NDR, and may be harming performance.

Williams has identified such parasitics as a cause of poor temperature performance in

previous designs (FL175C and its descendants, detailed in [46]). This suspicion was

confirmed in the measurement of non-lasing devices (see figure 4-20), which demon-

strated that Jpar and Jmax are practically identical in the absence of lasing.

Furthermore, like OWI185E-M1, OWI190E-M2 supports scattering assisted las-

ing, although this was only investigated thoroughly in VB0287. High temperature

spectra were not recorded, so the optimal lasing band alignment is not as certain. But

assuming injection is optimized around the same 3′−7 band alignment as OWI185E-

M1, then the postulated band diagram is shown in figure 4-21 (3′−7 anticrossing gap

is 0.95meV). As see in figure 4-21, the 4-3 lasing transition is much more diagonal.

In principle, this increased diagonality should have been beneficial, as the reduced

wavefunction overlap should improve injection selectivity. This is reflected in the

LO phonon scattering rates calculated in figure 4-22. In contrast to OWI185E-M1,

even the 5-4 injection is substantially more selective. However, the scattering assisted

transition lased only up to 152K— superior to the resonant tunneling injection in this

wafer, but somewhat inferior to the scattering assisted injection lasing in OWI185E-
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M1. There are several possible explanations for the poorer performance: compared to

OWI185E-M1, the phonon depopulation gap is larger, and the 3′−7 anticrossing gap

is smaller. There are probably also differences in the resonant tunneling collection by

levels 3 and 2 between OWI190E-M2 and OWI185E-M1, which is optimal in neither

case.
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Figure 4-21: Postulated 2-module band diagram for scattering assisted lasing in
OWI190E-M1, with the possible 7-4 (blue) and 5-4 (purple) scattering assisted injec-
tion. The calculated 3′ − 7 anticrossing gap is 0.95meV

OWI222G-M1

OWI222G-M1 is a modification of OWI222G. Accounting for growth inaccuracies,

the oscillator strength is moderately reduced from 0.37 down to 0.25, and the injector

anticrossing is increased from 2.15meV to 2.83meV. The collector anticrossing of

both designs is similar (4.52meV in OWI222G, and 4.69 meV in OWI222G-M1).

Design specifications and experimental data are presented in figures 4-23 and 4-24

respectively.

Like OWI190E-M2, OWI222G-M1 exhibited a falling Jmax with rising tempera-
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Figure 4-22: LO phonon scattering rates in OWI190E-M2 vs. electrical bias for 7-
4 injection and 5-4 injection at (a) 4K (b) 160K. Rates are calculated based on a
1-module band diagram simulation. Electronic temperature is assumed to be 100K
above the lattice temperature.
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Figure 4-23: Design parameters for OWI222G-M1, wafer VB0271 (undergrown by
1.5%). (a) Calculated single-module band diagram at optimal injection bias. (b)
Calculated anticrossings. Main parasitic in IV is attributed to ∆1′−2. Collector
anticrossing is ∆3−2, and injection anticrossing is ∆1′−4.
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Figure 4-24: Experimental results for OWI222G-M1, wafer VB0271 (undergrown by
1.5%). (a) Pulsed LIV versus temperature measured for a wide device. (b) Threshold
(Jth), maximum (Jmax) and parasitic (Jpar) current densities versus temperature. Jpar

is evaluated from the IV s at 13.5V. (c) Pulsed spectra at ∼8K, overlaid on corre-
sponding IV to indicate bias location. (d) Lasing versus Non-lasing IV measurement
at ∼8K.
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ture, although unlike in OWI190E-M2, this trend does not persist all the way until

the end of lasing (see figure 4-24b). It also seemingly suffers more from subthresh-

old parasitics than OWI222G, despite having a nearly identical parasitic anticross-

ing (0.53meV for OWI222G-M1 versus 0.50 meV for OWI222G); whereas OWI222G

reaches threshold without NDR, OWI222G-M1 has an early NDR.

OWI230G-M2

OWI230G-M2 is a modification of OWI222G. Compared to OWI222G-M1, it is even

more diagonal (oscillator strength 0.19), and also possesses an even larger injector

anticrossing (2.68meV). In addition, to test whether thermal backfilling is an issue or

not, the phonon depopulation gap, E21, was increased to 43.4meV. Design specifica-

tions and experimental data are presented in figures 4-25 and 4-26 respectively.

The wafer for this device, VB0274, is strongly suspected to have defective growth

on account of its abnormal IV characteristics, and lased only up to 88K. As such, it

admits few conclusions.
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Figure 4-25: Design parameters for OWI230G-M2, wafer VB0271. Ostensibly under-
grown by 1.5%, but suspected of having more serious growth problems. (a) Calculated
single-module band diagram at optimal injection bias. (b) Calculated anticrossings.
Main parasitic in IV is attributed to ∆1′−2. Collector anticrossing is ∆3−2, and
injection anticrossing is ∆1′−4.
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Figure 4-26: Experimental results for OWI230G-M2, wafer VB0271. Ostensibly un-
dergrown by 1.5%, but suspected of having more serious growth problems. (a) Pulsed
LIV versus temperature measured for a wide device. The highly irregular IV suggests
questionable crystal growth. (b) Threshold (Jth) current density versus temperature.
(c) Pulsed spectra at ∼8K.
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OWI235G-M3

OWI235G-M3 is a modification of OWI222G. It is the most diagonal of the OWI222G

descendants in this generation, with an oscillator strength of 0.16. Like OWI222G-

M1 and OWI230G-M2, its 2.93meV injector anticrossing is larger than OWI222G.

Notably, it also had an unusually large phonon gap, E21 = 55.6meV. Design specifi-

cations and experimental data are presented in figures 4-27 and 4-28 respectively.
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Figure 4-27: Design parameters for OWI235G-M3, wafer VB0293 (undergrown by
2.26%). (a) Calculated single-module band diagram at optimal injection bias. (b)
Calculated anticrossings. Main parasitic in IV is attributed to ∆1′−2. Collector
anticrossing is ∆3−2, and injection anticrossing is ∆1′−4. (c) Calculated single-module
band diagram at optimal collection bias. This bias better reproduces experimentally
observed lasing frequency.
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Figure 4-28: Experimental results for OWI235G-M3, wafer VB0293 (undergrown by
2.26%). (a) Pulsed LIV versus temperature measured for a wide device. (b) Thresh-
old (Jth), maximum (Jmax) and parasitic (Jpar) current densities versus temperature.
Jpar is evaluated from the IV s at 16.4V. (c) Pulsed spectra at ∼8K, overlaid on
corresponding IV to indicate bias location.
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Like OWI190E-M2 and OWI222G-M1, OWI235G-M3 exhibited a distinct drop in

Jmax with temperature. However, the IV for OWI235G-M3 is also unusual in another

way. At first glance, there appears to be a prominent parasitic knee in the manner

of OWI190E-M2, but closer inspection reveals there to be more structure. In fact

the knee in the IV looks remarkably like the non-lasing IV of OWI222G in figure

4-12. Figure 4-29 shows non-lasing IV data for OWI235G-M3, alongside non-lasing

IV data for OWI222G reproduced from figure 4-12 for comparison, labeled with the

postulated location of the 1′ − 2 parasitic.

This may be explained as follows. Figure 4-27b shows that the collection anti-

crossing occurs after the injection anticrossing, whereas the reverse is true in most

designs. The observed lasing frequency is also much higher than the calculated fre-

quency at optimal injection bias in figure 4-27a, and a better match is obtained with

the band diagram calculated at optimal collection bias in figure 4-27c. This explains

why lasing occurs after the first NDR, which is caused by injector detuning.

Although this hypothesis is reasonable, it raises another question: why does the

gain peak closer to optimal collection rather than optimal injection? This suggests

that the lower level lifetime may be limited by the resonant tunneling collection

process. Although this situation may be unique to OWI235G-M3, one cannot help

but remark that the DSL family of devices, designed to combat this specific problem,

have empirically performed worse than standard OWI and FL designs.

TW260-M1

TW260-M1 is a modification of TW246. A large number of parameter changes from

its predecessor hinders the interpretation of the experimental data. The oscillator

strength was reduced from 0.52 to 0.29. The injection anticrossing was increased

from 1.67meV to 2.26meV. The phonon gap was increased from 37.2meV to 51.7meV.

The lasing frequency was reduced from 4.6THz to 3.8THz (granted, this frequency

reduction was necessary to accommodate the larger phonon gap).

This device did very poorly, lasing only up to 43K. The reasons for this poor perfor-

mance are uncertain. From preceding data on large phonon gap designs (OWI190E-
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Figure 4-29: Comparison of OWI235G-M3 and OWI222G non-lasing IV s. Lasing in
OWI235G-M3 starts after the 1st NDR of its non-lasing IV, whereas in OWI222G it
starts between the 1′ − 2 parasitic and the 1st NDR.
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M2, OWI235G-M3), thermal backfilling is unlikely to be limiting performance, so

the larger phonon gap may have hindered lower level depopulation. Another strong

possibility is that leakage into continuum may have been a problem, as the anticross-

ing diagram of figure 4-30b shows the upper laser level 3′ to be anticrossed with the

pseudo-continuum level 4 in the vicinity of optimal injection bias. And then there

remains the lingering possibility that it might be diagonality itself that is damaging

performance, however depressing that notion might be.
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Figure 4-30: Design parameters for TW260-M1, wafer VB0294 (overgrown by 0.1%).
(a) Calculated single-module band diagram at optimal injection bias. (b) Calculated
anticrossings. Main parasitic in IV is attributed to ∆1′−2. Injection anticrossing is
∆1′−3. As this is a DSL design, there is no collection anticrossing.

TP3W200

“TP” stands for “two phonon.” The TP devices were designed to combat thermal

backfilling, using two back-to-back intrawell phonon emissions to depopulate the lower

laser level.

TP3W200 is an OWI family design. It is essentially a TP variant of OWI222G,

employing a one injector well and a two well active region. Accounting for overgrowth,

it was designed to lase at 2.7THz with an oscillator strength of 0.19. The 2nd excited

state of the widest quantum well is used as the collector, and the two-phonon cascade
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Figure 4-31: Experimental results for TW260-M1, wafer VB0294 (overgrown by
0.1%). (a) Pulsed LIV versus temperature measured for a wide device. (b) Thresh-
old (Jth), maximum (Jmax) and parasitic (Jpar) current densities versus temperature.
Jpar is evaluated from the IV s at 17.6V. (c) Pulsed spectra at ∼8K, overlaid on
corresponding IV to indicate bias location.
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has energy level spacings E32=35.8meV and E31=62.4meV. Design specifications and

experimental data are shown in figures 4-32 and 4-33 respectively.

TP3W200 exhibited a strong parasitic knee in its IV , but lacked the characteristic

plateau of the single phonon designs. Interestingly, TP3W200 ended up being a two

color device. The designed 5-4 transition lased only weakly, and lased only to up

Tmax=54K. However, at higher biases, the devices lased at the much higher frequency

of 3.9THz, also exhibiting a strong Stark shift to higher frequencies with increasing

biases (as high as 4.3THz). This high frequency lasing was substantially higher in

power and more robust, lasing up to Tmax=96K. This suggest a scattering assisted

injection mechanism in the manner of OWI185E-M1. (Note that in figure 4-33, only

(d) shows the data for the Tmax = 54K/96K device. (a)-(c) show more complete data

taken on a different device from the same fabrication).

The spectral data in figures 4-33c and 4-33d are ambiguous, showing resonant-

phonon lasing at ∼3.2THz and ∼2.95THz respectively, but in both cases the lasing

occurs at higher than expected frequencies. Similar to OWI235G-M3, a better match

to the experimentally observed lasing frequencies is obtained by calculating the band

diagram at optimal collection bias rather than optimal injection bias, as shown in

figure 4-32c, suggesting that lower laser level depopulation may have been a problem.

Unlike OWI235G-M3, however, there is no clear sign of NDR before threshold.

TP4W160

As TP3W200 is a TP variant of OWI222G, TP4W160 is a TP variant of OWI180E.

TP4W160 had an unusual X-ray diffraction pattern showing two distinct sets of peaks

of different heights. The periodicity of the minor peaks indicated 0.03% overgrowth.

The periodicity of the major peaks indicated 2.2% undergrowth. The following dis-

cussion assumes 2.2% undergrowth, although the likely problems of growth must be

kept in mind.

Accounting for undergrowth, TP4W160 was designed to lase at 3.14THz with

an oscillator strength of 0.18. The two-phonon cascade has energy level spacings

E32=31.0meV and E31=55.7meV. The injector anticrossing is 2.25meV (compare
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Figure 4-32: Design parameters for TP3W200, wafer VB0275 (overgrown by 0.87%).
(a) Calculated single-module band diagram at optimal injection bias. (b) Calculated
anticrossings. Main parasitic in IV is attributed to ∆1′−4 (normally this would be
denoted 1′−3 by our naming convention, but the collector anticrossing happens after
injection anticrossing in this case). The other lower level parasitic, 1′−2 has negligible
anticrossing gap. Injection anticrossing is ∆1′−5, and collector anticrossing is ∆4−3.
(c) Calculated single-module band diagram at optimal collection bias.
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Figure 4-33: Experimental results for TP3W200, wafer VB0275 (overgrown by 0.1%).
(a) Pulsed LIV versus temperature measured for a wide device. (b) Threshold (Jth),
maximum (Jmax) and parasitic (Jpar) current densities versus temperature. Jpar is
evaluated from the IV s at 17.0V. (c) Pulsed spectra at ∼8K, overlaid on correspond-
ing IV to indicate bias location. (d) Pulsed LI and spectra for another TP3W200
device that better demonstrates the two-color characteristic; no corresponding IV
was taken.
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Figure 4-34: Design parameters for TP4W160, wafer VB0276 (taken as undergrown
by 2.2%). (a) Calculated single-module band diagram at optimal injection bias. (b)
Calculated anticrossings. Main parasitic in IV is attributed to ∆1′−5. Collector
miniband minimum is ∆5−4−3. (c) Calculated band diagram at optimal collection
bias. This agrees better with the experimental lasing frequency.

In contrast to the majority of designs in this generation, the IV exhibited only

a weak knee in its IV . Experimentally, the device (wafer VB0276) lased centered

around 3.9THz, much higher than expected. The lasing spectrum was also quite

broad, with signs of lasing from ∼3.8THz all the way up to ∼4.2THz. TP4W160

achieved Tmax=105K. Similar to OWI235G-M3 and TP3W200, better agreement with

experiment is obtained if the band diagram is calculated at optimum collection bias
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Figure 4-35: Experimental results for TP4W160, wafer VB0276 (taken as under-
grown by 2.2%). (a) Pulsed LIV versus temperature measured for a wide device.
(b) Threshold (Jth), maximum (Jmax) and parasitic (Jpar) current densities versus
temperature. Jpar is evaluated from the IV s at 16.4V. (c) Pulsed spectra at ∼8K,
overlaid on corresponding IV to indicate bias location.
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rather than optimal injection bias, suggesting slow depopulation of the lower laser

level may have been an issue (although one notes that the agreement with experi-

mental lasing frequency is still poor.)

FL190S-M2

FL190S-M2, a FL family design with a 2-well active region and 2-well injector, is

a modification of FL183S. The oscillator strength is reduced from 0.77 to 0.25. In

addition, the injector anticrossing is increased from 2.47meV to 2.93meV, and the

collector anticrossing reduced from 5.05meV to 4.5meV.
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Figure 4-36: Design parameters for FL190S-M2, wafer VB0292 (overgrown by 0.16%).
(a) Calculated single-module band diagram at optimal injection bias. (b) Calculated
anticrossings. Main parasitics in IV are attributed to ∆1′−3 and possibly ∆2′−3.
Injector anticrossings are ∆2′−5 and ∆1′−5, with overall injection miniband width
given by ∆1′−2′−5. Collector anticrossing is ∆4−3.

Like OWI190E-M2, there is a prominent knee in the IV with a flat plateau just

before threshold, clearly indicating early NDR. Like other devices of this generation,

it also had a characteristic drop in Jmax versus temperature.

FL190S-M2 lased up to Tmax=137K. For comparison, the highest Tmax achieved

by its predecessor, FL183S, is 174K.
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Figure 4-37: Experimental results for FL190S-M2, wafer VB0292 (overgrown by
0.16%). (a) Pulsed LIV versus temperature measured for a wide device. (b) Thresh-
old (Jth), maximum (Jmax) and parasitic (Jpar) current densities versus temperature.
Jpar is evaluated from the IV s at 12.5V. (c) Pulsed spectra at ∼8K, overlaid on
corresponding IV to indicate bias location.
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Summary

Perhaps most importantly, 3rd generation devices demonstrated that lasers with such

low oscillator strengths can still lase. This demonstrates that high diagonality is still

a feasible design strategy, despite the lack-luster temperature performance of this

generation.

Nearly all devices suffer from a strong parasitic knee in their IV characteristics.

This knee appears to be causing early NDR, such that most devices are lasing in

deep NDR, where the bias is likely inhomogeneous and hence only some fraction of

the modules are contributing to lasing. If this is the case, then this generation of

devices is promising in that they performed reasonably well despite the disadvantage

of operating in NDR.

This generation of devices is poorly controlled for testing the importance of ther-

mal backfilling, but the following observations can be made:

• Many devices in this generation exhibited a sharp drop in Jmax with temperature

when lasing. This can be attributed either to thermal backfilling or upper level

lifetime limited transport owing to some combination of greater diagonality and

larger injection anticrossings.

• This motivates the following comparisons: OWI190E-M2, OWI222G-M1, and

OWI235G-M3 all exhibited pronounced drops in above-threshold current, but

while they were all more diagonal than their predecessors, only OWI190E-M2

and OWI235G-M3 employed larger phonon gaps. This suggests that the falling

Jmax is symptomatic of high diagonality rather than the size of the phonon

depopulation gap.

• This is consistent with comparisons between OWI190E-M2 and OWI235G-M3

and their predecessors, OWI180E and OWI222G respectively: if thermal back-

filling was the cause rather than diagonality, then OWI180E and OWI222G

should have exhibited more dramatic current drops on account of having a

smaller E21.
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• OWI222G-M1 and OWI235G-M3 are similar in parameters except for their

phonon gap and oscillator strength, but OWI222G-M1 clearly had a superior

Tmax. As discussed up to this point, diagonality should not hurt performance

(admittedly, however, theory and experiment in this field have a long history of

divergence). If one assumes that the decreased oscillator strength of OWI235G-

M3 did not hurt its temperature performance, then the decreased temperature

performance is likely due to its larger E21.

• Neither of the two working two-phonon designs performed well at all.

The above considerations cannot definitively rule out thermal backfilling as a barrier

to high temperature performance, but it does appear that all available evidence points

to the contrary.

Negligible thermal backfilling implies that the decrease in Jmax versus temperature

likely reflects transport dominated by the upper laser level lifetime, ie. |Ω| À 1/
√
ττ||.

However, the results of this generation do not clearly tell whether devices are oper-

ating in this regime solely because of increased anticrossings (larger |Ω|) or because

diagonality has genuinely increased the upper level lifetime (larger τ).

All designs in this generation featured two or more changes, thus none of the

designs explored are well controlled with respect to any one variable. This, unfortu-

nately, limits the conclusions that can be drawn from this generation.

4.2.5 Fourth generation designs

The emphasis of the fourth generation designs was on suppressing lower level par-

asitics, in a bid to correct the early NDR problem identified in the 3rd generation

designs. At the same time, encouraged by results from 3rd generation designs demon-

strating that low oscillator strength lasing is possible, these designs were made even

more diagonal.

The low injection anticrossings of these designs have resulted in some of the lowest

THz QCL threshold currents ever seen at MIT. Unfortunately, this generation of
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devices almost certainly had growth problems, exhibiting many anomalies in transport

data.

OWI215G-M4

OWI215-M4 is essential an a version of OWI222G with a smaller collector anticrossing

(4.52meV down to 3.68 meV). Other major anticrossings and the oscillator strength

are kept essentially unchanged, although the lasing frequency is slightly lower. Design

parameters and experimental results are shown in figures 4-38 and 4-39 respectively.

Although the 1′ − 2 parasitic anticrossing only slightly lower than OWI222G

(0.44meV versus 0.50meV), thickening the collector barrier appears to have signif-

icantly reduced subthreshold parasitics. Threshold and parasitic current densities are

approximately half that of OWI222G. It had T0=145K, which is similar to OWI222G.

Unfortunately, Jmax is reduced by more than half as well. As such, OWI215G-M4 only

attained Tmax=126K.

While the IV s of OWI215G-M4 do not present any obvious abnormalities, GV

measurements nevertheless suggest that there may have been some growth problems in

this design. Examining figure 4-39d, the subthreshold region after the 1′−2 parasitic

shows a number of small bumps in conductance. As this is a one-well injector design,

there should be no significant parasitic level alignments following 1′−2, and therefore

this suggest some inhomogeneities in bias.

OWI220G-M5

OWI220G-M5 is ostensibly a 20% aluminum version of OWI222G, but there are

significant differences in design parameters. There were two growths of OWI220G-

M5: VB0412 was undergrown by 1.25%. amd VB0409 was overgrown by 2.6%. Their

experimental results are very similar, so only results from VB0412 are presented here.

Design specifications and experimental results for OWI220G-M5 are shown in figures

4-40 and 4-41.

Unfortunately, growth for both VB0409 and VB0412 is suspect. Their IV s show

multiple NDR behavior. In CW, IV s show “saw-tooth” behavior. This is attributed
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Figure 4-38: Design parameters for OWI215G-M4, wafer VB0362 (undergrown by
1.47%). (a) Calculated single-module band diagram at optimal injection bias. (b)
Calculated anticrossings. Main parasitic in IV is attributed to ∆1′−2. Injection
anticrossing is ∆1′−4. Collector anticrossing is ∆3−2.

to drift in growth rate, based on results from older devices that precede this thesis.

Nevertheless, this design is promising. Figure 4-40d shows that the parasitic 1′−2

anticrossing is smaller than OWI222G (0.34meV compared to 0.5meV), and indeed,

the parasite knee in the IV is much less pronounced than in OWI222G. Moreover,

despite the difficulties with growth, this design had the best temperature performance

of devices in this generation, with Tmax=154K.

OWI210H

OWI210H is a very diagonal version of OWI222G. Two wafers were grown: VB0373

(undergrown by 2.3%) and VB0364 (undergrown by 6.4%). Compared to OWI222G,

VB0373 has an oscillator strength reduced from 0.37 to 0.20. It also has a reduced

injection anticrossing (from 2.15meV down to 1.64 meV) and collector anticrossing

(from 4.52meV down to 4.00meV). VB0364 also has a reduced oscillator strength,

0.24. After accounting for VB0364’s extreme undergrowth, VB0364 actually has

approximately the same injector anticrossing (2.02meV). The collector anticrossing is

slightly larger. Design specifications are shown in figures 4-42. Experimental results

for VB0373 and VB0364 are shown in figures 4-43 and 4-44 respectively.
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Figure 4-39: Experimental results for OWI215G-M4, wafer VB0362 (undergrown by
1.47%). (a) Pulsed LIV versus temperature measured for a wide device. (b) Thresh-
old (Jth), maximum (Jmax) and parasitic (Jpar) current densities versus temperature.
Jpar is evaluated from the IV s at 12.5V. (c) Pulsed spectra at ∼8K, overlaid on cor-
responding IV to indicate bias location. (d) CW GIV at ∼8K. Red arrow indicates
location of abnormality in GV.
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Figure 4-40: Design parameters for OWI220G-M5, wafer VB0412 (undergrown by
1.25%). (a) Calculated single-module band diagram at optimal injection bias. (b)
Calculated anticrossings. Main parasitic in IV is attributed to ∆1′−3. Collector
anticrossing is ∆4−3. (c) Postulated band diagram based on experimental lasing
frequency. From (b), one sees that this bias is closer to the optimal collection bias
rather than the injection bias.

VB0373’s experimental results are well behaved, so they are discussed first. Par-

asitics are well suppressed, enabling extremely low threshold current densities (∼
125A/cm2). Interesting, Jmax for this design is not that much reduced compared to

OWI215G-M4. OWI210H, VB0373, differs from OWI215G-M4 primarily in having

lower oscillator strength and injector anticrossing, both of which ought to reduce

Jmax. The only other notable difference is a higher collector anticrossing; if this is

the what causes the surprisingly high Jmax for OWI210H, then it again suggests that

resonant tunneling collection is a limiting step in transport.

OWI210H, VB0373, also exhibited a significantly lower T0 than OWI215G-M4.

While acknowledging that T0 can vary widely even amongst devices from the same

fabrication, and that VB0373 was measured only once, this is still surprising. This

contradicts the expectation that increased diagonality should result in slower rise in

threshold, but on the other hand, OWI210H achieved a slightly higher Tmax than

OWI215G-M4 (131K versus 126K) despite the smaller T0. Finally, GV data again

presents a slight abnormality in the subthreshold region.
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Figure 4-41: Experimental results for OWI220G-M5, wafer VB0412 (overgrown by
1.47%). (a) Pulsed LIV versus temperature measured for a wide device. (b) Thresh-
old (Jth) and maximum (Jmax) current densities versus temperature. There is no
obvious parasitic bias. (c) Pulsed spectra at ∼8K, overlaid on corresponding IV
to indicated bias location. (d) CW GIV at ∼8K for OWI220G-M5, VB0409 and
VB0412, exhibiting distinctive saw-tooth shape in IV and GV .
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Figure 4-42: Design parameters for OWI210H, wafer VB0373 (undergrown by 2.3%).
(a) Calculated single-module band diagram at optimal injection bias. (b) Calculated
anticrossings. Main parasitic in IV is attributed to ∆1′−2. Collector anticrossing is
∆3−2. Injection anticrossing is ∆1′−4. (c) and (d) are the same plots for VB0364.
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Figure 4-43: Experimental results for OWI210H, wafer VB0373 (undergrown by
2.3%). (a) Pulsed LIV versus temperature measured for a wide device. (b) Threshold
(Jth), maximum (Jmax) and parasitic (Jpar) current densities versus temperature. Jpar

is evaluated from IV s at 10.5V. (c) Pulsed spectra at ∼8K, overlaid on correspond-
ing IV to indicate bias location. (d) CW GIV at ∼8K, red arrow indicates (slight)
abnormality in GV .
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In contrast, VB0364 had extremely unusual experimental results. Lasing occurred

at extremely high biases, deep in NDR. However, surprisingly, all currents are approx-

imately the same as for VB0373, which is inconsistent with the larger anticrossings

predicted in the band diagram. Yet the high temperature (say, 131K) IV looks sim-

ilar to that of VB0373, with an NDR occurring at ∼15V. Referring to figure 4-44c,

however, the lasing frequency is higher than VB0373, as expected from the band dia-

gram. Unfortunately, GV data is not available for this device, but nonetheless growth

problems are suspected. A more detailed explanation for these abnormalities is not

known.

OWI209H-M1

Continuing the same trend as OWI210H, OWI209H-M1 is even more diagonal and

possesses an even lower injector anticrossing. Design specifications and experimental

results are shown in figures 4-45 and 4-46 respectively.

The lower level parasitic knee is almost invisible in the IV s, enabling extremely

low threshold current densities (∼ 80A/cm2). Unfortunately, the wafer for OWI209H-

M1 almost certainly had growth problems, with the majority of its lasing seemingly

occurring in NDR, and possessing a very rough IV . CW measurements of GV and

IV are also shown in figure 4-46d; these exhibited saw-tooth oscillations suggestive

of growth inhomogeneity. It lased only up to Tmax=101K.

In its GV curve (figure 4-46d), OWI209H-M1 also had an exceptionally wide

subthreshold bias region following its 1′−2 alignment. This suggests that it possessed

unusually low gain, consistent with growth inhomogeneity.

OWI208H-M2

OWI208H-M2 was intended to be a replica of OWI209H-M1 with double the doping.

Of course, growth inaccuracies lead to differences, so one must nevertheless calculate

the band diagrams separately. Two wafers of OWI208H-M2 were processed: VB0393

(undergrown by 3.2%), and VB0385 (overgrown by 4.25%). The hope was that doping

would increase gain more than it would increase loss. The design specifications and
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Figure 4-44: Experimental results for OWI210H, wafer VB0364. VB0364 is ostensibly
undergrown by 6.4%, but is suspected to have other growth problems. (a) Pulsed LIV
versus temperature measured for a wide device. Three post-lasing IV s are shown.
(b) Threshold (Jth) and maximum (Jmax) current densities versus temperature. (c)
Pulsed spectra at ∼8K, overlaid on corresponding IV to indicate bias location.
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Figure 4-45: Design parameters for OWI209H-M1, wafer VB0375 (overgrown by
2.44%). (a) Calculated single-module band diagram at optimal injection bias. (b)
Calculated anticrossings. Main parasitic in IV is attributed to ∆1′−3. Collector
anticrossing is ∆3−2. Injector anticrossing is ∆1′−4.

experimental data for VB0393 are presented in figures 4-47 and 4-48 respectively.

Figures 4-49 and 4-48 present the same for VB0385.

Contrary to the expectation that doubling the doping should essentially dou-

ble the current, VB0393 exhibited approximately seven-fold higher currents than

OWI209H-M1, VB0375. However, this result becomes reasonable when one consid-

ers that OWI209H-M1, VB0375, was overgrown, while OWI208H-M2, VB0393, was

undergrown. Taken together, the layer width sequence differs significantly between

the two wafers. This is reflected in the larger anticrossings of OWI208H-M2, VB0393

(injector anticrossing of 1.23meV versus 0.91meV in OWI209H-M2; collector anti-

crossing of 4.27meV versus 3.35meV in OWI209H-M2).

Growth problems are suspected in VB0393, on account of its irregular IV s. CW

GIV measurements present in figure 4-48d also hint at possibility of the saw-tooth

oscillations seen in other devices in this generation. Unfortunately, the high currents

of this wafer invariably destroyed devices before data at higher biases could be ac-

quired to confirm the saw-tooth oscillations. The GV also possessed two peaks in the

subthreshold region, which is unexpected for an OWI design. Nonetheless, it achieved

Tmax=125K, which is fairly high in comparison to other devices in this generation.
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Figure 4-46: Experimental results for OWI209H-M1, wafer VB0375 (overgrown by
2.44%). (a) Pulsed LIV versus temperature measured for a wide device. (b) Thresh-
old (Jth), maximum (Jmax) and parasitic (Jpar) current densities versus temperature.
Jpar is evaluated from the IV s at 9.6V. (c) Pulsed spectra at ∼8K, overlaid on cor-
responding IV to indicate bias location. (d) CW GIV at ∼8K, showing distinctive
saw-tooth pattern.
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Figure 4-47: Design parameters for OWI208H-M2, wafer VB0393 (undergrown by
3.2%). (a) Calculated single-module band diagram at optimal injection bias. (b)
Calculated anticrossings. Main parasitic in IV is attributed to ∆1′−2. Collector
anticrossing is ∆3−2. Injector anticrossing ∆1′−4.

OWI208H-M2, VB0385, renders a better comparison to OWI209H-M1, VB0375,

as VB0385 was also overgrown. Comparing figures 4-49b and 4-45b, one sees that

all anticrossings are similar except for slight decreases in the collect and injector an-

ticrossings. In this case, the currents for VB0385 shown in figure 4-50a are ∼2.5

times that of VB0375 shown in figure 4-46a, approximately consistent with the dou-

bled doping. However, the dynamic range of OWI208H-M2, VB0385 is much reduced

compared to OWI209H-M2, VB0375 (Jth is ∼4 times that of VB0375). Indeed, only

Tmax=51K was achieved. This argues against doubling the doping in future devices.

If one accepts that doubling the doping harmed performance, then it is remarkable

that OWI208H-M2, VB0393, nevertheless outperformed OWI209H-M1. One possi-

bility is that OWI208H-M2’s superior performance was enabled by its better current

transport, suggesting that injector anticrossings in this generation may have been too

aggressively reduced; admittedly, however, many parameters are different between

the two designs, so no definite conclusions can be made.
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Figure 4-48: Experimental results for OWI208H-M2, wafer VB0393 (undergrown by
3.2%). (a) Pulsed LIV versus temperature measured for a wide device. (b) Threshold
(Jth) and maximum (Jmax) current densities versus temperature. There is no apparent
parasitic bias. (c) Pulsed spectra at ∼8K, overlaid on corresponding IV to indicated
bias location. (d) CW GIV at ∼8K, showing signs of saw-tooth pattern. GIV at
higher biases could not be measured as the high currents typically destroyed the
device.
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Figure 4-49: Design parameters for OWI208H-M2, wafer VB0385 (overgrown by
4.25%). (a) Calculated single-module band diagram at optimal injection bias. (b)
Calculated anticrossings. Main parasitic in IV is attributed to ∆1′−2. Collector
anticrossing is ∆3−2. Injector anticrossing is ∆1′−4.

SDIP2W

SDIP2W is a descendant of TW246 designed with 20% aluminum barriers (SD stands

for “super-diagonal”). Compared to TW246, all anticrossings are smaller. The in-

jector anticrossing was reduced from 1.67meV to 1.21meV. The lower level parasitics

anticrossings ∆1′−2 and ∆3′−4 were reduced from 0.53meV and 0.62meV to 0.26meV

and 0.14meV, respectively. Design specifications and experimental results are shown

in figures 4-51 and 4-52 respectively.

In principle, this design should have performed better. Unlike TW246 and TW260-

M1, the injection anticrossing is fairly well separated in bias from parasitic anticross-

ings. The higher barriers should have reduced leakage to continuum in any event.

However, this design performed poorly. The device whose results are shown in fig-

ure 4-52 lased only up to 76K (another device lased up to 96K, but its results are

not shown because severe abnormalities in the data suggest that errors may have

occurred during data collection). Jmax for this device exhibits the drop versus tem-

perature characteristic of most highly diagonal designs. Unlike TW246, the bias point

of peak optical power does not lag behind the bias point of Jmax with increasing tem-
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Figure 4-50: Experimental results for OWI208H-M2, wafer VB0385 (overgrown by
4.25%). (a) Pulsed LIV versus temperature measured for a wide device. (b) Thresh-
old (Jth) and maximum (Jmax) versus temperature. There is no apparent parasitic
bias. (c) Pulsed spectra at ∼8K, overlaid on corresponding IV to indicate bias loca-
tion.
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perature (in TW246 this was cited as evidence for hot phonon absorption, or at least

behavior consistent with hot phonon absorption).

Furthermore, SDIP2W lased at higher than expected frequencies. GV data in

figure 4-52d also reveals a large bump in the subthreshold region. If this bump

corresponds to injector anticrossing, then the device is lasing past its design bias.

This is consistent with the unexpectedly high lasing frequency, but raises the question

why there is no NDR corresponding to the injector detuning? On the other hand,

the subthreshold bump could be the 3′ − 4 anticrossing.
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Figure 4-51: Design parameters for SDIP2W, wafer VB0411 (undergrown by 0.26%).
(a) Calculated single-module band diagram at optimal injection bias. (b) Calculated
anticrossings. Injector anticrossing is ∆1′−3. As this is a DSL design, there is no
collector anticrossing.

SDRP4W

SDRP4W is essentially a very diagonal version of the classical FL family resonant

phonon designs. However, all of its major parameters are changed with respect to

previous FL designs, so a differential analysis with reference to older designs is diffi-

cult. Design specifications and experimental data are shown in figures 4-53 and 4-54

respectively.

The best feature of this design is its excellent suppression of parasitics; in fact,

from figure 4-53b, the important 1′ − 3 anticrossing is approximately zero, and the

144



0 5 10 15 20
0

50

100

150

200

250

Voltage

C
ur

re
nt

 D
en

si
ty

 (
A

/c
m

2 )

0 5 10 15 20
0

1

2

3

4

5

6

7

8

9

10

P
ul

se
d 

P
ow

er
 (

m
W

)

0 2 4 6 8 10

0

50

100

150

200

250

Pulsed Power (arb.)

SDIP2W (VB0411) Pulsed Performance vs. Temp.
1.17mm×120µm×10µm ridge laser 

LI

IV

LV

9K 
22K
41K
50K
61K
71K
76K

0 20 40 60 80 100 120 140
0

50

100

150

200

250

Temperature (K)
C

ur
re

nt
 D

en
si

ty
 (

A
/c

m
2 )

SDIP2W (VB0411) Select Current Densities vs Temp.
1.17mm×120µm×10µm ridge laser      

J
th

 (Pulsed) 
J

max
 (Pulsed)

J
par

 (Pulsed)

(a) (b)

3.8 3.9 4 4.1 4.2 4.3 4.4

0

50

100

150

200

250

(NDR, exact bias uncertain)

Frequency (THz)

C
ur

re
nt

 d
en

si
ty

 (
A

/c
m

2 )

SDIP2W (VB0411) Pulsed Spectra at ~8K
1.17mm×120µm×10µm      

0 5 10 15 20
0

50

100

150

200

250

Voltage (V)
0 5 10 15 20

0

50

100

150

200

250

Voltage (V)

C
ur

re
nt

 D
en

si
ty

 (
A

/c
m

2 )

0 5 10 15 20
−20

0

20

40

60

80

100

SDIP2W (VB0411) CW GIV at ~8K        
1.17mm×120µm10µm ridge laser

C
on

du
ct

an
ce

 (
m

S
)

(c) (d)

Figure 4-52: Experimental results for SDIP2W, wafer VB0411 (undergrown by
0.26%). (a) Pulsed LIV versus temperature measured for a wide device. (b) Thresh-
old (Jth), maximum (Jmax) and parasitic (Jpar) current densities versus temperature.
Jpar is evaluated from the IV s at 13.5V. (c) Pulsed spectra at ∼8K, overlaid on cor-
responding IV to indicate bias location. (d) CW GIV at ∼8K. Red arrow indicates
location of unexpected bump before threshold.
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2′−3 anticrossing is also small in comparison to, say, FL190S-M2. Its low temperature

threshold current density is similar to that of FL190S-M2. Also, it exhibited FL190S-

M2’s rise in current versus temperature across all device biases.

Unfortunately, SDRP4W almost certainly suffered from growth problems, pos-

sessing a very rough IV , a large amount of NDR lasing, and saw-tooth oscillations

in CW GIV measurements. It attained only Tmax ≈47K. Also, lasing occurs at much

higher frequencies than expected. Better agreement is found by calculating the band

diagram at higher bias. In figure 4-53b, the next logical bias is that corresponding

to 1-2 anticrossing. But this still yields frequencies too low, so the results are not

displayed.

The anticrossing diagram in figure 4-53b shows that the 1′−5 injection anticrossing

is badly misaligned with 2′− 5 injection anticrossing and the 4− 3 injector anticross-

ing. However, this feature is intentional; this “upward diagonal” injector scheme was

successfully used by Williams to improve the performance of older devices [46].
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Figure 4-53: Design parameters for SDRP4W, wafer VB0405 (overgrown by 0.53%).
(a) Calculated single-module band diagram at optimal injection bias. (b) Calculated
anticrossings. Collector anticrossing is ∆4−3. Injector anticrossings are ∆2′−5 and
∆1′−5.
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Figure 4-54: Experimental results for SDRP4W, wafer VB0405 (overgrown by 0.53%).
(a) Pulsed LIV versus temperature measured for a wide device. A few non-lasing
IV s at high temperatures are also displayed to demonstrate the rise in currents with
temperature (these are marked outside of the legend box). (b) Threshold (Jth) and
maximum (Jmax) and current densities versus temperature. There is no obvious par-
asitic bias. (c) Pulsed spectra at ∼8K, overlaid on corresponding IV to indicate bias
location. (d) CW GIV at ∼8K, showing distinctive saw-tooth pattern.
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SDRP5W

SDRP5W is a resonant phonon design with 3 injector levels. The motivation for using

a multi-subband injector is, again, to cut down on parasitics. Design specifications

and experimental results are shown in figures 4-55 and 4-56 respectively.

SDRP5W is promising in that it is the most successful design in this generation

at cutting down subthreshold parasitics. Its threshold current density is the lowest

of any MIT design, at ∼ 50A/cm2. Unfortunately, it again had inferior temperature

performance, with Tmax=96K. Figure 4-56a shows that currents rise steeply with

temperature; indeed, T0 is only 36K for this design. The reasons for this increase is

not well understood, but one possibility is that thermally activated population of level

3 leads to increased prominence of the 3′−4 parasitic channel at higher temperatures.

The 3′−4 anticrossing is ∆3′−4 = 0.76meV, whereas the 1′−4 and 2′−4 anticrossings

have negligible anticrossing gaps.

SDRP5W also has unusual transport characteristics. Although it lacked a dis-

tinct NDR, CW GIV measurements reveal extremely irregular conductance post-

threshold. In view of the other wafers grown in this generation, there is a possibility

that SDRP5W suffers from growth problems as well, although the evidence is less

definite than in the OWI designs previously discussed.

SDRP5W also lased at higher than expected frequencies. A better match to

experimental lasing frequencies is obtained with the band-diagram calculated at a

higher bias, close to the injector level anticrossing (3-2 anticrossing in figure 4-55b).

But this is strange, as at such high biases neither collection nor injection is anticrossed.

Summary

Fourth generation devices generally perform even worse than third generations de-

vices, and moreover are plagued by issues of growth. Nevertheless, they succeed in

cutting down subthreshold parasitics and preventing the early NDR seen in third gen-

eration designs. This has resulted in some of the lowest threshold current densities

ever witnessed in THz QCLs at MIT, but these are unfortunately accompanied by
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Figure 4-55: Design parameters for SDRP5W, wafer VB0406 (overgrown by 0.23%).
(a) Calculated single-module band diagram at optimal injection bias. (b) Calculated
anticrossings. Collector anticrossing is ∆5−4, and injector anticrossing is ∆1′−6.

large reductions in maximum current flow as well. Whereas third generation devices

are hypothesized to be limited by the early onset of NDR, fourth generation devices

appear to be limited by stunted transport. It may be desirable to take some middle

ground between third and fourth generation devices and increase injector anticross-

ings somewhat, or to find other methods of suppressing parasitics.

Furthermore, Jmax continues to drop with temperature for all devices during lasing,

despite the extremely small injection anticrossings of this generation. This suggests

that diagonality has genuinely increased upper laser level lifetime, but it remains a

mystery why threshold rises so rapidly with temperature.

Other findings include promising results for a 20% aluminum barrier variant of

OWI222G, and experimental evidence suggesting that doubling standard doping levels

harms performance.

4.3 Conclusions

The major results of this thesis are as follows.

• Highly diagonal THz quantum cascade lasers have been demonstrated to be
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Figure 4-56: Experimental results for SDRP5W, wafer VB0406 (overgrown by 0.23%).
(a) Pulsed LIV versus temperature measured for a wide device. Several non-lasing
IV s are shown to illustrate the rise in current with temperature. (b) Threshold (Jth),
maximum (Jmax) current densities versus temperature. Because there is no clear NDR
in the IV , Jmax is chosen to correspond to peak optical power. There is no obvious
parasitic bias. (c) Pulsed spectra at ∼8K, overlaid on corresponding IV to indicate
bias location. (d) CW GIV at ∼8K, showing roughness post-threshold.
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capable of lasing—a hollow victory perhaps, since said devices performed poorly

in almost every instance. But the designs in this thesis were never well controlled

with respect to individual design parameters, so diagonality as a path to high

temperature performance cannot be conclusively ruled out. Cause for optimism

remains.

• LO phonon scattering assisted (SA) injection in THz quantum cascade lasers

has been demonstrated for the first time. The SA injection based lasing iden-

tified in OWI185E-M1 has soundly broken the empirical Tmax < ~ω/kB limit,

suggesting that SA injection may prove superior to conventional resonant tun-

neling injection.

• Although not definitive, all available evidence suggests that thermal backfilling

is irrelevant at present operating temperatures, suggesting that design efforts

be focused elsewhere.

The major recommendation for future designs is tweaking fewer design parameters.

A continual frustration in chapter 4 is the difficulty of interpreting experimental

results in light of the aggressive changes made between device generations. Hopefully,

a more conservative design strategy will enable realization of the theoretical benefits

of diagonality, or at least definitively determine if high diagonality is an inviable route

to high temperature performance.
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